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Abstract 
 

We present analytic evidence that the distribution of hadron masses follows from the universal transition to 
chaos in non-equilibrium field theory. It is shown that meson and baryon spectra obey a scaling hierarchy 
with critical exponents ordered in natural progression. Numerical predictions are found to be in close 
agreement with experimental data.  
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1. Introduction  
 
As an integral component of the Standard Model for particle physics, quantum 

chromodynamics (QCD) is a gauge field theory that successfully describes the coupling 

of quarks and gluons. Due to its rich dynamical content, QCD leads to many complex 

phenomena and it exhibits a number of remarkable features at both ends of the energy 

scale: asymptotic freedom, chiral symmetry breaking and color confinement [1, 2]. 

Strong interactions lead from free quarks and gluons in the high-energy limit (UV) to 

bound states forming mesons and baryons in the low-energy limit (IR). A unique 

manifestation of non-equilibrium QCD is the production of quark-gluon plasma (QGP) in 

collisions of heavy ions. QGP behaves like a strongly coupled liquid and unveiling its 

real-time dynamics outside lattice simulations remains a nontrivial task [3, 4]. 

Due to strong coupling at low energies, IR QCD is notoriously difficult to calculate with 

[3-5, 27-31]. It is for this reason that formulating analytic predictions directly from the 

equations of gauge field theory presents an ongoing challenge. Current understanding of 

QCD stems from several approximation tools such as weak-coupling perturbation 
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methods (exclusively valid in UV), so-called “holographic” techniques inspired by the 

AdS/CFT correspondence, Euclidean lattice methods and effective formulations through 

phenomenological models [5]. The object of this work is to suggest that the hierarchy of 

hadron masses may be derived from a conceptually different baseline, that is, from the 

transition to chaos in non-equilibrium field theory. There are two basic premises that 

underlie our approach, namely: 

1) a generic field theory can be modeled as a statistical system distributed on a space-

time lattice [6]. 

2) universal transition to chaos in nonlinear dynamics, on the one hand, and critical 

behavior of statistical systems, on the other, share a common foundation [7].  

Elaborating from this baseline, we find that the spectrum of hadron masses emerges from 

the universal scaling behavior of nonlinear maps near fully developed chaos. The paper is 

organized as follows: next section surveys the nonlinear behavior of field theory and its 

replica in non-equilibrium statistical physics; in section 3 we generalize the evolution of 

critical exponents and introduce the concept of flow in the space of universality classes. 

The link to observed fermion masses in the Standard Model as well as hadron masses in 

IR QCD forms the topic of section 4 and 5. Conclusions and open questions are  

elaborated upon in the last section. 

We emphasize from the outset the introductory nature of this work (see also section 6). 

Its goal is strictly limited to exploring a new research avenue which, to the best of our 

knowledge, has received virtually no attention in previous publications. Given this rather 

modest goal, ideas discussed here are far from being the final word in understanding the 
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puzzling physics of IR QCD. Independent studies are needed to reinforce or refute our 

preliminary findings. 

2. Chaotic dynamics in non-equilibrium field theory 

The starting point of our analysis is the framework developed in [8] which is applicable 

to generic fields that evolve in far-from-equilibrium conditions. Under some general 

assumptions, a quantum field theory in steady contact with its environment can be 

modeled as a distributed ensemble of coupled components, each representing a nonlinear 

dissipative system. In discrete time, the field dynamics may be formulated as  

                                             1 [ ( )] ( ( ), )n n nu F u x g f u x λ+ = =                                              (1) 

Here, x  is the spatial coordinate, n  is the time index, ( , )f u λ  stands for a generic 

nonlinear function, λ  a control parameter and g  a linear operator that defines the 

coupling. If x  is continuous, g  is given by the convolution 

                                                ( ) ( ) ( )gu x y g y u x y dy− = −∫                                             (2)  

where the coupling constant g satisfies the set of constraints listed in [8]. Tuning λ  near 

a set of critical values triggers transition to chaos in (1) whose universal signature is that 

it starts with a cascade of period-doubling bifurcations [8, 9, 26]. In the basin of attraction 

of fully developed chaos ( cλ λ= ), the correlation length diverges according to  

                                                          ( )c
νξ λ λ −∆ −                                                        (3)                             

Here, ∆  is a finite reference length and ν  the critical exponent of the correlation length 

[10]. An infinite correlation length is physically equivalent to component fields having 

vanishing masses ( 0)µ = . Away from cλ , masses flow with the control parameter as in 

                                              1 1( )c
νµ ξ λ λ− −∆ −                                                          (4)  
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This picture is compliant with the postulated symmetries of equilibrium quantum theory 

(QFT) whose action functional involves only massless fields [7]. QFT in general (and 

gauge field theory in particular) approaches conformal behavior at the fixed point cλ λ=  

and may be regarded as the asymptotic manifestation of the flow embodied in (4). 

It is known that the sequence of parameters leading to the emergence of period-doubling 

bifurcations satisfies the so-called Feigenbaum scaling [11, 26] 

                                                          
n

n c nKλ λ δ
−

− =                                                       (5)                               

where  nλ  denotes the value of λ where a cycle of period 2 n  first appears, nK  is a 

scaling factor and δ  a constant. We note that δ  is in general different from the standard 

Feigenbaum constant 4.669...δ =  involved in the transition to chaos of unimodal maps.  

The scaling constant no longer depends on n  for 1n  and the asymptotic form of (5) is 

                                                            
n

n cλ λ δ
−

− ∝                                                         (6)  

Replacing (6) in (4) yields 

                                                           
n

n
ν

µ δ
−

∝                                                              (7a) 

where n nµ µ= ∆ .  In section 4 we consider the case 2pn = , { }p N∈  for which scaling 

(7a) becomes  

                                                          2
2 ( )

P
p

ν
µ δ

−
∝                                                         (7b)                               

3. Generalized behavior of critical exponents 

To an arbitrary scale transformation of the correlation length s
ξξ →  with 1s ≠ , 

Renormalization Group theory associates a corresponding flow in parameter space 
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( )fλ λ→  [12]. Let ( )f λ  represent an analytic function. Since cλ  is a fixed point of this 

flow, the following condition holds  

                                                               ( )c cfλ λ=                                                           (8) 

Using the language of iterated maps we write 

                                              1 1( ) ( ( ) ....m m mf f fλ λ λ+ −= = =                                             (9)  

in which m  stands for the number of iteration steps. As it is known, critical exponent ν  

is intimately related to the behavior of the correlation length under the scale 

transformation s
ξξ → . It is given by [12] 

                                           log
log '( )c

s
f

ν
λ

=   for  cλ λ→                                                  (10) 

where 

                                                         '( )
c

c
dff
d λ

λ
λ

=                                                         (11)   

Relations (10) and (11) indicate that ν  depends only on the slope of function f  near cλ  

and are insensitive to the details of the underlying field equations (1).  For this reason, all 

systems that are characterized by the same ν  are said to belong to the same universality 

class, regardless of their specific dynamics on the microscopic scale. As a result, the 

standard viewpoint is that cν ν=  is solely fixed by the properties and dimensionality of 

(1). The ansatz assumes, however, that there are no arbitrary perturbations acting on the 

system that arise from dimensional instability [13] or large deviations from equilibrium 

[14]. If this is no longer the case, ν  is allowed to either drift away or towards the fixed 

point cν . We call this trajectory a flow in the space of universality classes ( cν ν→ ). 

Then, 
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                                                         1 ( , )m mfλ λ κ+ =                                                        (12) 

represents a generic one-dimensional map that generates the flow cν ν→  with κ  being 

the corresponding control parameter. Let  Nκ   denote the value of κ  leading to the birth 

of a cycle of period 2N  in (12). We are naturally led to assume that ν  reaches its fixed 

value cν  when Nκ  lands on its fixed point κ ∞ , that is, when N → ∞ . A different way to 

phrase this hypothesis is to state that, for sufficiently large N ,  

                                                 1
1( ) ( )N N Nν ν+ − ∝                                                         (13) 

4. Connection to experimental data 

For the sake of clarity, let us summarize results obtained so far. If critical exponent ν  is 

constrained to assume a fixed value cν , the ratio of two consecutive mass values derived 

from (7b) is given by 

                                                      
1

22

2

( )
pp

P

νµ δ
µ +

−
∝                                                        (14a)       

If, on the other hand,  if we assume that ν  flows in the space of universality classes at a 

higher rate than the flow described by (6), combined use of (7a) and (13) yields: 

                                                     
( ),

, 1

nn N N

n N

µ
δ

µ
−

+

∝                                                         (14b) 

with n m≤  and n N≤ . 

These are our main results. It is instructive to note that (14a) recovers the mass ratios of 

quarks, leptons and gauge couplings if 3.9δ =  and 1
2ν =  in four-dimensional space-

time [14-16].  Proceeding along the same path, we now explore if (14b) may be linked to 

the observed spectrum of hadron masses. This is the topic of the next section. 
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5. Hadron spectrum 

Despite being free and unbroken in UV, QCD is known to develop a non-vanishing 

energy scale in the infrared limit ( QCDΛ ). The emergence of QCDΛ  is representative for 

field theories that are asymptotically free in the UV sector and is believed to be tied to the 

mechanism of mass generation in strong interactions [1, 2]. The current section is 

developed according to the following plan: 

1) We interpret QCDΛ  as setting the natural resolution scale in the distribution of hadron 

masses.  Meson and baryon spectra are partitioned in shells whereby the gap separating 

the shells is chosen to exceed QCDΛ , that is, QCD∆ ≥ Λ . Observed hadron masses are taken 

from the latest reports issued by the Particle Data Group [17]. 

2) The QCD scale is set to be equal to the confinement scale and computed using the so-

called MS  scheme 130QCD MS MeVΛ = Λ = [18]. 

3) Grouping of hadrons is captured in Tab. 1 and Tab. 2. The average mass for a given 

shell represents the arithmetic mean of that shell and is denoted by 
( )nm  and 

( )nM , 

respectively1.  

Results tabulated in Tabs 3, 4 and Figs 1, 2 show that: 

a) the ratio of consecutive masses in the hadron spectrum also comply with (14b) for 

3.9δ =  and,  

                                                
1 Averaging within shells is not unique and may be performed according to a different scheme such as, for 
example, the use of weighted sums. Arithmetic averaging has been selected here for the sake of simplicity 
and clarity. 
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b) setting the lowest-lying value in (14b) ( 1n = ), the group of numerical values for N  

that best fit observational data fall in the sequence 1 1 1 2 1 11 1 ;1 2 ;2 2 ;2 2 ;1 3 ;2 3N = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ . In 

condensed form this series may be presented as 

                                                
1
2
3

k

k

k

i
N i

i

 ⋅
 = ⋅ 
 ⋅ 

   for , 1, 2i k =                                               (15)      

Shell definition  Makeup ( )nm  
(1)m  0, ,π π π+ −  138 
(2)m  

0 0
,, , ,S LK K K η+ −

 505 
(3)m  0 0, , ,ρ ρ ρ ω+ −  777 
(4)m  

00' 0, , , , ,K K K Kϕ η
∗∗+ ∗− ∗  925 

(5)m  
0, , , ,s sD D D D D+ − + −  1888 

(6)m  /J ψ  3097 
(7)m  

0 0, , , sB B B B+ −  5301 
(8)m  ϒ 9460 

 
Tab 1: Structure of meson mass shells 

 

Shell definition Makeup ( )nM  
(1)M  ,p n  939 
(2)M  0 0 0, , , , , , ,+ − ++ + −Λ Σ Σ Σ ∆ ∆ ∆ ∆  1203 
(3)M  0 *0 * 0, , , , , ,− − ∗+ ∗− ∗Ξ Ξ Ξ Ξ Σ Σ Σ  1408 
(4)M  −Ω  1672 
(5)M  c

+Λ  2286 
 

Tab 2: Structure of baryon mass shells 
 
 

Mass shell ratio Exponent Predicted scaling behavior Relative error (%) 
(1) (2)/m m  1 

1
δ

−
 6.5 

(2) (3)/m m  1
3  

1
3δ

−  2.25 
(3) (4)/m m  1

8  
1

8δ
−  0.40 
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(4) (5)/m m  1
2  

1
2δ

−  3.20 
(5) (6)/m m  1

3  
1

3δ
−  4.10 

(6) (7)/m m  1
3  

1
3δ

−  8.65 
(7) (8)/m m  1

2  
1

2δ
−  9.75 

 
Tab 3: Predicted versus actual mass ratios for mesons 

 
 

Mass shell ratio Exponent Predicted scaling behavior Relative error (%) 
(1) (2)/M M  1

6  
1

6δ
−  2.07 

(2) (3)/M M  1
8  

1
8δ

−  1.28 
(3) (4)/M M  1

8  
1

8δ
−  0.16 

(4) (5)/M M  1
4  

1
4δ

−  2.78 
 

Tab 4: Predicted versus actual mass ratios for baryons 
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Fig 1: Actual versus predicted mass ratios for mesons 
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Fig 2: Actual versus predicted mass ratios for baryons 

 
6. Conclusions and open questions 
 
Many authors have stressed the fact that understanding the physics of IR QCD remains an 

outstanding challenge [3, 27-31]. The analytic computation of hadron masses at the level 

of experimental data precision is hampered by major technical obstacles related to color 

confinement and chiral symmetry breaking. For instance, rigorous lattice simulations 

suffer from artifacts that prevent reliable results in the hadronization region [28]. The 

Schwinger-Dyson formalism contains an infinite tower of equations which require 

truncations that are not gauge-independent and implicitly affect outcomes [29]. Models 

based on analytical confinement have led to some satisfactory results but are far from 

being confirmed as a realistic picture of QCD in the low-energy limit [30, 31].  

Technical difficulties associated with the physics of IR QCD have prompted us to take an 

alternate route. To avoid a direct plunge into the intricate dynamics of gauge field theory, 

we have decided to start by exploring a straightforward yet sufficiently general model. 

The model consists of a distributed ensemble of coupled fields, each representing a 

nonlinear dissipative system. Using this baseline, we found that universal transition to 
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chaos in non-equilibrium dynamics (as discussed for example in [8]) suggests a relatively 

straightforward explanation of hadron masses. It is instructive to note that the mechanism 

of mass generation discussed here is consistent with the conceptual framework of [19-20] 

and [25]. Needles to say, much remains to be done for a satisfactory clarification of quark 

and gluon physics in the low-energy sector. As pointed out in section 1, our arguments 

are introductory in nature and inevitably lack the depth expected from a rigorous and 

comprehensive analysis. Among the many issues in need for further clarification we 

mention the following: 

a) how is our model related to individual hadron masses and not to their shell averages? 

b) can our model explain the angular momentum and parity of hadron states? 

c) can our model be expanded to include the glueball spectrum and the spectrum of light 

flavored mesons? 

d) how do various nonlinear effects induced by (1) contribute to the observed hadron 

properties? 

e) is transition to chaos applied to a full quantum context compatible with our analysis? 

Interestingly enough, the contents of (15) seem to match the so-called Sharkovskii’s 

ordering of periodic orbits in unimodal maps [11]. It is also surprising that the pattern of 

masses does not appear to be directly related to the quark content of hadrons but rather to 

the universal behavior of correlation length near criticality. One is led to suspect that 

there might be a deep connection between non-equilibrium critical behavior in coupled 

stochastic systems and the physics of hadronization [32-34]. Of particular interest is to 

investigate the link between the critical exponent ( )1
2

k

kβ = of [32, 33] and (13). The 

results of this analysis will be reported elsewhere. 
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To conclude, although these findings are encouraging first steps, concurrent work is 

needed to confirm, expand or falsify our approach. We hope that similar techniques 

inspired by transition to chaos and non-equilibrium dynamics will soon play an 

increasingly important role in understanding the physics of IR QCD [21-24]. 
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