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Abstract

It is shown how the de-Sitter Relativistic behaviour of the hyperbolic
trajectory of Pioneer, due to the expansion of the Universe (non-vanishing
cosmological constant), is the underlying physical reason for the ob-
served anomalous acceleration of the Pioneer spacecraft of the order of
c2/RH ∼ 8.74 × 10−10 m/s2, where c is the speed of light and RH is
the present Hubble scale. We display the explicit isomorphism among
Yang’s Noncommutative space-time algebra, the 4D Conformal algebra
SO(4, 2) and the area-bi-vector-coordinates algebra in Clifford spaces.
The former Yang’s algebra involves noncommuting coordinates and mo-
menta with a minimum Planck scale λ (ultraviolet cutoff) and a min-
imum momentum p = h̄/R (maximal length R, infrared cutoff ). It
is shown how Modified Newtonian dynamics is also a consequence of
Yang’s algebra resulting from the modified Poisson brackets. To finalize
we study the deformed Kepler and free motion resulting from the modi-
fied Newtonian dynamics due to the Leznov-Khruschev noncommutative
phase space algebra and which stems also from the Conformal algebra
SO(4, 2) in four dimensions. Numerical examples are found which yield
results close to the experimental observations, but only in very extreme
special cases and which seem to be consistent with a Machian view of
the Universe.

1 INTRODUCTION

Since Anderson et al (see [12] for an extensive detailed account of the history
of the project) announced that the Pioneer 10 and 11 spacecrafts exhibit an
unexplained anomalous acceleration of the order of c2/RH ∼ 8.74×10−10 m/s2,
where c is the speed of light and RH is the present Hubble scale, numerous
articles appeared with many plausible explanations [12], [15], [16]. To our
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knowledge, the first person who predicted the anomalous acceleration (based
on a blueshifting phenomenon due to subquantum kinetics) years before An-
derson et al observed it, was [14].

In this letter we propose a concise, elegant and geometrical interpretation of
the anomalous acceleration based on the de-Sitter Relativistic behaviour of the
hyperbolic trajectory of Pioneer, due to the expansion of the Universe (non-
vanishing cosmological constant). We believe that de Sitter Relativity [11],
Relativity based on the de Sitter group SO(4, 1) in four-dimensions, is the un-
derlying physical reason for the observed anomalous acceleration of the Pioneer
spacecraft of the order of c2/RH ∼ 8.74 × 10−10 m/s2. In essence, the origins
of the Pioneer anomalous acceleration is that from the de Sitter-Relativity
perspective, the sun is not an inertial frame of reference. Our derivation is
presented in section 2 .

In section 3 we display the explicit isomorphism among Yang’s Noncom-
mutative space-time algebra, the 4D Conformal algebra SO(4, 2) and the area-
bi-vector-coordinates algebra in Clifford spaces [5]. The former Yang’s algebra
involves noncommuting coordinates and momenta with a minimum Planck
scale λ (ultraviolet cutoff) and a minimum momentum p = h̄/R (maximal
length R, infrared cutoff ). We analyze a simple Quantum Mechanical model
for a scalar field in a Noncommutative 4D spacetime based on ordinary QM in
D+2-dim. Finally in section 4, we study the deformed Kepler and free motion
resulting from the modified Newtonian dynamics due to the Yang algebra [1]
and the Leznov-Khruschev [13] Noncommutative phase space algebra, which
stems also from the Conformal algebra SO(4, 2) in four dimensions. Numerical
examples are found which yield results close to the experimental observations,
but only in very extreme special cases and which seem to be consistent with a
Machian view of the Universe [4].

2 de SITTER RELATIVITY AND THE PI-

ONEER ANOMALY

The action that describes the motion of a particle of mass m on a hyperboloid
is given in terms of the square root of the quadratic Casimir [11] :

S = −
∫

dτ [ − 1

2R2
ΣAB ΣAB]

1
2 . (2.1)

where the angular-momentum-like variables are

ΣAB = mc ( Y A dY B

dτ
− Y B dY A

dτ
). (2.2a)

and the Y A coordinates are subjected to the SO(4, 1)-invariant norm condition
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ηAB Y A Y B = − R2, A, B = 0, 1, 2, 3, 4; ηAB = (+1,−1,−1,−1,−1)..
(2.2b)

The indices a, b = 0, 1, 2, 3 refer to the coordinates x0, x1, x2, x3 obtained from
a stereographic projection of the 4-dim hyperboloid onto the base manifold
(equator of the hyperboloid) represented by a 4-dim Minkowski spacetime. The
constraint (2.2b) can be implemented by the addition of a Lagrange multiplier
β in the action

S = −
∫

dτ [ ( − 1

2R2
ΣAB ΣAB )

1
2 + β (ηAB Y A Y B + R2) ]. (2.3)

A variation of the action yields the equations of motion [11] :

d2Y A

dτ 2
− Y A

R2
= 0. (2.4a)

after using the constraints

ηAB Y A Y B = − R2, ηAB
dY A

dτ

dY B

dτ
= 1. (2.4b)

that fixes the Lagrange multiplier to the value β = mc/R2 ( the proper time
τ has length dimensions, like ct ),

The simplest solution of (2.5) is a hyperbolic trajectory in the Y 0 − Y 4

plane

Y 0 = R sinh (
τ

R
), Y 4 = R cosh (

τ

R
), Y 1 = Y 2 = Y 3 = 0. (2.6)

one can verify that

ηAB Y A Y B = (Y 0)2 −(Y 4)2 = R2 [sinh2(
τ

R
) − cosh2(

τ

R
) ] = −R2. (2.7)

so the components of the acceleration are :

d2Y 0

dτ 2
=

Y 0

R2
=

1

R
sinh (

τ

R
),

d2Y 4

dτ 2
=

Y 4

R2
=

1

R
cosh (

τ

R
). (2.8)

From eq-(2.4b) by a simple differentiation one can infers why the acceler-
ation is spacelike when the velocity is timelike,

a2 = (
d2Y 0

dτ 2
)2 − (

d2Y 4

dτ 2
)2 = − 1

R2
. (2.9)
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therefore, the magnitude of the acceleration is then

| a | =
√
−a2 =

1

R
. (2.10)

in units of h̄ = c = 1. Since the proper time τ has length dimensions (like
ct), in order to attain the right units of acceleration in eq-(2.10) one needs to
insert the standard numerical value of the speed of light c ∼ 3×108 m/s. After
doing so and by setting the de Sitter scale R ( one half of the throat size 2R
) to coincide precisely with the Hubble scale RH ∼ 1026 m, one recovers the
Pioneer acceleration [12]

| a | =
c2

RH
∼ 8.74 × 10−8 cm

s2
= 8.74 × 10−10 m

s2
= aPioneer. (2.11)

What is the physical reason behind this ? Since the path traced by the
Pioneer spacecraft is indeed a hyperbola [12] , one can view the Pioneer space-
craft after it has left the outer edge of the solar system as it were a free
particle (devoid of external forces ) moving on a 4-dim hyperboloid. Such hy-
perboloid can be embedded into a 5-dim pseudo-Euclidean space of coordinates
Y 0, Y 1, Y 2, Y 3, Y 4 and signature (+,−,−,−,−) associated with the 4-dim de
Sitter group SO(4, 1). The 4-dim Anti de Sitter group is SO(3, 2). The reason
why a 4-dim hyperboloid is involved in the trajectory is a direct consequence of
the de Sitter solutions to Einstein’s equations with a non− vanishing cosmo-
logical constant equal to Λ = 3

R2 ; namely, the present universe is in an acceler-
ated expansion de Sitter phase, and the scaling factor a(t) obeys the condition

1
a(t)

da(t)
dt

= H so that a(t) = exp (
∫

Hdt). When H = Ho = constant (Hubble

constant observed today Ho = c/RH ) one has a scaling factor a(t) = exp (Hot)
in a purely de Sitter universe.

Let us answer the poignant question posed in [12] : Why planets revolving
around the sun in elliptical orbits don′t experience such anomalous accelera-
tion ? ... because the planets are bound to the solar system, they are not
moving freely along the hyperbolas (geodesics) of the 4-dim hyperboloid. The
geodesics (hyperbolic paths) from the point of view of the conformally flat
de Sitter metric are not ”straight lines” (geodesics) from the point of view a flat
Minkowski metric, and hence, this is the physical meaning of the anomalous
Pioneer acceleration w.r.t the sun (solar system). The sun (solar system) is
not a truly inertial system within the background de Sitter space perspective.
The solar system can be seen as non − expanding pennies on an expanding
balloon (de Sitter universe).

For example, the path of a falling projectile from a plane seems parabolic
(curved) from the point of view of an observer fixed on the ground. Such ob-
server does not constitute an inertial frame of reference because he experiences
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an upward force on its feet due to the reaction-force of the ground to his own
weight. A free falling observer is truly inertial, and from his point of view,
the path of the falling projectile from a plane appears as a straight line, as a
geodesic. This is in essence the origins of the Pioneer anomalous acceleration
: from the de Sitter-Relativity perspective the sun is not an inertial frame of
reference.

Notice that our proposal is very different from the vacuole proposal
of [15] involving Schwarzschild-de Sitter metrics and many other proposals
involving blueshifts, dark matter, dark energy, scalar-tensor modified theo-
ries of gravity, ..... that can be found in [14], [16] and in the references of
[12]. Our proposal is more closely related to I. Segal’s conformal-algebraic
approach to cosmology [21], [22]. The stereographic projections of the 4-dim
hyperboloid H4 (embedded in a 5-dim pseudo-Euclidean space) onto the 4-
dim Minkowski spacetime with coordinates xa = x0, x1, x2, x3, and metric
ηab = diag (1,−1,−1,−1) are given by

Y 0 =
x0

1 − (xaxa/4R2)
, Y 1 =

x1

1 − (xaxa/4R2)
,

Y 2 =
x2

1 − (xaxa/4R2)
, Y 3 =

x3

1 − (xaxa/4R2)
. (2.12a)

and

Y 4 = R
1 + (xax

a/4R2)

1 − (xaxa/4R2)
, xax

a = ηabx
axb, a, b = 0, 1, 2, 3. (2.12b)

The stereographic projection process of the 4-dim hyperboloid H4 onto
the 4-dim Minkowski spacetime M4 is tantamount of studying the motion of a
particle in the 4-dim Lobatchevsky hyperbolic space, a disc with a conformally
flat metric gab = Ω2 ηab where the conformal factor Ω is given by

Ω =
1

1 − (xaxa/4R2)
, gab = Ω2 ηab, a = 0, 1, 2, 3. (2.13)

A quantum theory in Lobatchevsky hyperbolic space has been recently been
reviewed in [17]. The stereographic projection H4 → M4 can also be used
to recast the equations of motion (expressed by the embedding 5-dim pseudo-
Euclidean space coordinates Y A) in terms of the 4-dim Minkowski spacetime
coordinates xa = x0, x1, x2, x3 as follows [11]

dpa

dτ
+

xc uc

R2 Ω
pa − mc

2R2Ω
xa = 0. (2.14)

ua = (dxa/dτ) is the four-velocity . The above equations of motion is just the
geodesic equation [11]
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dpa

dτ
+ Γa

bc pb uc = 0. (2.15)

associated to the Levi-Civita connection Γa
bc and corresponding to the de Sitter

metric which is conformally flat gab = Ω2 ηab. The connection in (2.15)
plays the role of a ”pseudo-force” which imparts the massive particle with an
”acceleration” independent of its mass.

Thus, to conclude, the geodesic free motion of a massive particle living
on a 4D hyperboloid H4, upon performing the stereographic projection of the
points of the hyperboloid onto the points of the 4D Minkowski base spacetime,
is governed by a geodesic equation described by (2.15) in terms of the xa, pa =
m(dxa/dτ) variables. It is not surprising to see why there are hyperbolic
trajectories associated with a constant acceleration |a| = c2/R = c2/RH ∼
aPioneer described by the above solutions (2.6) of eqs-(2.4a). One finds solutions
in terms of the Y A variables (hyperbolas) and afterwards one performs the
stereographic projections onto the base Minkowski spacetime.

Conformal boosts bestow a massive particle with a constant acceleration,
whereas ordinary momentum transformations amount to translations. See
[11] for further details pertaining the differences between the conformal-boost-
momentum versus the ordinary translation momentum. In particular, we
can see why the interplay between large (cosmological) and small (solar sys-
tem) scales stems from the fact that the canonical conjugate variable to the
conformal-boost-momentum is the inverse of the position coordinate za = xa

x2 .
Since under space inversions large and small scales are interchanged this ex-
plains the interplay between large and small scales.

Finally, to address the issue of the direction of the acceleration one would
have to take into account the effect of the solar mass on the spacetime ge-
ometry in addition to the cosmological constant. The study of the anomalous
acceleration within the context of a Schwarzschild-de Sitter metric and the two
different scale regimes (solar system versus cosmological scales) has been per-
formed by [15] where it was found the anomalous acceleration points towards
the sun.

3 ON NONCOMMUTATIVE PHASE SPACES

The main result of this section is that there is a subalgebra of the C-space
(Clifford space) operator-valued coordinates which is isomorphic to the Non-
commutative Yang’s spacetime algebra [1] . This, in conjunction to the discrete
spectrum of angular momentum, leads to discrete area quantization in mul-
tiples of Planck areas. Namely, the 4D Yang’s Noncommutative space-time
( YNST ) algebra [1] ( written in terms of 8D phase-space coordinates ) is
isomorphic to the 15-dimensional subalgebra of the C-space (Cliiford space)
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operator-valued coordinates associated with the holographic areas of C-space
[5]. This connection between Yang’s algebra and the 6D Clifford algebra is
possible because the 8D phase-space coordinates xμ, pμ ( associated to a 4D

spacetime ) have a one-to-one correspondence to the X̂μ5; X̂μ6 holographic
area-coordinates of the C-space (corresponding to the 6D Clifford algebra).

Furhermore, Tanaka [3] has shown that the Yang’s algebra [1] ( with 15
generators ) is related to the 4D conformal algebra ( 15 generators ) which
in turn is isomorphic to a subalgebra of the 4D Clifford algebra because it is
known that the 15 generators of the 4D conformal algebra SO(4, 2) can be
explicitly realized in terms of the 4D Clifford algebra as [ 6] :

Pμ = Mμ5+Mμ6 = γμ(1+γ5). Kμ = Mμ5−Mμ6 = γμ(1−γ5). D = γ5. Mμν = i[γμ, γν ]..
(3.1)

where the Clifford algebra generators :

1, and γ0 ∧ γ1 ∧ γ2 ∧ γ3 = γ5. (3.2)

account for the extra two directions within the C-space associated with the 4D
Cliffiord-algebra leaving effectively 4 + 2 = 6 degrees of freedom that match
the degrees of freedom of a 6D spacetime [6] . The relevance of [6] is that
it was not necessary to work directly in 6D to find a realization of the 4D
conformal algebra SO(4, 2) . It was possible to attain this by recurring solely
to the 4D Clifford algebra as shown in eq-(3.1) .

One can also view the 4D conformal algebra SO(4, 2) realized in terms
of a 15-dim subalgebra of the 6D Clifford algebra. The bivector holographic
area-coordinates Xμν couple to the basis generators Γμ ∧ Γν . The bivector
coordinates Xμ5 couple to the basis generators Γμ ∧ Γ5 where now the Γ5 is
another generator of the 6D Clifford algebra and must not be confused with
the usual γ5 defined by eq-(3.2). The bivector coordinates Xμ6 couple to the
basis generators Γμ ∧ Γ6. The bivector coordinate X56 couples to the basis
generator Γ5 ∧ Γ6.

In view of this fact that these bivector holographic area-coordinates in
6D couple to the bivectors basis elements Γμ ∧ Γν , ... , and whose algebra
is in turn isomorphic to the 4D conformal algebra SO(4, 2) via the realiza-
tion in terms of the 6D angular momentum generators ( and boosts genera-
tors ) Mμν ∼ [Γμ, Γν] , Mμ5 ∼ [Γμ, Γ5],.... we shall define the holographic
area coordinates algebra in C-space as the dual algebra to the SO(4, 2) con-
formal algebra ( realized in terms of the 6D angular momentum, boosts, gen-
erators in terms of a 6D Clifford algebra generators as shown )

Notice that the conformal boosts Kμ and the translations P μ in eq-(3.1)
do commute [P μ, P ν ] = [Kμ, Kν ] = 0 and for this reason we shall assign the
appropriate correspondence pμ ↔ Xμ6 and xμ ↔ Xμ5, up to numerical factors
( lengths ) to match dimensions, in order to attain noncommuting variables
xμ, pμ .
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Therefore, one has two possible routes to relate Yang’s algebra with Clifford
algebras. One can relate Yang’s algebra with the holographic area-coordinates
algebra in the C-space associated to a 6D Clifford algebra and/or to the sub-
algebra of a 4D Clifford algebra via the realization of the conformal algebra
SO(4, 2) in terms of the 4D Clifford algebra generators 1, γ5, γμ as shown in eq-
(3.1). Since the relation between the 4D conformal and Yang’s algebra and the
implications for the AdS/CFT , dS/CFT duality have been discussed before
by Tanaka [3], in this section we shall establish the following correspondence
between the C-space holographic-area coordinates algebra (associated to the
6D Clifford algebra) and the Yang’s spacetime algebra via the angular mo-

mentum generators M̂μν in 6D (after inserting h̄ in the appropriate places )
as follows :

iM̂μν = ih̄Σμν ↔ i
h̄

λ2
X̂μν. (3.3)

iM̂56 = ih̄Σ56 ↔ i
h̄

λ2
X̂56. (3.4)

iλ2Σμ5 ↔ iλx̂μ ↔ iX̂μ5. (3.5)

iλ2Σμ6 ↔ iλ2 R

h̄
p̂μ ↔ iX̂μ6. (3.6)

Notice that one is establishing a correspondence among x̂μ, p̂μ with Σμ5, Σμ6,
respectively, which is not to say that xμ, pμ are the same as angular momentum
operators.

With the Hermitian (bivector) operator- coordinates :

(X̂μν)† = X̂μν. (X̂μ5)† = X̂μ5. (X̂μ6)† = X̂μ6. (X̂56)† = X̂56. (3.7)

The algebra generators can be realized as :

X̂μν = iλ2(Xμ ∂

∂Xν
− Xν ∂

∂Xμ
). (3.8a)

X̂μ5 = iλ2(Xμ ∂

∂X5

− X5 ∂

∂Xμ

). (3.8b)

X̂μ6 = iλ2(Xμ ∂

∂X6

− X6 ∂

∂Xμ

). (3.8c)

X̂56 = iλ2(X5 ∂

∂X6

− X6 ∂

∂X5

). (3.8d)
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where the angular momentum generators are defined as usual :

M̂μν ≡ h̄Σμν . M̂μ5 ≡ h̄Σμ5. M̂μ6 ≡ h̄Σμ6. M̂56 ≡ h̄Σ56. (3.8e)

which have a one-to-one correspondence to the Yang Noncommutative space-
time ( YNST ) algebra generators in 4D. These generators ( angular momen-
tum differential operators ) act on the coordinates of a 5D hyperboloid AdS5

space defined by :

−(X1)2 + (X2)2 + (X3)2 + (X4)2 + (X5)2 − (X6)2 = R2. (3.9a)

where R is the throat size of the hyperboloid. This introduces an extra and
crucial scale in addition to the Planck scale. Notice that η55 = +1. η66 = −1.
5D de Sitter space dS5 has the topology of S4 ×R1 . Whereas AdS5 space has
the topology of R4 × S1 and its conformal ( projective ) boundary at infinity
has a topology S3×S1 . Whereas the Euclideanized Anti de Sitter space AdS5

can be represented geometrically as two disconnected branches ( sheets ) of
a 5D hyperboloid embedded in 6D . The topology of these two disconnected
branches is that of a 5D disc and the metric is the Lobachevsky one of constant
negative curvature. The conformal group SO(4, 2) leaves the 4D lightcone at
infinity invariant.

Thus, Euclideanized AdS5 is defined by a Wick rotation of the x6 coordi-
nate giving :

−(X1)2 + (X2)2 + (X3)2 + (X4)2 + (X5)2 + (X6)2 = R2. (3.9b)

whereas de Sitter space dS5 with the topology of a pseudo-sphere S4 × R1 ,
and positive constant scalar curvature is defined by :

−(X1)2 + (X2)2 + (X3)2 + (X4)2 + (X5)2 + (X6)2 = −R2. (3.9c)

(Notice that Tanaka [3] uses different conventions than ours in his definition
of the 5D hyperboloids. He has a sign change from R2 to −R2 because he
introduces i factors in iR ) .

After this discussion and upon a direct use of the correspondence in eqs-
(3.3, 3.4, 3.5, 3.6,3.7, 3.8) yields the exchange algebra between the position
and momentum coordinates :

[X̂μ6, X̂56] = −iλ2η66X̂μ5 ↔ [
λ2R

h̄
p̂μ, λ2Σ56] = −iλ2η66λx̂μ. (3.10)
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from which we can deduce that :

[p̂μ, Σ56] = −iη66 h̄

λR
x̂μ. (3.11)

and after using the definition N = (λ/R)Σ56 one has the exchange algebra
commutator of pμ and N of the Yang’s spacetime algebra :

[p̂μ,N ] = −iη66 h̄

R2
x̂μ. (3.12)

The other commutator is :

[X̂μ5, X̂56] = −[X̂μ5, X̂65] = iη55λ2X̂μ6 ↔ [λx̂μ, λ2Σ56] = iη55λ2λ2 R

h̄
p̂μ.

(3.13)
from which we can deduce that :

[x̂μ, Σ56] = iη55λR

h̄
p̂μ. (3.14)

and after using the definition N = (λ/R)Σ56 one has the exchange algebra
commutator of xμ and N of the Yang’s spacetime algebra :

[x̂μ,N ] = iη55 λ2

h̄
p̂μ. (3.15)

The other relevant holographic area-coordinates commutators in C-space are :

[X̂μ5, X̂ν5] = −iη55λ2X̂μν ↔ [x̂μ, x̂ν ] = −iη55λ2Σμν . (3.16)

after using the representation of the C-space operator holographic area-coordinates
:

iX̂μν ↔ iλ2 1

h̄
Mμν = iλ2Σμν iX̂56 ↔ iλ2Σ56. (3.17)

where we appropriately introduced the Planck scale λ as one should to match
units.

From the correspondence :

p̂μ =
h̄

R
Σμ6 ↔ h̄

R

1

λ2
X̂μ6. (3.18)

one can obtain nonvanishing momentum commutator :

[X̂μ6, X̂ν6] = −iη66λ2X̂μν ↔ [p̂μ, p̂ν] = −iη66 h̄2

R2
Σμν . (3.19)
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The signatures for AdS5 space are η55 = +1; η66 = −1 and for the Euclideanized
AdS5 space are η55 = +1 and η66 = +1. Yang’s space-time algebra corresponds
to the latter case.

Finally, the modified Weyl-Heisenberg algebra can be read from the fol-
lowing C-space commutators :

[X̂μ5, X̂ν6] = −iημνλ2X̂56 ↔

[x̂μ, p̂μ] = −ih̄ημν λ

R
Σ56 = −ih̄ημνN . (3.20)

There are other commutation relations like

[Σμν , xρ] = i (ηνρxμ − ημρxν), [Σμν , pρ] = i (ηνρpμ − ημρpν). (3.21)

that are just the well known rotations (boosts) of the coordinates and momenta
and the standard Lorentz algebra commutators

[Σμν , Σρσ] = i ( ημσΣνρ + ηνρΣμσ − ημρΣνσ − ηνσΣμρ ). (3.22)

Concluding, eqs-(3.12, 3.15, 3.16, 3.19, 3.20, 3.21, 3.22) are the defining re-
lations of Yang’s Noncommutative 4D spacetime algebra (noncommutative
phase space) involving the 8D phase-space variables. These commutators obey
the Jacobi identities.

Notice that if one imposes a different correspondence among the coordi-
nates and momenta, like the following

p̂μ ↔ 1√
2

h̄

R
(Σμ6 − Σμ5), x̂μ ↔ 1√

2
λ (Σμ6 + Σμ5). (3.23)

one gets the following modifications to the Weyl-Heisenberg algebra, when
η55 = −η66 = 1 (the algebra related to SO(4, 2) )

[x̂μ, p̂ν ] = − ih̄ ( ημν λ

R
Σ56 − Σμν

S
). (3.24)

where the dimensionless parameter S in eq-(3.24) is defined by S = (R/λ) and
one arrives at similar modifications of the phase space commutator algebra that
was proposed by Leznov and Kruschev long ago [13] when one identifies λ

R
Σ56

with the ”unit” operator I of [13]. The classical limit furnishes the following
deformed Poisson bracket [13]

{xμ, pμ} = − ( ημν λ

R
Σ56 − Σμν

S
) (3.25)
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An immediate consequence of Yang’s [1] and the Leznov-Khruschev [13]
noncommutative phase space algebra is that now one has modified Heisen-
berg uncertainty relations [8]. QM in D-dim Noncommutative spaces can
be described from QM in ordinary (commuting) D + 2-dim spaces [5]. The
double-scaling limit of Yang’s algebra λ → 0, R → ∞, in conjunction with
the large n → ∞ limit, leads naturally to the area quantization condition
λR = L2 = nλ2 ( in Planck area units ) given in terms of the discrete angular-
momentum eigenvalues n associated with the rotation operator Σ56 [8].

In order to write QM wave equations in non-commuting spacetimes [5],
we start with a Hamiltonian written in dimensionless variables involving the
terms of the relativistic oscillator ( let us say oscillations of the center of mass
) and the rigid rotor/top terms ( rotations about the center of mass )

H = (
pμ

(h̄/R)
)2 + (

xμ

LP
)2 + (Σμν)2. (3.26)

with the fundamental difference that the coordinates xμ and momenta pμ obey
the non-commutative Yang’s space time algebra. For this reason one cannot
naively replace pμ any longer by the differential operator −ih̄∂/∂xμ nor write
the Σμν generators as (1/h̄)(xμ∂xν −xν∂xμ). The correct coordinate realization
of Yang’s noncommutative spacetime algebra requires, for example, embed-
ding the 4-dim space into 6-dim and expressing the coordinates and momenta
operators as follows :

pμ

(h̄/R)
↔ Σμ6 = i

1

h̄
(Xμ∂X6 − X6∂Xμ).

xμ

LP
↔ Σμ5 = i

1

h̄
(Xμ∂X5 − X5∂Xμ).

Σμν ↔ i
1

h̄
(Xμ∂Xν − Xν∂Xμ). N = Σ56 ↔ i

1

h̄
(X5∂X6 − X6∂X5). (3.27)

this allows to express H in terms of the standard angular momentum op-
erators in 6-dim. The XA = Xμ, X5, X6 coordinates (μ = 1, 2, 3, 4) and
P A = P μ, P 5, P 6 momentum variables obey the standard commutation re-
lations of ordinary QM in 6-dim

[XA, XB] = 0. [P A, P B] = 0. [XA, P B] = ih̄ηAB. (3.28)

so that the momentum admits the standard realization as P A = −ih̄∂/∂XA

Therefore, concluding, the Hamiltonian H in eq-( 3-26) associated with the
non-commuting coordinates xμ and momenta pμ in d − 1-dimensions can be
written in terms of the standard angular momentum operators in (d−1)+2 =
d+1-dim as H = C2−N 2, where C2 agrees precisely with the quadratic Casimir
operator of the SO(d − 1, 2) algebra in the spin s = 0 case,

C2 = ΣABΣAB = (XA∂B − XB∂A)(XA∂B − XB∂A). (3.29)
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One remarkable feature is that C2 also agrees with the D’Alambertian operator
for the Anti de Sitter Space AdSd of unit radius ( throat size ) (DμDμ)AdSd

as
it was shown by [18], [19]. The proof requires to show that the D’Alambertian
operator for the d + 1-dim embedding space ( expressed in terms of the XA

coordinates ) is related to the D’Alambertian operator in AdSd space of unit
radius expressed in terms of the z1, z2, ....., zd bulk intrinsic coordinates as :

(DμD
μ)Rd+1 = − ∂2

∂ρ2
− d

ρ

∂

∂ρ
+

1

ρ2
(DμD

μ)AdS ⇒

C2 = ρ2(DμDμ)Rd+1 + [ (d − 1) + ρ
∂

∂ρ
] ρ

∂

∂ρ
= (DμDμ)AdSd

. (3.30)

This result is just the hyperbolic-space generalization of the standard decom-
position of the Laplace operator in spherical coordinates in terms of the ra-
dial derivatives plus a term containing the square of the orbital angular mo-
mentum operator L2/r2. In the case of nontrivial spin, the Casimir C2 =
ΣABΣAB + SABSAB has additional terms stemming from the spin operator.

The quantity Φ(z1, z2, ....., zd)|boundary restricted to the d−1-dim projective
boundary of the conformally compactified AdSd space ( of unit throat size,
whose topology is Sd−2 × S1 ) is the sought-after solution to the Casimir
invariant wave equation associated with the non-commutative xμ coordinates
and momenta pμ of the Yang’s algebra ( μ = 1, 2, ...., d − 1 ). Pertaining
to the boundary of the conformally compactified AdSd space, there are two
radii R1, R2 associated with Sd−2 and S1, respectively, and which must not be
confused with the two scales R, LP appearing in eq-(3.26). One can choose the
units such that the present value of the Hubble scale ( taking the Hubble scale
as the infrared cutoff ) is R = 1. In these units the Planck scale LP will be of
the order of LP ∼ 10−60. In essence, there has been a trade-off of two scales
LP , R with the two radii R1, R2.

Once can parametrize the coordinates of AdSd = AdSp+2 by writing [19]

X0 = R cosh(ρ)cos(τ). Xp+1 = R cosh(ρ)sin(τ). Xi = R sinh(ρ)Ωi. (3.31a)

The metric of AdSd = AdSp+2 space in these coordinates is :

ds2 = R2[−(cosh2ρ)dτ 2 + dρ2 + (sinh2ρ)dΩ2]. (3.31b)

where 0 ≤ ρ and 0 ≤ τ < 2π are the global coordinates. The topology of
this hyperboloid is S1 × Rp+1. To study the causal structure of AdS it is
convenient to unwrap the circle S1 ( closed-timelike coordinate τ ) to obtain
the universal covering of the hyperboloid without closed-timelike curves and
take −∞ ≤ τ ≤ +∞. Upon introducing the new coordinate 0 ≤ θ < π/2
related to ρ by tan(θ) = sinh(ρ), the metric in (3-6b) becomes

ds2 =
R2

cos2θ
[−dτ2 + dθ2 + (sinh2ρ)dΩ2]. (3.32)
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It is a conformally-rescaled version of the metric of the Einstein static universe.
Namely, AdSd = AdSp+2 can be conformally mapped into one-half of the
Einstein static universe, since the coordinate θ takes values 0 ≤ θ < π/2
rather than 0 ≤ θ < π. The boundary of the conformally compactified AdSp+2

space has the topology of Sp×S1 ( identical to the conformal compactification
of the p + 1-dim Minkowski space ). Therefore, the equator at θ = π/2 is a
boundary of the space with the topology of Sp. Ωp is the solid angle coordinates
corresponding to Sp and τ is the coordinate which parametrizes S1. For a
detailed discussion of AdS spaces and the AdS/CFT duality see [19].

The D’Alambertian in AdSd space ( of radius R, later we shall set R = 1 )
is :

DμD
μ =

1√
g

∂μ (
√

g gμν∂ν ) =

cos2θ

R2
[ − ∂2

τ +
1

(R tanθ)p
∂θ ( (R tanθ)p ∂θ ) ] +

1

R2 tan2θ
L2 (3.33)

where L2 is the Laplacian operator in the p-dim sphere Sp whose eigenvalues
are l(l + p − 1). The scalar field can be decomposed as Φ = eωRτ Yl(Ωp) G(θ)
and the wave equation

(DμD
μ − m2)Φ = 0. (3.34)

leads to :

[ cos2θ ( ω2 + ∂2
θ +

p

tanθ cos2θ
∂θ ) +

l(l + p − 1)

tan2θ
−m2R2 ] G(θ) = 0. (3.35)

whose solution is

G(θ) = (sinθ)l (cosθ)λ±
2F1(a, b, c; sinθ). (3.36)

The hypergeometric function is defined

2F1(a, b, c, z) =
∑ (a)k(b)k

(c)kk!
zn. |z| < 1. (3.37)

(λ)o = 1. (λ)k =
Γ(λ + k)

Γ(λ)
= λ(λ + 1)(λ + 2).......(λ + k − 1). k = 1, 2, ....

(3.38)
where

a =
1

2
(l + λ± − ωR). b =

1

2
(l + λ± + ωR). c = l +

1

2
(p + 1) > 0. (3.39a)

λ± =
1

2
(p + 1) ± 1

2

√
(p + 1)2 + 4(mR)2. (3.39b)
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The analytical continuation of the hypergeometric function for |z| ≥ 1 is :

2F1(a, b, c, z) =
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − tz)−adt. . (3.40)

with Real(c) > 0 and Real(b) > 0. The boundary value when θ = π/2 gives

limz→1− F (a, b, c; z) =
Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)
. (3.41)

This suggests that QM over Yang’s Noncommutative Spacetimes could be well
defined in terms of ordinary QM in higher dimensions, this idea deserves fur-
ther investigation, see [5], [8] for further details, in particular about a matrix-
valued generalization of Planck’s constant in order to study QM in Clifford
spaces.

4 MODIFIED NEWTONIAN MECHANICS

4.1 The Yang’s Deformed Algebra case

The dynamical consequences of the Yang’s Noncommutative spacetime algebra
can be derived from the quantum/classical correspondence :

1

ih̄
[Â, B̂] ↔ {A, B}PB. (4.1)

i.e. commutators correspond to Poisson brackets. More precisely, to Moyal
brackets. in Phase Space. In the classical limit h̄ → 0 Moyal brackets reduce to
Poisson brackets. Since the coordinates and momenta are no longer commuting
variables the classical Newtonian dynamics is going to be modified since the
symplectic two-form ωμν in Phase Space will have additional non-vanishing
elements stemming from these non-commuting coordinates and momenta. In
particular, the modified brackets read now :

{{A(x, p), B(x, p)}} = ∂μAωμν∂νB = {A(x, p), B(x, p)}PB{xμ, pν}+
∂A

∂xμ

∂B

∂xν
{xμ, xν} +

∂A

∂pμ

∂B

∂pν
{pμ, pν}. (4.2)

If the coordinates and momenta were commuting variables the modified bracket
will reduce to the first term only :

{{A(x, p), B(x, p)}} = {A(x, p), B(x, p)}PB{xμ, pν} = [
∂A

∂xμ

∂B

∂pν
− ∂A

∂pμ

∂B

∂xν
]ημνN .

(4.3)
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In the nonrelativistic limit, the modfied dynamical equations are :

dxi

dt
= {{xi, H}} =

∂H

∂pj
{xi, pj} +

∂H

∂xj
{xi, xj}. (4.4)

dpi

dt
= {{pi, H}} = −∂H

∂xj
{xi, pj} +

∂H

∂pj
{pi, pj}. (4.5)

The non-relativistic Hamiltonian for a central potential V (r) is :

H =
pip

i

2m
+ V (r). r = [

∑
i

xix
i]1/2 (4.6)

Defining the magnitude of the central force by F = −∂V
∂r

and using ∂r
∂xi = xi

r
one

has the modified dynamical equations of motion associated with the Yang’s
deformed phase space algebra are :

dxi

dt
= {{xi, H}} =

pj N

m
δij − F

xj

r
L2

P Σij . (4.7)

dpi

dt
= {{pi, H}} = F

xj N

r
δij +

pj

m

Σij

R2
. (4.8)

where N is the classical counterpart of N = (λ/R) Σ56. The angular momen-

tum bi-vector Σij can be written as the dual of a vector J as follows Σij = εijkJk

so that :

dxi

dt
= {{xi, H}} =

pi N

m
− L2

P F
xj

r
εijk Jk. (4.9)

dpi

dt
= {{pi, H}} = F

xi N

r
+

pj

m

εijkJk

R2
. (4.10)

For planar motion ( central forces ) the cross-product of J with p and x is

not zero since J points in the perpendicular direction to the plane. Thus, one
will have nontrivial corrections to the ordinary Newtonian equations of motion
which are induced from the Yang’s Noncommutative spacetime algebras in the
non-relativistic limit.

Concluding, eqs-(4.9, 4.10 ) determine the modified Newtonian dynamics
of a test particle under the influence of a central potential explicitly in terms
of the two LP , R minimal/maximal scales. When LP → 0, R → ∞ and N = 1
one recovers the ordinary Newtonian dynamics vi = (pi/m) and F (xi/r) =
m(dvi/dt). The unit vector in the radial direction has for components r̂ =
(r/r) = (x1/r, x2/r, x3/r). The Modified Newtonian dynamics represented by
eqs-(4.9, 4.10) should have important astrophysical consequences.
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4.2 The Leznov-Khruschev Algebra : Deformed Free
Motion

Let us focus at the moment on the modified free motion of a particle in the
absence of external forces. The Hamiltonian (Energy) for free motion was
chosen by Leznov et al [13] so it will commute with infinitesimal translations

p and rotations J :

H = E =
1

2m
( p2 +

J2

R2
). (4.11)

It follows from the modified brackets relations associated with the Leznov-
Khruschev algebra that in the absence of external forces F = 0, the p and J
are still constants of the motion and [13] :

dx

dt
=

I(t)

m
p − x ∧ J

R2
+

p ∧ J

S
. (4.12)

dI(t)

dt
=

p2

m S
− p . x

m R2
. (4.13)

where I is the ”unit” operator (rotation involving the extra dimension) as-
sociated with the SO(4, 1) algebra (and SO(5), SO(3, 2) algebras as well).
From eqs-(4.12, 4.13) one could view the quantity m(t) = m/I(t) as a time-
dependent mass. When R = S = ∞ one recovers the standard Newtonian
equations of motion in the absence of external forces. Differentiating (4.13)

and taking into account that p and J are conserved quantities one gets as
shown by [13]

d2I

dt2
+

2E

m R2
I = 0 ⇒ I(t) = Io cos [

√
2E

m

1

R
(t − to) ]. (4.14)

and

x = xo +
Io

|p|2 R
√

2mE sin [

√
2E

m

1

R
(t−to) ] p − Io

|p|2 cos [

√
2E

m

1

R
(t−to) ] ( J∧p).

(4.15)
A Circular Motion centered at xo (whose projection onto a line is a Har-

monic Oscillator oscillating about xo ) occurs when the radius of the circle ρ
obeys the conditions

ρ =
Io

|p| R
√

2mE =
Io

|p| |
J | . (4.16a)
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so the magnitude of the acceleration of the circular motion is

a = ω2 ρ =
2E

mR2
( Io |p| R

√
1

2mE
) =

1

R

|p|2
m2

. (4.16b)

after inserting in (4.16b) the value of the constant

Io =
p√

2ME
[ 1 + 2mE (

R2

S2
− 1

M2
) ]

1
2 . (4.17)

in the special case when S = RM . The expression for Io was obtained from
normalizing the quadratic Casimir to unity [13]. In the special case when
S = RM , since |p| =

√
2mE ⇒ Io = 1, then the radius becomes ρ = R. Notice

that |p|2 = p.p �= pμpμ = m2. If we set |p|2
m2 = v2 in terms of a characteristic

velocity v, one can infer from (4.16b) by setting R = RH and v = c, that

a =
1

R

p2

m2
=

v2

R
∼ c2

RH

∼ aPioneer (4.18)

however, there is a caveat because when R = RH and v = c, one reaches
the purely relativistic domain of validity where one cannot longer use the
modified (deformed) Newtonian non-relativistic equations of motion. This
was the purpose of studying the relativistic case within the context of ( Anti
) de Sitter Relativity in Cosmology (section 2 ) in order to explain the origins
of the Pioneer anomalous acceleration.

A purely linear motion is obtained when R = RH = Hubble scale, such
that

d2I

dt2
+

2E

m R2
H

I ∼ d2I

dt2
= 0 ⇒ I(t) = Io + (

|p|2
m S

) t. (4.19)

after using eq-(4.13) and neglecting the last term in eq-(4.13). Hence, the time
dependence of x is now given by

x = xo +
Io t

m
p +

1

2

|p|2 t2

m2 S
p. (4.20)

From this last equation one can deduce that the constant acceleration, de-
spite the absence of external forces, due to the modified (deformed) Newtonian
mechanics, is

a =
|p|2

m2 S
|p|. (4.21)

The value of the parameter S which has dimensions of an action can be
determined from the experimentally observed anomalous Pioneer acceleration

ap ∼ 8.74 × 10−10m

s2
∼ c2

RH

. (4.22a)
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by writing
S = RH MP lanck c. (4.22b)

in terms of the Hubble scale and Planck’s mass MP lanck . Let us equate

a =
p2

m2 S
p =

p2

m2

1

RH

p

MP lanck c
∼ c2

RH

(4.22c)

We can see by simple inspection that when m = MP lanck and p = m c =
MP lanck c in (4.22), one would have an exact equality between the l.h.s and
r.h.s of eq-(4.22) ! , setting aside (of course) for the moment that a momentum
of the magnitude |p| = m c falls in the purely relativistic regime which is in-
compatible with the non-relativistic modified Newtonian equations of motion.
This was the reason, once again, why we studied the relativistic dynamics and
hyperbolic motion in section 2.

When m �= MP lanck, on dimensional grounds one may set p
m

= v where v
is a characteristic velocity, and instead of setting S = RH MP lanck c, now we
will set the action parameter to be S = mc ρ, and such that eq-(4.22) becomes
now

a = v3 (
1

ρ
) (

m

m c
) ∼ c2

RH
⇒ (

v

c
)3 ∼ ρ

RH
. (4.23)

One can notice that when ρ = 67 AU (1 AU = 1.49×1011m) is inserted in the
above equation (4.23) , one deduces a velocity v = 13.91 km/s ∼ 12.2 km/s,
that indeed is quite close to the observed velocity of Pioneer at a distance of
ρ = 67 AU [12]. Such cubic scaling behaviour (4.23) was found by Kolgomorov
in a very different context related to eddies, turbulence, ... in fluid mechanics.

4.3 The Deformed Kepler Problem

The Hamiltonian for the deformed Kepler problem is chosen [13] to commute
with the Runge-Lenz vector

A = p ∧ J + α
x

ρ
; ρ2 = |x|2 +

J2

M2
, M =

1

λ
. (4.24)

where α is a numerical constant proportional to the solar mass of momentum
dimensions and related to the shape of the orbits, and the mass parameter M
is related to the inverse of the ”minimal” length scale λ. The Poisson bracket
relations for the components of A are

{Ai, Aj} = 2 (E− J2

mR2
) εijk Jk, E =

1

2m
(|p|2+ J2

R2
+

2α

r
I− α2

M2r2
). (4.25)

where I is the ”unit” operator associated with one of the SO(4, 1), SO(5), SO(3, 2)
algebras. The quadratic Casimir is
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C2 = I2 +
|x|2
R2

+
|p|2
M2

− 2 (
p.x

S
) − J2(

1

S2
− 1

R2M2
). (4.26)

The most salient feature of the deformed Kepler problem is that when the 3
vectors x, p, A lie in the plane orthogonal to the angular momentum vector J
the orbits belong to a family of plane quartics as first suggested by Cassini in
the 17-th century. These curves are known as the Cassini ovals [13], it is the
locus of points where the product of their distances from two fixed points is
constant.

The most relevant equation to study at the moment is the temporal de-
pendence of the position x [13]

dx

dt
=

1

J4
( | A| |x| − αρ ) [ (

α

mρ
) x ∧ J − (

A ∧ J

m
) ] − x ∧ J

mR2
+

A

S
. (4.27)

From eq-(4.27) one can get a numerical estimate of the corrections to the
acceleration due to the modified Newtonian dynamics resulting from the non-
commutative phase space Leznov-Khruschev algebra. If one sets the mass
parameter scale M → ∞, the first term of eq-(4.27) does not generate correc-
tions since ρ = r . Hence, a differentiation of eq-(4.27) w.r.t the time variable,
due to the fact that the Runge-Lenz vector and angular momentum is a con-
stant of motion, will furnish the corrections Δa to the acceleration given in
terms of the corrections to the velocity (Δ d
x

dt
)

Δa = − 1

mR2
(Δ

dx

dt
) ∧ J = − 1

mR2
( − x ∧ J

mR2
+

A

S
) ∧ J. (4.28)

When the parameter S is set to ∞ one arrives at

Δa =
1

mR2
(
x ∧ J

mR2
) ∧ J. (4.29)

For a planar orbit perpendicular to the angular momentum vector, the vector
Δa given by eq-(4.29) points towards the origin; i.e. towards the sun as it is
observed. The magnitude is

|Δa| =
1

mR2
(
|x| | J |2
mR2

). (4.30)

The magnitude of the corrections when R = RH is extremely small unless, of
course, one has

m RH = 1, | x | = RH , | J| = |p| RH = (mc)RH = c ⇒
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|Δa| =
c2

RH
∼ 8.74 × 10−10 m/s2. (4.31)

This is an exceptional case which is more related to a Machian view of the
Universe [4] where a minimal acceleration c2/RH is dual to a maximal ac-
celeration c2/LP lanck when the mass of the Universe MU is of the order of
MP lanck (RH/LP lanck). These results can be derived, simply, by setting the
maximal proper force associated with a Dual Phase Space Relativity principle
(initiated by Max Born [9], [10]) to be given by [4] :

Maximal Proper Force = MU
c2

RH
= MP lanck

c2

LP lanck
. (4.32)

The Machian principle states that the rest mass of a particle is related to the
gravitational binding energy associated with its gravitational interaction with
all the masses of the Universe

mc2 =
GMUm

RH

⇒ c2 =
GMU

RH

⇒ c2

RH

=
GMU

R2
H

∼ aPioneer. (4.33)

Another possibility to generate the right order of magnitude is to choose
the parameters m,R and | J | = |x ∧ p| in such a way that

|Δa| =
1

mR2
(
|x| | J |2
mR2

) ∼ c2

RH

. (4.34)

A reasonable choice corresponding to the ”dry” mass of the Pioneer satellite
of ms = 223 Kg; with a velocity of vs = 12.2 Km/s, at a location R = ro =

|x| = 67 AU [12], and with angular momentum | J | ∼ msvs ro, should give

|Δa| =
1

ms r2
o

(
ro (msvs ro)

2

ms r2
o

) =
v2

s

ro

(4.35)

However it is evident by simple inspection that

v2
s

ro

<
c2

RH

. (4.36)

A more appropriate scaling behaviour was found earlier in eq-(4.23) to be

v3
s

ro

∼ c3

RH

⇒ (
vs

c
)3 ∼ ro

RH

. (4.37)

Therefore, only in the extreme case scenario (4.31), which invalidates the
non-relativistic approximation in the first place, one would have found agree-
ment with observations. For this reason, we are more certain that the de
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Sitter Relativistic behaviour of the hyperbolic trajectory of Pioneer, due to
the expansion of the Universe (non-vanishing cosmological constant), is the
underlying physical reason for the observed anomalous acceleration of the Pi-
oneer spacecraft.

A purely circular motion, in the relativistic limit (in units h̄ = 1), such
that

ω RH = c, ω = m ⇒ mRH = 1. (4.38)

leads to an acceleration

a =
J2

RH
=

(mcRH)2

RH
=

c2

RH
∼ aPioneer (4.39)

compatible with Mach’s principle once again [20]. A Weyl geometry interpreta-
tion of the anomalous acceleration was advanced by [21]. In [7] we were able to
prove how a proper use of Weyl’s geometry within the context of the Friedman-
Lemaitre-Robertson-Walker cosmological models can account for both the ori-
gins and the small value of the observed vacuum energy density of the order
of 10−123M4

P lanck . The source of dark energy is just the dilaton-like Brans-
Dicke-Jordan scalar field that is required to implement the Weyl symmetry
invariance of the gravity-scalar field action. It is warranted to explore the
hyperbolic motion of Pioneer in de Sitter space depicted in section 2 within
the framework of a Friedman-Lemaitre-Robertson-Walker cosmological model,
since de Sitter space is a special case of such cosmological model. In such case
the anomalous acceleration would be time dependent.
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