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Abstract 

An expanding universe of finite duration appears to impose limits on the temporal and 

spatial extent of quantum waves. These limitations seem to be able to bring about 

localization for sufficiently large quantum objects that can resemble classical behavior. A 

threshold for a transition from quantum to classical behavior of a physical object is 

derived in terms of the magnitude of its moment of inertia.  

 

 

Introduction 

 

Why do macroscopic objects always seem to be well localized in space? The studies on 

which this paper is based suggest that sufficiently large quantum objects will become 

localized automatically simply by being present in a finite, expanding universe. The 

limitations imposed by such a universe on the temporal extent of quantum wave functions 

and on the uncertainties associated with semiclassical particle motion appear to lead to 

spatially localized behavior resembling classical behavior. The results of these studies 

also indicate that a major parameter that separates classical from quantum behavior on 

this basis is the moment of inertia of the physical object. 

 

Dealing with quantum mechanics in the universe at large presents a tremendously 

challenging problem requiring input from general relativity as well as relativistic 

quantum mechanics and cosmology. However, despite the true difficulties and 

complexity of the problem, it would still seem to be worthwhile to try to address 

questions of interest using simple and straightforward approaches as available. At worst, 

dismal failure ensues; at best, we may be able to get some hints of answers to important 

questions. Accordingly, a simple approach to examining the behavior of quantum waves 

in a time-limited universe is presented. 

 

The duration of the universe since its inception at the Big Bang limits the total amount of 

time that has been available for any physical process, and in particular would seem to set 

an obligatory maximum duration or extent in time for any quantum wave. Thus, instead 

of describing a quantum object using a wave function that is infinitely extended in time, it 

would appear that we should consider dealing with a quantum wave packet of finite 

duration in time, that is consequently also correspondingly limited in space. From this 

perspective, a quantum object in a temporally limited universe would be expected to 

exhibit a bandwidth both in energy and momentum, and thus to exhibit a maximum 

extent in space in conjunction with its maximum duration in time. This limitation in 

spatial extent could provide for localization of an otherwise delocalized quantum object. 
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In the present study, we are following up on earlier studies that have suggested that 

certain large-scale properties of the universe may have a role in affecting the transition 

between quantum behavior and classical behavior of objects. These studies appear to 

have shown that certain properties of the universe related to its expansion or temporal 

duration that can be expressed in terms of the Hubble constant or similar parameters can 

have a role in effecting a quantum-classical transition. Those studies have led to the 

conclusion that sufficiently large objects must behave classically, and the studies 

individually introduce threshold criteria for “sufficiently large”. Interestingly enough, 

these earlier papers that were variously based on different physical arguments have come 

up with roughly similar criteria for a threshold between quantum and classical behavior. 

Arguments based on the Heisenberg uncertainty principle in the presence of Hubble 

expansion; random motion in the context of the stochastic quantum theory; wave packet 

dispersion over time; and constraints on wave packet behavior due to the finite temporal 

extent of the universe have all led to closely related criteria for a critical threshold size 

separating quantum behavior from classical behavior.
(1-5)

 

 

In the present paper, we introduce a slightly different approach and a simpler method of 

derivation, and we also show how such criteria can be expressed more directly and 

simply in terms of a threshold moment of inertia. 

 

 

Quantum and classical descriptions of objects and our present observations of them 
 

In the simplest case in classical mechanics, a free object is fully described by its 

instantaneous position and momentum, both of which can be precisely defined, so that 

the object is spatially localized. In quantum mechanics, a free object is generally 

described by a wave function that is characterized by a precisely defined momentum and 

a precisely defined energy, but which extends throughout all of time from the infinite past 

to the infinite future, and throughout all of space, so that such a free quantum object is 

being described as existing for all time from the infinitely removed past to the infinitely 

removed future, with equal probability for it to be found at any spatial location in the 

universe.  

 

How do we move from a description in terms of a distributed wave to a description in 

terms of a localized object? 

 

We live in a world that has existed for only a finite duration of time since it was created 

in the Big Bang. This limits the total amount of time available for any physical process. 

In particular, this finite lifetime of our universe would seem to set a maximum limit on 

the duration of any quantum wave, as observed at present. 

 

To provide somewhat more familiar examples we may consider other types of waves. 

Other types of waves or wave packets begin at their initiation and for purposes of present 

observation can be regarded as lasting until now, although as time goes on they can 

extend into the future. A water wave created by a disturbance to a water surface at a time 

T ago will exhibit a limited extent in space and time, and when observed at the present it 
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would be described by a duration T in time. Similarly, if we switched on a laser a time 

interval T ago, the description of the electromagnetic wave train or wave pulse at present 

would be based on a finite extension in space and time, with a duration in time equal to T. 

 

Thus, instead of describing freely moving objects by using infinitely extended wave 

functions having pure monochromatic frequencies, it would seem that the wave functions 

that we use to characterize these objects now as observed at the present time would be 

better described by wave packets whose extent in time would necessarily be less than the 

lifetime of the universe. These quantum waves could still be nearly monochromatic with 

fairly sharply defined frequencies, since the lifetime of the universe is very long 

compared to most processes of physical interest. However, these quantum wave packets 

representing objects in our universe would necessarily exhibit bandwidths in frequency 

because of the limited duration in time of the wave functions that describe them. In fact, 

it would be expected that these quantum wave packets would exhibit frequency widths 

that would be roughly inversely proportional to the duration in time of the wave packets. 

  

 

Wave packets and their widths 
 

While idealized waves can be treated as extending throughout all of space and all of time, 

as we have noted, real waves occur as wave pulses or wave trains that are limited in their 

extent in time and space. It turns out that the finite duration and/or finite extent of such a 

wave packet implies that such a wave packet will have a finite spread in wavelength or 

wave number, essentially a bandwidth. These and other properties of wave packets can be 

analyzed and derived formally and understood in terms of their Fourier transforms.
(6)

 

 

There are rather general properties of wave behavior (or periodic behavior in general) 

that create certain intrinsic relationships and limitations associated with the waves. It is a 

basic property of wave motion that the product of the duration in time of a wave train and 

the width (or spread, or bandwidth) of its frequency components ∆f must be greater than 

or comparable to a number that is very roughly of the order of magnitude of 1: 

 

∆t·∆f  ≥ 1                                                            (1) 

 

 Similarly, there is an unavoidable constraint on the spatial extent and wave number 

content of a localized wave packet, that the product of the width of a wave packet in 

space ∆x and the width of the spread of wave numbers ∆k of the waves that compose the 

wave packet must be greater than or comparable to a number roughly of the order of 

magnitude one:  

 

∆x·∆k ≥ 1                                                            (2) 

 

These are fundamental limitations on physical systems.
(6)

 

 

In quantum mechanics, the frequency and the wavelength of a quantum wave are related 

to the energy and momentum of the quantum object by the relationships E = hf and p = 
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hk = h/λ respectively (where E is the energy, f is the frequency, p is the momentum, k is 

the wave number, λ is the wavelength, and h is Planck’s constant).  If we multiply the 

preceding equations (1) and (2) by Planck’s constant, we find that they can be 

reexpressed as the following Eqns. (3) and (4): 

 

∆t·∆E ≥ h                                                                 (3) 

 

And: 

 

∆x·∆p ≥ h                                                                 (4) 

 

These can be recognized as statements of the Heisenberg uncertainty relations. Thus, the 

relationships between the widths or spreads in parameter values associated with general 

wave behavior are formalized in quantum mechanics in the Heisenberg uncertainty 

relations (and can be done so with somewhat more precision than that presented here, 

when framed in terms of defined widths).
(7)

 

 

We will be primarily interested in exploring cases for which these parameters reach their 

limiting values, that is, the cases for which the products in Eqns. (1 - 4) are all at their 

lower limits, in which the products on the left hand side of the equations are 

approximately equal to (rather than greatly exceeding) the limiting values on the right 

hand side of these equations. We will be examining cases of the smallest intrinsic widths 

or uncertainties allowed, and will be disregarding extrinsic uncertainties originating from 

other sources. 

 

As we have noted, the duration of the universe since its inception at the Big Bang limits 

the total amount of time available for any physical process, and in particular would seem 

to set an obligatory maximum temporal extent for any quantum wave. Thus, instead of 

having a quantum object described by a wave function infinitely extended in time, it 

would necessarily be described by a wave packet of finite duration in time, as observed at 

the present time. Such a wave packet would therefore also be correspondingly limited in 

space.
(6)

 As a result, it would appear that a quantum object in a finite universe must 

exhibit a bandwidth both in energy and momentum, and exhibit a maximum extent in 

space in conjunction with its maximum duration in time. 

 

If the duration in time of a quantum wave packet is limited by a maximum available time 

Tmax, then we would describe the associated width of the wave packet in time as limited 

by a maximum value given approximately by: 

 

 ∆t ≈ Tmax                                                                   (5)   

 

We could then expect in general terms that the width in energy of the quantum wave 

packet would be limited approximately by the requirements of Eqn. (3) together with 

Eqn. (5) so that for a limited wave packet the minimum value of the energy width would 

be given approximately by: 
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 ∆E ≈ h/∆t ≈ h/Tmax                                                                                  (6) 

 

But the energy of the quantum wave here is the kinetic energy associated with the 

quantum object, and it is related to the momentum by E = p
2
/2m, or p = (2mE)

½
 where m 

is the mass of the quantum object. The width in energy associated with the quantum wave 

will consequently be related to the width in momentum of the quantum wave. For 

sufficiently narrow widths in energy, a difference relationship based on the equation p = 

(2mE)
½

 can be approximated by the differential relationship and can be expressed by the 

equation: 

 

∆p ≈ (m/2E)
1/2

∆E                                                             (7) 

 

Combining Eqn. (7) with Eqn. (6), we find that the minimum width in energy of a limited 

quantum wave packet would be associated with a minimum width in momentum for the 

wave packet that is given by: 

 

∆p ≈ (m/2E)
1/2

∆E ≈ (m/2E)
1/2

(h/Tmax )                                        (8) 

 

Combining Eqn. (8) with Eqn. (4), we can find the maximum spatial width of the limited 

quantum wave packet as: 

 

∆x ≈ h/∆p ≈ h(m/2E)
-1/2

(Tmax/h) ≈ Tmax(2E/m)
1/2

                         (9) 

 

Thus, we find that an object in a time-limited universe would have a quantum wave that 

would be restricted in its spatial extent to a maximum value that is given by the preceding 

equation, Eqn. (9). It would seem that the quantum wave packet associated with a 

quantum object in a time-limited universe could not extend further than this in space. So, 

a quantum object in a time-limited universe would seem to be necessarily intrinsically 

localized because of the finite duration of the universe that it exists in. 

 

Eqn. (9) is telling us that objects with large masses will have small intrinsic wave 

packets. It is also telling us that objects with small kinetic energies will have small 

intrinsic wave packets.  

 

In fact, Eqn. (9) would suggest that objects at rest would have vanishingly small wave 

packets. However, a time-limited universe would restrict the range of frequencies present, 

since waves with extremely low frequencies could not have exhibited periodicity during 

the time available. As a result, it would seem that there must be a lower limit on the 

frequency of quantum waves, and therefore there must be a lower limit on the kinetic 

energy of any quantum object in such a universe. The lower limit on frequency would be 

approximately: 

 

 fmin ≈ 1/Tmax                                                                (10) 
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and, using the fact that energy and frequency are related by E = hf,  the associated lower 

limit on kinetic energy will be approximately: 

 

Emin ≈ h/Tmax                                                                                              (11) 

 

Thus, in such a time-restricted universe, it would seem that the objects that we regard as 

objects at rest or stationary objects could not have exactly zero kinetic energy, but rather 

would actually be characterized by having such extremely small kinetic energies. 

 

If we want to evaluate the uncertainty in location or maximum wave packet width of 

objects that are moving extremely slowly, so slowly that we would regard them as 

stationary objects, we can combine Eqn. (9) and Eqn. (11) to obtain the result: 

 

∆x ≈ Tmax(2E/m)
1/2

  ≈ (2hTmax/m)
½

                                            (12) 

 

This result can be viewed as a kind of intrinsic core width of the quantum wave structure 

associated with any object in a time-limited universe. 

 

We will use the Hubble time as an estimate of the lifetime of the universe since its 

inception at the Big Bang. Since the Hubble time is the inverse of the Hubble constant 

Ho, we can reexpress Eqn. (12) in terms of the Hubble constant as: 

 

∆x ≈ (2h/mHo)
½

                                                          (13) 

 

We note that the core width associated with the quantum wave structure will be smaller 

for higher mass objects, varying inversely with the square root of the mass. 

 

 

A threshold criterion for classical behavior 

 

A threshold criterion for classical behavior (already developed in earlier studies) is based 

on a requirement that the size of the core quantum wave structure associated with an 

object (or the quantum uncertainty in its location) should be smaller in extent than the 

physical size of the extended object (in contrast to having the quantum wave structure 

extend beyond the physical size of an extended object, in order for it to exhibit more 

typically quantum behavior).
(1-5)

 On this basis, the requirement for classically behaved 

objects would be that the region of non-zero probability density associated with the 

location of the center of mass of the object would be confined to the interior of the object, 

so that the object would be localized and would not have its wave structure extend 

appreciably beyond its physical extent; while the requirement for objects to exhibit more 

typically quantum behavior would be that the quantum probability density would extend 

beyond the boundaries of the object, so that the object would be more delocalized.  

 

Thus, if we designate the size of the object L, the criterion that we have derived here in a 

very rough approximate manner for the threshold of classical behavior would be: 
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L ≈ ∆x ≈ (2h/mHo)
½

                                                     (14) 

 

This approximate equation provides a rough estimate of the threshold size; objects of 

larger sizes for a given mass would be expected to have their quantum wave structure 

localized within their boundaries and hence to behave in a largely classical manner. For a 

given mass, objects having sizes considerably larger than this critical value would be 

expected to exhibit classical behavior in their translational motion, whereas objects 

having sizes appreciably smaller than this critical value would be expected to be able to 

exhibit quantum behavior. 

 

Various earlier papers based on different approaches have led to roughly similar criteria 

for a quantum-classical boundary.
(1-5)

 In the simplest case, these requirements led to a 

definition of the critical size for an object. The critical size associated with an object of 

mass m was defined by the equation:
(4)

 

 

Lcr = [h/(4πmHo)]
½ 

                                                       (15) 

 

These studies were based on establishing a separation between quantum and classical 

behavior with respect to translational motion, and discussed the significance of the 

critical threshold parameters in terms of size, mass, density and related parameters 

characterizing the object. In continuing this discussion, we will use this previously 

introduced threshold criterion, rather than the somewhat similar rough estimate in Eqn. 

(14). 

 

 

The moment of inertia and its role 

 

It turns out that the threshold separating classical from quantum behavior based on such 

requirements can also be expressed and examined even more easily in terms of the 

magnitude of the moment of inertia of the object in question. 

 

The moment of inertia is a measure of an object’s inertia with respect to rotation or its 

tendency to resist angular acceleration; somewhat more quantitatively, the moment of 

inertia is a measure of the resistance of an object to angular acceleration about a given 

axis that is equal to the sum of the products of each element of mass in the body and the 

square of the element's distance from the axis. Thus, the moment of inertia of a classical 

object is given as the sum over the discrete point elements of mass composing the body 

of the product (mr
2
), where m is a discrete element of mass and r is the distance of the 

mass element from a fixed axis; or in the case of a continuous distribution of matter, the 

moment of inertia is defined as the corresponding integral.
(8)

  

 

We are concerned primarily with the moment of inertia of an extended object with 

respect to its center of mass. This can be written in a general form dependent only on the 

mass and a linear measure of the size of the object. Based on dimensional analysis alone, 

the moment of inertia I of a non-point object must take the form: I = kImR
2
 , where m is 

the total mass, R is the radius of the object measured from the center of mass, and kI is a 
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dimensionless constant, the inertia constant, that depends on the object’s distribution of 

mass.
(8)

 (As an example, the moment of inertia of a solid sphere about its center of mass 

is given by I = (2/5)mR
2
.)  

 

Thus, we can see that, within an order of magnitude or so, the moment of inertia I of a 

classical object with respect to its center of mass can be estimated at least roughly by the 

quantity mL
2
, where L is a length parameter describing the size of the object: 

 

I ≈ mL
2
                                                                     (16)

 

 

 

Recasting the threshold criterion in terms of moment of inertia 

 

We can write an equation for the critical threshold size of an object that roughly separates 

quantum behavior from classical behavior in terms of the moment of inertia of the object 

rather than in terms of its mass and size. If we combine Eqn. (16) with Eqn. (15), we find 

that the value I ≈ h/4πHo gives us an approximate expression for a value of the moment 

of inertia that would be expected to separate objects that would behave classically from 

those that would behave quantum mechanically according to these criteria. This provides 

us with an estimate of a threshold value for the moment of inertia that would be expected 

to separate quantum behavior from classical behavior, which we will designate the 

threshold moment of inertia: 

 

Ith = h/4πHo                                                            (17) 

 

This provides a very straightforward criterion for a boundary separating objects 

potentially exhibiting quantum behavior from those necessarily exhibiting classical 

behavior due to properties of the universe as a whole. 

 

We can evaluate this threshold numerically; we will use h = 6.63 x 10
-34

 joule-seconds as 

the value for Planck’s constant, and Ho = 2.3 x 10
-18 

sec
-1

 as the value for the Hubble 

constant.  Inserting these values into Eqn. (17), we can calculate a numerical value for the 

parameter that we have called the threshold moment of inertia in mks or SI units as: 

 

Ith = 2.3 x 10
-17

 kg·m
2
                                                    (18) 

 

This result tells us that, approximately speaking, any object with a moment of inertia 

larger than about 10
-17

 kg·m
2
 would be expected to behave in a classical manner, while 

any object with a moment of inertia smaller than about 10
-17

 kg·m
2
 may exhibit quantum 

behavior.  

 

How does this result fit the real world? At a planetary scale, where classical behavior is 

manifestly present, the moment of inertia of the Earth is approximately 8 x 10
37

 kg·m
2
, 

which is some 54 orders of magnitude larger than the critical threshold moment of inertia 

given in Eqn. (18). On a submicroscopic scale, at sizes for which quantum behavior is 

prevalent, there are nuclear moments of inertia of about 5 x 10
-54

 kg·m
2
, which is some 37 
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orders of magnitude smaller than the critical threshold moment of inertia given in Eqn. 

(18). The value for the critical threshold moment of inertia itself would correspond very 

roughly to the moment of inertia of an object of size approximately 0.1 mm and having a 

density of 1 gm/cc or a mass of about a microgram. Everyday experience shows that in 

fact all objects larger than this do behave classically. Below this value for the moment of 

inertia there is an extensive range of smaller mesoscale objects that would be expected to 

behave quantum mechanically on the basis of this criterion alone, but in fact appear to 

behave classically under some circumstances, presumably due to the effects of 

decoherence and other phenomena that could bring quantum behavior into classicality.
(5,9)

 

 

 

In conclusion 
 

It would seem that the age of the universe may indeed be implicated in the quantum-

classical transition. We have obtained fairly reasonable threshold criteria based on 

localization that appear to result from limitations imposed on quantum objects by the 

limited duration of the universe. The threshold criterion which we have expressed in 

terms of the magnitude of the moment of inertia of an object would seem to enable us to 

set at least a rough boundary above which generally classical behavior prevails. 

 

In closing, a remark made by Howard Georgi and Sheldon Glashow in a quite different 

connection might be paraphrased:
(10) 

We present a series of hypotheses and speculations 

leading to a conclusion…Our hypotheses may be wrong and our speculations idle, but the 

uniqueness and simplicity of the scheme would seem to be reasons enough that it be 

taken seriously. 
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