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Plan of the talk

What is known about string theory, LQG, and also other models 

-A.W. Beckwith, due to the following ., 

- . viXra:0909.0023 [pdf] submitted on 8 Sep 2009

- viXra:0909.0018 [pdf] submitted on 6 Sep 2009
- viXra:0909.0017 [pdf] submitted on 5 Sep 2009
- viXra:0909.0016 [pdf] submitted on 5 Sep 2009

Based on:

�

Deceleration parameter, q(Z) and  its impact upon DM/ DE and
Cosmological expansion rates

�

Entropy balance as to sum total of entropy of galactic black holes,
As compared to the total entropy of the universe 

�



Motivations

Crucial to provide accurate theoretical predictions 
for the statistics of  anisotropies and structure formation 
Here is the problem. The Galaxy hierarchy formation is 
Wrong. Need a replacement for it.

Calculation of q(Z) deceleration parameter may have links to DM/DE



Large-scale deceleration and
Acceleration re commencing?, 
sign of q(Z)

If gravitons have a slight mass, can we obtain DE expansion ?
YES we can. And the 5 dimensional q(Z) deceleration is the 
same as the 4 dimesional q(Z) deceleration result!

To examine this, consider the following graph. It has DE /DM connectivity, due to KK graviton
Linkage. Z ~ X, red shift. I.e. Z<.55 to Z ~0 is when acceleration increases

Figure 4 b: re duplication of basic results of Marcio E. S. Alves, Oswaldo D. Miranda, Jose 
C. N. de Araujo, 2009, using their parameter values, with an additional term of C for‘Dark
flow’ added, corresponding to one KK additional dimensions. Results show asymptotic 
‘collapse’ of de celebration parameter as one comes away from the red shift Z =1100 of the 
CMBR ‘turn on ‘ regime for de coupling of photons from ‘matter’ , in end of ‘dark ages’
Figures 4a, and 4b suggest that additional dimensions are permissible. They do not state that 
the initial states of GW/ initial vaccum states have to form explicitly due to either quatum or 
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If addition of higher dimensions is not the problem then what IS the 
problem ?   In a word, it is the introduction of compression of initial 
states, in the origins of gravitons, and other sources of entropy. 

I.e. if gravitons, and other initial processes
create relic entropy, then what is the difference
between  LQG, and string theory & KK theory?

String theory leads to more entropy produced by Super massive
Black holes in the center of Galaxies, than would LQG. 
The relevant formula to consider is the following. 

Total amount of entropy = ?  Sum of entropy in Super massive    
black holes at the center of galaxies

Up to 1 million SM black holes! 



String theory, with large additional dimensions leads to one million super massive
Black holes with the first entropy result which does NOT equal the 2nd result

Now for the relevant S ( entropy) formula 
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♦ Large extra dimensions also leads to extremely low relic GW
predicted frequencies. I.e. as low as one HERTZ. Huge extra     

dimensions are tied in with highly compressed, NON classical 
squeezed states at the onset of inflation. Way to no where,fast.

♦ Giovannini (1995) used STRING theory with compact, TINY 
higher dimensions to predict relic GW up to 10 to the 10 
power Hz. I.e. Calabi Yau manifold. Arkani Hamid, et al. 
want to have  not tiny higher dimensions, but huge higher 
dimensions! Huge higher dimensions imply entropy 
imbalance between Number of SM black holes and entropy of 
Universe.

Post-inflationary nonlinear gravitational dynamics 
is common to all scenarios

We are now identifying the problem, I.e. not
Extra dimensions, but HUGE extra dimensions



Sachs-Wolfe effect: a compact formula. Inputs  From this affected by 

entropy generation

Initial conditions set during
or after inflation

ζ (2) = 2aNL ζ (1)( )2
aNL =1+ O(ε,η)
standard scenario

  aNL =
3
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curvaton scenario

Post-inflation non-linear 
evolution of gravity:
order unity NG

N.B., Matarrese, Riotto,  Phys. Rev.  Lett. (2004)
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Extracting the non-linearity parameter fNL

Connection between theory and observations
This is the proper quantity measurable by CMB experiments, 
via the phenomenological analysis by Komatsu and Spergel (2001)
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Now for a surprising fact about LQG, which does not need Now for a surprising fact about LQG, which does not need 
additional dimensionsadditional dimensions

Squeezing of initial states may be either tiny, or moderate or very large. I.e. 

it is an OPEN Problem, BOJOWALD (2008)

Squeezing of initial states may be either tiny, or moderate or very large. I.e. 

it is an OPEN Problem, BOJOWALD (2008)

BOJOWALD (2008) came up with a modelBOJOWALD (2008) came up with a model
of a bounce effect from a  contracting of a bounce effect from a  contracting 

universe, which leaves the question of ifuniverse, which leaves the question of if
or not squeezed states ( non classical inor not squeezed states ( non classical in
behavior ) are necessary. behavior ) are necessary. ‘‘QuantumQuantum’’ bouncebounce
means shift from contraction to super inflation.means shift from contraction to super inflation.

Non classical initial states would affect Non classical initial states would affect 
generation of entropy , implying entropygeneration of entropy , implying entropy
of one million SM black holes at center of  of one million SM black holes at center of  
one million galaxies = entropy of Universeone million galaxies = entropy of Universe
~ 10 to the 90~ 10 to the 90thth power magnitude.power magnitude.



Conclusion. I prefer LQGConclusion. I prefer LQG



Angular decomposition

alm = d2n ΔT
T∫ (n) Ylm

* (n)

The linear and non-linear parts of the temperature fluctuations 
correspond to a linear Gaussian part and a non-Gaussian contribution

alm = alm
L + alm

NL

At linear order

Initial fluctuations
Linear radiation transfer function  Linear radiation transfer function  

Ex: Linear Sachs-Wolfe Δ l
(1)(k) = jl[k(η0 −η*)]/3

Linear ISW Δ l
(1)(k) ∝ dη∫ g'(η) jl[k(η0 −η)]



2nd2nd--order radiation transfer function on largeorder radiation transfer function on large--scalesscales
Express the observed CMB anisotropies in terms of the quadratic 
curvature perturbations  

with            the gravitational potential at last scattering, and          are convolutions    φ*
(1)

with kernels

Kn

and  and  generalize the radiation transfer        generalize the radiation transfer        
function at secondfunction at second--orderorder

ΔL1L2
(k1,k2)Δ l

n(2)(k)



2nd-order transfer functions for the Sachs-Wolfe
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5
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(aNL −1) Primordial NG

Non-linear evolution of the 
gravitational potentials after
Inflation and 
additional 2nd-order corrections 
to temperature anisotropies



2nd-order transfer functions for the late ISW

−
5
3

(aNL −1) Primordial NG

Non-linear evolution
of the gravitational 
potentials after inflation

Additional second-order corrections to temperature 
anisotropies (ISW)2

Expression for 2nd-order  Early ISW, vector and tensor modes available as well in 
B. N., Matarrese S., Riotto A., 2005, JCAP 0605 

growth suppression factorg(η) = φ (1)(x,η) /ϕ0



On large scales:On large scales:
NG = NG from gravity (universal)+NG = NG from gravity (universal)+

NG primordialNG primordial
Gravity itself is nonGravity itself is non--linearlinear
NonNon--linear (secondlinear (second--order) GR perturbations in the standard order) GR perturbations in the standard 
cosmological model introduce some order unity NG:cosmological model introduce some order unity NG:

√√ we would be in trouble if NG turned out  to be very close we would be in trouble if NG turned out  to be very close 
to zero to zero 

√√ such nonsuch non--linearitieslinearities have a nonhave a non--trivial form: trivial form: 
their computation their computation ≡≡ core of the (largecore of the (large--scale) radiation       scale) radiation       
transfer function at  secondtransfer function at  second--orderorder



WHAT ABOUT SMALLER SCALES ?WHAT ABOUT SMALLER SCALES ?

Aim: Aim: -- have a full radiation transfer function at secondhave a full radiation transfer function at second--order order 
for for all scalesall scales

-- in particular: in particular: 
compute the CMB anisotropies generated by the noncompute the CMB anisotropies generated by the non--linearlinear
dynamics of the photondynamics of the photon--baryon fluid for baryon fluid for subhorizonsubhorizon modes modes 
at recombination (acoustic oscillations at secondat recombination (acoustic oscillations at second--order)order)

Remember:  crucial to extract information from the Remember:  crucial to extract information from the bispectrumbispectrum are the are the 
scales of acoustic peaks according to the scales of acoustic peaks according to the 
phenomenological analysis of phenomenological analysis of Komatsu and Komatsu and SpergelSpergel (2001)(2001)



2nd-order CMB Anisotropies on all scales
Apart from gravity account also for:  a) Compton scattering of photons

off electrons
b) baryon velocity terms v

Boltzmann equation for photons 

Collision term

Gravity effects
+ Boltzmann equations for baryons and CDM+ Einstein equations



Metric perturbations
Poisson gauge

ωi and  χij second-order vector and tensor modes.

Examples: using the geodesic equation for the photons 

Redshift of the photon 
(Sachs-Wolfe and ISW effects)

Direction of the photons changes
due to gravitational potentials 
Lensing effect (it arises at second-order)

PS: Here the photon momentum is               ;                 
(                             quadri-momentum vector)

p = pni p2 = gijP
iP j

Pμ = dxμ (λ) /dλ



Photon Boltzmann equation 
Expand the distribution function in a linear and second-order parts
around the zero-order Bose-Einstein value

Left-hand side df /dη



The collision term C[f]
Up to recombination photons are tightly coupled to electrons via 
Compton scatterings e(q) γ(p) ↔ e(q’) γ(p’). The collision term 
governs small scale anisotropies and spectral distorsions

Important also for secondary scatterings: reionization,
kinetic and thermal Sunyaev-Zeldovich and Ostriker-Vishniac effects

√

√

Crucial points to compute the second-order collision term:
1)  Little energy δε/T is transferred        expand in the perturbations and 

in δε/T ≈ q/me. At linear order the Boltzmann equations depend only 
on ni, at second-order there is energy exchange (p dependence) 
and thus spectral distorsions. 

2) Take into account second-order baryon velocity v(2)

3) Take into account vortical components of  (first-order × first-order) 

√



The 2nd-order brightness equation

S = S(2) + S(I ×I )Source term

τ '= −n eσT awith                      optical depth

Sachs-Wolfe effects
Second-order  baryon velocity

Gravitational lensing

Quadratic-Doppler effect

Coupling velocity and linear photon anisotropies



Hierarchy equations for multipole moments

k •n = μand e3 = ˆ k 

Expand the temperature anisotropies in multipole moments

System of coupled differential equations

Free-streeming of photons:
From              .  It gives a projection effect 
of inhomogeinities onto anisotropries
At linear order responsible of the hierarchy

n •∇ Suppression of anisotropies

Residual scattering effects and gravity



Integral Solution

Important:

√ The integral solution is a formal solution (the source contains second-order moments
up to l=2), but still more convinient than solving the whole hierarchy

√ The main information is contained in the Source, which contains
peculiar effects from  the non-linearity of the perturbations  

k •n = μand e3 = ˆ k 

One can derive an integral solution in term of the Source



CMB anisotropies generated at recombination

KEY POINTKEY POINT: Extract all the effects generated at recombination: Extract all the effects generated at recombination
(i.e. Isolate from the Source all those terms (i.e. Isolate from the Source all those terms ∝∝ optical depth optical depth ττ’’ ))

Δ(2)(k,n,η0) = dη (−e−ττ ') S*
0

η 0

∫ (k,n,η)eik μ(η−η 0 ) ≅ S*(k,n,η*)eik μ(η* −η 0 )

Visibility function sharply peaks at recombination epoch  Visibility function sharply peaks at recombination epoch  ηη**

S = −τ 'S* + S'



S = −τ 'S* + S'

Yields anisotropies generated at recombination due to the Yields anisotropies generated at recombination due to the nonnon--linear linear 
dynamics of the photondynamics of the photon--baryon fluid baryon fluid 

Need to know the evolution of the photon energy density Need to know the evolution of the photon energy density 
ΔΔ(2)(2)

0000 , velocity and gravitational potentials around recombination, velocity and gravitational potentials around recombination



Boltzmann equations for massive particles
The Source term requires to know the evolution of baryons and CDM

Left-hand side                   :

just extend to a massive particle with mass m and energy E=(m2+q2)1/2

��

example:

�� Collision terms: electrons are coupled to protons via Coulomb scatt. 
driving δe= δp= δb and ve= vp≡ v (“baryons”); 
+ Compton scatterings eγ



Momentum continuity equation

Photon velocity

2nd-order velocity

Quadrupole moments 
of photon distribution



Acoustic oscillations at second-order 
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The quadrupole moment at recombination 
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Two important differences
w .r. s to the linear case:

1)  At second-order vector 
perturbaztions are inevitably generated  
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2) At second-order the quadrupole of the 
photons is no longer suppressed in the tight 
coupling limit 

Similar term analyzed by W. Hu
in ApJ 529 (2000) in the context of 
reionazation



Non-linear dynamics at recombination 
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Acoustic oscillations  of 
primordial non-Gaussianity

Non-linear evolution 
of gravity
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Linear  vs.  full radiation transfer function  

primordial nonprimordial non--GaussianityGaussianity
is transferred linearly:is transferred linearly: Radiation Radiation 
Transfer function Transfer function at first orderat first order

f k1,k2,k,η( ) ≈
54
5

(aNL−1) −
2
5

(9aNL−19)cos(kcsη)

NonNon--linear evolution of gravity: linear evolution of gravity: 
the core of the the core of the 2nd order 2nd order 
transfer functiontransfer function
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(how these contributions mask (how these contributions mask 
the primordial signal? the primordial signal? 
how do they fit into the analysishow do they fit into the analysis
of the of the bispectrumbispectrum?) ?) 

Numerical analysis in progressNumerical analysis in progress
(N.B., Komatsu, (N.B., Komatsu, MatarreseMatarrese, Nitta, Nitta,
RiottoRiotto))

(from Komatsu & Spergel 2001)



Modes entering the horizon during radiation epoch

f k1,k2,k,η( ) ≈ −18(aNL−1)cos(kcsη)

+ f1 k1,k2,k( )  cos k1csη)( ) cos k2csη( )− cos k3csη( )( )
                       + f2 k1,k2,k( )  sin k1csη( ) sin k2csη( )

Δ 00
(2) k,η( )=

d3k1d
3k2

2π( )3∫ δ(3) k1 + k2 − k( ) f k1,k2,k,η( )Ψ(1)(0,k1)Ψ(1)(0,k2)

In this case the driving force is the quadrupole Π ∝ vγ
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Modes entering the horizon during radiation 
epoch (II): The Meszaros effect

Around the equality epoch ηEQ Dark Matter starts to dominate 

Consider the DM perturbations on subhorizon scales 
during the radiation epoch

Meszaros effect:

δd
(1)(kη >>1) ≈ AΨ(1)(0)ln[Bkη] A ≈ −9.6, B ≈ 0.44

This allows to fix the gravitational potential  at η >ηEQ
through the Poisson equation and to have a more realistic 
and accurate analytical solutions for the acoustic 
oscillations from the equality onwards



Meszaros effect at second-order
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Meszaros effect at second-order
Dark Matter density contrast on subhorizon scales for η < ηEQ
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√ fix the initial conditions for the evolution of the gravitational potential and photons
perturbations at η >ηEQ for subhorizon modes 

√ Interesting for NG and Large Scale Structure studies:Interesting for NG and Large Scale Structure studies:
determine the full seconddetermine the full second--order transfer function for matter order transfer function for matter 
perturbationsperturbations (primordial non-Gaussianity parametrized by aNL is transferred
linearly, but the core of the transfer function is given by the remaining terms).
See N.B, Matarrese & Riotto, JCAP2222, for the case of modes entering the horizon after 
equality  

Can be used for two pourposes:



SecondSecond--order transfer functionorder transfer function
First step: calculation of the full 2First step: calculation of the full 2--nd order radiation transfer function on large scales (lownd order radiation transfer function on large scales (low--l), l), 
which includes: which includes: 

NG initial conditionsNG initial conditions
nonnon--linear evolution of gravitational potentials on large scaleslinear evolution of gravitational potentials on large scales
secondsecond--order SW effect (and secondorder SW effect (and second--order temperature fluctuations on lastorder temperature fluctuations on last--scattering surface)scattering surface)
secondsecond--order ISW effect, both early and lateorder ISW effect, both early and late
ISW from secondISW from second--order tensor modes (unavoidably arising from nonorder tensor modes (unavoidably arising from non--linear evolution of scalar linear evolution of scalar 
modes), also accounting for secondmodes), also accounting for second--order tensor modes produced during inflation  order tensor modes produced during inflation  

Second step: solve Second step: solve BoltzmannBoltzmann equation at 2equation at 2--nd for the photon, baryon and CDM nd for the photon, baryon and CDM 
fluids,whichfluids,which allows to follow CMB anisotropies at 2allows to follow CMB anisotropies at 2--nd order at all scales;nd order at all scales;
this includes both scattering and gravitational this includes both scattering and gravitational secondariessecondaries, like:  , like:  

Thermal and Kinetic Thermal and Kinetic SunyaevSunyaev--ZelZel’’dovichdovich effecteffect
OstrikerOstriker--VishniacVishniac effecteffect
Inhomogeneous Inhomogeneous reionizationreionization
Further gravitational terms, including gravitational Further gravitational terms, including gravitational lensinglensing (both by scalar and tensor modes), Rees(both by scalar and tensor modes), Rees--
SciamaSciama effect, Shapiro timeeffect, Shapiro time--delay, effects from seconddelay, effects from second--order vector (i.e. rotational) modes, etc. order vector (i.e. rotational) modes, etc. ……

In particular we have computed the nonIn particular we have computed the non--linearitieslinearities at recombinationat recombination

(Bartolo, Matarrese & A.R.  2005+)



ConclusionsConclusions
√ Up to now a lot of attention focused on the bispectrum of the curvature 

Perturbation ζ.  However this is not  the physical quantity which is  
observed is (the CMB anisotropy)

√ Need to provide an accurate theoretical 
prediction of the CMB NG in terms of the primordial NG seeds 
⇒ full second-order radiation transfer function at all scales

√ Future techniques (predicted angular dependence of fNL,
extensive use of simulated NG CMB maps, measurements of polarization and 
use of alternative statistical estimators ) might help NG detection 
down to fNL~1: need to compute exactly the predicted amplitude 
and shape of CMB NG from the post-inflationary evolution of 
perturbations.


