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Abstract 

 

The set of all the subsets of a set is its power set, and the cardinality of the 

power set is always larger than the set and its subsets.  Based on the definition 

and the inequality in cardinality, a set cannot include its power set as element, 

and a power set cannot include itself as element.  “Russell’s set” is a putative 

set of all the sets that don’t include themselves as element.  It can be shown, 

however, that “Russell’s set” can never take in all such sets.  This is because 

its own power set, which (like any power set) is a set that doesn’t include 

itself (thus qualifies as an element for “Russell’s set”), cannot (although 

should) be taken in due to the cardinality inequality.  Thus “Russell’s set” can 

never be formed.  Without it, Russell’s paradox, which forced the 

modification of Cantor’s intuitive set theory into a more restricted axiomatic 

theory, can never be formulated.  The reported approach to resolve Russell’s 

paradox is fundamentally different from the conventional approaches.  It may 

restore the self-consistency of Cantor’s original set theory, make the Axiom of 

Regularity unnecessary, and expand the coverage of set to assemblies that 

include themselves as element. 
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1. RELATIONSHIP BETWEEN A SET AND ITS POWER SET 

 

Set theory, originated by Cantor, is of fundamental importance to 

mathematics (see e.g. Potter 2004).  To form a (nonempty) set X, a certain 

number of distinct objects are identified, as its elements x, and assembled by a 

proposition (or unary predicate) P(x): 

 

 X = {x: P(x)} (1) 

 

The proposition specifies the property (to identify “what kind”) and the 

inclusion (to assemble “how many”) of the elements.   

A set, X’, that includes only elements of X is a subset of X, denoted 

here as either X’  X, if X’ includes only part of elements of X, or X’  X, if 

X’ includes all the elements of X.  The set of all the subsets is the power set of 

X, denoted here as X.   

The size of set X is measured by its cardinality, |X|.  From his original, 

now often called “intuitive”, set theory, Cantor proved that in general, the 

cardinalities of X, X’, and X obey the following order (Cantor’s theorem): 

 

  |X’|  |X| < |X| (2) 

 

Let S be a set of sets.  Then its subsets S’ and power set S are also 

sets of sets.  Depending on the formation proposition, S may include its S’ (i.e. 

S’S), or even itself (i.e. SS), but never its S (i.e. SS) because of the 

cardinality inequality (2).  Since the elements of S are the S’ of S (including 

S), and S ≠ S or any S’ due to (2), S can never include itself (i.e. 

SS).  In summary, one has the following relationships: 

 

 SS (3) 

SS (4) 

 

2. RUSSELL’S PARADOX 

 

 The paradox can be formulated as follows.  Let’s consider sets, 

denoted as Q, that don’t include themselves, i.e. QQ.  Let R (“Russell’s set”) 

be the set of all such sets:  

 

 R = {Q: QQ} (5)  
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The proposition in (5) specifies “QQ” as the property and “all” as the 

inclusion.  If one asks “Does RR?” then one gets two contradictions, 

resulting in the Russell’s paradox: 

If RR, then R is itself an element.  Based on the property part of the 

proposition in (5), R shall have the property of RR, same as Q.  This leads to 

the 1
st
 contradiction;   

If RR, then R has the same property as Q.  Based on the inclusion 

part of the proposition in (5), R shall be included as an element, or RR.  This 

leads to the 2
nd

 contradiction.  

 The apparent inability to resolve Russell’s paradox within Cantor’s set 

theory forced various modifications on the theory, developed originally as the 

logic foundation of mathematics.  All the attempts to remove this paradox 

have so far relied on the formulation restrictions of either set (e.g. type theory, 

class-set theory or axiomatic set theory) or proposition (e.g. 2
nd

 order theory 

and New Foundation theory) (see e.g. Potter 2004).  In the widely accepted 

Zermelo-Fraenkel axiomatic set theory, Russell’s paradox is avoided by the 

Axiom of Regularity, which considers any assembly that includes itself as 

element (including “Russell’s set”) as “proper class” only but disqualifies it 

from being a set.  The axiomitization allowed the further development of set 

theory, although it sacrificed the generality of Cantor’s intuitive set principles.   

 Historically, Canton’s original set theory is presumed unable to avoid 

Russell’s paradox, because the property part of the Russell proposition (5) is 

allowable by Canton’s principles (Unrestricted Comprehension axioms), and 

the “Russell’s set” R is presumed constructible from Cantor’s principles as 

directed by (5).  The paradoxical property of R is presumed to reflect a 

fundamental inconsistency in Cantor’s set theory, and presumably it can be 

resolved only after a specific axiom, the Axiom of Regularity, is applied to 

disallow any elements of the Russell property from forming a set.  

Instead of the property part, could the Russell paradox arise from the 

inclusion part of (5)?  Is it possible that R cannot be formed within Cantor’s 

theory?  If so, then there would be no Russell’s paradox. 

 

3. CAUSATION OF RUSSELL’S PARADOX 

 

 The formation of “Russell’s set” R in (5) involves proposition 

formulation, element identification, and set assemblage.  Which of these 

causes Russell’s paradox? 
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Suppose that in the universe there are in total n sets, denoted as Q, that 

don’t contain themselves as element (i.e. QQ): Q1, Q2, …Qm, …Qn.  Let’s 

consider a set R’ which includes some, but not all these sets:   

 

 R’ = {Q1, Q2, …Qm} (6)   

 

The proposition in (6) specifies “QQ” as the property and “some” as the 

inclusion.  It differs from the one in (5) only by the inclusion part.  Does 

R’R’?   

If R’R’, then R’ is an element of itself.  Based on the property part 

of the proposition in (6), R’ shall have the property of R’R’, same as Q.  

Obviously this leads to a contradiction (like the 1
st
 contradiction of Russell’s 

paradox);   

If R’R’, then R’ has the same property as Q.  Based on the inclusion 

part of the proposition in (6), R does not have to be included as an element in 

(6).  Thus R’R’ can stand, and no contradiction (like the 2
nd

 contradiction of 

Russell’s paradox) arises.  

R’ is a proper subset of “Russell’s set” R (i.e. R’ R).  In contrast to R, 

R’ is not paradoxical.  Comparing the analyses following (5) and (6), one 

notices that Russell’s paradox is trigged when the inclusion part of the 

proposition in (6) is extended in (5) from “some” to “all”.  Then one may ask: 

Is such extension to include/assemble all Q into a set as R in (5) allowed by 

Cantor’s set theory?  If not, then “Russell’s set” cannot be formed, and 

consequently Russell’s paradox can never be formulated. 

 

4. RESOLVING RUSSELL’S PARADOX WITHIN CANTOR’S SET 

THEORY 

 

 Suppose that “Russell’s set” R could be assembled as in (5).  Then the 

assemblage would ensure the existence of another set of sets, R, the power 

set of R.   

According to (4), RR.  Thus R is a set that has the same 

property as the elements of R.  The proposition in (5) would then include R 

into R, making RR.  However, this is strictly prohibited by (3)! 

Thus the assemblage of all Q in (5) would ensure the existence of a set 

that should be, but cannot be, included into the assembly as its element.  

Therefore the inclusion part, “all”, of the proposition in (5) can never be 

executed.  Consequently, “Russell’s set” R can never be formed. 
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The fundamental relationships of a set and its power set, (2), (3), and 

(4), of Cantor’s set theory prevents the formation of “Russell’s set”.  Without 

“Russell’s set”, there is simply no Russell’s paradox.  Thus, even without the 

Axiom of Regularity, Cantor’s set theory can resolve Russell’s paradox.   

It is emphasized that the approach to resolve Russell’s paradox 

described above is fundamentally different from the conventional ones, which 

all act on the property part of the proposition (5) by modifying Cantor’s 

general set-forming principles (Unrestricted Comprehension axioms).  In 

contrast, the new approach acts on the inclusion part of the proposition (5) 

while preserving Cantor’s principles.  The fact that Russell’s paradox can be 

resolved within Cantor’s intuitive set theory makes the Axiom of Regularity, 

which is used in the axiomatic set theory to disallow Russell’s paradox, 

unnecessary.  Consequently any assembly that includes itself as element may 

again qualify being a set, and Cantor’s original set theory may regain its self-

consistency. 

 

5. SETS OF ALL THE SETS THAT SHARE A COMMON PROPERTY 

 

In Section 4, it is shown, by resolving Russell’s paradox, that one can 

never assemble all the sets that don’t include themselves as element into a set 

(“Russell’s set”), due to the relationships of (2), (3), and (4).  Other similar 

cases exist as well: 

One is the “set of all power sets”, P.  The assemblage of P would 

ensure the existence of another power set, P.  P should be an element of P, 

i.e. PP, but cannot because of (3), i.e. PP.  Thus P can never be 

formed. 

Another is the “set of all sets” or “universal set”.  Historically, Cantor 

disproved its existence, by resolving Cantor’s paradox with the help of (2) and 

(3). 

The resolve of Russell’s paradox as demonstrated above may loosen 

the axiomatic restriction on, and expand the horizon of, set theory. 

 

6. INFINITUDE OF THE SETS THAT DO NOT INCLUDE 

THEMSELVES 

 

 Using paradox to prove theorem is widely practiced in mathematics.  

One can use Russell’s paradox to prove the infinitude of the sets that don’t 

include themselves: 
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 Assume that there are only finite numbers of distinct sets, Q, that don’t 

include themselves as elements (QQ): Q1, Q2, … Qn.  Let’s assemble all the 

Q into a set T: 

 

 T = {Q1, Q2, … Qn} (7) 

 

and investigate whether TT. 

If TT, then T is an element of itself.  Based on the property part of 

the proposition in (7), T shall have the property of TT, same as Q.  

Obviously this leads to a contradiction (like the 1
st
 contradiction of Russell’s 

paradox);   

If TT, then T has the same property as Q.  Based on the inclusion 

part of the proposition in (7), T must be one of the Q, making TT.  

Obviously this leads to another contradiction (like the 2
nd

 contradiction of 

Russell’s paradox).  

 Thus, T must be a set that does not include itself, like Q, and does not 

belong to the Q1, Q2, … Qn.  Therefore any finite Q1, Q2, … Qn cannot include 

all the sets that don’t include themselves.  In other words, the number of the 

sets that don’t include themselves as element is infinite. 

 This proof is similar to Euclid’s proof of the infinitude of primes.  The 

same approach may be applied to prove the infinitude of power sets or even 

sets in general. 
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