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1. Abstract 
Whereas globally energy propagates continuously as a wave, in this note we consider that energy can be 
represented locally by an exponential of time. Using such representation we are able to show that Planck's  
Formula for blackbody radiation is an exact mathematical identity. We are also able to explain the 
photoelectric effect without the photon hypothesis and derive an equation relating the photoelectric current 
to the intensity and frequency of radiation. This equation conforms well with graphical characteristics of 
the actual experimental data. Moreover, this representation of energy explains the quantum hypothesis,  
provides a simple intuitive explanation of the double-slit experiment and permits a definition of the 
temperature of radiation. It also explains the physical meaning of Planck's constant h and why it exists.

2. Introduction
We have proven elsewhere the following mathematical equivalence,
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We have also shown     that for any integrable function E(t), 
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Planck's Formula for blackbody radiation states that 
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where E is energy, ν is frequency, T is temperature, h is Planck's constant and k is Boltzmann's constant. 
It is well known that this formula fits the experimental data remarkably well. Note that Planck's Formula 
(3) has the exact mathematical form to (1). This suggests that energy can be represented by an exponential. 
Or, if we were to consider theoretical and practical limitations to experimental data, then we can assume 
that ( )E t  is only an integrable function and Planck's Formula would then be the 'best fit possible'. So (3) 
can be compared to (2) in any event. But to avoid limits and approximations, however, and to have a 
mathematical formalism that deals with exact identities, we will consider that Planck's Formula is an exact 
relationship. Thus we argue, by (1), energy can be represented locally by an exponential of time. We have,

Time-dependent Local Representation of Energy: With radioactive decay we know the ‘source’ is 
'cooling' down exponentially. Similarly with radiation, we assume the ‘sensor’ is 'heating' up exponentially. 
We adapt the view that while globally energy propagates continuously as a wave, locally energy interacts 
discretely in increments of E∆ . We have the following representations of energy.

1. Globally, radiation energy from a 'source'  propagates continuously as a wave.
2. Locally, radiation energy at the 'sensor' is given by an exponential function of time, 

0( ) tE t E eν= , where 0E  is the intensity and ν is the frequency (rate) of radiation. 
3. At local equilibrium the average energy locally at a point is equal to the average energy globally  

per degree of freedom. 
4. When local equilibrium is attained, the function ( )E t  'collapses' to 0E  (see figure 1) and a 

discrete  amount of energy E∆  is manifested  (absorbed or emitted).
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Thus locally at a point of interaction, and before 'local equilibrium' is attained (when the 'average energy 
locally' at a point equals to the 'average energy globally' per degree of freedom) energy can be represented 
by,

0( ) tE t E eν=           (4)

where 0E  is the intensity of radiation and ν  is the frequency of radiation. Equilibrium necessitates that a 
minimal amount of energy accumulate in order that energy be manifested (this explains the existence of  
Planck's constant h ). This minimal amount of locally accumulated energy before energy can be manifested 
we claim is h , Planck's constant (note that the units of h match this formulation). When 'local equilibrium' 
is attained, energy is manifested (absorbed or emitted) in increments  of 0( ) ( )E E t E t∆ = − . Thus, when 
'local equilibrium' is attained (and so an amount of energy E∆  is manifested), the above exponential 
representation (4) 'collapses' and resets again to 0E , since 0( )E t E E− ∆ =  (see figures 1 and 2).

3. Planck's Formula
For any integrable function E(t), we have the following   mathematical identity.   
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For a 'source' of radiation with temperature T , using (4) we can represent energy locally by 0( ) tE t E eν= , 

where 0E  is the intensity of radiation and ν is the frequency of radiation. Since the 'average energy of the 

source' per degree of freedom is kT , at 'local equilibrium' we have avE kT=  and hη =  (the associated 
accumulation of energy) from above. Using these values in the mathematical identity (5), we have
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and from (6), we get Planck's Formula,
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It is also mathematically true that
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Since (5) above is an exact mathematical identity, we have the following interesting conclusion:

Planck's Formula is an exact mathematical identity that describes the interaction of energy (e.g.  
measurement). That is to say, from (8) above, the mathematical relationship between the 
(instantaneous) energy 0E  at the 'sensor', the energy absorbed by the 'sensor' E∆  , and the average 
energy at the 'sensor' E  .
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Note further that since by (9) above 0
1av

E
E

EE
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∆
∆=

−
 is independent of E∆ , this formula can always be 

reduced to Planck's Formula, with E hν∆ =  and E kT= . This would then explain why Planck's  
Formula is such a remarkably exact fit to the experimental data.

From the above results, we can also conclude that the time required for an accumulation of energy h  to 
occur is given by,

h
kT

τ =        (10)

4. The Quantum Hypothesis
The Quantum Hypothesis simply states that energy is manifested (absorbed or emitted) in discrete units of 
size hν :

E nhν∆ =                       (11)
where n  is an integer, h is Planck's constant and ν is the frequency of radiation. 

The Quantum Hypothesis was used by Planck and Einstein to derive Planck's Formula and explain the 
Photoelectric Effect. Using the representation of energy described above in section 2, we can 
mathematically explain the Quantum Hypothesis:

For any exponential function, we have the following   mathematical equivalence  :

0( ) tE t E eν=    if and only if    E η ν∆ =                       (12)

where 0( ) ( )E E t E t∆ = −   and   
0

( )
t

t

E u duη = ∫
From the local representation of energy (4), we have 0( ) tE t E eν= , where 0E  is the intensity of radiation 
and ν  is the frequency of radiation. For energy to be manifested (absorbed or emitted) we need to have 
'local equilibrium' and therefore some minimal amount of accumulated energy. We take this minimal 
amount of accumulated energy to be Planck's constant h . From (12), the manifested energy E∆  will then 
be,

E hν∆ =        (13)

Since once this amount of energy is manifested the exponential 'collapses' (see figures 1 and 2), we get

E nhν∆ =        (14) 

                                       figure 1                   figure 2 
     Note that the graph E vs. t in figure 2 is a linear step function.
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5. The Photoelectric Effect
Photoelectric emission is characterized by the following experimental facts:

1. For a given metal surface and frequency of incident radiation, the rate at which photoelectrons are 
emitted (the photoelectric current) is directly proportional to the intensity of the incident light. 

2. The energy of the emitted photoelectron is independent of the intensity of the incident light but 
depends on the frequency of the incident light. 

3. For a given metal, there exists a certain minimum frequency of incident radiation below which no 
photoelectrons are emitted. This frequency is called the threshold frequency. (can be disputed)

4. The time lag between the incidence of radiation and the emission of photoelectrons is very small, 
less than 10-9 second. 

Explanation of the Photoelectric Effect without the Photon Hypothesis: Let ν  be the frequency (rate) of 
radiation of an incident light on a metal surface and let α  be the frequency (rate) of absorption of this 
radiation by the metal surface. The combined rate locally at the surface will then be ν α−  and using the 
representation of energy in section 2, the radiation energy at the surface can be represented by

( )
0( ) tE t E e ν α−= , where 0E  is the intensity of radiation of the incident light. If we let P  be the 

'accumulation of energy' locally at the surface over a 'time pulse' τ , then by (12) we'll have that, 
( )E P ν α∆ = −                            (15) 

If as before we let Planck's constant h  be the 'accumulation of energy' for an electron, the number of 

electrons en over the 'pulse of time'  τ will then be e
Pn
h

=  and the energy of an electron eE∆  will be 
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∫ , we can calculate the photoelectric current I  to be
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The 'absorption rate' α  is a characteristic of the metal surface, while the 'pulse of time' τ is assumed to be 

constant for fixed experimental conditions. The quantity 
( )

( )
1e

h

ν α τ

ν α τ

− −
 − 

 would then be constant. 

Combining these and using (16) and (17) we have The Photoelectric Effect:
1) For incident light of fixed frequency ν  and fixed metal surface, the photoelectric current I is 

proportional to the intensity 0E  of the incident light.

2) The energy eE∆  of a photoelectron depends only on the frequency ν and not on the intensity 0E  

of the incident light. It is given by the equation ( )eE h ν α∆ = −  where h  is Planck's constant 
and the 'absorption rate' α  is a property of the metal surface.

3) If eE∆  is taken to be the kinetic energy of a photoelectron, then for incident light with frequency
ν less than the 'threshold frequency' α  the kinetic energy of a photoelectron would be negative 
and so there will be no photoelectric current.

4) The photoelectric current is almost instantaneous ( 910  sec.−< ), since for a single photoelectron 

we have that 910  sec.ht
kT

−∆ = <  by equation (10) above.
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Preliminary experimental graphical analysis: 
Many experiments since the classic 1916 experiments of Millikan have shown that there is photoelectric 
current even for frequencies below the threshold, contrary to the accepted explanation by Einstein. In fact, 
the original experimental data of Millikan show an asymptotic behavior of the (current) vs (energy) curves 
along the energy axis with no clear 'threshold frequency'. The photoelectric equations (16) and (17) we 
derived above agree with these experimental anomalies, however. 

In an article Richard Keesing of York University, UK , states,

I noticed that a reverse photo-current existed …   and try as I might I could not get rid  
of it. 
…
My first disquieting observation with the new tube was that the I/V  curves had high 
energy tails on them and always approached the voltage axis asymptotically. I had 
been brought up to believe that the current would show a well defined cut off,  
however my curves just refused to do so.
…  
Several years later I was demonstrating in our first year lab here and found that the 
apparatus we had for measuring Planck's constant had similar problems.
… 
After considerable soul searching it suddenly occurred on me that there was 
something wrong with the theory of the photoelectric effect …

    
In the same article, taking the original experimental data from the 1916 experiments by Millikan, Prof. 
Keesing plots the following graphs,

                               
                                                                                 figure 3

We analyze the asymptotic behavior of equation (17) by using a function of the same form as (17).
Note: we use d to account for slight shifts of experimental graphs made for clarity

                              ( )( ) 1
( )

b x cA e
f x d

x c

− −
= +

−
       (18)

The following graphs match the above experimental data to various graphs (in red) of equation (18)

       
           A=0.13 b=1.98 c=5.95 d=0,07             A=0.09 b=2.07 c=4.88 d=0.09             A=0.05 b=1.41 c=3.04 d=0.18
                          figure 4                                            figure 5                                            figure 6
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6. The   double-slit   Experiment:  
The results derived in this paper using the representation of energy described in section 2 suggest that while 
the 'measurement' of energy is made in discrete units (equal size sips), the 'propagation' of energy can be 
continuous. This view explains the wave-particle duality and the measurement problem of Quantum 
Mechanics. This view also helps explain the   double-slit experiment   below:

The 'light burst' at the detection screen (the 'sensor') in a double-slit experiment may not signify the arrival 
of "the" electron emitted from the 'source' and going through one or the other of the slits as a particle then 
strikes the screen. Rather, what we have is an 'event' of a light burst by some atom on the detection screen, 
having absorbed enough radiant energy to cause it to 'pop' (much like popcorn at seemingly random manner 
once a seed has absorbed enough heat energy). The parts of the detection screen that are 'illuminated' more 
frequently by radiation energy will of course show more 'popping'. 

What is emitted when an electron is 'fired' is a burst of energy which propagates continuously as a wave 
and going through both slits 'illuminates' the detection screen in the typical interference pattern observed. 
For small bursts of energy, the 'illumination' of the screen in an interference pattern may not be manifested 
instantly, however. If locally the accumulation of energy has not reached the minimum threshold, energy 
will not be manifested in a discrete 'light burst' (in accordance with the above results). If the emitted bursts 
of energy are very small, the 'accumulation of energy' locally at various points of the detection screen will 
build up slowly, but more so in certain parts of the screen. Thus, the interference pattern will emerge only 
after a longer period of time, as more atoms absorb enough energy to cause them to 'pop' more frequently at 
those locations of the screen.  

This explanation is a natural consequence of the representation of energy we have formulated in section 2. 
It is also logically consistent and totally compatible with the 'probability distribution' interpretation of 
Quantum Mechanics.

7. The Temperature of Radiation
Temperature is typically defined as a thermodynamic property of large systems consisting of many 
particles. It is the average kinetic energy of the system. Such definition plainly does not apply to radiation, 
and so radiation is said not to 'have temperature'. The effects of radiation can be felt as temperature, but 
radiation does not have temperature. This is rather odd. We adopt the view instead that temperature is as 
much a 'physical property' as a theoretical concept. And though temperature cannot be defined for radiation 
in the sense of thermodynamics, nonetheless temperature exists for radiation. Following the same ideas we 
applied above regarding energy, we are able to define a quantity that behaves like the 'temperature of  
radiation'. 

Consider some incident radiation. Consider that locally at a point this energy is given by an integrable 

function of time ( )E t . We can define the temperature of radiation as  
1 η
κ τ

 =   
T  , 

where 
0

( )E u du
τ

η = ∫   and κ  is an arbitrary constant used for purposes of scaling. Clearly, the faster the 

accumulation of energy builds up, the higher the temperature will be. Note further that the average energy 
at a point is given by avE κ= T . This conforms well with the average kinetic energy kT  per degree of 
freedom for a large system.  Note further that both such temperatures play the same role in (1) and in 
Planck's Formula (3). 
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