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Abstract

A new nonlinear Schrödinger equation is obtained explicitly from the
(fractal) Brownian motion of a massive particle with a complex-valued
diffusion constant. Real-valued energy plane-wave solutions and solitons
exist in the free particle case. One remarkable feature of this nonlinear
Schrödinger equation based on a ( fractal) Brownian motion model, over
all the other nonlinear QM models, is that the quantum-mechanical energy
functional coincides precisely with the field theory one. We finalize by
showing why a complex momentum is essential to fully understand the
physical implications of Weyl’s geometry in QM, along with the interplay
between Bohm’s Quantum potential and Fisher Information which has
been overlooked by several authors in the past.

PACS numbers: 03.65, 05.40.J, 47.53, 04.20.G

1 Introduction

Over the years there has been a considerable debate as to whether linear QM
can fully describe Quantum Chaos. Despite that the quantum counterparts of
classical chaotic systems have been studied via the techniques of linear QM, it is
our opinion that Quantum Chaos is truly a new paradigm in physics which is as-
sociated with non-unitary and nonlinear QM processes based on non-Hermitian
operators (implementing time symmetry breaking). This Quantum Chaotic be-
havior should be linked more directly to the Nonlinear Schrödinger equation
without any reference to the nonlinear behavior of the classical limit. For this
reason, we will analyze in detail the fractal geometrical features underlying our
Nonlinear Schrödinger equation obtained in [6].
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Nonlinear QM has a practical importance in different fields, like condensed
matter, quantum optics and atomic and molecular physics; even quantum grav-
ity may involve nonlinear QM. Another important example is in the modern
field of quantum computing. If quantum states exhibit small nonlinearities dur-
ing their temporal evolution, then quantum computers can be used to solve
NP-complete (non polynomial) and #P problems in polynomial time. Abrams
and Lloyd [19] proposed logical gates based on non linear Schrödinger equations
and suggested that a further step in quantum computing consists in finding
physical systems whose evolution is amenable to be described by a NLSE.

On other hand, we consider that Nottale and Ord’s formulation of quantum
mechanics [1], [2] from first principles based on the combination of scale rela-
tivity and fractal space-time is a very promising field of future research. In this
work we extend Nottale and Ord’s ideas to derive the nonlinear Schrödinger
equation. This could shed some light on the physical systems which could be
appropriately described by the nonlinear Schrödinger equation derived in what
follows.

The contents of this work are the following : In section 2 we derive the
nonlinear Schrödinger equation by extending Nottale-Ord’s approach to the case
of a fractal Brownian motion with a complex diffusion constant. We present
a thorough analysis of such nonlinear Schrödinger equation and show why it
cannot linearized by a naive complex scaling of the wavefunction ψ → ψλ.

Afterwards we will describe the explicit interplay between Fisher Informa-
tion, Weyl geometry and the Bohm’s potential by introducing an action based
on a complex momentum. The connection between Fisher Information and
Bohm’s potential has been studied by several authors [24], however the impor-
tance of introducing a complex momentum Pk = pk + iAk (where Ak is the
Weyl gauge field of dilatations) in order to fully understand the physical im-
plications of Weyl’s geometry in QM, along with the interplay between Bohm’s
quantum potential and Fisher Information, has been overlooked by several au-
thors in the past [24], [25]. For this reason we shall review in section 3 the
relationship between Bohm’s Quantum Potential and the Weyl curvature scalar
of the Statistical ensemble of particle-paths ( an Abelian fluid ) associated to a
single particle that was initially developed by [22] . A Weyl geometric formula-
tion of the Dirac equation and the nonlinear Klein-Gordon wave equation was
provided by one of us [23]. In the final section 4 , we summarize our conclusions
and include some additional comments.

2 Nonlinear QM as a fractal Brownian motion
with a complex diffusion constant

We will be following very closely Nottale’s derivation of the ordinary Scrödinger
equation [1]. The readers familiar with this work may omit this section. Re-
cently Nottale and Celerier [1] following similar methods were able to derive the
Dirac equation using bi-quaternions and after breaking the parity symmetry
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dxµ ↔ −dxµ, see references for details. Also see the Ord’s paper [2] and the
Adlers’s book on quaternionic QM [16]. For simplicity the one-particle case is
investigated, but the derivation can be extended to many-particle systems. In
this approach particles do not follow smooth trajectories but fractal ones, that
can be described by a continuous but non-differentiable fractal function ~r(t).
The time variable is divided into infinitesimal intervals dt which can be taken
as a given scale of the resolution.

Then, following the definitions given by Nelson in his stochastic QM ap-
proach (Lemos in [12] p. 615; see also [13, 14]), Nottale define mean backward
an forward derivatives as follows,

d±~r(t)
dt

= lim
∆t→±0

〈
~r(t+ ∆t)− ~r(t)

∆t

〉
, (1)

from which the forward and backward mean velocities are obtained,

d±~r(t)
dt

= ~b±. (2)

For his deduction of Schrödinger equation from this fractal space-time clas-
sical mechanics, Nottale starts by defining the complex-time derivative operator

δ

dt
=

1
2

(
d+

dt
+
d−
dt

)
− i

1
2

(
d+

dt
− d−
dt

)
, (3)

which after some straightforward definitions and transformations takes the fol-
lowing form,

δ

dt
=

∂

∂t
+ ~V · ~∇− iD∇2. (4)

D is a real-valued diffusion constant to be related to the Planck constant. Now
we are changing the meaning of D, since no longer a symbol for the fractal
dimension is needed, it will have the value 2.

The D comes from considering that the scale dependent part of the velocity
is a Gaussian stochastic variable with zero mean, (see de la Peña at [12] p. 428)

〈dξ±idξ±j〉 = ±2Dδijdt. (5)

In other words, the fractal part of the velocity ~ξ, proportional to the ~ζ, amount
to a Wiener process when the fractal dimension is 2.

Afterwards, Nottale defines a set of complex quantities which are generaliza-
tion of well known classical quantities (Lagrange action, velocity, momentum,
etc), in order to be coherent with the introduction of the complex-time deriva-
tive operator. The complex time dependent wave function ψ is expressed in
terms of a Lagrange action S by ψ = eiS/(2mD). S is a complex-valued action
but D is real-valued. The velocity is related to the momentum, which can be
expressed as the gradient of S, ~p = ~∇S. Then the following known relation is
found,

~V = −2iD~∇ lnψ. (6)
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The Schrödinger equation is obtained from the Newton’s equation (force =
mass times acceleration) by using the expression of ~V in terms of the wave
function ψ,

−~∇U = m
δ

dt
~V = −2imD

δ

dt
~∇ lnψ. (7)

Replacing the complex-time derivation (4) in the Newton’s equation gives
us

−~∇U = −2im
(
D
∂

∂t
~∇ lnψ

)
− 2D~∇

(
D
∇2ψ

ψ

)
. (8)

Simple identities involving the ~∇ operator were used by Nottale. Integrating
this equation with respect to the position variables finally yields

D2∇2ψ + iD
∂ψ

∂t
− U

2m
ψ = 0, (9)

up to an arbitrary phase factor which may set to zero. Now replacing D by
h̄/(2m), we get the Schrödinger equation,

ih̄
∂ψ

∂t
+
h̄2

2m
∇2ψ = Uψ. (10)

The Hamiltonian operator is Hermitian, this equation is linear and clearly is
homogeneous of degree one under the substitution ψ → λψ.

Having reviewed Nottale’s work [1] we can generalize it by relaxing the as-
sumption that the diffusion constant is real; we will be working with a complex-
valued diffusion constant; i.e. with a complex-valued h̄. This is our new contri-
bution. The reader may be immediately biased against such approach because
the Hamiltonian ceases to be Hermitian and the energy becomes complex-valued.
However this is not always the case. We will explicitly find plane wave solutions
and soliton solutions to the nonlinear and non-Hermitian wave equations with
real energies and momenta. For a detailed discussion on complex-valued spectral
representations in the formulation of quantum chaos and time-symmetry break-
ing see [10]. Nottale’s derivation of the Schrödinger equation in the previous
section required a complex-valued action S stemming from the complex-valued
velocities due to the breakdown of symmetry between the forwards and back-
wards velocities in the fractal zigzagging. If the action S was complex then
it is not farfetched to have a complex diffusion constant and consequently a
complex-valued h̄ (with same units as the complex-valued action).

Complex energy is not alien in ordinary linear QM. They appear in optical
potentials (complex) usually invoked to model the absorption in scattering pro-
cesses [8] and decay of unstable particles. Complex potentials have also been
used to describe decoherenc. The accepted way to describe resonant states in
atomic and molecular physics is based on the complex scaling approach, which
in a natural way deals with complex energies [17]. Before, Nottale wrote,

〈dζ±dζ±〉 = ±2Ddt, (11)
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with D and 2mD = h̄ real. Now we set

〈dζ±dζ±〉 = ±(D +D∗)dt, (12)

with D and 2mD = h̄ = α+ iβ complex. The complex-time derivative operator
becomes now

δ

dt
=

∂

∂t
+ ~V · ~∇− i

2
(D +D∗)∇2. (13)

In the real case D = D∗. It reduces to the complex-time-derivative operator
described previously by Nottale. Writing again the ψ in terms of the complex
action S,

ψ = eiS/(2mD) = eiS/h̄, (14)

where S, D and h̄ are complex-valued, the complex velocity is obtained from
the complex momentum ~p = ~∇S as

~V = −2iD~∇ lnψ. (15)

The NLSE is obtained after we use the generalized Newton’s equation (force
= mass times acceleration) in terms of the ψ variable,

−~∇U = m
δ

dt
~V = −2imD

δ

dt
~∇ lnψ. (16)

Replacing the complex-time derivation (13) in the generalized Newton’s
equation gives us

~∇U = 2im
[
D
∂

∂t
~∇ lnψ − 2iD2(~∇ lnψ · ~∇)(~∇ lnψ)− i

2
(D +D∗)D∇2(~∇ lnψ)

]
.

(17)
Now, using the three identities (i): ~∇∇2 = ∇2~∇; (ii): 2(~∇ lnψ · ~∇)(~∇ lnψ) =
~∇(~∇ lnψ)2; and (iii): ∇2 lnψ = ∇2ψ/ψ − (~∇ lnψ)2 allows us to integrate such
equation above yielding, after some straightforward algebra, the NLSE

ih̄
∂ψ

∂t
= − h̄2

2m
α

h̄
∇2ψ + Uψ − i

h̄2

2m
β

h̄

(
~∇ lnψ

)2

ψ. (18)

Note the crucial minus sign in front of the kinematic pressure term and that
h̄ = α + iβ = 2mD is complex. When β = 0 we recover the linear Schrödinger
equation.

The nonlinear potential is now complex-valued in general. Defining

W = W (ψ) = − h̄2

2m
β

h̄

(
~∇ lnψ

)2

, (19)

and U the ordinary potential, then the NLSE can be rewritten as

ih̄
∂ψ

∂t
=

(
− h̄2

2m
α

h̄
∇2 + U + iW

)
ψ. (20)
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This is the fundamental nonlinear wave equation of this work. It has the form
of the ordinary Schrödinger equation with the complex potential U + iW and
the complex h̄. The Hamiltonian is no longer Hermitian and the potential
V = U + iW (ψ) itself depends on ψ. Nevertheless one could have meaningful
physical solutions with real valued energies and momenta, like the plane-wave
and soliton solutions studied in the next section. Some important remarks are
now in order.

• Notice that the NLSE above cannot be obtained by a naive scaling of the
wavefunction

ψ = eiS/h̄o → ψ′ = eiS/h̄ = e(iS/h̄o)(h̄o/h̄) = ψλ = ψh̄o/h̄. h̄ = real. (21)

related to a scaling of the diffusion constant h̄o = 2mDo → h̄ = 2mD . Upon
performing such scaling, the ordinary linear Schrödinger equation in the vari-
able ψ will appear to be nonlinear in the new scaled wavefunction ψ′

ih̄
∂ψ′

∂t
= − h̄2

2m
h̄o

h̄
∇2ψ′ + Uψ′ − h̄2

2m
(1− h̄o

h̄
)
(
~∇ lnψ′

)2

ψ′. (22)

but this apparent nonlinearity is only an artifact of the change of variables (
the scaling of ψ ).

Notice that the latter (apparent) nonlinear equation , despite having the
same form as the NLSE , obtained from a complex-diffusion constant, differs
crucially in the actual values of the coefficients multiplying each of the terms.
The NLSE has the complex coefficients α/h̄ (in the kinetic terms), and −iβ/h̄
(in the nonlinear logarithmic terms) with h̄ = α+ iβ = complex. However, the
nonlinear equation obtained from a naive scaling involves real and different
numerical coefficients than those present in the NLSE . Therefore, the genuine
NLSE cannot be obtained by a naive scaling (redefinition) of the ψ and the
diffusion constant.

Notice also that even if one scaled ψ by a complex exponent ψ → ψλ with λ =
h̄o/h̄ and h̄ = complex, the actual numerical values in the apparent nonlinear
equation, in general, would have still been different than those present in the
NLSE . However, there is an actual equivalence, if, and only if, the scaling
exponent λ = h̄o/h̄ obeyed the condition:

α = h̄o ⇒ 1− h̄o

h̄
= 1− α

h̄
= 1− h̄− iβ

h̄
= i

β

h̄
(23)

in this very special case, the NLSE would be obtained from a linear Schroedinger
equation after scaling the wavefunction ψ → ψλ with a complex exponent
λ = h̄o/h̄ = α/h̄. In this very special and restricted case, the NLSE could
be linearized by a scaling of the wavefunction with complex exponent.

From this analysis one infers, immediately, that if one defines the norm of
the complex h̄ : ||h̄|| =

√
α2 + β2 = h̄o to coincide precisely with the observed

value h̄o of Planck’s constant, then α 6= h̄o, iβ 6= h̄− h̄o and, consequently, the
NLSE cannot be obtained from the ordinary (linear) Schroedinger equations
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after a naive scaling, with a complex exponent, ψ → ψλ = ψh̄o/h̄ . Therefore,
a complex diffusion constant 2mD = h̄ = α+ iβ, with the condition 2m||D|| =
||h̄|| =

√
α2 + β2 = h̄o ( observed value of Planck’s constant ) ensures that the

NLSE is not a mere artifact of the scaling of the wavefunction ψ → ψλ = ψh̄o/h̄

in the ordinary linear Schroedinger equation.
It is important to emphasize that the diffusion constant is always chosen to

be related to Planck constant as follows: 2m||D|| = ||h̄|| = h̄o which is just
the transition length from a fractal to a scale-independence non-fractal regime
discussed by Nottale in numerous occasions. In the relativistic scale it is the
Compton wavelength of the particle (say an electron): λc = h̄o/(mc). In the
nonrelativistic case it is the de Broglie wavelength of the electron.

Therefore, the NLSE based on a fractal Brownian motion with a complex
valued diffusion constant 2mD = h̄ = α + iβ represents truly a new physical
phenomenon and a hallmark of nonlinearity in QM. For other generalizations
of QM see experimental tests of quaternionic QM (in the book by Adler [16]).
Equation (18) is the fundamental NLSE of this work.

• A Fractal Scale Calculus description of our NLSE was developed later on
by Cresson [20] who obtained, on a rigorous mathematical footing, the same
functional form of our NLSE equation above ( although with different complex
numerical coefficients) by using Nottale’s fractal scale-calculus that obeyed a
quantum bialgebra. A review of our NLSE was also given later on by [25]. Our
nonlinear wave equation originated from a complex-valued diffusion constant
that is related to a complex-valued extension of Planck’s constant. Hence, a
fractal spacetime is deeply ingrained with nonlinear wave equations as we have
shown and it was later corroborated by Cresson [20].

• Complex-valued viscosity solutions to the Navier-Stokes equations were
also analyzed by Nottale leading to the Fokker-Planck equation. Clifford-valued
extensions of QM were studied in [21] C-spaces (Clifford-spaces whose enlarged
coordinates are polyvectors, i.e antisymmetric tensors) that involved a Clifford-
valued number extension of Planck’s constant; i.e. the Planck constant was
a hypercomplex number. Modified dispersion relations were derived from the
underlying QM in Clifford-spaces that lead to faster than light propagation in
ordinary spacetime but without violating causality in the more fundamental
Clifford spaces. Therefore, one should not exclude the possibility of having
complex-extensions of the Planck constant leading to nonlinear wave equations
associated with the Brownian motion of a particle in fractal spacetimes.

• Notice that the NLSE (34) obeys the homogeneity condition ψ → λψ for
any constant λ. All the terms in the NLSE are scaled respectively by a factor
λ. Moreover, our two parameters α, β are intrinsically connected to a complex
Planck constant h̄ = α+ iβ such that ||h̄|| =

√
α2 + β2 = h̄o (observed Planck’s

constant ) rather that being ah-hoc constants to be determined experimentally.
Thus, the nonlinear QM equation derived from the fractal Brownian motion with
complex-valued diffusion coefficient is intrinsically tied up with a non-Hermitian
Hamiltonian and with complex-valued energy spectra [10].

• Despite having a non-Hermitian Hamiltonian we still could have eigen-
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functions with real valued energies and momenta. Non-Hermitian Hamiltonians
( pseudo-Hermitian) have captured a lot of interest lately in the so-called PT
symmetric complex extensions of QM and QFT [27]. Therefore these ideas
cannot be ruled out and they are the subject of active investigation nowadays.

3 Complex Momenta, Weyl Geometry, Bohm’s
Potential and Fisher Information

Despite that the interplay between Fisher Information and Bohm’s potential has
been studied by several authors [24] the importance of introducing a complex
momentum Pk = pk + iAk in order to fully understand the physical implications
of Weyl’s geometry in QM has been overlooked by several authors [24], [25].
We shall begin by reviewing the relationship between the Bohm’s Quantum
Potential and the Weyl curvature scalar of the Statistical ensemble of particle-
paths ( a fluid ) associated to a single particle and that was developed by
[22] . A Weyl geometric formulation of the Dirac equation and the nonlinear
Klein-Gordon wave equation was provided by one of us [23]. Afterwards we will
describe the interplay between Fisher Information and the Bohm’s potential by
introducing an action based on a complex momentum Pk = pk + iAk

In the description of [22] one deals with a geometric derivation of the nonrel-
ativistic Schroedinger Equation by relating the Bohm’s quantum potential Q to
the Ricci-Weyl scalar curvature of an ensemble of particle-paths associated to
one particle. A quantum mechanical description of many particles is far more
complex. This ensemble of particle paths resemble an Abelian fluid that per-
meates spacetime and whose ensemble density ρ affects the Weyl curvature of
spacetime, which in turn, determines the geodesics of spacetime in guiding the
particle trajectories. See [22], [23] for details).

Again a relation between the relativistic version of Bohm’s potential Q
and the Weyl-Ricci curvature exists but without the ordinary nonrelativistic
probabilistic connections. In relativistic QM one does not speak of probability
density to find a particle in a given spacetime point but instead one refers
to the particle number current Jµ = ρdxµ/dτ . In [22], [23] one begins with
an ordinary Lagrangian associated with a point particle and whose statistical
ensemble average over all particle-paths is performed only over the random
initial data (configurations) . Once the initial data is specified the trajectories
( or rays ) are completely determined by the Hamilton-Jacobi equations. The
statistical average over the random initial Cauchy data is performed by means
of the ensemble density ρ. It is then shown that the Schroedinger equation
can be derived after using the Hamilton-Jacobi equation in conjunction with
the continuity equation and where the “quantum force” arising from Bohm’s
quantum potential Q can be related to (or described by) the Weyl geometric
properties of space. To achieve this one defines the Lagrangian

L(q, q̇, t) = LC(q, q̇, t) + γ(h̄2/m)R(q, t). (24)
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where γ = (1/6)(d − 2)/(d − 1) is a dimension-dependent numerical coefficient
and R is the Weyl scalar curvature of the corresponding d-dimensional Weyl
spacetime M where the particle lives.

Covariant derivatives are defined for contravariant vectors V k : V k
,ı = ∂iV

k−
Γk

imV
m where the Weyl connection coefficients are composed of the ordinary

Christoffel connection plus terms involving the Weyl gauge field of dilatations
Ai . The curvature tensor Ri

mkn obeys the same symmetry relations as the
curvature tensor of Riemann geometry as well as the Bianchi identity. The
Ricci symmetric tensor Rik and the scalar curvature R are defined by the same
formulas also, viz. Rik = Rn

ink and R = gikRik.

RWeyl = RRiemann + (d− 1)[ (d− 2)AiA
i − 2(1/

√
g)∂i(

√
gAi) ]. (25)

where RRiemann is the ordinary Riemannian curvature defined in terms of the
Christoffel symbols without the Weyl-gauge field contribution.

In the special case that the space is flat from the Riemannian point of view,
after some algebra one can show that the Weyl scalar curvature contains only
the Weyl gauge field of dilatations

RWeyl = (d− 1)(d− 2)(AkA
k)− 2(d− 1)(∂kA

k). (26)

Now the Weyl geometrical properties are to be derived from physical prin-
ciples so the Ai cannot be arbitrary but must be related to the distribution of
matter encoded by the ensemble density of particle-paths ρ and can be obtained
by the same (averaged) least action principle giving the motion of the particle.
The minimum is to be evaluated now with respect to the class of all Weyl
geometries having arbitrarily Weyl-gauge fields but with fixed metric tensor .

A variational procedure [22] yields a minimum for

Ai(q, t) = − 1
d− 2

∂k(log ρ) ⇒ Fij = ∂iAj − ∂jAi = 0. (27)

which means that the ensemble density ρ is Weyl-covariantly constant

Diρ = 0 = ∂iρ+ ω(ρ) ρAi = 0 ⇒ Ai(q, t) = − 1
d− 2

∂i(log ρ). (28)

where ω(ρ) is the Weyl weight of the density ρ. Since Ai is a total derivative the
length of a vector transported from A to B along different paths changes by
the same amount . Therefore, a vector after being transported along a closed
path does not change its overall length. This is of fundamental importance to be
able to solve in a satisfactory manner Einstein’s objections to Weyl’s geometry.
If the lengths were to change in a path-dependent manner as one transports
vectors from point A to point B, two atomic clocks which followed different
paths from A to B will tick at different rates upon arrival at point B .

The continuity equation is

∂ρ

∂t
+

1
√
g
∂i(
√
g ρvi) = 0. (29)
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In this spirit one goes next to a geometrical derivation of the Schroedinger
equation . By inserting

Ak = − 1
d− 2

∂ log ρ

∂xk
. (30)

into
RWeyl = (d− 1)(d− 2)(AkA

k)− 2(d− 1)∂kA
k. (31)

one gets for the Weyl scalar curvature, in the special case that the space is flat
from the Riemannian point of view, the following expression

RWeyl =
1

2γ
√
ρ

(∂i∂
i√ρ). (32)

which is precisely equal to the Bohm’s Quantum potential up to numerical
factors.

The Hamilton-Jacobi equation can be written as

∂S

∂t
+HC(q, S, t)− γ(

h̄2

2m
)R = 0 (33)

where the effective Hamiltonian is

HC−γ(h̄2/m)R =
1

2m
gjkpjpk +V −γ h̄

2

m
R =

1
2m

gjk ∂S

∂xj

∂S

∂xk
+V −γ h̄

2

m
R (34)

When the above expression for the Weyl scalar curvature (Bohm’s quantum
potential given in terms of the ensemble density) is inserted into the Hamilton-
Jacobi equation, in conjunction with the continuity equation , for a momentum
given by pk = ∂kS, one has then a set of two nonlinear coupled partial differential
equations. After some straightforward algebra, one can verify that these two
coupled differential equations equations will lead to the Schroedinger equation
after the substitution Ψ =

√
ρ eiS/h̄ is made.

For example, when d = 3, γ = 1/12 and consequently, Bohm’s quantum
potential Q = −(h̄2/12m)R ( when RRiemann = 0 ) becomes

R =
1

2γ
√
ρ
∂ig

ik∂k
√
ρ ∼ 1

2γ
∆
√
ρ

√
ρ
⇒ Q = − h̄2

2m
∆
√
ρ

√
ρ
. (35)

as is should be and from the two coupled differential equations, the Hamilton-
Jacobi and the continuity equation, they both reduce to the standard Schroedinger
equation in flat space

ih̄
∂Ψ(~x, t)
∂t

= −(h̄2/2m)∆Ψ(~x.t) + VΨ(~x, t). (36)

after, and only after, one defines Ψ =
√
ρ eiS/h̄.

If one had a curved spacetime with a nontrivial metric one would obtain the
Schroedinger equation in a curved spacetime manifold by replacing the Laplace
operator by the Laplace-Beltrami operator. This requires, of course, to write
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the continuity and Hamilton Jacobi equations in a explicit covariant manner by
using the covariant form of the divergence and Laplace operator [22] , [23]. In
this way, the geometric properties of space are indeed affected by the presence of
the particle and in turn the alteration of geometry acts on the particle through
the quantum force fi = γ(h̄2/m)∂iR which depends on the Weyl gauge potential
Ai and its derivatives. It is this peculiar feedback between the Weyl geometry
of space and the motion of the particle which recapture the effects of Bohm’s
quantum potential.

The formulation above from [22] was also developed for a derivation of the
Klein-Gordon (KG) equation. The Dirac equation and Nonlinear Relativis-
tic QM equations were found by [23] via an average action principle. The
relativistic version of the Bohm potential (for signature (−,+,+,+)) can be
written

Q ∼ 1
m2

(∂µ∂
µ√ρ)
√
ρ

(37)

in terms of the D’Alambertian operator.
To finalize this section we will explain why the Bohm-potential/Weyl scalar

curvature relationship in a flat spacetime

Q = − h̄2

2m
1
√
ρ
gik∂i∂k

√
ρ =

h̄2gik

8m

(
2∂i∂kρ

ρ
− ∂iρ∂kρ

ρ2

)
. (38)

encodes already the explicit connection between Fisher Information and the
Weyl-Ricci scalar curvature RWeyl (for Riemann flat spaces) after one realizes
the importance of the complex momentum Pk = pk + iAk . This is typical of
Electromagnetism after a minimal coupling of a charged particle (of charge e)
to the U(1) gauge field Ak is introduced as follows Πk = pk + ieAk. Weyl’s
initial goal was to unify Electromagnetism with Gravity. It was later realized
that the gauge field of Weyl’s dilatations A was not the same as the U(1) gauge
field of Electromagnetism A.

Since we have reviewed the relationship between the Weyl scalar curvature
and Bohm’s Quantum potential, it is not surprising to find automatically a
connection between Fisher information and Weyl Geometry after a complex
momentum Pk = pk + iAk is introduced. A complex momentum has already
been discussed in previous sections within the context of fractal trajectories
moving forwards and backwards in time by Nottale and Ord.

If ρ is defined over an d-dimensional manifold with metric gik one obtains a
natural definition of the Fisher information associated with the ensemble density
ρ

I = gikIik =
gik

2

∫
1
ρ

∂ρ

∂yi

∂ρ

∂yk
dny. (39)

In the Hamilton-Jacobi formulation of classical mechanics the equation of mo-
tion takes the form

∂S

∂t
+

1
2m

gjk ∂S

∂xj

∂S

∂xk
+ V = 0. (40)
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The momentum field pj is given by pj = gjk(∂S/∂xk). The ensemble probability
density of particle-paths ρ(t, xµ) obeys the normalization condition

∫
dnx ρ = 1

. The continuity equation is

(∂ρ/∂t) +
1
m

1
√
g

(∂/∂xj)(
√
g ρgjk(∂S/∂xk)) = 0. (41)

These equations completely describe the motion and can be derived from
the action

S =
∫
ρ

{
(∂S/∂t) +

1
2m

gjk(∂S/∂xj)(∂S/∂xk) + V

}
dtdnx. (42)

using fixed endpoint variation in S and ρ.
The Quantization via the Weyl geometry procedure is obtained by defining

the complex momentum in terms of the Weyl gauge field of dilatations Ak as
Pk = pk + ieAk and constructing the modified Hamiltonian in terms of the
norm-squared of the complex momentum P kP ∗k as follows

HWeyl =
gjk

2m
[(pj + ieAj)(pk − ieAk)] + V (43)

The modified action is now :

SWeyl =
∫
dtdnx

[
∂S

∂t
+

gjk

2m
(pj + ieAj)(pk − ieAk) + V

]
. (44)

The relationship between the Weyl gauge potential and the ensemble density
ρ was

Ak ∼
∂log(ρ)
∂xk

. (45)

the proportionality factors can be re-absorbed into the coupling constant e as
follows Pk = pk + ieAk = pk + i ∂k(log ρ). Hence, when the spacetime metric is
flat ( diagonal ) gjk = δjk , SWeyl becomes

SWeyl =
∫
dtdnx

∂S

∂t
+

gjk

2m

[
(
∂S

∂xj
+ i

∂log(ρ)
∂xj

) (
∂S

∂xk
− i

∂log(ρ)
∂xk

)
]

+ V =

∫
dtdnx

[
∂S

∂t
+ V +

gjk

2m
(
∂S

∂xj
) (

∂S

∂xk
)
]

+
1

2m

∫
dtdnx [

1
ρ

∂ρ

∂xk
]2. (46)

The expectation value of SWeyl is

< SWeyl > = < SC > + SFisher = (47)∫
dtdnx ρ

[
∂S

∂t
+
gjk

2m
(
∂S

∂xj
) (

∂S

∂xk
) + V

]
+

1
2m

∫
dtdnx ρ [

1
ρ

∂ρ

∂xk
]2.
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This is how we have reproduced the Fisher Information expression directly
from the last term of < SWeyl > :

SFisher ≡
1

2m

∫
dtdnx ρ [

1
ρ

∂ρ

∂xk
]2 (48)

An Euler variation of the expectation value of the action < SWeyl > with
respect to the ρ yields :

∂S

∂t
+

δ < SWeyl >

δρ
− ∂j (

δ < SWeyl >

δ (∂jρ)
) = 0 ⇒ (49)

∂S

∂t
+ V +

1
2m

gjk

[
∂S

∂xj

∂S

∂xk
+

(
1
ρ2

∂ρ

∂xj

∂ρ

∂xk
− 2
ρ

∂2ρ

∂xj∂xk

)]
= 0 (50)

Notice that the last term of the Euler variation
1

2m
gjk

[(
1
ρ2

∂ρ

∂xj

∂ρ

∂xk
− 2
ρ

∂2ρ

∂xj∂xk

)]
(51)

is precisely the same as the Bohm’s quantum potential , which in turn, is propor-
tional to the Weyl scalar curvature. If the continuity equation is implemented
at this point one can verify once again that the last equation is equivalent to
the Schrödinger equation after the replacement Ψ =

√
ρ eiS/h̄ is made.

Notice that in the Euler variation variation of < SWeyl > w.r.t the ρ one
must include those terms involving the derivatives of ρ as follows

−∂j (
δ [ ρ (∂kρ/ρ)2 ]

δ (∂jρ)
) = −1

ρ
∂j(

δ (∂kρ)2

δ (∂jρ)
) = −2

ρ
∂j∂

jρ. (52)

This explains the origins of all the terms in the Euler variation that yield Bohm’s
quantum potential.

Hence, to conclude, we have shown how the last term of the Euler variation
of the averaged action < SWeyl > , that automatically incorporates the Fisher
Information expression after a complex momentum Pk = pk + i∂k(log ρ) is
introduced via the Weyl gauge field of dilations Ak ∼ −∂klog ρ, generates once
again Bohm’s potential :

Q ∼
(

1
ρ2

∂ρ

∂xj

∂ρ

∂xk
− 2
ρ

∂2ρ

∂xj∂xk

)
. (53)

To conclude, the Quantization of a particle whose Statistical ensemble of
particle-paths permeate a spacetime background endowed with a Weyl geom-
etry allows to construct a complex momentum Pk = ∂kS + i∂k(log ρ) that
yields automatically the Fisher Information SFisher term. The latter Fisher
Information term is crucial in generating Bohm’s quantum potential Q after an
Euler variation of the expectation value of the < SWeyl > with respect to the
ρ is performed. Once the Bohm’s quantum potential is obtained one recovers
the Schroedinger equation after implementing the continuity equation and per-
forming the replacement Ψ =

√
ρ eiS/h̄. This completes the relationship among

Bohm’s potential, the Weyl scalar curvature and Fisher Information after in-
troducing a complex momentum.
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4 Concluding Remarks

Based on Nottale and Ord’s formulation of QM from first principles; i.e. from
the fractal Brownian motion of a massive particle we have derived explicitly a
nonlinear Schrödinger equation. Despite the fact that the Hamiltonian is not
Hermitian, real-valued energy solutions exist like the plane wave and soliton
solutions found in the free particle case. The remarkable feature of the fractal
approach versus all the Nonlinear QM equation considered so far is that the
Quantum Mechanical energy functional coincides precisely with the field theory
one.

It has been known for some time, see Puskarz [8], that the expression for
the energy functional in nonlinear QM does not coincide with the QM energy
functional, nor it is unique. The classic Gross-Pitaveskii NLSE (of the 1960’),
based on a quartic interaction potential energy, relevant to Bose-Einstein con-
densation, contains the nonlinear cubic terms in the Schrödinger equation, after
differentiation, (ψ∗ψ)ψ. This equation does not satisfy the Weinberg homogene-
ity condition [9] and also the energy functional differs from the EQM by factors
of two.

However, in the fractal-based NLSE there is no discrepancy between the
quantum-mechanical energy functional and the field theory energy functional.
Both are given by

HNLSE
fractal = − h̄2

2m
α

h̄
ψ∗∇2ψ + Uψ∗ψ − i

h̄2

2m
β

h̄
ψ∗(~∇ lnψ)2ψ. (54)

This is why we push forward the NLSE derived from the fractal Brownian
motion with a complex-valued diffusion coefficient. Such equation does admit
plane-wave solutions with the dispersion relation E = ~p2/(2m). It is not hard
to see that after inserting the plane wave solution into the fractal-based NLSE
we get (after setting U = 0),

E =
h̄2

2m
α

h̄

~p2

h̄2 + i
β

h̄

~p2

2m
=

~p2

2m
α+ iβ

h̄
=

~p2

2m
, (55)

since h̄ = α+ iβ. Hence, the plane-wave is a solution to our fractal-based NLSE
(when U = 0) with a real-valued energy and has the correct energy-momentum
dispersion relation.

Soliton solutions, with real-valued energy (momentum) are of the form

ψ ∼ [F (x− vt) + iG(x− vt)]eipx/h̄−iEt/h̄, (56)

with F , G two functions of the argument x − vt obeying a coupled set of two
nonlinear differential equations.

It is warranted to study solutions when one turns-on an external potential
U 6= 0 and to generalize this construction to the Quaternionic Schroedinger
equation [16] based on the Hydrodynamical Nonabelian-fluid Madelung’s for-
mulation of QM proposed by [26]. And, in particular, to explore further the
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consequences of the Non-Hermitian Hamiltonian ( pseudo-Hermitian) associ-
ated with our NLSE (34) within the context of the so-called PT symmetric
complex extensions of QM and QFT [27]. Arguments why a quantum theory of
gravity should be nonlinear have been presented by [28] where a different non-
linear Schroedinger equation, but with a similar logarithmic dependence, was
found. This equation [28] is also similar to the one proposed by Doebner and
Goldin [29] from considerations of unitary representations of the diffeomorphism
group.
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