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Abstract

We explore Yang’s Noncommutative space-time algebra (involving two length scales) within the context
of QM defined in Noncommutative spacetimes; the Holographic principle and the area-coordinates algebra
in Clifford spaces. Casimir invariant wave equations corresponding to Noncommutative coordinates and
momenta in d-dimensions can be recast in terms of ordinary QM wave equations in d + 2-dimensions.
It is conjectured that QM over Noncommutative spacetimes (Noncommutative QM) may be described by
ordinary QM in higher dimensions. Novel Moyal-Yang-Fedosov-Kontsevich star products deformations of
the Noncommutative Poisson Brackets (NCPB) are employed to construct star product deformations of
scalar field theories. Finally, generalizations of the Dirac-Konstant and Klein-Gordon-like equations relevant
to the physics of D-branes and Matrix Models are presented.

1. INTRODUCTION

Yang’s noncommutative space time algebra [1] is a generalization of the Snyder algebra [2] (where now
both coordinates and momenta are not commuting) that has received more attention recently, see for example
[3] and references therein. In particular, Noncommutative p-brane actions, for even p + 1 = 2n-dimensional
world-volumes, were written explicitly [21] in terms of the novel Moyal-Yang ( Fedosov-Kontsevich ) star
product deformations of the Noncommutative Nambu Poisson Brackets (NCNPB) that are associated with
the noncommuting world-volume coordinates qA, pA for A = 1, 2, 3, ...n. The latter noncommuting coordi-
nates obey the noncommutative Yang algebra with an ultraviolet LP (Planck) scale and infrared (R ) scale
cutoff. It was shown why the novel p-brane actions in the ”classical” limit h̄eff = h̄LP /R → 0 still acquire
nontrivial noncommutative corrections that differ from ordinary p-brane actions [21] . Super p-branes ac-
tions in the light-cone gauge are also amenable to Moyal-Yang star product deformations as well due to the
fact that p-branes moving in flat spacetime backgrounds, in the light-cone gauge, can be recast as gauge
theories of volume-preserving diffeomorphisms. The most general construction of noncommutative super
p-branes actions based on non ( anti ) commuting superspaces [6] and quantum group methods remains an
open problem.

The purpose of this work is to explore further the consequences of Yang’s Noncommutative spacetime
algebra within the context of QM in Noncommutative spacetimes , the Holographic principle ( for a review
see [23] ) and the area-coordinates algebra in Clifford spaces [20]. In section 2 we study the interplay among
Yang’s Noncommutative spacetime algebra and the former area-coordinates algebra in Clifford spaces [20].
In section 3 we show how Casimir invariant wave equations corresponding to Noncommutative coordinates
and momenta in D-dimensions, can be recast in terms of ordinary QM wave equations in D + 2-dimensions.
In particular, we shall present explicit solutions of the D’Alambertian operator in the bulk of AdS spaces
and explain its correspondence with the Casimir invariant wave equations associated with the Yang’s Non-
commutative spacetime algebra at the projective boundary of the conformally compactified AdS spacetime.
We conjecture that QM over Noncommutative spacetimes ( Noncommutative QM ) may be described by
ordinary QM in higher dimensions.

In section 4 we recur to the novel Moyal-Yang ( Fedosov-Kontsevich ) star products [13,14] deformations
of the Noncommutative Poisson Brackets (NCPB) to construct Moyal-Yang star product deformations of
scalar field theories. The role of star products in the construction of p-branes actions from the large N limit
of SU(N) Yang-Mills can be found in [ 7 ] ; the Self-Dual Gravity/ SU(∞) Self Dual Yang-Mills relation
in [8, 9,10] ; SU(∞),W∞ algebras as area-preserving diffs algebras have been studied by many authors
[11,12,18] and their relation to higher spin theories [27]; star product deformations of the Nambu-Poisson
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brackets [15] ; p-branes as composite antisymmetric tensor gauge theories of volume-preserving diffs [16,17].
Finally, in the conclusion 5 , we present the generalizations of the Dirac-Konstant equations (and their
”square” Klein-Gordon type equations ) that are relevant to the incorporation of fermions and the physics
of D-branes and Matrix Models .

2. NONCOMMUTATIVE YANG’S SPACETIME ALGEBRA AND
HOLOGRAPHIC AREA-COORDINATES IN CLIFFORD SPACES

The main result of this section is that there is a subalgebra of the C-space operator-valued coordinates
[19] which is isomorphic to the Noncommutative Yang’s spacetime algebra [1,3] . This, in conjunction to
the discrete spectrum of angular momentum, leads to the discrete area quantization in multiples of Planck
areas. Namely, the 4D Yang’s Noncommutative space-time ( YNST ) algebra [3] (written in terms of 8D
phase-space coordinates) is isomorphic to the 15-dimensional subalgebra of the C-space operator-valued
coordinates associated with the holographic areas of C-space. This connection between Yang’s algebra and
the 6D Clifford algebra is possible because the 8D phase-space coordinates xµ, pµ ( associated to a 4D
spacetime ) have a one-to-one correspondence to the X̂µ5; X̂µ6 holographic area-coordinates of the C-space
(corresponding to the 6D Clifford algebra). Furhermore, Tanaka [3] has shown that the Yang’s algebra [1]
( with 15 generators ) is related to the 4D conformal algebra (15 generators) which in turn is isomorphic
to a subalgebra of the 4D Clifford algebra because it is known that the 15 generators of the 4D conformal
algebra SO(4, 2) can be explicitly realized in terms of the 4D Clifford algebra as [19] :

Pµ = Mµ5 +Mµ6 = γµ(1 + γ5). Kµ = Mµ5 −Mµ6 = γµ(1− γ5). D = γ5. Mµν = i[γµ, γν ].. (2− 1)

where the Clifford algebra generators :

1. γ0 ∧ γ1 ∧ γ2 ∧ γ3 = γ5. (2− 2)

account for the extra two directions within the C-space associated with the 4D Cliffiord-algebra leaving
effectively 4+2 = 6 degrees of freedom that match the degrees of freedom of a 6D spacetime. The relevance
of [19] is that it was not necessary to work directly in 6D to find a realization of the 4D conformal algebra
SO(4, 2) . It was possible to attain this by recurring solely to the 4D Clifford algebra as shown in eq-(3.1) .

One can also view the 4D conformal algebra SO(4, 2) realized in terms of a 15-dim subalgebra of the
6D Clifford algebra. The bivector holographic area-coordinates Xµν couple to the basis generators Γµ ∧ Γν .
The bivector coordinates Xµ5 couple to the basis generators Γµ ∧ Γ5 where now the Γ5 is another generator
of the 6D Clifford algebra and must not be confused with the usual γ5 defined by eq-(3.2 ) . The bivector
coordinates Xµ6 couple to the basis generators Γµ ∧ Γ6. The bivector coordinate X56 couples to the basis
generator Γ5 ∧ Γ6.

In view of this fact that these bivector holographic area-coordinates in 6D couple to the bivectors basis
elements Γµ ∧Γν , ... , and whose algebra is in turn isomorphic to the 4D conformal algebra SO(4, 2) via the
realization in terms of the 6D angular momentum generators ( and boosts generators ) Mµν ∼ [Γµ,Γν ] ,
Mµ5 ∼ [Γµ,Γ5],.... we shall define the holographic area coordinates algebra in C-space as the dual algebra
to the SO(4, 2) conformal algebra ( realized in terms of the 6D angular momentum, boosts, generators in
terms of a 6D Clifford algebra generators as shown )

Notice that the conformal boosts Kµ and the translations Pµ in eq-( 2.1 ) do commute [Pµ, P ν ] =
[Kµ,Kν ] = 0 and for this reason we shall assign the appropriate correspondence pµ ↔ Xµ6 and xµ ↔ Xµ5,
up to numerical factors ( lengths ) to match dimensions, in order to attain noncommuting variables xµ, pµ .

Therefore, one has two possible routes to relate Yang’s algebra with Clifford algebras. One can relate
Yang’s algebra with the holographic area-coordinates algebra in the C-space associated to a 6D Clifford
algebra and/or to the subalgebra of a 4D Clifford algebra via the realization of the conformal algebra
SO(4, 2) in terms of the 4D Clifford algebra generators 1, γ5, γµ as shown in eq-(2.1).

Since the relation between the 4D conformal and Yang’s algebra and the implications for the AdS/CFT ,
dS/CFT duality have been discussed before by Tanaka [ 3 ]. In this work we will invoke the following
correspondence between the C-space holographic-area coordinates algebra ( associated to the 6D Clifford
algebra ) and the Yang’s spacetime algebra via the angular momentum generators in 6D as follows :
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iM̂µν = ih̄Σµν ↔ i
h̄

λ2
X̂µν . (2− 3)

iM̂56 = ih̄Σ56 ↔ i
h̄

λ2
X̂56. (2− 4)

iλ2Σµ5 = iλx̂µ ↔ iX̂µ5. (2− 5)

iλ2Σµ6 = iλ2 R

h̄
p̂µ ↔ iX̂µ6. (2− 6)

With Hermitian ( bivector ) operator- coordinates :

(X̂µν)† = X̂µν . (X̂µ5)† = X̂µ5. (X̂µ6)† = X̂µ6. (X̂56)† = X̂56. (2− 7)

The algebra generators can be realized as :

X̂µν = iλ2(Xµ ∂

∂Xν
−Xν ∂

∂Xµ
). (2− 8a)

X̂µ5 = iλ2(Xµ ∂

∂X5
−X5 ∂

∂Xµ
). (2− 8b)

X̂µ6 = iλ2(Xµ ∂

∂X6
−X6 ∂

∂Xµ
). (2− 8c)

X̂56 = iλ2(X5 ∂

∂X6
−X6 ∂

∂X5
). (2− 8d)

where the angular momentum generators are defined as usual :

M̂µν ≡ h̄Σµν . M̂µ5 ≡ h̄Σµ5. M̂µ6 ≡ h̄Σµ6. M̂56 ≡ h̄Σ56. (2− 8e)

which have a one-to-one correspondence to the Yang Noncommutative space-time ( YNST ) algebra gener-
ators in 4D. These generators ( angular momentum differential operators ) act on the coordinates of a 5D
hyperboloid AdS5 space defined by :

−(X1)2 + (X2)2 + (X3)2 + (X4)2 + (X5)2 − (X6)2 = R2. (2− 9a)

where R is the throat size of the hyperboloid. This introduces an extra and crucial scale in addition to the
Planck scale. Notice that η55 = +1. η66 = −1. 5D de Sitter space dS5 has the topology of S4 × R1 .
Whereas AdS5 space has the topology of R4×S1 and its conformal ( projective ) boundary at infinity has a
topology S3 × S1 . Whereas the Euclideanized Anti de Sitter space AdS5 can be represented geometrically
as two disconnected branches ( sheets ) of a 5D hyperboloid embedded in 6D . The topology of these
two disconnected branches is that of a 5D disc and the metric is the Lobachevsky one of constant negative
curvature. The conformal group SO(4, 2) leaves the 4D lightcone at infinity invariant.

Thus, Euclideanized AdS5 is defined by a Wick rotation of the x6 coordinate giving :

−(X1)2 + (X2)2 + (X3)2 + (X4)2 + (X5)2 + (X6)2 = R2. (2− 9b)

whereas de Sitter space dS5 with the topology of a pseudo-sphere S4 × R1 , and positive constant scalar
curvature is defined by :

−(X1)2 + (X2)2 + (X3)2 + (X4)2 + (X5)2 + (X6)2 = −R2. (2− 9c)

( Notice that Tanaka [ 3] uses different conventions than ours in his definition of the 5D hyperboloids. He
has a sign change from R2 to −R2 because he introduces i factors in iR ) .
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After this discussion and upon a direct use of the correspondence in eqs-(2.3, 2.4, 2.5, 2.6 ...) yields the
exchange algebra between the position and momentum coordinates :

[X̂µ6, X̂56] = −iλ2η66X̂µ5 ↔ [
λ2R

h̄
p̂µ, λ2Σ56] = −iλ2η66λx̂µ. (2− 10)

from which we can deduce that :
[p̂µ, Σ56] = −iη66 h̄

λR
x̂µ. (2− 11)

and after using the definition N = (λ/R)Σ56 one has the exchange algebra commutator of pµ and N of the
Yang’s spacetime algebra :

[p̂µ,N ] = −iη66 h̄

R2
x̂µ. (2− 12)

The other commutator is :

[X̂µ5, X̂56] = −[X̂µ5, X̂65] = iη55λ2X̂µ6 ↔ [λx̂µ, λ2Σ56] = iη55λ2λ2 R

h̄
p̂µ. (2− 13)

from which we can deduce that :
[x̂µ,Σ56] = iη55 λR

h̄
p̂µ. (2− 14)

and after using the definition N = (λ/R)Σ56 one has the exchange algebra commutator of xµ and N of the
Yang’s spacetime algebra :

[x̂µ,N ] = iη55 λ2

h̄
p̂µ. (2− 15)

The other relevant holographic area-coordinates commutators in C-space are :

[X̂µ5, X̂ν5] = −iη55λ2X̂µν ↔ [x̂µ, x̂ν ] = −iη55λ2Σµν . (2− 16)

after using the representation of the C-space operator holographic area-coordinates :

iX̂µν ↔ iλ2 1
h̄
Mµν = iλ2Σµν iX̂56 ↔ iλ2Σ56. (2− 17)

where we appropriately introduced the Planck scale λ as one should to match units. From the correspondence
:

p̂µ =
h̄

R
Σµ6 ↔ h̄

R

1
λ2

X̂µ6. (2− 18)

one can obtain nonvanishing momentum commutator :

[X̂µ6, X̂ν6] = −iη66λ2X̂µν ↔ [p̂µ, p̂ν ] = −iη66 h̄2

R2
Σµν . (2− 19)

The signatures for AdS5 space are η55 = +1; η66 = −1 and for the Euclideanized AdS5 space are η55 = +1
and η66 = +1. Yang’s space-time algebra corresponds to the latter case.

Finally, the modified Heisenberg algebra can be read from the following C-space commutators :

[X̂µ5, X̂ν6] = iηµνλ2X̂56 ↔

[x̂µ, p̂µ] = ih̄ηµν λ

R
Σ56 = ih̄ηµνN . (2− 20)

Eqs-(2.12, 2.15, 2.16, 2.19, 2.20 ) are the defining relations of Yang’s Noncommutative 4D spacetime algebra
[ 1 ] involving the 8D phase-space variables. These commutators obey the Jacobi identities. There are other
commutation relations like [Mµν , xρ], [Mµν , pρ] that we did not write down. These are just the well known
rotations ( boosts ) of the coordinates and momenta.
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When λ → 0 and R → ∞ one recovers the ordinary commutative spacetime algebra. The Snyder
algebra [ 2] is recovered by setting R →∞ while leaving λ intact. To recover the ordinary Weyl-Heisenberg
algebra is more subtle. Tanaka [ 3 ] has shown the the spectrum of the operator N = (λ/R)Σ56 is discrete
given by n(λ/R) . This is not suprising since the angular momentum generator M56 associated with the
Euclideanized AdS5 space is a rotation in the now compact x5 − x6 directions. This is not the case in
AdS5 space since η66 = −1 and this timelike direction is no longer compact. Rotations involving timelike
directions are equivalent to noncompact boosts with a continuous spectrum.

In order to recover the standard Weyl-Heisenberg algebra from Yang’s Noncommutative spacetime
algebra, and the standard uncertainty relations ∆x∆p ≥ h̄ with the ordinary h̄ term , rather than the nh̄
term, one needs to take the limit n →∞ limit in such a way that the net combination of n λ

R → 1. This can
be attained when one takes the double scaling limit of the quantities as follows :

λ → 0. R →∞. λR → L2.

limn→∞ n
λ

R
= n

λ2

λR
=

nλ2

L2
→ 1. (2− .21)

From eq-(2.21) one learns then that :

nλ2 = λR = L2. (2− .22)

The spectrum n corresponds to the quantization of the angular momentum operator in the x5−x6 direction
(after embedding the 5D hyperboloid of throat size R onto 6D ) . Tanaka [ 3] has shown why there is a
discrete spectra for the spatial coordinates and spatial momenta in Yang’s spacetime algebra that yields a
minimum length λ ( ultraviolet cutoff in energy ) and a minimum momentum p = h̄/R ( maximal length R
, infrared cutoff ) . The energy and temporal coordinates had a continous spectrum.

The physical interpretation of the double-scaling limit of eq-( 2.22 ) is that the the area L2 = λR becomes
now quantized in units of the Planck area λ2 as L2 = nλ2 . Thus the quantization of the area ( via the
double scaling limit ) L2 = λR = nλ2 is a result of the discrete angular momentum spectrum in the x5− x6

directions of the Yang’s Noncommutative spacetime algebra when it is realized by ( angular momentum )
differential operators acting on the Euclideanized AdS5 space ( two branches of a 5D hyperboloid embedded
in 6D ). A general interplay between quantum of areas and quantum of angular momentum, for arbitrary
values of spin, in terms of the square root of the Casimir A ∼ λ2

√
j(j + 1), has been obtained a while ago in

Loop Quantum Gravity by using spin-networks techniques and highly technical area-operator regularization
procedures [4] .

The advantage of this work is that we have arrived at similar ( not identical ) area-quantization con-
clusions in terms of minimal Planck areas and a discrete angular momentum spectrum n via the double
scaling limit based on Clifford algebraic methods (C-space holographic area-coordinates). This is not sur-
prising since the norm-squared of the holographic Area operator has a correspondence with the quadratic
Casimir ΣABΣAB of the conformal algebra SO(4, 2) ( SO(5, 1) in the Euclideanized AdS5 case ). This
quadratic Casimir must not be confused with the SU(2) Casimir J2 with eigenvalues j(j + 1) . Hence, the
correspondence given by eqs-(2.3-2.8) gives A2 ↔ λ4ΣABΣAB .

In [5] we have shown why AdS4 gravity with a topological term; i.e. an Einstein-Hilbert action with
a cosmological constant plus Gauss-Bonnet terms can be obtained from the vacuum state of a BF-Chern-
Simons-Higgs theory without introducing by hand the zero torsion condition imposed in the MacDowell-
Mansouri-Chamsedine-West construction. One of the most salient features of [5] was that a geometric mean
relationship was found among the cosmological constant Λc , the Planck area λ2 and the AdS4 throat size
squared R2 given by (Λc)−1 = (λ)2(R2). A similar geometric mean relation is also obeyed by the condition
λR = L2(= nλ2) in the double scaling limit of Yang’s algebra which suggests to identify the cosmological
constant as Λc = L−4 . This geometric mean condition remains to be investigated further. In particular,
we presented the preliminary steps how to construct a Noncommutative Gravity via the Vasiliev-Moyal star
products deformations of the SO(4, 2) algebra used in the study of higher conformal massless spin theories
in AdS spaces by taking the inverse-throat size 1/R as a deformation parameter of the SO(4, 2) algebra [26]
. A Moyal deformation of ordinary Gravity via SU(∞) gauge theories was advanced in [8] .
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Since the expectation value
λ2

L2
< n|Σ56|n >=

nλ2

L2
= 1. (2− 23)

in the double-scaling limit one recovers the standard Heisenberg uncertainty relations :

∆xµ∆pµ ≥ 1
2
|| < [xµ, pµ] > || = h̄. (2− 24)

and the commutators become in the double-scaling limit:

[p̂µ, Σ56] = −iη66 h̄

L2
x̂µ. [p̂µ, N ] = 0. (2− 25)

[x̂µ, Σ56] = −iη55 L2

h̄
p̂µ. [x̂µ, N ] = 0. (2− 26)

[x̂µ, x̂ν ] = [p̂µ, p̂ν ] = 0. [x̂µ, p̂µ] = ih̄ηµν λ2

L2
Σ56 → ih̄ηµν1. (2− 27)

Rigorously speaking, when λ → 0 the last commutator [xµ, pν ] → 0 since the generator Σ56 is well defined.
It is the large n limit of the spectrum < n|Σ56|n > that reproduces the ordinary Heisenberg uncertainty
relations.

3 . QUANTUM MECHANICS IN YANG’S NONCOMMUTATIVE SPACETIME
FROM ORDINARY QUANTUM MECHANICS IN HIGHER DIMENSIONS

In order to write wave equations in non-commuting spacetimes we start with a Hamiltonian written in
dimensionless variables involving the terms of the relativistic oscillator ( let us say oscillations of the center
of mass ) and the rigid rotor/top terms ( rotations about the center of mass ) :

H = (
pµ

(h̄/R)
)2 + (

xµ

LP
)2 + (Σµν)2. (3− 1)

with the fundamental difference that the coordinates xµ and momenta pµ obey the non-commutative Yang’s
space time algebra. For this reason one cannot naively replace pµ any longer by the differential operator
−ih̄∂/∂xµ nor write the Σµν generators as (1/h̄)(xµ∂xν

− xν∂xµ
). The correct coordinate realization of

Yang’s noncommutative spacetime algebra requires, for example, embedding the 4-dim space into 6-dim and
expressing the coordinates and momenta operators as follows :

pµ

(h̄/R)
↔ Σµ6 = i

1
h̄

(Xµ∂X6 −X6∂Xµ
).

xµ

LP
↔ Σµ5 = i

1
h̄

(Xµ∂X5 −X5∂Xµ
).

Σµν ↔ i
1
h̄

(Xµ∂Xν
−Xν∂Xµ

). N = Σ56 ↔ i
1
h̄

(X5∂X6 −X6∂X5). (3− 2)

this allows to express H in terms of the standard angular momentum operators in 6-dim. The XA =
Xµ, X5, X6 coordinates (µ = 1, 2, 3, 4) and PA = Pµ, P 5, P 6 momentum variables obey the standard com-
mutation relations of ordinary QM in 6-dim

[XA, XB ] = 0. [PA, PB ] = 0. [XA, PB ] = ih̄ηAB . (3− 3)

so that the momentum admits the standard realization as PA = −ih̄∂/∂XA

Therefore, concluding, the Hamiltonian H in eq-( 3-1) associated with the non-commuting coordinates
xµ and momenta pµ in d−1-dimensions can be written in terms of the standard angular momentum operators
in (d− 1) + 2 = d + 1-dim as H = C2 −N 2, where C2 agrees precisely with the quadratic Casimir operator
of the SO(d− 1, 2) algebra in the spin s = 0 case,

C2 = ΣABΣAB = (XA∂B −XB∂A)(XA∂B −XB∂A) = −X2∂A∂A + [(d− 1) + (XB∂B)] XA∂A. (3− 4)
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One remarkable feature is that C2 also agrees with the D’Alambertian operator for the Anti de Sitter Space
AdSd of unit radius ( throat size ) (DµDµ)AdSd

as it was shown by [22 ].
The proof requires to show that the D’Alambertian operator for the d + 1-dim embedding space (

expressed in terms of the XA coordinates ) is related to the D’Alambertian operator in AdSd space of unit
radius expressed in terms of the z1, z2, ....., zd bulk intrinsic coordinates as :

(DµDµ)Rd+1 = − ∂2

∂ρ2
− d

ρ

∂

∂ρ
+

1
ρ2

(DµDµ)AdS ⇒

C2 = ρ2(DµDµ)Rd+1 + [ (d− 1) + ρ
∂

∂ρ
] ρ

∂

∂ρ
= (DµDµ)AdSd

. (AdSd of unit radius). (3− 5)

This result is just the hyperbolic-space generalization of the standard decomposition of the Laplace operator
in spherical coordinates in terms of the radial derivatives plus a term containing the square of the orbital
angular momentum operator L2/r2. In the case of nontrivial spin, the Casimir C2 = ΣABΣAB + SABSAB

has additional terms stemming from the spin operator.
The quantity Φ(z1, z2, ....., zd)|boundary restricted to the d−1-dim projective boundary of the conformally

compactified AdSd space ( of unit throat size, whose topology is Sd−2 × S1 ) is the sought-after solution to
the Casimir invariant wave equation associated with the non-commutative xµ coordinates and momenta pµ

of the Yang’s algebra ( µ = 1, 2, ...., d − 1 ). Pertaining to the boundary of the conformally compactified
AdSd space, there are two radii R1, R2 associated with Sd−2 and S1, respectively, and which must not be
confused with the two scales R,LP appearing in eq-(3-1). One can choose the units such that the present
value of the Hubble scale ( taking the Hubble scale as the infrared cutoff ) is R = 1. In these units the
Planck scale LP will be of the order of LP ∼ 10−60. In essence, there has been a trade-off of two scales
LP , R with the two radii R1, R2.

Once can parametrize the coordinates of AdSd = AdSp+2 by writing [23]

X0 = R cosh(ρ)cos(τ). Xp+1 = R cosh(ρ)sin(τ). Xi = R sinh(ρ)Ωi. (i = 1, 2, ..., p + 1;
∑

Ω2
i = 1).
(3− 6a)

The metric of AdSd = AdSp+2 space in these coordinates is :

ds2 = R2[−(cosh2ρ)dτ2 + dρ2 + (sinh2ρ)dΩ2]. (3− 6b)

where 0 ≤ ρ and 0 ≤ τ < 2π are the global coordinates. The topology of this hyperboloid is S1 ×Rp+1. To
study the causal structure of AdS it is convenient to unwrap the circle S1 ( closed-timelike coordinate τ )
to obtain the universal covering of the hyperboloid without closed-timelike curves and take −∞ ≤ τ ≤ +∞.
Upon introducing the new coordinate 0 ≤ θ < π/2 related to ρ by tan(θ) = sinh(ρ), the metric in (3-6b)
becomes

ds2 =
R2

cos2θ
[−dτ2 + dθ2 + (sinh2ρ)dΩ2]. (3− 7)

It is a conformally-rescaled version of the metric of the Einstein static universe. Namely, AdSd = AdSp+2

can be conformally mapped into one-half of the Einstein static universe, since the coordinate θ takes values
0 ≤ θ < π/2 rather than 0 ≤ θ < π. The boundary of the conformally compactified AdSp+2 space has
the topology of Sp × S1 ( identical to the conformal compactification of the p + 1-dim Minkowski space ).
Therefore, the equator at θ = π/2 is a boundary of the space with the topology of Sp. Ωp is the solid angle
coordinates corresponding to Sp and τ is the coordinate which parametrizes S1. For a detailed discussion of
AdS spaces and the AdS/CFT duality see [23] .

The D’Alambertian in AdSd space ( of radius R, later we shall set R = 1 ) is :

DµDµ =
1
√

g
∂µ (

√
g gµν∂ν ) =

cos2θ

R2
[ −∂2

τ +
1

(R tanθ)p
∂θ ( (R tanθ)p ∂θ ) ] +

1
R2 tan2θ

L2 (3− 8)

where L2 is the Laplacian operator in the p-dim sphere Sp whose eigenvalues are l(l + p− 1).
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The scalar field can be decomposed as Φ = eωRτ Yl(Ωp) G(θ) and the wave equation

(DµDµ −m2)Φ = 0. (3− 9)

leads to :

[ cos2θ ( ω2 + ∂2
θ +

p

tanθ cos2θ
∂θ ) +

l(l + p− 1)
tan2θ

−m2R2 ] G(θ) = 0. (3− 10)

whose solution is

G(θ) = (sinθ)l (cosθ)λ±
2F1(a, b, c; sinθ). (3− 11)

The hypergeometric function is defined

2F1(a, b, c, z) =
∑ (a)k(b)k

(c)kk!
zn. |z| < 1. (3− 12)

(λ)o = 1. (λ)k =
Γ(λ + k)

Γ(λ)
= λ(λ + 1)(λ + 2).......(λ + k − 1). k = 1, 2, .... (3− 13)

where
a =

1
2
(l + λ± − ωR). b =

1
2
(l + λ± + ωR). c = l +

1
2
(p + 1) > 0. (3− 14a)

λ± =
1
2
(p + 1)± 1

2

√
(p + 1)2 + 4(mR)2. (3− 14b)

The analytical continuation of the hypergeometric function for |z| ≥ 1 is :

2F1(a, b, c, z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt. Real(c) > 0. Real(b) > 0. (3− 15)

The boundary value when θ = π/2 gives

limz→1− F (a, b, c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

. (3− 16)

Let us study the behaviour of the solution G(θ) in the massless case

m = 0. λ− = 0. λ+ = p + 1. (3− 17)

Solutions with λ+ = p + 1 yield a trivial value of G(θ) = 0 at the boundary θ = π/2 since cos(π/2)p+1 = 0.
Solutions with λ− = 0 lead to cos(θ)λ− = cos(θ)0 = 1 prior to taking the limit θ = π/2. The expression
cos(π/2)λ− = 00 = is ill defined. Upon using L’ Hopital rule it yields 0. Thus, the limit θ = π/2 must be
taken afterwards the limit λ− = 0 :

limθ→π/2 [ cos(θ)λ− ] = limθ→π/2 [cos(θ)0] = limθ→π/2 [1] = 1. (3− 18)

In this fashion the value of G(θ) is well defined and nonzero at the boundary when λ− = 0 and leads
to the value of the wavefunction at the boundary of the conformally compactified AdSd ( for d = p + 2 with
radius R )

Φboundary = Φ(τ,Ωp) = eiωRτ Yl(Ωp)
Γ(l + (p + 1)/2)Γ((p + 1)/2)

Γ(ωR + (l + p + 1)/2)Γ(−ωR + (l + p + 1)/2)
(3− 19a)
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upon setting the radius of AdSd space to unity it gives

Φboundary = Φ(τ,Ωp; R = 1) = eiωτ Yl(Ωp)
Γ(l + (p + 1)/2)Γ((p + 1)/2)

Γ(ω + (l + p + 1)/2)Γ(−ω + (l + p + 1)/2)
. (3− 19b)

Hence, Φboundary in eq-(3-19b) is the solution to the Casimir invariant wave equation in the massless m = 0
case :

C2 Φ = [ (
pµ

(h̄/R)
)2 + (

xµ

LP
)2 + (Σµν)2 +N 2 ] Φ = 0. (3− 20)

And :

[ (
pµ

(h̄/R)
)2 + (

xµ

LP
)2 + (Σµν)2 ] Φ = [ C2 −N 2 ] Φ = −ω2Φ. (when R = 1) (3− 21)

since N = Σ56 is the rotation generator along the S1 component of AdS space. It acts as ∂/∂τ only on the
eiωRτ piece of Φ. Concluding :

Φ(z1, z2, ....., zd)|boundary, restricted to the d−1-dim projective boundary of the conformally compactified
AdSd space ( of unit radius and topology Sd−2 × S1 ) given by eq-(3-19), is the sought-after solution to the
wave equations (3-20, 3-21) associated with the non-commutative xµ coordinates and momenta pµ of the
Yang’s algebra and where the indices µ range over the dimensions of the boundary µ = 1, 2, ...., d− 1 . This
suggests that QM over Yang’s Noncommutative Spacetimes could be well defined in terms of ordinary QM
in higher dimensions ! This idea deserves further investigations. It was argued by [26] that the quantized
Nonabelian gauge theory in d dimensions can be obtained as the infrared limit of the corresponding classical
gauge theory in d + 1-dim. The quantization of a free massive particle moving in de Sitter spaces by three
different methods has been achieved in [24]. Casimir invariant field equations of the quaplectic group, related
to Born’s reciprocal principle of Relativity in phase spaces, have been studied by [25].

An interesting case to study, is the quantization of particles moving in the Anti de Sitter/Schwarzchild
Black Hole Background in 4-dim ( blackhole situated at the origin r = 0 in AdS4 space ) whose metric is no
longer asymptotically flat but instead is asymptotically AdS4 ( in natural units h̄ = c = 1 ) :

ds2 = (
r2

R2
+ 1− 2GM

r
)dt2 +

dr2

( r2

R2 + 1− 2GM
r )

+ r2dΩ2. (3− 22)

Solutions like (3-22) can be generalized to higher dimensions. The relevance of these AdS/Schwarzchild
Black Hole Backgrounds is the presence of the two scales LP , R ( when M = mPlanck = L−1

P ; G = L2
P

) relevant to the Yang’s noncommutative algebra, and 3 horizons r1, r2, r3 given by solutions of the cubic
equation :

r3

R2
+ r − 2GM = 0. (3− 23)

Wave equations in projective boundaries of these Anti de Sitter/Schwarzchild Black Hole Backgrounds de-
serve further investigation.

4. MOYAL-YANG-KONTSEVICH STAR PRODUCTS AND NONCOMMUTATIVE QM

4.1 MOYAL STAR PRODUCTS AND NONCOMMUTATIVE POISSON BRACKETS

The ordinary Moyal star-product of two functions in phase space f(x, p), g(x, p) is :

(f ∗ g)(x, p) =
∑

s

h̄s

s!

s∑
t=0

(−1)tC(s, t)(∂s−t
x ∂t

pf(x, p))(∂t
x∂s−t

p g(x, p)) (4− 1)

where C(s, t) is the binomial coefficient s!/t!(s− t)!. In the h̄ → 0 limit the star product f ∗ g reduces to the
ordinary pointwise product fg of functions. The Moyal product of two functions of the 2n-dim phase space
coordinates (qi, pi) with i = 1, 2...n is:
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(f ∗ g)(x, p) =
n∑
i

∑
s

h̄s

s!

s∑
t=0

(−1)tC(s, t)(∂s−t
xi

∂t
pi

f(x, p))(∂t
xi

∂s−t
pi

g(x, p)) (4− 2)

The noncommutative, associative Moyal bracket is defined:

{f, g}MB =
1
ih̄

(f ∗ g − g ∗ f). (4− 3)

The task now is to construct novel Moyal-Yang star products based on the noncommutative spacetime
Yang’s algebra. A novel star product deformations of ( super ) p-brane actions based on the noncommutative
spacetime Yang’s algebra where the deformation parameter is h̄eff = h̄LP /R , for nonzero values of h̄, was
obtained in [21] The modified ( noncommutative ) Poisson bracket is now given by

{ F (qm, pm) , G (qm, pm) }Ω = (∂ZmF) Ωmn (∂ZnG) = (∂qmF) {qm, qn} (∂qnG) +

(∂pmF) {pm, pn} (∂pnG) + (∂qmF) {qm, pn} (∂pnG) + (∂pmF) {pm, qn} (∂qnG). (4− 4)

where the entries {qm, qn} 6= 0, {pm, pn} 6= 0, and {pm, qn} = −{qn, pm} can be read from the commutators
described in section 2 by simply defining the deformation parameter h̄eff ≡ h̄(LP /R). One can generalize
Yang’s original 4-dim algebra [1] to noncommutative 2n-dim world-volumes and/or spacetimes by working
with the 2n + 2-dim angular-momentum algebra SO(d, 2) = SO(p + 1, 2) = SO(2n, 2).

The Noncommutative Poisson brackets ( NCPB ) are defined by

Ω(qm, qn) = {qm, qn}NCPB = limh̄eff→0
1

ih̄eff
[qm, qn] = −L2

h̄
Σmn. (4− 5a)

Ω(pm, pn) = {pm, pn}NCPB = limh̄eff→0
1

ih̄eff
[pm, pn] = − h̄

L2
Σmn (4− 5b)

Ω(qm, pn) = −Ω(pn, qm) = {qm, pn}NCPB = limh̄eff→0
1

ih̄eff
[qm, pn] = −ηmn. (4− 5c)

where Σmn above is the ”classical ” h̄eff = (h̄LP /R) → 0 limit ( R → ∞, LP → 0, RLP = L2, h̄ 6= 0 )
of the quantity Σmn = 1

h̄ (XmPn − XnPm), after embedding the d − 1 dimensional spacetime ( boundary
of AdSd ) into an ordinary (d − 1) + 2-dimensional one. In the R → ∞, ...... limit, the AdSd space ( the
hyperboloid ) degenerates into a flat Minkowski spacetime and the coordinates qm, pn, in that infrared limit,
coincide with the coordinates Xm, Pn. Concluding, in the ”classical” limit ( R → ∞, ....., flat limit ) one
has

Σmn ≡ 1
h̄

(XmPn −XnPm) → 1
h̄

(qmpn − qnpm). (4− 5d)

and then one recovers in that limit the ordinary definition of the angular momentum in terms of commuting
coordinates q’s and commuting momenta p’s.

Denoting the coordinates (qm, pm) by Zm and when the Poisson structure Ωmn is given in terms of
constant numerical coefficients, the Moyal star product is defined in terms of the deformation parameter
h̄eff = h̄LP /R as

( F ∗ G )(z) ≡ exp [ (ih̄eff ) Ωmn ∂(z1)
m ∂(z2)

n ] F(z1) G(z2)|z1=z2=z. (4− 6)

where the derivatives ∂
(z1)
m act only on the F(z1) term and ∂

(z2)
n act only on the G(z2) term.

In our case the generalized Poisson structure Ωmn is given in terms of variable coefficients, it is a
function of the coordinates, then ∂Ωmn 6= 0, since the Yang’s algebra is basically an angular momentum
algebra, therefore the suitable Moyal-Yang star product given by Kontsevich [13] will contain the appropriate
corrections ∂Ωmn to the ordinary Moyal star product
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Denoting by ∂m = ∂/∂zm = (∂/∂qm; /∂/∂pm) the Moyal-Yang-Kontsevich star product, let us say, of
the Hamiltonian H(q, p) with the density distribution in phase space ρ(q, p) ( not necessarily positive definite
) , is

H(q, p) ∗ ρ(q, p) = Hρ + ih̄eff Ωmn (∂mH∂nρ) +
(ih̄eff )2

2
Ωm1n1 Ωm2n2 (∂2

m1m2
H) (∂2

n1n2
ρ) +

(ih̄eff )2

3
[ Ωm1n1(∂n1Ω

m2n2)(∂m1∂n2H∂n2ρ− ∂m2H∂m1∂n2ρ) ] + O(h̄3
eff ). (4− 7)

where the explicit components of Ωmn are given by eqs-(4-5a-4-5d). The Kontsevich star product is associa-
tive up to second order [13] (f ∗ g) ∗ h = f ∗ (g ∗ h) + O(h̄3

eff ).
The most general expression of the Kontsevich star product in Poisson manifolds is quite elaborate

and shall not be given here. Star products in curved phase spaces have been constructed by Fedosov [14] .
Despite these technical subtlelties it did not affect the final expressions for the ”classical” Noncommutative
p-brane actions shown in [ 21] when one takes the h̄eff → 0 ”classical” limit. In that limit there are still
nontrivial noncommutative corrections to the ordinary p-brane actions [ 21] .

In the Weyl-Wigner-Gronewold-Moyal quantization scheme in phase spaces one writes

H(x, p) ∗ ρ(x, p) = ρ(x, p) ∗H(x, p) = Eρ(x, p). (4− 8)

where the Wigner density function in phase space associated with the Hilbert space state |Ψ > is

ρ(x, p, h̄) =
1
2π

∫
dy Ψ∗(x− h̄y

2
) Ψ(x +

h̄y

2
) eipy/h̄ (4− 9)

plus their higher dimensional generalizations. It remains to be studied if this Weyl-Wigner-Gronewold-Moyal
quantization scheme is appropriate to study QM over Noncommutative Yang’s spacetimes when we use the
above Moyal-Yang-Kontsevich star products. A recent study of the Yang’s Noncommutative algebra and
discrete Hilbert (Buniy-Hsu-Zee) spaces was undertaken by Tanaka [3].

4.2 FIELD THEORY IN YANG’S NONCOMMUTATIVE SPACETIMES

Let us write down the Moyal-Yang-Konstevich star deformations of the Field theory Lagrangian cor-
responding to the scalar field Φ = Φ(XAB) which depends on the holographic-area coordinates XAB [19].
The reason one should not try to construct the star product of Φ(xm) ∗ Φ(xn) based on the Moyal-Yang-
Kontsevich product, is because the latter star product given by eq-(4-7) will introduce explicit momentum
terms in the r.h.s of Φ(xm) ∗ Φ(xm), stemming from the expression Σmn = xmpn − xnpm of eq-(4-5d), and
thus it invalidates writing φ = φ(x) in the first place. If the Σmn were numerical constants, like Θmn , then
one could write the Φ(xm) ∗ Φ(xm) in a straightforward fashion as it is done in the literature.

The reason behind choosing Φ = Φ(XAB) is more clear after one invokes the area-coordinates and
angular momentum correspondence discussed in detail in section 2 . It allows to properly define the star
products. A typical Lagrangian is of the form

L = − Φ ∗ ∂2
XAB Φ(XAB) +

m2

2
Φ(XAB) ∗ Φ(XAB) +

gn

n
Φ(XAB) ∗ Φ(XAB) ∗ .... ∗n Φ(XAB). (4− 10)

and leads to the equations of motion

−( ∂/∂XAB ) (∂/∂XAB ) Φ(XAB) + m2 Φ(XAB) +

gn Φ(XAB) ∗ Φ(XAB) ∗ .... ∗n−1 Φ(XAB) = 0. (4− 11)

when the multi-symplectic ΩABCD form is coordinate-independent, the star product is

( Φ ∗ Φ ) (ZAB) ≡ exp [ ( iλ ΩABCD ∂XAB ∂Y AB ) ] Φ(XAB) Φ(Y AB)|X=Y =Z =
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exp [ ( ΣABCD ∂XAB ∂Y AB ) ] Φ(XAB) Φ(Y AB)|X=Y =Z = (4− 12)

where ΣABCD is derived from the structure constants of the holographic area-coordinate algebra in C-spaces
[ 20]

[XAB , XCD] = ΣABCD ≡ iL2
P (ηADXBC − ηACXBD + ηBCXAD − ηBDXAC). (4− 13)

there are nontrivial derivative terms acting on ΣABCD in the definition of the star product ( Φ ∗Φ ) (ZMN )
as we have seen in the definition of the Kontsevich star product H(x, p) ∗ ρ(x, p) in eq-(4-7) . The expansion
parameter in the star product is the Planck scale squared λ = L2

P . The star product has the same functional
form as (4-7) with the only difference that now we are taking derivatives w.r.t the area-coordinates XAB

instead of derivatives w.r.t the variables x, p :

Φ ∗ Φ = Φ2 + ΣABCD (∂ABΦ∂CDΦ) +
1
2

ΣA1B1C1D1 ΣA2B2C2D2 (∂2
A1B1A2B2

Φ) (∂2
C1D1C2D2

Φ) +

1
3
[ ΣA1B1C1D1(∂C1D1Σ

A2B2C2D2)(∂A1B1∂A2B2Φ ∂C2D2Φ− ∂A2B2Φ ∂A1B1∂C2D2Φ) ] + O(L6
P ). (4− 14)

Notice that the powers of iL2
P are encoded in the definition of ΣABCD. The star product is noncommutative

but is also nonassociative at the order O(L6
P ) and beyond. The Jacobi identities would be anomalous at

that order and beyond. The derivatives acting on ΣABCD are

(∂C1D1Σ
A2B2C2D2) = iL2

P (ηA2D2δB2C2
C1D1

− ηA2C2δB2D2
C1D1

+ ηB2C2δA2D2
C1D1

− ηB2D2δA2C2
C1D1

). (4− 15)

where
δAB
CD = δA

CδB
D − δA

DδB
C . (4− 16)

and the higher derivatives like (∂2
A1B1C1D1

ΣA2B2C2D2) = 0 will be zero.

5. CONCLUDING REMARKS : ON THE DIRAC-KONSTANT EQUATION
IN CLIFFORD SPACES

To conclude this work we will discuss the wave equations relevant to fermions. The ”square” of the
Dirac-Konstant equation

(γ[µν]Σµν)Ψ = λΨ. (5− 1)

yields
(γ[µν]γ[ρτ ]ΣµνΣρτ )Ψ = λ2Ψ ⇒

[γ[µνρτ ] + (ηµργ[ντ ] − ηµτγ[νρ] + ....... ) + (ηµρηντ1− ηµτηνρ1)] ΣµνΣρτ Ψ = λ2Ψ. (5− 2)

where we omitted numerical factors. The generalized Dirac equation in Clifford spaces is given by [19]

−i(
∂

∂σ
+ γµ ∂

∂xµ
+ γ[µν] ∂

∂xµν
+ ............. + γ[µ1µ2....µd] ∂

∂xµ1µ2....µd
) Ψ(σ, xµ, xµν , .....) = λΨ. (5− 3).

where σ, xµ, xµν , ..... are the generalized coordinates associated with the Clifford polyvector in C-space :

X = σ1 + γµxµ + γµ1µ2xµ1µ2 + ..... γµ1µ2.....µdxµ1µ2.....µd
. (5− 4)

after the length scale expansion parameter is set to unity [19].
The generalized Dirac-Konstant equations in Clifford-spaces are obtained after introducing the gener-

alized angular momentum operators [20]

Σ[ [µ1µ2....µn] [ν1ν2....νn] ] =

X [ [µ1µ2....µn] P [ν1ν2......νn] ] = X [µ1µ2....µn] i(∂/∂X[ν1ν2......νn ]) − X [ν1ν2....νn] i(∂/∂X[µ1µ2......µn ]). (5− 5)
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by writing ∑
n

γ[ [µ1µ2.....µn]γ[ν1ν2.....νn] ] Σ[ [µ1µ2....µn] [ν1ν2....νn] ] Ψ = λΨ. (5− 6)

and where we sum over all polyvector-valued indices (antisymmetric tensors of arbitrary rank) . Upon
squaring eq-(5-5), one obtains the Clifford space extensions of the D0-brane field equations found in [3]
which are of the form

[ XAB(∂/∂XCD)−XCD(∂/∂XAB) ] [ XAB(∂/∂XCD)−XCD(∂/∂XAB) ] Ψ = 0. (5− 6)

where A,B = 1, 2, ..., 6. It is warranted to study all these equations in future work and their relation
to the physics of D-branes and Matrix Models [3]. Yang’s Noncommutative algebra should be extended to
superspaces, meaning non-anti-commuting Grassmanian coordinates and noncommuting bosonic coordinates.
Non ( anti ) commutative Superspace, the so-called ” Snyderspace”, Noncommutative Geometry and their
implications to String Theory, UV/IR Mixing, Wilson Lines, etc.... can be found in [6]. On Generalized
Yang-Mills theories and higher spin extensions [ 27, 28] of the Standard Model in Clifford/Tensorial Spaces
can be found in [29, 30].
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