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Abstract

We show the existence of timelike naked singularities which are not
hidden by a horizon and which are associated to spherically symmet-
ric (noncompact) matter sources extending from r = 0 to r = ∞. Our
asymptotically flat solutions do represent observable timelike naked sin-
gularities where the scalar curvature R and volume mass density ρ(r) are
both singular at r = 0. To finalize we explain the Finsler geometric
origins behind the matter field configuration obeying the weak energy
conditions and that leads to a timelike naked singularity.

Long ago Penrose [1] proposed the Cosmic Censorship Conjecture (CCC)
stating that singularities which form in a gravitational collapse and consistent
with Einstein’s [2] field equations should never be visible to an outside observer
or they should be hidden inside a horizon. Recently, Deshingkar [3] studied
singularities which can form in a spherically symmetric gravitational collapse
of a general matter field obeying the weak energy condition. He showed that
no energy can reach an outside observer from a null naked singularity. That
means they will not be a serious threat to the Cosmic Censorship Conjecture
(CCC). For timelike naked singularities, where only the central shell gets sin-
gular, the redshift is always finite and they can in principle, carry energy to a
faraway observer. Hence for proving or disproving CCC the study of timelike
naked singularities is more important. The results of [3] were very general and
independent of the initial data and the form of the matter.

The purpose of this letter is to show the existence of timelike naked singular-
ities which are not hidden by a horizon and which are associated to spherically
symmetric noncompact matter sources extending for r = 0 to r = ∞. Our
asymptotically flat solutions do represent observable timelike naked singu-
larities where the scalar curvature R and volume mass density ρ(r) are both
singular at r = 0 while the metric remains finite at r = 0. The Einstein
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field equations [2] associated with the signature (+,−,−,−) in natural units
h̄ = c = 1 are

G00 = R00 −
1
2

g00 R = 8πG T00; Rij −
1
2

gij R = 8πG Tij (1)

Tij are the stress energy tensor elements comprised of a radial and tangential
pressures similar to a self-gravitating anisotropic fluid studied by [8]

ρ(r) = − pr(r), ptangential = pθ = pφ . (2)

The components of the mixed stress energy tensor 1 are Tµ
µ = (ρ(r),−pr,−pθ,−pφ).

The radial pressure pr = −ρ is negative, pointing radially inwards towards the
center r = 0 consistent with the self-gravitating picture of the droplet. The
continuity equation when pr(r) = −ρ(r) yields

∇r T r
r = 0 ⇒ pθ = pφ = − ρ(r)− r

2
dρ

dr
. (3)

which is the relationship between the density and pressure as shown in particular
by [8]. Instead of choosing a delta function point mass source [13] or a smeared
delta function given by the Gaussian [8]

ρ(r) = Mo
e−r2/4σ2

(4πσ2)3/2
⇒ limσ→0

e−r2/4σ2

(4πσ2)3/2
→ δ(r)

4πr2
. (4)

we will choose instead the following volume mass density density distribution
associated with a noncompact source extending from r = 0 to r =∞

ρ(r, σ) =
Mo

4πr2

3 σ3

2
1

r4 [ 1 + (σ/r)3 ]3/2
; σ > 0. (5)

which belongs to the most general two-parameter family of volume mass density
distributions

ρ(r, σ, κ) =
Mo

4πr2

κ σκ

2
1

rκ+1 [ 1 + (σ/r)κ ]3/2
; κ > 2. (6)

parametrized by the length scale σ and the exponent κ > 2. At the end of this
work we shall explain the Finsler geometric origins behind the matter configu-
ration of eq-(5) that leads to timelike naked singularities.

From eqs-(2,3,5) one learns that the weak energy conditions ρ ≥ 0 and
ρ+ pi ≥ 0 (i = 1, 2, 3) are satisfied due to dρ/dr < 0; whereas the strong energy
conditions ρ +

∑
i pi ≥ 0 are only satisfied in the region r ≥ σ/2, but not in

the central core region r < σ/2. While on the other hand, the dominant energy
conditions ρ ≥ |pi| are satisfied for the values of r ≤ σ(5/4)1/3 but violated for
the values of r > σ(5/4)1/3 . Thus, the matter field configuration studied here
obeys only the weak energy conditions. One may be inclined to question the

1we have a change of sign from [8]

2



physical validity of having a non-compact matter source extending all the way
to infinity (mass density and pressure tending to zero as r →∞) , obeying the
weak energy conditions, and having a singular density and pressure at r = 0. By
the same token, one might have been inclined to question the physical validity
of the Hilbert-Schwarzschild solution in 1916 (that led to the concept of black
hole) based on an infinitely compact point-mass source (of zero extension) with
a singular mass density distribution at r = 0. For this reason, we should not
discard the model studied here.

The total mass enclosed by the noncompact shell between r = 0 and r =∞
is given by the integral of ρ(r, σ) 4πr2 :

Mo
3 σ3

2

∫ ∞

0

1
r4 [ 1 + (σ/r)3 ]3/2

dr = Mo [
1√

1 + (σ/r)3
]r=∞r=0 = Mo (7)

Despite that ρ(r = 0) =∞, the quantity 4πr2 ρ(r) ∼ r1/2 → 0 as r → 0, and
this is the reason why the integral (7) converges to the finite value Mo which
can be seen as the net mass being delocalized all over space, rather than being
concentrated at the point r = 0 in the delta function source case, or smeared
by the Gaussian distribution as in the case studied by [8] such that ρ and the
scalar curvature R were finite at the origin r = 0; whereas in our case both
expressions diverge at r = 0.

The metric line element which solves Einstein’ s equations, due to the pres-
ence of the volume mass density ρ(r) distribution and pressure given by eqs-
(2,3), can be obtained by a direct application of Birkoff’s theorem by evaluating
the (variable) mass M(r, σ) enclosed by a shell of radius r

(ds)2 = (1− 2G M(r, σ)
r

) (dt)2 − (1− 2G M(r, σ)
r

)−1 (dr)2 − r2 (dΩ)2. (8)

where the solid angle infinitesimal element is (dΩ)2 = (dφ)2+sin2(φ)(dθ)2. The
mass enclosed in a spherical shell of radius r due to the density distribution
ρ(r, σ) is

M(r, σ) = Mo
3σ3

2

∫ r

0

1
r4 [ 1 + (σ/r)3 ]3/2

dr = Mo [
1√

1 + (σ/r)3
]. (9)

We can see that the metric component

gtt = 1− 2GMo

r
√

1 + (σ/r)3
. (10)

obeys the condition gtt(r = 0) = gtt(r =∞) = 1 . The metric given by eq-(8) is
asymptotically flat and is not singular at r = 0, however the scalar curvature R
is singular at r = 0 as we will show next. The scalar curvature can be obtained
from Einstein’s equations by taking the trace of 8πG (Tµν) leading to
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R = − 8πG [ 4ρ(r) + r
∂ρ

∂r
] = − 8πG Tµ

µ = − 8πG T. (11)

after recurring to eqs-(2,3). The expression for R coincides with the expression
obtained directly from the metric components after a laborious but straightfor-
ward calculation

R = − 2G [
1
r

∂2M(r, σ)
∂r2

+
2
r2

∂M(r, σ)
∂r

]. (12)

After using the relations

ρ(r, σ) =
1

4πr2

∂M(r, σ)
∂r

,
∂2M(r, σ)

∂r2
= 8πrρ + 4πr2 ∂ρ

∂r
(13)

one can verify that the expressions in eqs-(12,13) are the same indeed which is
a corroboration of the validity of the metric solution (8) to the Einstein field
equations associated to the matter distribution of eqs-(2,3). Thus, the scalar
curvature associated with the mass function M(r, σ) in eq-(10) becomes

R = − (2GMo) (
3 σ3

r6
) [ − 1

[ 1 + (σ/r)3 ]3/2
+

9 σ3

4 r3

1
[ 1 + (σ/r)3 ]5/2

] (14)

and it is singular at r = 0 by inspection because R in eq-(15) behaves as

R ∼ − (2GMo) (
15

4 σ3/2 r3/2
) ∼ r−3/2 →∞ as r → 0. (15)

despite that the metric is not singular at r = 0, the reason being that the scalar
curvature depends directly on the density which is singular ρ(r = 0) = ∞, but
the metric depends on the mass function M(r, σ) given by the integral (9) such
that 4πr2 ρ(r) ∼ r1/2 → 0 as r → 0. When gtt(rh) = 0 at the location of a
horizon r = rh the component grr = −(gtt)−1 blows up, however the singularity
at r = rh is a coordinate singularity. Analytical extensions to the region r < rh

where gtt(r) < 0 is spacelike can be made following a similar procedure as
performed by Fronsdal-Kruskal-Szekeres [6].

We may notice that by setting σ → 0 in eq-(14), prior to taking the limit
r → 0, yields R → 0 as expected since one recovers then in eq-(8) the standard
Hilbert-Schwarzschild metric [4], [5] which is the static spherically symmetric
solution to the vacuum Einstein field equations. By replacing r for |r| in the
Hilbert-Schwarzschild metric one recovers the required delta function terms in
the scalar curvature due to a point mass delta function source as shown [13]

R = − 2GMo [
δ′(r)

r
+ 2

δ(r)
r2

]. (16)

due to the discontinuity of the derivative of the modulus function |r| at r =
0. A rigorous mathematical treatment of point-mass distributions in nonlinear
theories like gravity requires the use of Colombeau’s calculus [7]. We will show
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now that depending on the values of the ratios σ/2GM one can have one, two
and no horizons. This can be derived by solving the cubic equation

gtt(r, σ) = 0 ⇒ r3 − (2GMo)2 r + (σ)3 = 0. (17)

The 3 roots of the cubic equation are given in terms of the quantities S, T

S = [ − σ3

2
+

√
σ6

4
− (2GMo)6

27
]1/3, T = [ − σ3

2
−

√
σ6

4
− (2GMo)6

27
]1/3.

(18)
as follows

r1 = S + T =

[ − σ3

2
+

√
σ6

4
− (2GMo)6

27
]1/3 + [ − σ3

2
−

√
σ6

4
− (2GMo)6

27
]1/3. (19a)

r2 = − 1
2

(S+T ) +
i
√

3
2

(S−T ), r3 = − 1
2

(S+T ) − i
√

3
2

(S−T ). (19b)

There are 3 cases to study :
• (1) when the discriminant is equal to zero : σ6

4 − (2GMo)6

27 = 0, then S = T
and all the roots are real, there is a double root r2 = r3 > 0 and a negative root
r1 < 0 that is discarded. In this critical case there is one horizon corresponding
to the location

r2 = r3 = 2−1/3 (
4
27

)1/6 (2GMo) =
2GMo√

3
. (20)

• (2) when the discriminant σ6

4 − (2GMo)6

27 > 0, there is one real root r1 < 0
which is discarded and two complex conjugates roots r2 = (r3)∗. In this case
there is no horizon since there are no positive real values of r which solve the
horizon condition gtt(r) = 0.
• (3) when the discriminant σ6

4 − (2GMo)6

27 < 0, there are 3 real distinct
roots. From the graph of the cubic polynomial in eq-(17) we may infer that
there is one negative and two positive roots. The negative real root is discarded
and the two positive real roots correspond to the location of two horizons. The
3 real roots are expressed in terms of the angle α < 0 as [10]

r1 = − 2√
3

(2GMo) cos(
α

3
); r2 = − 2√

3
(2GMo) cos(

α + 2π

3
);

r3 = − 2√
3

(2GMo) cos(
α + 4π

3
). (21)
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The sum of the roots is r1 + r2 + r3 = 0 so the 3 roots in eq-(21) correspond
to the projections onto the real axis of the 3 vertices of an equilateral triangle
( the vertices are spaced 120 degrees apart ). The angle α < 0 is

α = cos−1 [ − 3
√

3
2

(
σ

2GMo
)3 ] < 0 ⇒ | 3

√
3

2
(

σ

2GMo
)3 | ≤ 1. (22)

since the range of the cosine function lies between −1 and 1. The existence of
one, two and no horizons depends on the relative ratios of the length scales σ
and 2GMo. When the net mass Mo is smaller (case (2)) than a certain critical
value Mcritical given by the relation

σ =
21/3

√
3

(2GMcritical) ⇒
σ

2GMcritical
=

21/3

√
3
∼ 0.727. (23)

there is no horizon and in this case (2) we have an observable naked timelike
singularity (which is not hidden behind any horizon since there is no horizon).
When there is a horizon, r = rh and grr = −(gtt)−1, the Hawking black hole
temperature is defined by

TH =
1
4π

(
∂gtt(r)

∂r
)r=rh

. (24)

In the extremal one horizon case we have that gtt(r = rh) = 0 and also
(∂gtt/∂r) = 0 at r = rh = r2 = r3 such that TH(r = rh) = 0 attains the
minimum zero value and the evaporation process stops, ”freezes” at that stage,
since one cannot go below the absolute zero temperature. One may envision a
two-horizon black-hole scenario as discussed by [8] where the black hole, during
the Hawking evaporation process, reaches a maximal temperature Tmax, and
from this point-on, it begins to cool down until it reaches the minimal zero
temperature at the critical point and corresponding to the one horizon extremal
solution associated to the double root rh = r2 = r3 = 2GMo√

3
of eq-(20).

The maximal Tmax occurs at the inflection point where (∂2gtt/∂r2) = 0.
Such inflection points exists because gtt(r = 0) = gtt(r = ∞) = 1 and gtt(r)
vanishes at the horizon as the graphs of [8] indicate for the Gaussian mass dis-
tribution. We have a similar behaviour in this work. However, this truncated
black-hole evaporation scenario at TH = 0 does not preclude the existence of ob-
servable timelike naked singularities (case (2)) because one may have, ab initio,
a matter configuration ρ(r, σ) such that Mo is already less than the critical
mass given by eq-(23) and which does not admit horizons ( it does not corre-
spond to a black hole). Namely, we have a matter configuration in case (2) that
did not arise as a result of a Hawking black-hole evaporation process associated
to a mass distribution whose Mo was initially greater than the critical mass.
For this reason, our solutions when Mo < Mcritical do represent observable
timelike naked singularities since the scalar curvature and mass density are
singular at r = 0 and gtt(r = 0) = 1. Once again, we must emphasize that the
fundamental difference between our solutions and those of [8], where one, two
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and no horizons are also found, is that we have a singular scalar curvature and
mass density at r = 0 compared to a finite value in [8].

To finalize, one can verify that null radial geodesics emanating from the
naked singularity r = 0 reach an observer at r 6=∞ in a finite time

(ds)2 = (1− 2G M(r, σ)
r

) (dt)2 − (1− 2G M(r, σ)
r

)−1 (dr)2 = 0 ⇒

∫ t

0

dt = t =
∫ r

0

dr

gtt(r, σ)
=

∫ r

0

dr

1− 2GMo

r
√

1+(σ/r)3

= finite. (25)

since gtt is never zero (1/gtt is never singular) when Mo < Mcritical (naked
singularity case) , thus the integrand is well behaved everywhere so the definite
integral does not diverge for a finite r and the light signal reaches the observer
in a finite time.

There are two interesting cases for the values of the scale parameter σ that
fixes the value of the critical mass, below which one has timelike naked singu-
larities and no horizon enclosing them. If one sets σ to be of the order of the
Planck scale LP , since in four dimensions one has G ∼ L2

P in natural units
of h̄ = c = 1 , one gets from eq-(23) that the critical mass is of the order of
the Planck mass. If one sets σ to be the Hubble scale of the order of 1061LP ,
one gets that the critical mass is of the order of the observed mass of the uni-
verse MUniverse ∼ 1061 mPlanck. Thus, from eq-(23) one infers that the scale
σ and the critical mass obey a self-similiarity behaviour (scaling invariance).
As the scale σ is increased so is the value of the critical mass and vice versa.
For instance, if one sets the critical mass to be of the order of the minimal
mass m ∼ 1/RHubble ∼ 10−61mPlanck one gets that the scale σ is of the order
10−61LP , etc....

A minimal mass in Noncommutative-geometry-inspired charged black holes
in four and extra dimensions has been analyzed by [8] and also by [9]. The mini-
mal scale and the thermodynamics of a black hole based on a generalized uncer-
tainty relation can be found in [9], [11]. A minimal mass within the framework
of the renormalization group improved Schwarzschild solution in asymptotically
safe quantum gravity in four dimension can be found in [12] where one, two and
no horizons are also found depending on the values of the mass.

The authors [16] have studied strong curvature singularities in gravitational
collapse where pressures were allowed to be negative while satisfying the weak
energy condition to avoid trapped surface formation (horizons). The formation
of trapped surfaces in spherically symmetric (inhomogeneous dust) gravitational
collapse can be viewed in terms of how much mass is there within a given area-
radius of the matter cloud. In order to avoid trapped surface formation there
must be a mechanism available to throw away and radiate the mass so that
the total mass in a shell of comoving radius r, at an epoch t, does not exceed
the size of the physical area radius R(r, t) determining the size of the apparent
horizon, at any given time t. It was found by [16] that the physical mechanism
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for the formation of a naked singularity was due to the presence of shear which
delays the formation of the apparent horizon.

It was also found by [17] that loss of matter due to heat flux prevents the
trapped surface formation and a naked singularity is formed at the end state
of the gravitational collapse. The latter authors considered a scenario where
the interior spacetime, described by a heat conducting fluid sphere, is matched
to a Vaidya metric in higher dimensions. The non-occurrence of a horizon is
due to the fact that the rate of mass loss is exactly counterbalanced by the
decrease of the boundary area-radius. These results posed a counter example to
the so-called cosmic censorship hypothesis. The stability issue of our solutions
and their implications to the work of [16], [17] deserve to be analyzed further.
Our results rely on the bounds of the net mass Mo (relative to the scale σ )
given by eq-(23) , whereas the results of [16], [17] depend on the ratio of the
mass function M(r, t) to the area-radius R(r, t).

To finalize, we should remark that the matter configuration of eq-(5) that
leads to timelike naked singularities when Mo < Mcritical was inspired from the
results of Brandt [14] based on the Finsler-geometry improved Schwarzchild so-
lutions to a system of two coupled fourth order nonlinear differential equations
associated with the modified Schwarzchild metric given in terms of a length
scale σ. It turns out that the metric (8) is not a solution of the fourth order
differential equations found by Brandt [14] as I have been informed by [15].
Concluding, this is where the expression for the mass density ρ in eq-(5) leading
to the timelike naked singularities originated. As far as we know there is no
cosmic censorship conjecture in Finsler geometry and very little is known about
gravitational collapse in Finsler geometry 2.
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