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Abstract

This work is sequel to the book ”A Treatise in Information Geometry”, submitted
to vixra in late 2009. The aim of this dissertation is to continue the development of
fractal geometry initiated in the former volume. This culminates in the construction
of first order self-referential geometry, which is a special form of 8-tensor construction
on a differential manifold with nice properties. The associated information theory
has many powerful and interesting consequences.

Additionally within this treatise, various themes in modern mathematics are
surveyed- Galois theory, Category theory, K-theory, and Sieve theory, and vari-
ous connections between these structures and information theory investigated. In
particular it is demonstrated that the exotic geometric analogues of these construc-
tions - save for Category theory, which is foundational - form special cases of the
self-referential calculus.
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Preface

After I completed my PhD, and managed to bring my other work up to the standard
I thought worthy of publication, I made both of these available on my webpage in
early 2009. However, as is the way with these matters, there were a number of
things that were left unfinished with my previous project [Go].

In particular I was still interested in understanding some of the dynamics of
more complex phenomena, such as plasticity, and viscosity in fluid flow. And then
there were deeper aspects, such as what I thought of at the time as rank manifolds.
Furthermore I had a desire to push towards concrete applications, or at least to the
point where I could make some significant progress towards some new developments.
And then there were still a few unanswered questions, at least one fundamental -
such as the question of the optimality of the Fisher information functional for a
given geometric structure.

So this project grew out of a need to continue and resolve various aspects of the
dialogue I began several years ago. As is the nature of such things, I was not entirely
happy with some of the outcomes of the previous project, so as I was in the initial
stages of writing this dissertation I revisited, and, in places, updated my previous
writings. The main instance of this was, naturally, the turbulent geometry.

This project was also motivated by the observation that there are particular
abstract areas of mathematics that have been recently developed, such as K theory,
for which there does not seem to be a satisfactory treatment in the literature as
to the connection with more concrete phenomena. Since furthermore I was not
entirely familiar with these areas of mathematics, I saw this as a great opportunity
to simultaneously study, and also synthesise this knowledge into a form compatible
with appropriate information theoretic constructions.

Apart from the survey chapters, there are three major new strands to this dis-
sertation. One, as mentioned, is that on turbulent geometry. Intuition was difficult
to build here, other than that I was looking for a fully non-perturbative geometric

ix



structure associated to my previous ideas.

The next strand is the idea of multiplicative structure, which, roughly speaking,
is a way of introducing a natural generalisation of the concept of self multiplica-
tion on a geometric structure. Understandably, the ultimate formulation is slightly
detached from the original intuition. Nonetheless the construction of geometric pre-
cursors is quite straightforward - if f, g are signal functions then ?(f ; g) is just fg.
This is related to fluid viscosity.

Another phenomena I examine is the notion of plasticity, in which one deals
with a pair of embedded information functionals. This actually is another form of
? structure in disguise, albeit with the self-multiplication in the stack, rather than
the base.

To be more precise, recall that σij = Λijklεkl, where σkl is the stress tensor, εkl
is the strain tensor, and Λ is the plasticity tensor. If the right hand side is viewed
as a density it becomes logical to consider εkl as the Ricci-Cartan curvature tensor
for some underlying metric τ , or the information density of an underlying structure.
Then in turn it becomes logical to compute the information density associated to σ,
and compute I =

∫
M
R(σ) =

∫
M
R(Λ : R(τ)).

Transcendental geometry, the final strand, uses a quite similar idea - ∧(f ; g) :=
f g, and is related to lattice dynamics, or ”reverb”. The general idea here is that
one is considering processes that arise from fractional composition operators.

There are numerous applications of these new structural ideas, and perhaps some
of the most interesting are associated with their synthesis into the topic of the last
major chapter; that on self-referential geometry. It is to be emphasised however that
I have really only indicated roughly how various problems - in economics, theoretical
physics, and pure mathematics - might become more tractable upon application of
the new techniques.

Consequently there is a lack of depth and exacting rigour to the results that
might otherwise be expected from more conventional treatments. Regardless, I
believe that the sketches that I have provided are instructive, and do at least make
some partial progress in resolution of the associated issues. Hence, as with its
companion volume [Go], I have decided to retain them in this dissertation.

In addition to my previous comments, this work, and its companion volume,
were necessitated by three different points. One, my overriding curiosity regarding
the connections between mathematics and physics. Two, my desire to communicate
the value and utility of mathematics in being a universal language to solve all manner
of practical and engineering problems. Third, but not least, I feel compelled by my
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Preface

sense of social responsibility to demonstrate that mathematics is very much a living
discipline, and, if anything, there are more open problems today than there ever
have been at any other point in the past. Throughout this document I have tried
to indicate in places the incompleteness of any structural treatment of mathematics
of finite complexity, and areas where further work could be done.

I will not pretend that this work deals with the concepts in question in a flaw-
lessly complete and clean fashion. Nonetheless, I still feel that this dissertation
communicates the key ideas I wish to get across to a level of clarity that I believe is
sufficient.

Subject to peer review, I would also of course be quite interested to have this
paper endorsed for submission to the arxiv, if it is judged to be of sufficient quality
for publication there.
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Organisation and attribution of
work

As in the previous book, my strategy is to divide the book into two main parts.
In the first few chapters I survey Galois theory, Category theory, sieve theory, and
K-theory, including Grothendieck’s theory of schemes. These are primarily for the
benefit of the curiosity of the author, though as a general comment Galois theory
becomes particularly poignant when one examines the theory of exponential, or
plastic geometry, and sieve theory takes on a new significance in the light of the
meta-geometry.

My main sources for my initial overview of Galois theory are my third year
algebra course notes, as well as Galois’ original paper, and the book by Edwards.
For category theory my sources are somewhat more extensive. I provide first an
initial overview of the developments in axiomatic set theory at the turn of the 20th
century, culminating in the work due to Paul Cohen and Kurt Gödel. Gödel’s
result in particular on incompleteness is extremely important, since it essentially
establishes the incompleteness of any mathematical model of finite complexity -
such as a physical theory.

I then turn to Goldblatt’s book on Topoi for the information that I will need in
respect to the theory of 1-categories. For advanced aspects of the theory I have ref-
erenced particular revision versions of articles on wikipedia. Next on the agenda is a
brief mention of the work on 2-categories due to Daniel Mathews and its relationship
with the study of twistors due to Roger Penrose. I then conclude my survey with a
couple of applications, which conclude the discussion of various technical issues re-
lated to Professor Frieden’s work incompletely covered in [Go]. These are the formal
construction of the Cramer-Rao inequality for the particular structural categories
that are of interest to me, and a proof of the Cencov representation theorem.

The chapter on K-theory is divided into several parts. First, I review the stan-

xv



dard work on algebraic geometry, following Hartshorne, Lang, and Atiyah and Mac-
donald. This includes a review of the Etale cohomology theory due to Grothendieck,
as well as Cech cohomology and the Leray spectral sequence. Following this I indi-
cate how the ideas of Grothedieck extend those due to Galois, following the paper by
Dubac and de la Vega. Next I finally examine theK-theory, following Max Karoubi’s
treatment, and culminating in an intuitive description of the Atiyah-Singer index
theorem, again assisted to a certain extent by wikipedia.

I conclude the chapter by a brief mention of the L-theory, which is a deeper level
of abstraction still.

Next is my review of Sieve theory. Here again my sources are quite varied.
I found the Princeton companion to mathematics invaluable here, particularly in
obtaining a vague understanding of solitons and sieves. The sieve theory is treated
first, and, apart from the companion, my sources are the book by Glyn Harman and
that by Alina Cojocaru.

My attention is then directed to the examination of integrability. Here my
primary sources were the books by Ashok Das and A.V. Mikhailov. I examine the
theory of solitons, followed by an examination of the current literature on instantons
and its relationship to infinite hierarchies of structure. The chapter is concluded by
a mention of the statistical information theory due to Amari, and a discussion of
how (∞, n)-categories might be the required construction for the realisation of the n-
categorical dual; which I refer to as n∗-categories, which would provide a foundation
for the study of the statistical dual to geometric structures. This is of interest
since we have the important observation that n-categories are a substructure of n∗∗-
categories in general, which is related to quite deep structural theory, significantly
beyond the scope of this dissertation.

Following this relatively substantial overview of the state of the field I then turn
to the first original part of this work, the general theory of geometric turbulence.
This is followed by further research chapters on viscoplastic geometry, as well as
transcendental geometry. Ample applications of these techniques are developed
concurrently with the structural theory.

The penultimate chapter focuses on the theory of self-referential geometry. This
is a synthesis of the three separate structural streams subject to investigation in
earlier chapters. Following this, the final chapter suggests further possible directions
of research, together with some minor concluding remarks.

xvi



Chapter 1

A review of Galois Theory

Here I will provide an overview of the key methods and concepts underlying Galois
theory, leading up to the key result due to the fellow, which was to settle the long
standing open problem as to whether one can find solutions by radicals to algebraic
equations of degree five or higher. My sources will be primarily my third year
undergraduate algebra notes [Mill], together with the book by Edwards [Ed] which
takes a rather less direct approach.

These results of course hold interest in and of themselves, and the theory itself
is a glorious example of the power of creative mathematical invention. Nonetheless
we will be more interested in the connection to transcendental number theory, which
is important when I begin to discuss geometric viscosity at a later stage. Certain
key problems, such as the Hodge conjecture, are known to essentially be statements
about transcendental number theory. One would hope that a greater understanding
of these matters might allow one to make some progress.

1.1 Introduction

1.1.1 Symmetric Polynomials

The beginnings of Galois theory go back to the following observation due to Newton,
which I provide here without proof:

Theorem 1.1.1. Any symmetric polynomial in the roots of an equation can be
expressed in terms of the coefficients of that equation.
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This may be restated in a slightly more general form, by removing dependence
on the nature of the roots, which may not be defined in terms of the ring one is
working over (if it is not algebraically complete).

Theorem 1.1.2. (Fundamental Theorem on symmetric polynomials). Any symmet-
ric polynomial in r1, ..., rn can be expressed as a polynomial in terms of the symmetric
functions σ1, ..., σn, where

σi = Σ
C(n,i)
j=1 Sj(i)

where Sj(i) is the jth unique choice of i letters from the set {r1, .., rn}, and
C(n, i) is the number of ways i items can be removed from a bag containing n unique
objects. Furthermore, if the symmetric polynomial has integer coefficients, then the
corresponding polynomial in the σi will also have integer coefficients.

Proof. (pp 9-12, Edwards)

1.1.2 Resolvents and solution of the cubic

Suppose that one has a cubic with roots x, y, z. Consider the quantity t := x+αy+
α2z, where α is a (nontrivial) cube root of unity. Lagrange in his original work on
this subject referred to this as the resolvent. Then t may take potentially six values,
dependent on the ordering of the original roots x, y, z. These in turn will be the
roots of a sixth degree equation, the resolvent equation

f(X) = Πp∈P (3)(X − t(p))

where P (3) is the 3rd order permutation group. But the coefficients of this
equation will be symmetric and hence expressible in terms of the original coefficients
of the given cubic by our theorem from before. This is a solvable equation since it
is a quadratic equation in X3 and can be solved by solving a quadratic and taking a
cube root. (In the language of Galois theory still to come, we are finding the roots
of our cubic by taking a field extension of degree 2 over the rational polynomial ring
generated by our original cubic equation.)
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1.1.3 Cyclotomic equations

A key question in the theory of the algebraic solution of equations is whether roots
of unity, which have the transcendental expression exp(2πik/n) (for nth roots), can
be expressed algebraically. This is a key question in taking roots more generally,
since if N1/k is the kth root of N , then αN1/k is also a kth root if α is a kth root of
unity.

This leads one to the examination of the equation xn = 1 and to try to find
algebraic expressions for x. We can reduce this probably further, if we note that for
n = jk with gcd(j, k) = 1 then a primitive jth root of unity which is also a primitive
kth root must be a primitive nth root of unity. It follows very easily that we need
only consider the case where n is prime.

The first few primes can be shown to have algebraic roots via relatively simple
calculation. For larger numbers, however, we have to be slightly cleverer.

Lemma 1.1.3. Let p be prime. Then there is a integer g such that for all integers
not congruent to 0 mod p, we have that they are congruent to a power of g mod p.
(We will call g a primitive root mod p)

Proof. By Fermat’s little theorem, note that for any integer k 6= 0 mod p we have
that kp−1 is congruent to 1 mod p. Then k is such an integer.

In particular we have as a consequence that if α is a pth primitive root of
unity then α, αg, ..., αg

p−2
are all non-trivial roots of unity. We then may write the

associated Lagrange resolvent as

t = α+ βαg + ...+ βp−2αg
p−2

where β is a p − 1st root of unity. Then for α 7→ αg we have t 7→ β−1t, since
we would have αg + βαg

2
+ ...+ βp−2α = β−1(βp−1α+ βαg + β2αg

2
+ ...+ βp−2αg

p−2
.

Then since tp−1 = (β−1t)p−1 = tp−1, this is invariant under the transformation
α 7→ αg. For similar reasons, tit

p−1−i is also invariant, where ti is t with β 7→ βi,
since α + βiαg + ... + β(p−2)iαg

p−2 7→ αg + βiαg
2

+ ... + β(p−2)iα = β−iti, so that
(β−iti)

p−1−i = (β−(p−1−i+i)tp−1−i
i ) = tp−1−i

i .

Suppose that we know how to compute the ti. Then I claim it follows that

α = (p− 1)−1(t1 + ...+ tp−1)

3
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since Σiti = (p−1)α+(β+β2 + ...+βp−1)αg + ...+(β+β2 + ...+βp−1)αg
p−2

) =
(p− 1)α as β is a primitive root of unity.

To complete our construction of α we need another, slightly harder lemma, which
requires the full machinery of Galois theory to resolve.

Lemma 1.1.4. (Edwards, p.27) Suppose p is prime, and α is a primitive pth root of
unity. Let β be a primitive p−1st root of unity. If P1(β), ..., Pp−1(β) are polynomials
in β with rational coefficients and if P1(β)α + ... + Pp−1(β)αp−1 = 0 then P1(β) =
0, ..., Pp−1(β) = 0.

Now we may write tp−1 as a polynomial in the form of the lemma, plus some
function of β times the trivial root, up to some reordering of 1, ..., p − 1 in powers
of g. Since it is invariant under transformation α 7→ αg, we conclude by the lemma
that all coefficients must be equal.

So then

tp−1 = P0(β) + P1(β)(α+ ...+ αp−1)

which is merely a function of β, since one can see via an easy geometric argument
that the summation of all kth primitive roots of unity excluding the trivial root will
give −1. So t can be computed as the p− 1st root of a known quantity.

It follows similarly that the ti can be computed and we are done.

1.2 Algebraic digression

I will assume that the reader is passingly familiar with groups, rings, ideals, and
various other minor technicalities. However there are certain elementary concepts
in algebraic theory that have a certain degree of importance to the treatment to
follow, so I will deal with these quickly now. My source here will be a course I took
in 2003 given by Chuck Miller [Mill].

1.2.1 Factorisation Domains

Definition 1. A ring R is an integral domain if 0 6= 1 and R contains no zero
divisors.
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Definition 2. Suppose R is an integral domain. Then an element u of R is a unit
if there is some v ∈ R with uv = 1.

Definition 3. If s, t ∈ R we say s divides t or s|t if t = sa for some a ∈ R.

Definition 4. s and t are associates s ∼ t if s|t and t|s.

Definition 5. (Principal Ideal). Let R be a commutative ring. Then if s ∈ R, the
2-sided ideal Rs is called the principal ideal associated to s, (s).

Definition 6. (Irreducible element). An element r ∈ R is irreducible if it is not a
unit, and if for every a, b such that r = ab we must have that either a or b is a unit.

Definition 7. (Unique Factorisation Domain (UFD)). An integral domain R is a
UFD if it satisfies the axioms

(UF1) Every nonzero r ∈ R can be expressed as up1...pn for n ≥ 0, u a unit and the
pi irreducible,

(UF2) If up1...pn = vq1...qm where u, v are units and the pi, qj are irreducible, then
n = m and the pi, qj are the same up to some reordering.

Examples:

(i) Z is a UFD.

(ii) Fields are UFDs.

(iii) R = {a+ b
√
−5|a, b ∈ Z} = Z[

√
−5] is not a UFD.

Definition 8. A nonzero element p ∈ R is prime if it is not a unit and if p|ab implies
p|a or p|b.

Theorem 1.2.1. If R is an integral domain that satisfies UF1, then R satisfies UF2
iff all irreducibles in R are prime.

The following notion is inspired via the Euclidean algorithm.

Definition 9. (Euclidean Domain (ED)). A Euclidean Domain is an integral domain
R which has a Euclidean function φ : R∗ := R {0} → Z≥0 so that

(ED(1)) If a|b then φ(a) ≤ φ(b).
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(ED(2)) Given a ∈ R, b ∈ R∗ there are q, r ∈ R so that a = bq + r where either r = 0
or φ(r) < φ(b).

Essentially a Euclidean Domain is a space ”where the Euclidean algorithm
works”. In the case of the integers, φ(n) = |n|. In the case of F (x) with F a
field, we have that this is a Euclidean Domain if we choose φ(p(x)) = deg(p(x)).

Definition 10. (Principal Ideal Domain (PID)). An integral domain R is a PID if
every ideal in R is principal.

Lemma 1.2.2. If R is a ED, then R is a PID.

Theorem 1.2.3. If R is a PID, then R is a UFD.

1.2.2 Fields

An example of a particular class of fields are the number fields - subfields of the
complex numbers. These are fields such as the rationals, Q, and the real numbers,
R. Then there are the finite fields, Zp = {0, 1, ..., p− 1} where p is prime.

The definition of a field is relatively straightforward:

Definition 11. (Field). A field is a set that has operations of addition and mul-
tiplication, and is closed under both. It also is closed under the inverses of these
operations.

Definition 12. (Subfield). A subfield is a subset of a field that remains closed
under the restrictions of the original operations.

Definition 13. If the identity element of a field F is equal to the zero after a finite
number k of additions, then this number is called the characteristic of the field, and,
furthermore, it follows that Zk is a subfield of F , Zk ⊂ F . If such a k does not exist
then the characteristic is said to be zero, and we have that Q ⊂ F .

For a more interesting example of the idea of a field, note that, starting with
any field F one can take the associated polynomial ring F [x]. From this one can
form the field of functions F (x). Such fields are of considerable interest in Galois
theory, as they are a natural structure within which one can build extensions to a
field F .
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1.2.3 Field Extensions

Definition 14. If F , K are fields with F ⊂ K we will say that K is an extension
of F .

Suppose now α ∈ K. We note that there is a map φ : F [x]→ K such that it is
the identity on F and it sends x to α. Furthermore, if f is any polynomial we note
that φ ◦ f(x) = f(α).

If φ is injective, we call α transcendental over F , and if one were to denote
the smallest subfield of K containing F and α to be F (α) we have that F (α) is
isomorphic to the field of fractions of F [x], with F ⊂ F (α) ⊂ K.

Suppose on the other hand that φ is not injective. Then since F [x] is a principal
ideal domain (PID) we have that ker(φ) = (f(x)) for some monic function f , and
f(α) = φ ◦ f(α) = 0. In other words, α satisfies some finite degree polynomial over
F , or is algebraic over F .

One of the key problems of Galois theory is to show when things are transcen-
dental and when they are not. In particular to demonstrate that one can solve an
equation by radicals one must have all field extensions algebraic.

Now im(φ) ⊂ K and hence is an integral domain. Therefore f(x) is irreducible
over F , via the lemma

Lemma 1.2.4. If I 6= R is an ideal, then I is a prime ideal iff R/I is an integral
domain.

Hence F [x]/(f(x)) = F [x]/ker(φ) is a field and so

F (α) ∼= F [x]/(f(x))

In particular we have a finite dimensional vector space over F with basis 1, α, α2, ..., αm−1

where m = deg(f).

Definition 15. For any F ⊂ K, we call dimFK the degree of the extension, and
define [K : F ] = dimFK.

Example. If α is algebraic over F with irreducible polynomial f(x), then
deg(f(x)) = [F (α) : F ].

It is fairly easy to see that the following is true:

Proposition 1. If F ⊂ L ⊂ K are field extensions, then [K : F ] = [K : L][L : F ]
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Corollary 1.2.5. If K is an extension of F of degree n and α ∈ K, the [F (α) : F ]|n.

Theorem 1.2.6. (Field isomorphism theorem). Suppose that α ∈ K and β ∈ L are
two elements which are algebraic over F . Then there is an isomorphism F (α) →
F (β) iff the irreducible polynomials for α and β are the same.

Proof. If such an isomorphism exists, then f(α) = 0 iff θ ◦ f(α) = 0 iff f ◦ θ(α) = 0
iff f(β) = 0. Conversely, if they have the same irreducible polynomial f(x) ∈
F [x], we have that there are isomorphisms ψ : F [x]/(f(x)) → F (α) ⊂ K, and
φ : F [x]/(f(x))→ F (α) ⊂ L. Then θ = ψ ◦ φ−1 is the desired isomorphism.

Remark. More generally, if θ : K → K ′ is an isomorphism of extensions K,K ′ of a
field F , then α is a root of f(x) ∈ F [x] in K iff θ(α) is a root of f(x) in K ′.

Example. Consider the polynomial x3 − 2 ∈ Q[x]. This is irreducible, as is the
polynomial x4−5 ∈ Q[x]. These have roots α = 21/3 and β = 51/4. We are interested
in the extension of the rationals with both these roots adjoined, Q(α, β). Then note
that as Q(α), Q(β) are subfields of degree 3 and 4 respectively over Q that 3 and 4
must divide [Q(α, β) : Q]. So 12 divides [Q(α, β) : Q]. But it is clear that this is
all there is, as x3− 2 and x4− 5 are irreducible and hence minimal polynomials. So
this is the degree of our extension.

1.2.4 Ruler and Compass Constructions

As an application of these ideas, we will look at ruler and compass constructions.
Points, lines, and circles are said to be constructible if, given two initial points at
”unit” length, one can generate using a straight edge and compass such objects.

For instance, one can inscribe a circle of radius one using one point as the centre
and the other as a point on the edge. One may then draw a line joining the two
points intersecting the circle at a diametrically opposite point; these points then
can be used to draw two circles of radius two, which intersect at points which in
turn can be connected through the centre of the original circle. In this way, one can
construct right angles. Furthermore, it is possible to bisect any angle using such
methods.

Definition 16. A real number is constructible if a segment of length |a| is con-
structible from the two original points (at distance 1).

Proposition 2. The constructible numbers are a subfield of the real numbers.
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Proposition 3. If a ∈ R is constructible and a ≥ 0, then
√
a is constructible.

Proof. For just construct a segment of length a in one direction, say ”left”, and a
segment of length one towards the ”right” from some reference point 0. Construct
the midpoint of the segment of length a + 1, then build a circle with centre the
midpoint. Then we will have two similar triangles, and the length of the vertical
side can easily be seen to be

√
a.

Proposition 4. All field extensions due to construction are at most of degree 2.

Proof. The equation of a line is linear. The equation of a circle is quadratic. The in-
tersection of a line and a circle is again a quadratic equation. Hence all constructible
numbers obtained as solutions to an extension induced by αx2 + βx+ c = 0 will be
of the form F (

√
β2 − 4αc).

It is then easy to see as a consequence that

Theorem 1.2.7. If a1, ..., an are constructible numbers in R then there is a chain of
subfields Q = F0 ⊂ F1 ⊂ ... ⊂ Fm ⊂ R so that (i) each Fi ⊂ R, (ii) a1, ..., an ∈ Fm,
(iii) Fi+1 is obtained from Fi by a quadratic extension, (iv) dimQK = dimQFm = 2m,
and (v) the ai are all algebraic over Q.

Consequently, the problem of trisecting the angle is impossible, since it requires
a field extension of degree 3. Similarly, it is impossible to duplicate the cube, as
again that requires a field extension of degree 3. (Note, however, that if one uses
paper folds to construct numbers the range of possibilities is increased; in particular
it is then possible to trisect the angle.)

1.3 Field Extensions and Galois Theory

It was my original intention to delve more deeply into Edwards’ book on the subject,
but I find that my algebra notes are somewhat more concise. So the following section
will largely be a typset version of these, almost verbatim, with minor personal
annotations and occasional commentary related to the books by Edwards.
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1.3.1 Splitting Fields

Definition 17. (Splitting Field) Let F be a field, f(x) ∈ F [x] a polynomial. An
extension K of F is said to be a splitting field for f(x) if

(i) in K[x], f(x) = c(x− u1)...(x− un)

(ii) K = F (u1, ..., un)

Remark. In other words, not only does K contain all the roots of f , but, moreover,
K is a minimal such extension over F .

Example. Let f(x) = x4 − x2 − 2 = (x2 − 2)(x2 + 1) be a polynomial in Q[x].
Then a splitting field for f is K := Q(

√
2,−
√

2, i,−i) since f(x) = (x−
√

(2))(x+√
(2))(x− i)(x+ i) over K. In particular, we see that

F ⊂ F (
√

2) ⊂ F (
√

2, i)

Hence [K : F ] = 4, and we have a basis {1,
√

2, i, i
√

2} for K as a vector space
over F . This is known as a biquadratic extension.

Theorem 1.3.1. Suppose f(x) ∈ F [x] is a nonconstant polynomial of degree n.
Then there is a splitting field K of f(x) over F such that [K : F ] ≤ n!.

Proof. The proof is by induction on the degree of f(x). For the base case, if f(x) =
c(x− u) is linear then F is already a splitting field and [F : F ] = 1.

So suppose that we know the result for polynomials of degree ≤ n− 1. In F [x]
let p(x) be one of the prime divisors of f(x) which we can assume is monic (leading
coefficient is one), and we have certainly that deg(p(x)) ≤ n.

Form F [x]
(p(x))

= F (un) with un a root of p(x). Then in F (un)[x] we have f(x) =

c(x − un)g(x) where g(x) is monic of degree n − 1. Also note that [F (un) : F ] =
deg(p(x)) ≤ n.

By the induction hypothesis applied to g(x) ∈ F (un)[x] there is a splitting field
Kn−1 = F (u1, ..., un−1) where g(x) = (x− u1)...(x− un−1) ∈ Kn−1[x], ui ∈ Kn−1.

Then K = Kn−1(un) is a splitting field for f over F . Also, it follows by the
induction hypothesis that

[K : F (un)] ≤ (n− 1)!
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so

[K : F ] = [K : F (un)][F (un) : F ] ≤ (n− 1)!n = n!

Remark. As a consequence of the theorem above we have that all algebraic extensions
have associated splitting fields.

Theorem 1.3.2. Let σ : F → E be a field isomorphism, f(x) ∈ F [x] a non-
constant polynomial and σ.f(x) ∈ E[x] its image. (If f(x) = a0+ ...+anx

n, σ.f(x) =
σ(a0) + ...+ σ(an)x

n.)

Now if K is a splitting field for f over F and L is a splitting field for σf over
E then there is an isomorphism from K to L extending σ, call it σ̄ : K → L.

Proof. This is once more by induction on the degree of f(x). If f(x) has degree 1
then f(x) = c(x − u) and u ∈ F , K = F (u) = F , σf(x) = σ(c)(x − σ(u)) and
L = E(σ(u)) = E.

Let p(x) be a monic prime in F [x] dividing f(x). Then in K, p(x) has some

root, say u, so F [x]
(p(x))

∼= F (u) ⊂ K and [F (u) : F ] = deg(p(x)).

Similarly, σp(x) is a monic prime in E(x) and has a root v in L, where E[x]
(σp(x))

∼=
E(v) ⊂ L.

As before, if we extend σ by putting σ̄(u) = v then we get an isomorphism
σ̄ : F (u)→ E(v).

In particular, in F (u)[x] we can factor f(x) as f(x) = (x−u)g(x) where g(x) has
degree n−1, and it follows that in E(v)[x], σ̄f(x) factors as σ̄f(x) = (x− σ̄(u))g(x).

Now K is still a splitting field for f(x) over F (u) and L is a splitting field for
σf(x) over E(σ̄(u)) = E(v). Hence K is a splitting field for g(x) over F (u) and L
is a splitting field for σ̄g(x) over E(v) = E(σ̄(u)).

Then by induction σ̄ can be extended to an isomorphism σ̂ : K → L which
restricts to σ̄ on F (u) and hence σ on F .

1.3.2 Normal and Separable Extensions

Definition 18. An extension K of F is said to be normal if every irreducible poly-
nomial p(x) ∈ F [x] which has a root in K must split into linear factors in K[x], i.e
all roots of p(x) lie in K.
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Theorem 1.3.3. The extension K of F is the splitting field of some polynomial in
F [x] iff K is a finite dimensional, normal extension of F .

Proof. (←) Since K is finite dimensional, it has a basis, say {u1, ..., un} over F .
Then K = F (u1, ..., un) and each ui is algebraic over F . Hence, ui is the root of
some irreducible pi(x) ∈ F [x].

Put f(x) = p1(x)...pn(x).

Since K is normal, each pi(x) splits into linear factors in K[x]. Hence so does
f(x). Thus K is a splitting field for f(x).

(→) Suppose K is a splitting field for f(x) ∈ F [x]. Then K = F (u1, ..., un)
where ui are roots of f and hence [K : F ] <∞ since each ui is algebraic over F .

Suppose p(x) ∈ F [x] is irreducible, and has a root u ∈ K. Let L be a splitting
field for p(x) over K. So

F ⊂ F (u) ⊂ K ⊂ L

Now suppose w ∈ L is some other root of p(x). Then we know that the identity
on F extends to an isomorphism

K(w) = F (u1, ..., un)(w) = F (u1, ..., un, w) = F (w)(u1, ..., un)

So K(w) is a splitting field of f(x) over F (w). Also K is a splitting field for
f(x) over F (u).

Hence the isomorphism F (u)→ F (w) extends to an isomorphism K → K(w).

Now, this isomorphism restricts to the identity on F so

[K : F ] = [K(w) : F ]

Consequently [K(w) : K] = 1 and w ∈ K.

Definition 19. (Separable Polynomial). A polynomial f(x) ∈ F [x] is said to be
separable if all its roots in a splitting field are distinct (so it has no repeated roots).

Definition 20. (Separable Extension). An extension K ⊇ F is said to be a sepa-
rable extension if every u ∈ K is the root of a separable polynomial f(x) ∈ F [x].

Definition 21. (Derivatives). If f(x) = a0 + ...+anx
n then its derivative is f ′(x) =

a1 + 2a2x+ ...+ nanx
n−1.
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Lemma 1.3.4. If f(x) and f ′(x) are relatively prime in F [x], then f(x) is a sepa-
rable polynomial.

Lemma 1.3.5. Suppose that char(F ) = 0. If f(x) ∈ F [x] is irreducible, then f(x)
is separable and hence every algebraic extension K of F is separable.

Corollary 1.3.6. If an extension K of F is not separable, it is not algebraic.

Proof. (of lemma) Assume f(x) is a non-constant irreducible (prime) polynomialof
degree greater than one. Then f ′(x) is not constant and has smaller degree. Hence
f(x) and f ′(x) are relatively prime, and f(x) is separable.

1.3.3 Primitive elements

Definition 22. (Primitive element). Let K ⊇ F be a finite dimensional algebraic
extension. An element u ∈ K is a primitive element for this extension if K = F (u).

Remark. An example of this is given by the case when one is considering a nontrivial
or primitive pth root of unity, where p is prime. These were mentioned earlier in
my discussion of the cyclotomic equation.

Theorem 1.3.7. (Existence of a primitive element). Let K be a finite dimensional,
separable extension of F . Then K contains a primitive element, ie ∃u ∈ K with
K = F (u).

Proof. Since K is finite dimensional, K = F (u1, u2, ..., un). If n = 1 there is nothing
to prove.

Suffices to prove for n = 2:

Let K = F (v, w). Want to find a primitive u ∈ K so K = F (u). We look for a
primitive of the form u = v + cw.

For the purposes of this proof I shall assume that F is infinite.

Let p(x) ∈ F [x] be a minimal polynomial for v with roots v = v1, ..., vn in
L ⊇ F . Similarly suppose q(x) ∈ F [x] is a minimal polynomial for w, with roots
w = w1, ..., wm in L ⊇ F , where L is the splitting field for p(x)q(x).

Since F is infinite, we can choose

c 6= vi−v
w−wj

13
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for all 1 ≤ i ≤ n, 1 < j ≤ m.

Then define u = v + cw. I claim that this is a primitive element for K, ie that
K = F (u).

Let h(x) = p(u− cx) ∈ K[x]. Then we note that h(w) = p(u− cw) = p(v) = 0
by definition of p(x).

Now look at some wj 6= w (j 6= 1). If p(u−cwj) = 0 then for some i, u−cwj = vi.
Hence v + cw − cwj = vi so

c = vi−v
w−wj

This contradicts our choice of c. Hence w must be the only common root of q(x)
and h(x).

Let r(x) be the minimal polynomial for w over F (u). Then r(x)|q(x) and q(x)
splits and has no repeated roots in L[x]. Therefore r(x) has no repeated roots.

But also r(x)|h(x) since r(x) is a minimal polynomial and h(x) ∈ F (u)[x]. Hence
r(x) has w as a single root, r(x) = b(x−w) and w ∈ F (u). Hence v = u−cw ∈ F (u)
and K = F (v, w) = F (u).

Remark. In other words, what this is telling us is that separable extensions are
special - in particular, that they are generated by a single function over the field F .

Example. Consider f(x) = x3 − 2 ∈ Q[x]. This happens to be irreducible. Let K
be the splitting field of f(x) in the complex numbers. Then for w = exp(2πi/3), we
have that f(x) = (x− 21/3)(x− w21/3)(x+ w21/3).

Now Q[x]
(x3−2)

∼= Q(21/3) has degree 3 over Q, with basis 1, 21/3, 22/3. Over Q(21/3)
we can compute that

f(x) = (x− 21/3)(x2 + 21/3x+ 22/3)

The second factor g(x) is irreducible over Q(21/3). Then we can write Q(21/3)[x]
(g(x))

∼=
Q(21/3, w21/3) = K has degree 2 over Q(21/3) and has basis 1, w21/3. So we have a
basis for the splitting field K with [K : Q] = 6, {1, 21/3, 22/3, w21/3, w22/3, w2}.

Or alternatively, we see that K = Q(21/3, w).

Now what this theorem above is telling us is that, since K is a finite dimensional
splitting field over an infinite field, there is a number u ∈ C with minimal polynomial
over the rationals of degree 6 such that K = Q(u).

14
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Remark. There is furthermore a parallel with my remarks in the introduction. This
minimal polynomial can be thought of as nothing other than the resolvent associated
to the solution of the original equation.

1.3.4 Galois groups

Definition 23. (F - automorphism). Let K ⊇ F be an extension. An isomorphism
σ : K → K is an F - automorphism of K if σ(c) = c for all c ∈ F . (F is fixed by σ).

Definition 24. (Galois group). The collection of all F -automorphisms of K is
denoted Gal(K/F ), G(K/F ) or GalF (K) and called the ”Galois group of K over
F”.

Proposition 5. G(K/F ) is a group with operation composition of functions.

Proof. This is easy to check.

Proposition 6. (Permutation of roots). If f(x) ∈ F [x] and K is a extension field
of F containing a root u ∈ K of f(x), then for any σ ∈ G(K/F ), σ(u) is also a root
of f(x).

Example. (i) F = R,K = C.G(K/F ) = 〈σ|σ2 = 1〉 where σ : C → C is nothing
other than complex conjugation.

(ii) G(C/Q) is very large (of cardinality exceeding aleph one).

(iii) G(R/Q) ∼= 1.

Remark. For the purposes of the original motivation of Galois theory, we are inter-
ested in finite dimensional extensions, usually of Q. Note that if f(x) ∈ F [x] has
a root u ∈ K and σ ∈ G(K/F ) then σ(u) is also a root of f(x) and σ permutes
the roots of f . In fact, it turns out that this in fact completely characterises the
behaviour of the Galois group over algebraic extensions.

Theorem 1.3.8. (Uniqueness). Suppose K = F (u1, u2, ..., un) is an algebraic ex-
tension. If σ, τ ∈ G(K/F ) are such that σ(ui) = τ(ui) for i = 1, ..., n then σ = τ .

Proof. Each element ui is algebraic over F . ui is a root of a polynomial with coeffi-
cients in F .

A spanning set for K can be obtained as 1 together with products of the various
ui1 ...uik , for 1 ≤ k ≤ n. But σ, τ have the same value on such elements. Hence they
must be equal.

15
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Remark. A consequence of the above is that any such σ ∈ G(K/F ) is a linear
transformation of K as an F space.

The following theorem is of quite central importance to Galois’ proof that poly-
nomials of degree five or higher are insoluble by radicals.

Theorem 1.3.9. (Permutation Theorem). If K is the splitting field of a polynomial
f(x) ∈ F [x] of degree n, and if f(x) is separable, then G(K/F ) is isomorphic to a
subgroup of Sn. (The Galois group is a permutation group).

Remark. Recall that Sn is just the group of transformations on an alphabet of n
letters.

Proof. The polynomial f(x) has n distinct roots u1, ..., un inK andK = F (u1, ..., un).
So any σ ∈ G(K/F ) just permutes the uis. If σ ∈ G(K/F ) fixes all uis, then σ is
the identity (by the previous theorem).

1.3.5 Intermediate fields and the Galois Correspondence

Definition 25. If F ⊂ E ⊂ K, then E is an intermediate field.

Suppose H ⊂ Gal(K/F ), F ⊂ E ⊂ K.

Define KH to be the fixed field of H

= {c = K|σ(c) = c for every σ ∈ H}

but this is a subfield of K ⊇ F .

Hence there is a correspondence

G(K/F ) ⊇ H ; KH = fixed field of H

and also

E = intermediate field ; G(K/E)

16
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In particular note that G(K/E) is a subgroup of G(K/F ). That is, F ⊂ E ⊂
K ⇒ G(K/E) ⊂ G(K/F ).

The main theorem of Galois theory says that (under certain conditions) these
two correspondences are inverses of each other and so the subgroups of G(K/F )
correspond bijectively to intermediate fields.

The conditions are that (K is a finite, normal, separable extension) or ( char(K) =
0, K is the splitting field of a polynomial) or ([K : F ] = |G(K/F )|).

Theorem 1.3.10. Let K = finite dimensional extension of F and H a subgroup
of G(K/F ). Let E = KH . Then K is a simple, normal separable extension of E.
(simple means K = E(u) for some u ∈ K)

Proof. Each u ∈ K is algebraic over F , and hence over E. Every σ ∈ H sends u to
some other root of its minimal polynomail p(x) ∈ E[x].

So u has a finite number of distinct images u = u1, u2, ..., ut under H (orbit of u
under H).

If σ ∈ H, then σ(u1), σ(u2), ..., σ(ut) is {u1, ..., ut} in some order. Put f(x) =
(x− u1)...(x− ut).

The coefficients of this polynomial are then fixed by H, so f(x) ∈ E[x].

Notice that the ui’s are distinct and so f(x) is a separable polynomial. Hence
we can find (by Theorem on primitive element) a single u ∈ K with K = E(u). (ie
we have the conditions necessary to ”compute a resolvent”.)

Again the above setup holds. f(x) splits into linear factors in K[x] so the
extension is also normal.

Recall that if K is a finite dimensional extension of F and H ≤ G(K/F ),
E = KH is the fixed field of H.

Suppose p(x) is the minimal polynomial of some element u over an intermediate
field E, with degree n. We have that K = E(u). Then [K : E] = n. Distinct
elements of G(K/E) map u to distinct elements of K since K = E(u).

Hence |G(K/E)| ≤ n. Since H ⊂ G(K/E) we have |H| ≤ |G(K/E)| ≤ n = [K :
E].

For f(x) as above, we have p(x)|f(x). Now f(x) has degree t so |H| ≥ t =
deg(f) ≥ deg(p) = n = [K : E].

Hence H = G(K/E) and |G(K/E)| = [K : E].

E = KH so H = G(K/KH).

17
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Hence we have the Galois correspondence:

E ; G(K/E) ⊂ G(K/F )

is surjective.

Definition 26. (Galois extension). K ⊇ F is said to be a Galois extension if it is
finite dimensional, normal and separable over F . (In characteristic zero, this means
that K is the splitting field of some polynomial in F [x].)

So assume that K ⊇ F is a Galois extension. Let L be an intermediate field
F ⊂ L ⊂ K. Put L0 = KG(K/l) = fixed field of G(K/L).

Clearly L0 ⊇ L. We would like to show L0 = L.

Suppose u /∈ L. Now K is also a Galois extension of L. Also u is a root of a
minimal polynomial p(x) of degree ≥ 2 where p(x) ∈ L[x].

The roots of p(x) are distinct (separable) and lie in K (normality).

If v is any other distinct root of p(x) then ∃σ ∈ G(K/L) with σ(u) = v. Hence
v /∈ L, and also u /∈ L0.

Hence L0 = L. That is, L = fixed field of G(K/L).

In particular, if K ⊇ F is Galois then F = fixed field of G(K/F ). Also [K :
L] = |G(K/L)| and [L : F ] = [G(K/F ) : G(K/L)], where the notation on the right
is the index of the subgroup G(K/L) in G(K/F ).

This shows that the Galois correspondence is injective, and completes the proof
that it is one-one. In particular if K ⊇ F is a Galois extension then

H ⊂ G(K/F ) ; KH = fixed field of H

and

Intermediate field L ; G(K/L) ⊂ G(K/F )

Remark. (Fact). If F ⊂ E ⊂ K, then E is a normal extension of F ⇔ G(K/E) C
G(K/F ), and if so G(E/F ) ∼= G(K/F )

G(K/E)

So we have proved:

Theorem 1.3.11. (The Fundamental Theorem). Let K = Galois extension field of
F (finite dimensional, normal, separable, and if char(F ) = 0 the splitting field of a
polynomial).
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(1) Then E ; G(K/E) is a bijection between the set of intermediate fields F ⊂
E ⊂ K and the subgroups of G(K/F ).

Moreover, [K : E] = |G(K/E)| and [E : F ] = [G(K/F ) : G(K/E)] and
H = G(K/KH) and E = KG(K/E).

(2) An intermediate field E is a normal extension of F ⇔ G(K/E) C G(K/F )

and if so then G(E/F ) ∼= G(K/F )
G(K/E)

.

Remark. Note that the Galois correspondence is order reversing; if E ⊂ L then
G(K/E) ⊇ G(K/L).

1.3.6 Examples

As one example, consider Q(21/3) ∼= Q[x]
(x3−2)

. Then Q(21/3) is an extension of Q of

order three, and G(Q(21/3)
Q ) = {1}.

As a second, consider this time the extension of the rationals K = Q(
√

3,
√

5).
Then this is the splitting field of (x2 − 3)(x2 − 5), which has roots

√
3,−
√

3,
√

5,
and −

√
5.

We furthermore clearly have a chain of inclusionsQ ⊂ Q(
√

3) ⊂ Q(
√

3,
√

5) such
that the degree of each successive extension is order 2. Consequently [Q(

√
3,
√

5) :
Q] = 4, and since this is a Galois extension, we have that |G(KQ )| = 4.

To be more specific, we have that

G(K/Q) = {σiτ j|σ2 = 1 = τ 2} = C2 ⊕ C2

where τ :
√

3 7→ −
√

3,
√

5 7→
√

5, and σ :
√

3 7→
√

3,
√

5 7→ −
√

5 are maps on
the roots of the splitting field K.

The structure of the space of subfields of the extension is as follows:

19



Field Extensions and Galois Theory
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and the corresponding Galois groups have the following diagrammatic structure:

{1}

{1, σ} {1, τ} {1, στ}

{1, σ, τ, στ}

�
�

�
�

��� 6
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@

@@I

@
@

@
@
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Recall that for our first example we were interested in x3 − 2, but we did not
have a splitting field. So now consider the corresponding splitting field over the
complex polynomial ring, with roots 21/3{1, ω, ω̄}, where ω = exp(2πi/3).

In particular we have that f(x) := x3 − 2 = (x − 21/3)(x − ω21/3)(x − ω̄21/3).
Consider the corresponding splitting field for f , K.

Then [K : Q] = 6, and sinceK is a Galois extension, we have that |G(K/Q)| = 6.

Then G(K/Q) ∼= S3 = 〈σ, τ |σ2 = 1 = τ 3, στσ = τ−1〉.
We have a basis for K over Q is {1, 21/3, 22/3, ω21/3, ω221/3 = ω̄21/3, ω22/3}.
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There is an action of G(K/Q) on the generators of this extension, the roots
{21/3, ω21/3, ω̄21/3}, given by

σ : 21/3 7→ 21/3, ω21/3 7→ ω̄21/3, ω̄21/3 7→ ω21/3 (complex conjugation), and

τ : 21/3 7→ ω21/3, ω21/3 7→ ω̄21/3, ω̄21/3 7→ 21/3 (rotation).

Note that τ keeps ω fixed, as can be verified without too much effort.

We then have a subfield structure along the following lines:

K

Q(ω) Q(21/3) Q(ω21/3) Q(ω̄21/3)

Q
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and corresponding Galois groups which have the following relationship:
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{1}
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In particular it is clear by examination that, for these examples, there is a
correspondence between subfields of K and subgroups of G(K/Q). This is in fact
generally true, and is the celebrated Galois correspondence, which we established
formally in the earlier section.

1.3.7 The problem of solution by radicals

It is well known that ax2 + bx+ c = 0 has solutions x = −b±
√
b2−4ac

2a
.

We say that we can ”solve an algebraic expression by radicals” if we can find a
closed form for the solution which is a succession of nth roots and rational functions
of its coefficients.

An algebraic equation is solvable by radicals iff its solutions are algebraic over
the real numbers.
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In fact it can be shown that one can find closed form solutions by radicals for the
general cubic and quartic equations. However in the early 1800’s Abel and Ruffin
demonstrated that the quintic equation is not solvable by radicals.

More abstractly, an equation f(x) ∈ F [x] is solvable by radicals if it has a
splitting field contained in a radical extension

F = F0 ⊂ F1 ⊂ ... ⊂ Ft = K

where each Fi = Fi−1(ui) where uni
i − c = 0 and c ∈ Fi−1.

The Galois group of a polynomial f(x) ∈ F [x] is the Galois group of its splitting
field over F .

A group G is said to be solvable if it has a series

G = G0 B G1 B ... B Gs = 1

where Gi/Gi+1 are abelian.

Lemma 1.3.12. (Galois’ Criterion). f(x) is solvable by radicals⇔ its Galois group
is solvable.

Remark. (Fact). For n ≥ 5, Sn is not solvable; for n ≥ 5, we have that there is a
simple group An of index 2 in Sn such that

Sn B An B 1

In particular An is not abelian.

Consequently, in general, no polynomial equation of degree exceeding four is
solvable by radicals.
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Chapter 2

Category Theory

Often in mathematics one comes across constructions and structures that are at first
glance different, but are either in correspondence or are separate aspects of a deeper,
underlying structure. Consequently one may often prove the same thing several
times, when for book-keeping purposes one instance would have been sufficient. It
is these considerations that motivate the development of the mathematical language
known as category theory.

These notes are primarily based on a survey of [RG], as well as [Su].

2.1 Introduction

2.1.1 Set theoretic foundations and motivation

There are certainly a few famous paradoxes associated to the most naive formulations
of set theory. It was originally hoped that perhaps set theory needed to be developed
more formally. Hence, in the early years of the twentieth century there was a
strong movement by David Hilbert and others to try to axiomatise the foundations
of mathematics. Ultimately these efforts were not successful [Gö], but they were
instructive.

It is fairly easy to describe what we mean by naive set theory. We have sets,
consisting of zero, one or maybe more elements. We have logical operators, such
as &, ∨, and ¬. We have implication symbols, such as →, ↔. Finally we have
punctuation in the form of parentheses and quantifiers ∀,∃, E! that operate in the
usual way.
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The original intuitive development of set theory by Cantor implicitly assumed
three axioms.

Axiom 2.1.1. (Extensionality). Two sets are identical if they have the same ele-
ments.

Axiom 2.1.2. (Abstraction). For any property there exists a set consisting of the
elements that have that property, for instance, the set of even numbers, or the set of
numbers that have no factors save for themselves and one.

Axiom 2.1.3. (The Axiom of Choice). Informally put, this states that, given a
potentially infinite (and maybe even uncountable) number of sets Ai, it is possible
to create a new set A containing an element from each Ai.

A consequence of the Axiom of Choice is that if a set has an ordering defined
on it, then the axiom states that it is possible to choose a smallest element. This
can be counterintuitive. For instance the set (0, 1) does not really seem to have a
well defined smallest quantity.

In fact differing formulations of set theory may sometimes assume this last ax-
iom, and sometimes not. For instance, in the Zermelo-Fraenkel formulation of set
theory (ZF) the axiom of choice is actually independent of the ZF axioms, that is,
neither it nor its negation is provable within ZF. This was demonstrated by Paul
Cohen [Cn], using a mathematical technique called forcing, which I will not describe
here.

The negation of the continuum hypothesis, which states that there is no interme-
diate infinity between the cardinality of the natural numbers and the real numbers,
was shown to be unprovable by Gödel in 1940 using ZF, even additionally assuming
the axiom of choice (ZFC). In 1963 Paul Cohen demonstrated that not only the nega-
tion, but also its converse was not provable in ZFC. Consequently, the continuum
hypothesis is independent of the axioms of ZFC.

My personal opinion on the matter is that there should be intermediate infinities
between ℵ0 := card(N) and ℵ1 := card(R), and that one should be able to construct
these somehow by construction of some more abstract form of naive set theory,
possibly by consideration of pairs of sets A,A′ that are somehow identified to a
fractal construction B that is not really a set in the standard sense, but has a
well defined cardinality. This is motivated by my previous work on smooth fractal
geometry, in [Go].

In particular it should be possible to abstract to ideas of infinity ℵ(x1,...,xn), where
x := (x1, ..., xn) is a point in an n-dimensional space. More formally, we might like to
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write ℵ(x) := ℵx, where x is an element of a set A, with respect to some abstraction
of the concept of cardinality.

Even without the Axiom of Choice, however, there are difficulties with naive set
theory. I will illustrate one now:

Remark. (Russell’s Paradox). Consider the set of all sets that are not members of
themselves. This is permitted by the Axiom of Abstraction. In particular, we have
that we are allowed to write

(∃y)(∀x)(x ∈ y → x /∈ x)

Here φ(x) = x /∈ x := ¬(x ∈ x) is a formula in which x is not free, so it is
allowed. But then, for x = y, y ∈ y ↔ y /∈ y, which is a contradiction.

It is then immediate that the Axiom of Abstraction is too strong, and needs to
be restricted in generality. This ultimately leads to the reformulation of this Axiom
as the Axiom Schema of Separation:

Axiom 2.1.4. (Axiom of Separation). (∃y)(∀x)[x ∈ y ↔ x ∈ z&φ(x)]

In other words, this axiom states that we must have both that φ(x) is true and
x an element of the set z in order for the existence of y to be guaranteed.

There are many other paradoxes, of either this variety (logical and / or mathe-
matical) or semantic (”I am lying”), but I will not go into these here. Nonetheless,
there are many documented in the literature. These motivate the proper develop-
ment of axiomatic set theory, to be described next.

2.1.2 Axiomatic Set Theory

I will give an indication of the Zermelo-Fraenkel (ZF) formalism here (which is
intuitively easier to understand than the alternative approaches).

Definition 27. (Symbols). ZF set theory uses five forms of symbols: constants,
variables, sentential connectives, quantifiers, and parentheses. There are also two
primitive constants - ∈ for set membership, and 0 to represent the empty set. The
identity symbol is equality =. Variables are the letters a, b, c, .., the sentential con-
nectives are the symbols ¬,&,∨,→,↔. For quantifiers we use ∀,∃, E!. Punctuation
is given by left and right parentheses.
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We would like to be able to quantify when a sentence written in this language
is syntactically correct. This motivates the definition of a primitive atomic formula,
so that we may define a primitive formula by induction.

Definition 28. (Primitive atomic formula). A sentence (v ∈ w) or (v = w), where
v, w are general variables or 0, is a primitive atomic formula.

Definition 29. (Primitive formula). A primitive formula satisfies the following
properties:

(i) Each primitive atomic formula is a primitive formula.

(ii) If P is a primitive formula then so is ¬P , its negation.

(iii) If P and Q are primitive formulae, then (P&Q), (P ∨ Q), (P → Q), and
(P ↔ Q) are primitive formulae.

(iv) If P is a primitive formula and v is a variable then (∀v)P , (∃v)P , (E!v)P are
primitive formulae.

No other expressions in ZF are primitive formulae unless they satisfy these prop-
erties.

As an immediate observation, essentially what the above definition is saying is
that any primitive formula P should be closed under allowable logical operations in
ZF.

We may now define the concept of an axiom within our language:

Definition 30. (Axiom). Suppose we have a primitive formula of the form

(∃v)((∃w1)(w1 ∈ v ∨ v = 0)&(∀w)(w ∈ v ↔ w ∈ u&φ))

Then this is an axiom provided that v is not u or w1, and that it is not separable
from the primitive formula φ.

The first part of the statement essentially requires that, given v we do not have
that v can play the role of 0 if it is not 0. The second part is more complex, and it
is easy to see that the crucial information regarding our axiom is contained in φ.

Now, a general expression written in ZF may not be reduced, in that we might
be able to eliminate certain variables and expressions. So consequently we would
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like allowable formulae to satisfy the property that when they are reduced they are
primitive formulae.

We would also like to restrict to formulae that do not introduce new notation
or concepts. In particular, if P is an expression, we will say that it satisfies the
criterion of non-creativity if there is no primitive Q such that P → Q is derivable
but Q is not. So in other words, we wish to restrict to expressions that can be
expressed solely within the existing symbolic system.

Now we are ready to state the axioms of ZF set theory.

Axiom 2.1.5. (Extensionality). (∀x)(x ∈ A↔ x ∈ B)→ A = B.

In other words, if all elements of A are also in B, and vice versa, we should have
equivalence between A and B.

Axiom 2.1.6. (Schema of Separation). (∃B)(∀x)(x ∈ B ↔ x ∈ A&φ(x))

Here φ plays the role of determining whether x has some particular property.

Axiom 2.1.7. (Pairing Axiom). (∃A)(∀z)(z ∈ A↔ z = x ∨ z = y)

This allows us, by induction, to form finite unions of objects (as we should be
able to).

Axiom 2.1.8. (Sum Axiom). (∃C)(∀x)(x ∈ C ↔ (∃B)(x ∈ B&B ∈ A))

The sum axiom allows the extension of the idea of union of a set of sets. For
instance, if A = {{1, 2}, {2, 3}, {4}} then we want ∪A = {1, 2, 3, 4}.

Axiom 2.1.9. (Power Set Axiom). (∃B)(∀C)(C ∈ B ↔ C ⊂ A)

ie, for any given set A, we have the existence of an associated powerset B
consisting of all subsets C of A.

Axiom 2.1.10. (Axiom of Regularity). A 6= 0 → (∃x)[x ∈ A&(∀y)(y ∈ x → y /∈
A)]

This final axiom essentially states that for any nontrivial set A in ZF, there is
an element x of A such that the intersection of A with x is empty. The motivation
here is to try to circumvent the more obvious difficulties such as statements A ∈ A.
But simply stating A /∈ A as an axiom does not forbid A ∈ B, and B ∈ A. Hence
the formulation as above.

These Axioms provide the basis for the ZF formalism.
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2.1.3 The definition of a category, and some examples

A category consists of components called ”objects” and ”arrows”. Objects are ab-
stract entities that exist in the category. Arrows f : A → B can be maps between
objects in a category, but more generally are abstract entities associated to the
ordering (A,B). Furthermore, if f : A → B and g : B → C, then the category
contains g ◦ f as an arrow from A to C. The composition of arrows must also be
associative - (g ◦ f) ◦h = g ◦ (f ◦h). Finally a category must have an identity arrow
IA associated to every object A, such that if f : A→ B, then IB ◦ f = f = f ◦ IA.

Examples of categories include for instance the category with the single object
N , and arrows m+ : N → N that are indexed by the natural numbers, such that
the arrow (m+n)+ = n+ ◦m+ = m+ ◦n+. This category can also be extended with
arrows m× : N → N such that (mn)× = n× ◦m×.

Another example is Mat(R), the category of matrices with real entries. Objects
are the naturals 1, 2, 3, .. and arrows m→ n are n×m matrices. We have a natural
composition of such arrows m→ n→ r as matrix multiplication of an r× n matrix
with an n×m matrix.

For a simpler instance, Set is a category, with objects that are sets, and arrows
that are maps between sets.

A category D is said to be a subcategory of a category C if all D-objects are
C-objects and all arrows in D are arrows for the corresponding objects in C.

Given two categories C,D, the product category C × D is defined to have as
objects (A,B), where A is a C-object and B is aD-object, and arrows (a, b)→ (α, β)
given as the product map (f, g) : (a, b) → (α, β), where f is an arrow from a to α
in C and g is an arrow from b to β in D.

There are various ways of extending categories, in an analogous manner to con-
sidering the Set of Sets, or function spaces. One such example is the idea of an
arrow category.

Consider again the category Set. We construct the associated arrow category
Set→ as having as objects set maps f : A → B, and having as arrows maps (γ, δ)
between two objects f : A→ B and g : C → D, where γ : A→ C, δ : B → D, such
that the following diagram commutes:
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A C

B D

-
γ

?

f

?

g

-
δ

It turns out that these arrows satisfy the required properties to make Set→ a
category.

We also have an analogous idea to the construction of a power set. A functor F
is an arrow between categories, such that it maps identity arrows to identity arrows,
and such that F (g ◦ f) = F (g) ◦ F (f), for arrows f , g in the original category. So,
given a particular category C, we can construct the associated power category as
being the subcategory in the category of categories that consists of all functors from
C to categories D, and from these categories D to categories E, etc.

2.2 The Incompleteness Theorem

One of the most important results in the foundations of mathematics discovered
in the early years of the 20th century was Gödel’s Incompleteness Theorem. This
essentially states that in any mathematical system of finite complexity subject to
Peano arithmetic - that is, a structure with some form of multiplication and addition
defined - it is possible to make statements that cannot be proven within the confines
of the system. That is, any such construction is incomplete.

Corollary to this observation is that it is impossible to axiomatise mathematics
using a finite number of axioms. This brings into new light some of the paradoxes
plaguing the early attempts to formalise set theory.

In this section I will provide a sketch of the argument, following Gödel’s won-
derfully intuitive and coherent description [Gö].

The general intuition is as follows. Consider an axiomatic mathematical system,
such as Zermelo-Frankel Set theory, or Principia Mathematica (PM). Within such a
system one has certain symbols, such as variables, logical constants, and parentheses,
which can be used to construct relations or formulae. We will also have within such
a system that there are certain rules as to which formulae, or sentences of symbols
are correct or allowable, and which are not. Then a proof is a sequence of such
sentences.
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It makes no difference if we write all variables and symbols as natural numbers
since there are finitely many of them. So a sentence is clearly equivalent to a finite
sequence of natural numbers, and a proof to a finite sequence of finite sequences of
natural numbers.

Via this observation, it is then possible to prove, using the axioms of PM, that
one can come up with a meta-mathematical statement F (v) with one free variable v
of type a sequence of natural numbers, such that F (v) is a statement saying that v
is a provable formula, ie there exists a proof for v in PM. (This is naturally obtained
via consideration of a sequence of sequences of sequences of natural numbers, Fijk).

The idea is to now construct a theorem A such that neither A nor its converse ¬A
is provable. Once this is demonstrated the proof of incompleteness of the axiomatic
system PM (and any similar system) will be complete.

Now, a meta-mathematical statement with one free variable of type the natural
numbers (ie, like F above, but only one natural number encoding v rather than a
sequence) will be called a class-sign. It is possible to define a numbering of these
by the natural numbers, as N card(N) is countable, call the nth one Rn. R is then a
sentence of natural numbers defined within PM.

If α is an arbitrary class-sign, define α(n) to be the formula one obtains when
one evaluates α at n. (Note, again, that n might be some abstract entity within the
axiomatic system we are considering).

Construct then the class

K = {n ∈ N |¬provable(Rn(n))}

by which we mean, the set of naturals n such that the theorem Rn(n) is not
provable. One might make the observation that this is beginning to look a bit both
like Cantor’s famous diagonalisation argument and Russell’s paradox. But then K
is expressible itself within PM, and so there is a class sign S such that S(n) states
that n ∈ K.

But since S is a class sign it is equivalent with Rq, for some q ∈ N . To complete
our proof of the incompleteness of PM (or any similar logical system with finitely
many symbols and axioms) we prove now that Rq(q) is undecidable in PM.

But this is easy, since Rq(q) ⇔ S(q) ⇔ q ∈ K ⇔ ¬provableRq(q). In other
words, the theorem Rq(q) states that it is unprovable - a logical contradiction.
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2.3 Key Constructions

2.3.1 Monic, Epic and Iso arrows

Roughly speaking, monic and epic arrows are generalisations of the notion of injec-
tive and surjective maps, respectively. Iso arrows are a generalisation of the concept
of bijective maps.

It is possible to represent this information diagrammatically:

C A

A B

-
g

?

h

?

f

-
f

We say that an arrow f : A → B is monic if, under the circumstance that the
above diagram commutes, we have the implication g = h. This is an abstraction of
the concept of injectivity; note that if f ◦ h = f ◦ g, and f is an injective map, then
since the kernel of f is empty we must have that the restrictions of h and g to the
domain of f are identical.

Now consider the diagram

a b

b c

-
f

?

f

?

g

-
h

We say that an arrow f : a→ b is epic if, under the circumstance that the above
diagram commutes, we have the implication that g = h. Just like the above, this
is an abstraction of the concept of surjectivity; if g ◦ f = h ◦ f , and f is surjective,
then for each y in dom(g) = b there is an x in dom(f) such that f(x) = y. But
dom(h) = b too. Consequently the expression g ◦ f = h ◦ f is equivalent to g = h.

If an arrow is both monic and epic we will call it an iso arrow. This corresponds
to the notion of bijectivity.

More generally, a functor is a map F : A → B between categories that associates
to each arrow f : a → b in A an arrow F (f) : F (a) → F (b) in B, such that the
identity arrow in A is mapped to the identity arrow in B, and F (g◦f) = F (g)◦F (f).
In other words we have that if the diagram
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a b

c

-
f

@
@

@@R

h

?

g

commutes, then

F (a) F (b)

F (c)

-
F (f)

@
@

@
@@R

F (h)

?

F (g)

also commutes.

A functor is essentially an arrow between categories. In particular, we can define
the notion of the Power Category associated to a base category A to essentially be
the maximal category that contains all possible functors F mapping from A to some
other category B. Consequently the notion of monic, epic, and iso functors are well
defined.

The Galois correspondence is actually a particular example of an iso arrow
between categories.

2.3.2 Products and Coproducts

It is of some interest to ask how to characterise the product of a pair of categories.
For sets, the notation is clear: we write

A×B := {(a, b)|a ∈ A, b ∈ B}

We also have two natural projection maps,

ρ : A×B → A, (a, b) 7→ a

and

φ : A×B → B, (a, b) 7→ b
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This allows us now to define the notion of the product more abstractly. Consider
a third set C, with an associated pair of maps f : C → A, g : C → B. Define a map
p : C → (A×B) as p(x) = (f(x), g(x)). Then it is clear that the following diagram
trivially commutes:

C

A A×B B

pppppppppp?
p

�
�

�
��	

f
@

@
@

@@R

g

�
ρ

-
φ

since φ ◦ p = g and ρ ◦ p = f by definition. Conversely, p is the only arrow that
can make the diagram commute. This leads us to define the notion of a product in
a category.

Definition 31. A product A × B of two objects A, B in a category C consists of
projection arrows ρ : A× B → A, φ : A× B → B such that for any object C with
arrows f : C → A and g : C → B there is a unique map p : C → A × B such that
the above diagram commutes.

The notion of product category A × B is very similar; it is constructed of all
products of objects a ∈ A, b ∈ B, with the natural choice of projection functors -
ρ : A×B → A, (a, b) 7→ a, and φ : A×B → B, (a, b) 7→ b.

Before discussing the notion of coproduct we will need the idea of categorial
duality. The dual category Cop to a category C is the category with the same objects
but arrows reversed. So if f : a→ b in C, then there is a corresponding f op : b→ a
in Cop.

The advantage of this idea is that for any statement p which we prove in C
there will be a corresponding statement pop with arrows reversed in Cop. So we
immediately see that the following construction is well defined, from our previous
considerations:

Definition 32. A coproduct or sum of objects a, b in a category C is an object a+b,
together with ”inclusion” maps ρ : a→ a+ b, φ : b→ a+ b, such that for any pair
of arrows f : a→ c and g : b→ c, the following diagram commutes:
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a a+ b b

c

-
ρ

@
@

@
@@R

f

ppppppppp?[f,g]

�
φ

�
�

�
��	

g

This of course is an extension of the set theoretic idea of disjoint union.

2.3.3 Limits and Colimits

Definition 33. Suppose f, g : A → B are maps, such that for E ⊂ A, f and g
coincide. Then the inclusion map i : E → A is called the equalizer of f and g. In
particular f ◦ i = g ◦ i.

Furthermore, if h : C → A is a map with f ◦ h = g ◦ h, it uniquely factors
through i, ie there is a map k : C → E with i ◦ k = h. To see this, note that since
i is the inclusion we can trivially define k = h. Furthermore, this is well defined,
since as f ◦ h(x) = g ◦ h(x), h(C) ⊂ E.

Consequently we have the corresponding idea of an equalizer within a category:

Definition 34. An arrow i : e → a is an equalizer for f, g : a → b if f ◦ i = g ◦ i,
and if for any h : c→ a, there is a unique k : c→ e such that i◦k = h. In particular
the following diagram commutes:

e a b

c

-i -
f,g

ppppp
ppI
k

6
h

Note that all equalizers will be monic. This has the useful corollary that an epic
equalizer will always be iso.

It is of some interest to ask as to whether we can abstract the idea of an equalizer.
This is often of interest if we are trying to compare logical statements that require
several objects and arrows to formulate.
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Definition 35. A diagram D in a category C is a collection of objects di, together
with some arrows g : di → dj. A cone for D is an object c together with maps fi
such that the following diagram commutes for every arrow g in D:

di dj

c

-
g

6
fi

�
�

���

fj

Definition 36. A limit for a diagram D is a D-cone {fi, c} such that if {f ′i , c′} is
another D-cone, there is a unique arrow f : c′ → c such that the following diagram
commutes:

di

c′ c

6
f ′i

-
f

@
@

@@I fi

In other words, a limit is a generalisation of the concept of equalizer, from the
consideration of arrows f, g : a→ b to a diagram D of arrows. If a limit exists for a
diagram D, it is unique.

Via duality we have the natural idea of a co-limit. This is a co-cone {fi : di → c}
from elements di in a diagram D, such that for every other co-cone {f ′i : di → c′},
we have that there is exactly one arrow f : c → c′ such that the following diagram
commutes:
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di

c c′
?

fi

@
@

@R

f ′i

-
f

Remark. If D is an arrowless diagram consisting of objects a and b, then a limit is
a product of a and b, and a colimit is a coproduct of a and b.

2.3.4 Pullbacks and Pushouts

It is useful to abstract the idea of a pullback map to category theory.

A pullback map is defined in the following way. Say we have maps expM :
TM → M , and f : M → N . Then the pullback of f by expM , exp∗M : TM → N is
defined to be f ◦ exp. We can furthermore lift f to a map f ∗ : TM → TN as the
pullback of expN by f . Then we have a commutative diagram

TM TN

M N

-
f∗

?

expM

?

expN

-
f

In particular we have that for arbitrary vectors v, w, that 〈v, w〉M = 〈f ∗v, f ∗w〉N .
By duality we have a pushforward map f∗ : TN → TM , such that 〈f∗v, f∗w〉M =
〈v, w〉N .

To abstract this, consider the following in some category C:

a c b-
f

�
g

Then a pullback is a limit in C for the above diagram, which I rewrite for clarity:
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b

a c
?

g

-
f

To see why this is similar to the idea of pullback from differential geometry, note
that a cone on the above takes the following form:

d b

a c

-
f ′

?

g′
@

@
@@R

h
?

g

-
f

and we see immediately the similarity to the above. In particular we can remove
the diagonal arrow WLOG as we are adjoining a cone.

Then a pullback in a category is a universal cone, in that if we have another
cone on the pair f : a → c, g : b → c, then that cone factors through the limit. In
particular, if our limit is the pair g′ : d → a, f ′ : d → b then there is exactly one
arrow k : e→ d such that

e

d b

a c

p p p p p p pR

k
H

HHH
HHHHj

αA
A
A
A
A
A
A
AU

β
-

f ′

?

g′
@

@
@@R

h
?

g

-
f

commutes, for a cone α : e→ b, β : e→ a.

A pushforward, or pushout, is defined in an analogous way using co-cones, ie
with arrows reversed, save for the original arrows f : a → c and g : b → c. In
particular we have that a pushforward is a colimit, such that there exists exactly
one arrow k : d→ e that makes the following diagram commute:
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e

d b

a c

ppppp
ppI k

�
f ′H
HHH

HHHHY
α

?

g
6

g′

A
A

A
A

A
A

A
AK

β

-
f @
@

@@I

h

2.3.5 Completeness

Returning to our example of the category of Riemannian manifolds Mfd, I ask what
it means to be complete. It is certainly clear that there is a limit for every diagram
as above, via the use of exponential maps. So for any arrow f : M → N between
Riemannian manifolds there is a pushforward f ∗ : TM → TN . In this sense the
category of Riemannian manifolds is complete.

(Note that TM , TN are themselves Riemannian, albeit with trivial metrics).

More generally, we say that a category C is complete, if given any arbitrary
diagram D in C we have that a limit exists for D. A slightly less strong statement
is that a limit exists for all finite D; in this case C is said to be finitely complete.

Now, we expect Mfd to be finitely complete, via virtue of the fact that expo-
nential maps factor well through composition of arrows, so it is possible to extend
the lifts f ∗, g∗ of maps f : M → N , g : N → P to (g ◦ f)∗ = g∗ ◦ f ∗.

There in fact is a theorem that states this is more generally true, which is
mentioned in Goldblatt, but not proved. A proof can be found in [HS].

Theorem 2.3.1. Suppose a category C has a terminal object, that is, an object from
which there extend no arrows. If there is a pullback for each pair of arrows f : a→ c,
g : b→ c, then C is finitely complete.

In particular Mfd has as terminal object φ, the empty set, so the theorem
applies in this instance.

2.3.6 Exponentiation

The idea of exponentiation is to consider two sets, A and B, and then construct the
function space BA consisting of maps from A to B.

40



Category Theory

To abstract this to a category, note that there is an evaluation map

E : BA ×A → B

such that E(f, x) := f(x).

It turns out in fact that among such maps, E is universal, in that if E ′ : C×A →
B is another map, then we have that there is a unique map G : C → BA such that
the following diagram commutes:

BA ×A

B

C ×A

@
@

@@R

E

ppppp
ppppp
ppppp
pppp6

G×IdA

�
�

���

E′

This universal property allows us to define exponentiation within a category.

We say that a category C has exponentiation if

(i) for any two objects A,B in C we can construct a product object A×B.

(ii) for any two objects A,B there is an object BA in C and an evaluation arrow
ev : BA ×A→ B, such that for any other arrow g : C ×A→ B we have that
ev factors through g as in the diagram above.

2.3.7 Topoi

I will now proceed to give a very abbreviated picture of what a Topos is. Broadly
speaking, it is a space with

(i) An initial object,

(ii) A terminal object,

(iii) ”Subobjects” that behave in a nice way,
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(iv) It is finitely complete, that is, it has pullbacks.

A particular instance of the above - a very special case - is the category Mfd
of differentiable manifolds and smooth maps between them. Then this has as ini-
tial object R∞, terminal object φ, pullbacks via exponential maps, and subobjects
defined in a natural way via the manifold topology.

However, Topoi are evidently more general than this. They also include more
broadly categories such as ”the category of sheaves of sets on a topological space”
[W1]. In particular Topoi were developed as part of Grothendieck’s work in Scheme
theory. To be precise, Topoi can be thought of as a category equipped with a special
topology, called the Grothendieck Topology that makes the objects behave like open
sets in a standard topological space [W2].

I provide some additional background.

Definition 37. (Sheaf). A sheaf S associated to a topological spaceX is a structure
that associates to every open set U in X an object F (U) in a category C. If V ⊂ U ,
then furthermore we have a morphism, or arrow, in C resV,U : F (U) → F (V ). We
require that resU,U be the identity morphism on F (U), and also that resW,V ◦resV,U =
resW,U , ie the morphisms respect the transitivity of set inclusion.

We also require that C be a concrete category. In other words, that it have
a terminal object, such that F (φ) is this object. For every object in a concrete
category is associated an underlying set - we then require that if {Ui} is an open
cover of U in X that if s, t ∈ F (U) are such that sUi

= tUi
for each Ui, then s = t.

So S behaves well with respect to open covers.

Finally we would like the following condition for our sheaf. Let {Ui} be an
open cover once again of a set U in X. Suppose that we have a subset si of the
set associated to F (Ui) such that for every Uj with Ui ∩ Uj 6= φ we have that
si|Ui∩Uj

= sj|Ui∩Uj
. Then there exists a subset s of the set associated to F (U) such

that sUi
= si for each i. In other words the gluing property in X lifts to the category

C.

The motivation then for a Topoi is to have a sheaf where the underlying space X
is itself a category, but equipped with a special topology - the Grothendieck Topology,
so that open sets and covers are well defined and well behaved. The methodology is
roughly to construct a well behaved ”pullback” from a standard topological space
to a category. I will describe this now.
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Definition 38. (Sieve). A sieve on an object A in a category C is a subfunctor of
Hom(?,A) : Set → { morphisms from X to C|X ∈ Set}. If T is a sieve on C, and
f : B → C is a morphism, then we have a natural pullback f ∗T over B, such that
for every object b ∈ A, f ∗T (b) = {g : b→ B|fg ∈ T (b)}.
Definition 39. (Covering Sieve). Let U be an open set in a topological space X.
Suppose {Ui} is any open cover of U . Then for S to be a covering sieve of X we
require that each S(Ui) be nonempty, and that S(U) ⊂ ∩i(S(Ui ∩ U)).

Definition 40. (Grothendieck Topology). A Grothendieck Topology J on a cate-
gory C satisfies these properties:

(i) Suppose S is a covering sieve on X, and f : Y → X a morphism. Then f ∗S
is a covering sieve on Y .

(ii) Let S be a covering sieve on X, and T is another sieve on X. Suppose that
every object Y of the category C, f : Y → X in S(Y ) induces a covering sieve
f ∗T on Y . Then T is a covering sieve on X.

(iii) Hom(?,X) is a covering sieve for X for every X ∈ C

Definition 41. A site is a category C equipped with a Grothendieck Topology J .
Then, roughly it is possible to abstract the definition of a sheaf on a topological
space to a sheaf on a site [W2]. The category of such sheaves for a given site is then
a particular instance of a topos.

The treatment due to [RG] is not quite as strong as this, but might be perhaps
easier to understand. In particular the notion of extending subsets to subobjects in
a category turns out to characterise within a Topos, as requiring that a Topos be a
category with a subobject classifier. This is in fact a consequence of Grothendieck’s
treatment.

Definition 42. (Subobject). A subobject of an object b in a category C is a monic
C-arrow f : a → b. We will say that f ⊂ g for subobjects f : a → b, g : c → b if
there exists h : c→ a such that the following diagram commutes:

a

b

c

@
@R

f
6

h

�
��
g
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It turns out that this notion of inclusion is well defined - f ⊂ f since 1a : a→ a
exists, and if f ⊂ g and g ⊂ h for subobjects f, g, h it is easy to demonstrate that
f ⊂ h.

If f ⊂ g and g ⊂ f we will say that f ≡ g. The equivalence class of such
subobjects will be notated as [f ].

This then forms a poset, (Sub(b),⊂) of subobject equivalence classes of the
object b in C, ordered by inclusion. In particular, in Set, for any set B, Sub(B) is
the associated power set - the collection of all subsets of B.

Definition 43. (Subobject Classifier). A subobject classifier essentially captures
the idea of either being in, or not in, a particular subset U of a larger set W . In
Set, there is a natural characteristic map, χU : W → {0, 1} such that χ(x) = 1
if x ∈ U , and χ(x) = 0 if x ∈ W − U . In particular, we have that the following
diagram commutes:

U W

{1} {0, 1}

-i

?

j

?

χU

-
true

where true is a map that sends 1 to 1, i is the set inclusion, and j is trivially
defined. We then abstract this to a category in the following manner. Let f : a→ b
be a subobject in a category C. Then a subobject classifier for f is an object ω in
C and an arrow true : 1 → ω such that there exists a unique arrow χf that makes
the following diagram commute:

a b

1 ω

-
f

?

j

?

χf

-
true
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where j is the trivial map.

In other words, the existence of a subobject classifier is an abstraction of the
idea of set complement to subobjects in categories.

Much of this might seem slightly unclear in motivation and necessity. However
the picture to bear in mind is that Topoi are particular types of categories that admit
an abstraction of the concept of topological structure. So in particular, these are the
categories that are most likely to actually describe the underlying characteristics of
mathematical structures modelling features that are observed in real situations.

In particular, this information will be useful later when I examine Grothendieck’s
proof of the Weil Conjectures. The associated mathematics actually turns out to be
related to the abstract study of the theory of viscoplasticity, and it is possible that
these ideas are more broadly applicable with respect to foundational studies of the
other themes later developed in this treatise.

2.4 Introducing 2-Categories

This section is more of a remark than anything else. I motivate the development of a
new type of object, a 2-category. This is not really a new concept, but corresponds to
a rather large subfield of mathematics, and goes well beyond the scope of this project
into territory that I will not require for the later developments in this dissertation.
It does, however, relate possibly to the foundations of more general treatments.
There are numerous sources available for the interested reader - the recent preprint
by Daniel Mathews [Ms] is a good place to start.

Much as in set theory, category theory admits nonsense constructions. Consider,
for instance, the category of categories that are not elements of themselves, ie cate-
gories that do not arise as objects in themselves. Then this has the same difficulty
as the set of sets that are not elements of themselves in set theory.

This necessitates the consideration of a slightly more abstract approach to foun-
dations, in order to circumvent this issue by simply showing that it is not con-
structible in this more general setting. Hence we have the idea of a 2-category. A
2-category is a collection of things, called 2-objects, and things, called 2-arrows f
associated to the ordered triple (a, b, c) of three 2-objects. We require furthermore
that the 2-arrows have the following properties:

(i) If f : (a, b, c),g : (c, β, γ) are 2-arrows, then we have composition operators ◦1,
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◦2 such that g ◦1 f : (c, a, γ) is well defined if a = β, and g ◦2 f : (c, β, b) is well
defined if b = γ. We also require that these operators be transitive.

(ii) For every 2-object A there is an identity I1,A : (A,A,A) associated to ◦1
and an identity I2,A : (A,A,A) associated to ◦2, such that for any 2-arrow
f : (A,B,C), I1,A ◦1 f = f = f ◦2 I1,C , and I2,A ◦2 f = f = f ◦1 I2,C .

As to concrete examples of 2-categories, this is slightly more difficult. The
quickest one that comes to mind is a function space of function spaces, such as
for instance AutAut(Mfd), the collection of maps from the space of automorphisms
back to itself over the collection of differentiable manifolds. But this seems like a silly
observation - surely this space can be realised, naively at least, as a category? But it
is possible that to examine this structure in full generality, standard category theory
might not be sufficient, and to properly examine the foundations of the additional
structure, deeper abstraction might be required.

Alternatively, it is possible that concrete examples of 2-categories are wilder
than this. However I am hard-pressed to think of any further obvious examples.

Remark. It turns out in fact that 2-arrows are a special instance of another type of
structure, that is, a braid. In particular, the set of generators for the permutation
group of interchange operations on an n-braid - a braid with n-objects, has the
interpretation of composition operations for an n-category. Then we can think of
an n-category as a braid, or more generally a link, but possibly with ”loose ends”,
ie n-objects α such that there is no β such that the jth permutation operation ◦j
from α to β, or alternatively vice-versa, is defined.

This has the consequence that one might expect many of the insights from
knot theory to be useful in the further development of foundations for abstract
mathematical structures.

Remark. 2-categories have actually already been studied under another name, namely
that of spin networks. In particular twistor theory [Pen] was motivated by the ap-
plication of spin networks to perhaps providing a pre-geometric formulation of the
study of particular forms of Hilbert spaces - operator spaces associated to the study
of observables in standard (Schrödinger) quantum mechanics, though of course this
can be considerably abstracted. Consequently the study of twistors can be viewed
as a special instance of 2-category theory, where the underlying spaces have analytic
structure - to perhaps attempt to do for 2-categories what Topoi do for 1-categories.
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2.5 Topics in information theory

Here I provide a few results crucial to the discussion to follow.

2.5.1 Cramer-Rao for various geometric structures

When examining various forms of geometric structure, we often find that the struc-
ture of a proof is repeated. Consequently, we are merely interested in the category
of the object. For instance, if we are looking at a tensor structure of some rank,
we are interested in information inequalities for rank k tensors. If we are looking
at precursor structures arising from a pairing of geometries, we are interested in
information inequalities for these.

Consequently, I make the following observations, that will allow us to skip these
formalities in the future.

Proposition 7. Any statistical superstructure built on top of any geometric struc-
ture satisfies the Cramer-Rao inequality.

Proof. Arbitrary geometric structures have as fundamental structural grounding
some n-tensor Σ, together with an affine connection ∇Σ. One can build an informa-
tion from this by consideration of the density

F (m, a)(∂ln(F (m, a)))⊗n

where F (m, a) is a natural signal function for the induced statistical superstruc-
ture on top of Σ.

Hence it is sufficient to demonstrate that this density satisfies the Cramer-Rao
inequality, and we will be done.

With a simple adaptation of Lemma 7.3.12 of [Go], we have

Lemma 2.5.1.
∫
M

Σ · {cov(θi1 ◦ u, θi2 ◦ u, ..., θin ◦ u)− gi1....in} ≥ 0

where u is a weakly unbiased estimator, that is E(θ◦u) = E(θ◦Id), for θ a coor-
dinate chart on M , and gi1...in is the information density F (m, a)(∂ln(F (m, a)))⊗n.

Then it is clear to see that theorem 7.3.14 of [Go] is applicable, albeit subject
to slight generalisation, and shows that, in particular, that∫

M

∫
A
‖∂ln(F (m, a))‖nF (m, a)dadm ≥ 0
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which is what we wanted to establish.

Proposition 8. Any duply nested pregeometric structure will have a natural infor-
mation density that satisfies a Cramer-Rao inequality.

Proof. A duply nested pregeometric structure will be of the general form T (f ; g) for
some positive operator T : {M×A→ R}×{M×A→ R} → R, and signal functions
f, g over a base geometric structure with n-tensor κ. By the previous proposition,
we have that κ satisfies a Cramer-Rao inequality for an information density ρ.

Construct T (f ; ρ(g))(∂ln(T (f ; ρ(g))))⊗n. Then I claim that this density will
satisfy a Cramer-Rao inequality.

In particular, if n = 2, the proof provided in section 9.2.2 of [Go] is sufficient,
with the operator ∂∗ replaced by T . Otherwise, for the more general case, it is
reasonable to suppose that the proof of the above proposition can be used to extend
the relevant discourse.

Remark. Note that for all the pregeometric structures of interest to myself in this
dissertation, the base geometric structure will usually be a Riemann-Cartan mani-
fold. However these statements also extend to tensors of arbitrary rank.

2.5.2 The Cencov Representation Theorem and Incomplete-
ness

In consideration of the Fisher Information as the optimal functional for a Rieman-
nian geometry in [Go], we are led naturally to ask why this is the case. Certainly
it satisfies the Cramer-Rao inequality, so is always positive. However there is no
obvious reason why it should be preferable to consider it rather than any other
nonnegative functional on a Riemannian manifold.

The key observation to make here is that there is the issue of incompleteness,
or rather, finite complexity, of any particular geometric construction that one must
deal with. In particular in more exotic geometries simpler notions of information
are no longer sufficient.

Hence it is logical to frame the question in the following manner-

Question. (Optimality). Given that one is working within a particular structural
category C, how can one prove that the associated Fisher Information for that cate-
gory is optimal with respect to all other measures over C?
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The answer to this question lies in an extension of an observation due to the
Russian mathematician Cencov [Ce], where he was able to establish the uniqueness
of the Fisher Information metric in Geometric Statistics on a discrete sample space
containing at least three points.

This observation can be extended to prove what we need:

Theorem 2.5.2. (Cencov Representation Theorem). Given a structural category
C, the Fisher Information ρ(C) is optimal over all other positive functionals in the
associated functional space.

Remark. In other words, if we place a sharp distribution function over the space
of positive measures over C, then a variational argument will demonstrate that the
meta-functional is critical iff the distribution function selects ρ(C) at each point
m ∈ C.

Proof. We wish to demonstrate that, for all nonnegative functionals, ρ over C there
exists a signal function f such that∫

C ρ ≥
∫
C ρf (C)

Assume wlog that we are working in the category of n-tensors. Then since ρ is
positive, there will be a function f and an n-tensor Λ such that ‖∂Λln(f)‖nΛ = ρ,
where ∂Λ is required to ensure the vector is timelike and therefore positive.

Then it is clear that there is a deformation Σ of Λ, such that for f̂ = δ(Σ(m)−a)
and extension of the category C to Ĉ := C × {C × C → R}, which are equivalent
categories under the assumption that we take a trivial section, then we have that
within the category Ĉ, ρ is

δ(Σ(m)− a)‖∂Σln(δ(Σ(m)− a))‖nΣ

but this is just the Fisher information density ρ̂Σ for the n-tensor Σ within Ĉ.
Consequently we have via category equivalence (subject to our assumption of taking
sharp sections of Ĉ) that the above inequality is satisfied; in fact it is an equality.

The proof for 2-tuple structures is quite similar.
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Chapter 3

K-theory and the index theorems

I will now direct my attention to K-theory. K-theory could be viewed as a contin-
uation of the spirit of the theory of schemes, which were used by Grothendieck to
tackle the Weil Conjectures. So it is natural to examine these structures and how
they interrelate.

Key contributors to this area include Alexander Grothendieck, Jean-Pierre Serre,
Daniel Quillen, and Michael Atiyah.

3.1 Preliminaries from algebraic geometry

Before I begin to motivate (and describe) the structures leading to K-theory, it
will be necessary to flesh out a few elementary concepts from Scheme Theory and
Algebraic Geometry. My primary reference here is Hartshorne [Ha].

3.1.1 Sheaves and Schemes

Recall from before that a sheaf is essentially a way of associating to each set of a
particular topological space a mathematical object in a category, such as an abelian
group. In particular, to reiterate the previous definition -

Definition 44. (Sheaf). A sheaf S associated to a topological spaceX is a structure
that associates to every open set U in X an object F (U) in a category C. If V ⊂ U ,
then furthermore we have a morphism, or arrow, in C resV,U : F (U) → F (V ). We
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require that resU,U be the identity morphism on F (U), and also that resW,V ◦resV,U =
resW,U , ie the morphisms respect the transitivity of set inclusion.

We also require that C be a concrete category. In other words, that it have
a terminal object, such that F (φ) is this object. For every object in a concrete
category is associated an underlying set - we then require that if {Ui} is an open
cover of U in X that if s, t ∈ F (U) are such that sUi

= tUi
for each Ui, then s = t.

So S behaves well with respect to open covers.

Finally we would like the following condition for our sheaf. Let {Ui} be an
open cover once again of a set U in X. Suppose that we have a subset si of the
set associated to F (Ui) such that for every Uj with Ui ∩ Uj 6= φ we have that
si|Ui∩Uj

= sj|Ui∩Uj
. Then there exists a subset s of the set associated to F (U) such

that sUi
= si for each i. In other words the gluing property in X lifts to the category

C.

Recall the notion of a Grothendieck topology -

Definition 45. (Grothendieck Topology). A Grothendieck Topology J on a cate-
gory C satisfies these properties:

(i) Suppose S is a covering sieve on X, and f : Y → X a morphism. Then f ∗S
is a covering sieve on Y .

(ii) Let S be a covering sieve on X, and T is another sieve on X. Suppose that
every object Y of the category C, f : Y → X in S(Y ) induces a covering sieve
f ∗T on Y . Then T is a covering sieve on X.

(iii) Hom(?,X) is a covering sieve for X for every X ∈ C

And also the definition of a site -

Definition 46. A site is a category C equipped with a Grothendieck Topology J .
Then, roughly it is possible to abstract the definition of a sheaf on a topological
space to a sheaf on a site [W2]. The category of such sheaves for a given site is then
a particular instance of a topos.

In the special case that the objects in C are abelian groups, then the associated
sheaf (X, θX) over a topological space X - presupposing the natural Grothendieck
topology admitted by the group structure in C (the so-called Zariski topology) -
forms what is referred to as a ringed space. If, for each x ∈ X, θX,x - the group
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associated to x, is a local ring (which I will soon describe), we say that (X, θX)
is a locally ringed space. An affine scheme then is a locally ringed (X, θX) which
is isomorphic to the spectrum of some ring R (which I will also soon describe).
Then a scheme is a (X, θX) such that each x has a neighbourhood U such that the
associated sheaf θX|U is an affine scheme (in much the same way one defines the
difference between trivial fibre bundles and more general versions).

Definition 47. (Local Ring). A ring R is local if it has a unique maximal left (or
right) ideal.

The idea of Spectrum is that it is the space of subobjects for a given structure
where inverses do not exist, ie, in a sense, they are the ”zeroes” - much like in
the beginnings, we have that an affine variety is the zero locus of a finite set of
polynomial equations.

Definition 48. (Spectrum of a matrix). The spectrum of a matrix is the set of its
eigenvalues.

Definition 49. (Spectrum of an operator). Suppose T is a bounded linear operator
over a field k, or more generally, a Banach space X. Then if λI−T is not invertible
for some λ ∈ k, we say that λ is in the Spectrum of T . The Spectrum for a linear
operator T is a subspace of X, and the space of bounded linear operators forms a
category B(X) with a natural (Grothendieck) topology over X.

Definition 50. (Spectrum of multiple operators). Suppose T1, ..., Tk are bounded
linear operators over a Banach space X. Then if λI − Ti is not invertible for each i
and some λ ∈ k, we say that λ is in the Spectrum of ∩iTi.

Definition 51. (Spectrum of a Ring). Suppose R a ring with 1 acts as an R-
module on a topological space X. Then we can play a similar game to above and
say that if λ1 − r does not have a multiplicative inverse in R for each r ∈ R, then
λ is in the Spectrum of R relative to X, SpecX(R). Naturally we expect most
interesting examples to occur in rings which ”generically” have only a finite number
of ideals, though it is possible that for sufficiently sophisticated X one might be able
to obtain non-trivial Spectra if R has a countable or uncountable infinity of ideals.
Alternatively one might have a ring R with infinitely many ideals, but where for
each component of the Spectrum there are only finitely many ideals I in R that are
applicable - a ”locally finite” ring.

The definition that will be of interest to us however is the restriction of this to
where X = R; ie where one considers R to be a module of itself. I will then call the
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corresponding Spectrum Spec(R). Clearly Spec(R) will be contained in R - and in
particular will enumerate the prime, or critical ideals of R - in particular one can
view R 7→ Spec(R) as an ”information preserving map”.

One might ask as to why we are restricting ourselves to categories where the
objects are abelian groups. The principal reason for this is that in the study of affine
varieties, there is a natural correspondence between these and particular types of
rings (finitely generated, and nilpotent-free ”nondegenerate” rings). Since the Weil
conjectures deal principally with varieties, this indeed should be sufficient for our
purposes.

I will sketch this correspondence shortly.

Definition 52. (Zero sets and irreducibility). Consider A := k[x1, ..., xn] as the
polynomial ring of n variable functions over the field k. Then consider a subset B
of A, generated say by finitely many functions f1, ..., fm. Since this is generated by
functions it is said to be algebraic. The zero set Z(B) of B is then defined to be
the set of elements x in k such that fi(x) = 0 for each i. If it is not possible to
decompose B′ into smaller pieces it is said to be irreducible.

Definition 53. (Variety and Zariski topology). Now, suppose we have a set B ⊂ A
that is not necessarily algebraic. If it is closed with respect to the Zariski topology -
a topology defined on A by taking the open sets to be the complements of algebraic
sets, and it is irreducible, that is, Z(B) is connected in k, we call B an affine variety.
A variety is the same but with the condition of irreducibility relaxed.

Remark. It is possible to show that the Zariski topology is indeed a topology. It is
also possible to demonstrate that any variety can be broken up into affine varieties,
provided that A is noetherian. Noetherian essentially means that if Y1 ⊃ Y2 ⊃ ... is
any sequence of closed subsets of A, then there exists r such that Yr = Yr+1 = ....
This is indeed true in the case of curves defined say from Rn to R; then as there is
a finite number of dimensions, and dimension of a variety must either remain the
same or decrease, and furthermore as an irreducible variety cannot be reduced any
further at the same dimension, it is evident that such objects are Noetherian.

As an example, but perhaps not a terribly elementary one, one might consider
for A the set of maps from a manifold M with coordinates xi that map to the real
numbers. Naturally we expect that this should extend; in particular if the manifold
itself has a field structure, perhaps induced by a four-tensor, we can take as the field
k the manifold itself again; in this case we have a form of variety in terms of the
automorphisms of M .
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3.1.2 The variety - ring correspondence and its consequences

Now, to establish the connection between varieties and rings, I introduce the follow-
ing result due to Hilbert, which I give here without proof, and I mirror Hartshorne
in referencing either the proof in Lang’s book [Lg], p.256, or that by Atiyah and
Macdonald [AM], p.85.

Theorem 3.1.1. (Hilbert’s Nullstellensatz). Suppose k is an algebraically closed
field, and a is an ideal in A, the polynomial ring in n-variables over k. Suppose
f ∈ A is a polynomial that vanishes on Z(a). Then, for some integer r > 0, we
must have that f r ∈ a.

A consequence of this is the correspondence result we need:

Corollary 3.1.2. (The variety - ring correspondence). There are iso arrows map-
ping between the category of algebraic sets in A and the category of radical ideals
in A, given by Y 7→ I(Y ) and a 7→ Z(a). Also algebraic sets are irreducible iff the
corresponding ideal is a prime ideal.

Recall that the radical Rad(I) of an ideal I is the set of elements x of the ring R
containing the ideal such that xn ∈ I for some finite n. A prime ideal I is an ideal
that has the property, that if A,B are ideals also in R and AB ⊂ I, then A ⊂ I
or B ⊂ I. This is essentially an analogue of the idea of factorisation extended to
general rings.

So the variety - ring correspondence motivates the consideration of sheaves of
abelian groups (of which ideals are a special instance) over a topological space X,
where the sheaf is now taking the role of the polynomial ring A and X is taking the
role of the n-variable space over a field k. In particular for general topological spaces
defining varieties may not be possible, when it may be possible to construct many
different sheaves. Consequently this is a natural starting point for the development
of the deeper theory, where now X instead of being kn could be a manifold or some
more general object, such as the space of automorphisms over a given space M .

Then a scheme in this light is merely an abstraction of the idea of a variety,
albeit for these more general objects. This is perhaps the most instructive way of
considering the idea of scheme, and indeed varieties form a subclass of the class
of schemes. But there are stranger examples of schemes as well. It will turn out
that a proper geometric description of a scheme requires a special form of four-tensor
construction; this will be discussed in the chapter on viscoplasticity. In particular, it
could be argued that schemes can be viewed as ”fractal” algebraic varieties; in other
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words, the twisting of one algebraic variety by another, with regards to some natural
algebro-geometric operator. (For a simple example of a twisting construction, one
has the idea of a warped product of Riemannian manifolds (O’Neill [ON], pp204-
207).)

To make this more concrete, consider a topological space M with local coordi-
nates x1, ..., xn, and corresponding local polynomial ring over k A := k[x1, .., xn].
Suppose f1, ..., fm are functions from A to k, and g1, ..., gm likewise. Then the fi
define a variety Z(f) over M , and the gi a variety Z(g). Consider the pseudometrics
defined on Z(f), Z(g) as σij := ∇Mfi · ∇Mfj, and τkl := ∇Mgk · ∇Mgl. These will
be pseudometrics since we do not have guarantee of non-degeneracy in the bilinear
form (and generically we except a fair degree of degeneracy).

Construct the corresponding signal functions f(m, a) = δ(σ(m)− a), g(m, b) =
δ(τ(m)− b). Then we can construct a scheme that in general will not be a variety
by considering instead the new signal function ?(f ; g) := fg. The corresponding
geometric object for this ”viscoplastic structure” is then the scheme associated to
the twisted product of the varieties Z(f) and Z(g).

If one abstracts further one has the idea of a general sheaf (as in the previous
chapter), wherein instead of considering groups as objects one considers more ar-
bitrary objects in categories, with arrows that respect inclusions in the topological
space X. This becomes useful in the extension of etale cohomology to development
of the Grothendieck-Galois correspondence for topoi.

3.1.3 Morphisms

Suppose we have two varieties. How does one define a map between them? More
generally, how does one define a map between schemes? This is the question that I
shall answer in this section.

Definition 54. (Regular map). Let Y be a variety and k a field. Then f : Y → k
is regular at m ∈ Y if there is a subspace U of Y with m ∈ U , and polynomials g, h
over k, ie in A = k[x1, ..., xn] such that h is nonzero on U and f = g/h. In other
words, f is non-singular - it has no singularities.

Definition 55. (Morphism of varieties). Suppose k is an algebraically closed field,
and X, Y are varieties over k. Then a morphism f : X → Y is a map such that
for every V ⊂ Y , and every g : V → k that is regular, g ◦ f : f−1(V ) → k is also
regular.
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So a morphism is essentially a map that is not subject to collapse between
varieties; ie it is a ”lossless” transformation for information between varieties.

It is then possible to define the category of varieties with morphisms as the
arrows. This is in fact a particular instance of a topos, as described in the previous
chapter.

Definition 56. (Morphism of schemes, concrete version). Suppose k is an alge-
braically closed field, and X,Y are schemes over k, corresponding to the twisted
product of varieties X1, X2, Y1, Y2 respectively. Then a morphism f : X → Y is
a map such that for every V ⊂ (Y,Λ), where Λ is the degenerate 4-tensor associ-
ated to the pushforward of the pseudometrics for X1, X2 under f , and every regular
g : V → k, we have that g◦f : f−1(V )→ k is regular; ie f is a lossless transformation
of geometric information.

Then, using these morphisms as arrows, it is possible to construct a category of
schemes.

3.2 Etale cohomology and the Weil Conjectures

Etale cohomology is a special case of K theory, and was historically developed first
by Grothendieck, to provide him with the means to approach certain conjectures
within number theory due to Andre Weil. Naively stated, the statement by Weil
was:

Conjecture. (Weil). Consider an algebraic variety, defined by equations with in-
tegral coefficients. Then there exists a cohomology theory for the same that gives
information about these equations; ie given knowledge of the cohomology, it should
be possible to deduce part, or possibly all of the information regarding these equations.

Indeed, this new architecture provided the means to resolve most of this question
posed by Weil, and laid the foundation for the eventual resolution of the most
difficult of the Weil conjectures- the analogue to the Riemann Hypothesis- in 1973
by Pierre Deligne [De].

In this section I will paint a picture of how Etale cohomology is defined. However
I will stop short of describing how it is used to attack the Weil Conjectures, since
I will not need the full machinery associated to the Grothendieck program in order
to proceed to the K theory. I will follow Artin’s lecture notes [Art] in my approach.
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3.2.1 Cech Cohomology for presheaves, or ”pseudo-varieties”

Definition 57. (Limits). Consider a functor F : I → C between categories I and
C. There is a constant functor associated to each X ∈ C that sends objects in I to
X, and arrows in I to idX . Call this functor cX .

Then there is a covariant functor Homfun(F, cX) : C → Sets, which will be
notated the right limit of F at X, lim→X F . Similarly Homfun(cX , F ) is the left
limit of F at X, limX← F .

If C is the category Sets, or the category Ab with objects that are abelian groups,
we have that lim→ F is representable as a functor from I to Ab, ie ”the limit exists
in Ab”. This will again be called lim→ F .

Now, for each category C, the dual category C∗ is defined as morphisms from C
to the category of sets, Hom(C, Sets) - in an analogous manner to homology.

Remark. To see this, if one considers the Homology of a manifold, Hi(M), this will
be generated by particular submanifolds which are geodesic which respect to an
appropriate 4-tensor structure. In particular, the ji generators of the ith homology
will be defined as the zero loci of i distance functions fj1, ..., fji from M to the reals.

In fact, generically we do not expect the zero loci to actually be submanifolds
themselves, though this is required for the homology to be well behaved - this
motivates the definition of the Cech cohomology theory for varieties and schemes,
to extend to zero loci admitting singularities.

Then the cohomology H i(M) := Hom(Hi(M), R), maps from each of the gen-
erators to the real numbers. In particular these can be represented as differential
forms, eg dxdy + 2dzdt.

To construct the Cech cohomology, we now consider the category P := PC of
functors from C∗ to Ab. Consider now a family of maps {Uα → V }α∈I in P . It is
then possible to construct a cohomology theory, known as the Cech cohomology, by
construction of functors Hq({Uα → V }, ) from P to Ab.

In particular, these are constructed as follows. Consider the sequence V ←0

{Uα} ←1 {Uα ×V Uβ} ←2 ....

If F is a presheaf on P then we obtain maps ΠαF (Uα)→ Πα,βF (Uα×V Uβ)→ ...
etc.

Then given such an F we can define dn as an inverse to ←n+1, in the following
manner:
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dn : Πn
αi,i=0F (Uα0 ×V ...×V Uαn)→ Πn+1

αi,i=0F (Uα0 ×V ...×V Uαn+1)

by dn = Σn+1
i=0 (−1)iF (Uα0 ×V ...× Ûαi

×V ...×V Uαn).

In particular it can be checked that dn+1 ◦ dn = 0, and since P was in fact
defined to be the category of presheaves on C this gives us a functor from P → {
cochain complexes } which is clearly exact. Consequently we obtain a well defined
cohomology theory, in particular an exact sequence of cohomological functors P →
Ab, notated Hq({Uα → V }, ) as above.

Essentially, morally speaking, we now have a cohomology theory which provides
us with deeper information regarding the structure of a manifold, or more generally
of a variety, than the standard de-Rham cohomology theory provides. It allows us
to consider generators in the corresponding homology which have a nontrivial zero
locus; that is, a zero locus that admits collapse, or singularities.

Cohomology is important because it allows us to extract information regarding
a category of spaces of interest. This is in particular related to functional anal-
ysis, Information Theory - to be precise, the Fisher Information corresponding to
particular structures, and the study of Characteristic Classes.

3.2.2 Derivated Functors

I now digress and provide a similar treatment of the above, this time following
Hartshorne, in this case the third chapter.

Definition 58. (Abelian category). A category C is abelian, if, for any two objects
A,B within C, Hom(A,B) is an abelian group.

So for instance the category of abelian groups is abelian.

Definition 59. (Complex). A complex A in an abelian category C is a collection
of objects Ai indexed by the naturals, and morphisms di : Ai → Ai+1 such that
di+1 ◦ di = 0 for each i. A morphism of complexes f : A→ B is a set of morphisms
f i : Ai → Bi that commute with the coboundary maps di.

We define a cohomology theory then in the usual way, with H i(A), the ith
cohomology object defined as the kernal of di mod the image of di−1. There is also
a notion of homotopy, that is, deforming one morphism of complexes into another.
If f, g : A → B are morphisms of complexes, then there are homotopic if there are
maps qi : Ai → Bi−1 such that f − g = d ◦ k + k ◦ d. In particular a morphism
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f : A→ B induces a sequence of cohomology invariants in the category D containing
B, and if f is homotopic to g these will be the same.

3.2.3 Cohomology for Sheaves and Schemes; The Leray Spec-
tral Sequence

Definition 60. An injective resolution of an object A in a category C is a complex I
(ie, a sequence I0 := {Uα}, I1 := {Uα, Uβ}, ...) together with a morphism ε : A→ I0,
such that 0→ A→ε I0 → I1 → ... is exact.

(This should look quite familiar to the treatment in Artin [Art].)

In order to build a cohomology theory for schemes, we will need to define in-
variants Ep,q, indexed by the square of the naturals. This fits into the intuition that
schemes have more information than varieties, since they are 4-tensor pseudostruc-
tures, rather than 2-tensor pseudostructures.

Definition 61. (δ-functor). Suppose now A,B are abelian categories. Then a δ-
functor from A to B is a collection T = (T i)i∈N , such that there are morphisms
δi : T i(a′)→ T i+1(a) for any short exact sequence 0→ a→ A→ a′ → 0, such that

(i) The short exact sequence extends to a long exact sequence

0→ T 0(a)→ T 0(A)→ T 0(a′)→δ0 T
1(a)→ ...

and

(ii) For each morphism f : A→ B, and for a corresponding short exact sequence
0→ b→ B → b′ → 0, we have that δ commutes with f , in particular

T i(a′) T i+1(a)

T i(b′) T i(b)

-δi

?

f

?

f

-
δi
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Definition 62. (Etale cohomology).

Now to define our cohomology theory for Schemes, note as before that a Scheme
can be viewed locally as the twisted tuple of two varieties, A,B. (To emphasise,
recall that there is a pseudometric σ for A, and τ for B; then the corresponding
Scheme is the geometric object corresponding to σijτkl.) If we then represent A, B
as complexes in the above sense (a generalisation of the representation of manifolds
as simplicial complexes for homology), we have associated subobjects associated to
the subvarieties of A, B - Ai, Bi. We then have morphisms induced by the twisting
f i : Ai → Bi between these subobjects.

In particular we have the existence of a map from subvarieties Ai to groups
T i(A), and functors δi - much as for de-Rham homology - such that {T i, δi} has
the properties of the definition above. To be more specific, we have induced maps
f̂ : T i(A)→ T i(B).

Then we have that δi+1 ◦ δi for the Scheme (A,B)f is zero for each i. This
allows us to define cohomology invariants Ep,q, as f(Hp(A);Hq(B)) ; the relative
δ-homology of A to the δ-homology of B rel the scheme product map f on Aσ, Bτ

induced by the scheme operator ?, where ?(σij; τkl) := σijτkl. Note that we do not
expect f to act in the same way as ∧.

This is nothing other than the Etale cohomology of Grothendieck.

To be more concrete, suppose dy is a n− p pseudoform on A and dz is a m− q
pseudoform on B. Then in certain situtations

∫
A×∧̂B

dydz defines a tuple of a p

dimensional subvariety of A, and a q dimensional subvariety of B, twisted by the
induced scheme map ∧̂. This correspondence, when it exists, actually turns out to
be crucial in examination of the Weil conjectures.

Definition 63. (Etale cohomology, 2nd version). Consider algebraic varieties A,B,
with Cech cohomology groups Hp(A) = 〈Gp(A)|Rp(A)〉, Hq(B) = 〈Gq(B)|Rq(B)〉
where Gp(A), Gq(B) are the generators and Rp(A), Rq(B) are the relations of the
respective groups. Then the Etale cohomology of the scheme A ? B induced by the
twisting ofA andB, is the free product of these groups; orEpq := 〈Gp(A), Gq(B)|Rp(A), Rq(B)〉 =
Hp(A) ? Hq(B).

However, we wish to consider more general situations, rather than just schemes
induced by the twisting of two varieties, in much the same way a 4-tensor can be
more general than the product of two 2-tensors.

Definition 64. (Etale cohomology for general schemes). Let M be a manifold,
with a (possibly degenerate) four tensor Λijkl, ie, a scheme. Then a (p, q) evaluation
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of Λ is a choice of bases (V,W ), with V of rank p and W of rank q. We then
have that dΛijkl

(Vij,Wkl) defines a degenerate volume form on M , where dΛ is the
induced ?-co-connection associated to Λ (see Chapter 6). The set of such forms up
to homotopy defines the group Epq(Λ).

I will discuss these situations in more detail shortly. However first it is neces-
sary to motivate the necessary developments by an examination once again of more
elementary structures.

3.2.4 Serre Duality

Serre duality is an extension of Poincare duality but for Cech cohomology. In partic-
ular, there is a homology theory for so called projective schemes. This is particular is
useful in proving certain results, such as the Riemann Roch theorem. I will provide
enough information here to understand the general idea and intuition underlying
these results.

Recall the statement of Poincare duality:

Theorem 3.2.1. (Poincare-deRham Duality). If M is an oriented closed n-manifold,
then for each k we have an isomorphism of homology and cohomology groups, given
by Hk(M) ∼= Hn−k(M).

Intuitively this should be clear, since there is a clear correspondence between k
forms and n− k dimensional subspaces of M , given by

f(xk+1, ..., xn) :=
∫
x:=(x1,...,xn)∈M dy1(x)...dyk(x)

ie the level sets of f define a fibering of M into n− k dimensional spaces. What
Poincare duality tells us is that if M is oriented and compact (ie without boundary),
there will be a well defined representative - one of these level sets - that will be dual
to the form dy = dy1...dyk.

The question posed by Cech-Serre is whether one can do this for varieties, and
more generally, schemes. In other words, given a variety X, with a correspond-
ing Cech cohomology, is it possible to define a homology theory (associated to the
subvarieties of X), such that the kth elements of the Cech cohomology for X are
associated with elements of the n− kth homology group. In other words, our ”gen-
eralised” or rather degenerate k forms are to be associated with degenerate n − k
manifolds, or in other words algebraic varieties.
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It turns out that it is possible to do this, but only for a limited class of varieties,
known as projective varieties, that take the role of oriented closed manifolds in our
theory.

Definition 65. (Projective Variety). A projective variety is an irreducible algebraic
set V in projective n-space; that is, the set of points (x1, ..., xn) equivalent up to
scalar multiplication relative to an algebraically closed field, k.

Definition 66. (Projective Scheme). A projective scheme is the object associated
to the product of the two pseudometrics corresponding to projective varieties within
a polynomial ring k[x1, ..., xn].

Consequently we expect this to have the property of being ”compact”, since the
construction is independent of scalar multiplication by the field k. And it will be
”oriented” since it is algebraic.

I now give a vague idea of the construction of the required homology theory.

Definition 67. (The Ext functor). Suppose (X, θX) is a ringed space. The proto-
tyical example for instance, might be Aut(X) - the ringed space that associates to
each U ⊂ X the group of automorphisms of U . Suppose now that F ,G are Aut(X)
modules. In other words, we might have that F ,G are superschemes of X; then
Aut(X) acts on these by extension of the local automorphism in X to F ,G, in much
the same way one extends a form ds1...dsk on a submanifold Nk ⊂ Mn to a new
form ds1...dskdy1...dyn−k in M .

Such extensions in general will not be unique, and have the structure of a group.

Consequently we will have Hom(F ,G) as the group of morphisms between su-
perstructres induced by the automorphisms of X.

We can then build the Ext functors Exti(F , .) as the right derived functors of
Hom(F , .). In other words, the functors dual to homomorphisms from the variety
F to the underlying field k.

To build the Ext group associated to a particular embedding of X in a space F ,
we need the idea of a dualizing sheaf.

Definition 68. (Dualizing sheaf). It is of interest to ask whether we can construct
a dual structure ωX to a superscheme F of a scheme X, in much the same way one
can talk of the fiber of a bundle map F → X, or of a partition of a manifold M by
a manifold N indexed by a dual submanifold K. Indeed this is sometimes possible.
The map ωX that associates to each superscheme F containing X a subscheme
ωX(F), if it exists, is referred to as the dualizing sheaf of X.
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Now the importance of projective schemes suddenly becomes clear.

Lemma 3.2.2. If X is a projective scheme, then it has a dualizing sheaf ωX .

There is one more idea that we will need before I can state the duality theorem.

Definition 69. (Cohen-Macaulay ring). The Krull dimension of a ring R is the
length of a maximal chain of prime ideals contained in R. The depth of a ring is
the maximal length of a regular sequence in R, that is a sequence x1, ..., xk with the
property that x1 is not a zero divisor, and xi+1 is not a zero divisor of R/(x1, ..., xi)R.
A local ring is Cohen-Macaulay if it is commutative, Noetherian, and has Krull
dimension equal to its depth. A ring is Cohen-Macaulay if all its localisations at
prime ideals are Cohen-Macaulay.

Essentially the geometric intuition here is that these rings are to correspond to
nonsingular varieties - that is, varieties that are locally equidimensional. Certainly
if the Krull dimension exceeded the depth we would have a situation where there
were zero divisors in R, or ”singular” elements. Here is perhaps the source of the
difficulty with trying to prove the Weil conjectures purely using Serre Duality for
algebraic varieties, as the correspondence turns out to require the Cohen-Macaulay
property - ie it is only an isomorphism for nonsingular varieties - not for general
algebraic structures that admit singular points. Consequently we need the idea of
a nonsingular, or Cohen-Macaulay scheme - which actually will be generically a
general algebraic variety - in order to get the resolution we require.

Definition 70. (Cohen-Macaulay scheme). A scheme is Cohen-Macaulay if all of
its local rings are Cohen-Macaulay rings.

To codify my remark before, we have a correspondence principle that relates
general algebraic varieties to Cohen-Macaulay schemes. In this viewpoint, to build
an analogy with [Go], the latter takes the role of a sharp object, whereas the former
a substructure with a general ”statistical superstructure”.

Lemma 3.2.3. (Cohomology of Cohen-Macaulay schemes). There is a correspon-
dence between Cohen-Macaulay schemes and general algebraic varieties. Conse-
quently, the matrix of cohomology groups Ep,q := f(Hp(Xσ);H

q(Yτ )) is diagonal, ie
these groups reduce to Cech cohomology groups Hp(X̂), where X̂ has the structure
of a general algebraic variety. Also, all subschemes of a Cohen-Macaulay scheme
are subvarieties of the associated variety.
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So in a sense we are doing a variational analysis within a space wherein which
the class of varieties is naturally embedded, similar to the analysis of the class of
Riemannian manifolds, via extension to statistical superstructures with the con-
struction of the signal function f(m, a) := δ(σ(m)− a).

We are now ready to examine the Serre Duality theorem for schemes.

Theorem 3.2.4. ((Relative) Serre-Cech Duality). Suppose X is a projective scheme
over an algebraically closed field k. Let F be a Cohen-Macaulay scheme containing
X, and ωX be the dualizing sheaf associated to X. Then there are natural functorial
maps between associated Ext groups and Cech cohomology groups:

θi : Exti(F , ωX(F))→ Hn−i(X,F)

Furthermore, if X is also Cohen-Macaulay, these maps are isomorphisms.

In other words, we have that the relative Cech cohomology of X rel the super-
variety F is dual to the relative Ext homology of the supervariety F with respect
to the complementary subvariety to X in F .

This duality thorem is the key result of the theory, and as a tool provides
significant insight into the structure of algebraic varieties. I will not provide a
survey of the results here, since they are really just mechanical calculations of the
associated Cech cohomology groups, which are both extremely technical and, to my
mind, not particularly enlightening.

A couple of the results in particular that can be proved are the celebrated
Riemann-Roch theorem for curves and surfaces, and the Hurwitz theorem for rep-
resentation of branched curves.

3.2.5 Concluding remarks

Essentially the etale cohomology theory now constructed is merely a way of providing
us with stronger information than we would otherwise have regarding the geometry
of algebraic varieties. In terms of geometric intuition, we could roughly think of this
as computation of differential forms with respect to a four-tensor, in order to get
control over the structure of a standard space where the geometry is determined by
a standard Riemann-Cartan 2-tensor. Hopefully this remark will become somewhat
clearer to the reader, in context of the developments later in this dissertation.
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In particular, it is now possible to use this new cohomology theory to com-
pute invariants of algebraic varieties with integer coefficients. By construction, the
properties of these invariants are well understood, and provided Grothendieck with
sufficient information to make progress on the motivating conjectures. However I
have by no means provided a complete description of the constructions that he used
to tackle these driving problems. To be more precise, he used ”l-adic” Cohomology
in order to obtain the resolution he needed. But I will not describe this here.

This completes my elementary description of the initial developments leading to
K-theory.

3.3 Grothendieck-Galois theory

As an aside, I will now give an indication of a powerful generalisation of Galois
theory, also due to Grothendieck. This allows one to characterise the category
of continuous actions associated to a profinite topological group. This category
moreover is actually a special type of category, as described earlier- it is a Topos.
Consequently it is possible to apply much of the machinery from before.

I provide the results here mostly without proof; the interested reader is advised
to read the wonderful paper by Dubac and de la Vega, [DV], which is my primary
source for this material.

3.3.1 Transitive actions of a discrete group

The Galois-Grothendieck correspondence for transitive actions of a discrete group
is described thusly. Suppose we have a category C that is somehow ”nice” (in a way
that I will make precise later). Consider an object in this category, A. Consider the
space of arrows in C from A to some other object X, which I will denote by [A,X].
Define G := [A,A]op, the opposite monoid of the monoid of endomorphisms of A;
that is, [A,A] but with arrows reversed.

Then there is an action of G on [A,X], given by φ : G × [A,X] → [A,X],
φ : (g, x) 7→ gx : x ◦ g. Define [A,X] equipped with this action φ as [A,X]G.

Remark. Note that g[A,X] will be a quotient of [A,X] for ”nice” categories (to be
described below).

Recall now the definition of adjoint functor:
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Definition 71. (Adjoint functor, [W3]). An adjunction between categories C, D is
a pair of functors F : C ← D, G : C → D, such that

HomC(FY,X) ∼= HomD(Y,GX)

We then say that F is left adjoint to G, and write F a G.

Define now H = Fix(x) = {g ∈ G|gx = x} for any arrow x : A→ X. But since
the action of the group is transitive, we have that if f : X → Y in another arrow in
C that Fix(x) = Fix(f ◦x). Hence H is defined independent of x for a given object
A.

I can now give the theorem for the Galois-Grothendieck correspondence for tran-
sitive actions of a discrete group:

Theorem 3.3.1. (Galois-Grothendieck, v1).Suppose C is ”nice” at an object A ∈ C,
that is

(i) For all objects X there exists an epic arrow A→ X,

(ii) A→ A/H for any subgroup H ⊂ Aut(A) exists in C, and

(iii) [A,A] = Aut(A).

Then there is an equivalence of categories given by the adjunction A ×G (−) a
[A,−], with [A,−] : C → trG, A ×G (−) : trG → C, where trG is the category of
transitive G-sets. In particular, we have that the maps

(i) [A,A]/H → [A,A/H]

(ii) A/H → X

are isomorphisms.

For something in the way of interpretation of this result, we think of [A,A/H]op

as being the analogue to the Galois group G(A/H), where now the object A takes the
role of a splitting field; 0C the base field, ”k”, and H the role of an intermediate field.
Then the correspondence above essentially allows one to compute the intermediate
objects in C between A and 0 given knowledge of [A,A]op.
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This is a significant generalisation of standard Galois theory because it is possible
to have more than one object taking the role of a splitting field in a sufficiently
complicated category. As we shall see in the later sections, it is actually possible to
strengthen the theory further.

Ideally, we would like to somehow extend to the manifold case, where our objects
are now points x in some differentiable structure, and we associate to each point
arrows in such a way that the Galois theory extends. This is actually related to the
idea of the self-referential calculus, which is discussed in chapter 8.

3.3.2 All continuous actions of a profinite group

I shall now develop the full version of the Grothendieck theory, following [DV].

Definition 72. (Profinite group). A profinite group is a Hausdorff, compact, and
totally disconnected topological group.

Definition 73. (Finite object). An object A within a category C with Topos struc-
ture is finite if its size is finite with respect to the corresponding Grothendieck
topology.

Let C be a category, and let F : C → Epi be a functor mapping from C to the
arrow category of epimorphisms. We will say that X ∈ C is finite if F (X) is finite.
Then suppose

(i) C has final object 1 and fiber products,

(ii) C has initial object 0, finite (and infinite) coproducts, and quotient of objects
by a finite group,

(iii) C has epi-mono factorisations, ie for any f : X → Y , there is X → I → Y ,
where e : X → I is epi and i : I → Y is mono (ie, we have a weak cohomology
theory vis a vis short exact sequences),

(iv) F is left exact (it preserves finite limits),

(v) F preserves the initial objects, finite and infinite sums, quotients by actions
on finite groups, and strict epimorphisms are sent to surjections,

(vi) F reflects isomorphisms.
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Consider x : P → X, with ax : P → Ax a factorisation as via item (iii):

P Ax

X
?

x

-ax

�
�

��	
θx

Let π := Aut(P )op. This has a natural continuous left action on [P,X] =: F (X),
since π is profinite, ie compact and Hausdorff. Write as before [P,X]π as [P,X]
equipped with this action.

Then

Theorem 3.3.2. (Grothendieck Galois correspondence, v2). Suppose the above ax-
ioms hold for a pair (C, F ) as above. Consider the functor [P,−]π : C → Epiπ. Then
this functor establishes an equivalence of categories.

Corollary 3.3.3. Let fC be the full subcategory of finite objects. Then [P,−]π
restricts to a functor [P,−]π : fC → fEpiπ which is also an equivalence of categories.

Roughly what this means is that these ideas do extend to the manifold case,
provided that we equip our objects (sets in the manifold) with an appropriate Topos
structure (say, integrand with respect to a volume form). Then, theoretically, one
should be able to determine the information of a particular point in a manifold from
that on various other points, with respect to the choice of profinite group action.

Naturally this is all extremely suggestive and might be related to interesting
physics, as indeed it is.

3.4 Preliminaries of K theory

TheK-theory of Atiyah and Hirzebruch grew out of a need to formalise Grothendieck’s
Etale cohomology program, and attempt to investigate its more general structures.
This in fact led to the development of the K-theory as an overarching framework for
investigating ”extraordinary cohomology theories”, of which the etale cohomology
for schemes is one.

This is actually related roughly to the treatment in this dissertation in the chap-
ters to follow; it turns out that there are actually three different ways to primitively
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extend de-Rham cohomology from the Riemannian case - these correspond to three
different varieties of four-tensor construction, which are covered in exhaustive detail
in chapters 5, 6, and 7. Of course the K-theory is more general and deals with more
pathological constructs as well, but it is the extraordinary theories corresponding to
4-tensor structures that will be of most interest to us.

It turns out that a key result within this theory is the idea of Bott Periodicity,
which has been adapted for various applications, such as the celebrated Atiyah-
Singer index theorem [AS].

My primary source will be Max Karoubi’s book [K], although as a secondary
reference I will use lecture notes on the subject due to Atiyah [At].

3.4.1 Motivation and the definition of the Grothendieck group

Suppose we have a topological structure M with an abelian composition operation
+ defined on it. Associate to M an abelian group S(M) and a homomorphism
s : M → S(M), such that for any abelian group G, and any homomorphism f :
M → G, we have that there is a unique f̄ such that following diagram commutes:

M S(M)

G

-s

?

f

�
�

�
��	

f̄

In other words, S(M) contains maximal information about M up to group struc-
ture.

Note that the motivation for doing this is that M , the structure of interest, may
not have the properties of an abelian group, ie might not have inverses. Consequently
in order to build a cohomology theory we need to extract information from this space
into a new object S(M), in a way as compatible with the structure of M as possible.

We are interested in this since this is related to the idea of generating groups
for a space, similar to the idea of de-Rham cohomology, or etale cohomology. In
particular, for a topological spaceX, one can build a simplicial representation. These
simplices will generate a chain complex, which can be interpreted as an additive
category M of vector bundles over X. Then there is a map s from this category to
the de-Rham cohomology groups S(M) := H(X).
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If we were instead to view this more geometrically, suppose we endow X with
a metric σ, and consider the set of forms f(x)dx1...dxk such that these span k-
dimensional geodesic submanifolds in X, up to isometry. Then the set of these
forms for each k generates a chain complex M on X. Furthermore, we have a map
d(σ) : M → H(M), such that H(M) is given as the quotient of forms κ such that
dσκ = 0, up to equivalence of boundaries, that is if γ = κ + dσλ, then γ ∼ κ. Here
dσf = ∂j(σijf) is the gradient operator induced by σ.

To return to the development of our theory then, consider an additive category,
C; that is, a category where for any objects A,B there exists an object A⊕B, and
arrows +B : A→ A⊕B, +A : B → A⊕B. To every E ∈ C, let Ê be its isomorphism
class; that is, the set of objects Ei such that the arrows +Ei

: F → E ⊕ F map to
the same object E ⊕ F for each F .

Then M := φ(C), the set of isomorphism classes under the additive structure of
C, becomes an abelian monoid if Ê + F̂ is defined to be ˆE ⊕ F .

Then S(M) = S(φ(C)) is called the Grothendieck group of C, and is equivalently
written K(C).

Suppose X is a compact manifold. Consider the additive category of vector
bundles C over X. Then the Grothendieck group for C will be denoted K(X), and,
indeed in our example above, corresponds to the de-Rham cohomology if we are
assuming a monoidal structure given by the algebra of forms over a Riemannian
manifold.

3.4.2 Extension to functors

Suppose now we have a functor between categories F : C → D. The motivation is
that we are interested in examining the twisted product of two Riemannian struc-
tures on manifolds; in this case C,D would correspond to the categories of vector
bundles over a manifold M induced by the differing geodesic submanifolds for dif-
ferent metrics σ and τ . This will allow us to arrive at the etale cohomology of
Grothendieck for schemes, or at least a generalised version that might be applicable
to more exotic 4-tensor structures.

Definition 74. (Banach category). A Banach structure on an additive category C
is given by a Banach space structure (ie limits exist) on C(E,F ), and moreover the
map

C(E,F )× C(F,G)→ C(E,G)
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is bilinear and continuous. Then a Banach category is an additive category
equipped with such a structure.

Essentially the key observation is to realise that a functor F between Banach
categories C and D of vector bundles over compact spaces X and Y extends to a
map between the corresponding groups K(X) → K(Y ). Then K(X, Y ) is defined
to be the group that makes the following sequence short exact:

0→ Ki(X, Y )→ Ki(X)→ Ki(Y )→ 0

And this corresponds to the relative cohomology of a space, for (X,X∩Y ), since
short exactness preserves the information of the underlying categorical structure.

Of course we need not necessarily restrict ourselves to X, Y compact manifolds.
These can also be Banach algebras, or groups, or other types of structures.

3.5 Bott Periodicity and some consequences

Theorem 3.5.1. (Bott Periodicity). Suppose we are dealing with complex K theory.
Then there is an isomorphism between the groups K(X) ⊗ K(S2) and K(X × S2)
for all compact Hausdorff spaces X.

Proof. (reference). A detailed proof of this theorem can be found in the thesis of
David Tomairo, [To].

In other words, this states that the representatives between a compact space X
and S2, for a standard cohomology theory, are separable; that is if ω is a differential
form in X ×S2, representing a geodesic submanifold, then it factors into forms over
X and over S2. In other words, the geodesic submanifold N in X × S2 splits into a
submanifold α of X and a submanifold β of S2.

This obviously is of some interest, since this is related to the Hopf conjecture -
whether there exist metrics of positive curvature on S2×S2. However it is not quite
strong enough for such a purpose.

What it is useful for, however, is computation of the (higher) homotopy groups
of spheres, which were not completely understood at the time that the Periodicity
theorem was formulated by Raoul Bott.

It turns out to also be essential in the development of relative Kp,q theory, which
is its main important application.
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3.5.1 The groups K-pq

Before we can build the groups Kpq we need the idea of a Clifford algebra. Consider
the tangent bundle TM (or more generally, the k-tangent bundle, with k a field)
corresponding to a Riemannian manifold M with a quadratic form σ defined upon
it. Let C be a R-algebra (or more generally, a k-algebra), and a map j : TM → C a
homomorphism that encodes a maximal amount of information regarding TM , with
j(v)2 = σ(v, v)İdC ; in other words we require that the following diagram commutes:

TM C

A

-
j

?

φ

�
�

�
�	

ψ

Then the pair (C, j), or C(M,σ) is defined uniquely up to isomorphism. It will
be called the Clifford algebra associated to the Riemannian manifold M .

More generically, suppose σ, τ are quadratic forms on TM , corresponding to
different metrics on an underlying differentiable structure M . Let α : TM → TM
be the map such that 〈v, w〉σ = 〈α(v), α(w)〉τ . Let C be a R-algebra, and suppose
we have norm preserving maps j, k : TM → C that preserve the norms of σ, τ
respectively, such that for any R-algebra A we have that the following diagram
commutes:

TM TM

C

A

-α

@
@

@R

jA
A
A
A
A
A
A
AU

�
�

�	

k �
�

�
�

�
�

�
��?

γ

Then C(σ, τ) will be unique up to isomorphism, and will be called the gener-
alised Clifford algebra associated to (M,σ)× (M, τ). This is a slight departure from
Karoubi but is necessary; since schemes after all come from the twisting of two
metrics, we need the necessary generality to proceed.
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Regardless, this essentially allows us to provide the tangent bundle of a Rie-
mannian manifold, or more generally, any vector space V , with the structure of an
algebra, such that (v ⊗ w)k = Cij

k viwj. Consequently clifford algebras are often
denoted Cij(M).

Suppose now that we are considering C(X) as the category of vector bundles
over a compact base space X. Let A be a finite dimensional R-algebra. Then we
can construct a new category CA(X) where the objects are (E, ρ), E an object in
C(X) and ρ : A → End(E) is an R-homomorphism that maps from the algebra
to the space of Endomorphisms associated with the vector space E. Arrows, or
morphisms in this space from (E, ρ) to (E ′, ρ′) are C(X) morphisms f : E → E ′

such that f ◦ ρ(λ) = ρ(λ) ◦ f for each λ ∈ A.

In particular if A is the generalised Clifford algebra Cp,q corresponding to (X, σ),
then the corresponding category is denoted Cp,q.

It is then possible to build functors Kpq(X) in a manner analogous to the con-
struction of the Ki; these essentially arise as the Grothendieck group of the category
Cp,q of vector bundles equipped with the generalised Clifford action corresponding
to a compact underlying space X.

But the K theory is more general than this; it is not only restricted to Clifford
algebras for the tangent spaces of Riemannian manifolds. For one might consider
instead multiplicative categories of vector bundles over compact spaces X and Y ,
where we have an operation on vector spaces defined as V ×W := V W . In particular
one builds a category BA, using the categorical equivalent of set exponentiation.

Then define C to be the algebra such that the following diagram is commutative
for any other algebra A:

(TM, σ)(TM,τ) (TM, τ)
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where Ev is the evaluation map from the exponentiation of the tangent space
of (M,σ) by that for (N, τ), back to (N, τ).

Then the K theory for the corresponding multiplicative functor will be differ-
ent. Alternatively one might have fractal categories of vector bundles, with oper-
ation defined as ∂(V ;W ) := ∂WV , where the differentiation is to be understood
as differentiation with respect to a basis of the bundle corresponding to changes in
position relative to the underlying differential forms - corresponding to a geodesic
submanifold - in Y and X.

We consequently obtain different extraordinary cohomology theories correspond-
ing to each such object, and I claim that these are the only extraordinary cohomol-
ogy theories that can be obtained for pairs of spaces that have associated differential
structure. The reason for this is not particularly deep - it is related to the fact that
there are only three ways to build geometric theories for 4-tensor structures, ie to
build affine-connections, as a consequence of the combinatorics. Note that there is
only one way for 2-tensor structures; the de-Rham cohomology theory.

3.5.2 Relative K-pq theory

In an analogous manner to the standard K theory, it is possible to construct relative
Kpq theory for pairs of compact space (X,Y ), via defining the group Kpq(X,Y ) as
that which makes the following sequence short exact:

0→ Kpq(X, Y )→ Kpq(X)→ Kpq(Y )→ 0

In particular, if one is using a Clifford algebra, this corresponds to the relative
etale cohomology for a scheme X rel Y , via the identity

Ep,q(X, Y ) = Kpq(X, Y )

This is of interest in terms of Bott periodicity since Kpq theory can be used to
understand real Bott periodicity. In particular it turns out there is really only one
natural way to define a homomorphism

t : Kp,q+1(X, Y )→ Kp,q(X ×B1, X × S0 ∪ Y ×B1)

Then we have that
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Theorem 3.5.2. (Fundamental Theorem). The map t is an isomorphism.

Proof. The proof of this theorem is extremely technical, and is one of the more
difficult parts of the theory to establish. The original proof by Raoul Bott [Bott]
used Morse Theory [Mil]. Karoubi [K] pp161-174, follows the approach due to Atiyah
and Bott [AB], which uses complex K-theory.

From which we have the consequence of being able to compute the real Ki
R

groups from the Ki
C , the latter of which are much easier to determine. This is the

real reason Bott periodicity is so useful:

Theorem 3.5.3. (”K-duality”, or computation of the integer real K groups). The
following sequence is exact:

. . .→ Kn−1
R (X, Y )→ Kn−1

C (X, Y )→ Kn+1
R (X, Y )→ Kn

R(X, Y )→ Kn
C(X, Y )→

Kn
R(X, Y )→ . . .

Proof. The t-isomorphism is required to make this proof work. Further details can
be found in [K], pp154-156.

This is an analogue in a way of Serre duality. Here, the Kpq groups play the
role of the Etale cohomology to extend Poincare duality from the nondegenerate
quadratic forms of de-Rham cohomology to the degenerate quadratic forms for el-
liptic curves in algebraic topology and Cech cohomology - the groups Kn.

3.5.3 Application to the Atiyah-Hirzebruch formulation of
the Riemann-Roch Theorem

There are various applications of K-theory, which involve various forms of extraction
of information of a geometric or algebraic structure. For instance, study of the Hopf
invariant, and study of vector fields on spheres - in particular demonstrating that
the only spheres that can be provided with H-space structures are S1, S3, and S7 are
within the province of the theory. (An H-space structure on a sphere is an operation
m : Sn−1×Sn−1 → Sn−1 such that the restriction maps x 7→ m(x, x0), y 7→ m(x0, y)
are homotopic to the identity map of Sn−1; ie they are maps of degree 1. This
is an abstraction of the idea of field structure on a sphere.) More generally, one
can construct characteristic classes, which are generators of particular cohomology
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theories associated to a manifold, in order to study the properties of a geometric
structure, using this theory.

However of all of these applications, it is probably the Atiyah-Hirzebruch, or
Atiyah-Singer Index theorem, which is the most important. It is essentially the
formulation of the Riemann-Roch theorem extended to the generalised cohomology
of K-theory. Since I did not cover the Riemann-Roch theorem, which is a result of
the classical theory, and its extension to etale cohomology earlier, I will do so now
before discussing the formulation within K-theory.

The original statement of the Riemann Roch theorem is essentially an inequality
computed for Riemann surfaces.

Theorem 3.5.4. (Riemann Roch). Let M be a Riemann surface of genus g. Let D
be a divisor of M - ie a codimension one subvariety. Then we have that

I(D)− I(M −D) = deg(D)− (g − 1)

or more crudely,

I(D) + (g − 1) ≥ 0

where I(D) is the index of D- ie the dimension of the vector space of functions
h on M such that h rel D is non-negative- and deg(D) is the degree of D, ie the
degree of the field extension [K(D) : K(M)] with respect to the natural embedding
map i : D →M .

The latter statement looks like a very weak analogue of the Cramer-Rao in-
equality. The interpretation would be here that I(D) represents the ”transverse
information” and the genus the ”longitudinal information”; so the information of M
splits into D and M −D and we have that the Fisher Information roughly satisfies
the equality above - although of course there are cross terms which are taken into
account in the strong statement of the theorem. Indeed the idea of Index is very
much a weak algebraic analogue of the idea of Fisher Information.

To be more precise, the idea of Index in K-theory is an abstraction of the idea
of the Index of a metric. Recall that in pseudoriemannian geometry we refer to the
idea of a geometric structure Λ associated to a manifold M as having index k if the
dimension of its negative eigenspace is k. So if Λ is a p-tensor, we have that an eigen-
vector v with corresponding eigenvalue λ satisfies the equation Λ(v, ..., v̂, ..., v) = λv,
for any removed entry v̂ at the ith position, for 1 ≤ i ≤ p.
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One can construct various forms of K-theoretic structures via natural ”twist”
operators of which there are three natural types for 4-tensors - ?, ∧, and ∂∗. Then
it is natural to talk of the index of the 4-tensor constructed in this fashion as the
index of the associated operator. It turns out that these operators are moreover
elliptic, that is they admit a representation roughly of the form ai1···ipDi1 · · ·Dip , for
some p ≥ 1 an integer, such that a is a tensor with positive eigenvalues, or at least
eigenvalues compatible with the causal signature of the domain of the operator. (To
be more precise, it turns out for 4-tensors we only need to consider p = 1 or p = 2).
This is the general idea of the Atiyah-Singer index theorem, to try to understand
the index and hence causal properties of K-structures better.

To return to our original discussion, the Riemann Roch theorem is extended to
Grothendieck’s theory of schemes in the following manner.

Theorem 3.5.5. (Grothendieck-Riemann-Roch, [W5]). Let Y be a scheme. Suppose
that X is a subscheme divisor, ie there is a natural inclusion map f : X → Y . Let
κ(f?) : K0(X)→ K0(Y ) be the natural map in Cech Cohomology with respect to the
Grothendieck group K0, where f? : A(X) → A(Y ) - the induced map between the
algebras A(X), A(Y ) of subschemes of X and Y . Let ch : K0(X) → A(X) be the
Chern character, that is, an equivalence between generalised forms in K0(X) and
schemes in A(X), where we are carrying over the tensor algebra structure in K0 to
A. Then the following identity holds:

ch(κF)td(Y ) = f∗(ch(F)td(X))

where F is essentially a sheaf perpendicular to X in Y - if X was a submanifold
of a manifold Y it would be a space transverse to X- and also td(Y ) is the Todd
genus of a scheme Y , which is essentially the extension of the idea of genus to
schemes. Roughly, the Todd genus of a scheme Y is roughly the reciprocal of the
Chern class of Y - it is a measure of the information perpendicular to that which the
Chern class is measuring. Roughly it deals with the information of the co-normal
generalised bundle associated to Y , rather than the normal generalised bundle. [W6]

Of course this is rather difficult to digest. But essentially what this is saying
is that, given a scheme Y and a subscheme X, the two different natural ways of
computing the information of the part of the structure associated to X - either
directly or through computation of the part of the structure normal to X - are
equal. In other words, to put this into the terminology of Professor Frieden, we
have that the channel information I and the bound information J are equivalent ;
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ie that I − J = 0, if I = ch(κF)td(Y ), and J = f∗(ch(F)td(X)). This suggests in
turn that the structures we are examining must be critical in some way; I would
hazard that the construction of the correspondence ch : K0(X)→ A(X) implies the
criticality of X as a subscheme of Y .

We are now ready to begin to examine the Atiyah-Singer index theorem.

To reiterate, this essentially deals with the idea of an elliptic operator, or ”twist
map”, that is, a map T roughly of the form Tφ := aijDiDjφ, such that aij(x) is a
positive definite matrix for each x over the relevant domain. Broadly speaking, an
operator defined over a vector bundle over a base space that is pseudoriemannian is
elliptic if it is compatible with the signature of the base.

More generally, an operator T of the form Tφ := ai1...ikDi1 ...Dikφ is said to be
elliptic if ai1...ik(x)ζi1 ...ζik > 0 for all nonzero vectors ζ and all x in the relevant
domain.

An important example of an elliptic operator - though possibly a slightly confus-
ing one in this instance - is the Riemann curvature tensor Rijkl. R : TM × TM →
{TM → TM}, or, equivalently, R : TM × TM → TM × TM . Consequently it
is sensible to consider elliptic operators T : E → F that map between vector bun-
dles E, F over pseudoriemannian manifolds M , and more generally this is what the
Atiyah-Singer index theorem is about.

To make this slightly more precise, I will now introduce a few definitions:

Definition 75. (Kernel and cokernel). The kernel ker(S) of an operator S : E → F
is the subspace of X that is mapped to 0 under S. The cokernel coker(S) of an
operator S : E → F is the quotient of F by the image of S in F .

Definition 76. (Fredholm operator). A Fredholm operator is a bounded linear op-
erator between two Banach spaces whose kernel and cokernel are finite dimensional
and whose range is closed. Equivalently, S : E → F is Fredholm if there exists a
T : F → E such that IdE − T ◦ S and IdF − S ◦ T are compact operators, that is,
they are invertible.

Definition 77. (Analytical Index). Suppose D : E → F is an elliptic operator.
Then it has a pseudoinverse, that is, there exists a D′ (which might not be unique)
such that D ◦D′− Id and D′ ◦D− Id are invertible. Consequently it is a Fredholm
operator, and the kernel and cokernel are both finite dimensional. Hence we can
define the analytical index of D to be

I(D) := dim(ker(D))− dim(coker(D))
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ie the dimension of the failure of D to be injective, minus the dimension of
the failure of D to be surjective. Note that if D′ is a pseudoinverse of D then
ker(D′) = coker(D), so we see that essentially the index then measures the mis-
match of injectivity between D and a pseudoinverse representative.

Definition 78. (Todd class). Recall the Todd class td(X) associated to a space
X, is essentially the extension of the idea of genus to objects more general than
surfaces. It is the characteristic class associated to the co-normal bundle associated
to X, as opposed to the Chern class of a space E/X, which is the characteristic class
associated to the normal bundle associated to E/X. So for instance if E is a vector
bundle over X, it is sensible to consider the information regarding how X embeds
in E; consequently td(X) will provide this information. Suppose now we consider
an isotopy of embeddings of X in vector bundles induced by a map D : E → F .
Then we define tdD(X) to be the characteric class associated to the embedding of
X within that isotopy.

Definition 79. (Chern character of an elliptic operator). Suppose F ⊂ E. We
can represent the information of the space normal to F in E within K theory by
an elliptic operator D : E → F , which in this case will be the projection mapping.
Then the Chern character of D, ch(D) is defined to be roughly the Chern class of
the kernel of D. Note that in this case coker(D) = φ.

Of course, if we reverse the roles of E and F , so that E ⊂ F , then D becomes
the inclusion map, and ker(D) = φ. Consequently it is sensible to define ch(D)
as the Chern class of the kernel of D, minus the Chern class of the cokernel of D.
These ideas more generally extend to any pair of Banach spaces E,F linked by an
elliptic operator D : E → F , of course.

Remark. In practice ch(D) is an operator that turns pseudodifferential forms into
integers.

Definition 80. (Topological Index). Suppose E and F are smooth vector bundles
on a compact manifold X, and D is an elliptic differential operator mapping between
them. Then the topological index of D is defined to be

ch(D) ◦ tdD(X)

Since ch(D) is essentially ch(ker(D)) − ch(coker(D)), and since tdD(X) is es-
sentially the form relating the embedding of X into D : E → F , it is natural to
assume that the following result should follow:
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Theorem 3.5.6. (Atiyah-Singer Index Theorem, 1963, [W7]). Suppose T is an
elliptic differential operator on a compact manifold M . Then the associated topo-
logical index is equal to the analytical index.

This is stronger than Grothendieck-Riemann-Roch and has interesting conse-
quences. For instance it is possible to prove certain intuitive results, such as for
instance proving that ascending an infinite staircase to get back to where one starts
is impossible - as might seem to be the case in various drawings by Escher.

More generally, this result has consequences in computing weak invariants for
physical theories, as it is weakly related to the idea of bound information J and
channel information I expounded by Frieden in his treatments of Fisher Informa-
tion. There is also the strong connection in that the Fisher Information density for
pseudoriemannian manifolds is encoded by an elliptic operator, although evidently
one is not computing the Fisher information here, but rather the index of the associ-
ated map from the manifold back to itself, which forms (in the case of the Riemann
curvature tensor) a four tensor which actually contains less information than the
original metric.

In the case of the exotic geometries explored in the later chapters in this volume,
it turns out that the generalised christoffel symbols often do become higher order
in derivatives - so it is not quite so strange to consider the adoption of an elliptic
operator to describe the transition from two Riemannian manifolds to something
more abstract.

There are also many generalisations of the Atiyah-Singer index theorem that are
possible, following the same style of abstractive process, but I will not go into these
here.

3.6 L theory

It is possible, of course, to generalise further, and consider structures Kp1,...,pn , for
any finite n. This might seem incredibly general, and it is, but it is not necessarily
natural. For the foundations ofK-theory lie firmly within the domain of 1-categories,
with topoi as the structures of primary interest. To extend to triples Kp,q,r intuition
suggests that we are neglecting essential structure.

In fact, this is indeed the case, and it is necessary to build a new extraordinary
cohomology theory grounded in the domain of 2-categories; in particular, one is
interested in using twistors as the fundamental objects of study. This leads to the
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study of L-theory, [W4]. L-theory ultimately leads to the construction of groups
Lp,q,r which are useful in the study of surgery.

It is reasonable to assume that the duality theorem for L-theory should be
useful in the study of extraordinary cohomology theories for degenerate 4-tensor
Λ-structures on manifolds, ie the study of matrices of groups Kp,q(M,Λ). However
this goes significantly beyond the scope of this dissertation. The interested reader
is advised to refer to the sources [Luck] and [Wall], if they wish to learn more about
surgery and its connection to L-theory.
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Chapter 4

Sieve Theory and Integrability

Within number theory, sieve theory is the study of methods whereby one can gain
information about particular sets of numbers of interest. These are usually prime
numbers. Integrability is the study of solutions of infinite iterative hierarchies of
PDEs, which are related to various phenomena such as study of solitons and emer-
gent solid state behaviours.

At first glance these areas might not seem to be related. But consider now in-
stead the theory of n-categories, in the limit as n tends to infinity. Call the resultant
objects limit-categories. It is self-evident that a full and finite description of limit
categories is impossible; the self-referential calculus - the core of this dissertation -
is an 8-tensor theory, with foundations in the study of 1-categories. Further exten-
sion of the ideas in this work to 2-categories requires a 128 (or possibly 192) tensor
theory. Beyond this point I am fairly certain that the rate of increase in complexity
is super-exponential.

There is however some interesting recent work on limit categories due to Jacob
Lurie in his recent substantial dissertation [Lurie]. The general idea of his approach is
not to treat these with full generality but to consider what he calls (∞, n)-categories,
where all k-morphisms are invertible for k > n. This turns out to restrict the
structure to an extent where it is possible to say something. In particular the core of
his analysis is to consider (∞, 0)-categories, however I will not pretend to understand
his precise approach. Certainly however his results might well be applicable to the
study of integrability and sieves.

An additional reference that might also be of some interest to the reader is the
recent preprint by Carlos T. Simpson, [Simp], which is a comprehensive treatment
of (∞, n)-categories.
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Along these lines, I maintain that under certain circumstances it should be
possible to extract partial information about limit structures. In the simplest case,
this is nothing other than the construction of a sieve, or, more generally, the study
of critical iterative hierarchies of PDEs.1

Further afield, it is possible that the study of the partial information of limit
categories is tied to the foundations of statistics and probability theory. In fact it
seems natural to view the discipline of statistics in this manner, as it is by nature
an approximative and imprecise area, associated with the calculation of invariants
providing partial information of structures whose true underlying behaviours are
ultimately unknowable.

This is perhaps the main difference between the geometric and statistical points
of view. The geometer starts from a clear idea of the objects of interest and in-
vestigates the resultant structures in a formal and deterministic manner. This is
useful for making predictions and within the practice of engineering, since such
models tend to deal with smooth data. The statistician starts assuming nothing
about the objects of interest, but presumes that there are certain ways to extract
information about them; hence they proceed in the fashion of a data analyst. Such
an approach is necessarily inherently discrete in nature. Consequently this is why
statistics is of such great value in the analysis of experimental data, as a means of
testing hypotheses, usually in the form of geometric models, built by theoreticians.

4.1 Preliminaries

4.1.1 Basic concepts

Before I proceed I will need to describe a few preliminary results and basic concepts.
In this I follow the wonderful book by Cojocaru, [Co].

Definition 81. (Möbius function). The Möbius function, µ : N → {0, 1} is defined
such that µ(1) = 1, µ(p) = −1 for each prime p, and µ(pa) = 0 for any integer a > 1.

Then this has the following property:

1Indeed, I suspect it should be possible to extend the idea of category in an appropriate fashion
- from the idea of n-category, a fundamentally geometric concept, to its ”statistical dual” as an n∗-
category. Via abuse of procedure I will regard the structure of (∞, n)-categories and the structure
of (as yet not precisely known by me) n∗-categories as one and the same; nonetheless the reader
should bear in mind that it is possible some slight adaptation of the Simpson-Lurie approach might
be required in order to find a sensible foundation for the analysis.
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Lemma 4.1.1. (Divisor property of the Möbius function).

Σd|nµ(d) =

{
1 if n = 1,

0 otherwise

This allows one to establish

Proposition 9. (Inversion formula, v1). Suppose f, g : N → C are two complex
valued functions, and that

f(n) = Σd|ng(d)

then

g(n) = Σd|nµ(d)f(n/d)

Proposition 10. (Inversion formula, v2). Suppose D ⊂ N is a divisor closed subset
of the naturals. Let f, g : N → C be two complex valued functions as before. Then
if

f(n) = Σn|d,d∈Dg(d),

we have that

g(n) = Σn|d,d∈Dµ(d/n)f(d)

An important result in the beginnings of Sieve theory is Chebycheff’s theorem.
In its strong form it allows one to conclude that there is always a prime between n
and 2n for n > 1.

Theorem 4.1.2. (Chebycheff). Define θ(x) = Σp≤xlog(p), where p is prime. Then
there exist constants A and B such that

Ax < θ(x) < Bx

One then can use the technique of partial summation to demonstrate that π(x),
the number of primes up to x, is O(x/log(x)). To remind the reader of this technique,
I provide the following:
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Theorem 4.1.3. (Partial summation). Suppose c : N → C is a sequence of complex
numbers. Define S(x) = Σn≤xc(n). Fix a natural number n0. If c(j) = 0 for j < n0

and f : [n0,∞)→ C is smooth, then for any integer x > n0, we have

Σn≤xc(n)f(n) = S(x)f(x)−
∫ x
n0
S(t)f ′(t)dt

Proof. Essentially integration by parts.

In fact, the well known prime number conjecture of Gauss (proved by Hadamard
and Poussin) states that π(x) ∼ x/log(x), so it can already be seen that these
elementary methods provide some insight into the distribution of the primes.

Proof. (of Chebycheff’s theorem, due to Ramanujan. [Co] pp6-7).

Define ψ(x) = Σp prime, ,a∈N,pa≤xlog(p).

Let T (x) = Σn≤xψ(x/n).

Then Σn≤xlog(n) = Σn≤x(Σpa|nlog(p)) = Σm≤xψ(x/m) = T (x).

It follows then by partial summation that T (x) = xlog(x) − x + O(log(x)).
Consequently T (x)− 2T (x/2) = log(2)x+O(log(x)). However we also have by the
definition of T (x) that T (x)− 2T (x/2) = Σn≤x(−1)n−1ψ(x/n).

Now suppose ai ≥ ai+1, i ∈ N is a sequence of decreasing reals, such that ai → 0.
Then it follows that

a0 − a1 ≤ Σn∈N(−1)nan ≤ a0 − a1 + a2.

If we take an = ψ(x/n) this will be such a decreasing sequence, so we can now
observe that, together with the above, we have

ψ(x)− ψ(x/2) + ψ(x/3) ≥ log(2)x+O(log(x))

Similarly, we have

ψ(x)− ψ(x/2) ≤ log(2)x+O(log(x))

Suppose now we replace x with x/2k, for k = 0, 1, 2, .... Then we get a family
of sequences ank = ψ(x/(2kn)), which all satisfy similar inequalities. Following the
logic through carefully, it is possible to conclude that

ψ(x) ≤ 2(log(2))x+O(log2(x))
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and we also obtain a lower bound for ψ(x) in this manner which is linear in x.

Proof. (of Chebycheff’s theorem, due to Chebycheff, [Co], pp8-9). Recall θ(x) :=
Σp prime,p≤nlog(p).

Now, it is clear that Πn<p≤2n,p primep|
(
2n
n

)
, and

(
2n
n

)
≤ 22n.

Consequently by passing to logarithms, we see that θ(2n) − θ(n) ≤ 2nlog(2).
Then we have a sequence θ(2(n/2k)) − θ(n/2k) ≤ 2(n/2k)log(2), for k ∈ N . Sum-
mation of this over k gives the inequality

θ(2n) ≤ 4nlog(2)

So we have demonstrated θ(x) = O(x).

There are two more results due to Chebyshev that will be required in the argu-
ments to follow.

Theorem 4.1.4. Σp≤n,p prime
log(p)
p

= log(n) +O(1)

Proof. ([Co], p9). Note that n! factors as Πp≤np
ep for certain coefficients ep. But

note that since the number of multiples of pk that are smaller than n is [n/pk], it
follows that

ep = Σk[n/p
k]

and this sequence will obviously terminate.

Then log(n!) = Σp≤n,pprimeeplog(p). But log(n!) = Σk≤nlog(k) = nlog(n) − n +
O(log(n)), and

Σp≤n,pprime([n/p
2] + [n/p3] + · · · ]log(p) ≤ nΣp prime

log(p)
p(p−1)

<< n

so Σp≤n,p prime[n/p]log(p) = nlog(n) +O(n).

Corollary 4.1.5. Σp≤n,p prime
1
p

= loglog(n) +O(1)
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4.1.2 A few elementary sieves

According to [Co], the Sieve problem is described in the following manner. Let H
be a countable set of objects of finite measure, and P an index set, such that for
each p ∈ P , there is an associated Hp ⊂ H. Then we wish to find upper and lower
bounds for the size of

S(H,P ) := H − ∪p∈PHp

To recast this into the terminology of the partial information of limit categories,
suppose we have a countable set of objects, H, such that for each object hn ∈ H,
there are arrows and product operations φnm : hn → hm, φn1n2n3,1 : hn1hn2 → hn3 ,
φn1n2n3,2 : hn1 → hn2hn3 , third order arrows and product operators, fourth order
arrows and product operators, etc. Let P be an index set, such that for each p ∈ P ,
we associate a subcategory (of finite complexity) Hp to H.

Then we wish to estimate the size of

S(H,P ) := H − ∪p∈PHp

in terms of a measure of finite complexity on H, which will often be inherited
from the structure of the subcategories Hp. Indeed, often we will want each Hp to
have the same categorical structure, and rather have the difference between them
to be in terms of the objects in H that they contain.

If H is a subset of the naturals, say ≤ x and Hp is a congruence class modulo p,
say numbers such that p|n, then S(H,P ) will be the set of numbers n ≤ x coprime
to P . This in fact arises inductively via the process of elimination in the Sieve of
Erastothenes, where one has a sequence Pk ⊂ Pk+1 of index sets which are generated
in terms of what is excluded at the kth iterate.

Definition 82. (von Mangoldt function). The following function -

Λ(n) :=

{
log(p) if n = pa, some prime p, some natural a,

0 otherwise

is referred to as the von Mangoldt function.
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Theorem 4.1.6. (Gallagher’s Larger Sieve). Instead of generating B := S(H,P ),
one main approach to Sieve theory is to estimate it. For suppose B is a set of
integers, and we know its image mod t for any t ∈ T , an index set of prime powers.
Suppose furthermore there is a function u, such that |B mod t| ≤ u(t), where we are
using the natural measure inherited from the categorical structure on B - usually the
counting measure.

Let X be the largest element in B. Then if Σt∈T
Λ(t)
u(t)
− log(2X) > 0, we can

estimate the size of B to be

|B| ≤ Σt∈T Λ(t)−log(2X)

Σt∈T
Λ(t)
u(t)
−log(2X)

Proof. (Sketch). The trick is to enumerate each residue class mod t for each t ∈ T
of B, calling them say Yt(B, r), and then observe that for each t the number of
elements of B will be equal to the sum of the size of these classes. Then via use of
the Cauchy-Schwarz inequality, using the fact we have a bound u(t) on the size of
each class, it is possible to observe that

|B| = Σr|Yt(B, r)| ≤ u(t)1/2(Σr|Yt(B, r)|2)1/2

Then after some rearrangement, and using the fact from before that Σt|nΛ(t) =
log(n), it is useful to multiply the inequality on both sides by Λ(t) in order to
complete the proof.

Definition 83. (Jacobi symbol). The Jacobi symbol is defined to be the function
such that

(
a
p

)
:=


0 if a ≡ 0 ,

1 if a 6≡ 0 and a ≡ x2,

−1 if a 6≡ 0 and a is squarefree

where all congruences are taken modulo p.

Theorem 4.1.7. (The square sieve). Suppose we have a set of naturals, A, and
we wish to estimate the number of squares therein. Let P be a set of primes not
including 2. Define S(A) = |{a ∈ A|a is square }|. Then

S(A) ≤ |A|
|P | +maxp,q∈P,p 6=q|Σa∈A

(
α
pq

)
|+ E
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where

(
α
pq

)
is the Jacobi symbol, and E is an error term of order roughly

|∪a∈A{p|a,p∈P}|
|P | , which is usually negligible.

Proof. (sketch). In estimating the size of the number of squares we expect the
appearance of the Jacobi symbol, since this is intimately connected with the com-
putation of quadratic residues. In fact all that one needs is to observe that

Σq∈P

(
a
q

)
= |P | − | ∪a∈A {p|a, p ∈ P}|

and the rest of the proof follows relatively mechanically. See [Co], pp21-22.

Theorem 4.1.8. (The Tauberian theorem for Dirichlet series). Consider a Dirichlet
series

ζ(s) = Σn
an

ns

such that the an is a non-negative sequence in l∞(N). It is well known then that
ζ has an analytic continuation and will be analytic for Re(s) = 1 except at s = 1.
Make the assumption that the singularity at s = 1 for ζ(s) is of the form

ζ(s) = H(s)
(s−1)1−α

for some real α and H(s) locally nonsingular, and analytic for Re(s) ≥ 1. Then

Σn≤xan ∼ cx
log(x)α

with c = H(1)
Γ(1−α)

.

As a special case this allows us to establish an estimate on the number of primes
less than a particular n ∈ N , if an = 1 for all n. So this is nothing really terribly
new.

But note that this result is significantly stronger. For instance if we define

an =

{
1 if n is the sum of two squares,

0 otherwise
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then it is possible to demonstrate using properties of the associated L-function
that

ζ(s, {an}) = H(s)

(s−1)1/2

about s = 1, and consequently by the above result that

Corollary 4.1.9. The number of n ≤ x that can be written as the sum of two
squares is O( cx√

log(x)
).

So we can already start to see that we can deduce interesting properties about
sets of natural numbers using these elementary methods.

4.1.3 The normal order method

Continuing to follow [Co], I now give an abbreviated sketch of a technique due to
Hardy and Ramanujan, and later expanded upon by Paul Turan.

Definition 84. (Radical). Let n be a natural number with prime factorisation
pa1

1 ...p
ak
k . Then the radical of n, Rad(n) = Πipi, and ν(n) = k is the number of

distinct prime factors.

Theorem 4.1.10. (Hardy-Ramanujan). We have the following weak estimates on
ν:

Σn≤xν(n) = xloglog(x) +O(x)

Σn≤xν(n)2 = x(loglog(x))2 +O(xloglog(x))

Proof. (due to Turan, transcribed from [Co], pp33-4). First observe that

Σn≤xν(n) = σp≤x,pprime

[
x

p

]
= xΣp≤x

1

p
+O(x)

= xloglog(x) +O(x) by a previous result

91



Preliminaries

For the second part of the proof, we deduce

Σn≤xν(n)2 = Σn≤xΣp|nΣq|n1 by definition

= Σp,q≤xΣn≤x,p|n,q|n1

= Σp,q≤x,p 6=q

[
x

pq

]
+ Σp≤x

[
x

p

]
breaking into cases p = q and p 6= q

= Σpq≤x

[
x

pq

]
+O(xloglog(x)) using a previous estimate

= xΣpq≤x
1

pq
+O(xloglog(x))

Now (Σp≤
√
x

1
p
)2 ≤ Σpq≤x

1
pq
≤ (Σp≤x

1
p
)2. But Σp≤

√
x

1
p

= loglog
√
x + O(1) =

loglog(x) +O(1), so we have that the lower and upper bounds in the above are the
same, up to a term of order one. This completes the proof.

The connection to statistics then becomes apparent when we view loglog(x)
as a ”mean” for the number of distinct prime factors in naturals less than x. In
fact, an easy consequence of the above is that the variance Σn≤x(ν(n) − E(x))2 is
O(xloglog(x)). This is the theorem due to Turan.

A generalisation of this method is to consider instead of irreducible natural
numbers (ie primes) to consider irreducible polynomials over the naturals, with
image in the naturals. This has the interpretation of a self-referential map on N . In
the general case when we consider N to be a manifold rather than the set of natural
numbers, we have interesting consequences. Nonetheless we would like to know if
the methods extend in the simpler case first.

In particular we would like to estimate ν(f(n)) for an irreducible f(x).

It turns out that one can do this, or at least estimate the mean, as

Σn≤xν(f(n)) = Σp≤y

(
xρy(p)

p
+O(ρf (p))

)
+O(x)

which turns out to be

Σp≤y

(
xρy(p)

p

)
+O(x) +O(y)
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as ρf (p) ≤ deg(f), where ρf (p) is defined as the number of solutions mod p of
f(x) ≡ 0.

In fact, it turns out via fairly deep but established classical results that the mean
and the variance for irreducible maps N → N are of the same order as for the basic
case.

4.2 Various well known sieves

4.2.1 The Sieve of Erastothenes

The theory of sieves has quite ancient origins. Indeed, it has its beginnings in an
observation due to the Greek mathematician Erastothenes (276 BC - c. 195 BC)
regarding how to brute force generate the set of prime numbers.

The general idea is quite simple. If one wishes to generate all primes less than
a given number N , consider the sequence of numbers S0 from 1 to N . Then strike
out multiples of 2 from 1 to N , to generate a smaller set S1. For the next largest
number than 2 in S1, this number must also be prime; strike out all multiples of this
number in S1, to generate a new set S2. This process is repeated until one reaches
a prime exceeding

√
N . We may then stop and have a set S of all primes from 1 to

N .

This result, or sieving method, is known as the Sieve of Erastothenes.

There have since been minor amendments made to this general idea. Most
notable amongst these are Brun’s sieve, the Selberg sieve, and Rosser’s sieve. I will
give a brief description of these presently.

Furthermore, sieve theoretic methods have long been known to give surprisingly
deep information. It is the view of the author that it might well be possible to
extract optimal information from a sieve by recasting the theory in the language of
meta-geometry (which will be described later). I shall defer this task for now, and
concentrate instead on a survey of the existing state of the field.

4.2.2 Sieve invariants

In much the same way as characteristic classes represent the information of particular
cohomology theories, as the generators of their homology (and higher homology)
groups, we have that in geometric statistics, sieves represent the information of the
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dual analogue of cohomological structures. Instead of forms for submanifolds in
the overall space M , in the case of sieve invariants one has the characterisation
of random processes driving events in the overall state space A. To reinforce the
analogy, random processes play a dual role to a state space of events that a geometric
or differentiable structure plays as a means of implementation of structure on a
manifold.

Events in the case of sieves for numbers might be ”a is a square”, or ”a is the
sum of two primes”, where A is ”the natural numbers up to and including N”. I
will proceed to give a brief sketch of the main sieves that have been studied or are
the subject of current investigation, the underlying random processes, and discuss
their general properties.

The sieve of erastothenes, the prototypical example of a sieving technique, could
be thought of as the method associated to a generalised Markov process, and the
associated 0∗, or (∞, 0)-category on the real line. We can furthermore consider the
”analytic extension” of the reals to the complex plane, and consequently we see
that the ”generators” of the Erastothenes sieve, when instead applied to consider
tuples of natural numbers such as (a1, a2, ...), and the event of interest modified to
”a1, a2, ... is a sequence of primes”, then the associated Kähler structure taken, that
these behave like Chern classes. In the case that the analytic extension is not taken,
which in a sense is more generic, we arrive at the analogue of Stiefel-Whitney classes
driving the underlying random process.

4.2.3 Brun’s contribution

There is a modification of the original technique due to Brun, and later extended
by Alte Selberg, who observed in the 1920s that one can use the so-called inclusion-
exclusion principle into developing techniques to investigate more complicated events
than merely ”a is a prime”.

Theorem 4.2.1. (Inclusion-Exclusion Principle). Let A1, · · · , An be finite sets.
Then∣∣∣∣ n⋃

i=1

Ai

∣∣∣∣ =
n∑
i=1

|Ai| −
∑

i,j : 1≤i<j≤n

|Ai ∩ Aj|

+
∑

i,j,k : 1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak| − · · · + (−1)n−1 |A1 ∩ · · · ∩ An|
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Proof. This is not too difficult to verify. Essentially one wishes to ”correct” for
overcounting and undercounting via an iterative procedure. Since the number of
sets is finite this process will terminate.

Remark. This is essentially what happens when sieving out a set of particular prime
multiples, as with the Sieve of Erastothenes. Legendre observed that one can ac-
tually iteratively correct in the above fashion to estimate the number of elements
that remain, which provided one of the first methods for estimating the number of
primes less than a given finite property. The Möbius function moreover was inspired
by the Inclusion-Exclusion principle as a book-keeping device, since one ”alternates”
in sign depending on the order of the correction.

Brun’s sieve essentially deals with the idea of viewing the naturals via particular
congruence classes; so instead of working over the integers, or more broadly, the reals
as a field, one views the naturals via particular local rings Fp where p is prime.

The idea is to consider H as the set of naturals less than or equal to N , and
take as index set P to be a set of primes. Then construct Hp to be the subset of H
divisible by p, and Hd to be the intersection of the Hp for all primes p that divide
d. Suppose P (z) is the number of primes in P less than a number z. Then one is
interested in estimating the size of the set

H − ∪p∈P (z)Hp

If the sizes of the Hp can be estimated, then it is indeed possible to estimate
the order of this quantity. I will not discuss this here - [Co] provides a thorough
treatment. Rather I will discuss how this construction relates to the other associated
structures in mathematics.

The key observation is that if P is the set of all primes less than or equal to N ,
then the above methods allow one to estimate the number of primes less than N , and
in fact one recovers the observation that the size is O(log(N)). This is not new; what
is new is that P does not need to be all the primes, but can rather be a special subset.
Consequently it is possible to prove many additional results, through estimating the
numbers of states less than N than satisfy particular generalised events.

Essentially the underlying philosophy is to consider a set of primes P := {p1, ..., pk}
and study the field FP := (Fp1 , ..., Fpk

). Consequently one is really studying finite
congruences over the entire set simultaneously, and the associated characteristic
classes are those associated to random processes over k simultaneously running fi-
nite state machines.
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The sieve of Rosser-Iwaniec [Iwan] is a further development of this approach but
allows for sharper results, through the idea of ”weighting” the sieve. The idea here
is to define a function a : P → R that assigns an importance to each particular
element p of the index set P . Through control or consideration of certain classes of
such functions it is possible to establish additional consequences using this general
technique.

4.2.4 The function field case; Turan’s Sieve

It is possible using sieve methods to estimate the number of polynomials of particular
rank, subject to bounds on their coefficients, over the integers, ie the number of
elements of particular subsets of Z[x]. See, for instance, [Co], pp 51-53. There is a
sieve which allows one to establish such estimates. This is known as Turan’s sieve.

For a marvelous and comprehensive treatment of the theory underlying this, I
greatly recommend the thesis by Yu-Ru Liu, [Liu]. This will be my primary source
in this instance.

Turan’s sieve is of particular interest since the underlying random process lies
essentially in the (∞, 1), or 1∗-category. Consequently the generators correspond
to particular classes of extraordinary cohomology theories, and hence are related to
some of the fairly deep structures underlying Galois theory.

Suppose H is a finite set and I an index set. Then, we associated subsets Hi

of H by writing Hi := {m ∈ H|m satisfies Ω(i)}. In the usual case, we have a map
I → P from the index set to a set of primes, and condition Ω(i) for the ith prime
p(i) would be ”m is congruent to 0 mod p(i)”.

The rest of the procedure is fairly standard, since it essentially follows as an
application of the inclusion-exclusion principle for the set H and subsets Hi.

To see why exactly this is a significant and useful abstraction, note that we are
not working directly from a set of primes as the objects that generate our subsets Hi,
but rather an indexing set. Consequently, the conditions Ω(i) can be more general.

For instance, we could specify H to be the set of polynomials in Z[x] of degree
less than N and with coefficients less than M . Hence it will be a set of some size a
function of N and M , which we might like to estimate. We could have a map I → P
such that the indexing set mapped to a subset of all possible irreducible polynomials
in H. The conditions Ω(i) could then be that ”polynomial f is divisible by gi”.

Why is this an improvement over specifying the set P directly? This set will still
be finite. The key observation here is that it may well be finite, but certain crucial
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structure might be missed via the direct approach. Indeed, to appropriately specify
an irreducible polynomial in Z[x], it is more elegant to consider pairs of integers
i := (i1, i2) in the index set, choice of which will depend on the structure of the
associated Galois extension field.

4.2.5 The Hardy-Littlewood Circle Method

I will conclude my discussion of Sieve theoretic techniques with a sketch of an impor-
tant technique due to Hardy and Littlewood, known as the circle method ([Comp],
p.346). The general idea is quite simple, and follows from the trivial observation

∫ 1

0
e2iπntdt :=

{
1 if n = 0,

0 otherwise

Consequently, if say one was interested in counting the number of solutions κ(n)
to a particular relation, such as p+ q = n for p, q primes, we obtain

κ(n) = Σp,q≤n

∫ 1

0

e2iπ(p+q−n)tdt

=

∫ 1

0

e−2iπnt{Σp prime ,p≤ne
2iπpt}2dt

It is in fact easier to estimate the integral on the right than the term on the left,
and this general philosophy can be used to acquire weak information on numerous
deep number theoretic problems.

Naturally one might be interested in asking the question as to what form of
underlying structure there is behind this method. The integral of the exponential
function, although simple, seems somewhat artificial, and it is of some interest to
ask as to whether one can formulate the circle method in a slightly more abstract
and aesthetic form.

Indeed, the circle method is really about deriving information from a compacti-
fication of the generators of a space. Note that the universal cover of S1 is the reals,
and S1 is the space in which eiθ lives. Consider then, more generally, the space Rn

with a flat metric; this projects to Sn. Consequently, if we view Rn as the tangent
space of a manifold M , with non-trivial metric, we see that more generally we are
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looking at the information associated to exponential families of generalised Markov
processes.

Hence it is possible that the study of the critical properties of this information for
Markov processes, or processes that are more abstract, might be useful in estimating
the size of the space of solutions to particular number theoretic questions. Indeed, in
the second last section of this chapter, on Fisher-Amari information theory, I discuss
some of these generalities, albeit without a view to sieve theoretic applications.

4.3 Integrability

I refer here in parts to the Princeton Companion to Mathematics [Comp], in addition
to my other sources on integrability - [PB], [Mik], [Das].

4.3.1 Solitons

The study of solitons was initiated by John Scott Russell, who observed in 1844 the
curious phenomena of a wave, uninfluenced in shape passing via translation along a
channel. This is one of the curious properties of solitons, and is characteristic of the
fact that in a sense, they contain data of the category at infinity; since otherwise
their shape would be subject to decay.

The motion of a wave in a shallow channel was first quantified by Korteweg and
de Vries:

ut + uux + ε2uxxx = 0

Here u is the ”height” of the wave, as a function of spatial parameter x and
temporal parameter t. ε is a small parameter that will be a function of the height
of the channel, and of similar order.

Remark. In general, the equation could be canoically written as ut + auux + buxxx.
However, a transformation of x removes the occurence of a, and a rescaling of u
removes the second coefficient. Consequently, we can ignore coefficients and simply
study the equation ut + uux + uxxx = 0.

We can make the immediate observation that the solutions of such an equation
are intuitively 3rd order, since we have the occurence of the third derivative for a
phenomenon that is essentially unidirectional. As one might expect, solitons are
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phenemona associated with 3rd order models of dynamics. Riemannian geometry /
Newtonian physics, for reference, is usually 1st order, if we ignore elasticity, viscosity
etc. The principal focus of this treatise - the self-referential calculus - is 2nd order.
So such solutions are sophisticated, and it is not surprising that they should have
complex behaviours.

The connection with integrability and PDE hierarchies is established in the
following manner. In particular I will demonstrate the construction of a hierarchy
of iterated PDEs from the KdV equation; these follow from the fact that the KdV
equation implies the existence of an infinite number of conserved quantities.

As a first observation, note that we can rewrite the equation as

ut = ∂x(
1
2
u2 + uxx)

which is in the form of a continuity equation.

Suppose now that we have a quantity Q(u), and that there is an overriding
Hamiltonian driving the system H. Then Q is conserved if, for a solution u and
v := ux, where K(u, ux, t) is the density of H, we have that Q is constant along u
and ux, or

0 =
dQ

dt
=
∂Q

∂u

du

dt
+
∂Q

∂ux

dux
dt

= −∂Q
∂u

dH

dux
+
∂Q

∂ux

dH

du

= {Q,H}

where {Q,H} := ΣN
i=1{

∂Q
∂ux,i

∂H
∂ui
− ∂Q

∂ui

∂H
∂ux,i
} is the Poisson bracket.

Consequently if Q(u) =
∫
ρ(u(x, t))dx, we have the existence of a continuity

equation

∂ρ
∂t

+ ∂j(u)
∂x

= 0

for some function j.

Then, returning to the above, we see that we can identify ρ0(u) := u, and
j0(u) := −(1

2
u2 + uxx). So

∫
u(x, t)dx is a conserved quantity.

Returning to the rescaled KdV equation
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ut = uux + uxxx

write

uut = u2ux + uuxxx

Then with very little work we see that it follows that

∂t(
1
2
u2) = ∂x(

1
3
u3 − 1

2
(ux)

2 + uuxx)

Then setting ρ1(u) := 1
2
u2, j1(u) := 1

3
u3 − 1

2
(ux)

2 + uuxx we obtain another
conservation equation for 1

2
u2, ie

Q1 :=
∫
ρ1(u)dx

is a constant of motion.

Furthermore, the Hamiltonian for the KdV equation

H = Q2 =
∫

( 1
3!
u3 − 1

2
(ux)

2)dx

is also a constant of motion, since trivially

dH
dt

= {H,H} = 0

It is possible to generate more conserved quantities than these. In fact, the total
number possible is countably infinite. The technique to arrive at these systematically
is through a technique known as the Miura transformation.

4.3.2 The Miura Transformation and Infinite Hierarchies

Consider the Riccati transformation u(x, t) =: v2(x, t) + i
√

(6)vx. Then this alters
the KdV equation to the form

vt = v2vx + vxxx
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This is referred to as the modified KdV, or MKdV equation. It does not have
the same symmetries as KdV due to the nonlinearity of the transformation, but
it is nonetheless possible to transform between the two in a fairly straightforward
fashion, so this largely does not matter.

Furthermore, the MKdV equation has nice properties. In particular, we have
”raising and lowering operators”, or ”morphisms between different levels of the
categorical hierarchy”, given by linear transformations of v and taking limits. If
we map v 7→ ε√

6
v +

√
6

2ε
, and then let ε limit to zero, then the MKdV equation

becomes

vt = vvx + vxxx

We then have an inverse transformation or morphism v 7→ ε√
6
v, which when

applied to the new equation, and taking the limit ε→∞, transforms it back to the
former

vt = v2vx + vxxx

In a sense, this could be viewed as ”perturbative analysis about limits”.

Suppose now that v is a solution of the generalised equation

vt = ( ε
2

6
v2 + v)vx + vxxx = ∂x(

ε2

18
v3 + 1

2
v2 + vxx)

Then it gives a solution to KdV via the transformation u(x, t) = ε2

6
v2 + v+ iεvx.

The first observation to make is that, for similar reasons to before, we observe
readily that v(x, t) is the density of a conserved quantity Q0.

Now expand v(x, t) as a power series in ε

v(x, t) := Σn∈Nε
nwn(u(x, t))

Then each wn must be a conserved quantity since each power of ε needs to satisfy
a continuity equation. However it remains to show that the expansion of v in terms
of powers of ε is not trivial, since otherwise we would not necessarily have infinitely
many conserved quantities.

Suffice to say via careful argument it is possible to do this. The general idea is
to consider once more the transformation
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u = v + iεvx + ε2

6
v2

and demonstrate that inversion of this relation, to get v as a function of u, would
lead to pure polynomial terms in u; in particular, such terms cannot be written as
total derivatives, and hence will not be trivial conserved quantities (pinching).

It is also possible to construct the quantities wn iteratively, and consequently
arrived at the conserved quantities for the KdV equation. However such a treatment
is not terribly instructive, and I shall leave my discussion of solitons here.

Remark. In a way, one could view the study of the MKdV equation as really being
in the dual 0-category, or 0∗-category (otherwise known as (∞, 0)), and the trans-
formation from v to u as passage to the dual of the dual, the 0∗∗-category. More on
this later.

4.3.3 Instantons

Instantons were used by Donaldson [Don] in his celebrated result which established
the uncountability of the total number of unique differentiable structures allowed
on R4. They can essentially be viewed as the ”1-limit categorical extrapolation of
solitons”, where it is to be understood, naturally, that we are considering partial
structure of the category at infinity.

In this section I will argue that these slightly more exotic beasts are related to
the Toda equation, and the associated Toda hierarchy, [HP]. Instantons are also
related to the self-dual Yang Mills equations [Gt1], [Gt2].

The sl(∞) formulation of the Toda equation in coordinates (xi, t) is

∂∂̄u+ ∂2
t e
u = 0

Here ∂̄ is the gradient operator rel the dual connection. It is defined to operate in
terms of directional derivatives as ∇̄Xu = ∇?Xu, where ? is the Hodge star operator.
This essentially locally sends forms to their dual. ie if the ambient space is R4, with
coordinates xi, then ?(dx1 ∧ dx2) = dx3 ∧ dx4.

According to [HP], the sl(∞) Toda equation is related to the self-dual Einstein
equation with an appropriate choice of metric.

Returning to a rather standard treatment of the Toda Equation, the starting
point is usually with the Toda Lattice - designed to describe the motion of N point
masses on a line under the influence of an exponential interaction. Suppose these
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have coordinates ui and momenta vi := uix. Then the Toda equations can be written
as

u0 =∞
un+1 =∞
uit = vi

vit = exp(−(ui − ui−1))− exp(−(ui+1 − ui))

More abstractly one can view this as being a higher order process, since it in-
volves the specification of a finite number of distinct points. Hence it has similarities
with the travelling salesman problem, which can be attacked via the uses of the 1-
categorical approach, using 8-tensors, as described in the second last chapter of this
work.

Essentially it is possible to show that there are N conserved quantities for the
Toda system. If N is set off to infinity, then, one gets an infinite number of conserved
quantities, and I claim that there is an underlying process for this, the instanton
equation. This is usually understood to be the self-dual Yang Mills equation. How-
ever, because I prefer a degree of simplicity and elegance to my studies, it is of some
interest to try to understand how the KdV equation extends in this instance.

So consider the KdV equation, written in conservation form:

ut = ∂x(
1
2
u2 + uxx)

Now abstract from u a position in M to a matrix U of positions in M determined
by pairs of points in the ambient space M × R. Abstract from coordinate x to
coordinate vectors x and y, and from temporal variable t to temporal variables t
and s. Then consider

∂t∂sU = ∂x∂y(
1
2
U2 + ∆x∆yU)

The solutions U : M2×R2 →M to this equation have interpretation as instan-
tons, since they essentially are self-referential solitons. To see why this is the case,
note that Uij(x, t; y, s) can be seen as essentially a measure of the information of the
connection between the ith and jth nodes of the underlying Toda lattice process
linking the information of coordinates (x, t) and (y, s).

Just as with the KdV equation, I claim that it is possible to transform this
equation to the general form
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∂t∂sV = ∂x∂y(ηV
4 + ∆x∆yV )

via the transformation U =: V 2 + ζ∆x∆yV , for appropriate choice of constants
η,ζ. Then via appropriately defined linear transformations of V one can build raising
and lowering operators that act in the 1∗, or (∞, 1)-category. These can be used
then to construct an infinite hierarchy of invariants via power series expansion that
are conserved via the original instanton equation. I believe this is consistent with
the thesis of [HP], though my approach is probably slightly more direct.

4.3.4 Painleve Tests

Here my primary source is [Mik], chapter 7.

Recall in [Go] it was demonstrated that smooth functionals (that is, functionals
defined over a smooth space, with C∞ integrand) would always admit solutions
to the associated PDE via requiring the first variation vanish. This indeed is the
question that geometric measure theory was built to solve. However, the related
question, as to whether all PDEs admit smooth solutions, is well known to have a
negative answer. Not all PDEs over smooth domains with smooth coefficients admit
smooth solutions.

In a similar fashion, it is of interest to know as to whether a particular nonlinear
PDE is integrable - ie whether it admits solutions that conserve (possibly) a count-
ably infinite number of quantities.2 There are various ways of determining this, for
various forms of PDE. One of the classes of better known techniques to this end are
the so-called Painleve tests.

These involve analysis of the singularity structure of the general solution to a
particular PDE. In the case that the differential equation in question is in one vari-
able, it turns out that the following criterion is sufficient to establish integrability:

Definition 85. (Painleve property for ODE). An ODE has the Painleve property
if all movable singularities- that is, singularities whose location is determined by
initial data- are poles.

One can then proceed according to the following procedure in order to determine
whether an ODE for a solution y in terms of variable x has the Painleve property.

2Note that this will differ slightly from the problem of GMT in that solutions may, and in fact
will generically have singularities, and hence will not be smooth. The idea is rather to control the
singularity structure to sufficient extent, so that the solutions are ”well-behaved”.
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(i) Determine all singularities of the form y ∼ a(x− b)µ.

(ii) If all exponents in step (i) are integers, find the resonances by perturbing
around the singularities, plugging back into the original ODE and solving for
the exponent of the expansion (the resonance). Eg by writing y ∼ (x−b)µ(1+
εt(x − b)r), ε small, t, b constants, and r the resonance associated to µ. Note
that even for ODEs there may be more than one resonance associated to each
singularity.

(iii) If all resonances are integers, check the resonance conditions, ie that the ex-
pansions in step (ii) can be matched to the initial data set.

If (i) to (iii) are satisfied, then the ODE in question has passed the associated
Painleve test. This however does not guarantee that the ODE has the Painleve
property; for this one needs to establish that all local expansions about singularities
can be analytically continued to a global single-valued function. So the Painleve
test is a necessary, but not sufficient condition for an ODE to be integrable.

4.3.5 Discussion

The analysis of the partial structure of limit categories has interesting consequences.
It is of particular interest to examine such objects since, as opposed to the main
treatment of this treatise - the development of a self-referential calculus, based on
the theory of 1-categories - there is no natural limit to the speed of propagation of
signals; since one is viewing the category at infinity, propagation of information is
instantaneous. In other words, it might be possible to make progress on one of the
greater intangibles of modern physics following this theoretical direction, namely,
the construction and manipulation of ”wormholes” [Wh].

However I am uncertain as to whether the study of solitons or instantons would
really be enough to allow one to develop a knowledge sharp enough to enable physical
objects, the bulk of whose information is grounded within the 0th and 1st informa-
tion levels - such as people - to maintain integrity through wormhole passage. It is
possible that one might need to build a theory based on the foundations of 2-limit
categories, or (∞, 2) categories, in order to proceed in such a fashion. Additionally,
it is of interest to ask as to the resistance to noise or distortion effects of information
traversing such a construct, as a function of the distance between the apertures. In-
tuitively one might expect the need for more sophisticated control, based on more
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sophisticated theory, in order to increase this distance while maintaining acceptable
error aggregation via transmission.

Regardless, a full description of what would be required in this instance goes well
beyond the scope of this work, and doubtless would require considerable additional
thought in order to make precise. So instead, in the next section I will consequently
proceed to discuss the general principles required in the simplest instances of random
processes. In other words, I will provide a basic description of the Cramer-Rao
inequality for a generalised Markov Process, in the spirit of the monograph due
to Amari [Am1], and his slightly more recent paper [Am2]. This will be tied off
with a return to the roots of modern probability theory due to Kolmogorov, and
mention of a rather nontrivial inequality, also due to Kolmogorov, through which
preliminary understanding can be obtained on the interplay between consecutive
levels of information complexity.

4.4 Information Statistics

4.4.1 Fisher-Amari information theory

I will provide a rough picture of how the Cramer-Rao inequality for a random process
is established, following Amari [Am1]. My treatment will by no means be complete;
the study of critical geometric statistical structures is a huge area. Consequently,
I will only give a taste, by restricting myself to an intuitive consideration of the
theory for generalised Markov processes only.

By generalised Markov process, I essentially mean the analogue in statistical
structure on a state space as the idea of Riemannian metric is a geometric structure
on a differentiable manifold. Recall that a Markov chain is a matrix that acts on a
point a in a coordinate chart of state space A as Γa. Note that we have a natural
correlation measure on A induced by Γ as 〈a, b〉 =: bΓa. Suppose now that for every
element a of A we associate a Markov chain Γ(a). This has the interpretation of
a ”sharp event structure” on A such that transition probabilities change according
to position in state space. It is then necessary to consider Γ(a) as acting on the
”tangent space to A at a”, or TA.

The map Γ : A→ TA×TA I shall from now on refer to as a generalised Markov
process.

To be more precise, the space TaA associated to a state a, for a particular
Markov process Γ, has the interpretation as the ”current sample space”, and a as
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”the previous state”. Furthermore, there is an associated map expa(Γ) : TaA→ A,
which has the interpretation as the measurement of a new event exp−1b rel a, and
projection of b onto the differentiable structure of the underlying state space A. This
is known as the exponential family associated to the Markov process Γ, since the
structure of the probability distribution at b for a generalised Markov process will
be different in general than at a.

Then, just as for the Riemannian case, we can build a signal function f ∗(a,m) :=
δ(Γ(a) −m), m ∈ M , where M is to be thought of as ”the natural universal event
space associated to the state space A” and define the Amari-Fisher information
functional as

I(f ∗) =
∫
A

∫
M
f ∗(a,m)(∂Aln(f ∗(a,m)))2dmda

Via similar techniques to that used in the dual case, it is possible to prove the
Cramer-Rao inequality:

Theorem 4.4.1. (Cramer-Rao-Amari). I(f ∗) ≥ 0.

Consequently I(f ∗) will be zero iff δI(f ∗) = 0, or, in other words, if the gener-
alised Markov process is critical.

I now make the following claims.

Claim 4.4.2. Setting δI(f ∗) = 0 for a sharp generalised Markov process essen-
tially gives the KdV equation, or equivalently the KdV hierarchy, which has soliton
solutions as a consequence.

It is possible to abstract the idea of Markov process to an auto-correlated Markov
process, which is the dual analogue for statistical structures as a self-referentiable
structure is for geometric structures. ( I will discuss self-referential geometry in the
penultimate chapter of this dissertation.)

Claim 4.4.3. The fisher information density for a sharp auto-correlated Markov
process leads to nothing other than the Toda equation, or equivalently the Toda hi-
erarchy, which has instanton solutions.

Remark. In order to actually derive objects of physical consequence from this theory,
it is to be noted that we are, to an extent, viewing the solutions of the random
structures as physical processes. So in a sense we are examining ”the dual of the
dual”. Note from basic analysis that this will, in general, not always be the class of
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spaces that one starts off with; in fact, if P is a Banach space, and P ∗ is the dual of
P , then we have the existence of an embedding P ⊂ P ∗∗. We also expect this to be
the case from the point of view of foundations and completeness. Consequently, a
proper treatment might require one to examine these objects from the point of view
of 2-categories, or at the most general level, if we call (∞, 2)-categories 2∗-categories,
then we might be interested in the study of 2∗∗-categories.

Remark. This probably also explains why the required degrees of freedom for a
structural treatment of 2-categories - 192, as described in the conclusions of this work
- is not a nice round number. I will hazard a guess and surmise that for 2∗∗-categories
one has 256 or 28 natural degrees of freedom, and, for the associated quantum
mechanical formulations, at least either 512 or 1024 dimensions are required for
invariants to be nonzero.

4.4.2 Kolmogorov’s foundations

I will conclude this chapter with a rough overview of the treatment to foundations
of probability theory due to Andrei Kolmogorov (1903 - 1987), following the sources
[Tao3] and [SV]. This will culminate in a discussion of the Kolmogorov inequality
[W9], and its connections with the ideas due to Shun’ichi Amari.

Kolmogorov is widely noted as one of the principal founders of the modern
theory of probability. The key observation that he made was to recognise that
there was a strong correspondence between Lebesgue’s theory of measure, and the
classical notions of probability - events, state space, etc. In particular one of his
major contributions was to rigorously establish that, to describe the classical theory
and compute probabilities, nothing more than countable additivity, and standard
notions of intersection and union of sets were needed.

In particular, he developed an axiomatic treatment of probability, which I shall
now quickly describe.

Definition 86. (Weighted event space). Let A be a set of states, and F a set of
subsets, of A, the latter of which we will call the event space. Suppose furthermore
that F satisfies the following axioms:

(i) F is a field of sets, that is, it is closed under union and intersection.

(ii) F contains A.
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(iii) There is a function P : F → R+. The number P (k) is called the probability
of the event k.

(iv) P (A) = 1.

(v) If x, y have empty intersection, then P (x ∪ y) = P (x) + P (y).

If F has infinite cardinality, we also require that if A1 ⊃ A2 ⊃ · · · is a decreasing
sequence of elements in F , we ∩iAi = φ, then limnP (An) = 0.

Then the pair (F, P ) forms a weighted event space over the state space A.

This essentially is the core of Kolmogorov’s Grundbegriffe. However there is
another interesting result due to the fellow which uses this as a basis, the so called
Kolmogorov inequality. Before I discuss this, however, we will need the Chebyshev
inequality, named for Pafnuty Chebyshev (1821 - 1894).

Theorem 4.4.4. (Chebyshev Inequality). Suppose (X,Σ, µ) is a measure space,
that is, X is the underlying structure of states, Σ is a σ-algebra of events, and µ
is a measure that assigns the ”probability-density” for elements of X. Let f be a
measurable function defined on X. Then, for any number t > 0 (usually small)

µ({x ∈ X|‖f(x)‖ ≥ t}) ≤ 1
t2

∫
X
f 2dµ

Proof. Let g(t) be a nonnegative measurable function, nondecreasing with respect
to the image of f . Then note that, if At := {x ∈ X|f(x) ≥ t}, and 1At is the
function from X to {0, 1} such that it is 1 for elements of At, and 0 otherwise, then

0 ≤ g(t)1At ≤ g ◦ f1At ≤ g ◦ f

Consequently, passing to the measure

g(t)µ(At) =
∫
X
g(t)1Atdµ ≤

∫
At
g ◦ fdµ ≤

∫
X
g ◦ fdµ

which establishes that

µ(At) ≤ 1
g(t)

∫
X
g ◦ fdµ

But it is clear then that the Chebyshev inequality is corollary to this, if we define
g(t) = t2 for positive t, and 0 otherwise.

109



Information Statistics

Theorem 4.4.5. (Extended Kolmogorov Inequality). Let X1, ..., Xn : A → B be
independent random variables with mean zero and finite variance, defined over a
state space A, representing the probabilities of different events. More generally,
suppose Xm are independent random variables for each m ∈M , where M is the set
of all possible events associated to A. Consider the set algebra associated to unions
of events over M , or subsets U of M , which I will identify with B. Let λ > 0 be
a number, and Y (a, b;m,λ) be the random variable within the event space N over
state space B, associated to the event in B that supU⊂M

∫
U

∫
A
X(a,m)dadm ≥ λ.

Then, for every λ > 0, we have that

∫
B

∫
A

∫
M
Y (a, b;m,λ)dmdadb ≤

∫
A

∫
M V ar(X(a,m))dmda

λ2

Proof. (Sketch). The key is to realise that this is essentially an extended version of
the Cramer-Rao-Amari inequality, but with additional information due to inclusion
of the next level in the structural hierarchy. Note that if we take the limit λ→ 0, and
assuming that contributions from the second structural level are finite and bounded,
we have that the left hand side becomes zero and we are left with the relation∫

A

∫
M
V ar(X(a,m))dmda ≥ 0

If we then observe that the Fisher information is the variance of the score, and
the score itself is just another random variable, it is clear to see that the above
expression reduces to the standard Cramer-Rao-Amari inequality. So certainly the
extended Kolmogorov inequality is not at odds with the more primitive results.

For a rough indication as to why the statement of the theorem is true, one
needs to use the so-called Martingale methods. I adapt a proof of the discrete
formulation of the Kolmogorov inequality due to Kareem Amin for the purposes of
this exposition.

Let U1 ⊂ U2 ⊂ · · · be a countable sequence of sets converging to a set V as
a subset of M , the total event space. Then, since the associated random variables
are independent, we have by Doob’s martingale inequality that such a sequence is a
martingale. That is, the conditional expected value at step n+ 1 in the chain only
depends on that at step n.

Suppose we include U0 = φ, the empty set. Then any random variable associated
to this set will be trivially zero. Now define Sk =

∫
Uk
X(a,m)dm. This will be a

random variable associated to Uk for each k. From this, define a new sequence of
random variables Z with Z0 = 0, and
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Zn+1 :=

{
Sn+1 if max1≤i≤nSi < λ ,

Zn otherwise

Then this too will be a martingale.

For the purposes of this analysis we will be interested in the set U , as the set
for which

∫
A

∫
U
X(a,m)dmda is maximal in M . In particular we will construct a

min-max argument, such that we will examine

infV⊃UsupUi(V )Si

The idea will be that this will play the role of the left hand side in the theorem
of question.

Now observe that Sn+1 − Sn are random variables that are independent with
mean zero. Consequently it is not too difficult to demonstrate that

Σn
i=1E[(Si − Si−1)

2] = Σn+1
i=1

∫
A
(Si(a)− Si−1(a))

2da =
∫
A
Sn(a)

2da = E(S2
n)

and that the same relation consequently follows for the Zi. Hence if
∫
B
S(a, b; i, λ)db =

Pr(supiSi(a) ≥ λ) is the expectation of the random variable defined on the meta-
event space, we have that

∫
B

S(a, b; i, λ)db = Pr(Zn ≥ λ)

≤ 1

λ2
E(Z2

n) by Chebyshev’s inequality

=
1

λ2
Σn
i=1E[(Zi − Zi−1)

2]

≤ 1

λ2
Σn
i=1E[(Si − Si−1)

2]

=
1

λ2
E(S2

n) =
1

λ2
V ar(Sn)

This is true for any chain U1 ⊂ U2 ⊂ · · · ⊂ V = U∞. Consequently via
a min-max construction as sketched above this applies for the set U in M that
realises the maximal value of the quantity

∫
A

∫
U
X(a,m)dmda. This completes the

argument.
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Remark. The Kolmogorov inequality is interesting because it essentially provides a
means of establishing a bound on the influence of higher order effects on a space
subject to particular probabilistic assumptions. In particular, λ could be viewed as
an ”expansion parameter”. Naturally if λ = 0 and the growth of 2nd order effects is
not quicker than 1

λ2 for small λ, we can neglect such effects. This is one fascinating
consequence of this analysis.
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Turbulent geometry

A recurring goal of this treatise will be to build and develop geometric structures
corresponding to the resolutions of sequences of countably infinite geometric bifur-
cations.

Recall from my previous work on turbulent geometry that there are two types
of turbulence that admit straightforward modelling - turbulence in the measure and
turbulence in the stack. These results in actions of the form RR and RR respec-
tively, where I am taking considerable liberties paraphrasing here. Similarly we can
consider measure-measure turbulence, measure-stack turbulence, stack-measure tur-
bulence, and stack-stack turbulence. These result in actions of the form RRR

, RRR ,
RRR , and RRR

respectively.

It is natural to then ask what happens in general. Well certainly at the nth
iteration we will have 2n different possibilities for an action. So complexity of our
models if we wish to encompass all possibility grows exponentially with further
attention to detail. This is evidently not desirable. In particular we would ideally
like to know what happens if we push n off to infinity, to generate an infinite number
of discrete geometric bifurcations in our models. Then it is readily seen that the
number of possibilities is 2ℵ0 , or ℵ1, the cardinality of the real numbers (I am taking
a further liberty here - for those who wish to believe in intermediate infinities I
adopt the convention that they might take a continuous range of values ℵk where k
is between 0 and 1).

So this leads one to ask, is there some formalism that would allow us to deal with
an infinite number of discrete bifurcations? Needless to say, if this is to be doable,
some novel new idea or way at looking at things is essential to make progress so
that calculations do not become unmanageable. To cut things short, I believe that
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the answer is yes, and this is where the idea of geometric exponentiation enters the
picture.

Set exponentiation is a fairly simple concept to understand. Consider two sets A
and B. The product A×B may readily be formed, and is understood to be the set of
tuples (a, b) where a ∈ A and b ∈ B. So this is the product of two sets. How about
raising one set to the power of another? What exactly should this mean? Obviously
we expect the cardinality of AB to be necessarily of quite a different order to that
of A×B. So this needs to follow from the definition.

Briefly, the exponential of AB will be understood to mean a product ×b∈BA(b),
where each A(b) is a copy of A indexed by an element b of B. So if B is large, say
infinite, as will often be the case, AB will be very large indeed. In what is to follow,
A and B will often be Riemannian manifolds. Then AB will be a manifold itself
of uncountably infinite dimension. However more information is required to specify
and map out an appropriate amount of geometric structure for such spaces, and this
leads directly to the notion of geometric exponention, which will be the focus of the
next section.

5.1 Initial definitions

In revisiting this particular research focus it is necessary to remind ourselves of the
foundations. Recall that, given two signal function f, g defined over a Riemann-
Cartan manifold, the turbulent derivative acts in the following manner:

∂∗(f(m, a); g(m, b)) =
∫
A
f(m, c)∂

g(m,b)
c f(m, a)dc

It is then possible to develop an information theory for this, with associated
information (for a sharp geometry) of the form

∫
M
∂∗(Rσ;Rτ ) =

∫
M
∂Rτ
σ Rσ

Furthermore, it turns out that generalised notions of composition operators are
associated with turbulent structures. For instance, consider the problem of finding
an f such that f ◦ f = ex. Then I claim that f = e◦(x;1/2).

In particular, note that we have in general the following:
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Proposition 11. Consider the case where f may not be an automorphism, but
rather a signal function. Then we have that the composition operator ◦ naturally
extends; in particular

◦(f ; g) = exp(∂∗(ln(f); g))

for another signal function g.

So to check in the case of our example, we write f = exp(∂∗(ln(ex); 1/2)) =
exp(∂∗(x; 1/2)). Then f◦f = exp(∂∗exp(∂∗(x; 1/2)); 1/2) = exp(exp(∂∗(x; 1/2))∂∗(x; 1)) =
exp(exp(∂∗(x; 1/2))). But it is easy to see that this is just ex.

5.2 Tensor formulation of turbulent invariants

Let x, y, p, q ∈ TM belong to the tangent space of a manifold M .

Then define 〈(x, p), (y, q)〉Λ = Λijklxipkyjql. Then in this case Λ is a 4-tensor on
M . This induces what I will call a turbulent structure if we associate a particular
affine connection to it.

In Riemannian geometry, the scalar curvature can be written as

Rσ = −σijΓβiαΓαjβ

Here Γkij := 〈∇iXj, Xk〉σ, where Xi are a local basis of TM are the Christoffel
symbols for σ. These may be computed in terms of σ and its derivatives as so:

Γikl = 1
2
σim(∂σmk

∂xl + ∂σml

∂xk − ∂σkl

∂xm )

This may be generalised to turbulent geometry:

S∂∗;Λ = −ΛijklΓγδikαβΓ
αβ
jlγδ

where Γγδikαβ = 〈〈(∇Xi
,∇Yk

)(Xα, Yβ), (Xγ, Yδ)〉〉Λ are the generalised Christoffel
symbols.

We also require ∇ to be an affine connection such that
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YiXj〈〈(Xk, Yl), (Xm, Yn)〉〉 =
〈〈(∇Xj

Xk,∇Yj
Yl), (Xm, Yn)〉〉+ 〈〈(Xk, Yl), (∇Xj

Xm,∇Yj
Yn)〉〉

It is essential that we choose this class of connections in order for ∇ to be
uniquely defined for a given Λ. This follows from a suitable generalisation of the
original fundamental theorem of Riemannian geometry.

The generalised Christoffel symbols can be computed wholly in terms of Λ and
its derivatives, as so:

Γiαkγlε = 1
2
Λimαζ(

∂2Λmkζγ

∂Xl∂Y ε +
∂2Λmlζε

∂Xk∂Y γ − ∂2Λklγε

∂Xm∂Y ζ )

So, to summarise - we have a generalisation of scalar curvature to turbulent
structures, S∂∗;Λ, which can be written entirely in terms of Λ and its second order
derivatives. For simplicity I will assume from now on that M = N are the same
manifold - certainly it would not really make much physical sense in this context if
they were not the same space.

This scalar curvature forms a natural information density on a differentiable
manifold.

5.3 Topics in geometric turbulence

5.3.1 Fluid dynamics

Perhaps one of the clearest applications of geometric turbulence is in the study of
fluid dynamics. Recall from [Go], page 215, that the physical information of a sharp
Riemannian structure σ on a differentiable manifold is∫

M
(Rσ − ‖φ‖2 + ‖∂f‖2)

where φ =: ρv has the interpretation as the flow of matter, for ρ the density
and v the velocity, and f has the interpretation of the frequency of electromagnetic
radiation.

In the case that is usually studied for terrestial fluids, the curvature is of negli-
gible order, so this expression simplifies to∫

M
(‖∂f‖2 − ‖φ‖2)
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We may make the further simplification that magnetic effects are also negligible.
Consequently we obtain the underlying hamiltonian

∫
M
‖ρv‖2

We then obtain the Navier-Stokes equations via requirement that this be critical:

∇‖ρv‖2 = 0

The aim will now be to obtain the analogous formulation of Navier-Stokes,
assuming that we are not working with an underlying Riemannian geometry, but
an underlying turbulent geometry. I will not give a full and careful derivation here,
due to time constraints, but will indicate the rough idea of the argument.

Certainly we expect

∫
M

(S∂∗;Λ − ‖∂∗(φ, ψ)‖2 + ‖∂∗(f ; g)‖2)

to be the relevant action, where Λ is a symmetric turbulent structure. The
interesting part here are φ =: ρv and ψ =: τw, which both have units as flow of
matter in the space. φ is unimpeded flow in the absence of turbulence. ψ is a slightly
more exotic beast, and has the interpretation as the local reaction of the flow of the
fluid to movement via φ. f and g have the same form of relationship, in terms of
self-reaction of radiation in the space.

Assuming that curvature and magnetic effects are negligible again, and once
more requiring that the remaining information be critical, we obtain the Navier-
Stokes equations subject to geometric turbulence:

∇‖∂∗(ρv; τw)‖2 = 0

5.3.2 Mostow Rigidity

A slightly more surprising application of the theory is towards an enhanced under-
standing of the classic rigidity theorems.

Recall the statement of Mostow Rigidity:
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Theorem 5.3.1. (Mostow, 1968, [Mo]). Let M and N be complete finite volume
hyperbolic n-manifolds - that is, manifolds with constant sectional curvature −1 -
with n > 2. If there exists an isomorphism f : π1(M) → π1(N) then it is induced
by a unique isometry from M to N .

Essentially what this is saying is that if M and N have the same homogenous
information density everywhere, then, subject to the condition that their topology
be the same - as characterised by the isomorphism of their fundamental groups -
then they are essentially the same object. So this seems relatively clear.

Nonetheless we would like to perhaps get a more general understanding of why
it suffices to examine the first fundamental group of the spaces. In particular I will
sketch how the fundamental group over a Riemannian manifold induces a turbulent
geometric structure, and consequently demonstrate how the notion of fundamental
group can be geometrised, and the Mostow rigidity theorem extended.

Recall the definition of fundamental group:

Definition 87. (Fundamental group). The fundamental group π1(M,x) defined at
a point x in a topological space M is constructed as

π1(M,x) := {[γ]|γ : I →M,γ(0) = γ(1) = x}

where [γ] is the homotopy class associated to the map γ.

Note that if M is connected, π1(M,x) is independent of choice of the base point
x.

I claim that the non-local nature of this construction corresponds to a turbulent
structure. To be more precise, suppose σ : TM ×TM → R is a metric on M . Then
we can extend σ to a map TM × TM → Rn, via consideration of a vector of copies
of the original metric σ1, ..., σn. Define a metric structure on Rn, τ , and abstract Rn

to a local chart of the original manifold M .

Then we have a 4-tensor Λ : TM4 → R. Furthermore ~σ defines a geometrised
space of paths on M , and τ is a geometry on this space of paths. Consequently
Λ := τ ⊗ σ forms a turbulent structure on M , which geometrises the path space.
(In the case that τ is again the original metric σ we recover the fundamental group;
in this case I will write Λ = Λ(σ).)

Hence we can characterise the information of π1(M) (supposing that M is con-
nected) at each point m ∈M by computing S∂∗;Λ(m). This observation leads us to
guess the following result:
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Conjecture. (Sharpened Mostow Rigidity). Let (M,σ1),(N, σ2) be Riemannian
manifolds with constant and equal information densities. Then if there is a bi-
jection f : M → N such that S∂∗;Λ(σ1)(m) = S∂∗;Λ(σ2)(f(m)) for all m ∈ M , f is a
Riemannian isometry between M and N .
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Chapter 6

Viscosity, Plasticity, and Schemes

The question I ask in this chapter is, is it possible, given any differentiable manifold,
to endow it with a self-multiplication? To be precise, is there a way to sensibly asso-
ciate with the manifold M a map M ×M →M that behaves like a multiplication?

It turns out that this is closely related to a different question, namely, can we
generalise the notion of a tensor?

The broader question - of somehow giving a manifold an algebraic structure,
or establishing a correspondence between algebra and geometry, is nothing new,
and has been extensively explored in the literature. The most notable instance of
this is the noncommutative geometry of Alain Connes, [Connes], towards which a
more elementary and modern treatment is given in the book by Masoud Khalkhali
[Kha]. Such considerations in turn were motivated by work due to I. Gelfand and
M. Naimark [GN].

6.1 Motivation

6.1.1 ”Rank” manifolds and generalised tensors

Recall that a metric is a tensor of rank two. An elastic structure consists of a tensor
of rank four. It is natural then to ask, can we have a tensor of rank three? How
about three and a half? Or even (2, 3)? In particular we are interested in somehow
generalising the notion of rank of a tensor to somehow giving it a geometric structure.

Another way of considering a tensor of rank two is in the following way:
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σ : M ×N ×N → R

where N in this case is the set of natural numbers.

But there is no reason why we should not instead consider

σ : M × (N, τ)→ R

where now N is another copy of the underlying differentiable structure with
metric τ . This should from now on be the definition I use for a hypermetric structure
(σ, τ) on a manifold M .

In fact, we can represent this information as a signal function by writing

f(m, a, b) = δ(σ(δ(τ(n)− a),m)− b)

where of course we have to take some care, since now σ is not purely a function
any more via abuse of notation, but takes a functional as one of its inputs.

6.1.2 A more pedestrian approach?

Note that if we were to evaluate the information of the above we would get

R(Rτ (n),m)σ

Naively one might consider this a special case of considering merely the curvature
of a space M ×N ,

Rσ(m,n)

where now σ is a metric on M × N , which is to have the interpretation of the
component on the space N being a generalised rank for a standard metric structure
on M .

However this fails to take into the account that the topmost expression is a higher
order information, since it is of fourth order, whereas the lower is only second order.
It is also more natural to consider the topmost expression since then Rτ (n) has the
interpretation of the local rank of σ at m, so that this would be a sharp rank space,
where to each point m a unique rank for σ was defined so as to vary smoothly with
variation in the base point. And this is more or less what we are looking for.
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So then σ : M ×R→ (TM × TM → R), and τ : N → (TN × TN → R).

We still have the issue of interpreting how to define a rank r tensor at a point
m in our base space, and the associated generalised scalar curvature.

If r is a natural number, then we might consider an action on the tangent space
of the following general form:

σ : TM × ...× TM → R

where we have r copies of the tangent space TM . However then the associated
curvature operator will not be of second order as we would like. So instead we
consider

σ : TM r/2 × TM r/2 → R

where TM r/2 is the composition of TM with itself r/2 times.

Then Rσ(v, w) := Rσ̄(v
◦r/2, w◦r/2) where σ̄ is the associated inner product on

the tangent space with itself, and ◦ is the generalised composition operator. The
scalar curvature Rσ can then be defined in the usual way.

This definition allows us to generalise to the case where r is a real number, or
even an element of Rn, and, following the treatment on viscous geometry as before,
we may define an inner product on the composition space, which allows one in turn
to define a meta-information on a new manifold N .

I then claim that the evaluation of the associated information will give the result
mentioned at the beginning of this subsection.

Alternatively, consider the geometric inner product

〈(v, α), (w, β)〉σ,τ := ◦(σij; τkl)viwjαkβl

where v, w are tangent vectors in M and α, β are tangent vectors in N . This
allows us to interpret Rσ(m,Rτ (n)) as

R(σ(m)R(τ(n)))

Furthermore we can play the same trick as in plastic geometry and define a
4-tensor Λ such that 〈(v, α), (w, β)〉Λ := Λijkl(m,n)viαkwjβl.

Then I claim the above notation simplifies to

QΛ(m,n)

for some appropriate generalised curvature operator Q.
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6.1.3 Viscosity, plasticity, and statistical structures

It turns out that all of the above can be expressed fairly simply in terms of statistical
structures. In particular, these are special examples of ?-structures, where ?(f ; g) :=
f(m, a)g(m, b). However, of course in the above we are considering multiplication
in the stack, so we have exp(?(ln(f); g)) = f(g(m, b)m, a) as the structural objects
of interest.

In particular I refer to such structures as viscous since they are really about two
statistical structures ”rubbing against” one other. For slightly more direct physical
intuition, ?(f ; g) provides geometric information to us about the resistance to flow
locally in, say, a fluid of interest.

There however is also a connection to plasticity theory.

In particular recall the basics of elasticity theory:

σij = Cijklεkl

where

(i) σ is the stress tensor, that is, where σijAj is a force per unit area exerted on
an infinitesimal component of the space given a vector A normal to it.

(ii) ε is the strain tensor, that is, the symmetrised gradient of displacement u from
an undeformed state (where σ = 0).

(iii) C is the elasticity tensor. It is a four tensor representing the relation between
the strain and the stress.

The above equation is approximately valid for small deformations u, but beyond
this it becomes increasingly inaccurate. Nonlinear elastic deformation theory, or
plasticity theory, deals with the behaviour of materials beyond the so called yield
point, where deformations begin to become permanent.

Perhaps the most important thing to note is the occurrence of the four-tensor C.
I will demonstrate shortly how this is closely interrelated with the idea of exponential
geometry. In particular, we can give the exponential of a Riemannian manifold
(Mn, g) by a Riemannian manifold (Np, h) an induced structure, by stating that it
acts on vector valued functions v(s) and w(t), v : Rn → Rp as

〈〈v(s), w(t)〉〉 := gijhklvi(sk)wj(tl)
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Note that g ⊗ h is a new 4-tensor naturally associated to this structure. We
may abstract this construction and state that an exponential manifold (M,Λ) is a
differentiable manifold with an inner product that has the following property

<< v(s), w(t) >>:= Λijklvi(sk)wj(tl)

It is easy to see how it follows that we may write as an integral the overall
stress with respect to internal variables (eg metrics) which will be a function on the
manifold σ : M → TM ⊗ TM .

σ(m) =
∫
A
C(m, a)ε̇(m, a)da

But this looks very much like an information - for if we recall that ε behaves like
∇u, ε̇ will behave like a 2nd derivative, and in particular we expect it to behave like
an information

‖∇g(m,a)u‖2/‖u‖

Note that this will not be a scalar function, but a 2-tensor.

We may then take σ as a metric and take the information of this in turn. This
gives us an elasto-plastic action of the form∫

M
R(C : Ric(g))dm

In particular I claim there is a natural 4-tensor Λ coming from the structure of
a plastic manifold such that this is just∫

M
S?∗,Λ(m)dm

The toy model to keep in mind for a ”sharp” Λ is not δ(σ(m)−a)⊗ δ(τ(m)− b)
but rather

δ(δ(τ(m)− b)σ(m)− a)

But this is just exp(?(ln(f); g) for appropriate sharp f and g. Hence we see
immediately that whereas viscosity is the phenomenon that occurs in the measure
for a ?-structure, plasticity is the associated phenomenon that occurs in the stack.
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6.2 Schemes

The idea of scheme theory is to step away slightly from the standard structures in
Algebraic Geometry, which are affine varieties, and to try to consider something
slightly more fundamental and general. In this fashion scheme theory shares much
of the spirit of geometric measure theory, which was developed to provide a more
fundamental underpinning to the calculus of variations on manifolds. Also, in study
of the theory, it is unclear initially as to which notions are purely technical, as
opposed to those which could provide new and interesting perspectives.

To remind the reader, an affine variety is the zero locus of a finite set of poly-
nomials.

Certainly all varieties are schemes. However it is interesting to ask as to what
objects that are not varieties are also schemes, or as to what a scheme looks like in
general. It is perhaps a mistake to merely consider schemes as a ”regularisation”
of the concept of variety, vis a vis the idea of submanifolds and rectifiable sets in
geometric measure theory. In fact, schemes have additional structure, and intuitively
can be roughly thought of as ”(pre)geometric number fields”.

I will not aim to provide here a complete survey of Grothendieck’s theory, which
is long and extensive [EGA]. Rather I will focus instead on focusing on impor-
tant restricted cases of the theory, namely, geometric structures on differentiable
manifolds.

Following Hartshorne [RH], I first introduce the notion of a sheaf.

Definition 88. (Sheaf). A sheaf is a topological space X, such that for all subsets
U there exists a group F (U) of functions from U to an algebraically closed field
k. We also require F (φ) = 0. Furthermore if V ⊂ U , there is a restriction map
ρUV : F (U)→ F (V ). This map must satisfy the following properties:

(i) ρUU = Id,

(ii) If W ⊂ V ⊂ U , ρUW = ρVW ◦ ρUV ,

(iii) If U is open, and {Vi} is an open cover, then if s ∈ F (U) satisfies s|Vi
= 0 for

each i, we must have s = 0, and

(iv) For the same U , {Vi}, if si ∈ F (Vi) is a sequence with si|Vi∩Vj
= sj|Vi∩Vj

, then
there is an s ∈ F (U) such that s|Vi

= si for all i.
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The particular example of a sheaf that will be of interest to us is that of the
space of nondegenerate metrics over a differentiable manifold M :

T = {f |f : M → {σ : TM → TM}}

Note that {σ : TM → TM} is an algebraically closed field as required.

Alternatively, consider the simpler, though perhaps slightly less natural example:

T̂ = {f |f : M → {g : M →M}}

where now we are looking at the sheaf of automorphisms of a differentiable
manifold. Of course this has something of a resonance with Galois theory! Note
that {g : M → M} is just Gal(M/R), the Galois group of M -automorphisms over
the real numbers.

Now a scheme is a sheaf with additional geometric structure, in particular,
algebraic structure.

Lemma 6.2.1. (Structure sheaf for a ring, [RH]). Given a ring R, the associated
structure sheaf is given by the pair (Spec(R), θ), where Spec(R) is the set of all
prime ideals of R, and θ is defined as a sheaf over Spec(R) such that θ(U) is the set
of functions x from U to the union of the localisations of R over U , with x(p) ∈ Rp

for every p ∈ U , and furthermore that x is locally a quotient of elements of R. The
pair (Spec(R), θ) is otherwise known as the spectrium of R.

The general intuition here is that we can convert the information in an algebraic
ring R into a geometric structure with underlying space Spec(R), and structural
information of the ringed sheaf θ given by the nature of the maximal ideals in R.
Since by definition rings are the most general objects in which one can define a
multiplication, and we are interested in transition from such structures to geometric
spaces, this does serve to motivate the above construction.

Definition 89. (Scheme, [RH]). A ringed space (X, θ) is a topological space X
together with a sheaf of rings θ over X. An affine scheme is a locally ringed space
that is isomorphic to the spectrum of some ring. A scheme is a locally ringed space
(X, θ) in which every point in X has a neighbourhood U such that (U, θ|U) is an
affine scheme.
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In practice what this means is that a scheme is essentially an underlying ge-
ometric space, M , with a superstructure N which has algebraic structure, ie self-
multiplication, with properties determined by some structural tensor. This is not
quite generally true, but in the case of examples that will be of interest to a differ-
ential geometer it is sufficient.

In particular, we will be interested in arithmetic schemes over the aforementioned
sheafs of metrics, that is, the pairing (T ,Λ), where Λ is a nondegenerate six tensor,
that acts as a multiplication upon elements of T via the relation

(F ×Λ G)ij := Λabcd
ij FabGcd

Of course we could define an alternative structure over the same sheaf, by con-
sidering

(F ×Λ G)ij := Λad
ij FabGbd

in which case Λ need only be a four-tensor.

For our simpler example once again we have that we can define an arithmetic
scheme with the pairing (T̂ , Λ̂), where Λ̂ is a non-degenerate four tensor, that acts
in the following manner on T̂ :

(F ×Λ̂ G)ij = Λ̂ab
ij (F ◦G)ab

where now by abuse of notation I write fij for the mapping of the ith coordinate
to the jth coordinate of M under f .

6.3 A fundamental theorem

It is interesting to ask if we can find the corresponding notion of Levi-Civita con-
nection on such a space as in the previous class of examples, so as we are capable
of doing calculus. In this section I will develop the required tools and prove the
analogue of the Fundamental theorem of Riemannian geometry for this geometric
structure.

One is faced with the difficulty of trying to determine which of the above three
constructions contains the most natural example of the structures we would like
to study. Namely, arithmetic structures on sheaves, or arithmetic schemes. In
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particular it turns out the the study of the sheaf of metrics over a manifold is actually
related to the study of geometric viscosity, which is another topic altogether! So
this might bias us towards the last construction.

For all intents and purposes though, the notion of multiplication of matrices
somehow seems nicer than composition of functions. In particular I claim that the
second and third constructions are in fact more or less equivalent (in fact, it is easy
to demonstrate that composition of smooth automorphisms is the same as matrix
multiplication in local coordinates). So it will be this that I study here. It is to
be expected that this should contain no additional information, since it is merely a
four-tensor structure.

However with the constructions above it is clear that they lack the necessary
level of generality. In fact, it is necessary to take a step away from the intuition that
we should be directly multiplying elements of the tangent sheaf together, to instead
consider a four tensor structure Λ : TM4 → R. We can still induce a multiplication
however - by taking necessary derivatives of Λ.

Consequently, we are looking at the pairing (T ,Λ), with

T = {f : M → {TM → TM}}, and Λ acts on T as a multiplication via the
rule

(f ×Λ g)ij = ∂ijΛklpqfklgpq

Of course we will be primarily interested in the geometric structure coming
from the structural tensor Λ. In particular we would like to arrange for an affine
connection to obey the standard product rule for this structure:

X〈Y, Z,A,B〉Λ :=
〈∇XY, Z,A,B〉+ 〈Y,∇XZ,A,B〉+ 〈Y, Z,∇XA,B〉+ 〈Y, Z,A,∇XB〉

Then it is quite clear that the proof of the Levi-Civita theorem can be followed
roughly to establish the uniqueness of this connection.

6.4 Generalised Christoffel Symbols and Local In-

formation

In this section I will derive the generalised Christoffel symbols, and provide an
expression for the local information. This latter result will be made more precise in
a later section, when I deal with structures of slightly greater generality.
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As mentioned earlier, we had established the uniqueness of our affine connection
for the structure of interest. More precisely, we have that, if we assume symmetry
of Λ, that

Y0〈Y1, Y2, Y3, Y4〉
−Y1〈Y0, Y2, Y3, Y4〉
+Y2〈Y0, Y1, Y3, Y4〉
−Y3〈Y0, Y1, Y2, Y4〉
+Y4〈Y0, Y1, Y2, Y3〉

= 4〈∇Y0Y1, Y2, Y3, Y4〉
+ 〈Y1, [Y0, Y2], Y3, Y4〉+ 〈Y1, Y2, [Y0, Y3], Y4〉
+ 〈Y1, Y2, Y3, [Y0, Y4]〉 − 〈Y0, [Y1, Y2], Y3, Y4〉
− 〈Y0, Y2, [Y1, Y3], Y4〉 − 〈Y0, Y2, Y3, [Y1, Y4]〉
+ 〈Y0, Y1, [Y2, Y3], Y4〉+ 〈Y0, Y1, Y3, [Y2, Y4]〉
− 〈Y0, Y1, Y2, [Y3, Y4]〉

(6.1)

Note that this remains true even if we relax the assumption of symmetry.

If we use coordinates in which the Lie Brackets are trivial, such as orthonormal
coordinates, then we have that this simplifies to

4〈∇Y0Y1, Y2, Y3, Y4〉
= Y0〈Y1, Y2, Y3, Y4〉 − Y1〈Y0, Y2, Y3, Y4〉
+ Y2〈Y0, Y1, Y3, Y4〉 − Y3〈Y0, Y1, Y2, Y4〉
+ Y4〈Y0, Y1, Y2, Y3〉

(6.2)

Then it follows that

Γrskli = 1
4
Λrmsn{∂kΛmlni − ∂mΛklni + ∂lΛmkni − ∂nΛmkli + ∂iΛmkln}

as the expression in normal coordinates for the generalised Christoffel symbols
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Γrskli := 〈∇Xk
Xl ⊗Xi, Xr ⊗Xs〉

We then have an information theory with density (possibly up to subtle rear-
rangement of indices)

S?,Λ := −ΛabcdΓ
rs
apqΓ

pu
brtΓ

lq
cksΓ

kt
dlu

where the ? notation is to emphasise this is an S-curvature induced by multi-
plicative structure. Note that this is a fourth order geometric invariant, that is, it
will become trivial ie zero on spaces of dimension less than four.

Finally, for something in the way of direct geometric interpretation of S?,Λ, we
have the following result.

Lemma 6.4.1. If we express Λ in normal coordinates about a point and expand in
a δ-ball for small δ, we get

Λ(x)ijkl = δijkl + S?,Λ,ijklmnop(0)xmxnxoxp + o(δ8)

6.5 A functional principle for algebraic manifolds

In this section I will build and establish the appropriate form of the Cramer-Rao
inequality for ?-structures on manifolds.

We build a statistical theory for these structures in the following fashion.

Definition 90. ?(f ; g) := fg for signal functions f , g over TM2. In other words,
the pointwise multiplication of the function f by g.

Definition 91. The pregeometric fisher information density for a ?-structure is
defined to be ?(f ; ρ(g)){∂ln(?(f ; ρ(g)))⊗ ∂ln(?(f ; ρ(g)))}, where ρ(g) = g∂ln(g)⊗
∂ln(g) is the standard fisher information density for a signal function g.

Definition 92. The fisher information density for a ?-structure is defined to be
F (∂lnF )⊗4, where F is a signal function over TM4.

From our earlier general considerations in the second chapter, we may conclude:

Corollary 6.5.1. (Information inequality for a ?-structure) Let F (m, a) be a sta-
tistical signal function over a star structure Λ. Then we have that
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∫
M

∫
A
F (m, a)‖∂ln(F (m, a))‖4Λdadm ≥ 0

To be more specific, if the signal function F is sharp, then we have that∫
M
S?,Λdm ≥ 0

and

Corollary 6.5.2. (Information inequality for a pregeometric ?-structure). Let f(m, a),
g(m, b) be statistical signal functions over a Riemann-Cartan manifold. Let ρ(g) be
the standard Fisher information density. Then we have an induced information
inequality ∫

M

∫
A

∫
B
?(f ; ρ(g))‖∂ln(?(f ; ρ(g)))‖2dbdadm ≥ 0

In particular, if f and g are sharp, and f = δ(σ(m)− a), g = δ(τ(m)− b), then
the above simplifies to the statement∫

M
?(Rσ;Rτ ) ≥ 0

6.6 Topics in Algebraic Geometry

6.6.1 Some comments on the theory of Modular Forms

This comment will be based on a survey of the definitive work by Fred Diamond
and Jerry Shurman [DS], wherein I shall seek to arrive at as quickly as possible the
key result:

Theorem 6.6.1. (Modularity Theorem). All elliptic curves are modular.

It was this result in particular that enabled the resolution of Fermat’s remaining
infamous conjecture in the early 90s by Andrew Wiles. Since this is a treatise on
information theory, and I have a preference for generality, I will be interested, if
possible, in finding the key underlying geometric drivers for this result.

A certain function of interest which is connected with elliptic functions is the
Weierstrass P-function

P (z;ω1, ω2) = 1
z2

+ Σn+m6=0(
1

(z−nω1+mω2)2
− 1

(nω1+mω2)2
)
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This has the interesting symmetry

P (z;ω1, ω2) = P (z; 1, ω2/ω1)

so it is really just a function of two (complex) variables, P (z, ω).

If we expand this for small z we get the Taylor series expansion

P (z) ≈ z−2 + C1g2z
2 + C2g3z

4 +O(z6)

where C1, C2 are constants chosen such that we have the identity

(P ′)2 = 4P 3 − g2P − g3

Here g2, g3 are numbers dependent on ω. These can in turn be used to describe
the properties of an elliptic curve.

Now, inspired by the fact that we have fourth powers in our expansion, together
with the nature of Wiles’ proof, we expect that an almost sharp expansion in a
metric over the space of variable z, together with a ?-structure over variable ω,
should be sufficient to prove the modularity theorem.

In particular we are intuitively led to examine the functional

I(ε,Λ) =
∫
M
S?;Λ;(1) + εS?;Λ;(2)

which I claim embodies the information of an elliptic curve. Then the modularity
theorem should really only be a restatement of the Cramer-Rao inequality for this
information.

6.6.2 K-theory and Index Theory

It is interesting to ask as to where K-theory fits into all of this, since there is
a relationship between this and the theory of schemes. In addition to providing
context, I will aim to provide an intuitive sketch of the Atiyah-Singer index theorem
by the conclusion of this section.

In fact, I claim that an information theory of the above form is sufficient to
establish the Atiyah-Singer index theorem - in particular that this follows from the
Cramer-Rao inequality for the same. To establish this I will need to describe this
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particular result and convert the problem into a form wherein information theory
may be applied.

Recall from before that the Atiyah Singer index theorem relates to the action
of elliptic differential operators on Riemannian manifolds, which can essentially be
viewed as generalised product structures. Then the theorem states that the ana-
lytical index of the space, that is, the dimension of the negative eigenspace of the
associated 4th rank tensor - a local measure - is one and the same as the topological
index of the space, which is essentially the dimension of the subspace of the manifold
which is in the kernel of the generalised product map - a global measure.

But product maps, or product structures, are characterised by structures Λ :=
?(σ; τ), where σ is the structure of the manifold, and τ is the structure of the action
of the product. Consequently, we have that the local information induced by such
an operator is S?;Λ, and the Cramer-Rao inequality states that

I(Λ) :=
∫
M
S?;Λ(m)dm ≥ 0

and consequently that it will be critical only if the information density is zero,
or

S?;Λ(m) = 0

I suspect that the index theorem then follows from this observation.

6.6.3 The Weil Conjectures

Following a similar line of reasoning to the above, I will now briefly mention how this
theory might be used to provide a quick, elegant proof of the Weil conjectures - which
were largely resolved by 1974 by Grothendieck, Deligne and others. Since these
conjectures deal with elliptic equations, and since elliptic equations arise from the
study of correction terms within the Weierstrass P -function (of interest in analytic
number theory), it makes sense to consider almost sharp ?-structures.

In other words, I claim that it should be possible to resolve the Weil conjectures,
through examination of the perturbative action

∫
M

(S?,(1),Λ(m) + εS?,(2),Λ(m) + ε2S?,(3),Λ(m) + ...)dm
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which is greater than or equal to zero via the appropriate analogue of the Cramer-
Rao inequality.

Naturally in order to make this a convincing argument it is necessary to build
a correspondence between the generating functions coming from such algebraic va-
rieties and perturbative ?-structures. However, I do not intend to do so here.

6.6.4 C-star algebras

As a final demonstration of the inter-relation of these ideas to other areas of math-
ematics, I will describe how these tools can be used to establish the Gelfand-
Naimark theorem for C∗ algebras. These are of course particularly special forms
of ?-structure, where all invariants and functions are analytic over some general
complex manifold M .

References that might prove instructive to the reader in this instance are the
book by Alain Connes [Cns], and the classic paper of Israel Gelfand and M. Naimark
[GN].

Recall:

Definition 93. (Banach algebra). A Banach algebra A over the complex num-
bers is, roughly speaking, a Kähler manifold M with the property that there is a
multiplication · such that ‖m · n‖M ≤ ‖m‖M‖n‖M .

Definition 94. (C∗ algebra). A C∗-algebra is a Banach algebra A over the complex
numbers, with the additional existence of an involution operator ∗ : A → A - which
is best thought of as a generalisation of complex conjugate. This operator must
satisfy the following properties:

(i) (x+ y)∗ = x∗ + y∗ (linearity)

(ii) (xy)∗ = y∗x∗ (conjugate property for algebraic multiplication)

(iii) (λx)∗ = λ̄x∗ (conjugate property for scalars)

It can then be demonstrated that, under these conventions, the C∗ identity holds
for all x ∈ A:

‖x∗x‖ = ‖x‖‖x∗‖ = ‖xx∗‖
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It follows that ‖x∗x‖ = ‖x‖2 for all x ∈ A.

This has the following interpretation. First, the product structure in a ge-
ometrised Banach algebra A can be extended to a metric for a Kähler manifold; in
particular all Kähler manifolds admit such a product. To see why this is the case,
note that it is well known that all complex submanifolds of a Kähler manifold are
minimal and Kähler. Hence local forms extend to global Kähler submanifolds of the
total space.

Consequently a Kähler manifold M has an induced algebra A, with product
for two points m and n constructed in the following way. Suppose we make the
simplifying assumption that there is a universal chart for the total space. Associate
to m and n then the vectors v, w under the preimage of the exponential map with
respect to the metric σ. Then, in the tangent space for the chart take the cross
product v×w, and project back down to M . Then, we define m · n as expσ(v×w).
Furthermore this operation is well defined via our previous observation that local
forms extend globally in a Kähler space.

Hence the operation · can be associated to a Kähler metric σ.

I now claim that if we now introduce an involution operator ∗ to our space M , we
can associate this to a secondary Kähler metric τ , which acts on σ via the standard
notion of ?-structure as developed in this chapter, so that M is geometrised by the
4-tensor ?(σ; τ).

Generally speaking, suppose we have a vector v ∈ Ck. Then we can construct
the trivial conjugate v̄ of v by writing v = vr + ivc, for vr, vc real, and then mapping
v to vr − ivc. An involution is then constructed in the following way. Let m once
again be an element of a Kähler manifold. Let n = exp−1

σ (m) be its preimage. Let
v = exp−1

τ (n) be the preimage of n under a secondary Kähler metric. Then we can
write m∗ := expσexpτ (v̄) = exp?(σ;τ)(v̄). This establishes my claim.

But this is just another way of describing a triple TO →τ O →σ H, where O
is a trivial C∗-algebra of bounded operators over a Hilbert space (complete normed
space) H. Hence this demonstrates, or at least leads us to suspect, why the following
result should be true:

Theorem 6.6.2. (Gelfand-Naimark). Every C∗-algebra A is isometrically ∗-isomorphic
to a C∗-algebra of bounded operators on a Hilbert space.
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Chapter 7

Lattice processes and
Transcendental Geometry

7.1 Transcendental Geometry and Reverberabil-

ity

Recall from [Go] that a transcendental geometry is driven by the geometric precursor
∧(f ; g) := f g. Also we have an information inequality:

∫
M
∧(Rσ;Rτ )dm ≥ 0

in the case that f and g are sharp, and which extends to more general signal
functions as well.

Similarly to before, one can have ∧-structures in the stack or the measure -
which once again leads to an infinite number of discrete geometric bifurcations.

This is the starting point for the study of reverb, or transcendental structures.
These are 4-tensors that occur as the resolutions of the above sequence, playing a
similar role to the more primitive composition operator as plastic structures played
to turbulent geometries before.

Now, to understand reverb, we ask the natural question, is it possible to take
a non-integral ”composition” of a curvature operator, or, more generally, a signal
function f? And if so, what does this mean physically?
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First of all, note that we cannot directly define non-integral composition of
a curvature operator or of a signal function, since these are not automorphisms.
However, note that if we take the logarithm

log : R→M × A

then log(f) : M × A→M × A is an automorphism.

But this is not terribly natural either. However, borrowing this intuition, con-
sider instead the standard logarithmic function log : R→ R.

Then log(f) : M ×A→ R. If we consider log-composition to be multiplication,
then build ∧(log(f); g), where g is another signal function. Finally, to convert back
to normal coordinates, apply the exponential mapping.

Hence we are interested in the log-composition operation

exp(∧(ln(f); g))

If f and g are delta functions, the result of this operation will be

δ(σ(m)δ(τ(m)−b) − a)

We expect the corresponding information then to be∫
M
R∧(σ(m);R(τ)(m))dm

7.2 The fundamental theorem of geometric re-

verb

Here I will develop the theory in a more formal manner, with the aim of building
towards a proof of the existence of derivatives in transcendental manifolds.

Definition 95. Given a differentiable manifold M , a reverb structure Λ on M is a
4-tensor such that, for x, y ∈ {TM → TM}, and u, v ∈ TM , we have

< x(u), y(w) >Λ:= Λijklxi(uk)yj(wl)
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Note that, just as one can construct a local orthonormal basis {Xi} for the
tangent space of M , so can one construct a local orthonormal basis {Xij} for the
space of functions from TM back to itself. These in turn form a kind of coordinates
for our viscous structure.

Then one is interested in the idea of a connection on these coordinates. A
connection ∇ will have the properties that

(i) ∇Xij
fYkl = f∇Xij

Ykl +Xij(f)Ykl (product rule)

(ii) ∇fXY = f∇XY (linearity)

Then I claim in analogy to the Riemannian case that there is a unique connec-
tion, which I will call the plastic connection, such that

Xij < Ykl, Zmn >=< ∇Xij
Ykl, Zmn > + < Ykl,∇Xij

Zmn >

But this is trivially true since we can just view 1 ≤ i, j ≤ n as a basis for
matrices, and then the result follows from the uniqueness theorem for the standard
Riemannian connection.

This has some useful consequences.

Definition 96. The generalised Christoffel symbols associated to a viscous structure
Λ take the form

Γmnijkl =< ∇ijXkl, Xmn >

By the fundamental theorem, we can compute these terms explicitly in terms of
Λ:

Γiαkγlε = 1
2
Λimαζ(

∂Λmkζγ

∂Xlε +
∂Λmlζε

∂Xkγ − ∂Λklγε

∂Xmζ )

But observe that the generalised scalar curvature SΛ takes the form

S∧;Λ = −ΛijklΓγδijαβΓ
αβ
klγδ

So this can be computed wholly in terms of Λ and its derivatives.

Remark. Note that, unlike turbulent or viscous structures, this is a second order
invariant, rather than fourth order. However, whereas the former were defined purely
on the space M , these are defined on the space of tensors on M , {TM → TM},
and are toy models for the study of self-referential structures, to be discussed in the
sequel.
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The Hodge Conjecture

7.3 The Hodge Conjecture

I will now quickly indicate how one might attack this particular famous problem.
The idea of my treatment will merely be to sketch and provide some intuition as to
how one might proceed.

Essentially in spirit the Hodge conjecture asks whether, given a (possibly degen-
erate) bilinear form σ on a differentiable manifold M , if one constructs a generator
of the associated Cech cohomology theory ω, does there exist a corresponding sub-
manifold or subvariety N(ω) of the total space M?

There are essentially two difficulties here. One is the ambiguity between non-
degenerate and degenerate. In order to treat submanifolds properly one needs to
essentially work in the space of varieties. This was observed by the twentieth cen-
tury algebraists, as might be gathered from my survey of K-theory. (Note also that
I cheated a little in the earlier chapter, by assuming that one always has a corre-
spondence between cohomology and submanifolds/subvarieties of spaces, in order to
assist the development of my, and the reader’s physical intuition regarding the the-
ory. This is not always the case.) I will get around this difficulty by increasing the
degree of abstraction and instead embedding nondegenerate Riemannian structures
into nondegenerate Transcendental structures.

The second difficulty is the fact that forms are defined only locally, and submani-
folds have global properties. So one needs a natural way to extend forms in a natural
way that will produce submanifolds. The way I will address this is through tran-
sition from local to global via the formulation of an appropriate local information
density, based on the Transcendental methods in this chapter.

Before I proceed I should stress that most generally, it is well known that there
exist forms ω on manifolds M that do not extend to submanifolds N with Rie-
mannian structure. However, I claim that it is possible to extend in general to
submanifolds N with reverb structure, in which the class of Riemannian structures
is naturally embedded. It is possible of course that even this may not be sufficient,
and one needs the more general methods of the self-referential geometry in order to
establish a correspondence. Nonetheless let us proceed; if nothing else we shall see
some more of the shape of the problem.

Recall given a reverb structure Λ that we have an information density S∧;Λ

defined on our manifold M .

Now suppose we instead consider a Riemannian metric σ onM , and also consider
a form ω in the Tensor algebraA associated toM . I claim that we can place a natural
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Riemannian structure τ on A. Consider two forms α, β. We would like to define
an invariant τ : A × A → R. Note that A locally has the same dimension as the
tangent space of M , and will also be a vector bundle over M .

To define this, if α1 ∧ ... ∧ αn is one form and β1 ∧ ... ∧ βn the other, possibly
with degenerate entries, then we can define τ(α, β) := τijαiβj in the standard way.

We can then construct a reverb structure Λ on M as ∧(σ; τ), and I claim that
this provides us with what we need. In particular, if the information functional

I(Λ) =
∫
M
S∧;Λ(m)dm

is critical then I claim that we have a correspondence between the structure of
the tensor algebra A associated to M and its tangent bundle TM . In other words
we have that forms ω are uniquely associated to appropriate submanifolds of M
with reverb structures.

Obviously there is a fair bit to check here, and considerable further detail would
be required before this was a convincing argument. Nonetheless I think this is
suggestive and interesting.
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Chapter 8

(First order) self-referential
geometry

The goal of this chapter will be to draw upon the three main ideas, or ”seals of
existence” as so far described in this manuscript, and demonstrate how they form a
cohesive and general description of a first order self-referential geometry on a given
differentiable structure M .

In particular, the rough intuition is that we would like to describe how, for
every coordinate component xj of each point m ∈M , there are natural information
channels to every other point n ∈ M . In particular there is a natural geometric
structure, viewed on the space of maps from TM to itself, or, naively, associated to
M ×M , which can be used to describe such interrelations. Furthermore, I claim
that it is possible to quantify the resultant dynamics.

There are in fact strong connections between these ideas and the attempt to
build a theory of physics for 1-categories, or string theory. In fact it turns out that
T-duality (see, for instance, [KV]) is essentially the statement of criticality for the
Cramer-Rao inequality for the T-invariant of a symmetric 8-tensor representing the
geometry, and the antisymmetric 8-tensor representing the distribution of matter.
Of course, the treatment I provide here is more general, and I derive the T-invariant
as the Fisher Information density for a nondegenerate 8-tensor with no assumption
of symmetry.

This is also related to the work of Stephen Hawking, Robert Bartnik, and Ger-
hard Huisken on the quasi-local mass. This is an attempt to try to extend the idea
of mass to general relativity, but, at a deeper level, it is related to the question of
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attempting to resolve the physics at singularities, or the black-hole solutions to the
theory. Naturally one would expect this to be resolved by a more abstract math-
ematical underpinning to the theory, rather than using the theory of Riemannian
manifolds, however the approach taken by relativists is rather less direct.

In attempts to obtain bounds on the behaviour about singularities, it turns out
that the so-called Willmore functional, defined for surfaces Σ ⊂ M as the integral
of the mean curvature over Σ, is quite useful, as I learned in an interesting talk at
the January 2010 Monash workshop on General Relativity and Geometric Analysis,
given by Jan Metzger, one of Professor Huisken’s students. This is not particularly
surprising, since matrices of surfaces, glued at their boundary, with k marked points,
actually occur in quite a natural way in the discussion of self-referential geodesics.
Interestingly, this is related to structures on moduli space, in particular, Teichmuller
space, and also the so-called ”strings” of string theory have world sheets that are
surfaces.

It can be demonstrated that one obtains quite natural 4th order nonlinear op-
timisation problems for trying to optimise the choice of Willmore functional, which
hints at the need to develop an abstraction of Riemannian geometry to attack the
singularity problem in general relativity, which is really just symptomatic of the
incompleteness of the theory.

As a further comment, I have noticed since the completion of the bulk of this
research that various other contemporary authors are interested in the study of self-
referential dynamics. For instance, there is the 2000 paper by R. Cahill and CM
Klinger, ”Self-referential noise and the synthesis of three-dimensional space”, http:
//arxiv.org/pdf/gr-qc/9812083, as well as R. Cahill’s paper ”Process Physics
: Self-Referential Information and Experiential Reality”, http://processthought.
info/publications/Articles/LSI05/Cahill-FinalPaper.pdf. Other authors who
have written on the subject include M Wyart and JP Bouchard, in their 2007 pa-
per ”Self-referential behaviour, overreaction and conventions in financial markets” at
http://arxiv.org/pdf/cond-mat/0303584, and Richard Sutton and Brian Pinette,
in their 1985 paper ”The learning of world models by connectionist networks”,
http://webdocs.cs.ualberta.ca/~sutton/papers/sutton-pinette-85.pdf.

However philosophers have been interested in the idea of self-reference for sig-
nificantly longer than this. In the article by Thomas Bolander, [Bol], it is described
how the idea of an object that refers to itself can lead to mind-bending paradoxes -
such as ”this sentence is not true”. This is an example of the so-called Liar paradox,
which is generally attributed to Eubulides of Miletus- of the Megarian school- in
the 4th century BC. Such examples demonstrate that not all self-referential con-
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(First order) self-referential geometry

structions are logical or make sense. In fact, the realisation of the liar’s paradox in
mathematics (as Russell’s paradox) was one of the key issues that frustrated the at-
tempts of the early 20th century mathematicians in their development of axiomatic
set theory (as mentioned in the second chapter of this work). It is therefore of in-
terest to attempt to understand how to ”tame” self-reference in a structured and
formal fashion, and to do so to first order.

If the reader will forgive the culture reference, there is also of course the amusing
and clever recent xkcd comic http://xkcd.com/688/. So certainly the idea of self
reference is a meme that is currently ”in the water”, so to speak.

8.1 Key results

8.1.1 Preliminaries

Define

Θεηζa
ijklαβγδ = 〈∂ijXαβ, ∂klXγδ, Xεη, Xζa〉

as the generalised Christoffel symbols, where ∂ijXkl := ∂
∂Xij

Xkl, for Xij a basis

of the function space {TM → TM}.
Require the affine connection ∂ to satisfy

XijXkl〈Xαβ, Xγδ, Xεη, Xζa〉 =
(〈∂ijXαβ, ∂klXγδ, Xεη, Xζa〉+ 〈∂ijXαβ, Xγδ, ∂klXεη, Xζa〉+ 〈∂ijXαβ, Xγδ, Xεη, ∂klXζa〉)
+(〈∂klXαβ, ∂ijXγδ, Xεη, Xζa〉+〈Xαβ, ∂ijXγδ, ∂klXεη, Xζa〉+〈Xαβ, ∂ijXγδ, Xεη, ∂klXζa〉)
+(〈∂klXαβ, Xγδ, ∂ijXεη, Xζa〉+〈Xαβ, ∂klXγδ, ∂ijXεη, Xζa〉+〈Xαβ, Xγδ, ∂ijXεη, ∂klXζa〉)
+(〈∂klXαβ, Xγδ, Xεη, ∂ijXζa〉+〈Xαβ, ∂klXγδ, Xεη, ∂ijXζa〉+〈Xαβ, Xγδ, ∂klXεη, ∂ijXζa〉)

8.1.2 The fundamental theorem of self-referential geometry

Via similar arguments to previous chapters, we conclude that

16Θabcd
ijklαβγδ := 16〈∇ijXαβ,∇klXγδ, Xab, Xcd〉 =

Xij(Xkl〈Xαβ, Xγδ, Xab, Xcd〉 −Xαβ〈Xkl, Xγδ, Xab, Xcd〉+Xγδ〈Xαβ, Xkl, Xab, Xcd〉 −
Xab〈Xαβ, Xγδ, Xkl, Xcd〉+Xcd〈Xαβ, Xγδ, Xab, Xkl〉)
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−Xkl(Xij〈Xαβ, Xγδ, Xab, Xcd〉 −Xαβ〈Xij, Xγδ, Xab, Xcd〉+
Xγδ〈Xαβ, Xij, Xab, Xcd〉 −Xab〈Xαβ, Xγδ, Xij, Xcd〉+Xcd〈Xαβ, Xγδ, Xab, Xij〉)

+Xαβ(Xkl〈Xij, Xγδ, Xab, Xcd〉 −Xij〈Xkl, Xγδ, Xab, Xcd〉+Xγδ〈Xij, Xkl, Xab, Xcd〉 −
Xab〈Xij, Xγδ, Xkl, Xcd〉+Xcd〈Xij, Xγδ, Xab, Xkl〉)

−Xγδ(Xkl〈Xαβ, Xij, Xab, Xcd〉 −Xαβ〈Xkl, Xij, Xab, Xcd〉+Xij〈Xαβ, Xkl, Xab, Xcd〉 −
Xab〈Xαβ, Xij, Xkl, Xcd〉+Xcd〈Xαβ, Xij, Xab, Xkl〉)

+Xab(Xkl〈Xαβ, Xγδ, Xij, Xcd〉 −Xαβ〈Xkl, Xγδ, Xij, Xcd〉+Xγδ〈Xαβ, Xkl, Xij, Xcd〉 −
Xij〈Xαβ, Xγδ, Xkl, Xcd〉+Xcd〈Xαβ, Xγδ, Xij, Xkl〉)

−Xcd(Xkl〈Xαβ, Xγδ, Xab, Xij〉 −Xαβ〈Xkl, Xγδ, Xab, Xij〉+Xγδ〈Xαβ, Xkl, Xab, Xij〉 −
Xab〈Xαβ, Xγδ, Xkl, Xij〉+Xij〈Xαβ, Xγδ, Xab, Xkl〉)

(This is assuming, WLOG, we have chosen coordinates so that the Lie Brackets
are all trivial)

But derivatives commute, so a few terms cancel. Consequently the right hand
side simplifies to

Xij(−2Xαβ〈Xkl, Xγδ, Xab, Xcd〉 − 2Xab〈Xαβ, Xγδ, Xkl, Xcd〉)
−Xkl(−2Xαβ〈Xij, Xγδ, Xab, Xcd〉+ 2Xγδ〈Xαβ, Xij, Xab, Xcd〉 −

2Xab〈Xαβ, Xγδ, Xij, Xcd〉+ 2Xcd〈Xαβ, Xγδ, Xab, Xij〉)
Xαβ(XγδΛijklabcd −XabΛijγδklcd +XcdΛijγδabkl)

−Xγδ(−XαβΛklijabcd −XabΛαβijklcd +XcdΛαβijabkl

+Xab(−XαβΛklγδijcd +XγδΛαβklijcd +XcdΛαβγδijkl)

−Xcd(−XαβΛklγδabij +XγδΛαβklabij −XabΛαβγδklij)

but this is just

2(−∂ijαβΛklγδabcd − ∂ijabΛαβγδklcd + ∂klαβΛijγδabcd − ∂klγδΛαβijabcd + ∂klabΛαβγδijcd −
∂klcdΛαβγδabij) + (∂αβγδΛijklabcd − ∂αβabΛijγδklcd + ∂αβcdΛijγδabkl) + (∂γδαβΛklijabcd +
∂γδabΛαβijklcd − ∂γδcdΛαβijabkl) + (−∂abαβΛklγδijcd + ∂abγδΛαβklijcd + ∂abcdΛαβγδijkl) +

(∂cdαβΛklγδabij − ∂cdγδΛαβklabij + ∂cdabΛαβγδklij)

Consequently we may compute the generalised Christoffel symbols from the
above expression, provided that we know Λ, where

∂ijklf := ∂2

∂Xij∂Xkl
f

This is naturally a synthesis of all the work that has been done prior to this
point.
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8.1.3 The information density and Cramer-Rao inequality

The information density for such a structure is given by something like the following
relation

TΛ = −ΛijklmnpqΘa3b2c1d3e2
ija0b0c0d0e0

Θa0b3c2d0e3
kla1b1c1d1e1

Θa1b0c3d1e0
mna2b2c2d2e2

Θa2b1c0d2e1
pqa3b3c3d3e3

This is an eighth order geometric invariant.

For almost sharp, or perturbative dynamics, we immediately observe that the
germ of the space {TM → TM} must need be at least 16 dimensional, since,
TΛ,(2) is otherwise trivial. Consequently we have again that for such structures, an
underlying four-dimensional space M is preferred. Via similar arguments to [Go] it
is possible to establish too that the preferred index of M is one, via a dimensional
analysis.

8.2 Self-referential structures in theoretical physics

8.2.1 Proof of preferred Lorentzian structure for the tensor
product

As mentioned, we clearly require M be four dimensional at least for examination
of quantum mechanical phenomena, under the umbrella of self-referential dynamics.
Then, as before, it is not too hard to show that the number of dimensions preferred
for a turbulent self-referential geometry is as small as possible. In particular

Theorem 8.2.1. (Minimisation of dimension). Let M be a manifold with a self-
referential structure. Then analysis on the dimension of M for purposes of stability
requires that the dimension be as small as possible.

Proof. (Idea). We consider variation on the dimension of M , given that it has a
self-referential structure Λ. Set Σ as the associated self-referential structure for the
dimension space. Then

∂∗(TΛ;TΣ)

will be critical only if ∂ΛTΣ and TΣ are the same up to contraction of indices;
then we must have that ∂Λ is the identity operator, or that Λ = 0.
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Definition 97. An eigenvector of an n-tensor Λ is a vector v such that Λ(v, ..., v, ∗),
the evaluation of Λ in all entries save one is λv for some constant λ. Furthermore,
if we were to omit a different entry, we require that the answer be the same. λ is
then an eigenvalue of Λ. The set of eigenvectors forms the eigenspace. The index of
a self-referential structure Λ is the dimension of its negative eigenspace, ie the set
of vectors with negative eigenvalues.

Theorem 8.2.2. (Index theorem for self-referential structures). Under this notion
of index, the turbulent index ∂∗(ind(Λ); ind(Σ)) = ind(Λ)ind(Σ).

Proof. The proof is similar to that if Λ and Σ are instead Riemannian metrics. See
[Go].

Then, as in [Go], we have that for perturbative dynamics, our dimension must
be bounded below by four. By the first theorem the dimension must also be as small
as possible. By the second theorem in combination with the first, the index must
be one. This completes our sketch as to why Lorentzian self-referential geometries
are preferred.

8.2.2 AdS / CFT, and Geometric Langlands

I claim that one can establish the so called anti-de-Sitter / Conformal field theory
correspondence [Mal] using these methods. In particular, I claim that the statement
follows from the Cramer-Rao inequality applied to a sharp self-referential structure,

∫
M
TΛ(m)dm ≥ 0

and the fact that the AdS / CFT and conformal structures correspond to the
antisymmetric and symmetric parts of a critical sharp self-referential structure as
above respectively.

I make the further claim that many of the key questions within the Geometric
Langlands program also follow from the same consideration, albeit in perhaps the
less general case where M = C, the complex numbers.
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8.2.3 Consciousness and Artificial Intelligence

It is always very difficult dealing with issues such as the nature of conscious per-
ception. In particular one encounters difficulties when using many of the standard
tools, since they often underestimate the difficulty of the underlying problem. Many
people have examined this problem in various levels of detail. Penrose has suggested
[Pe] that some new form of quantum mechanics, of potentially quite different and
deeper character than the classical theory may be what is required to gain some
insight into this process.

Consequently, for a first order approximation to at least some idea of what is
going on, I suspect a self-referential quantum mechanical treatment is required. This
fits in with a large amount of intuition, since in much of AI research that has found
practical utility, feedback loops of various description have been implicitly utilised in
the associated engineering implementation. Various studies, I believe, also suggest
that this is a reasonable model for how many processes in the brain operate. And
of course (first-order) self-referential geometry is very strong in this regard.

So my proposed model is to consider an almost sharp self-referential action,

I(Λ, ε) =
∫
M

(T(1)Λ(m) + ε(m)T(2)Λ(m))dm

(noting that higher order terms in the expansion are trivial in 4-dimensional
space), where Λ is a self-referential structure- an 8-tensor- and ε is an expansion
parameter that varies smoothly over M .

Then the Cramer-Rao inequality states that this is strictly non-negative. Eval-
uating the first-variation, and setting to zero, we examine critical dynamics, that
one might be able to use to model conscious perception:

Variation with respect to Λ:

T(1)Λ(m) + εT(2)Λ(m) = 0

Variation with respect to ε:

∂Λ
∂ε

∂T(1)Λ

∂Λ
+ T(2)Λ(m) = 0

Naturally this is only a preliminary indication of how one might proceed with
the analysis. The exciting thing, of course, is that this has immediate applications
to the development of artificial intelligence in software agents.
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An immediate consequence of the above is that we have, as with the Yang-Mills
equations, eight stable families of solutions to these equations, with several eigen-
states per family (this is essentially a more abstract consequence of the geometri-
sation conjecture). This is again in accordance with intuition. For instance, this
is consistent with the multiple intelligences theory due to Howard Gardner (1983).
(The orginal theory was advocated as a form of descriptively categorising different
forms of human personality types.)

8.2.4 Superconductivity

I will make a few brief remarks here about what I believe may be required for the
development of a theory of high temperature superconductivity. Recall that one of
the main objects of interest in the standard theory is the London equation:

εj = −A

where j is the superconducting current (in normalised units), and ε is a small
dimensionless parameter.

But j = −curl(B), and B = curl(A), so the London equation is really

A− ε∇×∇× A = 0

We would like to abstract away from this, and in particular see if this arises
naturally from an information. For then there is the possibility to look at deeper
related information functionals and possibly find and/or derive equations describing
subtler high-Tc physics.

Now first observe that ∇ × ∇ × A = εijkεklm∂jlAm = (δilδjm − δimδjl)∂jlAm =
∇(∇ · A)−∆A.

So if we choose the Gauge so that ∇ · A = 0 (which is the London gauge and
is assumed for the initial equation to make sense), we obtain the following form for
the London equation:

A+ ε∆σA = 0

which is starting to look quite promising indeed. Note that since A is anti-
symmetric we can generalise this into an equation in terms of the curvature of a
generalised Cartan-Riemann metric σ:
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ε∆σRσ = −Rσ

or more generally still

R(1)σ + εR(2)σ = 0

But when would this be the case?

Recall the functional for an almost sharp geometry takes the following approxi-
mate form: ∫

M
Kσ(ε)dm :=

∫
M

(R(1)σ + εR(2)σ + ε2R(3)σ + ...)dm

So this is the underlying functional driving normal low temperature supercon-
ductivity.

It is well known that the High-Tc superconductors tend to have a significantly
more complex crystalline structure than the Low-Tc superconducters. Hence this
suggests that one use more elaborate geometric structures as the basis of a High-Tc
theory, in order to obtain a better theoretical understanding.

It is therefore quite natural to suggest that an almost sharp self-referential struc-
ture may contain the information we need to describe the process of superconduc-
tivity in High-Tc materials.∫

M
(T(1)Λ + εT(2)Λ + ε2T(3)Λ + ...)dm

In other words, not only do we have Cooper pairs propagating through such
materials giving rise to the superconducting state, but these Cooper pairs interact
with one another in a particularly well-structured way, to first order. I claim this is
the key difference between Low-Tc and High-Tc materials.

The engineering question here of course is whether this is immediately applicable
to the development of room temperature (Room-Tc) superconductors. The short
answer is no - in fact a fully general theory would require some even deeper structural
results. Nonetheless, from a practical point of view, it is possible that full generality
is not needed.

Recall that we have three geometric operators at our disposal from before - ∂∗,∧,
and ?. It is natural in this instance to consider ∧, or reverb, since it is closely tied
with the study of solid-state lattice dynamics.

Consequently, we are interested in the modified action
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I(Λ,Σ, ε) =
∫
M
∧(T(1)Λ(m) + εT(2)Λ(m) + ...;TΣ(m))dm

It might also be instructive to take into account viscoplastic effects, as these are
also closely related with solid-state physics. In this case the action of interest will
be

I(Λ,Σ, ε) =∫
M
∧(T(1)Λ1(m)+ε1T(2)Λ1(m)+...;TΣ1(m))∧(T(1)Λ2(m)+ε2T(2)Λ2(m)+...;TΣ2(m))dm

8.3 A digression into economics

The aim of this section will be to introduce the notion of a financial derivative as
a form of generalised currency, and ultimately seek to find the appropriate strategy
for their use by a financial institution. This is evidently quite a current topic, given
recent economic events.

Of course as a trained mathematician, rather than a trained economist, I am in
something of the position of an outsider here. However, it is possible that a fresh
perspective may be what is required, or at least be valuable. Certainly there is
an interesting connection between Information theory - the mining of information
from a system, subject to certain codified rules (ie, a game) - and the use of this
information to determine an optimal strategy to play. Trading in financial securities
is an example of a particular form of game, and is the one that I will focus on in
this section.

It is argued by Nicolas Taleb [Ta1] that in certain types of statistical distri-
butions, highly improbable events can carry a great deal of weight. He makes an
analogy with such distributions (compared to the standard, well behaved ones stud-
ied in the academy) as being symptomatic of fractal behaviour [Ta2]. This is to a
certain extent in accordance with intuition and observation, for instance the way
that in capitalist economies the distribution of wealth tends to organise itself ac-
cording to a scale free, or Pareto type distribution pattern.

Since I am naturally interested in fractal dynamics, I suspect that there may
be something that I might be able to say here. To be more precise, I believe that
the key observation is that an economic market responds holistically to the trades
due to particular players. Normally, these movements are negligible and subject to
arbitrage. However, in the event that feedback loops are not damped, such as in the
instance of an economic bubble, I suspect that it might be instructive to consider
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self-referential geometric drivers for appropriate understanding of the underlying
risk distribution. These will lead to inherently more complex behaviour than might
be predicted by more naive models.

So I claim that self-referential geometry might be useful into taking into ac-
count feedback loops within the economic cycle, and hence indicate appropriate
risk-management strategies for the instances where the market is not damped, but
rather driven by the collective actions of its players.

There is another observation that one can make of course, which is that banking
did perfectly well before derivatives were developed. Consequently in the first sub-
section I argue as to why derivatives are useful (if used properly). The key difficulty
is that many of the current strategies used to valuate the exposure to risk for these
generalised currencies may in fact lack the necessary generality. Corollary to this is
increased susceptibility to fallout from the deflation of bubbles in the valuation of
particular assets.

A final remark is that in practice, of course, full generality is not needed to make
reasonably optimal decisions. However we would like the stripped down versions of
our equations to give an appropriate intuition as to which strategies are safe, and
when.

8.3.1 Derivatives as generalised currency

Derivatives have their roots in the paper by Kenneth Arrow and Gerard Debreu
in their paper ”Existence of an Equilibrium in a Competitive Economy” [AD]. In
particular in proving the main result of their paper they demonstrate that there will
always be a form of abstract currency, or a contract that will pay 1 unit, presupposing
a particular state of an economy occurs at a particular future time, and 0 units
otherwise.

In fact it is possible to demonstrate that the existence of such contracts theo-
retically should enable an economy to function with a greater degree of optimality
than in their absence.

However it is necessary to restrict our consideration to only a particular class of
generalised currencies. It is important not to introduce too great a deal of generality,
otherwise even first-order self-referential geometries will lack the abstraction to cope.
Fortunately most of the forms of contracts used by traders are not subject to such
pathological generalisation, so this is sufficient in practice.

First, a reminder of a fairly standard notion:
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Definition 98. A unit of currency is a contract that one may trade for goods at
a certain agreed rate of exchange within an economy. It is also possible to directly
exchange goods and services for such contracts.

The key advantages of currency over a pure barter system is that it helps fa-
cilitate the optimal usage of goods and services within an economy. For instance,
if person A wants a service from person C, they do not need to barter their com-
modities directly with C, but rather can exchange for contracts of currency with B
in order to obtain the services of C. C then can use these contracts to obtain goods
from B. Hence the generative capacity of an economy is better utilised via such a
universal unit of exchange, which, in general, improves the standard of living of all
participants.

There are weaknesses to the currency system, naturally. These are the perils of
inflation (during times of boom), deflation (during times of economic contraction),
differing rates of exchange with different currencies of other societies, leading to
currency markets. Boom and bust are subject to the psychology and general level
of confidence of the market participants. However the advantages far outweigh the
disadvantages, at least in the long run.

Definition 99. A commodity market is a valuation of a particular good or service
dependent on its level of demand or excess within a society, in terms of a standard
baseline currency. It is possible to also have currency markets, which represent
the rate of exchange between two different societies of their contracts, which will
in general be different according to the varieties of commodities produced by each
society.

Definition 100. An economic state is a point, or range of points in valuation space,
for one or multiple commodity markets.

Definition 101. A unit of First-Order Generalised Currency is a contract that
will pay a unit of currency provided that at some predetermined point or period
of time in the future a particular economic state occurs. Since an economic state
is a valuation in terms of the baseline currency, in this sense such contracts are
derivatives of the underlying unit of exchange.

So in this sense a derivative (in the form that I will use it) is a generalised form
of currency - it is a contract built on the willingness for people to exchange goods
and services for currency contracts within an economy. Since the existence of a
notion of currency helped improve the use of the plant capacity of an economy, we
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would expect, in sufficiently complex economies, for the introduction of derivatives
to further potentially improve the use of industrial and productive capacity. This
in fact was the result of the Arrow-Debreu paper.

For a less formal argument of why we might expect this to be the case, consider
again a person A. I make an analogy with the raising of capital on the basis of
expected return. Suppose A has certain skills and resources to hand, and wishes to
build a factory, but does not have the funds to construct it. Then he might offer
contracts to directly finance the project, for which he will pay dependent on the
future success of his business. For example, shares are one particular instance of
such contracts. These again will be derivatives, since they are based on the state of
the commodities of A at some point in the future, rather than directly related to
what A has currently.

Consequently we have the notion of investment : an institution B with a store of
currency contracts from a group of customers C might exchange these for derivative
contracts from A on the basis of expectation of a future return. It is in the interest
of A to offer such contracts at a rate that it is attractive for B to buy them. Hence,
in the existence of such a generalised currency, A builds the factory, B takes a share
of the future profits, and the customers C take a share of the profits of B. Hence in
this situation, at least, it is clear that the existence of such contracts provides the
means to improve the operation of an economy, as otherwise the factory would not
have been constructed.

There are natural perils to the use of such a generalised currency, of course. An
institution B does not want to extend credit too easily; conversely, if A is dependent
on the supply of credit, a loss of confidence in derivatives markets might cause A
to go out of business since credit might become too expensive to obtain. So once
again, as with baseline currency, there is a vulnerability to market confidence, which
depends in turn on the psychology of its participants.

8.3.2 A standard introduction to Black-Scholes

To recapitulate, I have introduced the notion of generalised currency, and why one
might expect it to be useful. However there remains the problem as to how to price
derivatives in terms of the baseline currency, given existing information as to the
state of the relevant commodity markets.

There have been various methods used for such purposes over the years. Perhaps
the most recent (and the most famous) is the Black-Scholes equation for options
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pricing.

∂V
∂t

+ 1
2
σ2S2 ∂2V

∂S2 + rS ∂V
∂S
− rV = 0

where σ is the volatility of the underlying asset, V is the value of the derivative,
t is time, r is the rate of interest, and S is the value of the underlying asset.

It is essentially a heat equation. There are various standard ad-hoc and intuitive
arguments as to how to derive it in the literature; there is also a large (and growing)
number of papers detailing its deficiencies. I will not focus on the latter, for the
time being, but rather give a standard argument following the treatment of [Wt].

First, as a quick observation, it is easy to see why the value of an option will
increase over time by rV , since this is the growth of the value of the derivative
due to its defined interest rate (which presumably is assumed to be constant). So,
ignoring the last term on the right hand side, I will focus on the remaining two.

Note that if we make the variable substitution T = log(S), then ∂
∂T

= S ∂
∂S

.
Consequently the two terms simplify to

1
2
σ2 ∂2V

∂T 2 + r ∂V
∂T

In other words, it is the log-change of the value of the underlying asset that
matters to the value of the derivative. Why this should be the case is intuitively not
entirely obvious, but we can think of this geometrically in the following way. Suppose
M is the space of variables which influences the value of particular commodities.
Let S : M → R be the value of a particular commodity. Then suppose we wish
to construct a derivative for the same commodity; this will be a function V from
the tangent bundle TM , to R. Consequently to map S to the tangent bundle to
express it in the same units, we must use the inverse of the exponential map, or
the logarithmic function. Since the image of S lives in the reals, this will be the
standard logarithmic function, QED.

Now, it is of interest to ask why first of all the increase in value of the derivative
over time should decrease as r ∂V

∂log(S)
. The reason for this is intuitively as follows. One

wishes to decrease the price of a derivative if the value of the underlying commodity
undergoes an upward movement relative to the present value, since the consumer
has the opportunity instead of selling the commodity direct and investing the capital
in an interest fund or vehicle. Consequently the potential for arbitrage decreases if
this term is positive, and the decrease will be proportional to the interest rate.
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The final term, σ2 ∂2V
∂T 2 , the volatility term, is perhaps the most interesting. Es-

sentially this states that if the acceleration in price of the underlying asset is positive,
the price of the corresponding offered derivative should be decreased proportional to
the volatility in price of the underlying asset. This is a ”risk” term; the underlying
risk here is the price movement of the underlying asset, which will depend directly on
its volatility - that is, the standard deviation of the statistical distribution of likely
outcomes of time evolution of the value of the asset, which for the sake of argument
I will assume is normally distributed (though this is a gross oversimplication in most
instances, of course).

If the value of the asset is accelerating, the value of the derivative decreases, for
the reason that there is the risk that the value will jump statistically higher than
the average rate of increase. Consequently it is better in this instance for an investor
to hold on to the underlying asset and sell at the end of the period, if the price of
the derivative is not changed to compensate. The degree of the risk will depend on
the volatility of the price of the asset, in particular, the variance; consequently the
value of the derivative will decrease proportional to the variance by the acceleration.

Subject to the structural restrictions within which it is constructed, these are
the only considerations that matter- this indeed is the genius of the Black-Scholes
analysis. The fallacy in this instance is instead that of reification; the structural
restrictions which have been applied do not actually represent the messy complexity
of reality. I will not pretend that the techniques that I apply in the following
sections are complete or the final word; what I do claim is that potentially they tell
a more complete tale of the behaviours underlying these processes, in the context of
1-category theoretic terms.

8.3.3 Information theory and strategic pricing

Since, as mentioned before, trading is essentially a game played against the other
players in the market - and not necessarily a zero-sum game, but even potentially a
cooperative one - it stands to reason that there should be some basis for an optimal
strategy based on the information that we have about the state of the system.
Consequently, we might expect to be able to express data about the markets as
a form of information functional, and consequently find the optimal strategy to
proceed towards trying to extremise said information.

Following this vague intuition, I will now give an alternative derivation of Black-
Scholes, grounded within information theory.
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Recall the Black-Scholes equation:

∂V
∂t

+ 1
2
σ2S2 ∂2V

∂S2 + rS ∂V
∂S
− rV = 0

Suppose now we have n assets as the basis of our option. The price of various
assets will depend on the prices of all the others, since generally the cost of producing
a commodity might depend on the resource available to either produce or consume
it. Consequently, there is a metric T that acts on the space of commodities M
such that Tij(S, t) is a correlation metric that represents the correlation between
commodities i and j at time t and commodity vector price S.

In particular it is quite natural to expect the price of such options to behave
according to the equation:

∂V
∂t

+
∂2

TV

∂TS2 − rV = 0

where now ∂T,i = Tij∂i.

If we view interest itself as a commodity, we see that this lacks the necessary
generality and will simplify to the expression

∂V
∂t

+
∂2

T̂
V

∂T̂ Ŝ
2

= 0

Now if we extend T̂ over parameter space {S,interest } to a suitable metric σ
including time, we see that the above equation simplifies again to

∆σV (m) = ∂2
σV

∂σm2 = 0

Subject to a deformation now of σ and V , by partially absorbing V into σ to
leave a function V̄ , we can arrange now for V̄ to be the volume functional for a new
metric τ , such that

∆τ V̄ (m) = 0

but the operation of a metric Laplacian τ on its volume form is just Rτ ; conse-
quently we have that Rτ (m) = 0, where m is the parameter space for the market,
and τ represents the state information.

But now recall that the fisher information functional for a Riemannian manifold
is just
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∫
M
Rτ (m)dm = 0

which is critical precisely when Rτ = 0. Consequently we have that the Black-
Scholes pricing model is a consequence of assuming that the structure of the market
is adequetely described through an appropriate commodity correlation metric τ
over state space M , measuring the associated information, and requiring that it be
critical.

In other words it is a means of optimal extraction of information, subject to
certain structural assumptions. The key assumption is that a particular point in
state space m does not directly affect points n which are not contiguous with respect
to a standard distance function, such as induced by a Riemannian metric. This is
the weak point of the Black-Scholes analysis.

8.3.4 Self-referential economic dynamics and application to
valuation of derivative risk

Suppose as before that we have an option defined over an economic state space M ,
with correlation metric τ . But now suppose that τij depends on τkl, ie that the
correlations are correlated. Then naively we need a tensor Λijkl to provide us the
information of the nature of the correlation. However, as before, there are three
different ways the data might self-correlate, so we need an eight tensor to specify
in full the way τ self-correlates according to the three different possible varieties of
structure.

Consequently to describe the economic indicators specifying the behaviour of
our option appropriately we need an 8-tensor Σ defined over our state space M . We
can then measure the associated information, and require this to be critical:

TΣ(m) = 0

Then I claim using this as a basis for pricing an option, or first order generalised
currency, will avoid the dangers of first order self-correlation within the markets.

It is of some interest to determine what this means in practice. In other words,
we would like to strip the above expression down to a form that would be easy to
use. The first step in the process of simplification is to break Σ up into four metrics
- σ, the correlation metric for the economic state space, τ∧, τ?, τ∂∗ .

The standard Black-Scholes equations can be written roughly as
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∂2
σV

∂σS2 = 0

Taking into account the ? structure, we have

∂2
σ∂

2
τ?

∂σS4 V = 0

and adding the ∧ dynamic:

∂2

∧(σ;
∂2
τ∧

∂S2)

∂2
τ?

∂
∧(σ;

∂2
τ∧

∂S2)

S4 V = 0

and finally the ∂∗ structure:

∂∗(

∂2

∧(σ;
∂2
τ∧

∂S2)

∂2
τ?

∂
∧(σ;

∂2
τ∧

∂S2 )

S4 ;
∂2

τ∂∗
∂S2 )V = 0

So essentially we have an eighth order differential operator acting on the pricing
of our option. I will now attempt to provide some intuition for what the various
forms of structure effectively mean economically.

It makes sense to view τ∧ as being a characteristic of the distribution of capital
available to various players. In a normal economic system, the wealth distribution
will not be uniform, but will follow some form of power law. From this viewpoint
τ∧ details how the wealth distribution responds to various movements in the state
space of the underlying assets.

For τ?, this might well represent the resistance (or lack thereof) of movements
within the state space of a market to further trading.

Finally, τ∂∗ could be viewed as an indicator of consumer confidence, or general
volatility, given a particular state of the market. In particular situations where
confidence is subject to high variability, this can lead to dynamics such as ”market
turbulence”, wherein the pricing of an option might become highly volatile.

So this provides some indication of how better strategies for the valuation of
options might be constructed, in the situation that feedback loops in the market are
not damped. Note however that this is limited to first order generalised currencies,
that is, derivatives built directly from an underlying asset, rather than derivatives
built on top of generalised currencies. Furthermore, whereas in most situations the
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above considerations might be sufficient for appropriate risk valuation, these do not
take into account higher order self-correlations in the market. Therefore a certain
degree of caution must be taken in not mistaking this picture as representing the
market reality.

However it is reasonable to suppose that for practical purposes, the above con-
siderations are enough to construct appropriate strategies for options pricing, under
a wider range of market conditions than standard Black-Scholes.

8.4 Applications to Pure Mathematics

8.4.1 Travelling Salesman Problem

The travelling salesman problem is a key unsolved problem in logistics. Primitively
stated, it asks, given n points pi in a spaceM , what the shortest sequence of geodesics
γi that visits all the pi in turn is.

It has been suggested that this problem might be amenable to variational meth-
ods, since if there is an elegant method to solve it, variational analysis would be a
prime candidate. It is to be noted, though, that nobody has been able to find a
means to make progress on this problem by such means to date.

However, we now have at our disposal a new marvelous machine of great general-
ity; in particular, I claim that self-referential geometry may be of use here. I will now
provide a sketch of how one might determine the appropriate sequence aj such that
nodes i1, ..., in, satisfy the property that the geodesic sequence ia1 7→ ia2 7→ ... 7→ ian

is the shortest possible sequence.

Note that we may assume we have complete information of the matrix of geodesic
paths γ between the nodes as a starting point for our analysis. Also, WLOG, we
may assume that we know the metric σ on the space M wherein the nodes are
embedded, and that it is Riemannian.

Consider

Θαβγδ
ijklabcdYijklYabcdYαβγδ = 0

where Yabcd(t) is to be interpreted as ∂abγcd(t), the ab component of the hessian
of the cd path evaluated at time t. This in nothing other than the equation for a
self-referential geodesic. Since we already know how the geodesics behave, we solve
for Θ.
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Now, for a critical self-referential system, we have that the information density

TΛ = 0

Since we know Θ, we may solve for Λ.

But I claim that this is sufficient to solve our problem. In particular, if we again
compute geodesics using Λ, we require them to solve

∇Λ
Xabcd

Xijkl = 0

where Xabcd = ∂abγcd, where γcd : I×I →M is a two parameter path, so that γ is
a matrix of surfaces. Applying the constraints γ00(0, 0) = i1, γji(1, s) = γ(j+1)i(0, s),
γji(t, 1) = γj(i+1)(t, 0), γnn(1, 1) = i1 provides us with enough information to deter-
mine a node sequence. This is done by diagonalising γ(0, 0), and reading off the
vector diagi(0, 0).1

Then I claim that this will be the sequence we are looking for.

Remark. The most non-trivial part of this analysis is the optimisation step, which
allows us to solve for Λ. This relies on the deep structural theory developed in this
dissertation. The rest is certainly quite difficult, but essentially quite mechanical.

Remark. In standard instances of this problem, which tend to be of greatest fa-
miliarity in practice, Yabcd = 0 since the geometry is flat and hence geodesics are
straight lines. Consequently Θ = 0, so optimisation is satisfied ”trivially”, and we
merely have that Λ is a homogeneous solution to a PDE of 2nd order with eighteen
terms.

Remark. For something in the way of physical interpretation of the eight tensor
Λ in this situation, Λijklabcd(p) can be interpreted to be the interaction strength
between the ab derivative of the geodesic extension of γij with the cd derivative of
the geodesic extension of γkl to p via parallel translation with respect to the standard
Riemannian metric σ on our base space M .

1The way to think of this is a way of extending the computation of single geodesic paths with
respect to the metric σ (which we implicitly knew from the beginning) to the computation of a
sequence of geodesic surfaces simultaneously, such that not only the surfaces, but the sequence is
geodesic, with respect to our self-referential structure Λ (which we have laboriously computed).
Note that we expect, and in fact need Λ to be compatible with σ, so that there exists a mesh for the
geodesic surfaces γij of Λ such that the paths of the mesh are in fact geodesic paths with respect
to σ. Of course this is guaranteed by our original computation of the Christoffel symbols for Λ
from the geodesics for σ.
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8.4.2 The four colour theorem

A closely related problem to that just discussed, and also quite well known, is
that of the four-colourability of planar graphs. It is easy to see that this is in fact
equivalent to the standard description of the result, which is that every plane divided
into regions is four-colourable.

The problem held the status of a conjecture from 1854 when it was first proposed,
until it was resolved via the method of computer-assisted proof in the late 80s.

The question still remains, however, as to how the problem might be resolved in a
more elegant fashion, without such brute force proof techniques. (The original proof
of the conjecture ran to close to half a thousand pages of computer calculation).

I propose the means towards such a solution here, again using the self-referential
geometry to indicate a possible approach. It is natural to consider the self-referential
geometry, since we are considering each node p in a planar graph G rel its neigh-
bouring nodes.

This is not quite as strong as travelling salesman, since we are only interested
in the local planar graphs in G about each node being self-referential. Since we
are considering only local structures, I claim that this is equivalent to placing an
almost sharp self-referential structure on all of G, since we are subject to a degree of
uncertainty regarding the colouring of the neighbourhood of each of the neighbouring
nodes of a base node p, given a colouring about p - which in turn may necessitate
a change in the colouring information at p. Consequently we have an information
interplay between neighbouring local graphs in G, that might not necessarily be
commutative. This leads one to consider quantum groups, and, consequently, almost
sharp structures.

To be more specific as to why an almost sharp self-referential structure is suf-
ficient, note that the operator T(2)Λ will be trivial for G iff, given a node p with
neighbour q, with neighbouring nodes pi, qi respectively, there exists a pi and a qj
that are neighbours with the same colour.

Then it is clear to see that we need at least four colours in order to have a non-
trivial almost sharp self-referential structure, since otherwise T(2)Λ = 0. Conversely,
it is clear to see that, via calculation on the variation of dimension, that the number
of colours will be as few as possible provided that the structures are still well defined,
ie T(2)Λ 6= 0. This completes the sketch of the conjecture.
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8.4.3 The Goldbach Conjecture

This particular open question, whether any even number can be represented as
the sum of two primes, is one of the oldest problems in mathematics. The first
recorded mention of it in the literature is a letter from Christian Goldbach, written
to Leonhard Euler in June, 1742, and so it is consequently usually attributed to the
fellow. However it is a problem of such deceptive simplicity that it is certainly quite
possible various philosophers were aware of this curious apparent property of the
naturals prior to Christian’s written observation.

The purpose of this section will be to indicate a potential line of attack towards
the resolution of this problem, via the device of the self referential calculus.

To begin, one might expect the problem to be related to the twin prime conjec-
ture - that for every odd prime p either p − 2 or p + 2 is also prime. Furthermore
we expect the first to be induced by a functional principle on the measure, and the
second to the corresponding functional principle on the stack. Consequently I will
restrict myself to consideration of the former.

It is clear that, if true, this particular structural conjecture is a criticality result
on 2-tuples of critical subsets of the plane, in an analogous manner to how the RH is
induced by a criticality result on singletons within critical subsets of the line. Since
primes are, by definition, the smallest set of integers which generates all the naturals
by multiplication, they are critical - and the product of a critical set with itself will
also be critical.

Consequently, since we are interested in the interaction of the set of primes with
itself, we are naturally led to consider the application of our information theory for
self-referential geometries, which will be represented by maps from R× R→ R. In
particular, we would like to consider a fully general self-referential signal function
over the real plane, and view the analytic extension to C × C.

In fact it is quite easy to demonstrate via similar proof techniques to those used
in [Go] that we get

∫
(Re(z+w)≥1)

Σ∞n,m=1
anm

nzmw dzdw = 0

where anm ∈ l∞(N ×N).

Proof. (Sketch).

To prove this statement, we start by considering the information density
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∂Σ(TΣ;TΛ)

and require it to be critical, for two separate self-referential structures Λ and
Σ; by the correspondence principle this is equivalent to consideration of a general
signal function over a self-referential statistical superstructure.

Set ∇ := ∂z + ∂w + ∂a + ∂b + ∂c + ∂d.

Then, by the Cramer-Rao inequality, we conclude that

TΣ = 1
Σ4 ? ∧∂∗(∇;∇;∇;∇)2ln(Σ) = 0,

and also that as TΛ = 0 that the second statistical contribution is trivial, since Λ is
constant.

Hence we obtain ? ∧ ∂∗(∇;∇;∇;∇)2ln(Σ) = 0, and consequently ∇2ln(Σ) = 0.
Then (∂z + ∂w + 2(∂a + ∂b))

2ln(Σ) = 0 as Λ is constant, so that Σ(z, w) = H(2(z +
w)− (a+ b))eA(a,b)z+B(a,b)w+C(a,b). Using analyticity, we obtain the above result.

Naturally it is also important to convert the statement of the problem into
a criticality result that can be compared with the results of these methods. In
particular we are interested in showing that it is equivalent to the above.

Now, it is well known that

Σ∞n=1
1
nz = Πp prime

1
1−p−z

- the connection between the standard zeta function and the prime numbers.

Consequently we have

Σ∞n,m=1
1

nzmw = Πp,q prime
1

(1−p−z)(1−q−w)

If we now rewrite the righthand side with the conditional that p + q = 2k, we
have that for an arbitrary k ∈ N , there must exist a sequence anm such that the
following equality holds:

Σ∞n,m=1
anm

nzmw = Πp,q prime|p+q=2k
1

(1−p−z)(1−q−w)

But now via the criticality result for this sequence anm we have that the integral
is zero; consequently
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∫
Re(z+w)≥1

Πp,q prime|p+q=2k
1

(1−p−z)(1−q−w)
dzdw = 0

Now suppose there does not exist a pair p, q such that p + q = 2k. Then the
product is trivially the identity. But then we have that the above integral is infinite,
which is in contradiction with the result that we have from criticality, which is that
it must also be zero. Hence our assumption that such a pair p, q did not exist led
us to a contradiction, and we have for each k ∈ N that there exist primes p, q with
p+ q = 2k, which is what we wanted to demonstrate.

However, this argument does not work; it is circular. For it requires that each
coefficient anm be finite, which depends on the existence of a pair p, q in the first
place.

Consequently we need to use stronger information.

In particular we threw away some of the structure before in the statement of
our first result. We would like to get more control over the coefficients anm, using
this structure.

Recall

? ∧ ∂∗(∇;∇;∇;∇)2ln(Σ) = 0

I claim that this is strong enough to establish the result∫
Aut(C2)×Aut(C2),Re(Σ2

α,β=1Xαβ)≥1
Σ∞i,j,k,l=1

aijkl

n
Xpq
ij mXrs

kl

dXpqdXrs = 0

which I claim in turn has sufficient resolution for our purposes. Here Aut(C2) :=
{C2 → C2} is the set of maps for the square of the complex numbers C × C back
to itself, n,m are now indexed in turn by naturals i, j, k, l, and {Xpq} is a basis for
Aut(C2). It goes without saying that by the inequality Re(Σ2

α,β=1Xαβ) ≥ 1 I am
assuming that this holds for all values Xαβ(z, w) of the functions Xαβ.

This leaves a two-fold task in hand - a careful derivation of the above identity,
and its application to the question of interest. However, this is where I shall leave
this discussion, at least for the time being.
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Chapter 9

Conclusions

9.1 Combinatorics and Deeper Structure

Naturally the story progressively becomes more intricate beyond this point.

A deeper study of the area suggests that we examine the operators ◦∗, ?,∧ as
before and also ◦∗2, ?2,∧2, ◦∗?, ◦∗∧, ?◦∗, ?∧,∧◦∗, and ∧?. These operate in a natural
manner on triples of signal functions. For instance

? ∧ (f ; g;h) := f gh

There is also the new operator ∧2, which acts in the following manner on duples
of signal functions:

∧2(f ; g) := f ∧ ... ∧ f

where g copies of ∧ are taken.

So if the base geometry has a four tensor Λ, there are 12 possible ways to build
structures using the 4 duple operators, leading to the necessity for an invariant of
dimension 48 or greater. If the single duple operators are taken into account, this
leads to necessity for an invariant of dimension greater than 60. Finally if the base
is taken into account, this leads to an invariant of dimension 64; which happens
to be the dimension of operators from TM → TM → TM locally, if M is four
dimensional.

But from before there are three different ways to build four tensors. So this
means that an eight tensor base is required, leading to a 128 dimension invariant
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over a 64 dimensional geometry, which does not make much sense. Ultimately this
leads one to the conclusion that maps from {TM → TM} to {TM → TM} are the
natural ones to consider. This is a dimension 256 geometry, if M is 4 dimensional.

However again this lacks sufficient generality. For there is another new operator
◦∗2, defined in the following way:

◦∗2(f ; g) := ◦∗(f ; ◦∗(f ; ... ◦∗ (f ; f)))

where g copies of ◦∗ are taken.

There is no new operator for ?, since ∧ = ?2 by definition.

Consequently, we are led to 5 duple operators, or ”meta-seals of existence”,
which act on triples of signal functions in 20 different ways; add the three single
duple operators, together with the base, and we have 24 different aspects to take
into consideration, leading to the necessity of a 192 dimensional invariant - and
consequently, for quantum mechanics, a 384 dimensional geometry.

We obtain this increased dimensionality by observing that we previously did
not take into account double composition in Aut(TM), ie TM →φ TM →ψ TM .
If this is instanced together with the observation that this can occur either to the
”left” or ”right” of elements of AutAut(TM), if M is four dimensional we obtain
128 additional degrees of freedom.

Even this, however, is not nearly enough. As observed in the fourth chapter of
this work, it is necessary to consider 2∗∗-categories in order to obtain the necessary
full generality, rather than 2-categories as above. In this case I suspect one has a
256 dimensional invariant for the theory, with 2∗∗-quantum mechanics requiring at
least 512 or 1024 degrees of freedom.

To sketch roughly how the 2∗∗-categories (or enriched 2-categories) add addtional
structure to the theory, I will need to make a brief digression to talk about Jet
Bundles, attributed to Charles Ehresmann (1905-1979) [Ehr]. Recall that to every
differentiable manifold M , one can associate a tangent bundle, TM . But TM is
also a manifold; consequently it has a tangent bundle, T 2M := TTM . Iterating this
process, we see that we can define objects T rM for any natural number r.

Take the limit as r → ∞. Then we have an object TM , with coordinates
(m, v1, v2, v3, ...), or equivalently (m, v), where v lives in the space of infinite matrices.
This is known as the Jet Bundle associated to M .

We expect tensor structures on TM to have additional structure than with ones
on TM , since they have an additional degree of freedom with which to act. Indeed,
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for full generality one requires tensors of double the rank to describe a similar level
of resolution for physical processes.

Returning to our question, note that the left and right action of Aut(M) on
AutAut(M) is intuitively a relationship between tangent spaces. Consequently for
full generality, in order to deal with the surgery of tangent space to tangent space
under the action, one needs to consider the Jet Bundle. Recall now that the original
description of the right or left action required a rank 64 tensor. From our obser-
vations above we see that for full generality we need a tensor of rank 128. This
provides us with the detail that we need.

In such a situation of generality it might seem next to impossible to compute
anything. However, it is worth mentioning that the computation of the Christoffel
symbols for a self-referential geometry can be viewed as the action of a form of finite
discrete group with two generators, and two relations, on the indices of the relevant
tensor. Consequently it makes sense to view the space of indices associated to high
rank tensors as finite groups, and use representation theory to aid computation of
the associated structural invariants.

The Haar integral might be relevant, though I am not certain about this.

It might then be useful to apply the considerable machinery of discrete math-
ematics, representation theory, lie algebras and geometric group theory in order to
make further progress.

9.2 Potential Engineering Applications

Alternatively, instead of stepping into deeper realms of abstraction, one might choose
instead to look back towards an applied physics / engineering direction. There
are three particular applications of the self-referential theory that I can see might
be interesting to pursue. These are, artificial intelligence (which needs no further
explanation or motivation), possible application to the construction of a Casimir
pump (a new type of battery), and possible application towards development of a
”hyperdrive”, ie a new means of propulsion for interstellar spacecraft.

A Casimir pump, for its namesake phenomenon the Casimir effect, is essentially
a heat pump that pumps energy from the space of automorphisms associated to a
spacetime manifold M (the ”hyperspace”) and directs it to M . The rationale for
why self-referential calculus might be applicable here is that the Casimir effect is
inherently quantum mechanical; consequently we expect the higher ”self-referential”
quantum mechanics to perhaps be enabling in this respect.
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The picture to bear in mind is that of activation energy, commonly associated
with biochemistry (see eg ”Essential Cell Biology”, by Alberts, Bray and Walter,
p85). One might sometimes expect there to be a reservoir of energy sitting at a
deeper information level, but inhibited from sifting through to the lower information
level where one requires it by an activation energy ”gap”. In order to access it, one
needs some sort of catalytic mechanism (to lower the gap), together with a certain
amount of input, in order to overcome the activation energy, and release (some of)
the heat in the reservoir to the lower information channel.

To paint an even more simplistic example, suppose one is in a cold house (phys-
ical space, M) and there is an ”outside” (Aut(M)) that has been warmed by the
morning sun. Then if one draws open the blinds covering a window, heat is free to
flow through the glass and enter the house.

For the new methods of propulsion, I believe again the self-referential calculus
will be useful - in particular the Maldacena action

∫
M
TΛ(m)dm associated to a

self-referentiable 8-tensor structure Λ on M , where T is the natural information
invariant, as described in Chapter 8. In particular it would be interesting and
possibly worthwhile at this stage to attempt to sketch the principles required to
propel a craft through Aut(M) by exploring the consequences of the associated
information dynamics - to the point where then applied physicists and engineers
might then be able to turn these ideas into hardware.

I will paint some numbers to motivate the above. Suppose the speed of causal
effects in Aut(M) scales as the square of that in ordinary space. Suppose one
furthermore is interested in travelling, say, 4 light years - the distance from Sol to
the nearest star system. Then if the speed limit scales as the square, and if the
amount of energy to reach a similar fraction of the limiting causal speed compared
with that in ordinary space is of a similar order of magnitude, then we expect the
equivalent distance to travelling in ordinary space to be 4/c ; or roughly 30000km.
For reference, the distance from the earth to the moon is roughly 10 times this.
Since the Apollo missions took roughly 5 days to traverse this distance, one might
expect, with a similar amount of thrust traversing through the higher information
channel, the time required to certainly be no more than 2 months, and possibly less
than 10 days after reaching cruising velocity.

It is perhaps a sensible question to ask why I choose to sully what otherwise
might be a perfectly good dissertation on matters pure and analytical with such
speculative discussion. The answer is fairly simple - solutions are needed, particu-
larly in the modern day and age, to pressing issues regarding the sustainability of
modern living, and it is as much the duty of a scientist to look for solutions as it is
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for the scientist to guard their thinking against untempered thought.

To be more specific, I spoke to a distinguished gentleman (who shall remain
nameless) a year or so ago and he pointed out that with the prevalence of television
soap operas (and doubtless various other media), everybody everywhere was being
encouraged to seek the New York city lifestyle. It goes without saying that, without
a significant increase in tech level, this will be completely impossible to achieve, given
resource limitations. Furthermore, it is possible that in the efforts of the growing
world population to uniformly reach this goal, there may well be consequences that
may not be totally desirable. Regardless, it is my assessment that if the tech level
is advanced sufficiently beyond its current state, then it might be possible to avert,
or at least mitigate, these eventualities.

Certainly a new source of (potentially) practically limitless energy would be
extremely valuable; we would be able to switch to a zero carbon economy almost
overnight. Artificial intelligence has interesting applications to cybernetic enhance-
ment, and may ultimately universally enable potentially transformative effects in
medicine and quality of life. Advanced propulsion technologies associated to auto-
morphism spaces have the potential to extend the sphere of human influence beyond
Sol, and to provide resources that our civilisation needs to grow and maintain our
standard of living - such as from the asteroid belt.

It is possible that the ideas that I have outlined here, and my general approach,
may be fundamentally flawed in various ways. Nonetheless, I am of the general
belief that it is quite possible that the content of this dissertation might prove a
beneficial source of inspiration to future scientists seeking an implementation of the
aforementioned engineering solutions.

9.3 Concluding Remarks

In the first dissertation on these matters, I examined in some detail the structural
details of particular exotic structures on differentiable manifolds. In the sequel I have
studied the geometric resolution of the associated branching processes, culminating
in the examination of first order self-referential geometry.

It is probably quite reasonable to posit that Riemannian geometry is a first order
theory, whereas self-referential geometry is a second order theory. Consequently, it
follows that the theory developed in these treatises only scratches the surface of
what is possible in terms of structural results.
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There are various areas of study that are related, and are certainly of no greater
complexity than those studied by myself so far. In particular, there is a natural
duality between many of these ideas and statistical theory, which I began to develop
in the fourth chapter of this document. This might be worth investigating further.
Again, as before, I mention the equivalence between Heisenberg’s matrix mechanics
- a fundamentally statistical construction, and Schrödinger’s quantum mechanics -
a fundamentally analytic construction.

As to additional questions which might motivate further enquiry I will suggest
a few.

One is the three body problem, and chaos. Closely related is the area of math-
ematics known as catastrophe theory - dealing with abrupt changes in a system
beyond a certain tipping point. For instance, to build an analogy with materials
science, under stress a material behaves elastically up to a particular point. Be-
yond this it undergoes plastic deformation. However, if too much stress is applied,
the material will fracture or break. So the mathematics of the associated processes
might be interesting and worthwhile to study; in particular a third order approach
might be useful here.

In graph theory, the Hadwiger conjecture [W8] might be amenable to third order
methods - that is, methods based on the structural study of 2∗∗-categories.

Also, even though the second order approach might already be useful to a certain
extent, a third order theory would certainly provide the enabling knowledge to
design extremely rapid forms of spaceflight, and also provide the means to construct
ultrafast communications networks. Furthermore, it is possible that control of even
more exotic phenomena might follow via the understanding of critical third order
structures.

There are also numerous problems in number theory that deal with particular
criticality properties of three-tuples of natural numbers, such as the abc-conjecture.
For this last problem, I will give an indication of what I think is required, in the
form of a conjecture.

Conjecture. (2-Aut Criticality). Let Aut(X) be the set of automorphisms on X.
Define Autk(X) as the product Aut(X)× ...×Aut(X), with k copies. Consider the
arbitrary sequence Aᾱβ̄γ̄δ̄, with ᾱ = α1...α4, αi = αi1i2i3i4 and similarly for β, γ, δ,
such that the sum over all indices from 1 to ∞ is finite. Furthermore, consider
arbitrary sequences B1,ᾱ, B2,β̄, B3,γ̄, B4,δ̄. Then I claim that the following equality
is satisfied (subject to some uncertainty as to the appropriate bound for the domain
of integration):
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∫
Aut4Aut4(C4),Re(Σ∞

ī=1
Xī)≥3/2

Σ∞
ᾱ,β̄,γ̄,δ̄=1

Aᾱβ̄γ̄δ̄

B
Xā
1,ᾱB

Xb̄
2,β̄
B

Xc̄
3,γ̄B

Xd̄
4,δ̄

dXādXb̄dXc̄dXd̄ = 0

where Xā := Xa1a2a3a4 is an element of Aut4Aut4(C4), such that ai = ai1i2i3i4
are naturals indexed by the ij, j = 1, .., 4, and similarly for b, c, and d.

Of course given my remarks towards the end of the first section of this chapter,
it is clear that this statement does not encode the full generality of the dynamics
of C4 viewed as an Aut-Aut space. Consequently one might need to search for
the appropriate formulation with the full degree of resolution associated to the
underlying structure, possibly through first obtaining a better understanding of
the foundations of the theory.
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