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Abstract

A novel invariant gauge field theory realization of Kac-Moody ex-
tensions of w∞(w1+∞) algebras and based on a Lie group G is con-
structed. The most relevant physical feature of this theory is that it de-
scribes an effective field theory of ”colored” internal w∞(w1+∞) strings
when G = SU(3). We conclude with a discussion of how these theo-
ries might provide infinite higher conformal-spins extensions of Grand
Unified Models and the Standard Model in four dimensions.

Keywords: W∞ Gauge Theories, Kac-Moody Algebras, Grand Unifica-
tion, Higher spins, Strings, Membranes, Matrix Models

Sometime ago, a gauge theory of the Virasoro-Kac-Moody symmetry as-
sociated with an arbitrary grand-unified gauge group G was constructed by
[1] that could be interpreted as an effective field theory of a coloured internal
string. Such theory was the Kac-Moody extension of the gauge theory of the
Virasoro group constructed earlier by [2] and which could be seen as a gauge
theory of an internal string. The former theory automatically (geometrically
and without the ad-hoc introduction of Higgs fields) breaks the symmetry down
to H ⊗U(1), where H is a subgroup of G and U(1) is the Cartan subgroup of
the Virasoro group. The symmetry breaking is what guarantees the unitarity
of the theory since the adjoint representation of the Virasoro group is not uni-
tary. Later on, a gauge theory of the w∞ algebra (a higher conformal spin
extension of the Virasoro algebra) was constructed by [3] and it was followed
by a gauge theory of a diffeomorphism subgroup of the torus membrane and
whose adjoint representation was unitary [5] .

It was shown recently [6] how w∞, w1+∞ gauge field theory actions in 2D
emerge directly from an Einstein-Hilbert 4D Gravitational action. Strings
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and Membranes actions in 2D and 3D originated as well from 4D Einstein
Gravity after recurring to the nonlinear connection formalism of Lagrange-
Finsler and Hamilton-Cartan spaces [21]. We argued why quantum gravity in
3D can be described by a W∞ Matrix Model in D = 1 that can be solved
exactly via the collective field theory method [7], and why a quantization of
4D Gravity could be attained via a 2D Quantum W∞ gauge theory coupled
to an infinite-component scalar field multiplet belonging to the infinite-dim
representation Vα,β (for α = −1/2, β = 0) of the w∞ group constructed by
Feigin-Fuks-Kaplansky (FFK) [4].

Our results [6] were based on [8] where it have shown that m+n-dimensional
Einstein gravity can be identified with an m-dimensional generally invariant
gauge theory of Diffs N (where N is an n-dim internal manifold) and cou-
pled to a non-linear sigma scalar field whose self interaction potential term is
related to the gauged Ricci scalar curvature of the internal manifold. When
the internal manifold N is a homogeneous compact space one can perform a
harmonic expansion of the fields w.r.t the internal y coordinates, and after
integrating w.r.t these internal y coordinates, one will generate an infinite-
component field theory on the m-dimensional space. A reduction of the Diffs
N , via the inner automorphims of a subgroup G of the Diffs N , yields the
usual Einstein-Yang-Mills theory interacting with a nonlinear sigma field. But
in general, the theory described in [8] is by far richer than the latter theory.

It was found in [18] that the D = m + n dimensional gravitational action
restricted to AdSm×Sn backgrounds admits a holographic reduction to a lower
d = m-dimensional Yang-Mills-like gauge theory of diffs of Sn, interacting with
a charged/gauged nonlinear sigma model plus boundary terms, by a simple
tuning of the radius of Sn and the size of the throat of the AdSm space.
Namely, in the case of AdS5 × S5, the holographic reduction occurs if, and
only if, the size of the AdS5 throat coincides precisely with the radius of S5

ensuring a cancellation of the scalar curvature gμνR(m)
μν of AdS5 with the scalar

curvature gabR
(n)
ab of the internal S5 space.

Zamolodchikov [9] was the first to pioneer the theory of higher conformal
spin algebras wN , N = 2, 3, 4, ...., in 2D that are the higher conformal spin
extensions of the Virasoro algebra ( w2 ) that arise in various physical systems
as in 2D quantum gravity, the quantum Hall effect, the membrane, the large
N QCD, gravitational instantons, topological QFT, etc.... see [11] for an
extensive review and references. The w1+∞ algebra is isomorphic to the area-
preserving diffs algebra of the cylinder S1 × R1 . The w∞ algebra is the area-
preserving diffs algebra of the two-dim plane and is comprised of higher spin
generators whose conformal spin range is s = 2, 3, 4, .... and it is a subalgebra of
w1+∞. For an extensive list of references on w∞ algebras, w∞ gravity, extended
conformal field theories and their vast applications in physics see [10], [12], [13],
[17].
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The Kac-Moody extension of the w∞(w1+∞)-algebra is defined by the re-
lations

[L�m , Ta,�n] = − [ (m2 + 1)n1 − m1(n2 + 1) ] Ta,�m+�n. (1)

[L�m , L�n] = [ (n2+1)m1−(m2+1)n1 ] L�m+�n +
c

12
(m3

1−m1)δ
m2,0 δn2,0 δm1+n1,0.

(2)

[Ta,�m , Tb,�n] = f c
ab Tc,�m+�n +

κ

16
m1 δm2+1,0 δn2+1,0 δm1+n1,0. (3)

c is the central charge of the w∞(w1+∞) algebra and κ is the level of the Kac-
Moody extension. For a SU(N) Kac-Moody extension of the w∞ algebra,
the central charge c and the level κ of the Kac-Moody algebra are related as
c = Nκ by virtue of the Jacobi identities [12]. For the time being we will focus
in the case that c = κ = 0. The indices a, b, c of the Kac-Moody extension
are the Lie algebra g indices ranging from 1, 2, 3, ...., dim g where g is the
corresponding Lie algebra associated with the group G . The coefficients fabc

are the structure constants of the Lie algebra g. The generators of the SU(N)
Kac-Moody extension of the area-preserving diffs algebra of a cylinder S1 ×R
(in the centerless c = κ = 0 case) can be represented as

V l
m = − i eimθ yl [−im y ∂y + (l + 1) ∂θ]; T l,a

m = − iτa yl+1 eimθ. (4)

where τa are the N2 − 1 generators of SU(N).
The range of the 2-dim lattice vector indices in eqs-(1-3)

�m = (m1, m2), �n = (n1, n2). (5a)

is given by

−∞ ≤ m1 ≤ ∞; −∞ ≤ n1 ≤ ∞; m2 ≥ s−2; n2 ≥ s−2; (5b)

The conformal (internal) su(1, 1) spin s associated with the (internal) 2D
higher conformal spin generators vm2

m1
, vn2

n1
.... of the w∞(w1+∞) gauge algebra is

represented by the indices m2, n2, ..... such that the conformal spin s is given by
s = m2+2, s = n2+2, ..... . The range of conformal spin values associated with
the w∞ algebra is s = 2, 3, .....∞. The w1+∞ algebra conformal spin ranges
from s = 1, 2, 3, 4, ....∞. Whereas the indices m1, n1, ..... label the infinite
number of Fourier modes associated with each single one of the conformal
spin-s generators. The Virasoro algebra corresponds to the conformal spin-2
generator and can be denoted as the w2 algebra.

Let φ
�k be a Hermitian scalar field (φ

�k)∗ = φ−�k and belonging to the (α =

−1, β = 0) FFK representation of the w∞(w1+∞)-group. Let A
�k
μ be a Hermitian
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gauge potential (A
�k
μ)∗ = A−�k

μ belonging to the (α = 1, β = 0) adjoint FFK
representation. An invariant Lagrangian in a 4D spacetime is

L1 =
∑
�j,�k

− 1

4ρ3
(φ3)−�j−�k F

�j
μν F

�k
μν − ρ

2
(
1

φ
)−�j−�k (Dμφ

�j) (Dμφ
�k). (6)

where μ, ν are the 4D spacetime indices and �j,�k are the internal 2D lattice
indices associated with the infinite-dim w∞(w1+∞) algebra. A mass parameter
ρ is required in eq-(6) to render the 4D action dimensionless. The inverse of
the scalar field is defined in terms of the norm-squared as

(φ−1)
�k ≡ φ

�k

||φ||2 ; ||φ||2 ≡ g�m�n φ�mφ�n =
∑
�m

φ�m φ�m =
∑
�m

φ−�m φ�m. (7)

the invariant tensor that allows to lower indices is g�m�n = δ0
�m+�n. The n-th

power of the scalar field φ
�k belonging to a (α, β) FFK representation of the

w∞(w1+∞) group is given by

(φn)
�k ≡ ∑

�k1+�k2+.....+�kn=�k

φ
�k1 φ

�k2 ............. φ
�kn. (8)

and its weight is (nα, nβ) . The F
�k
μν field strength associated with the Hermi-

tian gauge potential A
�k
μ belonging to the adjoint (α = 1, β = 0) FFK repre-

sentation of the w∞(w1+∞) group is defined as

F
�k
μν = ∂μA

�k
ν −∂νA

�k
μ + ie [ (m2+1)(2m1−k1)−m1(2m2−k2) ] A�m

μ A
�k−�m
ν . (9)

The covariant derivative of a hermitian scalar multiplet φ
�k belonging to the

(α = −1, β = 0) FFK representation of the w∞(w1+∞) group is

Dμφ
�k = ∂μφ

�k + ie [ m1k2 − (m2 + 1)k1 ] A�m
μ φ

�k−�m. (10)

The Kac-Moody extension of the invariant Lagrangian L1 is more subtle.

The full-fledged w∞(w1+∞)-Kac-Moody covariantized F c�k
μν field strength is

defined in terms of the w∞(w1+∞) field strength F
�k
μν given above by eq-(9),

and the w∞(w1+∞)-Kac-Moody field strength F c�k
μν as follows

F c�k
μν = F c�k

μν +
e

ρ
F �m

μν φc�k−�m. (11)

where the Kac-Moody field strength F c�k
μν in the r.h.s of eq-(11) is given in terms

of the gauge fields A
�k
μ, Ac�k

ν as

F c�k
μν = ∂μAc�k

ν − ∂νA
c�k
μ + gf c

ab Aa�m
μ Ab�k−�m

ν +
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ie [ m1(k2 + 1) − (m2 + 1)k1 ] ( A�m
μ Ac�k−�m

ν − A�m
ν Ac�k−�m

μ ). (12)

Notice that the presence of the w∞(w1+∞)-Kac-Moody Hermitian scalar mul-

tiplet φc�k in eq- (11) is also required in the definition of F c�k
μν and it ensures

that F c�k
μν belongs to a (α = 0, β = 0) FFK representation. It is the full-

fledged w∞(w1+∞)-Kac-Moody covariantized F c�j
μν field strength which trans-

forms covariantly under the action of the w∞(w1+∞) group as a (α = 0, β = 0)
FFK representation

δW F c�k
μν = i { (m2+1) [(α+1)m1+β−k1]−m1 [(α+1)m2−k2] } ξ �m F c�k−�m

μν =

i [ m1(k2 + 1) − (m2 + 1)k1 ] ξ �m F c�k−�m
μν (13)

Therefore, an invariant Lagrangian (in a 4D spacetime) under the full-
fledged action action of the w∞(w1+∞)-Kac-Moody group is then given by

L2 =
∑
�j,�k

− 1

4ρ
(φ)−�j−�k F c�j

μν F c�k
μν − ρ

2
(
1

φ
)−�j−�k (Dμφc�j) (Dμφ

c�k). (14)

The full-flegded w∞(w1+∞)-Kac-Moody covariantized derivative Dμφ
c�k is

defined

Dμφ
c�k = ∂μφc�k +gf c

ab Aa�m
μ φb�k−�m + ie [ m1k2− (m2 +1)k1 ] A�m

μ φc�k−�m. (15)

Under infinitesimal gauge transformations of the Kac-Moody algebra asso-
ciated with the infinitesimal parameter ξa�m one has

δKM F c�k
μν = f c

ab ξa�m F b�k−�m
μν ; δKM Dμφ

c�k = f c
ab ξa�m Dμφ

b�k−�m. (16)

Under the infinitesimal action of the w∞(w1+∞) algebra associated with
the infinitesimal parameter ξ �m one has

δW Dμφ
c�k = i [ m1k2 − (m2 + 1)k1 ] ξ �m Dμφc�k−�m. (17a)

δW F c�k
μν = i [ m1(k2 + 1) − (m2 + 1)k1 ] ξ �m F c�k−�m

μν . (17b)

Under the combined action of the w∞(w1+∞)-Kac-Moody algebra one has

δWKM Dμφ
c�k = i [ m1k2 − (m2+1)k1 ] ξ �m Dμφc�k−�m + f c

ab ξa�m Dμφ
b�k−�m. (18)
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δWKM F c�k
μν = i [ m1(k2+1) − (m2 +1)k1 ] ξ �m F c�k−�m

μν + f c
ab ξa�m F b�k−�m

μν (19)

The gauge invariance of L1,L2 follows from the fact that each term in the
Lagrangians forms a scalar product

< χ | φ > = (χ
�k)∗ φ

�k = (χ−�k) φ
�k. (20)

which is invariant under the gauge transformations. In order to write invari-
ant actions based on a scalar product the weights must obey α∗ + α + 1 = 0
and β∗ − β = 0 where α∗, β∗ are the weights of the dual representation
V ∗

α,β = V−1−α,−β. This is the case of each term in L1,L2. The Lagrangian
is real-valued (invariant under charge conjugation) as a result of the Hermitic-
ity of the field strengths and covariant derivatives, and does not contain any
Higgs-type potential for the scalar fields. Nevertheless, despite the absence of
an ad-hoc Higgs type potential as the authors [1] explained for the Virasoro
( w2 ) Kac-Moody algebra case, the vacuum expectation values < φk >= ρδk

0

and < φc,k >= ρcδk
0 (the indices c span over the dimension of the Lie algebra g

associated with the group G ) lead to a symmetry breaking down to H ⊗U(1)
, where H is a subgroup of G and U(1) is the Cartan subgroup of the Virasoro
group. This w∞(w1+∞)-Kac-Moody gauge theory is a non-linearly realized
gauge theory by virtue of the relation (11) which establishes a nonlinear re-

lation among the covariantized field strength F c�k
μν and F�k

μν, φ
c�k. For instance,

the Lagrangians of eqs-(6, 14) explicitly furnish nonlinear equations of mo-

tion for the scalar fields φ
�k, φc�k. As emphasized by [1] this type of gauge

theories differ from the standard Callan-Coleman-Wess-Zumino non-linear
field realization. Despite that the theory in [1] is made of non-unitary FFK
representations of the Virasoro group it, nevertheless, has a positive-definite
Hamiltonian resulting from the fact that after the symmetry breaking down
to the Cartan subgroup U(1) all physical fields form unitary representations
of the unbroken subgroup.

The symmetry breaking process in the w∞(w1+∞)-Kac-Moody case is far
more complex . It remains to be studied the unitarity of the theories associated
with the unbroken subgroups. For instance, a symmetry breaking mechanism
of w∞(w1+∞) down to the Virasoro algebra (w2) should lead to an infinite
collection of massive higher spin fields. It has ben speculated that the infinite
number of massive Virasoro-string states lying along a Regge trajectory might
follow from a symmetry breaking mechanism of the w∞(w1+∞) symmetry as-
sociated to the infinite number of massless higher spin states of w∞(w1+∞)-
strings living in a flat target spacetime background [10], [13]. Among the most
salient features of this theory based on the novel Lagrangians L1,L2 is that
it is a field theory realization of the w∞(w1+∞)-Kac-Moody algebra which
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was seen as an unresolved problem a while ago [10]. To sum up, the most
relevant physical feature of this work is that the Lagrangian L1 + L2 should
describe an effective field theory of ”coloured” internal w∞(w1+∞) strings when
G = SU(3). The large N → ∞ limit of the SU(N) extension of w∞ algebras
were studied by [12] and correspond to area-preserving (symplectic) diffs in
four dimensions.

[V l,�k
m , V j,�l

n ] = [ (j +1)m− (l+1)n ] V l+j,�k+�l
m+n + [ k1l2−k2l1 ] V l+j+1,�k+�l

m+n . (21)

To finalize we will discuss how to build Lagrangians corresponding to higher
conformal-spin extensions of Grand Unified Models and the Standard Model.
The w∞, w1+∞ gauge invariant Lagrangian density in 4D was constructed by
[3]

L =
∑
�i,�j

(Φ6)−�i−�j F�i
μν Fμν,�j +

∑
�k

(DμΦ
−�k) (DμΦ

�k) + V (Φ
�k). (22)

where we have set the mass scale parameter ρ = 1. As usual, the gauge field

A
�k
μ is Hemitian ( w.r.t a well defined scalar product ) (A

�k
μ)

∗ = A−�k
μ = Aμ,�k

and belongs to the adjoint representation Vα,β constructed by Feigin-Fuks-
Kaplansky (FFK) [4] with α = 1, β = 0 as before. However, the scalar field

Φ
�k in (22) is now an infinite-component complex scalar multiplet belonging

to the infinite-dim FFK vector representation Vα,β with (α = −1/2, β = 0),
instead of belonging to a (α = −1, β = 0) FFK representation as before in
eqs-(6,14). It is for this reason that a potential term is now allowed in (22)
because any polynomial comprising powers of the bilinear combination given

by the scalar product Φ−�k(x)Φ
�k(x) is gauge invariant, due to the fact that each

bilinear factor obeys the condition α∗ + α + 1 = 0 and β∗ − β = 0.
The covariant derivative in (22) is now given by

(DμΦ
�k) = ∂μΦ

�k + ie [ (m2 +1)(
m1

2
−k1) − (

m2

2
−k2)m1 ] A�m

μ Φ
�k−�m. (23)

The gauge invariant Lagrangian based on the Virasoro w2 algebra involving
only the conformal spin 2 current ( stress energy tensor) was constructed by
[2] and can be obtained from the w∞ Lagrangian by a simple truncation. One
can add a fermionic Lagrangian to the one in eq-(22)

Lf =
∑
�k,�m

Ψ̄−�k Γμ { ∂μΨ
�k + ie [ (m2+1)(

m1

2
−k1) − (

m2

2
−k2)m1 ] A�m

μ Ψ
�k−�m }.

(24)
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we have omitted the spinor indices. Ψ
�k is a 4D space-time infinite-component

spinor-multiplet belonging to a (α = −1/2, β = 0) FKK representation and Γμ

are the 4D spacetime Clifford algebra 4×4 matrices. A Kac-Moody extension
of the Lagrangians (22, 24) differs from the expressions in eqs-(6,14). For
instance, by choosing G to be one of the grand unification groups SU(5) ⊂
SO(10) ⊂ E6 ⊂ E7 ⊂ E8, these Kac-Moody extensions of the w∞(w1+∞) gauge
field theories represented by (22, 24) yield the Lagrangians that describe the
infinite higher conformal-spins extensions of the Grand Unified Models and the
Standard Model in 4D. More precisely, as discussed in [6], one may define the
Lagrangian density of a Yang-Mills-like w∞, w1+∞ gauge field theory coupled to
a scalar field Φ valued in the adjoint representation of w∞, w1+∞ and subject
to a self-interacting scalar potential V (Φ) by

L = Trace [ − 1

2
Fμν Fμν + DμΦ DμΦ + V (Φ) ]. (25)

The trace operation given by an infinite sum over all the generators of the
w∞, w1+∞ algebra can be replaced by an integration over the internal y1, y2

coordinates of the internal two-dim surface N of the form

L =
∫

d2y [ − 1

2
Fμν F μν + DμΦ DμΦ + V (Φ) ] (26)

leading to to an effective 6D theory ( 2 internal dimensions and 4 spacetime
dimensions) for the fields Aμ(xμ, ya) and Φ(xμ, ya) with ya = y1, y2 representing
the internal coordinates of the 2-dim internal manifold. The commutators
[Aμ,Aν] are replaced by Poisson brackets {Aμ, Aν} w.r.t the internal y1, y2

coordinates. The main problem is to find irreducible unitary representations
(different from the non-unitary FFK representations) of w∞, w1+∞ to carry
over the program based on eqs-(25,26).

Finally, some concluding remarks are in order. W strings based on Excep-
tional algebras E6, E7, E8 and other Lie algebras have been studied by [14].
Higher dimensional extensions of 2D w∞ algebras were analyzed by [15], thus
it remains an open problem how to construct gauge theories based on these
higher-dim extensions of w∞ algebras; i.e. how to construct gauge theories
of p-volume preserving diffs and relate them to an effective field theory of p-
branes . Higher spins theories in Anti de Sitter spaces were developed by [16]
long ago and are currently studied vigorously.

Upon quantization, the classical w∞(w1+∞) algebras get deformed into
W∞(W1+∞) algebras constructed by [13] and which coincide also with Moyal
deformations of the classical w∞(w1+∞) algebras [12]. The Moyal deformation
quantization of the Lagrangians in eqs-(6, 14) presented in this work deserve
further investigation. Moyal deformations of gravity via SU(∞) gauge theories
and holography were constructed in [19]. The W∞ gravity formulation of [17]
based on the 4D self-dual gravity associated to the geometry of the contangent
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space of 2-dim Riemann surfaces could also be interpreted from a Fedosov
deformation quantization procedure of symplectic manifolds [20]. Recent work
on Fedosov deformation quantization of gravity based on Lagrange-Finsler
geometric methods has been carried out by [21]. Hawking radiation, W∞
algebras and trace anomalies is an active field of research at the present, see
[25] and references therein.

Non-critical W∞ (super) strings were found to be devoid of BRST anomalies
in dimensions D = 27 (D = 11), respectively [23], and which coincide with the
alleged critical (super) membrane dimensions D = 27 (D = 11) [24]. A QCD
membrane from the large N limit of the SU(N) Yang-Mills theory quenched
down to a line was found by [22]. Clearly, a lot remains to be done ahead in
this fascinating field of W∞ algebras. For example, the supersymmetrization
program of this work.
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