
A Derivation of π(n) Based on a Stability Analysis of the Riemann-Zeta Function

Michael Harney∗ and Ioannis Iraklis Haranas†

∗841 North 700 West, Pleasant Crove, Utah, 84062, USA. E-mail: michael.harney@signaldisplay.com
†Department of Physics and Astronomy, York University, 314 A Pertie Science Building North York,

Ontario, M3J-1P3, Canada. E-mail: ioannis@yorku.ca

The prime-number counting function π(n), which is significant in the prime number the-
orem, is derived by analyzing the region of convergence of the real-part of the Riemann-
Zeta function using the unilateral z-transform. In order to satisfy the stability criteria
of the z-transform, it is found that the real part of the Riemann-Zeta function must con-
verge to the prime-counting function.

1 Introduction

The Riemann-Zeta function, which is an infinite series in a
complex variable s, has been shown to be useful in analyzing
nuclear energy levels [1] and the filling of s1-shell electrons in
the periodic table [2]. The following analysis of the Riemann-
Zeta function with a z-transform shows the stability zones and
requirements for the real and complex variables.

2 Stability with the z-transform

The Riemann-Zeta function is defined as

Γ(s) =

∞∑

n=1

n−s. (1)

We start by setting the following equality

Γ(s) =

∞∑

n=1

n−s =

∞∑

n=1

e−as. (2)

Then by simplifying

n−s = e−as = e−a(r+ jω) (3)

and taking natural logarithm of both sides we obtain

− s ln(n) = − as. (4)

We then find the constant a such that

a = ln(n). (5)

We then apply the unilateral z-transform on (1):

Γ(s) =

∞∑

n=1

n−sz−n =

∞∑

n=1

e−asz−n =

∞∑

n=1

e−a(r+ jω)z−n. (6)

Substituting (5), the real part of (6) becomes:

Re [Γ(s)] =

∞∑

n=1

e−arz−n =

∞∑

n=1

e−r ln(n)z−n. (7)

In order to find the region of convergence (ROC) of (7),
we have to factor (7) to the common exponent −n, which re-
quires

r = n/ ln(n), (8)

which is the same as saying that the real part of Γ(s) must
converge to the prime-number counting function π(n). With
(8) satisfied, (7) becomes

Re [Γ(s)] =

∞∑

n=1

(ez)−n. (9)

which has a region of convergence (ROC)

ROC =
1

1 − 1
ez

. (10)

To be within the region of convergence, z must satisfy the
following relation

|z| > e−1 or |z| > 0.368. (11)

which, places z within the critical strip. It can also be shown
that the imaginary part of (6)

Im [Γ(s)] =

∞∑

n=1

e−a jωz−n =

∞∑

n=1

e− jω ln(n)z−n. (12)

converges based on the Fourier series of
∑

e− jω ln(n).

3 Conclusions

The prime number-counting function π(n) has been derived
from a stability analysis of the Riemann-Zeta function using
the z-transform. It is found that the real part of the roots of
the zeta function correspond to π(n) under the conditions of
stability dictated by the unit-circle of the z-transform. The
distribution of prime numbers has been found to be useful in
analyzing electron and nuclear energy levels.
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