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Abstract

A proposal outlining an approach to a unified field theory is pre-
sented. A general solution to the time-dependent Schrödinger Equation
using an alternative boundary condition is found to derive the Heisen-
berg uncertainty formulae. A general relativity/quantum mechanical
interaction between a photon and a gravitational field is examined to
determine the degree of red shifting of light passing through a gravita-
tional field. The Einstein field equations, complete with an arrangement
of Faraday tensors, are presented with suggestions to determine the en-
ergy of a photon from Einstein’s and Maxwell’s equations. Schrödingers
Equation is coupled with both the Einstein field equations and Maxwells
equations to derive a possible foundation for string theory.

1 Derivation of Heisenberg’s Uncertainty Equa-

tions from a General Solution to the Time

Dependent Schrödinger Equation

Consider any particle with mass m and negative charge resulting in a potential
energy V which obeys the following:

i~
∂

∂t
ψ = − ~

2

2m
∇2ψ − V ψ (1)

which is derived from:
−~

2∇2ψ = p2ψ (2)

where p is the momentum of the particle. It is well known that if there are
infinite or semi-infinite boundary conditions, the above equation is commonly
solved through a singularity solution. We reject assuming infinite boundary
conditions and present a well established and common method, known as the
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separation of variables, to find a general solution in a finite domain following
which the boundary condition becomes obvious.

Rewriting the differential equation we have:

i~
∂

∂t
ψ = − ~

2

2m

{

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

}

ψ − V ψ (3)

Let:
ψ = T (t)X(x)Y (y)Z(z) (4)

where, T (t) is a function of t only, X(x) is a function of x only, Y (y) is a
function of y only and Z(z) is a function of z only. Then:

i~
∂

∂t
TXY Z = − ~

2

2m

{

∂2

∂x2
TXY Z +

∂2

∂y2
TXY Z +

∂2

∂z2
TXY Z

}

− V TXY Z

(5)

Under the condition that ψ 6= 0 we can divide through by TXY Z to yield:

i~
T ′

T
= − ~

2

2m

X ′′

X
− ~

2

2m

Y ′′

Y
− ~

2

2m

Z ′′

Z
− V (6)

We can see that each term is linearly independent. Since each term is being
varied by its independent variable and all variables are linearly independent
from each other, and the constant term is also independent from the others,
each term must equal a constant. Therefore:

i~
T ′

T
= −α2 (7)

~
2

2m

X ′′

X
= −V − β2 (8)

~
2

2m

Y ′′

Y
= −γ2 (9)

~
2

2m

Z ′′

Z
= −ξ2 (10)

where α, β, γ and ξ are constants, and the equation has been separated. We
have placed the constant term, −V , with equation 8 since it has been chosen
as the direction of travel of the particle.

Then:

X = cos

(

√

2m(V + β2)

~
x

)

(11)
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This is, in a way, similar to a term in a Fourier series. We consider a slight
re-write as:

X = cos

(

2π
√

2m(V + β2)

~

x

2π

)

(12)

Consider the boundary condition of X = 1 which occurs when:

x =
2π~

√

2m(V + β2)
(13)

and
x
√

2m(V + β2) = h (14)

since

p2ψ = −~
2∂

2ψ

∂x2
(15)

and using boundary condition . . .

ψ = 1 (16)

we get

p2 = −~
2∂

2ψ

∂x2
(17)

We also have

− ~
2

2m

∂2ψ

∂x2
= V + β2 (18)

yielding

−~
2∂

2ψ

∂x2
= 2m(V + β2) (19)

Substitution yields:
xp = h (20)

at the boundary of the particle. However the “angle” within the cosine goes
from 0 to 2π and therefore we have a measure of ∆x. Because x varies between
the boundaries we have a non-constant p. We therefore have:

∆x∆p = h. (21)

Note that any boundary condition other than ψ = 1 substituted into equation
15 invalidates the previous equation.

We would like to mention here that the boundary would yield a “probabil-
ity” of one for the particle should ψ represent probability. Inside this boundary
this probability would be less than one. At the “centre” of the particle, the
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probability would be −1 and this is absurd. In the derivation of a solution we
had said ψ 6= 0. So we will deny the particle to exist inside the boundary and,
for that matter, outside the boundary as well. For this particular solution to
stand, the particle only exists where ψ = 1 and does not exist otherwise. We
are stating that the particle does not exist when ψ < 1. This is a different
case than determining the position or time of the particle. In this case we are
determining the existence of the particle itself. We are postulating that if ψ is
less than one, then it isn’t. We conclude ψ cannot be a measure of probablity.
It is a potential. When the potential is 1, the particle exists. From these
considerations, the particle can only exist at it’s boundary.

From outside the particle we can only measure to an accuracy of:

∆x∆p ≥ h (22)

With the time ordered factor, we have an exponential of iα
2

~
t. Let us now

consider α. We note the units of measure. We see that ~ is in units of joules-
sec. We see that t is in seconds and will cancel the time unit of ~ leaving joules
in the denominator. Hence, since the exponential must be unitless, α2 is in
units of joules. To continue the discussion allow α2 to be some unknown form
of energy in joules. We will examine what this means as follows.

Let
E = α2 (23)

so the exponential of the time ordered factor becomes

iEt

~
(24)

and we look at the situation where ψ = 1. In other words, the particle definitely
exists. We have seen that at the boundary, from before, the spacial ordered
factor is one. Therefore the time ordered factor is also one for a time ordered
boundary. This can only occur should the exponent of the time ordered factor
be something like 2πi. In which case we have:

iEt

~
= 2πi (25)

rearranging
Et = 2π~ (26)

Et = h (27)

Here we have time going from 0 to some cyclic value yielding an exponent
of 2πi. We will then denote this as ∆t and ∆E is the magnitude of fluctuation
of energy. We now have:

∆E∆t = h (28)
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and observing from outside the particle in the time dimension, we can only
measure to an accuracy of:

∆E∆t ≥ h (29)

This happens outside some time ordered “boundary” where/when the po-
tential of the existence of the particle yields ψ = 1. Combining both time and
spacial ordered factors we have the situation where any measurement of the
time, location, momentum or energy of the particle must obey the following;

∆x∆p ≥ h (30)

and
∆t∆E ≥ h (31)

because that is determined by the boundary conditions of any particle adhering
to Schrödinger’s equation. Since this has been validated by an overwhelming
amount of experimental and, now, theoretical evidence, we propose that the
Heisenberg Uncertainty Postulate be classified as a theory.

Let us take a closer look at E.

The exponent of the time ordered factor is some sort of phase angle that
allows the particle to have a potential of existence equal to one at each cycle.

Let:
E

~
t = θ (32)

And we differentiate by t on each side to yield:

E

~
=
dθ

dt
(33)

or
E

~
= ω (34)

E = ~ω (35)

and,
E = hν (36)

So, this energy, E, is not a form of energy coming from the mass of the particle
or it’s momentum of motion or even it’s charge generating V . It appears to be
an energy that is associated with the time ordered frequency of the particle’s
existence. This energy is not associated with mass or charge.

Let us examine α further.

α =

√
2πi~√
t

(37)
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and

α =
1√
2

(
√

h

t

)

(1 + i) (38)

and it seems that with the presence of
√

2 there is some indication of spin
involved.

Continuing, we see that we can also say:

θn = n22πi, n ∈ N (39)

whenever ψ = 1. So this exponential has been quantized by n2. This can be
compared to an orthogonal set of eigenfunctions yielding a complete solution of
ψ. There are interesting consequences to the general solution of Schrödinger’s
equation. We call α an eigenvalue in an eigenspace which we often use to
find general solutions. Apparently α2 is the energy of a photon. We are
proposing that the magnitudes of an infinite number of eigenvalues to the
general solution of Schrödinger’s equation yield the energy values of an infinite
number of subatomic particles. The first order temporal eigenvalue yields the
energy of a photon and perhaps some value of spin.

From the behaviour of this class of differential equation, ψ can be considered
as a conserved scalar potential field. Since electromagnetic radiation can be
thought of as a moving disturbance within a scalar potential field, and this
field is conserved, there is a slight alteration in the surrounding potential field
should any disturbance move through it. We believe there is the possiblility
that a bundle of rapidly fluctuating electromagnetic fields moving at the speed
of light, commonly known as a photon, would behave as though it had a
very small gravitational field. We investigate this possibility by examining the
Einstein field equations.

2 The Field Equations

Consider an equation which partially comes from Minkowski and also quoted
by Einstein [7]:

Gµν = 8πTµν − FµαFν
α +

1

4
gµνFαβF

αβ (40)

From equation 40 we denote Tµν as a material stress energy tensor and the
Faraday tensor terms as a field stress energy tensor.

We can see that if there is no charge present we have the formula:

Gµν = 8πTµν (41)
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and we have the usual Einstein Field Equations.

Should there be no mass, but charge is present, we have:

Gµν = −FµαFνα +
1

4
gµνFαβF

αβ (42)

Equation 40 is the complete field equation resulting from the presence of
both mass and charge in boundless space. Equation 41 is the gravitational
field equation and equation 42 describes spacetime under Maxwell’s Equations.
Note that it was probably Minkowski who developed the tensor equation for
Maxwell’s electromagnetic theory and Eistein developed the tensor equation
for gravity. For the sake of clarity, allow:

Ωµν = −FµαFνα +
1

4
gµνFαβF

αβ (43)

and
Ξµν = 8πTµν (44)

So we have:
Gµν = Ξµν + Ωµν (45)

and consider the following situation.

In the case of a photon passing by the sun, the mass of the sun yields
the material stress energy tensor already described. The fluctuations of the
electromagnetic fields from the photon have to be derived from equation 40.
The Ωµν tensor is a microscopic view of the actions of a stationary object
having electrostatic charge and magnetic properties. However, to describe the
photon itself from these equations we need to take a macroscopic average of
the sress energy generated by the Ωµν tensor.

A photon is a region of rapidly fluctuating electric and magnetic fields
moving at the speed of light. Overall, there is a stress-energy tensor within
the region of the photon in which:

Gµν = ρlµlν (46)

where ρ is the energy density, or hν, per unit volume of the photon, and l is the
four-velocity of the particle of light known as a photon. In this way, it can be
seen that the bundle of rapidly fluctuating electric and magnetic fields appears
to behave on a macroscopic level as a particle having mass and momentum.
Therefore, if the appropriate differentiation is applied to the tensors describing
a wave bundle moving at the speed of light, it’s energy can be derived from
equation 40 which must be equal to hν. In this way Plank’s constant enters
the field equations.
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We know that Gµν describes the curvature of a local region, in this case
the local region of a photon. The (0, 0) component is the localized energy
density. Momentum, pressure and shear stress densities are also contained
in the Einstein tensor (i.e. Gµν), which has been well known for nearly a
hundred years. In this way, the local energy and momentum densities of a
localized region of space-time undergoing rapid fluctuations of electric and
magnetic fields and moving at the speed of light, can be calculated from well
understood mathematical principles and procedures. Obviously, from equation
40, the energy and momentum of a photon can be obtained. The photon has
momentum.

As the photon travels deeper into the gravitational well of the sun, we see
that the energy of the photon increases; it blue shifts. As the photon bypasses
the sun and climbs back out of the gravitational well, it red shifts. In the
reference frame of the sun, assuming the sun’s position is unaffected, the red
shift equals the blue shift as the photon follows the geodesic described by the
gravitational field of the sun. However, there is one small problem with this
approach. We are working in the reference frame of the sun. We are assuming
the sun is not moving in our laboratory universe having only the sun and a
particular photon. If such were the case, the sun being treated as an inertial
reference frame, then there would be no resultant red shift of the photon by-
passing the sun. But such is not the case.

The photon has momentum. We must take this into consideration. We
must move to an inertial reference frame utilizing the total momentum of the
sun and photon. The total momentum of the system must remain constant.
In this reference frame, there is a slight change in the photon’s momentum due
to its change in direction, this change in momentum must be subtracted from
the sun’s change in momentum so that the total momentum remains constant.
This takes energy which comes from the photon, which red shifts to make up
for the gain in kinetic energy of the sun. As a result, the bypassing of the
photon causes the sun to very slightly shift which in turn alters the region of
the photon’s local value of Gµν and thereby, the value of ρlµlν for the photon.
We see that the slope of the gravitational well is not the same as when the
photon exits the well of the sun as when it enters it. This is because the sun
very slightly shifts toward the photon as it passes. The well is steeper coming
out of it than when entering it.

General Relativity meets Quantum Mechanics.

Since the Faraday tensors describing the local spacetime of a photon affect
Gµν , a photon therefore adds to the curvature of local space-time and therefore
interacts gravitationally with local objects, however, extremely slightly.

We can figure out the red shift of the photon by treating the interaction
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as a collision using Plank’s formula or we can figure it out with momentum
considerations from rather difficult and complex operations and differentiations
on the photon’s quickly moving locality and the interaction it has in changing
the sun’s momentum. There are two ways to solve the problem and both
should be equal.

Furthermore, we can also see the derivation of the very slight red shift of
light by-passing the sun has been approximated as linear. Over great distances
and with very large masses, this effect becomes more pronounced and non-
linear. There is a cosine factor involved which comes into play the more and
more the light is “bent”. At great distances this would not behave as a linear
function and may well match the observations that have formed the basis of
an inflationary universe. Any determination concerning an expanding universe
must take into account the red shifting of light passing through gravitational
fields.

We next work out the red shift using the approach of a collision.

3 A Particle/Photon Gravitational Interaction

If a photon having momentum hν
c

bounces off a sphere “at rest” having mass
M and is deflected by a small angle θ, then the sphere would gain momentum
[5]. This would mean that the sphere would, in an ideal situation, move very,
very slowly. Since the sphere has gained kinetic energy, according to the law of
conservation of energy, the photon would lose energy equivalent to the kinetic
energy gained by the sphere. As a result, the photon must red shift.

Let us examine the interaction of light passing through the gravitational
field of the sun as a gravitational slingshot between a photon and the sun.
A slingshot can be modeled as an elastic collision such as a collision between
billiard balls on a frictionless pool table. If the sun is considered an incom-
pressible billiard ball and a photon is considered as an incompressible cue ball
barely touching the sun in a so-called “kiss shot”, then we can calculate a
possible change in frequency as follows:

Let θ be the angle of the photon coming off the “kiss” compared to travelling
in a “straight” line as if missing the hit. If the sun has mass M and recoils
with velocity V , the conservation of momentum demands:

hν

c
= MV sin(

θ

2
) +

hν ′

c
cos(θ) (47)

for the “x” direction and:

MV cos(
θ

2
) = −hν

′

c
sin(θ) (48)
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for the “y” direction where ν ′ is the frequency of the photon after the interac-
tion.

Substituting for MV from equation 2 into equation 1, we have:

hν

c
=
hν ′

c
cos(θ) − hν ′

c

sin(θ) sin( θ
2
)

cos( θ
2
)

(49)

which reduces to:

ν = ν ′(
sin(θ) sin( θ

2
)

cos( θ
2
)

+ cos(θ)) (50)

For very small θ:

ν ' ν ′(
θ2

2
+ 1) (51)

Let ν − ν ′ = ∆ν. Then, subtracting ν ′ from both sides:

∆ν ' ν ′
θ2

2
(52)

Since ν ′ ' ν we have:

∆ν ' ν
θ2

2
(53)

The first approximation of a solution to a solar/photon interaction was
done by Einstein [5] in which the following equation was derived:

θrad =
4M

R
(54)

in which θrad is the angle coming off the interaction in radians, M is the mass
of the sun in meters, (Schwartzchild radius). R is the distance from the centre
of the sun to the point of perihelion of the hyperbolic orbit of the photon in
the path around the sun following the geodesic, also in meters. To convert R
to the angular separation from the star to the sun in radians, divide R by an
astronomical unit.

The formula derived previously is:

∆ν =
θ2
deg

2
ν (55)

where θdeg is the angle coming off the interaction in degrees, ∆ν is the change
in frequency and ν is the frequency of the signal.

Combine both formulae to yield:

∆ν =
M2π2

2025R2
ν (56)
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or:

∆E =
M2π2

2025R2
E (57)

or:

∆p =
M2π2

2025R2
p (58)

By-passing the sun, a photon is red-shifted by a factor of about 10−7.

4 String Theory

We have looked at Schrödinger’s Equation, which is a diffusion equation with
a linear term added on the end. Diffusion is an interesting mathematical
phenomena. Mathematically, effects occur instantly throughout the media
into which diffusion is penetrating. That means things happen faster than the
speed of light; they happen instantly.

Consider three classes of differential equations. The diffusion equation,
of which Schrödinger is included, the harmonic equation and the biharmonic
equation.

Setting these out:

The diffusion equation: ∂ψ

∂t
= ∇2ψ

The harmonic equation: ∂2ψ

∂t2
= ∇2ψ

The biharmonic equation: 0 = ∇4ψ

(59)

These three cover a great deal within the field of applied mathematics.
There are, of course, many variations. ψ is almost always defined as some
unknown potential.

The second formula above, the harmonic equation, has the property that
alterations propogate at a particular speed. That the speed of propogation
within the media described by the differential equation has some definite finite
value such as the speed of light. However, space-time is a tensor field and the
harmonic equation can only describe a vector field. This has possibilities for
electromagnetism but not for gravity.

The third formula above is the biharmonic equation and describes the world
of elasticity. It is used in geophysics to describe movements of plate techtonics.
It contains various stress tensors of an elastic media.
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Consider the Heisenberg shell previously derived. Consider a potential ψ
within a shell bounded by r = h

2mc
and t = h

mc2
. If we use the Schrödinger

Equation as follows:
{

∂

∂t

}

ψ =

{

i~2∇2

2m
− iV

}

ψ (60)

as a “Schrödinger operator”. In order to find a measure of acceleration or
force, or second time ordered differential, we re-apply the operator within the
shell to obtain:

∂2ψ

∂t2
=

~
4

4m2
∇4ψ − ~

2V

m
∇2ψ + V 2ψ (61)

In spherical coordinates this is: ∂2

∂t2
ψ (t, r, θ, φ) = ~

4

4m2 ( 2 r sin(θ) ( - 2 ( 2 r

sin(θ) ∂
∂r
ψ(t, r, θ, φ) + r2 sin (θ) ∂2

∂r2
ψ (t, r, θ, φ) + cos (θ) ∂

∂θ
ψ (t, r, θ, φ) + sin (θ)

∂2

∂θ2
ψ (t, r, θ, φ) +

∂2

∂φ2
ψ(t,r,θ,φ)

sin(θ)
) r−3 ( sin (θ) ) −1 + ( 2 sin (θ) ∂

∂r
ψ (t, r, θ, φ) +

4 r sin (θ) ∂2

∂r2
ψ (t, r, θ, φ) + r2 sin (θ) ∂3

∂r3
ψ (t, r, θ, φ) + cos (θ) ∂2

∂r∂θ
ψ (t, r, θ, φ)

+ sin (θ) ∂3

∂θ∂r∂θ
ψ (t, r, θ, φ) +

∂3

∂φ2∂r
ψ(t,r,θ,φ)

sin(θ)
) r−2 (sin (θ))−1 ) + r2 sin (θ) ( 6 (

2 r sin (θ) ∂
∂r
ψ (t, r, θ, φ) + r2 sin (θ) ∂2

∂r2
ψ (t, r, θ, φ) + cos (θ) ∂

∂θ
ψ (t, r, θ, φ) +

sin (θ) ∂2

∂θ2
ψ (t, r, θ, φ) +

∂2

∂φ2
ψ(t,r,θ,φ)

sin(θ)
) r−4 (sin (θ) ) −1 - 4 ( 2 sin (θ) ∂

∂r
ψ (t, r, θ, φ)

+4 r sin (θ) ∂2

∂r2
ψ (t, r, θ, φ) + r2 sin (θ) ∂3

∂r3
ψ (t, r, θ, φ) + cos (θ) ∂2

∂r∂θ
ψ (t, r, θ, φ)

+ sin (θ) ∂3

∂θ∂r∂θ
ψ (t, r, θ, φ) +

∂3

∂φ2∂r
ψ(t,r,θ,φ)

sin(θ)
) r−3 (sin (θ))−1 + ( 6 sin (θ) ∂2

∂r2
ψ (t, r, θ, φ)

+ 6 r sin (θ) ∂3

∂r3
ψ (t, r, θ, φ) + r2 sin (θ) ∂4

∂r4
ψ (t, r, θ, φ) + cos (θ) ∂3

∂r2∂θ
ψ (t, r, θ, φ)

+ sin (θ) ∂4

∂θ∂r2∂θ
ψ (t, r, θ, φ) +

∂4

∂r∂φ2∂r
ψ(t,r,θ,φ)

sin(θ)
) r−2 (sin (θ))−1 ) + cos (θ) ( - (

2 r sin (θ) ∂
∂r
ψ (t, r, θ, φ) + r2 sin (θ) ∂2

∂r2
ψ (t, r, θ, φ) + cos (θ) ∂

∂θ
ψ (t, r, θ, φ)

+ sin (θ) ∂2

∂θ2
ψ (t, r, θ, φ) +

∂2

∂φ2
ψ(t,r,θ,φ)

sin(θ)
) cos (θ) r−2 (sin (θ))−2 + ( 2 r cos (θ)

∂
∂r
ψ (t, r, θ, φ) + 2 r sin (θ) ∂2

∂r∂θ
ψ (t, r, θ, φ) + r2 cos (θ) ∂2

∂r2
ψ (t, r, θ, φ) + r2

sin (θ) ∂3

∂r2∂θ
ψ (t, r, θ, φ) - sin (θ) ∂

∂θ
ψ (t, r, θ, φ) + 2 cos (θ) ∂2

∂θ2
ψ (t, r, θ, φ) +

sin (θ) ∂3

∂θ3
ψ (t, r, θ, φ) -

(

∂2

∂φ2
ψ(t,r,θ,φ)

)

cos(θ)

(sin(θ))2
+

∂3

∂φ2∂θ
ψ(t,r,θ,φ)

sin(θ)
) r−2 ( sin (θ) ) −1 )

+ sin (θ) ( 2 ( 2 r sin (θ) ∂
∂r
ψ (t, r, θ, φ) + r2 sin (θ) ∂2

∂r2
ψ (t, r, θ, φ) + cos (θ)

∂
∂θ
ψ (t, r, θ, φ) + sin (θ) ∂2

∂θ2
ψ (t, r, θ, φ) +

∂2

∂φ2
ψ(t,r,θ,φ)

sin(θ)
) (cos (θ))2 r−2 ( sin (θ)

)−3 -2 ( 2 r cos (θ) ∂
∂r
ψ (t, r, θ, φ) + 2 r sin (θ) ∂2

∂r∂θ
ψ (t, r, θ, φ) + r2 cos (θ)

∂2

∂r2
ψ (t, r, θ, φ) + r2 sin (θ) ∂3

∂r2∂θ
ψ (t, r, θ, φ) - sin (θ) ∂

∂θ
ψ (t, r, θ, φ) + 2 cos (θ)

∂2

∂θ2
ψ (t, r, θ, φ) + sin (θ) ∂3

∂θ3
ψ (t, r, θ, φ) -

(

∂2

∂φ2
ψ(t,r,θ,φ)

)

cos(θ)

(sin(θ))2
+

∂3

∂φ2∂θ
ψ(t,r,θ,φ)

sin(θ)
)

cos (θ) r−2 ( sin (θ) ) −2 + ( 2 r sin (θ) ∂
∂r
ψ (t, r, θ, φ) + r2 sin (θ) ∂2

∂r2
ψ (t, r, θ, φ)
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+ cos (θ) ∂
∂θ
ψ (t, r, θ, φ) + sin (θ) ∂2

∂θ2
ψ (t, r, θ, φ) +

∂2

∂φ2
ψ(t,r,θ,φ)

sin(θ)
) r−2 (sin (θ))−1

+ ( - 2 r sin (θ) ∂
∂r
ψ (t, r, θ, φ) + 4 r cos (θ) ∂2

∂r∂θ
ψ (t, r, θ, φ) + 2 r sin (θ)

∂3

∂θ∂r∂θ
ψ (t, r, θ, φ) - r2 sin (θ) ∂2

∂r2
ψ (t, r, θ, φ) + 2 r2 cos (θ) ∂3

∂r2∂θ
ψ (t, r, θ, φ) +

r2 sin (θ) ∂4

∂θ∂r2∂θ
ψ (t, r, θ, φ) - cos (θ) ∂

∂θ
ψ (t, r, θ, φ) - 3 sin (θ) ∂2

∂θ2
ψ (t, r, θ, φ)

+ 3 cos (θ) ∂3

∂θ3
ψ (t, r, θ, φ) + sin (θ) ∂4

∂θ4
ψ (t, r, θ, φ) + 2

(

∂2

∂φ2
ψ(t,r,θ,φ)

)

(cos(θ))2

(sin(θ))3
- 2

cos(θ) ∂3

∂φ2∂θ
ψ(t,r,θ,φ)

(sin(θ))2
+

∂2

∂φ2
ψ(t,r,θ,φ)

sin(θ)
+

∂4

∂θ∂φ2∂θ
ψ(t,r,θ,φ)

sin(θ)
) r−2 (sin (θ))−1 ) + ( 2 sin (θ)

∂3

∂φ2∂r
ψ (t, r, θ, φ) + r2 sin (θ) ∂4

∂r∂φ2∂r
ψ (t, r, θ, φ) + cos (θ) ∂3

∂φ2∂θ
ψ (t, r, θ, φ) +

sin (θ) ∂4

∂θ∂φ2∂θ
ψ (t, r, θ, φ) +

∂4

∂φ4
ψ(t,r,θ,φ)

sin(θ)
) r−2 (sin (θ))−2 ) r−2 (sin (θ))−1 - ~

2V
m

( 2 r sin (θ) ∂
∂r
ψ (t, r, θ, φ) + r2 sin (θ) ∂2

∂r2
ψ (t, r, θ, φ) + cos (θ) ∂

∂θ
ψ (t, r, θ, φ)

+ sin (θ) ∂2

∂θ2
ψ (t, r, θ, φ) +

∂2

∂φ2
ψ(t,r,θ,φ)

sin(θ)
) r−2 ( sin (θ) ) −1 + V 2 ψ (t, r, θ, φ)

From the general solution to the above equation we can apply boundary
conditions: r = h

2mc
and initial condition t = h

mc2
to show that the resultant

Bessel functions and their zeros along with Legendre polynomials lead to zeta
functions appropriate to develop string theory.

First we resolve the harmonic equation, which also solves the biharmonic,
as follows:

ψ∗ (t, r, θ, φ) = T (t)R (r)Θ (θ) Φ (φ) ,
d2

dt2
T (t) = −α2T (t) ,

d2

dr2
R (r) = −α2R (r) + β2R(r)

r2
− 2

d
dr
R(r)

r
,

d2

dθ2
Θ (θ) = −Θ (θ) β2 + Θ(θ)γ

(sin(θ))2
− cos(θ) d

dθ
Θ(θ)

sin(θ)
,

d2

dφ2 Φ (φ) = −γ2Φ (φ)

Where:
∂2

∂t2
ψ∗ (t, r, θ, φ) =

















2 r sin (θ) ∂
∂r
ψ∗ (t, r, θ, φ)

+r2 sin (θ) ∂2

∂r2
ψ∗ (t, r, θ, φ)

+ cos (θ) ∂
∂θ
ψ∗ (t, r, θ, φ)

+ sin (θ) ∂2

∂θ2
ψ∗ (t, r, θ, φ)

+
∂2

∂φ2
ψ∗(t,r,θ,φ)

sin(θ)

















1
r2(sin(θ))

(62)
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and

T (t) = A sin (α t) +B cos (α t)

R (r) = C√
r
BesselJ

(

1/2
√

1 + 4 β2, α r
)

+ D√
r
BesselY

(

1/2
√

1 + 4 β2, α r
)

Θ (θ) = E LegendreP
(

1/2
√

1 + 4 β2 − 1/2,
√
γ, cos (θ)

)

+F LegendreQ
(

1/2
√

1 + 4 β2 − 1/2,
√
γ, cos (θ)

)

Φ (φ) = G sin (γ φ) +H cos (γ φ)
(63)

Now we resolve the linear part which is:

∂2ψ(t, r, θ, φ)

∂t2
= kψ(t, r, θ, φ) (64)

having solution:

ψ(t, r, θ, φ) = f1(r, θ, φ)e
√
kt + f2(r, θ, φ)e−

√
kt (65)

Now, we will show a little of the biharmonic part in Cartesian coordinates.

Note that if:

∂4ψ(x)
∂x4 = α4ψ(x)

(D4 − α4)ψ(x) = 0

(D − α)(D + α)(D2 + α2)ψ(x) = 0

(D − α)(D + α)(D − iα)(D + iα)ψ(x) = 0
ψ(x) = Aeαx +Be−αx + Ceiαx +De−iαx

ψ(x) = F cos(αx) +G sin(αx) +H cosh(αx) + I sinh(αx)

(66)

So, both the real and the imaginary parts to the harmonic equation work as a
solution to the biharmonic equation in Cartesian coodinates. In this case, we
can use both x and ix in the harmonic term for a solution to the biharmonic
term which doubles the number of solutions for each dimension; however, only
half can be used at a time. This is because all the reals have to be equal on
both sides of the equation and all the imaginaries must also be equal on both
sides.

You can then apply the boundary conditions to the equation in spherical
coordinates to solve for the arbitrary constants resulting in the appearance of
zeta functions.
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It may be interpreted that in eigenspace each of the eigenvalues, α, β, etc.
are summed over an infinite number of values in such a way that each term
of the solution is orthogonal in order to match the boundary conditions. In
Cartesian coodrdinates we could have αn, βn, γn and ξn and possibly sum n2

over the general solution as n goes from one to infinity. Each value of n results
in an “eigenset” and each set of eigenvalues forms a vector space containing
orthogonal eigenvectors. These eigenvalues therefore form a multidimensional
orthogonal space. There are twelve spacial for the biharmonic term, six for the
harmonic term and two for the temporal term. That makes a 20-dimensional
eigenspace. However, only half the eigenspace can be used at a time as previ-
ously explained. We therefore have a ten-dimensional eigenspace.

This forms an interesting approach which may possibly be used in string
theory.

5 Conclusions

Firstly, ψ is the potential of existence.

Secondly, the space-time continuum is the infinite array of a four dimen-
sional coordinate system.

Thirdly, the lines of the space-time continuum, the coordinate system at
the root of the Einstein/Minkowski equations, is made of ψ. The potential of
existence as determined by Schrödinger, ψ, forms the coordinate system which
is the Universe itself. The coordinate system, ψ, can be bent or “curved”. We
propose that the second time ordered differential of ψ and the biharmonic of
ψ are measures of this curvature. The more the coordinate system is bent or
curved, the greater the potential of existence. This coordinate system can only
be bent so far. The limit of bending is determined by the boundary conditions
of Schrödinger’s equation as calculated by Heisenberg. At that limit, the lines
of the coordinate system crimp and become “knotted” into a particle. The
energy of creating the particle from the bending of space-time is equal to its
mass times the speed of light squared.
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