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We describe an empirical study of the formation of knots in open and closed self-avoiding walks 

(SAWs), based on a simple model involving randomly agitated cords. The results suggest that 

the probability of a closed SAW remaining knot-free follows a similar scaling law to that for 

open-ended SAWs. In particular, the process of closing a given SAW prior to random agitation 

substantially increases the probability that it will be knot-free following agitation. The results 

point to a remedy for the well-known problem of tangling of cord, rope, headphone cables etc. 

The simple act of connecting the two free ends to each other, thus creating a loop, greatly 

reduces the risk of such tangling. Other implications, in particular for DNA storage in cells, are 

briefly discussed.  

 

 

 

Background theory  

The probability of a self-avoiding walk (SAW) remaining free of a 

knotted arc after N steps is bounded above by Po(N) where  

 

Po(N) < exp[-kN + o(N)]   k > 0    (1) 

 

This well-known result, due to Sumners and Whittington (1988), 

suggests that the probability of a randomly agitated length of cord 

remaining knot-free will follow a similar relationship. Specifically, 

if L is the total length of the cord and L* denotes the smallest 

length of cord capable of forming at least a 31 knot the probability 

of the cord remaining knot-free is expected to follow a 

relationship of the form   

 

 Po(L) <   exp[-k(L -  L*) ]    L >  L*   (2) 

 

This functional form has been confirmed by many studies, both 

experimental (eg Hickford et al 2006) and computational (eg 

Deguchi & Tsurusaki 1997).  

   Consider now the case where the two free ends of such a cord 

are joined prior to agitation1.  One would expect the probability of 

the resulting loop staying knot-free to be higher than the bound set 

by (2). Firstly, the process of looping reduces the maximal linear 

length available for knot formation from L to L/2. Secondly, the 

formation of knots in the looped cord is a more demanding 

phenomenon than in the free-ended case, requiring that 2n ( n = 1, 

2,…) arcs each of length S (2L* < S < L/2) remain sufficiently 

close together to perform the spatial manoeuvres involved in knot 

formation.    

   This suggests that the probability of a looped cord remaining 

knot-free will follow a relationship analogous to (2), with  

 

Po(L) |loop   <   exp[-k(Lloop -  L*loop) ]   Lloop >  L*loop (3) 

 

where we now have  

 

Lloop  = αL  with α < 0.5 

 

reflecting the fact that no more than L/2 of the original cord length 

can be sufficiently close together to form at least a 31 knot, while  

 

L*loop = βL*  with β > 2 

 

                                                 
*Email: rajm@physics.org 
1  In what follows, the concept of “knot formation in loops” refers 

specifically to knot formation in cord turned into a loop prior to random 
agitation. This is in contrast to the focus of much existing research, 

namely the formation of knots in SAWs prior to the joining of their free 

ends, leading to knots trapped within a looped SAW.    

 

reflecting the fact that the loop requires a length of at least twice 

L* in order to form at least a 31 knot.   

 

Experimental results  

To investigate the validity of the relationships (2) and (3) above, 

we randomly agitated four cords of length L = 0.5, 1.0, 1.5 and 2 

metres respectively,  in both the free-ended and looped states. The  

cord was standard office parcel string, and the agitation done by 

hand for 10 seconds for a total of 5 sets of 20 trials for each of the 

four lengths in both the free-ended and looped states, giving a 

total of 400 trials for each state.  

 

(a) Free-ended cord  We found that the probability of a given 

length of cord with free ends remaining free of knots was well 

represented by a relationship of the general form given by (2), 

confirming previous research; see below (error bars are + 1σ): 
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A least-squares fit to the data gives:  

 

 Po(L) =   exp[ -0.786(L  -  0.03) ]                                (4)     

 

This functional dependence of knot freedom on length L implies 

that for the type of cord used, at least 0.03 m is required to 

generate at least a 31 knot, and that the probability of remaining 

knot-free halves for every 0.88 metres of length.  

 

(b) Looped cord  We found that the probability of looped cord 

remaining free of knots was also well-represented by the 

theoretical relationship given above:   
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A least-squares fit to the data leads to  

 

Po(L)|loop  =   exp[ -0.255(L -  0.32) ]                                      (5)

  

As predicted, the probability of the looped cord remaining free of 

knots is considerably higher than for the free-ended cord for all 

measured L, and declines considerably more slowly, halving for 

every 2.7 metres in length. Furthermore, the minimal length 

required for the formation of even a simple knot  is an order of 

magnitude greater than for the free-ended case, at 0.32 metres.  

    Re-casting the empirical relationship (5) into the canonical form 

(3), we find that the experimental values of α and β also agree 

with the predicted bounds given above. Specifically, we find that  

 

Po(L) |loop  =   exp[-0.786(Lloop -  0.104) ]                                (6) 

                           

leading to α = 0.325 and β = 3.47. Thus a length L of the cord used 

in these trials behaves as one of effective knottable length 0.325L 

when looped, with a greater amount of cord also being needed to 

form any form of knot.  

    This result suggests that looping a cord prior to random 

agitation produces a significant reduction in the risk of the cord 

becoming knotted. This benefit from looping is most clearly seen 

from the ratio R of the probabilities of forming at least one knot:  

 

R(L) ≡ [1 – Po(L)]/[1 – Po(L) |loop].       L > L*loop                    (7) 

 

Inserting the empirical forms for Po(L) and Po(L)|loop from (4) and 

(5) respectively leads to the following plot:  
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This shows that, for the cord used in this study, the act of looping 

reduces the risk of knotting by at least an order of magnitude for 

L up to ~ 0.5m, and by a factor of > 2 even for lengths up to 2m. 

The benefit of looping will be different for other materials with 

different stiffness, thickness etc., and in  some cases may be even 

greater than shown here.  

 

Discussion 

The above results suggest that the knotting probability of looped 

cord follows a similar functional dependency on L as that of both 

real cord (Raymer & Smith 2007) and simulated SAWs (eg 

Deguchi & Tsurusaki 1997).  As such, this study points to a 

simple way of combating the notorious problem of knotting in 

long lengths of cord, flex, rope etc first noted at least a century 

ago (Jerome, 1889). The effect on knotting probability of looping 

may also have a bearing on less “trivial” issues, such as the 

presence of loops in chromatin (eg Bohn, Heerman & van Driel 

2007; Mateos-Langerak et al 2009).  

   A number of further questions suggest themselves for 

investigation: 

 

Practical  

 What are the effects of altering the stiffness of the cord ? 

Raymer & Smith found that, as intuition suggests, the 

probability of freedom from knotting increases with 

increasing stiffness of the cord. It seems reasonable to 

suspect that it will have an even more marked effect on 

looped SAWs, thus increasing the benefits of looping.  

 How does the thickness of cord affect this probability ? 

Simulations show that knot-freedom increases with 

increasing thickness. Again, it seems reasonable to suspect 

that it will have an even more marked effect on looped 

SAWs.  

 How does confining geometry/size affect knotting 

probability ? The results of Tesi et al (1994) involving SAPs 

suggest an effect on knotting probability for looped SAWs.  

 

Theoretical  

 How should the standard theory of knots and SAWs be 

extended to incorporate the knotting of loops ? Strictly, a 

mathematical knot is a closed curve embedded in R3 , and 

thus cannot involve free ends. This mismatch with the 

everyday concept of knots is compounded in the case of 

knotted loops examined here, as one is now dealing with 

knots formed out of the trivial knot 01. However, the 

extension of the standard concepts may open up new areas 

for research: during the study reported here it was found that 

loops can form knots which appear similar, but not identical, 

to the “classical” knots such as the trefoil.  

 Is it possible to put tighter theoretical bounds on the values of 

α and β, which relate properties of a looped SAW to that of 

its unlooped original ? Geometrical considerations of the 

knotting process suggest α and β  are related and that their 

numerical values involve factors of order π .  

 

Computational  

 Can the model for the behaviour of looped cord proposed 

here be further investigated using numerical models used to 

study knotting in SAWs ? Such a model will require 

techniques for defining loop ends, and of identifying the 

different forms of knot that can form in such a loop.  

 

Conclusion 

The results presented here suggests that looping a cord prior to 

random agitation substantially increases the chances of the cord 

remaining knot-free. The functional form of the dependency of 

this probability on cord length L is similar to that of open-ended 

SAWs, and shows that the benefits of looping increase 

exponentially with L. As well as having obvious relevance to the 

commonplace nuisance of knots in headphone flex, rope, hose etc, 

the effect of looping may be of importance in other fields, notably 

cellular biology.  
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