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By recurring to Geometric Probability methods it is shown that the coupling constants,
αEM , αW , αC , associated with the electromagnetic, weak and strong (color) force
are given by the ratios of measures of the sphere S2 and the Shilov boundaries
Q3=S

2×RP 1, squashed S5, respectively, with respect to the Wyler measure
ΩWyler[Q4] of the Shilov boundary Q4=S3×RP 1 of the poly-disc D4 (8 real dim-
ensions). The latter measure ΩWyler[Q4] is linked to the geometric coupling strength
αG associated to the gravitational force. In the conclusion we discuss briefly other
approaches to the determination of the physical constants, in particular, a program
based on the Mersenne primes p-adic hierarchy. The most important conclusion of
this work is the role played by higher dimensions in the determination of the coupling
constants from pure geometry and topology alone and which does not require to invoke
the anthropic principle.

1 Geometric probability

Geometric Probability [1] is the study of the probabilities in-
volved in geometric problems — the distributions of length,
area, volume, etc. for geometric objects under stated condi-
tions. One of the most famous problem is the Buffon’s Needle
Problem of finding the probability that a needle of length l
will land on a line, given a floor with equally spaced parallel
lines a distance d apart. The problem was posed by the French
naturalist Buffon in 1733. For l < d the probability is

P =
1

2π

∫ 2π

0

dθ
l |cos θ|
d

=
4 l

2πd

∫ π
2

0

cos θ=
2l
πd
=

2ld
πd2

. (1.1)

Hence, the Geometric Probability is essentially the ratio
of the areas of a rectangle of length 2d, and width l and
the area of a circle of radius d. For l > d, the solution is
slightly more complicated [1]. The Buffon needle problem
provides with a numerical experiment that determines the
value of π empirically. Geometric Probability is a vast field
with profound connections to Stochastic Geometry.

Feynman long ago speculated that the fine structure con-
stant may be related to π. This is the case as Wyler found
long ago [2]. We will take the fine structure constant based
on Feynman’s physical interpretation of the electron’s charge
as the probability amplitude that an electron emits/absorbs a
photon. The clue to evaluate this probability within the con-
text of Geometric Probability theory is provided by the el-
ectron self-energy diagram. Using Feynman’s rules, the self-
energyΣ(p) as a function of the electron’s incoming/outgoing
energy-momentum pμ is given by the integral involving the
photon and electron propagator along the internal lines

−iΣ(p)=(−ie)2
∫

d4k

(2π)4
γμ

i

γρ(pρ−kρ)−m
−igμν
k2

γν . (1.2)

The integral is taken with respect to the values of the pho-
ton’s energy-momentum kμ. By inspection one can see that

the electron self-energy is proportional to the fine structure
constant αEM ∼ e2, the square of the probability amplitude
(in natural units of ~= c= 1) and physically represents the
electron’s emission of a virtual photon (off-shell, k2 6=0) of
energy-momentum kρ at a given moment, followed by an
absorption of this virtual photon at a later moment.

Based on this physical picture of the electron self-energy
graph, we will evaluate the Geometric Probability that an
electron emits a photon at t=−∞ (infinite past) and re-
absorbs it at a much later time t=+∞ (infinite future). The
off-shell (virtual) photon associated with the electron self-
energy diagram asymptotically behaves on-shell at the very
moment of emission (t=−∞) and absorption (t=+∞).
However, the photon can remain off-shell in the intermediate
region between the moments of emission and absorption by
the electron. The fact that Geometric Probability is a classical
theory does not mean that one cannot derive the fine structure
constant (which involves the Planck constant) because the
electron self-energy diagram is itself a quantum (one-loop)
Feynman process; i. e. one can recur to Geometric Probability
to assign proper geometrical measures to Feynman diagrams,
not unlike the Twistor-diagrammatic version of the Feynman
rules of QFT.

The topology of the boundaries (at conformal infinity) of
the past and future light-cones are spheres S2 (the celestial
sphere). This explains why the (Shilov) boundaries are es-
sential mathematical features to understand the geometric
derivation of all the coupling constants. In order to describe
the physics at infinity we will recur to Penrose’s ideas [12]
of conformal compactifications of Minkowski spacetime by
attaching the light-cones at conformal infinity. Not unlike the
one-point compactification of the complex plane by adding
the points at infinity leading to the Gauss-Riemann sphere.

∗This paper is based on a talk given at the Second Intern. p-adic Con-
ference in Mathematics and Physics (Belgrade, Serbia, September, 2005).
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The conformal group leaves the light-cone fixed and it does
not alter the causal properties of spacetime despite the rescal-
ings of the metric. The topology of the conformal compact-
ification of real Minkowski spacetime M̄4=S

3×S1/Z2=
=S3×RP 1 is precisely the same as the topology of the
Shilov boundary Q4 of the 4 complex-dimensional poly-
disc D4. The action of the discrete group Z2 amounts to an
antipodal identification of the future null infinity I+ with
the past null infinity I−; and the antipodal identification of
the past timelike infinity i− with the future timelike infi-
nity, i+, where the electron emits, and absorbs the photon,
respectively.

Shilov boundaries of homogeneous (symmetric spaces)
complex domains, G/K [9]–[11] are not the same as the ord-
inary topological boundaries (except in some special cases).
The reason being that the action of the isotropy group K of
the origin is not necesarily transitive on the ordinary topo-
logical boundary. Shilov boundaries are the minimal subspa-
ces of the ordinary topological boundaries which implement
the Maldacena-’T Hooft-Susskind holographic principle [15]
in the sense that the holomorphic data in the interior (bulk)
of the domain is fully determined by the holomorphic data
on the Shilov boundary. The latter has the property that the
maximum modulus of any holomorphic function defined on
a domain is attained at the Shilov boundary.

For example, the poly-disc D4 of 4 complex dimensions
is an 8 real-dim Hyperboloid of constant negative scalar
curvature that can be identified with the conformal relativistic
curved phase space associated with the electron (a particle)
moving in a 4D Anti de Sitter space AdS4. The poly-disc is
a Hermitian symmetric homogeneous coset space associated
with the 4D conformal group SO(4, 2) sinceD4=SO(4, 2)
/SO(4)×SO(2). Its Shilov boundary Shilov (D4)=Q4 has
precisely the same topology as the 4D conformally compacti-
fied real Minkowski spacetime Q4= M̄4=S

3×S1/Z2=
=S3×RP 1. For more details about Shilov boundaries, the
conformal group, future tubes and holography we refer to the
article by Gibbons [14] and [9], [18].

The role of the conformal group in gravity in these ex-
pressions (besides the holographic bulk/boundary AdS/CFT
duality correspondence [15]) stems from the MacDowell
Mansouri-Chamseddine-West formulation of gravity based
on the conformal group SO(3, 2)which has the same number
of 10 generators as the 4D Poincaré group. The 4D vielbein
eaμ which gauges the spacetime translations is identified with
the SO(3, 2) generator A[a5]μ , up to a crucial scale factor R,
given by the size of the Anti de Sitter space (de Sitter space)
throat. It is known that the Poincaré group is the Wigner-
Inonu group contraction of the de Sitter Group SO(4,1) after
taking the throat size R=∞. The spin-connection ωabμ that
gauges the Lorentz transformations is identified with the
SO(3, 2) generator A[ab]μ . In this fashion, the eaμ, ω

ab
μ are en-

coded into the A[mn]μ SO(3, 2) gauge fields, where m, n run
over the group indices 1, 2, 3, 4, 5. A word of caution, gravity

is a gauge theory of the full diffeomorphisms group which
is infinite-dimensional and which includes the translations.
Therefore, strictly speaking gravity is not a gauge theory
of the Poincaré group. The Ogiovetsky theorem shows that
the diffeomorphisms algebra in 4D can be generated by an
infinity of nested commutators involving the GL(4, R) and
the 4D Conformal Group SO(4, 2) generators.

In [19] we have shown why the MacDowell-Mansouri-
Chamseddine-West formulation of gravity, with a cosmolog-
ical constant and a topological Gauss-Bonnet invariant term,
can be obtained from an action inspired from a BF-Chern-
Simons-Higgs theory based on the conformal SO(3, 2)
group. The AdS4 space is a natural vacuum of the theory.
The vacuum energy density was derived to be precisely the
geometric-mean between the UV Planck scale and the IR
throat size of de Sitter (Anti de Sitter) space. Setting the
throat size to coincide with the future horizon scale (of an
accelerated de Sitter Universe) given by the Hubble scale
(today) RH , the geometric mean relationship yields the ob-
served value of the vacuum energy density ρ∼ (LPRH)−2=
=(LP )

−4(L2P /R
2
H)∼ 10−120M4

Planck. Nottale [24] gave a
different argument to explain the small value of ρ based on
Scale Relativistic arguments. It was also shown in [19] why
the Euclideanized AdS2n spaces are SO(2n−1, 2) instantons
solutions of a non-linear sigma model obeying a double self
duality condition.

A typical objection to the possibility of being able to
derive the values of the coupling constants, from pure thought
alone, is that there are an infinite number of possible analyt-
ical expressions that accurately reproduce the values of the
couplings within the experimental error bounds. However,
this is not our case because once the gauge groups U(1),
SU(2), SU(3) are known there are unique expressions
stemming from Geometric Probability which furnish the
values of the couplings. Another objection is that it is a mean-
ingless task to try to derive these couplings because these
are not constants per se but vary with respect to the energy
scale. The running of the coupling constants is an artifact
of the perturbative Renormalization Group program. We will
see that the values of the couplings derived from Geometric
Probability are precisely those values that correspond to the
natural physical scales associated with the EM, Weak and
Strong forces.

Another objection is that physical measurements of ir-
rational numbers are impossible because there are always
experimental limitations which rule out the possibility of act-
ually measuring the infinite number of digits of an irrational
number. This experimental constraint does not exclude the
possibility of deriving exact expressions based on π as we
shall see. We should not worry also about obtaining numeric-
al values within the error bars in the table of the coupling
constants since these numbers are based on the values of
other physical constants; i. e. they are based on the particular
consensus chosen for all of the other physical constants.
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In our conventions, αEM = e2/4π= 1/137.036 . . . in the
natural units of ~= c= 1, and the quantities αweak, αcolor are
the Geometric Probabilities g̃2w, g̃

2
c , after absorbing the fac-

tors of 4π of the conventional αW =(g2w/4π), αC =(g
2
c/4π)

definitions used in the Renormalization Group (RG) program.

2 The fine structure constant

In order to define the Geometric Probability associated with
this process of the electron’s emission of a photon at i−

(t=−∞), followed by an absorption at i+ (t=+∞), we
must take into account the important fact that the photon is
on-shell k2=0 asymptotically (at t=±∞), but it can move
off-shell k2 6=0 in the intermediate region which is repre-
sented by the interior of the 4D conformally compactified
real Minkowski spacetime which agrees with the Shilov
boundary of D4 (the four-complex-dimensional poly-disc)
Q4= M̄4=S

3×S1/Z2=S3×RP 1. The Q4 has four-real-
dimensions which is half the real-dimensions ofD4 (2×4=8).

The measure associated with the celestial spheres S2 (as-
sociated with the future/past light-cones) at timelike infinity
i+, i−, respectively, is V (S2)= 4πr2= 4π (r= 1). Thus, the
net measure corresponding to the two celestial spheres S2 at
timelike infinity i± requires an overall factor of 2 giving
2V (S2)= 8π (r= 1). The factor of 8π= 2×4π can also be
interpreted in terms of the two-helicity degrees of freedom,
corresponding to a spin 1 massless photon, assigned to the
area of the celestial sphere. The Geometric Probability is
defined by the ratio of the (dimensionless volumes) measures
associated with the celestial spheres S2 at i+, i− timelike
infinity, where the photon moves on-shell, relative to the
Wyler measure ΩWyler[Q4] associated with the full interior
region of the conformally compactified 4DMinkwoski space
Q4= M̄4=S

3×S1/Z2=S3×RP 1, where the massive el-
ectron is confined to move, as it propagates from i− to i+,
(and off-shell photons can also live in):

αEM=
2V (S2)
ΩWyler[Q4]

=
8π

ΩWyler[Q4]
=

1

137.03608 . . .
(2.1a)

after inserting the Wyler measure

ΩWyler[Q4]=
V (S4)V (Q5)

[V (D5)]
1
4

=
8π2

3
8π3

3

(
π5

24×5!

)− 1
4

. (2.1b)

The Wyler measure ΩWyler[Q4] [2] is not the standard
measure (dimensionless volume) V (Q4)= 2π3 calculated by
Hua [10] but requires some elaborate procedure.

It was realized by Smith [5] that the presence of the
Wyler measure in the expression for αEM given by eq.-
(2.1) was consistent with Wheeler ideas that the observed
values of the coupling constants of the Electromagnetic,
Weak and Strong Force can be obtained if the geometric
force strengths (measures related to volumes of complex
homogenous domains associated with the U(1), SU(2),

SU(3) groups, respectively ) are all divided by the geometric
force strength of gravity αG (related to the SO(3, 2)MMCW
Gauge Theory of Gravity ) and which is not the same as the
4D Newton’s gravitational constant GN ∼m−2

Planck. Hence,
upon dividing these geometric force strengths by the geo-
metric force strength of gravity αG one is dividing by the
Wyler measure factor because (see below) αG≡ΩWyler[Q4].

Furthermore, the expression for ΩWyler[Q4] is also con-
sistent with the Kaluza-Klein compactification procedure of
obtaining Maxwell’s EM in 4D from pure gravity in 5D
since Wyler’s expression involves a 5D domain D5 from
the very start; i. e. in order to evaluate the Wyler measure
ΩWyler [Q4] one requires to embed D4 into D5 because
the Shilov boundary space Q4=S3×RP 1 is not adequate
enough to implement the action of the SO(5) group, the
compact version of the Anti de Sitter Group SO(3, 2) that
is required in the MacDowell-Mansouri-Chamseddine-West
(MMCW) SO(3,2) gauge formulation of gravity. However,
the Shilov boundary of D5 given by Q5=S4×RP 1 is ad-
equate enough to implement the action of SO(5) via isometr-
ies (rotations) on the internal symmetry space S4=SO(5)/
SO(4). This justifies the embedding procedure of D4 → D5

The 5 complex-dimensional poly-disc D5=SO(5, 2)/
SO(5)×SO(2) is the 10 real-dim Hyperboloid H10 corres-
ponding to the relativistic curved phase space of a particle
moving in 5D Anti de Sitter Space AdS5. The Shilov bound-
ary Q5 of D5 has 5 real dimensions (half of the 10-real-
dim of D5). One cannot fail to notice that the hyperboloid
H10 can be embedded in the 11-dim pseudo-Euclidean R9,2

space, with two-time like directions. This is where 11-dim
lurks into our construction.

Having displayed Wyler’s expression of the fine structure
constant αEM in terms of the ratio of dimensionless measures,
we shall present a Fiber Bundle (a sphere bundle fibration
over a complex homogeneous domain) derivation of the
Wyler expression based on the bundle S4→E→D5, and
explain below why the propagation (via the determinant of
the Feynman propagator) of the electron through the interior
of the domain D5 is what accounts for the “obscure” factor
V (D5)

1/4 in Wyler’s formula for αEM .
We begin by explaining why Wyler’s measure ΩWyler[Q4]

in eq.-(2.1) corresponds to the measure of a S4 bundle fibered
over the base curved-space D5=SO(5, 2)/SO(5)×SO(2)
and weighted by a factor of V (D5)−1/4. This S4→E→D5
bundle is linked to the MMCW SO(3, 2) Gauge Theory
formulation of gravity and explains the essential role of the
gravitational interaction of the electron in Wyler’s formula
[5] corroborating Wheeler’s ideas that one must normalize
the geometric force strengths with respect to gravity in order
to obtain the coupling constants. The subgroup H =SO(5)
of the isotropy group (at the origin) K =SO(5)×SO(2)
acts naturally on the Fibers F =S4=SO(5)/SO(4), the
internal symmetric space, via isometries (rotations). Locally,
and only locally, the Fiber bundle E is the product D5×S4.
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The restriction of the Fiber bundle E to the Shilov boundary
Q5 is written as E|Q5 and locally is the product of Q5×S4,
but this is not true globally unless the fiber bundle admits a
global section (the bundle is trivial). So, the volume V (E|Q5)
does not necessary always factorize as V (Q5)×V (S4). Set-
ting aside this subtlety, we shall pursue a more physical route,
suggested by Wyler in unpublished work [3]∗, to explain the
origin of the “obscure normalization” factor V (D5)1/4 in
Wyler’s measure ΩWyler[Q4] = (V (S

4)×V (Q5)/V (D5)1/4),
which suggests that the volumes may not factorize.

The relevant physical feature of this measure factor
V (D5)

1/4 is that it encodes the spinorial degrees of freedom
of the electron, like the factor of 8π encodes the two-helicity
states of the massless photon. The Feynman propagator of a
massive scalar particle (inverse of the Klein-Gordon operator)
(DμD

μ−m2)−1 corresponds to the kernel in the Feynman
path integral that in turn is associated with the Bergman
kernel Kn(z, z′) of the complex homogenous domain Dn,
proportional to the Bergman constant kn≡ 1/V (Dn), i. e.

(DμD
μ−m2)−1(xμ)=

1

(2πμ)D

∫
dDp

e−ipμx
μ

p2−m2+ iε
↔

↔ Kn(z, z̄
′) =

1
V (Dn)

(1−zz̄′)−2n,

(2.2)

where we have introduced a momentum scale μ to match
units in the Feynman propagator expression, and the Berg-
man Kernel Kn(z, z̄′) of Dn whose dimensionless entries
are z=(z1, z2, . . . , zn), z′=(z′1, z

′
2, . . . , z

′
n) is given as

Kn(z, z̄
′) =

1
V (Dn)

(1− zz̄′)−2n (2.3a)

V (Dn) is the dimensionless Euclidean volume found by
Hua V (Dn)= (πn/2

n−1n!) and satisfies the reproducing and
normalization properties

f(z)=

∫

Dn

f(ξ)Kn(z, ξ)d
nξdnξ̄ ,

∫

Dn

Kn(z, z̄)d
nzdnz̄=1. (2.3b)

The key result that can be inferred from the Feynman
propagator (kernel) ↔ Bergman kernel Kn correspondence,
when μ= 1, is the (2π)−D↔ (V (Dn))

−1 correspondence;
i. e. the fundamental hyper-cell in momentum space (2π)D

(when μ=1) corresponds to the dimensionless volume V (Dn)
of the domain, whereD= 2n real dimensions. The regulariz-
ed vacuum-to-vacuum amplitude of a free real scalar field is
given in terms of the zeta function ζ(s)=

∑
i λ

−s
i associated

with the eigenvalues of the Klein-Gordon operator by

Z =<0|0>=
√
det(DμDμ−m2)−1∼ exp

[
1
2
dζ

ds
(s=0)

]
. (2.4)

In case of a complex scalar field we have to double the
number of degrees of freedom, the amplitude then factorizes
into a product and becomes Z =det(DμDμ−m2)−1.

Since the Dirac operator D= γμDμ+ m is the “square-

∗We thank Frank (Tony) Smith for this information.

root” of the Klein-Gordon operatorD†D=DμDμ−m2+R
(R is the scalar curvature of spacetime that is zero in Min-
kowski space) we have the numerical correspondence
√
det(D)−1 =

√
det
(
DμDμ −m2

)−1/2
=

=

√√
det
(
DμDμ−m2

)−1
↔ k1/4n =

(
1

V (Dn)

)1/4
,

(2.5)

because detD†= detD, and

detD = etr lnD = etr ln(DμD
μ−m2)1/2 =

= e
1
2 tr ln(DμD

μ−m2) =
√
det(DμDμ −m2) .

(2.6)

The vacuum-to-vacuum amplitude of a complex Dirac
field Ψ (a fermion, the electron) is Z = det(γμDμ+m)=
= detD∼ exp[−(dζ/ds)(s=0)]. Notice the det(D) behav-
ior of the fermion versus the det(DμDμ−m2)−1 behavior
of a complex scalar field due to the Grassmanian nature of
the Gaussian path integral of the fermions. The vacuum-to-
vacuum amplitude of a Majorana (real) spinor (half of the
number of degrees of freedom of a complex Dirac spinor) is
Z =

√
det(γμDμ+m). Because the complex Dirac spinor

encodes both the dynamics of the electron and its anti-
particle, the positron (the negative energy solutions), the
vacuum-to-vacuum amplitude corresponding to the electron
(positive energy solutions, propagating forward in time) must
be then Z =

√
det(γμDμ+m).

Therefore, to sum up, the origin of the “obscure” factor
V (D5)

1/4 in Wyler’s formula is the normalization condition
of V (S4)×V (Q5) by a factor of V (D5)1/4 stemming from
the correspondence V (D5)1/4↔Z =

√
det(γμDμ+m) and

which originates from the vacuum-to-vacuum amplitude of
the fermion (electron) as it propagates forward in time in the
domainD5. These last relations emerge from the correspond-
ence between the Feynman fermion (electron) propagator
in Minkowski spacetime and the Bergman Kernel of the
complex homogenous domain after performing the Wyler
map between an unbounded domain (the interior of the future
lightcone of spacetime) to a bounded one. In general, the
Bergman Kernel gives rise to a Kahler potential F (z, z̄)=
= logK(z, z̄) in terms of which the Bergman metric on Dn
is given by

gij̄ =
∂2F

∂zi∂z̄i
. (2.7)

We must emphasize that this Geometric probability ex-
planation is very different from the interpretations provided in
[2, 5, 6, 7] and properly accounts for all the numerical factors.
Concluding, the Geometric Probability that an electron emits
a photon at t=−∞ and absorbs it at t=+∞, is given by
the ratio of the dimensionless measures (volumes):

αEM =
2V (S2)
ΩWyler[Q4]

= 8π
1

V (S4)

1
V (Q5)

[V (D5)]
1
4 =

=
9

8π4

(
π5

24×5!

)1/4
=

1
137.03608 . . .

(2.8)
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in very good agreement with the experimental value. This is
easily verified after one inserts the values of the Euclidean-
ized regularized volumes found by Hua [10]

V (D5) =
π5

24×5!
, V (Q5) =

8π3

3
, V (S4) =

8π2

3
. (2.19)

In general

V (Dn) =
πn

2n−1n!
, V (Sn−1) =

2πn/2

Γ(n/2)
, (2.10)

V (Qn)=V (S
n−1×RP 1)=V (Sn−1)×V (RP 1) =

=
2πn/2

Γ(n/2)
× π =

2π(n+2)/2

Γ(n/2)
.
(2.11)

Objections were raised to Wyler’s original expression
by Robertson [4]. One of them was that the hyperboloids
(discs) are not compact and whose volumes diverge because
the Lobachevsky metric diverges on the boundaries of the
poly-discs. Gilmore explained [4] why one requires to use
the Euclideanized regularized volumes because Wyler had
shown that it is possible to map an unbounded physical
domain (the interior of the future light cone) onto the interior
of a homogenous bounded domain without losing the causal
structure and on which there exist also a complex structure.
A study of Shilov boundaries, holography and the future tube
can be found in [14].

Furthermore, in order to resolve the scaling problems
of Wyler’s expression raised by Robertson, Gilmore showed
why it is essential to use dimensionless volumes by setting
the throat sizes of the Anti de Sitter hyperboloids to r= 1,
because this is the only choice for r where all elements in the
bounded domains are also coset representatives, and there-
fore, amount to honest group operations. Hence the scaling
objections against Wyler raised by Robertson were satisfact-
ory solved by Gilmore [4]. Thus, all the volumes in this sec-
tion and forth, are based on setting the scaling factor r= 1.

The question as to why the value of αEM obtained in
Wyler’s formula is precisely the value of αEM observed
at the scale of the Bohr radius aB , has not been solved,
to our knowledge. The Bohr radius is associated with the
ground (most stable) state of the Hydrogen atom [5]. The
spectrum generating group of the Hydrogen atom is well
known to be the conformal group SO(4, 2) due to the fact
that there are two conserved vectors, the angular momentum
and the Runge-Lentz vector. After quantization, one has two
commuting SU(2) copies SO(4)=SU(2)×SU(2). Thus,
it makes physical sense why the Bohr-scale should appear
in this construction. Bars [16] has studied the many physical
applications and relationships of many seemingly distinct
models of particles, strings, branes and twistors, based on the
(super) conformal groups in diverse dimensions. In particular,
the relevance of two-time physics in the formulation ofM , F ,
S theory has been advanced by Bars for some time. The Bohr
radius corresponds to an energy of 137.036×2×13.6 eV∼

∼ 3.72×103eV. It is well known that the Rydberg scale, the
Bohr radius, the Compton wavelength of electron, and the
classical electron radius are all related to each other by a
successive scaling in products of αEM .

To finalize this section and based on the MMCW SO(3, 2)
Gauge Theory formulation of gravity, with a Gauss-Bonnet
topological term plus a cosmological constant, the (dimen-
sionless) Wyler measure was defined as the geometric coupl-
ing strength of gravity [5]:

ΩWyler[Q4] =
V (S4)V (Q5)

[V (D5)]
1
4

≡ αG . (2.12)

The relationship between αG and the Newtonian grav-
itational G constant is based on the value of the coupling
(1/16πG) appearing in the Einstein-Hilbert Lagrangian
(R/16πG), and goes as follows:

(16πG)(m2
Planck) = αEMαG = 8π ⇒

⇒ G =
1

16π
8π

m2
Planck

=
1

2m2
Planck

⇒

⇒ Gm2
proton =

1
2

(
mproton

mPlanck

)2
∼ 5.9×10−39

(2.13)

and in natural units ~=c=1 yields the physical force strength
of gravity at the Planck Energy scale 1.22×1019 GeV. The
Planck mass is obtained by equating the Schwarzschild radius
2GmPlanck to the Compton wavelength 1/mPlanck associated
with the mass; where mPlanck

√
2= 1.22×1019 GeV and the

proton mass is 0.938 GeV. Some authors define the Planck
mass by absorbing the factor of

√
2 inside the definition of

mPlanck= 1.22×1019 GeV.

3 The weak and strong couplings

We turn now to the derivation of the other coupling constants.
The Fiber Bundle picture of the previous section is essential
in our construction. The Weak and the Strong geometric
coupling constant strength, defined as the probability for a
particle to emit and later absorb a SU(2), SU(3) gauge
boson, can both be obtained by using the main formula de-
rived from Geometric Probability (as ratios of dimensionless
measures/volumes) after one identifies the suitable homogen-
eous domains and their Shilov boundaries to work with.

Since massless gauge bosons live on the lightcone, a
null boundary in Minkowski spacetime, upon performing the
Wyler map, the gauge bosons are confined to live on the
Shilov boundary. Because the SU(2) bosons W±, Z0 and
the eight SU(3) gluons have internal degrees of freedom
(they carry weak and color charges) one must also include the
measure associated with the their respective internal spaces;
namely, the measures relevant to Geometric Probability cal-
culations are the measures corresponding to the appropriate
sphere bundles fibrations defined over the complex bounded
homogenous domains Sm→E→Dn.
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Furthermore, the Geometric Probability interpretation for
αweak, αstrong agrees with Wheeler’s ideas [5] that one must
normalize these geometric force strengths with respect to the
geometric force strength of gravity αG=ΩWyler[Q4] found in
the last section. Hence, after these explanations, we will show
below why the weak and strong couplings are given, respect-
ively, by the ratio of the measures (dimensionless volumes):

αweak =
Ω[Q3]

ΩWyler[Q4]
=
Ω[Q3]

αG
=

Ω[Q3]

(8π/αEM)
, (3.1)

αcolor =
Ω[squashedS5]

ΩWyler[Q4]
=
Ω[sq.S5]

αG
=

Ω[sq.S5]

(8π/αEM)
. (3.2)

As always, one must insert the values of the regularized
(Euclideanized) dimensionless volumes provided by Hua
[10] (set the scale r= 1). We must also clarify and emphasize
that we define the quantities αweak, αcolor as the probabilities
g̃2W , g̃2C , by absorbing the factors of 4π in the conventional
αW =(g

2
W/4π), αC =(g

2
C/4π) definitions (based on the Re-

normalization Group (RG) program) into our definitions of
probability g̃2W , g̃2C .

Let us evaluate the αweak. The internal symmetry space
is CP 1=SU(2)/U(1) ( a sphere S2∼CP 1) where the
isospin group SU(2) acts via isometries on CP 1. The Shilov
boundary ofD2 isQ2=S1×RP 1 but is not adequate enough
to accommodate the action of the isospin group SU(2).
One requires to have the Shilov boundary of D3 given
byQ3=S2×S1/Z2=S2×RP 1 that can accommodate the
action of the SU(2) group on S2. A Fiber Bundle over D3=
=SO(3, 2)/SO(3)×SO(2) whose H =SO(3)∼SU(2)
subgroup of the isotropy group (at the origin) K =SO(3)×
×SO(2) acts on S2 by simple rotations. Thus, the relevant
measure is related to the fiber bundle E restricted to Q3 and
is written as V (E|Q3).

One must notice that due to the fact that the SU(2) group
is a double-cover of SO(3), as one goes from the SO(3)
action on S2 to the SU(2) action on S2 , one must take into
account an extra factor of 2 giving then

V (CP 1) = V
(
SU(2)/U(1)

)
=

= 2V
(
SO(3)/U(1)

)
= 2V (S2) = 8π .

(3.3)

In order to obtain the weak coupling constant due to
the exchange of W±Z0 bosons in the four-point tree-level
processes involving four leptons, like the electron, muon, tau,
and their corresponding neutrinos (leptons are fundamental
particles that are lighter than mesons and baryons) which are
confined to move in the interior of the domain D3, and can
emit (absorb) SU(2) gauge bosons,W±Z0, in the respective
s, t, u channels, one must take into account a factor of the
square root of the determinant of the fermionic propagator,√
detD−1=

√
det (γμDμ +m)−1, for each pair of leptons,

as we did in the previous section when an electron emitted
and absorbed a photon. Since there are two pairs of leptons in
these four-point tree-level processes involving four leptons,

one requires two factors of
√
det (γμDμ +m)−1, giving

a net factor of det (γμDμ +m)−1 and which corresponds

now to a net normalization factor of k1/2n =(1/V (D3))1/2,
after implementing the Feynman kernel ↔ Bergman kenel
correspondence. Therefore, after taking into account the
result of eq.-(3.3), the measure of the S2→E→D3 bundle,
restricted to the Shilov boundary Q3, and weighted by the
net normalization factor (1/V (D3))1/2, is

Ω(Q3) = 2V (S2)
V (Q3)

V (D3)1/2
. (3.4)

Therefore, the Geometric probability expression is given
by the ratio of measures (dimensionless volumes):

αweak=
Ω[Q3]

ΩWyler[Q4]
=
Ω[Q3]

αG
=

2V (S2)V (Q3)
V (D3)1/2

αEM
8π

=

= (8π)(4π2)

(
π3

24

)− 1
2 αEM

8π
= 0.2536 . . .

(3.5)

that corresponds to the weak coupling constant (g2/4π based
on the RG convention) at an energy of the order of

E =M = 146 GeV ∼
√
M2
W+

+M2
W−

+M2
Z (3.6)

after the expressions inserted (setting the scale r= 1)

V (S2) = 4π , V (Q3) = 4π2, V (D3) =
π3

24
(3.7)

into the formula (3-5). The relationship to the Fermi coupling
goes as follows (with the energy scale E=M = 146 GeV):

GF ≡
αW
M2

⇒ GF m
2
proton =

(
αW
M2

)

m2
proton =

= 0.2536×

(
mproton

146 GeV

)2
∼ 1.04×10−5

(3.8)

in very good agreement with experimental observations.
Once more, it is unknown why the value of αweak obtained
from Geometric Probability corresponds to the energy scale
related to the W+, W−, Z0 boson mass, after spontaneous
symmetry breaking.

Finally, we shall derive the value of αcolor from eq.-
(3.2) after one defines what is the suitable fiber bundle.
The calculation is based on the book by L. K. Hua [10,
p. 40, 93]. The symmetric space with the SU(3) color force
as a local group is SU(4)/SU(3)×U(1) which corresponds
to a bounded symmmetric domain of type I(1,3) and has a
Shilov boundary that Hua calls the “characteristic manifold”
CI(1,3). The volume V

(
CI(m,n)

)
is:

V (CI) =
(2π)mn−m(m−1)/2

(n−m)! (n−m+ 1)! . . . (n− 1)!
(3.9)

so that for m= 1 and n= 3 the relevant volume is then
V (CI)= (2π)3/2! = 4π3. We must remark at this point that
CI( 1, 3) is not the standard round S5 but is the squashed
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five-dimensional S̃5.∗

The domain of which CI(1,3) is the Shilov boundary is
denoted by Hua as RI(1,3) and whose volume is

V (RI) =
1! 2! . . . (m− 1)! 1! 2! . . . (n− 1)!πmn

1! 2! . . . (m+ n− 1)!
(3.10)

so that for m=1 and n=3 it gives V (RI)=1!2!π3/1!2!3! =
=π3/6 and it also agrees with the volume of the standard
six-ball.

The internal symmetry space (fibers) is as follows CP 2=
=SU(3)/U(2) whose isometry group is the color SU(3)
group. The base space is the 6D domainB6=SU(4)/U(3)=
=SU(4)/SU(3)×U(1) whose subgroup SU(3) of the iso-
tropy group (at the origin) K =SU(3)×U(1) acts on the
internal symmetry space CP 2 via isometries. In this special
case, the Shilov and ordinary topological boundary of B6
both coincide with the squashedS5 [5].

Since Gilmore, in response to Robertson’s objections to
Wyler’s formula [2], has shown that one must set the scale
r= 1 of the hyperboloids Hn (and Sn) and use dimensionles
volumes, if we were to equate the volumes V (CP 2)=
=V (S4, r= 1) [5], this would be tantamount of choosing
another scale [25] R (the unit of geodesic distance in CP 2)
that is different from the unit of geodesic distance in S4 when
the radius r= 1, as required by Gilmore. Hence, a bundle
map E→E′ from the bundle CP 2→E→B6 to the bundle
S4→E′→B6, would be required that would allow us to
replace the V (CP 2) for V (S4, r= 1). Unless one decides to
calibrate the unit of geodesic distance in CP 2 by choosing
V (CP 2)=V (S4).

Using again the same results described after eq.-(2.2),
since a quark can emit and absorb later on a SU(3) gluon (in
a one-loop process), and is confined to move in the interior
of the domain B6, there is one factor only of the square
root of the determinant of the Dirac propagator

√
detD−1=

=
√√

det (DμDμ−m2)−1 and which is associated with

a normalization factor of k1/4n =(1/V (B6))1/4. Therefore,
the measure of the bundle S4→E′→B6 restricted to the
squashedS5 (Shilov boundary of B6), and weighted by the
normalization factor (1/V (B6))1/4, is then

Ω[squashedS5] =
V (S4) V (squashedS5)

V (B6)1/4
(3.11)

and the ratio of measures

αS=
Ω[sq.S5]

ΩWyler[Q4]
=
Ω[sq.S5]

αG
=
V (S4)V (sq.S5)

V (B6)1/4
αEM
8π

=

=

(
8π2

3

)

(4π3)

(
π3

6

)−1/4
αEM
8π

= 0.6286 . . .

(3.12)

matches, remarkably, the strong coupling value α= g2/4π
at an energy E related precisely to the pion masses [5]

∗Frank (Tony) Smith, private communication.

E = 241 MeV ∼
√
m2
π+ +m

2
π− +m

2
π0 . (3.13)

The one-loop Renormalization Group flow of the coupl-
ing is given by [28]:

αs(E
2)=αs(E

2
0)

[
1+

(
11− 2

3
Nf (E

2)
)

4π
αs(E

2
0)ln

(
E2

E20

)]−1
(3.14)

where Nf (E2) is the number of quark flavors whose mass
M2<E2. For the specific numerical details of the evaluation
(in energy-intervals given by the diverse quark masses) of
the Renormalization Group flow equation (3-14) that yields
αS(E= 241 MeV)∼ 0.6286 we refer to [5]. Once more, it is
unknown why the value of αcolor obtained from Geometric
Probability corresponds to the energy scale E= 241 MeV
related to the masses of the pions. The pions are the known
lightest quark-antiquark pairs that feel the strong interaction.

Rigorously speaking, one should include higher-loop cor-
rections to eq.-(3.14) as Weinberg showed [28] to determine
the values of the strong coupling at energy scales E= 241
MeV. This issue and the subtleties behind the calibration of
scales (volumes) by imposing the condition V (CP 2)=V (S4)
need to be investigated. For example, one could calibrate
lengths in terms of the units of geodesic distance in CP 2

(based on Gilmore’s choice of r= 1) giving V (CP 2)=
=V (S5; r= 1)/V (S1; r= 1)=π2/2! [25], and it leads now
to the value of αS = 0.1178625 which is very close to the
value of αS at the energy scale of the Z-boson mass (91.2
GeV) and given by αS = 0.118 [28].

4 Mersenne primes p-adic hierarchy. Other approaches

To conclude, we briefly mention other approaches to the de-
termination of the physical parameters. A hierarchy of coupl-
ing constants, including the cosmological constant, based on
Seifert-spheres fibrations was undertaken by [26]. The ratios
of particle masses, like the proton to electron mass ratio
mp/me∼ 6π5 has also been calculated using the volumes of
homogeneous bounded domains [5, 6]. A charge-mass-spin
relationship was investigated in [27]. It is not known whether
this procedure should work for Grand Unified Theories
(GUT) based on the groups like SU(5), SO(10), E6, E7,
E8, meaning whether or not one could obtain, for example,
the SU(5) coupling constant consistent with the Grand Uni-
fication Models based on the SU(5) group and with the
Renormalization Group program at the GUT scale.

Beck [8] has obtained all of the Standard Model para-
meters by studying the numerical minima (and zeros) of
certain potentials associated with the Kaneko coupled two-
dim lattices (two-dim non-linear sigma-like models which
resemble Feynman’s chess-board lattice models) based on
Stochastic Quantization methods. The results by Smith [5]
(also based on Feynman’s chess board models and hyper-
diamond lattices) are analytical rather than being numerical
[8] and it is not clear if there is any relationship between
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these latter two approaches. Noyes has proposed an iterated
numerical hierarchy based on Mersenne primes Mp= 2p− 1
for certain values of p= primes [20], and obtained a quite
large number of satisfactory values for the physical para-
meters. An interesting coincidence is related to the iterated
Mersenne prime sequence

M2 = 22 − 1 = 3 , M3 = 23 − 1 = 7 ,

M7 = 27 − 1 = 127 , 3+ 7+ 127 = 137 ,

M127 = 2127 − 1 ∼ 1.69×1038 ∼

(
MPlanck

mproton

)2
.

(4.1)

Pitkanen has also developed methods to calculate phys-
ical masses recurring to a p-adic hierarchy of scales based
on Mersenne primes [21].

An important connection between anomaly cancellation
in string theory and perfect even numbers was found in
[23]. These are numbers which can be written in terms
of sums of its divisors, including unity, like 6= 1+ 2+ 3,
and are of the form P (p)= 1

2 2p(2p− 1) if, and only if,
2p− 1 is a Mersenne prime. Not all values of p= prime
yields primes. The number 211− 1 is not a Mersenne prime,
for example. The number of generators of the anomaly free
groups SO(32), E8×E8 of the 10-dim superstring is 496
which is an even perfect number. Another important group
related to the unique tadpole-free bosonic string theory is
the SO(213)=SO(8192) group related to the bosonic string
compactified on the E8×SO(16) lattice. The number of
generators of SO(8192) is an even perfect number since
213− 1 is a Mersenne prime. For an introduction to p-adic
numbers in Physics and String theory see [22].

A lot more work needs to be done to be able to answer
the question: is all this just a mere numerical coincidence or
is it design? However, the results of the previous sections
indicate that it is very unlikely that these results were just
a mere numerical coincidence (senseless numerology) and
that indeed the values of the physical constants could be
actually calculated from pure thought, rather than invoking
the anthropic principle; i. e. namely, based on the interplay
of harmonic analysis, geometry, topology, higher dimensions
and, ultimately, number theory. The fact that the coupling
constants involved the ratio of measures (volumes) may cast
some light on the role of the world-sheet areas of strings,
and world volumes of p-branes, as they propagate in target
spacetime backgrounds of diverse dimensions.
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