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Abstract

We study black-hole-like solutions ( spacetimes with singularities ) of Ein-
stein field equations in 3 + 1 and 2 + 2-dimensions. In the 3 + 1-dim case, it is
shown how the horizon of the standard black hole solution at r = 2GNM can
be displaced to the location r = 0 of the point mass M source, when the radial
gauge function is chosen to have an ultra-violet cutoff R(r = 0) = 2GNM if,
and only if, one embeds the problem in the Finsler geometry of the spacetime
tangent bundle (or in phase space) that is the proper arena where to incor-
porate the role of the physical point mass M source at r = 0. We find three
different cases associated with hyperbolic homogeneous spaces. In particular,
the hyperbolic version of Schwarzschild’s solution contains a conical singularity
at r = 0 resulting from pinching to zero size r = 0 the throat of the hyper-
boloid H2 and which is quite different from the static spherically symmetric
3+1-dim solution. Static circular symmetric solutions for metrics in 2+2 are
found that are singular at ρ = 0 and whose asymptotic ρ→∞ limit leads to a
flat 1+2-dim boundary of topology S1×R2. Finally we discuss the 1+1-dim
Bars-Witten stringy black-hole solution and show how it can be embedded
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into our 3 + 1-dimensional solutions with a displaced horizon at r = 0 and
discuss the plausible stringy nature of a point-mass, along with the maximal
acceleration principle in the spacetime tangent bundle (maximal force in phase
spaces). Black holes in a 2 + 2-dimensional ”spacetime” from the perspective
of complex gravity in 1 + 1 complex dimensions and their quaternionic and
octonionic gravity extensions deserve furher investigation. An appendix is
included with the most general Schwarzschild-like solutions in D ≥ 4.

Keywords: Strings, black-holes, 2 + 2 dimensions, general relativity Pacs
numbers: 04.60.-m, 04.65.+e, 11.15.-q, 11.30.Ly

1.- Introduction

Through the years it has become evident that the 2+2-signature is not only
mathematically interesting [1]-[2] (see also Refs. [3]-[5]) but also physically. In
fact, the 2+2−signature emerges in several physical context, including self-dual
gravity a la Plebanski (see Ref. [6] and references therein), consistent N = 2
superstring theory as discussed by Ooguri and Vafa [7], N = (2, 1) heterotic
string [8]-[10]. Moreover, it has been emphasized [11]-[12] that Majorana-Weyl
spinor exists in spacetime of 2 + 2−signature. Even cosmologically there is a
wisdom [13] that the 2 + 2−signature is interesting.

In [21] it was shown how a N = 2 Supersymmetric Wess-Zumino-Novikov-
Witten model valued in the area-preserving (super) diffeomorphisms group is
Self Dual Supergravity in 2+2 and 3+1 dimensions depending on the signatures
of the base manifold and target space. The interplay among W∞ gravity,
N = 2 Strings, self dual membranes, SU(∞) Toda lattices and SU∗(∞) Yang-
Mills instantons in 2 + 2 dimensions can be found also [21] .

More recently, using the requirement of the SL(2, R) and Lorentz symme-
tries it has been proved [14] that 2 + 2-target spacetime of a 0-brane is an
exceptional signature. Moreover, following an alternative idea to the notion
of worldsheets for worldsheets proposed by Green [15] or the 0−branes con-
densation suggested by Townsend [16] it was also proved in Ref. [14] that
special kind of 0-brane called quatl [17]-[18] leads to the result that the 2 + 2-
target spacetime can be understood either as 2 + 2-worldvolume spacetime or
as 1 + 1-matrix-brane.

Another recent motivation for a physical interest in the 2+2-signature has
emerged via the Duff’s [19] discovery of hidden symmetries of the Nambu-Goto
action. In fact, this author was able to rewrite the Nambu-Goto action in a
2+2-target spacetime in terms of a hyperdeterminant, reveling apparently new
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hidden symmetries of such an action. More recently the Duff’s observation has
been linked with the matrix-brane idea [20].

Considering seriously the possibility that the 2+2-dimensional ”spacetime”
is an exceptional signature one may wonder what is the connection between
2+2-dimensional ”spacetime” and other exceptional structures in physics such
as black-holes. In this respect it becomes convenient to discuss ”black-holes”
physics from modern perspective (see Section 2). In particular, it become
convenient to clarify the many subtleties behind the introduction of a true
point-mass source at r = 0 [26] and the admissible family of radial functions
R(r) in the static spherically symmetric solutions of Einstein field equations
[23]-[25] (see also Ref. [29]).

With these modern developments at hand one may proceed to find ”black-
hole” type solutions of the Einstein field equations for a 2+2-dim ”spacetime”.
In section 3 we present static hyperbolic solutions in a 2+2-dimensional ”space-
time” and describe its differences with the corresponding solution in 3 + 1
dimensions. In section 4, 5, we present the straightforward computations of
the static circular symmetric solutions of Einstein field equations in 2 + 2-
dimensions. Finally, in section 6 we show how the 1 + 1 Bars-Witten stringy
black-hole solution can be embedded into the 3 + 1-dim solution of sections 2
and discuss the ”stringy” nature behind a point-mass. Black holes in a 2 + 2-
dimensional ”spacetime” from the perspective of complex gravity in 1 + 1
complex dimensions and its quaternionic and octonionic gravity extensions
deserve furher investigation. In the appendix we construct Schwarzschild-like
solutions in dimensions D ≥ 4.

2. Static Spherically Symmetric Solutions of Einstein’s Equations :
Black Holes, Stringy Nature of Point Masses and Maximal Acceler-
ation

We begin by writing down the class of static spherically symmetric (SSS)
vacuum solutions of Einstein’s equations [30] studied by Abrams [23] (where
there are no mass sources anywhere) given by a infinite family of solutions
parametrized by a family of admissible radial functions R(r)

(ds)2 = g00 (dt)2 − gRR (dR)2 −R2 (dΩ)2 =

g00 (dt)2 − gRR (
dR

dr
)2dr2 −R2 (dΩ)2 = g00 (dt)2 − grr (dr)2 − (R(r))2 (dΩ)2

(2.1)

3



where the solid angle infinitesimal element is

(dΩ)2 = (dφ)2 + sin2(φ)(dθ)2, (2.2a)

and

g00 = 1− α

R(r)
; gRR =

1

g00

=
1

1− α/R(r)
.

grr = gRR (
dR

dr
)2 = (1− α

R(r)
)−1 (

dR(r)

dr
)2. (2.2b)

where α is an arbitrary constant that happens to have dimensions of mass
when c = 1 ( but there are no masses at all in this vacuum case ). When
a point mass source is present at the location r = 0, then α = 2GNM and
one must replace everywhere r → |r| as required when point-mass sources
are inserted. We know that the Newtonian gravitational potential due to a
point-mass source at r = 0 is given by −GNM/|r|.

Notice that the vacuum SSS solutions of Einstein’s equations, with and
without a cosmological constant, do not determine the form of the radial func-
tion R(r). In the appendix we present the Schwarzcshild-like solutions in
any dimensions D > 3 and show that the radial function R(r) is completely
arbitrary.

There are two cases to study based on the boundary conditions obeyed by
R(r) : ( i ) the Hilbert textbook ( black hole ) solution based on the choice
R(r) = r obeying R(r = 0) = 0 and R(r → ∞) → r. ( ii ) the case based
on choosing the cutoff R(r = 0) = 2GNM such that gtt(r = 0) = 0 which
apparently seems to ”eliminate” the horizon and R(r → ∞) → r. This was
the original solution of 1916 found by Schwarzschild. This ultra-violet cutoff
2GM for the radial function R(r) does not violate Birkoff’s theorem since the
radial coordinate 0 ≤ r ≤ ∞ and corroborates the numerical findings in [23],
[34], [35], [36], [37] , [29], [42] among others, that Einstein’s equations do not
determine the functional form of R(r) in the same vein that they do not fix
the topology of spacetime. For example, R(r) can be chosen to be an infinite
family of functions like

R(r) = r+α; R(r) = [r3 +α3]1/3; R(r) = [rn +αn]1/n; R(r) =
α

1− e−α/r
.

(2.3a)
found by Brouillin [32] , Schwarzschild [31], Crothers [35], and Fiziev-Manev
[29] respectively obeying the conditions that

R(r = 0) = α = 2GNM ; and when r >> 2GNM ⇒ R(r) → r. (2.3b)
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there exist an infinite class of solutions to the vacuum SSS Einstein’s equations
Rµν = R = 0 for an arbitrary family of radial functions R(r). In particular
for functions of the type displayed above ( but the curvature Riemnan tensor
Rµ

νρσ 6= 0 ).
However, there is one serious problem (riddle) when a cutoff R(r = 0) =

2GNM is introduced, riddle that was never properly solved by any of these
authors above and is : How is it possible for a point-mass at r = 0 to have
a non-zero area 4π(2GNM)2 and a zero volume simultaneously ? It is the
purpose of this section to solve this riddle by showing the reason why the non-
zero proper area of the point mass at r = 0 ( while the volume is zero ) may
be due to the stringy nature of a ”point” mass. A string world-sheet has an
area but a zero volume.

Since the radial function may be arbitrary we may choose functions like
R(r) = r + 2GNM Θ(r) or R(|r|) = |r| + 2GNMΘ(|r|), where the Heaviside
Step function 3 is defined Θ(r) = 1 when r > 0 and Θ(r) = 0, when r ≤ 0.
Since r = ±

√
x2 + y2 + z2, a negative r branch is mathematically possible and

fits the double covering inherent in the Fronsdal-Kruskal-Szekeres analytical
continuation in terms of the u, v coordinates. Each point of spacetime inside
r < 2GNM is represented twice. Therefore, by using R(r) = r + 2GNMΘ(r),
( or the one with the modulus |r| ) now we safely have that R(r) = r+2GNM ,
when r > 0 and R ∼ r for r >> 2GNM ; while R(r) = r, when r = 0 and such
that now we can satisfy the required condition R(r = 0) = r = 0, consistent
with our intuitive notions that the spatial area and spatial volume of a point
r = 0 is zero.

We can see that due to the discontinuity of R(r) at r = 0, when one takes
first and second derivatives of the metric, one will generate the desired delta
functions (and derivatives) as one should to obtain the scalar curvature delta
function singularity of the point mass source at r = 0. The derivative of the
step function is a delta function. In the bulk region of spacetime ( r > 0 ) , the
metric is smooth and differentiable and one will have Rµν = R = 0 ( in the
region empty of matter ). For instance, gtt(r) = 1−(2GNM/r+2GNMΘ(r)) is
well defined and smooth for all r > 0 and tends to zero when r tends to 0+ε. It
tends to minus infinity when r = 0 ( discontinuity at the location of the point
mass r = 0 ). It is only in the r = 0 boundary ( the singularity ) where the
metric is discontinuous. Colombeau’s theory of nonlinear distributions is the
proper way to deal with point-mass sources in nonlinear theories and where
one may rigorously solve the problem without having to introduce a boundary

3We thank Michael Ibison for pointing out the importance of the Heaviside step function
and the use of the modulus |r| to account for point mass sources at r = 0 .
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at r = 0 [40].
Another possibility is to formulate the problem in phase space, in particular

within the framework of the Finsler geometry associated with the (co) tangent
bundle of spacetime. A point mass may have a zero area from the space-
time perspective but a non-zero area from the phase space point of view due
to the incorporation of the momentum degrees of freedom into the picture ;
i.e. in the static case pµ = (E = M, 0, 0, 0) there is a non-vanishing phase
space area element ( setting aside the nature of curved phase space for the
moment ) A = E t = M t . A compactification of the temporal direction t
along a circle S1 gives an Euclidean time coordinate interval of 2πtE which
is defined in terms of the Hawking temperature TH and Boltzman constant
kB as 2πtE = (1/kBTH) = 8πGNM . From which we infer that tE = 4GNM .
Therefore the area element in phase space, A , after equating GN = L2

Planck, (
in natural units h̄ = c = 1 ) is

A = E tE = M × 4GNM = 4GNM
2 =

4π(2GNM)2

4 πL2
P

=
Horizon Area

4 Planck Disc
.

(2.4a)
where the area of the Planck disc is π(LP )2. Therefore, the phase space area
element E tE, in units of h̄, is the same as the Black Hole Entropy ( one
quarter of the area of the spherical horizon at r = 2GNM ) in units of the
area of a Planck disc. This fact may have some relation to the Holographic
principle and warrants investigation.

We will show in this section how the horizon of the standard black hole
solution at r = 2GNM ( when the Hilbert textbook choice is taken R(r) = r
) can be displaced to the location of the point mass r = 0, when the radial
function is chosen to have a cutoff R(r = 0) = 2GNM , if, and only if, one
embeds the problem in phase space ( or the spacetime tangent bundle ) that
is the proper arena to incorporate the role of the physical point mass M at
r = 0. Relativity in phase space is the arena where one may unify space, time
and matter due to the equivalence between mass and energy. In the Kruskal-
Fronsdal-Szekeres coordinates u, v description, to describe what happens when
one crosses the horizon r = 2GNM of topology R×S2 and whose spatial slice
is a sphere of radius r = 2GM , one has a null hyper-surface at r = 2GNM
due to the tipping of the lightcone as one approaches the horizon. When the
radial function obeys a different boundary condition R(r = 0) = 2GNM than
the Hilbert textbook one, one may displace the null horizon from r = 2GNM
to a null horizon in r = 0 but such horizon lives in the spacetime tangent
bundle (phase space) to account for the presence of a point-mass M at r = 0.
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Furthermore, to corroborate our proposal, in section 6 we will show the
relationship between our description of the field of a point mass, within the
framework of phase spaces (Hamilton-Cartan Geometry ) or in the spacetime
tangent bundle (Finsler geometry), and the Bars-Witten stringy black hole in
1 + 1-dim that has a null horizon at r = 0. The stringy black hole singularity
occurs in the complex realm when r is extended to the field of complex numbers
r = 0+ i(2GNM)(π/2). Whereas the horizon ( the null surface ) actually lives
at r = 0.

The physical motivation of embedding the problem in a larger space (phase
space ) was already evisioned by Max Born [44] who was the first to propose a
Reciprocal ( or Dual ) Relativity Principle in Phase Spaces, where in addition
to a limiting speed given by the speed of light, there is a limiting proper
force (acceleration). Since speed is the rate of change of position, and force
is the rate of change of momentum, then the reciprocal principle of Relativity
in Phase Spaces requires a limiting speed given by the speed of light and a
maximal force experienced by a fundamental particle that can be conjectured
to be F = mPlanck c

2/LPlanck = M(Universe) c2/RHubble and which leads to
the Weyl-Dirac-Eddington large numbers coincidence in Cosmology [46]. A
maximal acceleration c2/LPlanck is also consistent with the Finsler geometry
of the spacetime tangent bundle [45] and the stringy minimal Planck length
uncertainty relations [47]

∆X ≥ h̄

∆P
+ L2

Planck ∆P. (2.4b)

The most general p-brane uncertainty relations based on a unified treatment
of p-branes, for all values of p, in Clifford spaces was derived in [48].

The physical interpretation of the phase space null horizon at r = 0, null
from the perspective of the full fledged phase space metric gµν(x, p), or Finsler
metric gµν(x, v) is that it is the ”attractor” region where a test particle (of mass
m ) approaches asymptotically as it moves in the gravitational background
produced by the point mass M located at r = 0 (when m <<< M ) . As
the test particle approaches the horizon at r = 0, its speed and acceleration
approach asymptotically the speed of light c and the maximal acceleration
c2/LP . This is very reminiscent of what occurs when one uniformly accel-
erates a massive test particle in flat Minkowski spacetime, the trajectory is
a hyperbola which asymptotically approaches the light cone passing through
the Minkowski spacetime origin r = 0. The speed tends asymptotically to the
speed of light.

To reinforce our calculations, in the final section 6 it will be shown how
the Bars-Witten stringy 1 + 1-dim black-hole solution can be embedded into
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the conformally re-scaled metrics of the form in eq-(2.1) for a unique choice
of the radial function given by the tortoise radial coordinate :

R + 2GNM ln (
R− 2GNM

2GNM
) = 2GNM ln [ sinh

r

2GNM
]. (2.5a)

such that
R(r = 0) = 2GNM ; R(r →∞) → R ∼ r. (2.5b)

and which precisely has the same behaviour at r = 0 and ∞ as the radial
functions displayed in eqs-(2.4) when α = 2GNM . The radial function R
in (2.5a) has also a lower ( ultraviolet cutoff ) bound given by 2GNM . An
interesting analysis of how a string ( an extended object ) can probe space-
time points was presented by Aspinwall [22]. This requires altering our classical
conceptions of Topology and Geometry at very small scales.

The geometric proper displacement in the spacetime tangent bundle in-
volving coordinates and velocities typical of Finsler metrics is

(dσ)2 = (ds)2 + L2
P (dvµ)2 = (ds)2 [ 1 + L2

P (
dvµ

ds
)2 ] = (1− a2(s)

a2
o

) (ds)2.

− a2(s) ≡ (
dvµ

ds
)2 < 0. (2.6a)

the acceleration is spacelike when the velocity is timelike, this accounts for the
minus sign in the last term of (2.6a).

We are naturally assuming that the test particle does not follow a geodesic
in the base spacetime manifold, otherwise a = 0. For example, when the test
particle remains static, the acceleration is the force per unit mass required to
maintain the test particle at a fixed position ( since the metric is static ) and
prevent it from falling into the point mass M source at r = 0. The closer it
gets to r = 0, the greater the force is required to hold it in that place. The
force ( acceleration ) has an upper limit in our case due to Born’s relativity
principle in phase space. If one ignores the back-reaction of the gravitational
field on the point mass M at r = 0, the world line of the very own point mass
M , as it is inmersed in its own gravitational field background, is a timelike
geodesic at r = 0 such it does not experience an acceleration. So the world line
interval corresponding to the point mass location (dσ)2 coincides with (ds)2

in this case.
The conformal factor in front of the standard spacetime interval (ds)2 van-

ishes when the acceleration of the test particle moving in such background
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is a2 = a2
o, where ao is the maximal acceleration c2/LPlanck . When (ds)2 is

given by the Schwarzschild solutions of eq-(2.1) and when the radial functions
R(r) is subjected to the cutoff R(r = 0) = 2GNM we have a divergence of
(ds)2(r = 0) = ∞, due to grr(r = 0) = ∞, while the conformal factor is zero,
since a test particle attains the limiting upper value of the proper acceleration
when it asymptotically reaches r = 0. Its speed also asymptotically tends to
the speed of light as it approaches r = 0. One then ends up with an interval
(dσ)2 of the form 0×∞ which nevertheless tends to zero.

In section 6 we will encounter a similar behaviour of the conformal factor
in the embedding process of the stringy black hole in 1 + 1-dim into the
conformally rescaled 3+1-dim metric of the form in eq-(2.1). Such conformal
factor vanishes also at r = 0 ensuring that the conformally rescaled interval
is null at r = 0 compatible with the existence of a null stringy black hole
horizon at r = 0.

The most salient feature of (2.6a) is that at r = 0 we end up with

(1− a2(s)

a2
o

) (ds)2 = 0×∞→ 0. (2.6b)

implying that the conformally rescaled Schwarzschild metrics (2.1) yield a
null interval, a null surface (dσ)2 = 0, in the spacetime tangent bundle at
the precise location of the point mass source r = 0. In the stringy black hole
case the location r = 0 is also a null surface and coincides with the Bars-
Witten stringy black hole horizon. Hence, the horizon that a test particle
( of mass m << M ) experiences as it approaches r = 0 asymptotically, is
a null surface that lives in the spacetime tangent bundle corresponding to
the coordinates xµ(s), vµ(s) associated with the world-line of the test particle.

This is because the conformally rescaled area (1− a2(s)
a2

o
) 4πR(r)2 that the test

particle sees, as it approaches r = 0, tends to zero due to the vanishing of the
conformal factor when the maximal acceleration is attained, despite the fact
that 4π(R(r = 0))2 = 4π(2GNM)2 6= 0. This is a peculiar feature of Finsler
geometry when a metric is velocity ( momentum ) dependent in addition to
position dependent.

To see why phase space metrics can behave like stringy black hole met-
rics, let us look for the analog of a static spherically symmetric metric in
phase space ( or in the spacetime tangent bundle ), which is for example,
gtt(r, pr); grr(r, pr) where pr is the radial conjugate momentum to the radial
variable r. This dependence on the conjugate pair of variables (r, pr) resembles
the Bars-Witten stringy-black hole metric (ds)2 = guv(u, v)dudv depending on
the pair of variables u, v and studied in detail in section 6 . Thus, the maxi-
mal proper acceleration ao = c2/LPlanck acts as regulator in spacetime [45] in
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the same vein that there is a maximum value of tidal forces ( acceleration )
in string theory [47] due to the minimal length string uncertainty relations.
This maximal acceleration regulator is consistent with the introduction of an
ultra-violet cutoff R(r = 0) = 2GNM .

In [26] we studied the many subtleties behind the introduction of a true
point-mass source at r = 0 ( that couples to the vacuum field ) and the physical
consequences of the delta function singularity (of the scalar curvature) at the
location of the point mass source r = 0. Those solutions were obtained from
the vacuum SSS solutions simply by replacing r for |r| and α for 2GNM .
For instance, the Laplacian in spherical coordinates in flat space of 1/|r| is
equal to −(1/r2)δ(r), but the Laplacian of 1/r is zero. Thus, to account for
the presence of a true mass-point source at r = 0 one must use solutions
depending on the modulus |r| instead of r [38]. The scalar curvature was
R = −[2GNM/R2(dR/dr)]δ(r) [26] . It is interesting that for the Hilbert
R = r and Schwarzschild choices R3 = r3 + (2GNM)3, the scalar curvature
is the same : R = −(2GNM/r2)δ(r) and also the measures 4πR2dR dt =
4πr2dr dt. This deserves further investigation. The study of the SSS solutions
with cosmological constant based on the introduction of an admissible family
of radial functions R(r) allowed us [25] to obtain the observed value of the
vacuum energy density.

A different and detailed treatment of point masses, point charges, delta
function sources and the physical implications of the many different choices of
the radial functions R(r) in General Relativity has been given by Fiziev [29].
A thorough rigorous mathematical analysis on the theory of tensor-valued
distributions, point-mass sources and delta function singularities in nonlinear
theories ( like General Relativity ) based on Colombeau’s theory of nonlinear
distributions can be found in [40]. Colombeau developed the rigorous math-
ematical treatment of nonlinear distributions in General Relativity and other
nonlinear theories because the old Schwarz theory of distributions was re-
stricted to linear theories. A modern treatment of singularities in Riemann-
Finsler geometries can be found in [41]. For the historical implications of the
most general SSS solutions of Einstein’s equations see [23] and the book by [34].
The solutions for a mass point that we have been all accustomed to were those
given by Hilbert-Droste-Weyl [33] and can be recovered from eqs-(2.1-2.4) by
setting R(r) = r.

There are many physical differences among the Hilbert and Schwarzschild
1916 solution, in particular in the global properties. We will explain below
why the 1916 Schwarzschild solution is not a radial reparametrization of the
Hilbert textbook solution. In particular, because the radial function R =
[|r|3 + (2GNM)3]1/3 can never zero. The absolute value |r| properly accounts
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for the field of a point mass source at r = 0. Thus, the lower bound of R is
given by 2GNM . The Frondsdal-Kruskal-Szekeres analytical continuation [39]
of the Hilbert solution for r < 2GNM yields a spacelike singularity at r = 0
and the roles of t and r are interchanged when one crosses r = 2GNM ; so
the interior region r < 2GNM is no longer static. The Schwarzschild solution
is static for r < 2GNM , and there is a timelike singularity at r = 0, the
true location of the point mass source. Notice that when r >> 2GNM the
Schwarzschild solution reduces to the Hilbert solution and one has the correct
Newtonian limit in the asymptotic region.

It is very important to emphasize that despite the fact that one can always
relabel the variable r for R in such a way that the metric in eq-(2.1) has
exactly the same functional form as the standard Hilbert textbook solution
[33] (black-holes solutions with a horizon at r = 2GNM) this does not mean
that the Hilbert textbook metric is diffeomorphic to the metric in eq-(2.1).
The reason is that the values of r range from 0 to ∞ while the values of R
range from 2GNM to ∞. The physical explanation why there is an ultra-
violet cutoff at R = 2GNM was provided long ago by Abrams [23], and rather
than imposing this cutoff R = 2GNM by fiat (by decree, by hand) there is a
deep physical reason for doing so; namely that the Hilbert textbook solution
R(r) = r does not furnish the static gravitational field of a point mass centered
at the origin r = 0 since the Hilbert textbook solution is not static in the region
0 < r < 2GNM after performing the Fronsdal-Kruskal-Szekeres analytical
continuation.

One can also explain the physical meaning of this UV cutoff R(r = 0) =
2GNM resulting from the Noncommutativity of the spacetime coordinates
within scales of the Planck length. Since the point r = 0 is fuzzy and delocal-
ized, it has an area due to the noncommutativity of coordinates because points
cannot be resolved below the Planck scale. To illustrate the crucial role of the
momentum degrees of freedom inherent in the point-mass source, let us recur
to the standard noncommutative algebra ( there are far more fundamental
algebras like Yang’s algebra in noncommutative phase spaces ) of the form

[xµ, xν ] = iΘµν . [pµ, pν ] = 0 [xµ, pν ] = iηµν (2.7)

where ηµν is a flat space metric and the structure constants (c-numbers )
Θµν = −Θνµ are c-numbers that commute with x, p and that have dimensions
of length2; the Θµν are proportional to the L2

Planck. A change of coordinates

x
′µ = xµ +

1

2
Θµρ pρ. p

′µ = pµ. (2.8)

leads to an algebra with commuting coordinates
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[x
′µ, x

′ν ] = 0. [p
′µ, p

′ν ] = 0. [x
′µ, p

′ν ] = iηµν . (2.9)

Due to the mixing of coordinates and momentum in the new commuting
variables x′ one can envisage coordinate and momentum dependent metrics
in phase space, in particular Finsler geometries, and whose average over the
momentum coordinates < πµν(x, p) >p = gµν(x) yield the effective spacetime
metric. This momentum averaging procedure is very similar to the averaging
of the momentum-scale dependent metrics employed in the Renormalization
Group flow of the effective average action employed in Nonperturbative Quan-
tum Einstein Gravity by [52]. Morever, the momentum dependence of the new

coordinates x′ leads to a momentum dependent radial coordinate r′ =
√
x′i x′i

involving commuting x′µ coordinates

r′ =

√
(xi +

1

2
Θiρ pρ) (xi +

1

2
Θiτ pτ ). (2.10)

Similar attempts to study the Noncommutative effects on black holes by mod-
ifying r → r′ have been made by many other authors , [49], [50] however, to
our knowledge its relation to phase spaces and Finsler geometries has not been
explored. The impending question is to find another interpretation of the ra-
dial function R(r) and the physical meaning of the cutoff R(r = 0) = 2GNM
in terms of the momentum dependent radial coordinate r′.

When xi = 0⇒ r = 0, and (2.10) becomes

r′ =
1

2

√
Θiρ pρ Θiτ pτ . (2.11)

The expression inside the square root can be written in terms of pµp
µ = M2,

in the static case when |~p| = pi = 0, i = 1, 2, 3, after the following steps.
Firstly, due to the static condition pi = 0, p0 = E = M one has

Θiρ Θiτ pρ p
τ = Θµρ Θµτ pρ p

τ − Θ0i Θ0j pi p
j = Θµρ Θµτ pρ p

τ , (2.12)

this last expression may be recast as

Θµρ Θµτ pρ p
τ = λ pτ p

τ = λ M2
o . (2.13)

if, and only if, the 4× 4 antisymmetric matrix Θµν obeys the eigenvalue con-
dition :

Θµρ Θµτ pρ = λ pτ . (2.14)

In the static case pρ = (Mo, 0, 0, 0), the eigenvalue condition yields the follow-
ing 4 conditions

Θµ0 Θµ0 p0 = λ p0, Θµ0 Θµi p0 = pi = 0, i = 1, 2, 3. (2.15)
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that will restrict the values of the 6 components of the 4 × 4 antisymmetric
matrix Θµν ; i.e. the 6 components are not all independent from eachother.

Therefore, in the static case pi = ~p = 0, upon imposing the eigenvalue
condition and after adjusting the value of the constant λ = 16 L4

Planck = 16G2
N ,

gives then the ultra-violet cutoff

r′(r = 0) =
1

2

√
Θiρ pρ Θiτ pτ = 2 L2

P M = 2 GN M. (2.16)

consistent with R(r = 0) = 2GNM with the only subtlety that that r =
√
xixi

involves now noncommuting coordinates xµ.
When r 6= 0, the terms

Θµρ pρ xµ + Θµτ x
µ pτ = Θµρ pρ xµ + Θµτ xµ pτ =

Θµρ pρ xµ + Θµρ xµ pρ = Θµρ ( xµ pρ− i ηµρ ) + Θµρ xµ pρ = 2 Θµρ xµ pρ.
(2.17)

due to the antisymmetric property of Θµρ, one has Θµρ ηµρ = 0.
The quantity Θiρ xi pρ involving the angular momentum operator, xi pρ−

xρ pi does not preserve the spherically symmetry unless one imposes a condi-
tion (constraint) in phase space like

Θiρ xi pρ ∼ L2
Planck M ω(r) r2 = GN M ω(r) r2 (2.18)

where ω(r) is a scale-dependent frequency. Concluding, in the most general
case one has :

r′ = r′(r) =
√
r2 + 2Θiρ xi pρ + (2GNM)2. (2.19)

Since eq-(2.17) involves the phase space variabes x, p, the question is to see
whether or not phase space metrics solutions of the form gµν(x, p) = gµν(x

µ +
Θµρpρ) solve the field equations corresponding to Moyal-Fedosov star product
deformations of Noncommutative Finsler Gravity associated with the contan-
gent bundle [41]. For a recent status of Noncommutative Riemannian gravity
see [43] and references therein. However, we believe that it is Finslerian ge-
ometry the appropriate one to study and the proper arena to quantize gravity.
When r = 0 one recovers the cutoff r′(r = 0) = 2GNM . Therefore this pro-
cedure to relate the effects of the Noncommutativity of coordinates with the
ultra-violet cutoff R(r = 0) = 2GNM is quite promising . We shall leave it for
future work.

Another controversy that we must address is the dispute by many authors
as to whether or not the radial function R(r) is just a radial change of co-
ordinates; i.e. a naive radial reparametrization that has no effect at all on
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the physics. We will see now why strictly speaking R(r) is not a naive radial
reparametrization. One can have an infinite number of metrics parametrized
by a family of arbitrary radial functions R(r) with the desired behaviour at
r = 0 and r = ∞, and different functional forms of the scalar curvature
(which is a coordinate invariant ) given by R = − (2GNM δ(r)/R2 (dR/dr))
[26]. Since the scalar curvature R 6= 0 (when r = 0) is a coordinate invariant
quantity, this result for R ∼ δ(r) whose proportionality factor depends explic-
itly on the functional form of the family of radial functions R(r), corroborates
once more that one cannot view the role of the radial function R(r) as a naive
change of radial coordinates from r to R, because if it were, then it should also
leave invariant the proportionality factors in front of the delta function. There-
fore, one must not confuse having an infinite family of metrics parametrized
by the functions R(r) with an infinite number of radial reparametrizations
r → r′(r) of a given fiduciary metric.

The source of the controversy was due to the fact that because for all values
of r > 0 the scalar curvature is always R = 0, and since 0 is an invariant, one
might conclude that R(r) has to be just a radial reparametrization because
it leaves R invariant ( equal to zero for r > 0 ). However, one must not
forget the crucial delta function singularity of the scalar curvature and whose
proportionality factor depends explicitly on the functional forms of the radial
functions R(r). The impending question is : If this is the case, what is the
quantity which remains invariant for all the infinite choices of R(r) ? We
will show now that the relevant invariant physical quantity, independent of
the any arbitrary choice of R(r), is precisely the Einstein-Hilbert action. In
particular, the Euclideanized action after a compactification of the temporal
interval yields an invariant quantity which is precisely equal to the black hole
entropy in Planck area units.

We shall see that the source of entropy is due entirely to the scalar curvature
delta function singularity at the location of the point mass source given by
R = −[2GNM/R2(dR/dr)]δ(r) [26] after using the 4-dim measure

4πR2 |gRR|1/2dR |gtt|1/2dt = 4πR2 dR dt. (2.19)

in the Euclidean Einstein-Hilbert action. The Euclideanized Einstein-Hilbert
action associated with the scalar curvature delta function is obtained after a
compactification of the temporal direction along a circle S1 giving an Euclidean
time coordinate interval of 2πtE and which is defined in terms of the Hawking
temperature TH and Boltzman constant kB as 2πtE = (1/kBTH) = 8πGNM .
The measure of integration is 4πR2 dR dtE, leading to :
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SE = − 1

16πGN

∫
( − 2GNM

R2(dR/dr)
δ(r) ) (4πR2 dR dt) =

− 1

16πGN

∫
( − 2GNM

r2
δ(r) ) (4πr2 dr dt) =

4π(GNM)2

L2
Planck

=

4π (2GNM)2

4 L2
Planck

=
Area

4 L2
Planck

. (2.20)

when equating GN = L2
P . It is interesting that the Euclidean action (2.20) is

the same as the black hole entropy in Planck area units.
The action − entropy connection has been obtained from a different ar-

gument by Padmanabhan [51] by showing how it is the surface term added
to the action which is related to the entropy, interpreting the horizon as a
boundary of spacetime. The surface term is given in terms of the trace of
the extrinsic curvature of the boundary. The surface term in the action is
directly related to the observer-dependent-horizon entropy, such that its vari-
ation, when the horizon is moved infinitesimally, is equivalent to the change
of entropy dS due to the virtual work. The variational principle is equivalent
to the thermodynamic identity TdS = dE + pdV due to the variation of the
matter terms in the right hand side.

Notice that this result (2.20) remains invariant for any arbitrary choice
of the radial function R(r) , whether or not it is the Hilbert textbook choice
R(r) = r. Since the action is invariant for any choices of R(r), it is in this
sense that we can argue that the use of a particular radial function R(r) is
just equivalent to choosing a radial gauge that does not change the value of
the action. Furthermore, this result that the Euclidean action is equal to the
entropy in Planck units can be generalized to higher dimensions upon using
the results in the Appendix for metrics in higher dimensions. Instead of areas
we have D − 2-dim regions. In this higher dimensional case we can see in the
Appendix how one has two classes of solutions. There are the usual black hole
solutions ( with horizons enclosing the point r = 0 ) when R(r = 0) = 0, and
the second class of solutions occurs when there is an ultra-violet cutoff due to
the presence of matter R(r = 0) = [16πGDM/(D − 2)ΩD−2]

1/D−3. The point
r = 0 is p − brany in nature such that the p + 1 world-volume of a p-brane
spans the D − 2-dim surface associated with the hyper-area ∼ R(r = 0)D−2

of the point. Black p-branes are not the same as p − brany black-holes ( the
generalization of stringy black holes metrics ) which resemble the behaviour of
these higher-dim metrics when R(r = 0) 6= 0. Once again , a proper treatment
requires Finsler geometries in higher dimensions.
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To end this section we briefly explain why the ultra-violet cutoff R(r =
0) = 2GNM is compatible with the exact Nonperturbative Renormalization
Group flow of the Newtonian coupling G = G(r) and the mass parameter
M = M(r) in Quantum Einstein Gravity [52] . For further details we refer
to [53]. The presence of an ultra-violet cutoff R = 2GNMo originates from
the mere presence of matter and permits to relate gtt = 1 − 2GNMo/R(r) to
gtt = 1− 2G(r)M(r)/r such that gtt(r = 0) = 0 and which is compatible with
the ultra-violet cutoff of the radial function R(r = 0) = 2GNMo. GN is the
value of the Newtonian coupling in the deep infrared andM = Mo is the Kepler
mass as seen by an observer at asymptotic infinity. The non-perturbative
exact Renormalization Group program for Quantum Einstein Gravity helps to
determine the choice R(r) uniquely from the infinity family of plausible radial
functions R(r). The momentum dependence of G(k2) was found by Reuter et
al [52] to be

G(k2) =
GN

1 + γ GN k2
. (2.21a)

Setting

k2 = (
β

D(R)
)2. (2.21b)

in terms of the proper radial distance D(R) defined by

D(R) =
∫ R

2GNMo

√
gRR dR =

∫ R

2GNMo

dR√
1− (2 GN Mo/R)

=

√
R ( R− 2 GN Mo) + 2 GN Mo ln [

√
R

2GNMo

+

√
R− 2GNMo

2GNMo

]. (2.22)

where the lower (ultra-violett cutoff ) is R(r = 0) = 2GNMo. Notice that
D(R = 2GNMo) = 0 as it should since the proper distance from r = 0 is zero
when one is located at r = 0. Hence,

G = G(R) =
GN

1 + γ GN k2
=

GN D(R)2

D(R)2 + γβ2 GN

. (2.23)

since R = R(r), by imposing the conditions for all values of r

(1− 2 GN Mo

R(r)
) = (1− 2 G(r) M(r)

r
). (2.24)
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(dR
dr

)2

(1− 2 GN Mo

R(r)
)

=
1

(1− 2 G(r) M(r)
r

)
. (2.25)

from eqs-(2.23, 2.24, 2.25) one infers that

dR

dr
= 1 ⇒ R(r) = r + 2GNMo. (2.26)

which is the Brillouin choice for the radial function, as well as the relation

G(r) = GN (
r

R
) (

Mo

M(r)
) = (

GN D(R)2

D(R)2 + γβ2 GN

) ⇒

M(r) = Mo (
r

R
) (
D(R)2 + αβ2 GN

D(R)2
). (2.27)

that allows us to determine the form of the M(r) once the radial function
R(r) = r + 2GNMo is plugged into D(R) given by eq-(2.22). The constant
found by Reuter et al is γβ2 = 118/15π and the proper distance D(R) is given
by eq-(2.22).

When r = 0 a careful analysis yields

M(r → 0) ∼ 1

2 GN Mo

. (2.28)

therefore, the running mass parameter at r = 0, M(r = 0) ∼ 1/R(r = 0) =
1/(2GNMo) is finite instead of being infinite. The running mass at r = 0 has
a cutoff given by the inverse of the ultra-violet cutoff R(r = 0) = 2GNMo (
up to a numerical constant ). When r → ∞ one has M(r → ∞) → Mo as
expected, where Mo is the Kepler mass observed by an observer at asymptotic
infinity ( deep infrared ).

Concluding this section, R = r + 2GNMo is the sought after relation be-
tween r and R, out of an infinite number of possible functions R(r) obeying
the SSS vacuum solutions of Einstein’s equations that is consistent with the
Renormalization Group flow of the Newtonian coupling in Quantum Einstein
Gravity [52].

To summarize : We have explained how the horizon of the standard black
hole solution at r = 2GNM (when the Hilbert textbook choice is taken
R(r) = r) can be displaced to the location of the point mass M source r = 0,
when the radial function is chosen to have a cutoff R(r = 0) = 2GNM , if, and
only if, one embeds the problem in phase space ( or the spacetime tangent
bundle ) that is the proper arena to incorporate the role of the physical point
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mass M at r = 0. Thus, the horizon that a test particle ( of mass m << M )
experiences at r = 0 is a null surface that lives in the phase space ( spacetime
tangent bundle ) corresponding to the coordinates xµ(s), pµ(s) ( vµ(s) ) asso-
ciated with the worldline of the test particle in the base spacetime manifold.
The purpose in introducing velocities/momenta into a Finsler metric in the
spacetime tangent bundle (phase space ) was aimed in resolving the riddle of
how is it possible that a point-mass can have a non-zero area 4π(2GNM)2

but a zero volume simultaneously when the cutoff R(r = 0) = 2GNM is
imposed on the radial functions R(r) in eq-(2.1). The non-zero area of the
point-mass M at r = 0 should be thought of as a phase − space area such
A/h̄ = Mt/h̄ = 4π(2GNM)2/4πL2

p which matches the black hole entropy in
units of πL2

P , as shown in eq-(2.4a), when the temporal direction is compact-
ified along a circle S1.

In section 6 we analyze the details of the stringy black hole horizon in
1 + 1-dim and its connection to the results of this section. In the next section
we study what happens in 2+2 dimensions since 2+2 is the natural extension
of 1 + 1 dimensions.

3.- Static Hyperbolic Symmetric Solution in 2 + 2-dimensions

Consider the vacuum static spherically symmetric solutions of Einstein field
equations in a spacetime of 3 + 1-signature

Rµν = 0. (3.1)

of the form
ds2 = −eµ(r)(dt1)

2 + eα(r)dr2 +R2(r)dΩ2, (3.2)

where

dΩ2 = dφ2 + sin2 φ dθ2. (3.3)

The solutions are

ds2 = −(1− α

R
)(dt1)

2 +
(dR/dr)2

(1− α/R)
dr2 + R2(r)dΩ2. (3.4)

where α is a parameter that has mass dimensions. When a point mass source
is present at the location r = 0, then α = 2M , r → |r| as discussed in the
previous section and the radial function R(r) = [|r|3+(2M)3]1/3 for the genuine
horizonless Schwarzschild solution and R(r) = |r| for the Hilbert text book
solution.
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Several remarks are now in order pertaining whether or not a Wick rotation
of the metric (3.4) furnishes solutions to the vacuum field equations for the
signature 2 + 2. A naive Wick rotation of the angle coordinate φ→ iφ = χ in
the above solutions (3.4) yields

sin2(φ)→ sin2(iφ) = −sinh2(χ). dφ2 → −dχ2. (3.5)

and due to the two sign changes in (3.5) one would have a 1 + 3 signature
instead of a split 2 + 2 signature.

A Wick rotation of θ → iθ = χ, (dθ)2 → −(dχ)2 yields a 2 + 2 signature
but since the range of the only remaining angle φ is [0, π], instead of [0, 2π],
and one will no longer cover the space completely. Furthermore, since there is
a signature change ( a sign change in one of the metric components gθθ ) the
connection and curvature expressions will be modified accordingly and there
is no reason now why the vacuum field equations should be satisfied. In the
next section we will find explicit solutions in the static circular symmetric case
:

ds2 = −e µ̃(R(ρ))(dt1)
2 − e ν̃(R(ρ))(dt2)

2 + e α̃(R(ρ))(dR(ρ))2 + (R(ρ))2dθ2.

where the rho function R(ρ) is now a function of ρ, the radius of a circle
ρ2 = x2 + y2.

In order to construct solutions with topology H3×R where H3 is a 3-dim
pseudo-sphere ( a hyperboloid ) of radius R parametrized by the coordinates
ψ, θ, χ as

x = R cosh χ cos θ. y = R cosh χ sin θ.

t1 = R sinh χ cos ψ. t2 = R sinh χ sin ψ. (3.6)

where −∞ ≤ χ ≤ ∞ and 0 ≤ θ ≤ 2π; 0 ≤ ψ ≤ 2π such that the flat spacetime
metric in 2 + 2 dimensions is

ds2 = −(dt1)
2 − (dt2)

2 + (dx)2 + (dy)2 =

(dR)2 + R2 [ cosh2χ (dθ)2 − sinh2χ (dψ)2 − (dχ)2 ]. (3.7a)

From eq-(3.6) we infer that the 3-dim pseudo-sphere H3 is represented
analytically by :

−(t1)
2 − (t2)

2 + x2 + y2 = R2. (3.7b)
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The curved spacetime metric we are interested involve the two functions
Σ = Σ(R) and f̃ = f̃(Σ(R)) = f(R) such that

ds2 = e f̃(Σ)(dΣ)2 + Σ2 [ cosh2χ (dθ)2 − sinh2χ (dψ)2 − (dχ)2 ] =

ef(R) (
dΣ

dR
)2 (dR)2 + Σ2(R) [ cosh2χ (dθ)2 − sinh2χ (dψ)2 − (dχ)2 ] =

eµ(R) (dR)2 + Σ2(R) [ cosh2χ (dθ)2 − sinh2χ (dψ)2 − (dχ)2 ]. (3.8)

where we have defined eµ(R) ≡ ef(R) (dΣ/dR)2. The flat spacetime metric (3.7)
is recovered from (3.8) in the limit R→∞ such that µ(R)→ 0 and Σ(R) ∼ R.

Another interesting parametrization r ≥ 0, and −∞ ≤ ξ ≤ ∞; 0 ≤ θ ≤ 2π
is

t2 = r sinh ξ; x = r cosh ξ cos θ; y = r cosh ξ sin θ. (3.9)

where r is the throat size of the 2-dim hyperboloid H2 defined in terms of
t2, x, y as

−(t2)
2 + x2 + y2 = r2. (3.10)

and the flat spacetime metric −(dt1)
2− (dt2)

2 + (dx)2 + (dy)2 can be recast as

ds2 = −(dt1)
2 + (dr)2 + r2[ cosh2 ξ (dθ)2 − (dξ)2 ]. (3.11)

Notice that we have a 2 + 2 signature in eq-(3.11), as one should, and that
there is a difference between the forms of the metric in eq-(3.7) and eq-
(3.11). The topology corresponding to eq-(3.7) is H3 × R∗ where H3 is a
3-dim hyperboloid ( a 3-dim pseudo-sphere ); whereas, instead, the topology
corresponding to eq-(3.11) is R×R∗ ×H2.
R∗ is the half-interval [0,∞] representing the values of the radial coor-

dinates. In eq-(3.7) the 3-dim hyperboloid ( pseudosphere ) of fixed radius
R is spanned by the 3 coordinates θ, ψ, χ as indicated by eq-(3.6). Whereas
in eq.(3.11), one temporal variable t1 is characterized by the real line R and
whose values range from −∞,+∞, and the other temporal variable t2 is one
of the 3 coordinates (t2, x, y) which parametrized the two-dim hyperboloid H2

described by eq-(3.10 ).
A curved spacetime version of eq-(3.11) is :

ds2 = −eµ(r)(dt1)
2 + eν(r)(dr)2 + (R(r))2[ cosh2 ξ (dθ)2 − (dξ)2 ]. (3.12a)
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The metric in eq-(3.12a) whose signature is 2 + 2 is the hyperbolic version of
the Schwarzschild metric. One can replace r → R(r) since Einstein’s equations
do not determine the form of the radial function R(r) as explained in section 2.
The global topology of the solutions depends on the choices of R(r). We still
must determine what are the functional forms of µ(r) and ν(r). In order to go
from the solid angle (dΩ)2 = sin2(φ) (dθ)2 + (dφ)2 to cosh2 ξ (dθ)2 − (dξ)2

one must first perform the change of coordinates φ → π/2 + φ such that
sin2φ → cos2(φ) and then Wick rotate φ → φ = iξ so that cos2(φ) → cosh2ξ
and (dφ)2 = −(dξ)2

In the appendix we find the solutions to Einstein’s vacuum field equations
in D-dimensions for metrics whose signature is (D − 2) + 2 ( two times )
associated with a D−2-dim homogeneous space of constant positive (negative
) scalar curvature. In particular when D = 4 and the two-dim homogeneous
space H2 has a constant positive scalar curvature, like two-dim de Sitter space,
the metric components, in natural units G = h̄ = c = 1, are given by

gt1t1 = − (1− βM

R(r)
); grr =

(dR/dr)2

(1− βM/R(r))
. β = constant. (3.12b)

which are almost identical to the components appearing in the Schwarzchild
solutions for signature 3 + 1. The 2-dim hyperboloid defined by eq-(3.10)
coincides with a 2-dim de Sitter space of constant positive scalar curvature.
Anti de Sitter space has a constant negative scalar curvature.

There is a physical singularity at r = 0, the location of the point mass
source, when the hyperboloid H2 degenerates to a cone since the throat size
r has been pinched to zero. When the radial function is chosen to be R3 =
r3 + (βM)3 ⇒ R(r = 0) = βM then grr(r = 0) = ∞ and gt1t1(r = 0) = 0.
The proper circumference for this choice R3 = r3 + (βM)3 is

C(r, ξ) = 2π R(r) cosh ξ‘⇒ C(r = 0, ξ) = 2π βM cosh ξ. (3.13)

The proper area for a given value of r is

A(r) = 2π R2(r)
∫ +∞

−∞
cosh ξ dξ = 2π R2(r) 2 sinh ξ →∞ (3.14)

and diverges as ξ →∞ because the 2-dim hyperboloid is not compact. If one
chooses R(r) = r, then R(r = 0) = 0, so the proper circumference is zero (
for finite ξ ) and the proper area corresponding to r = 0 is 0×∞ = ∞ since
sinh ξ approaches infinity faster than r2 approaches zero.
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Another parametrization is :

t2 = r cosh ξ; x = r sinh ξ cos θ; y = r sinh ξ sin θ. (3.15)

where the thoat size r is defined in terms of t2, x, y as

−(t2)
2 + x2 + y2 = − r2. (3.16)

which can be obtained from eq-(3.10) by r2 → −r2. Eq-(3.16) represents
analytically the two disconnected branches of a two-dim hyperboloid.

ds2 = −(dt1)
2 − (dt2)

2 + (dx)2 + (dy)2 =

−(dt1)
2 − (dr)2 + r2[ sinh2 ξ (dθ)2 + (dξ)2 ]. (3.17)

Notice the sign change −dr2 in eq-(3.15) as one must have if one persists in
having a 2 + 2 signature. In this case the coordinate r must be interpreted as
a ”radial time”.

The curved spacetime version of (3.17) would be :

ds2 = −eα(r)(dt1)
2 − eβ(r)(dr)2 + (R(r))2 [ sinh2 ξ (dθ)2 + (dξ)2 ]. (3.18)

where α(r) and β(r) are two functions to be determined by solving Ein-
stein’s equations. The functional form of α(r), β(r) differs from the functions
µ(r), ν(r) in eqs-(3.12a, 3.12b) due to a crucial sign change in the grr compo-
nent of the metric in eq-(3.18).

Concluding, we have 3 interesting cases described by the metrics of 2 + 2
signature given by eqs-(3.8, 3.12, 3.18). The 2+2 hyperbolic-symmetric version
of Schwarzschild’s 3 + 1 solution is given by eqs-(3.12a, 3.12b).

4.- Static Circular Symmetric Solution in 2 + 2-dimensions

Let us look for a solution of the field equations of the form

ds2 = −e µ̃(R)(dt1)
2 − e ν̃(R)(dt2)

2 + e α̃(R)dR2 +R2dθ2 =

−eµ(ρ)(dt1)
2 − eν(ρ)(dt2)

2 + eα(ρ)dρ2 +R2(ρ)dθ2. (4.1a)

where
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µ̃(R(ρ)) = µ(ρ). ν̃(R(ρ)) = ν(ρ). e α̃(R(ρ))(
dR

dρ
)2 = eα(ρ). (4.1b)

The only nonvanishing Christoffel symbols are

Γ1
31 = 1

2
µ′, Γ2

32 = 1
2
ν ′, Γ4

34 = R
R

′
,

Γ3
11 = 1

2
µ′eµ−α, Γ3

22 = 1
2
ν ′eν−α, Γ3

44 = −e−αRR′,

Γ3
33 = 1

2
α′,

(4.2)

and the only nonvanishing Riemann tensor are

R1
212 = 1

4
µ′ν ′eν−α, R1

414 = −1
2
µ′e−αRR′,

R2
121 = 1

4
µ′ν ′eµ−α, R2

424 = −1
2
ν ′e−αRR′,

R4
141 = 1

2
µ′eµ−α R′

R
, R4

242 = 1
2
ν ′eν−α R′

R
,

R1
313 = −1

2
µ′′ − 1

4
µ′2 + 1

4
α′µ′, R2

323 = −1
2
ν ′′ − 1

4
ν ′2 + 1

4
α′ν ′,

R4
343 = −R′′

R
+ 1

2
α′R

′

R
, R3

131 = eµ−α(1
2
µ′′ + 1

4
µ′2 − 1

4
α′µ′),

R3
232 = eν−α(1

2
ν ′′ + 1

4
ν ′2 − 1

4
α′ν ′), R3

434 = e−αR(1
2
α′R′ −R′′).

(4.3)
The field equations are

R11 = eµ−α(
1

2
µ′′ +

1

4
µ′2 +

1

4
µ′ν ′ − 1

4
α′µ′ +

1

2
µ′
R′

R
) = 0, (4.4)

R22 = eν−α(
1

2
ν ′′ +

1

4
ν ′2 +

1

4
µ′ν ′ − 1

4
α′ν ′ +

1

2
ν ′
R′

R
) = 0, (4.5)

R33 = −1

2
µ′′ − 1

4
µ′2 +

1

4
µ′α′ − 1

2
ν ′′ − 1

4
ν ′2 +

1

4
α′ν ′ +

1

2
α′
R′

R
− R′′

R
= 0, (4.6)

and

R44 = e−αR(−1

2
µ′R′ − 1

2
ν ′R′ +

1

2
α′R′ −R′′) = 0. (4.7)
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From (4.7) we get

α′ = µ′ + ν ′ +
2R′′

R′ . .(4.8)

Substituting (4.8) into (4.4) and (4.5) we obtain

µ′′

µ′
= (

R′′

R′ −
R′

R
) (4.9)

and

ν ′′

ν ′
= (

R′′

R′ −
R′

R
), (4.10)

respectively. The Eqs. (4.9) and (4.10) can be integrated to give

µ′ = a
R′

R
(4.11)

and

ν ′ = b
R′

R
, (4.12)

respectively, where a and b are constants. Substituting (4.11) and (4.12) into
(4.8) leads to

α′ = a
R′

R
+ b

R′

R
+

2R′′

R′ . (4.13)

The expressions (4.11), (4.12) and (4.13) can be solved. We get

µ = a lnR/c (4.14)

ν = b lnR/d, (4.15)

and

α = a lnR/c+ b lnR/d+ 2 lnR′ + f, (4.16)

where c, d and f are arbitrary constants. If we substitute (4.14), (4.15) and
(4.16) into (4.6) we find

−1
2
a(R′′

R
− R′2

R2 )− 1
4
a2 R′2

R2 + 1
4
(aR′

R
)(aR′

R
+ bR′

R
+ 2R′′

R′ )− 1
2
b(R′′

R
− R′2

R2 )

−1
4
b2 R′2

R2 + 1
4
(bR′

R
)(aR′

R
+ bR′

R
+ 2R′′

R′ ) + 1
2
(aR′

R
+ bR′

R
+ 2R′′

R′ )R′

R
− R′′

R
= 0.

(4.17)
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This can be reduced to (
a+

1

2
ab+ b

)
R′2

R2
= 0. (4.18)

Excluding the solutions

R = Const. (4.19)

eq-(4.18) gives

a+
1

2
ab+ b = 0. (4.20)

Therefore we have shown why the form of R = R(ρ) can be completely
arbitrary while one must have the following constraint among the constants

b = − 2a

(a+ 2)
, (4.21)

where we assumed that a+ 2 6= 0.
A trivial solution of eq-(4.20) is a = b = 0 which leads to µ = ν = 0 and

α = 2ln (dR/dρ), when f = 0, yielding the metric :

ds2 = −(dt1)
2 − (dt2)

2 + dR(ρ)2 +R2(ρ)dθ2. (4.22)

the flat spacetime metric is attained when R(ρ) = ρ, and also for any function
R(ρ) with the asymptotic property such that for very large values of ρ it
behaves R ∼ ρ.

5.- An Explicit Nontrivial Solution

We have seen that the trivial flat spacetime solutions (4.22) are obtained
when a = b = f = 0 and when R(ρ) = ρ. In order to find interesting nontrivial
solutions we should have a nontrivial rho function R(ρ) 6= ρ. Let us consider
two particular cases of (4.21). In the first case taking a = 2 from eq-(4.21)
we get b = −1. Similarly, in the second case by setting a = −1in eq- (4.21)
implies b = 2. Thus in the first case (4.14), (4.15) and (4.16) become

µ = 2 lnR/c, (5.1)

ν = − lnR/d (5.2)

and
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α = 2 lnR/c− lnR/d+ 2 lnR′ + f. (5.3)

While in the second case we find

µ = − lnR/c, (5.4)

ν = 2 lnR/d (5.5)

and

α = − lnR/c+ 2 lnR/d+ 2 lnR′ + f. (5.6)

An interesting possibility arises by setting c = d = M and f = 0. In the first
case we get that the metric in 2+2 dimensions ends up being expressed in the
R-variable as :

ds2 = −(R/M)2(dt1)
2 − (M/R)(dt2)

2 + (R/M)(dR)2 +R2(dθ)2, (5.7)

while in the second case we obtain

ds2 = −(M/R)(dt1)
2 − (R/M)2(dt2)

2 + (R/M)(dR)2 +R2(dθ)2. (5.8)

Notice that in both solutions (5.7) and (5.8) there is a kind of duality in the
two times t1 and t2 factors.

Eqs-(5.7, 5.8) can be written as :

ds2 = −(M/R)(dt2)
2 + (R/M)(dR)2 +R2[(dθ)2 − (dt1)

2/M2]. (5.9a)

ds2 = −(M/R)(dt1)
2 + (R/M)(dR)2 +R2[(dθ)2 − (dt2)

2/M2]. (5.9b)

As announced earlier, the form of the rho function R(ρ) is undetermined.
Any arbitrary choice of R(ρ) solves Einstein’s equations.

A study reveals that a rho function R(ρ) given by

1

R
=

1

ρ
+

1

M
, (5.10)
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in units of G = h̄ = c = 1 is an appropriate choice. When ρ = 0, R = 0 and
when ρ = ∞ we have R(ρ = ∞) = M , so we do recover an asymptotically
flat spacetime metric at spatial ρ =∞ given by

ds2 = −(dt1)
2−(dt2)

2+(dR)2+R2(dθ)2 = −(dt1)
2−(dt2)

2+M2(dθ)2. (5.10)

Asymptotic infinity is defined by the condition R(ρ = ∞) = M . It is
the 3-dimensional asymptotic boundary of the 2 + 2-spacetime. It is a 3-dim
manifold of topology S1 × R2. The radius of S1 is R = M . When ρ = 0 we
have in eq-(5.7) that R(ρ = 0) = 0, so the metric component g22(ρ = 0) = ∞
and there is a metric singularity at ρ = 0 as expected. Conversely, in eq-(5.8)
the singularity occurs in the component g11(ρ = 0) =∞, instead.

6.- Stringy 1+1 black holes embedded in 3+1 and 2+2 dimensions

One of the main topics of the present work has been to link the 2+2 signa-
ture with the black-hole concept; i.e. spacetimes with singularities. We have
shown that there are many different interesting ways to do this. In section 3
we presented three very diferent cases associated with hyperboloids. In partic-
ular, in the static hyperbolic-symmetric version of the Schwarschild case given
by eqs-(3.12a, 3.12b), there is singularity at r = 0 which is associated with the
conical geometry resulting from having pinched to zero size r = 0 the throat
of the hyperboloid H2 and which is quite different from the spherically sym-
metric case in 3+1 dimensions, discussed in section 2. In the static circular
symmetric case developed in sections 4 and 5 we obtained solutions with sin-
gularties at ρ = 0 and whose asymptotic ρ→∞ limit leads to a flat 1+2-dim
boundary of topology S1 ×R2 where the radius of S1 is R(ρ =∞) = M .

One further interesting possibility may arise if we split the 2+2 metric as
the diagonal sum of two 1 + 1 metrics in the form

ds2 = gab(x)dx
adxb + gmn(y)dymdyn; a, b = 1, 2; m,n = 3, 4. (6.1)

In this case one may look for solutions like

ds2 =
dudv

1− uv
+

dwdz

1− wz
. (6.2)

where we have set the value of the mass parameter 2M = 1. Such mass
parameter is required on physical grounds and also because the denominators
in eq-(6.2) must be dimensionless.
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The metric of eq-(6.2) can be understood as the diagonal sum of two 1 + 1
black-holes solutions [54], [55] and whose singularities are located at uv = 1
and wz = 1 respectively. There are two horizons. The region outside the first
horizon is indicated by u ≥ 0 ≥ v and v ≥ 0 ≥ u; and the region inside the
first horizon is indicated by 1 ≥ uv ≥ 0 and u, v ≥ 0 . Similar considerations
apply to the second horizon by exchanging u ↔ w and v ↔ z. The lightcone
coordinates are defined by

u =
1

2
exp [ x+ t1 + log(1− e−2x) ] = X + T1

v = − 1

2
exp [ x− t1 + log(1− e−2x) ] = X − T1. (6.3a)

w =
1

2
exp [ y + t2 + log(1− e−2y) ] = Y + T2

z = − 1

2
exp [ y − t2 + log(1− e−2y) ] = Y − T2 (6.3b)

Conformally flat Solutions of the form

ds2 = eΥ(x,y,t1,t2) [ (dx)2 − (dt1)
2 + (dy)2 − (dt2)

2 ]. (6.4)

where Υ(x, y, t1, t2) has a similar singularity structure as the metric in eq-(6.2)
are worth exploring also.

The Bars-Witten black-hole 1 + 1-dim metric ( setting 2M = 1 ) is :

ds2 = (dr)2 − tanh2(r) (dt)2 = − dudv

1− uv
. (6.5)

with

u =
1

2
exp [ r+ t+ log(1−e−2r) ]; v = −1

2
exp [ r− t+ log(1−e−2r) ]. (6.6)

the Euclidean analytical continuation of the metric in eq-(6.5) is obtained by
setting θ = it, such that the metric is ds2 = dr2+tanh2 r dθ2 and its Euclidean
geometry has the shape of a semi-infinite cigar that asymptotically approaches
R1 × S1 for r → ∞. We should notice that the Lorentzian metric of eq-(6.5)
has a singularity at a complex value r = 0 + iπ/2 ( setting 2M = 1 ) since
tanh2(iπ/2) = −tan2(π/2) = −∞ which is consistent with the singularities
at the location where uv = −1

4
e2r(1 − e−2r)2 = 1, when r = 0 + iπ/2, and a

horizon at r = 0, since uv = 0 when r = 0.
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However this is not the end of the story. The Bars-Witten black hole
in 1 + 1-dim is obtained from a gauged Sl(2, R)/U(1) WZNW model with
central charge c = 2 + 6/k and is a consistent bosonic string background so-
lution in a 1 + 1 target background given by the two-dim coset Sl(2, R)/U(1).
Namely, the CFT corresponding to the gauged Sl(2, R)/U(1) WZNW model
with central charge c = 2 + 6/k is a solution of equations derived from the
vanishing beta functions required by conformal invariance of the non-linear
sigma model. For example, the relevant massless bosonic closed-string fields
in a D = 26 dim target background ( a different CFT ) are the antisym-
metric tensor Bµν(X

ρ(σa)); the dilaton Φ(Xρ(σa)) and the gravitational field
gµν(X

ρ(σa))); where σa = σ1, σ2 are the world-sheet variables. The conditions
for the vanishing of the one loop beta functions, required by Weyl invariance
of the non-linear sigma model, to leading order in the string tension α′ turn
out to be [57]

Rµν +
1

4
Hλρ

µ Hνλρ − 2DµDνΦ = 0. (6.7a)

DλH
λ
µν − 2(DλΦ)Hλ

µν = 0. (6.7b)

4(DµΦ)2 − 4DµD
µΦ +R+

1

12
HµνρH

µνρ = 0. (6.7c)

where
Hµνρ = ∂µBνρ + ∂ρBµν + ∂νBρµ. (6.7d)

is the third rank antisymmetric tensor field strength that is invariant un-
der the transformations δBµν = ∂µΛν − ∂νΛµ. For details of Quantum Non-
linear Sigma Models, Conformal Field Theory, Supersymmetry, Black Holes
and Strings we refer to the monograph by Ketov [56].

The only consistent 2 + 2-dim gravitational backgrounds on which N = 2
strings [7] ( strings with world-sheet supersymmetry ) can propagate are those
that are self-dual and which solve the Plebanski heavenly equations in 2 + 2
dimensions. Self dual gravitational backgrounds in four dimensions are Ricci
flat whose metric is given in terms of a Kahler potential. However, the metric
in eq-(6.2) is not Ricci flat since the 1 + 1-dim black hole metric is not Ricci
flat. Such metric in eq-(6.5) is not a solution of the vacuum Einstein field
equations, it is a solution of eqs-(6.7) ( without Kalb-Ramond fields Bµν )
where the role of the dilaton Φ = ln(1− uv) is essential ! .

Nevertheless, we will show how the Bars-Witten 1+1-dim black hole metric
can be embedded into the 3+1-dim solutions of section 2 , up to a conformal
factor eΥ , since the latter metrics were Ricci flat by construction. The em-
bedding of the 1 + 1-dim metric (6.5) into the conformally re-scaled 3 + 1-dim
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solutions of section 2 are obtained by introducing the mass parameter 2M (
in units of G = c = 1 ) in the appropriate places in order to have consistent
units, and by writing :

eΥ(r) (1− 2M

R(r)
) = tanh2 (

r

2M
); eΥ(r) (dR/dr)2

1− 2M/R(r)
= 1. (6.8)

leading to the solutions for Υ(r) and R(r) respectively

eΥ =
1

1− 2M/R(r)
tanh2 (

r

2M
). (6.9a)

where∫ dR

1− 2M/R
= R + 2M ln (

R− 2M

2M
) =

∫ dr

tanh r/2M
=

2M ln [ sinh
r

2M
]. (6.9b)

this last equation (6.9b) yields the functional form R(r) ( tortoise radial vari-
able ) in implicit form for the radial function R(r). Despite that the radial
function (6.9b) has a different functional form than R3 = r3 +(2M)3 one can
still make contact with the analysis of section 2 pertaining why a point-mass
can have an area of 4π(2M)2 ( and zero volume ) as found by Schwarzchild in
his original 1916 horizonless solution. From eq-(6.9b) one can infer that

R(r = 0) = 2M ; R(r →∞) → R ∼ r. (6.10)

which precisely has the same behaviour at r = 0,∞ as the Schwarzschild radial
function R3 = r3 + (2M)3 ! The radial function R has a lower ( ultraviolet
cutoff ) bound given by 2M . The fact that a point-mass can have a non-zero
proper area but zero volume seems to indicate a ”stringy” nature underlying
the very notion of a point-mass itself. The string worldsheet has area but
no volume. Aspinwall [22] has studied how a string ( an extended object )
can probe space-time points. The fact that the stringy black-hole 1 + 1-dim
solution can be embedded into the conformally rescaled solutions of section 2
, for a very specific functional form of the radial function R(r) in eq-(6.9b),
with the same ”boundary” conditions (6.10) at r = 0 and r =∞ as the radial
functions displayed in section 2 , is very appealing.

Notice that if we allow for complex values of r, like r = 0 + i 2M(π/2),
that furnish singularities in the metric (6.5), one must include a constant of
integration R0 = 2M(1 + iπ/2) to the solution in eq-(6.9b)
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R − 2M(1 + iπ/2) + 2M ln (
R− 2M

2M
) = 2M ln [ sinh

r

2M
]. (6.11)

such that when one plugs in the value r = 0+i 2M(π/2) in the right hand side
of eq-(6.11), it coincides with the left hand side of (6.11) when the value of the
radial function R( r = 0 + i 2Mπ/2 ) = 2M (1 + i π/2) , after an analytical
continuation into the complex plane is performed. This is just a consequence
of the relation ln [sinh (iπ/2)] = ln [i sin (π/2)] = ln i = iπ/2.

This complex analytical continuation into regions where r, R are complex-
valued roughly speaking amounts to looking into the ”interior” of the point-
mass. Having complex coordinates to probe into the ”interior” of a point-
mass is not so farfetched. This suggests that Quantum spacetime might be
intrinsically fractal, meaning that the Hausdorff topological dimension of an
object ( let us say of a point ) does not coincide with the fractal dimension.
For a throrough and profound treatment of complex dimensions, fractal strings
and the zeros of Riemman zeta function see [58]. The interplay among non-
extensive statistics, chaos, complex dimensions, logarithmic periodicity in the
renormalization group and fractal strings see [59].

The conformal factor was

eΥ =
1

1− 2M/R(r)
tanh2 (

r

2M
). (6.12)

where R(r) is given implicitly by (6.10). Notice that from the conditions in
(6.10) the conformal factor eΥ becomes unity at r = ∞ as it should if one
wishes to have asymptotic flatness. When r = 0 the conformal factor (6.12) is
0
0

undefined. A careful study reveals that the conformal factor eΥ at r = 0 is
zero so that eΥ(r=0)R2(r = 0) = 0 and the conformally re-scaled proper area
at r = 0 is zero as mentioned previously in section 2 . Therefore, at r = 0
the conformally rescaled interval ds2 is zero consistent with the fact that the
1 + 1-dim metric exhibits a null horizon at r = 0. Concluding, in this fashion,
we have shown how one can embed the 1 + 1-dim Bars-Witten stringy black
hole solution into the conformally re-scaled 3 + 1-dim solutions of section 2
given by :

ds2 = − tanh2 (
r

2M
) (dt)2 + (dr)2 + eΥ(r) R2(r) dΩ2. (6.13)

Notice that the conformally re-scaled metric (6.13) is not Ricci flat; it has
singularities at complex values r = 0+i 2Mπ/2 ⇒ eΥ =∞; R = 2M(1+iπ/2)
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upon using eq-(6.11). There is a difference between the metric (6.13) with the
Ricci flat metric ( outside the singularity at the point mass source ) given in
the Fronsdal-Kruskal-Szekeres coordinates by

ds2 = − eW (u,v) du dv

1− uv
+ (R∗(u, v))

2 [ sin2 φ (dθ)2 + (dφ)2 ] =

− eW (u,v) du dv

1− uv
+ (R∗(u, v))

2 dΩ2 (6.14)

where W (u, v) and R∗(u, v) are now two complicated functions of the two
variables u, v ( since when one crosses the horizon the metric is no longer
static) . Whereas in eq-(6.13) one truly has a static metric everywhere and
two functions of one variable Υ(r), R(r) instead.

Before ending this work we will just add some remarks pertaining complex
gravity in 1+1 complex dimensions and its relation to ordinary gravity in 2+2
real dimensions. The properties of geometrical objects in the tangent space (
at each point of a curved spacetime ) associated to the complex, quaternionic
and octonionic algebra permits the construction of Einstein’s complexified,
quaternionic and octonionic gravity. In particular, Gravity in 2 + 2-real dim
can be studied from the point of view of Complex Gravity in 1 + 1 complex
dimensions. Gravity in 4+4 real dim can be studied from the point of view of
Quaternionic Gravity in 1 + 1 quaternionic dimensions, and Gravity in 8 + 8
real dim can be seen as Octonionic Gravity in 1+1 octonionic dimensions [60]

To illustrate this, let us write the following complex line element in 4
complex-dimensions :

ds2 =
dz1dz1 + d z̃1dz̃1

1− z1z1 − z̃1z̃1

+
dz2dz2 + d z̃2dz̃2

1− z2z2 − z̃2z̃2

(6.15)

Complex gravity requires that gµν = g(µν) + ig[µν] so that now one has gνµ =
(gµν)

∗, [60], [61], which implies that the diagonal components of the metric
gz1z1 = gz2z2 = gz̃1z̃1 = gz̃2z̃2 must be real, and which in turn implies that
a real slice of the 4-complex-dim space spanned by the 4 complex variables
z1, z2, z̃1, z̃2 may be taken by imposing the following two constraints :

z̃1 = z∗1 ; z̃2 = z∗2 (6.16)

and upon doing so one ends up with a 4 real-dimensional space of signature
2 + 2 whose real line element is

ds2 =
dz1dz1 + dz∗1dz

∗
1

1− z1z1 − z∗1z
∗
1

+
dz2dz2 + dz∗2dz

∗
2

1− z2z2 − z∗2z
∗
2

(6.17)
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where z1, z2 are the complex coordinates of the 1 + 1 complex dimensional
spacetime ( 2 + 2 real dimensional ) while z∗1 , z

∗
2 are their complex conjugates,

respectively. After defining

z1 =
1√
2
(X+iT1); z∗1 =

1√
2
(X−iT1); z2 =

1√
2
(Y+iT2); z∗2 =

1√
2
(Y−iT2).

(6.18)
the metric in eq-(6.14) coincides precisely with the metric in eq-(6.2) com-
prised of the diagonal sum of two black hole solutions in 1+1 real dimensions.
The quaternionic and octonionic versions of eq-(6.16), in conjunction with
the generalized Einstein’s field equations, will be the subject of future inves-
tigations. The Quaternionic analog of 2-dim Conformal Field theory in four
dimensions has been studied by [62]. It is interesting to see ( if possible )
how one can construct 4-dim Quantum Non-linear sigma models within the
context of quantum 3-branes ( conformal field theories in the four-dim world
volume of the 3-brane ) and find the analog of the coupled equations (6.7) as-
sociated with the vanishing of the beta functions in 2-dim CFT; namely from
the perspective of a 4-dim Quaternionic Conformally invariant Field Theory
formulated on Kulkarni four-folds ( the four-dim analog of Riemann surfaces
) corresponding to 3-branes moving in curved target spacetime backgrounds.
The cancellation of the 4-dim conformal anomaly should constrain the type of
backgrounds on which 3-branes can propagate.

It is worth mentioning that ”black hole” solutions in a two times context
have been considered by some authors. In particular Kocinski and Wierzbicki
[64] considered Schwarzschild type solution in a Kaluza-Klein theory with two
times. In fact, using noncompactified Kaluza-Klein theory with internal signa-
ture of the form 2+3 these authors determine a spherical symmetric solution.
Vongehr [65] also considered examples of black holes within the context of the
two-times physics formulation of Bars (see [63] and Refs. therein). Their basic
examples coreponds essentially to a solutions associated with the signatures
1 + 1 and 2 + 3.

Finally, the 4-dim Kaluza-Klein approach to General Relativity in 2+2 as
a local product of a 1 + 1-dim base manifold and a 1 + 1-dim fiber space [66]
warrants further investigation in so far that 2+2 Gravity can be described by
a 1 + 1-dim Yang-Mills gauge theory of diffeormorphims of the two-dim fiber
space coupled to a 1 + 1-dim non-linear sigma model and a scalar field; i.e.
this formulation of 2 + 2 Gravity by [66] is more closely related to the stringy
picture of the Bars-Witten black-hole in 1 + 1-dimensions. Thus, it seems
interesting to pursue further research to see the possible connection between
the present work and these other approaches.
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Appendix A: Schwarzschild-like solutions in any dimension D > 3

Let us start with the line element

ds2 = −eµ(r)(dt1)
2 + eν(r)(dr)2 +R2(r)g̃ijdξ

idξ. (A.1)

Here, the metric g̃ij corresponds to a homogeneous space and i, j = 3, 4, ..., D−
2. The only nonvanishing Christoffel symbols are

Γ1
21 = 1

2
µ′, Γ2

22 = 1
2
ν ′, Γ2

11 = 1
2
µ′eµ−ν ,

Γ2
ij = −e−νRR′g̃ij, Γi

2j = R′

R
δi
j, Γi

jk = Γ̃i
jk,

(A.2)

and the only nonvanishing Riemann tensor are

R1
212 = −1

2
µ′′ − 1

4
µ′2 + 1

4
ν ′µ′, R1

i1j = −1
2
µ′e−νRR′g̃ij,

R2
121 = eµ−ν(1

2
µ′′ + 1

4
µ′2 − 1

4
ν ′µ′), R2

i2j = e−ν(1
2
ν ′RR′ −RR′′)g̃ij,

Ri
jkl = R̃i

jkl −R′2e−ν(δi
kg̃jl − δi

l g̃jk).
(A.3)

The field equations are

R11 = eµ−ν(
1

2
µ′′ +

1

4
µ′2 − 1

4
µ′ν ′ +

(D − 2)

2
µ′
R′

R
) = 0, (A.4)

R22 = −1

2
µ′′ − 1

4
µ′2 +

1

4
µ′ν ′ + (D − 2)(

1

2
ν ′
R′

R
− R′′

R
) = 0, (A.5)

and

Rij =
e−ν

R2
(
1

2
(ν ′− µ′)RR′−RR′′− (D− 3)R′2)g̃ij +

k

R2
(D− 3)g̃ij = 0, (A.6)

where k = ±1, depending if g̃ij refers to positive or negative curvature. From
the combination e−µ+νR11 +R22 = 0 we get

µ′ + ν ′ =
2R′′

R′ . (A.7)
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The solution of this equation is

µ+ ν = lnR′2 + a, (A.8)

where a is a constant.
Substituting (A.7) into the equation (A.6) we find

e−ν(ν ′RR′ − 2RR′′ − (D − 3)R′2 = −k(D − 3) (A.9)

or

γ′RR′ + 2γRR′′ + (D − 3)γR′2 = k(D − 3), (A.10)

where

γ = e−ν . (A.11)

The solution of (A.10) for an ordinary D-dim spacetime ( one temporal di-
mension ) corresponding to a D−2-dim sphere for the homogeneous space can
be written as

γ = (1− 16πGDM

(D − 2)ΩD−2RD−3
) (
dR

dr
)−2 ⇒

grr = eν = (1− 16πGDM

(D − 2)ΩD−2RD−3
)−1 (

dR

dr
)2. (A.12)

where ΩD−2 is the appropriate solid angle in D− 2-dim and GD is the D-dim
gravitational constant whose units are (length)D−2. Thus GDM has units of
(length)D−3 as it should. When D = 4 as a result that the 2-dim solid angle
is Ω2 = 4π one recovers from eq-(A.12) the 4-dim Schwarzchild solution. The
solution in eq-(A.12) is consistent with Gauss law and Poisson’s equation in
D − 1 spatial dimensions obtained in the Newtonian limit.

For the most general case of the D − 2-dim homogeneous space we should
write

−ν = ln(k − βDGDM

RD−3
)− 2 lnR′. (A.13)

where βD is a constant. Thus, according to (A.8) we get

µ = ln(k − βDGDM

RD−3
) + constant. (A.14)

we can set the constant to zero, and this means the line element (A.1) can be
written as
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ds2 = −(k− βDGDM

RD−3
)(dt1)

2 +
(dR/dr)2

(k − βDGDM
RD−3 )

(dr)2 + R2(r)g̃ijdξ
idξ. (A.15)

One can verify, taking for instance (A.5), that the equations (A.4)-(A.6) do not
determine the form R(r). It is also interesting to observe that the only effect
of the homogeneous metric g̃ij is reflected in the k = ±1 parameter, associated
with a positive ( negative ) constant scalar curvature of the homogeneous
D − 2-dim space.
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