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Abstract

Starting with a review of the Extended Relativity Theory in Clifford-Spaces, and the physical moti-
vation behind this novel theory, we provide the generalization of the nonrelativistic Supersymmetric point-
particle action in Clifford-space backgrounds. The relativistic Supersymmetric Clifford particle action is
constructed that is invariant under generalized supersymmetric transformations of the Clifford-space back-
ground’s polyvector-valued coordinates. To finalize, the Polyvector Super-Poincare and M,F theory super-
algebras, in D = 11, 12 dimensions, respectively, are discussed followed by our final analysis of the novel
Clifford-Superspace realizations of generalized Supersymmetries in Clifford spaces.

1 INTRODUCTION

In recent years we have argued [1] that the underlying fundamental physical principle behind string
theory, not unlike the principle of equivalence and general covariance in Einstein’s general relativity, might
well be related to the existence of an invariant minimal length scale (Planck scale) attainable in nature.
A scale relativistic theory involving spacetime resolutions was developed long ago by Nottale [25] where
the Planck scale was postulated as the minimum observer independent invariant resolution in Nature. Since
“points” cannot be observed physically with an ultimate resolution, they are fuzzy and smeared out into fuzzy
balls of Planck radius of arbitrary dimension. For this reason one must construct a theory that includes all
dimensions (and signatures) on the equal footing. Because the notion of dimension is a topological invariant,
and the concept of a fixed dimension is lost due to the fuzzy nature of points, dimensions are resolution-
dependent, one must also include a theory with all topologies as well. It is our belief that this may lead to
the proper formulation of string and M theory.

In [1] we applied this Extended Scale Relativity principle to the quantum mechanics of p-branes which
led to the construction of C-space (a dimension category) where all p-branes were taken to be on the same
footing; i.e. transformations in C-space reshuffled a string history for a five-brane history, a membrane
history for a string history, for example. It turned out that Clifford algebras contained the appropriate
algebro-geometric features to implement this principle of polydimensional transformations .

Clifford algebras have been a very useful tool for a description of geometry and physics [23]. For a
detailed discussion on the algebraic unification avenue of all forces in Nature based on Clifford, Exceptional
and Division algebras see [11,27,29,31]. A Clifford group unification program was outlined in [5,27]. In
[3,4] it was proposed that every physical quantity is in fact a polyvector, that is, a Clifford number or a
Clifford aggregate. Many important aspects of Clifford algebra are described in [19]. Using these methods
the bosonic p-brane propagator, in the quenched mini superspace approximation, was constructed in [20]; the
logarithmic corrections to the black hole entropy based on the geometry of Clifford space (in short C-space)
were obtained in [22]; the action for a higher derivative gravity with torsion was obtained directly from the
geometry of C-spaces [21] and how the Conformal agebra of spacetime emerges also from the Clifford algebra
was described in [24]; the resolution of the ordering ambiguities of QFT in curved spaces was resolved by [3].

In this new physical theory the arena for physics is no longer the ordinary spacetime, but a more general
manifold of Clifford algebra valued objects, polyvectors. Such a manifold has been called a pan-dimensional
continuum [4] or C-space [1]. The latter describes on a unified basis the objects of various dimensionality:
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not only points, but also closed lines, surfaces, volumes,.., called 0-loops (points), 1-loops (closed strings)
2-loops (closed membranes), 3-loops, etc.. It is a sort of a dimension category, where the role of functorial
maps is played by C-space transformations which reshuffles a p-brane history for a p′-brane history or a
mixture of all of them, for example.

The above geometric objects may be considered as to corresponding to the well-known physical objects,
namely closed p-branes. Technically those transformations in C-space that reshuffle objects of different
dimensions are generalizations of the ordinary Lorentz transformations to C-space. In that sense, the C-
space is roughly speaking a sort of generalized Penrose-Twistor space from which the ordinary spacetime
is a derived concept. In [1] we derived the minimal length uncertainty relations as well as the full blown
uncertainty relations due to the contributions of all branes of every dimensionality, ranging from p = 0
all the way to p = ∞. Most recently, an extended Relativity theory in Born-Clifford Phase spaces was
constructed involving both an UV (ultraviolet ) and IR (infrared ) cutoff [5]. The Noncommutative Yang’s
spacetime algebra [28], where coordinates and momenta do not commute, was extended to the full C-space
[8] and allowed the construction of generalized Noncommutative branes in Clifford-space backgrounds based
on a novel Moyal-Yang star products deformation quantization of Nambu-Poisson brackets involving the
UV-IR cutoffs. Noncommutative Riemann-Finsler geometries using Clifford algebras were studied by [26].
For further details of the Extended Relativity Theory in Clifford spaces we refer to the review [2] and [5] .

In the past years there has been a revival in the study of Clifford algebras within the context of the
M,F theory superalgebras in D = 11, 12 dimensions, respectively [7,9]. Important recent applications of
multivectors (polyvectors) in Physics that we shall be discussing is the work on Polyvector Super-Poincare
Algebras and its relation to the M,F -theory superalgebras [9] . Formulations of conformal Higher Spin
theories[12] based on twistor-particle dynamics in tensorial spaces [6], initiated by Fronsdal, have captured
a lot of interest recently. Fronsdal conjectured that four-dim conformal higher spin field theory can be
realized as an ordinary field theory on a ten-dim tensorial manifold parametrized by the coordinates xαβ =
1
2xµγαβ

µ + 1
4yµνγαβ

[µν], where xµ are associated with the four coordinates of conventional 4D spacetime and
yµν = −yνµ describe six spinning degrees of freedom. An infinite tower of fields of increasing spin is
obtained rather than an infinite tower of massive states as in the conventional Kaluza-Klein mechanism. In
D = 3, 4, 6, 10 dimensions the conformal higher spin fields constitute the quantum spectrum of a twistor-
like particle propagating in tensorial spaces of corresponding dimensions [6] . One can notice that a string
propagating in the latter dimensions, has for transverse degrees of freedom D− 2 = 1, 2, 4, 8 which precisely
match the degrees of freedom of the real, complex, quaternion and octonion normed-division algebras . The
role of enlarged superspace coordinates in the context of super p-branes, Born-Infeld and M-theory has
recently been investigated by [10] . Clifford Spaces are more fundamental than these tensorial spaces ( have
a richer structure ) because they require polyvector coordinates ( antisymmetric tensors) of variable rank (
greater than two ) until saturating the values of the spacetime dimensions.

There are fundamental differences among this present work with other approaches to understand the
Grassmanian calculus and Supersymmetry within the realm of the Clifford Geometric Calculus [3,17] devel-
oped by Hestenes [33] . It will become clear why this work is very different than other previous approaches.
Clifford-Superspace is very different than ordinary Clifford-space and generalized supersymmetries in the
former are very different than polyrotations in the latter . It is well known that the particle content of super-
symmetric theories fall under irreducible representations of Clifford algebras. The N extended supersymme-
try algebra in 4D Minkowski spacetime is based mainly on the anticommutators {Qi

α, Qj
β} = 2δij(γµC)αβPµ,

for i, j = 1, 2, 3, ...N ; and C is the charge conjugation matrix. In the rest frame for massive particles m 6= 0,
the anticommutator takes the form of an algebra of 2n fermionic creation and annihilation operators isomor-
phic to the Clifford algebra Cl(4n). Its unique irreducible representation is 22n dimensional and contains
both boson and fermions as required by supersymmetry [ 15,30]. In the massless case, there is no rest frame
and there are only 2n states that are classified according to helicity, rather than spin [15, 30].

The Extended Relativity theory in Clifford-spaces ( C-spaces ) is a natural extension of the ordinary
Relativity theory . A natural generalization of the notion of a space-time interval in Minkwoski space to
C-space is :

dX2 = dσ2 + dxµdxµ + dxµνdxµν + ... (1.1)
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The Clifford valued poly-vector:

X = XMEM = σ 1 + xµγµ + xµνγµ ∧ γν + ...xµ1µ2....µDγµ1 ∧ γµ2 .... ∧ γµD
. (1.2a)

denotes the position of a polyparticle in a manifold, called Clifford space or C-space. The series of terms in
(1.2a) terminates at a finite value depending on the dimension D. A Clifford algebra Cl(r, q) with r+q = D
has 2D basis elements. For simplicity, the gammas γµ correspond to a Clifford algebra associated with a flat
spacetime :

1
2
{γµ, γν} = ηµν1. (1.2b)

but in general one could extend this formulation to curved spacetimes with metric gµν . The multi-graded
basis elements EM of the Clifford-valued poly-vectors are

EM ≡ 1, γµ, γµ1 ∧ γµ2 , γµ1 ∧ γµ2 ∧ γµ3 , γµ1 ∧ γµ2 ∧ γµ3 ∧ ..... ∧ γµD . (1.2c)

It is convenient to order the collective M indices as µ1 < µ2 < µ3 < ...... < µD.
The connection to strings and p-branes can be seen as follows. In the case of a closed string (a 1-

loop) embedded in a target flat spacetime background of D-dimensions, one represents the projections of
the closed string (1-loop) onto the embedding spacetime coordinate-planes by the variables xµν . These
variables represent the respective areas enclosed by the projections of the closed string (1-loop) onto the
corresponding embedding spacetime planes. Similary, one can embed a closed membrane (a 2-loop) onto
a D-dim flat spacetime, where the projections given by the antisymmetric variables xµνρ represent the
corresponding volumes enclosed by the projections of the 2-loop along the hyperplanes of the flat target
spacetimr background.

This procedure can be carried to all closed p-branes ( p-loops ) where the values of p are p =
0, 1, 2, 3, ....D − 2. The p = 0 value represents the center of mass and the coordinates xµν , xµνρ.... have
been coined in the string-brane literature [32] as the holographic areas, volumes, ...projections of the nested
family of p-loops ( closed p-branes ) onto the embedding spacetime coordinate planes/hyperplanes.

The classification of Clifford algebras Cl(r, q) in D = r + q dimensions ( modulo 8 ) for different values
of the spacetime signature r, q is discussed, for example, in the book of Porteous [19]. All Clifford algebras
can be understood in terms of CL(8) and the CL(k) for k less than 8 due to the modulo 8 Periodicity
theorem CL(n) = CL(8)×Cl(n− 8) where Cl(r, q) is a matrix algebra for even n = r + q or the sum of two
matrix algebras for odd n = r + q. Depending on the signature, the matrix algebras may be real, complex,
or quaternionic. For furher details we refer to [19] .

If we take the differential dX and compute the scalar product among two polyvectors < dXT dX >scalar

we obtain the C-space extension of the particles proper time in Minkwoski space. The symbol XT denotes
the reversion operation and involves reversing the order of all the basis γµ elements in the expansion of X
. The C-space proper time associated with a polyparticle motion is then :

< dXT dX >scalar= dΣ2 = (dσ)2 + Λ2D−2dxµdxµ + Λ2D−4dxµνdxµν + .. (1.3)

Here we have explicitly introduced the Planck scale Λ since a length parameter is needed in order to tie
objects of different dimensionality together: 0-loops, 1-loops,..., p-loops. Einstein introduced the speed of
light as a universal absolute invariant in order to “unite” space with time (to match units) in the Minkwoski
space interval:

ds2 = c2dt2 − dxidxi. (1.4)

A similar unification is needed here to “unite” objects of different dimensions, such as xµ, xµν , etc... The
Planck scale then emerges as another universal invariant in constructing an extended scale relativity theory
in C-spaces [1].

To continue along the same path, we consider the analog of Lorentz transformations in C-spaces which
transform a poly-vector X into another poly-vector X ′ given by X ′ = RXR−1 with

R = eωAEA = exp [(ω1 + ωµγµ + ωµ1µ2γµ1 ∧ γµ2 .....)]. (1.5)
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and

R−1 = e−ωAEA = exp [−(ω1 + ωνγν + ων1ν2γν1 ∧ γν2 .....)]. (1.6)

where the ω parameters also belong to a Clifford-valued quantity

ω;ωµ;ωµν ; .... (1.7)

they are the C-space version of the Lorentz rotations/boosts parameters.
Since a Clifford algebra admits a matrix representation, one can write the norm of a poly-vectors in

terms of the trace operation as: ||X||2 = Trace X2 Hence under C-space Lorentz transformation the norms
of poly-vectors behave like follows:

Trace X ′2 = Trace [RX2R−1] = Trace [RR−1X2] = Trace X2. (1.8)

These norms are invariant under C-space Lorentz transformations due to the cyclic property of the trace
operation and RR−1 = 1. Another way of rewriting the inner product of polyvectors is by means of the
reversal operation that reverses the order of the Clifford basis generators : (γµ∧γν)T = γν ∧γµ, etc... Hence
the inner product can be rewritten as the scalar part of the geometric product < XT X >s . The analog of
an orthogonal matrix in Clifford spaces is RT = R−1 such that

< X ′T X ′ >s=< (R−1)T XT RT RXR−1 >s=< RXT XR−1 >s=< XT X >s= invariant. (1.9a)

This condition RT = R−1 , of course, will restrict (constrain ) the type of terms allowed inside the exponential
defining the rotor R in eq-(3-5) because the reversal of a p-vector obeys

(γµ1 ∧ γµ2 ..... ∧ γµp
)T = γµp

∧ γµp−1 ..... ∧ γµ2 ∧ γµ1 = (−1)p(p−1)/2γµ1 ∧ γµ2 ..... ∧ γµp
(1.9b)

Hence only those terms that change sign ( under the reversal operation ) are permitted in the exponential
defining R = exp[ωAEA].

Another possibility is to complexify the C-space polyvector valued coordinates = Z = ZAEA =
XAEA + iY AEA (which is not the same as complexifying the Clifford algebra) as well as the boost/rotation
parameters ωA in order to allow the unitarity condition U† = U−1 to hold . The generalized Clifford unitary
transformations Z ′ = UZU† = UZU−1 associated with the complexified polyvector Z = ZAEA must be
such so the interval

< dZ† dZ >s = dσ̄dσ + dz̄µdzµ + dz̄µνdzµν + dz̄µνρdzµνρ + ..... (1.9c)

remains invariant under these unitary transformations above (upon setting the Planck scale Λ = 1).
The unitary condition U† = U−1, under the combined reversal and complex-conjugate operation, will

constrain the form of the complexified boosts/rotation parameters ωA appearing in : U = exp[ ωAEA ].
The parameters ωA must be either purely real, or purely imaginary, depending if the reversal EA

T = ±EA,
to ensure that an overall change of sign occurs in the terms ωAEA inside the exponential defining U so
that U† = U−1 actually holds, and the norm < Z†Z >s remains invariant under the analog of unitary
transformations in complexified C-spaces. These techniques are not very different from Penrose Twistor
spaces. As far as we know a Clifford-Twistor space construction of C-spaces has not been performed so far.

Another alternative is to define the unitary transformations by U = exp (ΩAB [EA, EB ]) where the
commutator [EA, EB ] = FC

ABEC is the C-space analog of the i[γµ, γν ] commutator which is the generator of
the Lorentz algebra, and the parameters ΩAB are the C-space analogs of the rotation/boots parameters. The
diverse parameters ΩAB are purely real or purely imaginary depending whether the reversal [EA, EB ]T =
±[EA, EB ] to ensure that U† = U−1 such that the scalar part < Z†Z >s remains invariant under the
transformations Z ′ = UZU−1 . This last alternative seems to be more physical because a polyrotation
should map the EA direction into the EB direction in C-spaces, hence the meaning of the generator [EA, EB ]
which is the extension of the i[γµ, γν ] Lorentz generator. We refer to the review [16] for further details about
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the Extended Relativity Theory in Clifford spaces. In particular, why Relativity in curved Clifford-spaces
is equivalent to a higher derivative gravity with torsion associated with the underlying spacetime [21[.

The purpose of this work is to explore the features of Clifford-Superspaces. In section 2 we provide the
generalization of the nonrelativistic supersymmetric point-particle action in Clifford space backgrounds. In
section 3 the Relativistic Supersymmetric Clifford Particle action is given. We must remark that the results
of sections 2, 3 are new and to our knowledge have not appeared before in the literature. Finally, in section 4
, Polyvector Super-Poincare and M,F theory superalgebras in D = 11, 12 dimensions are discussed followed
by our analysis and construction of the novel Clifford-Superspace realizations of generalized Supersymmetries
in Clifford spaces . We show in the final Appendix that the generalized superalgebra in Clifford spaces does
close for a particular example in D = 4 Minkowski space and which we foresee as being valid to other
dimensions and signatures.

2. The Nonrelativistic Supersymmetric Clifford Particle

The ordinary nonrelativistic supersymmetric point-particle action (not to be confused with the rela-
tivistic superparticle) is obtained after introducing a bosonic time coordinate t and a fermionic Grassmanian
time coordinate τ such τ2 = 0. We shall follow very closely the discussion of the book [15] . The nonrela-
tivistic superparticle is described by the coordinates

Zm(t, τ) = xm + θm(t) τ = xm − τθm(t). (2.1)

where m = 1, 2, 3, .....d and θm are the Grassmanian coordinates : (θ1)2 = (θ2)2 = ..... = (θd)2 = 0.
The supersymmetry generator is :

Q = iτ
∂

∂t
− ∂

∂τ
. (2.2)

and the algebra is

{Q, Q} = 2Q2 = −2H = −2i
∂

∂t
. [Q,H] = [H,H] = 0. (2.3)

The supersymmetric point-particle of mass M is

S =
1
2

M

∫
dt

∫
dτ DZm D (DZm). (2.4)

where D is the supertranslation generator :

D = iτ
∂

∂t
+

∂

∂τ
. {D, Q} = 0. (2.5)

The action becomes after using the rules of Grassmanian integration∫
dτ f(τ) =

∂f(τ)
∂τ

. (2.6)

S =
1
2

M

∫
dt

∫
dτ (−θm + i

dxm

dt
) (i

dxm

dt
+ i

dθm

dt
) =

−1
2
M

∫
dt [ (

dxm

dt
)(

dxm

dt
) + iθm dθm

dt
]. (2.7)

The active supersymmetry transformations laws, by definition, affect only the bosonic (fermionic) xm, θm

coordinates and leave the action invariant up to total derivatives. In the absence of boundaries the latter
don’t contribute. Hence, the transformation rules are

δZm = δxm − τδθm = ε Q Zm =
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ε(iτ
∂

∂t
− ∂

∂τ
) (xm(t)− τθm(t)) = iετ

dxm

dt
+ εθm(t) = −iτε

dxm

dt
+ εθm(t) (2.8)

where one is taking into account the Grassmanian nature of the fermionic time τ2 = 0; the ε parameter is also
Grassmanian ετ = −τε like the odd fermionic coordinates (θ1)2 = (θ2)2 = .....(θm)2 = 0. From eq-(2.8) one
can read-off the supersymmetry transformations of the coordinates xm, θm by matching the two expressions
that do (and don’t ) depend on τ respectively :

δZm = δxm − τ δθm = (εθm) − τ (iε
dxm

dt
) ⇒

δxm = ε θm. δθm = iε
dxm

dt
. (2.9)

where ε is a Grassmanian parameter.
The invariance of the action S under the symmetry transformation laws (2.9), up to a total derivative

, can be verified by simple inspection after using the property δ(d/dt) = (d/dt)δ and integrating by parts :

∫
dt δ(iθm dθm

dt
) =

∫
dt [ i(δθm)

dθm

dt
+ iθmδ(

dθm

dt
) ] = −

∫
dt [ ε(

dxm

dt
)(

dθm

dt
) + θmε

d

dt
(
dxm

dt
) ] =

−
∫

dt [ ε(
dxm

dt
)(

dθm

dt
)− εθm d

dt
(
dxm

dt
) ] =

∫
dt [ −2ε(

dxm

dt
)(

dθm

dt
) +

d

dt
(εθm

dxm

dt
) ]. (2.10a)

due to the Grassmanian property θmε = −εθm. The variation of the bosonic terms are∫
dt δ (

dxm

dt

dxm

dt
) =

∫
dt 2

dxm

dt

d

dt
(δxm) =

∫
dt 2ε(

dxm

dt
)(

dθm

dt
). (2.10b)

Thus the variation of the action is a total derivative

δS = −M

2

∫
dt

d

dt
(εθm

dxm

dt
). (2.10c)

and if there are no boundaries the action is invariant under the global (rigid ) supersymmetry transformations
δS = 0.

The nonrelativistic supersymmetric point particle action in ordinary spaces can be generalized to
Clifford spaces in a straightforward way once a length scale is introduced . The extended Relativity in
Clifford-spaces are endowed with two fundamental constants, the speed of light and the Planck scale. Quan-
tization in C-spaces yields a minimal Planck length, Planck area, Planck volume, etc.... [1] This theory can
also be extended to Born-Clifford Phase spaces where an additional infrared scale is introduced [5] . For this
reason it is important to discuss the dimensions of the bosonic and fermionic variables. The dimensions of
θm and ε are 1

2 the dimensions of xm and the dimension of τ is 1
2 the dimension of t.

The C-space extension of the nonrelativistic supersymmetric point particle requires to introduce the
Grassmanian-valued antisymmetric tensor partners coordinates of XM :

σ ↔ θ; xm ↔ θm; xm1m2 ↔ θm1m2 ; xm1m2m3 ↔ θm1m2m3 , ...... (2.11)

The supersymmetry transformations for the nonrelativistic Clifford particle are :

δσ = ε θ. δθ = iε
dσ

dt
. (2.12a)

δxm = ε θm. δθm = iε
dxm

dt
. (2.12b)

δxm1m2 = ε θm1m2 (LP )1/2. δθm1m2 = iε
dxm1m2

dt
(LP )−1/2. (2.12c)
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δxm1m2m3 = ε θm1m2m3 LP . δθm1m2m3 = iε
dxm1m2m3

dt
(LP )−1. (2.12d)

etc..... As usual, the powers of (LP )1/2 are required in (2.12 ) in order to match units. The Clifford-valued
nonrelativistic super-coordinates ( in units Lp = 1 ) are :

Z = ZMEM = ( σ(t)− τ θ(t) )1 + ( xm(t)− τ θm(t) ) γm + ( xm1m2(t)− τ θm1m2(t) ) γm1 ∧ γm2 + .......

+ ( xm1m2....md(t)− τ θm1m2....md(t) ) γm1 ∧ γm2 ∧ ..... ∧ γmd
. (2.13)

One does not include the time component of the gamma matrices γ0 in (2.13 ). The summation is only
restricted to the spatial ( and scalar ) components of the gammas.

Concluding, after setting the value LP = 1, the C-space extension of the nonrelativistic supersymmetric
point particle action that is invariant under the transformation laws (2.12), up to a sum of total derivatives,
is given by :

S = −M
2

∫
dt [ (

dσ

dt
)2 + iθ

dθ

dt
+

dxm

dt

dxm

dt
+ iθm dθm

dt
+

dxm1m2

dt

dxm1m2

dt
+ iθm1m2

dθm1m2

dt
+ .......]. (2.14)

3. The Relativistic Supersymmetric Clifford Particle

There are two fundamental differences between the relativistic superparticle and the nonrelativistic su-
persymmetric point particle actions. One being the explicit relativistic Lorentz invariance of the action and
the other is that one has supersymmetry in the target spacetime background, rather than supersymmetry on
the world-line ( spinning particle ) like in the previous section. Likewise, spinning strings and spinning mem-
branes have supersymmetry on the worldsheet ( world volume) [17,18] , while superstrings and superbranes
have supersymmetry in the target spacetime background.

The Lorentz and reparametrization invariant action for the superparticle is [16]

S =
1
2

∫
ds e−1(

dxµ

ds
− iθ̄αγµ

αβ

dθβ

ds
)2. (3.1)

where θ is a spacetime spinorial coordinate, e is an auxiliary field (the einbein) and the supermomentum is
now defined by

Πµ =
dxµ

ds
− iθ̄αγµ

αβ

dθβ

ds
. (3.2)

The equations of motion are

ΠµΠµ = 0.
dΠµ

ds
= 0. (γµΠµ)

dθ

ds
= 0. (γµΠµ)2 = −ΠµΠµ = 0. (3.3)

The supersymmetry transformations that leave invariant the action are

δθα = εα. δθ̄α = ε̄α. δxµ = iε̄αγµ
αβθβ . δe = 0. (3.4)

where ε is a constant spinorial parameter. The commutator [δ1, δ2]xµ yields a complex translation in general
iε̄1γ

µε2−1 ↔ 2 . Notice that shifting the real coordinates xµ by a constant complex (real) vector iε̄1γ
µθ does

not alter the dxµ/ds terms and the real action remains invariant under translations. The Clifford polyvector
basis elements ΓM

αβ are comprised of

1αβ ; γµ
αβ ; Γµν

αβ = (γµ ∧ γν)αβ . Γµνρ
αβ = (γµ ∧ γν ∧ γρ)αβ , etc..... (3.5)

In the most general case when the coordinates XM of C-space are complex, the putative C-space
extension of the superparticle action is
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S =
1
2

∫
dΣ E−1 ΠM (ΠM )† =

1
2

∫
dΣ E−1 (

dXM

dΣ
− iθ̄αΓM

αβ

dθβ

dΣ
) (

dXM

dΣ
− iθ̄αΓMαβ

dθβ

dΣ
)† (3.6)

E is the analog of the einbein e field necessary to implement reparametrization invariance along the C-space
wordline trajectory. Another reason one has to write the real action in terms of the product ΠM (ΠM )†

rather than ΠMΠM is because the terms iθ̄αΓM
αβ

dθβ

dΣ are not necessarily self-adjoint (Hermitian ) for all
values of the Clifford polyvector basis ΓM elements. The γ matrices can be chosen to be Hermitian and
anti-Hermitian depending on the spacetime signature. Choosing the signature (+,−,−,−) in 4D allows a
matrix representation such that (γ0)† = γ0 and (γi)† = −γi. The operator (id/dΣ) is self-adjoint because
(d/dΣ)† = −(d/dΣ).

The global supersymmetry transformations that leave the action (3.6) invariant are :

δθα = εα. δθ̄α = ε̄α. δXM = iε̄αΓM
αβθβ . (3.7)

Complex XM coordinates were instrumental in section 1 when we displayed the generalized Lorentz trans-
formations in C-spaces. For real coordinates one could have used another action of the type :

S =
1
2

∫
dΣ E−1(

dXM

dΣ
− iθ̄αΓM

αβ

dθβ

dΣ
)2 + Hermitian conjugate. (3.8)

As usual, it is also required to introduce suitable powers of LP to match units. For simplicity we set LP = 1
but we must always keep in mind that physics and relativity in C-spaces requires always the introduction of
an invariant minimal length scale ( Planck ) to be able to combine objects of different dimensions [1]

The Clifford-valued supermomentum is now defined by

ΠM =
dXM

dΣ
− iθ̄αΓM

αβ

dθβ

dΣ
. (3.9)

and the C-space infinitesimal proper time parameter dΣ ( in units Lp = 1 ) is defined by

dΣ2 = dXMdXM = (dσ)2+(dxµdxµ)+(dxµ1µ2dxµ1µ2)+(dxµ1µ2µ3dxµ1µ2µ3)+......+(dxµ1µ2......µd
dxµ1µ2....µd).

(3.10)
However there are several problems with the naive action (3.6) . Firstly one can see that the number

of bosonic degrees of freedom does not match the number of fermionic degrees of freedom. The number
of bosonic C-space coordinates is 2D > D, whereas the number of components of a spinor θ in D even
dimensions are 2D/2 < 2D.

In the ordinary superparticle action the number of ( on− shell) bosonic degrees of freedom matches the
number of fermionic ones after implementing the Siegel’s fermionic kappa symmetry related to the nonlinear
constraints of the phase space variables associated with the action. For example, in D = 10, the Majorana-
Weyl conditions and the Siegel’ kappa symmetry reduce the number of fermionic degrees of freedom from 32
(complex components ) to 8 real components which is precisely the number of transverse real bosonic degrees
of freedom ( 10 − 2 = 8 ) of a massless superparticle in D = 10. Despite that the covariant quantization
of the superparticle is notoriously difficult due to the presence of nonlinear constraints one can still count
on-shell degrees of freedom. In the case of superstrings and superbranes the situation is even more restricted
and one finds that an equality of bosonic and fermionic degrees of freedom ( on-shell ) severely constrains the
values of the target spacetime dimensions D as well as the number of worldsheet and woldvolume dimensions,
respectively, for a given spacetime signature (S, T ) and worldvolume signature (s, t) [15] .

Since the standard superparticle action (3.1) has an equal number of on-shell bosonic and fermionic
degrees of freedom, it is clear that the C-space naive action (2.22) is flawed because one is enlarging
the number of bosonic coordinates xµ by introducing the additional polyvector valued bosonic coordinates.
Therefore, there is a clear mismatch in the number of bosonic and fermionic degrees of freedom ( on-shell
and off shell ) in the naive C-space action (3.6).

Secondly, before constructing any actions and counting degrees of freedom, one has to properly define
what are the Clifford polyvector extensions of the super Poincare algebras ( super Lie algebras ) in diverse
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dimensions and different signatures. For example, one has to verify that the graded Jacobi identities are
satisfied ( nontrivial task ). Thirdly, one must find what the enlarged polyvector superspaces look like, which
are very different than the tensorial superspaces described in [10] . We will discuss these issues in the next
section.

There are two solutions to these problems. One solution is to introduce the anticommuting multi-
spinor valued coordinates Θα1α2...αk as the Grassmanian partners of the polyvectors XM ; including the
Grassmanian scalar partner Θ to the scalar component σ of the Clifford polyvector. This is the proper way
to define a Clifford-Superspace.

Another solution that is related to Polyvector Super Poincare algebras [9] is furnished by recurring to
N extended supersymmetries ! Simply introduce N anticommuting spinor coordinates θAα, A = 1, 2, 3, ...N .
The index α denotes a spacetime spinor in D dimensions. A Dirac spinor in D dimensions has 2[D/2] complex
components where [D/2] denotes the integer part.

Therefore, the C-space extension of the superparticle action is :

S =
1
2

∫
dΣ E−1 ΠM (ΠM )† =

1
2

∫
dΣ E−1 (

dXM

dΣ
− iθ̄AαΓM

αβ

dθAβ

dΣ
) (

dXM

dΣ
− iθ̄AαΓMαβ

dθAβ

dΣ
)† (3.11a)

where A = 1, 2, 3, ......N and the coordinates XM are complex-valued for the reasons explained earlier in
section 1 . For real coordinates ( involving restricted polyrotations discussed in section 1 ) we have

S =
1
2

∫
dΣ E−1 (

dXM

dΣ
− iθ̄AαΓM

αβ

dθAβ

dΣ
)2 + Hermitian conjugate. (3.11b)

It is well known that spinors are the elements of the left/right ideals of a Clifford algebra. In D = 3+1 for
example one has 4D Majorana real spinors ( versus complex Dirac spinors ) and a Majorana representation
for all of the gamma 4×4 matrices with real entries. This allows us to envision the left/right ideals elements
of the Clifford algebra as columns/rows of a 4× 4 real matrix. In particular, a Clifford polyvector admits an
expansion in the standard ΓM basis ( comprised of antisymmetrized products of the gammas and the unit
element ) and in the spinorial basis ξAα as follows:

Φ = ΦMΓM = θAαξAα. A = 1, 2, 3, 4. (3.12)

For futher details see [3]. Hence, a real polyvector Φ can be rewritten as a direct sum of four 4D Majorana
spinors giving a total of 4× 4 = 16 = 24 real degrees of freedom. When one has real XM bosonic polyvector
coordinates σ, xµ, xµ1µ2 , .. they span a 24 = 16 real-dimensional C-space and there is a match among bosonic
polyvector and fermionic degrees of freedom ( off-shell ) XM ↔ θAα. When the coordinates XM are complex-
valued then one must use four complex Dirac spinors θAα instead of four Majorana (real ) spinors to properly
match degrees of freedom ( off-shell ) .

The extended-supersymmetry transformation rules in D = 4 that leave the action ( 3.11) invariant are

δθAα = εAα. δθ̄Aα = ε̄Aα. δXM = iε̄AαΓM
αβθAβ . A = 1, 2, 3, 4. δE = 0. (3.13)

where the εAα are now four infinitesimal anticommuting constant spinorial parameters of the same type as
the spinor coordinates θAα . The εAα parameters are constant ( they don’t depend on the proper time ).
When one promotes the global ( rigid ) supersymmetry to a local one ( supergravity ) the εAα parameters
are no longer constant. Supergravity in Clifford spaces is a more complicated matter. Gravity in curved
Clifford spaces was studied by us [21] where it was shown that it leads to a higher derivative gravity with
torsion.

Notice that there is one similarity with the steps taken in section 2 . We introduced the Grassmanian-
partners θm, θm1m2 , θm1m2m3 ... of the spatial xm, xm1m2 , xm1m2m3 , .... coordinates of the ordinary C-space
with the fundamental difference that these thetas behaved like anticommuting vectors and antisymmetric
tensors, from the spacetime perspective, instead of truly spacetime spinors like the θAα coordinates in
this section. The same occurs in the RNS string that has world sheet supersymmetry with anticommuting
spacetime vectors Ψµ ( but a multiplet of spinors from the worldsheet point of view ) versus the GS superstring
with target spacetime supersymmetry realized in terms of spinorial spacetime coordinates.
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4. Polyvector-valued Super Poincare Algebras and Clifford-space Supersymmetry

Polyvector Super-Poincare algebras as extensions of ordinary Super-Poincare algebras have been studied
by [9] . The former Lie superalgebras (involving commutators and anti-commutators) should not be confused
with the Z2-graded extensions of ordinary Lie algebras, in particular with Z2-graded extensions of Clifford
algebras [13] involving only commutators. The Polyvector Super Poincare algebras have the form of g =
g0 + g1, where the even sector is g0 = so(V ) + W0 and the odd sector g1 = W1 consists of a spinorial
representation of so(V ) = so(p, q); i.e. W1 is an so(p, q)-spinorial-module where V is a vector space of
signature p, q.

The algebra of generalized translations W = W0 + W1 is the maximal solvable ideal of g. W0 is
generated by W1 : [W1,W1] ⊆ W0 and [W0,W1] = 0; [W0,W0] = 0. For example, in the ordinary
Super-Poincare algebra, the translations are generated by the supersymmetry generators : {Q, Q̄} ∼ P
and [Q,P ] = [P, P ] = 0. Choosing W1 to be a spinorial so(V )-module consisting of a sum of spinors and
semispinors (chiral spinors) the authors [ 9 ] proved that W0 consists of polyvectors. They provided the
classification of all polyvector Lie superalgebras, for all dimensions and signatures, after analysing all the
so(V )-invariant polyvector-valued bilinear forms that can be defined on the spinor modules. N -extended
polyvector super Poincare algebras were also classified in [9].

The anti-commutator [9] is :

{Sα, Sβ} =
∑

k

(CΓµ1µ2....µk)αβ W
(k)
0 µ2µ2....µk

(4.1)

where α, β denote spinor indices and the summation over k must obey certain crucial restrictions to match
degrees of freedom with the terms in the l.h.s. The matrix C is the charge conjugation matrix. Depending
on the given spacetime and its signature there are at most two charge conjugation matrices CS , CA given
by the product of all symmetric and all antisymmetric gamma matrices, respectively. In special spacetime
signatures they collapse into a single matrix [ 7,9] . These charge conjugation matrix C are essential in order
to satisfy the nontrivial graded super Jacobi identities.

For example, the M -theory superlagebra in D = 11 is :

{Qα, Qβ} = (AΓµ)αβPµ + (AΓµ1µ2)αβZµ1µ2 + (AΓµ1µ2....µ5)αβZµ1µ2....µ5 . (4.2)

Pµ is the usual momentum operator; the antisymmetric tensorial central charges Zµ1µ2 , Zµ1µ2....µ5 are of
ranks 2, 5 respectively. The matrix A plays the role of the timelike γ0 matrix in Minkowskian spacetimes
and is used to introduced barred-spinors. In spacetimes of signature (s, t) A is given by the products of all
the timelike gammas, up to an overall sign [7,9 ] . Notice that the summation over the k indices in the r.h.s is
very restricted since the k = 1, 2, 5 sectors of the r.h.s yield in D = 11 a total number of 11+55+462 = 528
components which precisely match the number of independent components of a 32×32 symmetric real matrix
in the l.h.s given by (32× 33)/2 = 528.

The 12-dim Euclidean generalized supersymmetric F algebra was

{Qα, Qβ} = (CΓµ)αβPµ + (CΓµ1µ2)αβZµ1µ2 + (CΓµ1µ2....µ5)αβZµ1µ2....µ5 . (4.3)

together with its complex conjugation [7] . Other Hermitian versus holomorphic complex and quaternionic
generalized supertranslations ( ” supersymmetries” ) of M -theory were classified by [7]

Therefore, by studying the Polyvector Super Poincare algebras, the M and F theory superalgebras (4.1,
4.2, 4.3) one concludes that these cannot be incorporated into Clifford-superspaces because one cannot have
a restricted summation in the k rank of the terms appearing in the {Qα, Qβ} (anti)commutators, like in eqs-
(4.1, 4.2, 4.3). Unless one adds further spinorial degrees of freedom, like we did in the Clifford superparticle
case by recurring to N extended supersymmetries, one will not be able to match the number of degrees of
freedom in a satisfactory manner.

N extended Polyvector Super Lie Algebras which were also studied by [9] . This means that the odd
sector W1 consists of N copies of the irreducible spinor module S. There are cases where there are two
inequivalent copies ( complex even dimensional, or real with spatial signatures s = 0, 4 ) involving N+ chiral
generators and N− anti-chiral ones. For further details we refer to [9] . Hence, by introducing a judicious
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number of extra spinorial degrees of freedom in superspace, depending on the dimensions and spacetime
signatures, one can acommodate for the larger number of polyvector coordinates associated with C-spaces.

In section 1 we have defined the extended Lorentz generators JMN in C-space, associated with the
C-space Lorentz transformations X ′ = RXR−1, as

R = eωMN JMN = eωMN [ΓM ,ΓN ]. JMN = [ΓM ,ΓN ] = F C
MNΓC . (4.4a)

For example, in D = 4, one has the Jacobi indentities

{ [Mµ1µ2 , Qα], Qβ } + { [Mµ1µ2 , Qβ ], Qα } = [ Mµ1µ2 , {Qα, Qβ } ]. (4.4b)

and
{ [Mµ1µ2µ3µ4 , Qα], Qβ } + { [Mµ1µ2µ3µ4 , Qβ ], Qα } = [ Mµ1µ2µ3µ2 , {Qα, Qβ } ]. (4.4c)

with

[Mµ1µ2 , Pρ1ρ2 ] = −ηµ1ρ1Pµ2ρ2 + ηµ2ρ1Pµ1ρ2 ± .... [Mµ1µ2 , Qα] = −1
2
(γµ1µ2)

δ
α Qδ. (4.4d)

where
{Qα, Qβ } =

1
2
CγµPµ +

1
2
CγµνPµν (4.4e)

the spinorial charges Qα behave under poly-rotations as follows

[Mµ1µ2µ3µ4 , Qα] = −1
2
(γµ1µ2µ3µ4)

δ
α Qδ. (4.4f)

and

[Mµ1µ2µ3µ4 , Pν1ν2 ] = ηµ1µ2ν1ν2Pµ3µ4 + ηµ3µ4ν1ν2Pµ1µ2 ± ............ [Mµ1µ2µ3µ4 , Pν1 ] = 0. (4.4g)

In the Appendix we will prove that this algebra closes and satisfies the Jacobi identities.
GMN is the flat C-space generalized metric ηµ1ν1µ2ν2.....µnνn given by the determinant of the N × N

matrix Υmn whose entries are ηµmνn . For instance :

ηµ1ν1µ2ν2.....µnνn
= det Υmn =

1
N !

εi1i2....inεj1j2....jnηµi1νj1
ηµi2νj2

.......ηµin νjn
. (4.5)

so that
ηµ1ν1µ2ν2 = ηµ1ν1ηµ2ν2 − ηµ1ν2ηµ2ν1 etc.... (4.6)

Similar results apply to the definition of ηi1j1....injn
.

The first question is whether or not the alleged (anti) commutators displayed in eqs-(4.4) truly constitute
a Super-Algebra which obeys the graded super Jacobi identities (nontrivial matter ) in C-space due to the
nontrivial algebraic relations obtained from the (geometric) product of two polyvector basis elements ΓMΓN

that involves a sum of terms with polyvectors of mixed grade :

< ΓMΓN >m+n < ΓMΓN >m+n−2 < ΓMΓN >m+n−4 .......... < ΓMΓN >|m−n| . (4.7)

Using the standard notation

γν1ν2........νp ≡ γµ1 ∧ γµ2 ∧ .... ∧ γµp . (4.8)

where the anti-symmetrization of indices is performed with unit weight, one has for example :

γµ γν =
1
2
{γµ, γν} +

1
2
[γµ, γν ] = ηµν1 +

1
2
γµν . (4.9a)
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γµ1µ2....µp γµp+1 = γµ1µ2.....µpµp+1 + p γ[µ1µ2.....µp−1ηµp]µp+1 . (4.9b)

γµγν1ν2........νp − (−1)pγν1ν2........νpγµ = 2p ηµ[ν1γν2ν3.....νp]. (4.9c)

For these reasons it is highly nontrivial to verify the graded super Jacobi identities of the alleged
generalized superalgebra (4.4). If, and only if, one truly has a generalized superalgebra as such in eqs-(4.4),
the next step will be to find realizations of such superalgebra in Clifford-Superspace, a highly nontrivial
extension of ordinary superspace.

Let us review very briefly the properties of ordinary superspace [ 30 ] where ordinary supersymmetries
are realized. The standard N = 1 supersymmetry algebra in 3 + 1 written in four-component Majorana
spinor notation is

{Qα, Q̄β} = −2iγµ
αβ

∂

∂xµ
. [Qα, Pµ] = [Q̄α, Pµ] = 0. [Qα,Mµν ] =

1
2
(γµν)β

αQβ . (4.10)

where Mµν is the Lorentz and Pµ = −i∂µ is the translation generator. Even if one were to define the
putative generalized supersymmetry operator QAα in Clifford-superspace as

QAα =
∂

∂θAα
− iγµ1µ2...µk

αβ θ̄Aβ ∂

∂xµ1µ2...µk
. A = 1, 2, 3, ...N. (4.11)

which is the naive natural extension of the ordinary N extended supersymmetry charge generator :

QAα =
∂

∂θAα
− iγµ

αβ θ̄Aβ ∂

∂xµ
. A = 1, 2, 3, ...N. (4.12)

it won’t work unless one verifies that the Clifford-Superspace Supersymmetry generator QAα forms part
of a generalized supersymmetry algebra which obeys the graded super-Jacobi identities and satisfies the
generalized superalgebra ( anti ) commutation relations in Clifford-superspaces ( associated with the Clifford
algebras in different spacetime dimensions and signatures). This is a highly nontrivial matter to begin with,
let alone in trying to construct irreducible representations of the generalized superalgebras, field theory
realizations; generalized superstring /superbrane actions in C-spaces; to pursue a quantization program,
etc.....

As a reminder [30] we recall that a 4D Majorana spinor ΨM can be written in a Weyl basis in terms of
two Weyl spinors χα, χ̄α̇ where α = 1, 2 and α̇ = 1, 2. Spinor indices are raised and lower by the εαβ , ........
antisymmetric 2×2 matrices. This decomposition of a 4D Majorana spinor into two-component Weyl spinors
and the 4 × 4 γ matrices in terms of blocks consisting of σµ Pauli 2 × 2 matrices ( where σ0 is the unit
matrix, up to a sign ) is very convenient. The chiral ( antichiral ) covariant differential operators in N = 1
superspace are

Dα =
∂

∂θα
+ iσµ

αα̇ θ̄α̇ ∂

∂xµ
. D̄α̇ = − ∂

∂θ̄α̇
− iθασµ

αα̇

∂

∂xµ
. (4.13)

and the chiral ( antichiral ) supersymmetry generators are

Qα =
∂

∂θα
− iσµ

αα̇ θ̄α̇ ∂

∂xµ
. Q̄α̇ = − ∂

∂θ̄α̇
+ iθασµ

αα̇

∂

∂xµ
. (4.14)

The Q’s and the D’s anticommute among themselves and the only nonzero anticommutator among the D
and the D̄ is :

{Dα, D̄α̇} = −iσµ
αα̇

∂

∂xµ
. (4.15)

Superfields form linear representations of supersymetry algebras. In general these representations are
highly reducible. The extra components can be eliminated by imposing covariant constraints like D̄α̇Φ =
0, DαΦ = 0 leading to chiral ( anti-chiral ) superfields, respectively. For example the chiral superfield in
D = 2 can be expanded into components
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Φ(xµ; θ1, θ2) = φ(xµ) + θ̄ Ψ(xµ) + F (xµ) θ̄θ. (4.16)

since the expansion in powers of θ’s terminates due to the Grassmanian nature θθ = 0 where θ is a 2D
Majorana spinor with real Grassmanian-valued ( anticommuting) entries θ1, θ2 . After some straightforward
algebra and using the Grassmanian integration rules in chiral superspace , the action becomes :

S = − i

4π

∫
[d2x] [d2θ] D̄αΦ(xµ, θ1, θ2) DαΦ(xµ, θ1, θ2) =

− 1
2π

∫
[d2x] [ (∂µφ) (∂µφ)− iΨ̄γµ∂µΨ− FF ) ]. (4.17)

The global supersymmetry transformations laws for the chiral scalar multiplet in D = 2 that leave
invariant the action, up to total derivatives, are

δφ = ε̄Ψ. δΨ = −i(γµ∂µφ)ε + Fε. δF = −iε̄γµ∂µΨ. (4.18)

If the alleged generalized superalgebra in C-spaces (4.4) does not obey the graded super Jacobi identities
then one must search for other possibilities. If the superalgebra (4.4) is indeed adequate then we must verify
that the supercharges QAα truly admit the realizations postulated in (4.11). In this case one would have for
generalized superfields the following

Φ(σ, xµ, xµ1µ2 , ......, xµ1µ2...µd ; θAα, θ̄Aα). A = 1, 2, 3, .....N. (4.19)

and follow similar steps as one does in ordinary superspace to construct covariant derivatives and invariant
actions, up to total derivatives, as outline above.

If the supercharges QAα are not satisfactory, the other proposal will be to introduce the anticommuting
multi-spinor valued coordinates Θα1α2...αk as the Grassmanian partners of the polyvectors XM in C-spaces.
This may turn out to be the proper way to define a Clifford-Superspace realization of the generalized
Superalgebras in Clifford-spaces. A lot remains to be done. The Polyvector Super-Poincare algebras [9] and
the M,F theory superalgebras [7] are encouraging findings that should propel us to search for the proper
generalized superalgebras in Clifford-spaces and to unravel the physical principle behind M,F theories [ 1
] . The findings of sections 2, 3 were satisfactory. This is a positive sign that we are in the right track.
A generalized Supersymmetry based on p-form coordinates in ordinary spacetimes ( not in Clifford spaces )
was suggested a while ago by [34].

APPENDIX : CLOSURE OF THE CLIFFORD SPACE SUPERSYMMETRY

The classification of the family of symmetric matrices (Cγµ1µ2....µn)αβ is what restricts the type of terms
that appear in the {Qα, Qβ} anticommutator and depends on the number of space time dimensions D, the
signatures (s, t) and the rank n. A table of the allowed values of D, s, t, n can be found in [34] . In particular,
when D = 4 = 3 + 1, the {Qα, Qβ } is a symmetric matrix in α, β with 10 independent components and
which matches the degrees of freedom in Pµ, Pµν given by 4 + 6 = 10. Let us study the closure of

{ [Mµ1µ2µ3µ4 , Qα], Qβ } + { [Mµ1µ2µ3µ4 , Qβ ], Qα } = [ Mµ1µ2µ3µ2 , {Qα, Qβ } ]. (A− 1)

where
{Qα, Qβ } =

1
2
CγµPµ +

1
2
CγµνPµν (A− 2)

In D = 4 , with signatures −,+,+,+ one can find a charge conjugation matrix C and its transpose CT

obeying the properties

(Cγµ)T = (Cγµ). (Cγµν)T = (Cγµν) (A− 3)
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CT = −C, CγµC−1 = −γT
µ . C†C = CC† = 1, C−1γµνC = −γT

µν . (A− 4)

It is convenient to use a Majorana representation where the charge conjugation matrix is given by C = γ0

and γT
5 = −γ5 is a hermitian matrix that has zero entries along the diagonal and −iσ1, iσ1 off the diagonal.

We must verify that (A-1) is obeyed. This requires that the spinorial charges Qα behave under poly-
rotations as follows

[Mµ1µ2µ3µ4 , Qα] = −1
2
(γµ1µ2µ3µ4)

δ
α Qδ. (A− 5)

and
[Mµ1µ2µ3µ4 , Pν1ν2 ] = ηµ1µ2ν1ν2Pµ3µ4 + ηµ3µ4ν1ν2Pµ1µ2 ± ............ (A− 6)

the ± signs in the r.h.s of (A-6) depend on the permutation of indices w.r.t to the initial combination
µ1µ2µ3µ4, ν1ν2. There are 6 terms in ( A-6 ). The l.h.s of ( A-1) is

−1
4
γ5(CγµPµ + CγµνPµν) − 1

4
[ γ5(CγµPµ + CγµνPµν) ]T =

−1
4
γ5(CγµPµ + CγµνPµν) − 1

4
[(Cγµ)T γT

5 Pµ + (Cγµν)T γT
5 Pµν ] =

−1
4
γ5(CγµPµ + CγµνPµν) +

1
4

(CγµPµ + CγµνPµν)γ5. (A− 7)

where we have used the conditions (A-3 ) and γT
5 = −γ5.

Multiplying ( A-7) from the left by C−1 and using C−1γ5C = −γ5 yields

1
4
(γ5γ

µ + γµγ5)Pµ +
1
4

(γ5γ
µν + γµνγ5)Pµν =

1
4
(γ5γ

µν + γµνγ5)Pµν =
1
2
γ5γ

µνPµν =
1
2
γ[µ1γµ2γµ3γµ4]γ

ν1ν2Pν1ν2 =

1
2
[ γ[µ1µ2]η

ν1ν2
µ3µ4

+ ................... ]Pν1ν2 =

1
2
[ γ[µ1µ2]Pµ3µ4 + γ[µ3µ4]Pµ1µ2 ± ................... ]. (A− 8)

one may notice that due to the condition {γ5, γµ} = 0 there are no Pµ terms in (A-8). The r.h.s of (A-1 ) is

1
2
[ Mµ1µ2µ3µ4 , (Cγν1Pν1) + (Cγν1ν2)Pν1ν2 ] =

1
2
(Cγν1ν2) [ ηµ1µ2ν1ν2Pµ3µ4 + ηµ3µ4ν1ν2Pµ1µ2 + ............ ]. (A− 9)

where
[ Mµ1µ2µ3µ4 , (Cγν1Pν1)] = Cγν1 [ Mµ1µ2µ3µ4 , Pν1 ] = 0. (A− 10)

Multiplying (A-9) on the left by C−1 yields

1
2
γν1ν2 [ ηµ1µ2ν1ν2Pµ3µ4 + ηµ3µ4ν1ν2Pµ1µ2 + .......... ] =

1
2

[ γ[µ1µ2]Pµ3µ4 + γ[µ3µ4]Pµ1µ2 ± ...... ]. (A− 11)

We have seen that a left-multiplication of the r.h.s and l.h.s of (A-1) by C−1, leads to the equality of (A-8)
with ( A-11 ), which implies that (A-1) is indeed satisfied .

The Jacobi identity

{ [Mµ1µ2 , Qα], Qβ } + { [Mµ1µ2 , Qβ ], Qα } = [ Mµ1µ2 , {Qα, Qβ } ]. (A− 12)
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when

[Mµ1µ2 , Pρ1ρ2 ] = −ηµ1ρ1Pµ2ρ2 ± ... ; [Mµ1µ2 , Qα] = −1
2
(γµ1µ2)

δ
α Qδ. {Qα, Qβ } =

1
2
CγνPν +

1
2
Cγν1ν2Pν1ν2

(A− 13)
involves terms containing Pµ and Pµν . We know that the Jacobi identity is satisfied for the Pµ terms since
this is what the ordinary supersymmetry algebra entails.

The Pµν terms involve the commutator

−[γµ1µ2 , γν1ν2 ]P
ν1ν2 = (ηµ1ν1γµ2ν2 ± ........ )P ν1ν2 . (A− 14)

Each one of the four terms in ( A-14) , for example, like the term ηµ1ν1γµ2ν2P
ν1ν2 can be rewritten as :

ηµ1ν1γµ2ν2P
ν1ν2 = ηµ1ν1 γρ1ρ2ηρ1ρ2µ2ν2 ην1ν2µ2ρ2Pµ2ρ2 = −ηµ1ν1δ

ν1
ρ1

γρ1ρ2Pµ2ρ2 = −ηµ1ρ1γ
ρ1ρ2Pµ2ρ2 .

(A− 15)
and similarly one can rewrite the other three terms of (A-14 ), so that the Jacobi idenity (A-12) is satisfied
due to the equality in (A-15)

γρ1ρ2 [Mµ1µ2 , Pρ1ρ2 ] = γρ1ρ2(−ηµ1ρ1Pµ2ρ2 ± ...) = −[γµ1µ2 , γν1ν2 ]P
ν1ν2 = P ν1ν2(ηµ1ν1γµ2ν2 ± ...). (A− 16)

i.e, the equality among the terms of (A-16) can be seen effectively as exchanging γ ↔ P and (ν1, ν2) ↔
(ρ1, ρ2).

One must have as well :

[Qα, Pµ] = [Qα, Pµν ] = 0. [Pµ, Pν ] = [Pµ1µ2 , Pν1ν2 ] = 0.... (A− 17)

This example in D = 4 should be valid in other dimensions and signatures provided we have the appropriate
list of symmetric (Cγµ1µ2...µn)αβ matrices.

One has the remaining commutators :

[Mµ1µ2 ,Mν1ν2 ] = −ηµ1ν1Mµ2ν2 + ηµ2ν1Mµ1ν2 ± ... (A− 18)

[Mµ1µ2µ3µ4 ,Mν1ν2ν3ν4 ] = ηµ1µ2ν1ν2Mµ3µ4ν3ν4 ± ...... (A− 19)

[Mµ1µ2 ,Mν1ν2ν3ν4 ] = −ηµ1ν1Mµ2ν2ν3ν4 ± ...... + ηµ1µ2ν1ν2Mν3ν4 ± ..... (A− 20)

One must verify the Jacobi identities involving triplets comprised of the Mµ1µ2 ,Mν1ν2ν3ν4 generators. The
trivial commutator

[Mµ1µ2 ,Mν1ν2ν3ν4 ] = 0. (A− 21)

obeys automatically the Jacobi identities. The nontrivial commutator (A-20) also obeys the Jacobi identities
after laborious but straightforward algebra.
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