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Abstract

It is shown how w∞, w1+∞ Gauge Field Theory actions in 2D emerge
directly from 4D Gravity. Strings and Membranes actions in 2D and 3D
originate as well from 4D Einstein Gravity after recurring to the nonlinear
connection formalism of Lagrange-Finsler and Hamilton-Cartan spaces.
Quantum Gravity in 3D can be described by a W∞ Matrix Model in D = 1
that can be solved exactly via the Collective Field Theory method. We de-
scribe why a quantization of 4D Gravity could be attained via a 2D Quan-
tum W∞ gauge theory coupled to an infinite-component scalar-multiplet.
A proof that non-critical W∞ (super) strings are devoid of BRST anoma-
lies in dimensions D = 27 (D = 11), respectively, follows and which coin-
cide with the critical (super) membrane dimensions D = 27 (D = 11). We
establish the correspondence between the states associated with the quasi
finite highest weights irreducible representations of W∞, W̄∞ algebras and
the quantum states of the continuous Toda molecule. Schroedinger-like
QM wave functional equations are derived and solutions are found in the
zeroth order approximation. Since higher-conformal spin W∞ symmetries
are very relevant in the study of 2D W∞ Gravity, the Quantum Hall ef-
fect, large N QCD, strings, membranes, ...... it is warranted to explore
further the interplay among all these theories.

Keywords: Quantum Gravity, W∞-gravity, W∞ Gauge Theories, Higher spins,
Holography, Moyal Brackets, Collective Field Theory, Strings, Branes, Matrix
Models.
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1 Gravity as Gauge Theories of Diffeomorphisms
and Hidden Symmetries of M theory

In this introductory section we will review the work of [2] and afterwards we
will discuss the recent work related the Hidden Symmetries of M theory.

1.1 Gravity in D = m + n as an m-dim Gauge Theory of
diffeomorphisms of an internal n-dim space and Holog-
raphy

Some time ago Park [1] showed that 4D Self Dual Gravity is equivalent to a
WZNW model based on the group SU(∞). Namely, 4D Self Dual Gravity is the
non-linear sigma model based in 2D whose target space is the “group manifold”
of area-preserving diffs of another 2D-dim manifold. Roughly speaking, this
means that the effective D = 4 manifold, where Self Dual Gravity is defined,
is “spliced” into two 2D-submanifolds: one submanifold is the original 2D base
manifold where the non-linear sigma model is defined. The other 2D subman-
ifold is the target group manifold of area-preserving diffs of a two-dim sphere
S2.

The authors [2] went further and generalized this particular Self Dual Gravity
case to the full fledged gravity in D = 2 + 2 = 4 dimensions, and in general, to
any combinations of m + n-dimensions. Their main result is that m + n-dim
Einstein gravity can be identified with an m-dimensional generally invariant
gauge theory of Diffs N , where N is an n-dim manifold. Locally the m + n-
dim space can be written as Σ = M × N and the metric GAB decomposes
as:

GAB =
(
gµν(x, y) + e2gab(x, y) Aa

µ(x, y) Ab
ν(x, y) eAa

µ(x, y) gab(x, y)
eAa

µ(x, y) gab(x, y) gab(x, y)

)
,

(1.1)
The connection Aa

µ(x, y) is the nonlinear connection formalism of Lagrange-
Finsler and Hamilton-Cartan spaces [6], [60], [61], [62]. The decomposition (1.1)
must not be confused with the Kaluza-Klein reduction where one imposes an
isometry restriction on the γAB that turns Aa

µ into a gauge connection associated
with the gauge group G generated by isometry. Dropping the isometry restric-
tions allows all the fields to depend on all the coordinates x, y. Nevertheless
Aa

µ(x, y) can still be identified as a connection associated with the infinite-dim
gauge group of Diffs N . The gauge transformations are now given in terms of
Lie-brackets and Lie derivatives:

δAa
µ = −1

e
Dµξ

a = −1
e
(∂µξ

a − e[Aµ, ξ]a) = −1
e
(∂µ − eLAµ)ξa,

Aµ ≡ Aa
µ∂a,

2



LAµξ
a ≡ [Aµ, ξ]a,

δgab = −[ξ, g]ab = ξc∂cgab + gac∂bξ
c + gcb∂aξ

c,

δgµν = −[ξ, gµν ]. (1.2)

In particular, if the relevant algebra is the area-preserving diffs of S2, given
by the suitable basis dependent limit SU(∞) [49], one induces a natural Lie-
Poisson structure generated by the gauge fields Aµ. The Lie derivative of f
along a vector ξ is the Lie bracket [ξ, f ], which coincides in this case with the
Poisson bracket {ξ, f}. This implies that the Lie brackets of two generators of
the area-preserving diffs S2 is given precisely by the generator associated with
their respective Poisson brackets (a Lie-Poisson structure):

[Lf , Lg] = L{f,g}. (1.3)

This relation is derived by taking the vectors ξa
1 , ξ

a
2 , along which we compute

the Lie derivatives, to be the symplectic gradients of two functions f(σ1, σ2), g(σ1, σ2):

ξa
1 = Ωab ∂bf, ξa

2 = Ωab ∂bg, Lξ1 = Ωab (∂bf) ∂a, Lξ2 = Ωab (∂bg) ∂a

(1.4)
such that [Lf , Lg] = L{f,g}. When nontrivial topologies are involved one must
include harmonic forms ω into the definition of ξa [15], [16] allowing central
terms for the algebras. This relation can be extended to the volume-preserving
diffs of N by means of the Nambu-Poisson brackets:

{A1, A2, A3, ......An} = Jacobian =
∂(A1, A2, A3, ....., An)

∂(σ1, σ2, ....σn)
⇒

[LA1 , LA2 , .........., LAn
] = L{A1,A2,.........,An}, (1.5)

which states that the Nambu-commutator of n-generators of the volume-preserving
diffs of N is given by the generator associated with their corresponding Nambu-
Poisson brackets.

Using eq-(1.1) the authors [2] have shown that the curvature scalar R(m+n)

in m+ n-dim decomposes into:

R(m+n) = gµνR(m)
µν +

e2

4
gabF

a
µνF

b
ρτg

µρgντ + gabR
(n)
ab +

1
4
gµν gab gcd[ (Dµgac)(Dνgbd) − (Dµgab)(Dνgcd) ] +

1
4
gabgµνgρτ [ ∂agµρ∂bgντ − ∂agµν∂bgρτ ] (1.6)

plus total derivative terms given by

∂µ(
√
|det gµν |

√
|det gab| Jµ ) − ∂a(

√
|det gµν |

√
|det gab| eAa

µJ
µ) +
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∂a(
√
|det gµν |

√
|det gab| Ja ), (1.7)

with the currents:

Jµ = gµνgabDνgab, Ja = gabgµν∂bgµν , (1.8)

S =
1

2κ2

∫
dmx dny

√
|det(gµν)|

√
|det(gab)| R(m+n)(x, y). (1.9)

Therefore, Einstein gravity in m + n-dim describes an m-dim generally in-
variant field theory under the gauge transformations or Diffs N . Notice how Aa

µ

couples to the graviton gµν , meaning that the graviton is charged /gauged in
this theory and also to the gab fields. The “metric” gab on N can be identified
as a non-linear sigma field whose self interaction potential term is given by:
gabR

(n)
ab . The currents Jµ, Ja are functions of gµν , Aµ, gab. Their contribution

to the action is essential when there are boundaries involved; i.e. like in the
AdS/CFT correspondence.

When the internal manifold N is a homogeneous compact space one can
perform a harmonic expansion of the fields w.r.t the internal y coordinates,
and after integrating w.r.t these y coordinates, one will generate an infinite-
component field theory on the m-dimensional space. A reduction of the Diffs
N , via the inner automorphims of a subgroup G of the Diffs N , yields the
usual Einstein-Yang-Mills theory interacting with a nonlinear sigma field. But
in general, the theory described in (1.9) is by far richer than the latter theory.
A crucial fact of the decomposition (2.6, 2.7) is that each single term in (1.6,
21.7) is by itself independently invariant under Diffs N . The second term of
(1.6), for example,

1
16πG

√
|det(gµν)|

√
|det(gab)|

e2

4
gabF

a
µνF

b
ρτg

µρgντ , (1.10)

is precisely the one that is related to the large N limit of SU(N) YM [29].
The decomposition of the higher-dim Einstein-Hilbert action shown in eq-

(1.6, 1.7) required to use a non-holonomic basis of derivatives ∂µ − eAa
µ∂a and

∂a that allows a diagonal decomposition of the metric and simplifies the compu-
tation of all the geometrical quantities. In this sense, the lower m-dimensional
spacetime gauged “Ricci scalar” term gµν(x, y)R(m)

µν (x, y) and the internal space
“Ricci scalar” term gab(x, y)R(n)

ab (x, y) are obtained. In the special case when
gµν(x) depends solely on x and gab(y) depends on y then the spacetime gauged
“Ricci scalar” coincides with the ordinary Ricci scalar gµν(x)R(m)

µν (x) and the
internal space “Ricci scalar” becomes the true Ricci scalar of the internal space.
However, the gauge field Aµ(x, y) still retains its full dependence on both vari-
ables x, y.

We have shown [13] that in this particular case the D = m+ n dimensional
gravitational action restricted to AdSm×Sn backgrounds admits a holographic
reduction to a lower d = m-dimensional Yang-Mills-like gauge theory of diffs of
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Sn, interacting with a charged/gauged nonlinear sigma model plus boundary
terms, by a simple tuning of the radius of Sn and the size of the throat of the
AdSm space. Namely, in the case of AdS5×S5, the holographic reduction occurs
if, and only if, the size of the AdS5 throat coincides precisely with the radius
of S5 ensuring a cancellation of the scalar curvatures gµνR

(m)
µν and gabR

(n)
ab in

eq-(1.6) [13]:

R(10) =
e2

4
gab(y) F a

µν(x, y) F b
ρτ (x, y) gµρ(x) gντ (x) +

1
4
gµν(x) gab(y) gcd(y) [ (Dµgac) (Dνgbd)− (Dµgab) (Dνgcd) ]. (1.11)

plus total derivative terms (boundary terms)

Dµ gab = ∂µgab + [Aµ, gab].

where the Lie-bracket is

[ Aµ , gab ] = (∂a A
c
µ(xµ, ya)) gbc(xµ, ya) + (∂b A

c
µ(xµ, ya)) gac(xµ, ya) +

Ac
µ(xµ, ya) ∂c gab(xµ, ya). (1.12)

and the Yang-Mills like field strength is

F a
µν = ∂µA

a
ν − ∂νA

a
µ − [Aµ, Aν ]a =

∂µA
a
ν − ∂νA

a
µ − Ac

µ∂cA
a
ν +Ac

ν∂cA
a
µ. (1.13)

Eq-(1.11) is nothing but the holographic reduction of the D = 10-dim pure
gravitational action to a 5-dim Yang-Mills-like action (of diffeomorphisms of the
internal S5 space) interacting with a charged nonlinear sigma model (involving
the gab field) plus boundary terms. The previous argument can also be gen-
eralized to gravitational actions restricted to de Sitter spaces, like dSm × Hn

backgrounds as well, where Hn is an internal hyperbolic noncompact space of
constant negative curvarture, and dSm is a de Sitter space of positive constant
scalar curvature. The decomposition (1.11) provided a very straightfoward ex-
planation of why AdS spaces played a crucial importance in the Maldacena
AdS/CFT duality conjecture, because the algebra of area-preserving diffs of
the sphere is isomorphic to the large N (basis dependent) limit of SU(N), as
shown by Hoppe long ago [49]; i.e. why higher-dim gravity admits a holographic
reduction to a lower-dim SU(∞) YM theory. It is unfortunate that the impor-
tant work of [2], [3], [4], [5] that already contained the seeds of the holographic
principle was largely ignored by the physics community.

Introducing the light-cone coordinates u, v such that

u =
1√
2

(x0 + x1), v =
1√
2

(x0 − x1). (1.14)
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and define

Aa
u = Aa

+ =
1√
2

(Aa
0 +Aa

1), Aa
v = Aa

− =
1√
2

(Aa
0 −Aa

1). (1.15)

the Polyakov ansatz is [52]

gµν =
(

0 −1
−1 2h++

)
, gµν =

(
−2h++ −1
−1 0

)
, det gµν = −1. (1.16)

gab = eσ ρab; det ρab = 1. (1.17)

The covariant derivative of a tensor density ρab with weight 1 is

Dµ ρab = ∂µ ρab − [ Aµ , ρ ]ab + (∂cA
c
µ) ρab =

∂µ ρab −Ac
µ∂c ρab − (∂aA

c
µ) ρcb − (∂bA

c
µ) ρac + (∂cA

c
µ) ρab. (1.18)

the covariant derivative on the scalar density Ω = eσ of weight −1 is

DµΩ = ∂µΩ −Aa
µ∂aΩ − (∂aA

a
µ)Ω ⇒

Dµσ = ∂µσ −Aa
µ∂aσ − (∂aA

a
µ). (1.19)

after factoring the eσ terms. Notice the extra term w(ρab)(∂cA
c
µ)ρab in the

definition of the covariant derivative acting on a tensor density ρab whose weight
is w(ρab) = 1. Similarly there is an extra term −(∂aA

a
µ)Ω in the covariant

derivative of the scalar density Ω of weight−1. The Yang-Mills like field strength
is

F a
+− = ∂+A

a
− − ∂−Aa

+ − [A+, A−]a =

∂+A
a
− − ∂−Aa

+ − Ac
+∂cA

a
− +Ac

−∂cA
a
+. (1.20)

The gauged-Ricci scalar becomes [3], [4], [5]√
det gab g

µν Rµν → 2h++ eσ [D2
−σ +

1
2
(D−σ)2 +

1
4
ρab ρcd (D−ρac) (D−ρbd) ].

(1.21)
The Polyakov ansatz (1.16) leads to

det gµν = −1 ⇒ gµν ∂a gµν = 2(−det gµν)−1/2 ∂a(−det gµν)1/2 = 0. (1.22)

and one can verify that

gab gµν gαβ (∂agµα) (∂bgνβ) = 0. (1.23)

vanishes identically.
To sum up, after a laborious calculation Yoon [3], [4], [5] arrived finally at

the expression for the Lagrangian density
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L = − 1
2
e2σ ρab F

a
+− F b

+− + eσ R2 + eσ D+σ D−σ −

1
2
eσ ρab ρcd (D+ρab) (D−ρcd) +

1
2
eσ ρab ρcd (D+ρac) (D−ρbd) +

2h++ eσ [ D2
−σ +

1
2
(D−σ)2 +

1
4
ρab ρcd (D−ρac) (D−ρbd) ] (1.24)

plus surface terms. At each point xµ of the 2D base space M, the quantity
R2 = gabRab can be interpreted as the ”scalar curvature” of the internal space
or fiber N2 at xµ. Since gab(xµ, ya) depends on both the base space and internal
space coordinates, the integral

∫
d2y eσR2 is no longer given in terms of the

Euler class topological invariant associated with the 2-dim surface N2. The
scalar curvature gabRab is interpreted now as the potential V (gab) for the self-
interacting non-linear sigma field gab.

The gauged-Ricci scalar gµνRµν of the 2D base spacetime M leads to the
those terms multiplying the scalar h++ in (1.24) such that h++ acts as a La-
grange multiplier enforcing the constraint

D2
−σ +

1
2
(D−σ)2 +

1
4
ρab ρcd (D−ρac) (D−ρbd) = 0. (1.25)

and, in this fashion, the contribution of the base space time gauged-Ricci scalar
gµνRµν decouples (on-shell) from the final expression. In the quantum theory
one must implement the constraint (1.25) as an operator which annihilates the
quantum states.

The area-preserving diffs algebra is generated by vector fields ξa tangent to
the surface N2 and which are divergence-free ∂aξ

a = 0. The condition ∂aA
a
± = 0

is invariant under area-preserving diffs, thus by imposing the divergence free
condition ∂aA

a
± = 0 one will have invariance under area-preserving diffs and

such that the covariant derivatives acting on the tensor density ρab and scalar
σ in eqs-(1.18, 1.19) are now given by

D±σ = ∂±σ −Aa
±∂aσ. (1.26)

D±ρab = ∂±ρab − [ A±, ρ ]ab. (1.27)

Under infinitesimal variations, the fields transform

δσ = − [ξ , σ] = − ξa∂aσ, ∂aξ
a = 0. (1.28)

δρab = − [ξ , ρ]ab = − ξc∂cρab − (∂aξ
c)ρcb − (∂bξ

c)ρac. (1.29)

δAa
+ = −D+ξ

a = − ∂+ξ
a + [A+ , ξ]a. (1.30)

δAa
− = − ∂−ξa . (1.31)

since δAa
− is given by a total derivative one can choose the light-cone gauge

Aa
− = 0 leaving Aa

+ 6= 0.
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In the next sections we will choose the internal space metric to be conformally
flat φab = eσδab. The covariant derivative of δab is

Dµ δab = − (∂aAµb) − (∂bAµa). (1.32)

such that the terms

gµν δab δcd (Dµ δab) (Dν δcd) = 4 gµν (∂aA
a
µ) (∂cA

c
ν) = 0. (1.33)

as a result of the area-preserving invariant condition ∂aA
a
µ = 0. Therefore, the

relevant Lagrangian density to study will be

L = − 1
2
e2σ F a

+− F a
+− + eσ D+σ D−σ + eσ V (σ). (1.34)

with R2 = V (σ) .

1.2 The Canonical Decomposition of Gravity and Hidden
Symmetries of M theory

Performing a 1 + 10 decomposition of 11D Gravity from the most general ex-
pression (1.6) simplifies considerably and yields [2]

R(1+10) = gabR
(10)
ab +

1
4
gtt gab gcd[ (Dtgac)(Dtgbd) − (Dtgab)(Dtgcd) ]. (1.35)

plus total derivative terms (boundary terms). The internal indices range is
a, b = 1, 2, 3, .....10. The last expression can be written in terms of the extrinsic
curvature Kab associated with the embedding of the 10-dim internal space N10

in 11D.

R(1+10) = gabR
(10)
ab + KabK

ab − (Ka
a )2, Ka

a = gabKab. (1.36)

where the extrinsic curvature is given by the Lie derivative along the normal ~n
to the N10 surface [2]

Kab =
1
2
Lngab =

1√
|gtt|

(∂tgab − Lτgab). (1.37)

after performing the decomposition of ∂t into normal ni∂ni and tangential
derivatives τa∂a to the internal 10-dim surface N10, respectively, given by

∂t =
√
|gtt| ni∂ni + τa∂a. (1.38)

Therefore, the canonical decomposition 1 + 10 of 11D Gravity is automatically
recovered from the most general expression (1.6) after the decomposition of the
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metric (1.1) based on the nonlinear connection Aa(x, y) formalism. Nonlinear
connections are essential ingredients of Lagrange-Finsler and Hamilton-Cartan
spaces [6], [60], [61], [62]

Therefore, the decomposition 1 + 10 of 11D Gravity displayed in eqs-(1.35,
1.36) can be interpreted as a one-dim gauged nonlinear sigma model valued in
the diffs of the internal 10-dim space N10 and under the influence of the scalar
potential V = gabR

(10)
ab . The scalar fields are the components of gab and the

base space is one-dim and represented by the temporal coordinate t.
Having found that 11D gravity can be recast as a one-dim gauged nonlin-

ear sigma model subjected to a potential, the next step is to construct the
supersymmetric extension and view 11D Supergravity (SUGRA) as a super-
symmetric gauged one-dim nonlinear sigma model. Such description of 11D
SUGRA in terms of a one-dim nonlinear sigma model has been studied in re-
cent years within the framework of infinite-dim hyperbolic Kac-Moody algebras
corresponding to the extended root lattices of the Exceptional Lie algebra E8,
known as E9, E10, E11 [7], Hyperbolic2.

A connection between the Belinsky-Khalatnikov-Lifshitz-like ”chaotic” struc-
ture of generic cosmological singularities in 11D supergravity and the hyper-
bolic Kac-Moody algebra E10 was found in [7], [8] . This intriguing connec-
tion suggests the existence of a hidden ”correspondence” between supergravity
(or even M-theory) and null geodesic motion on the infinite-dimensional coset
space E10

K(E10)
. This gravity/coset correspondence would offer a new view of the

(quantum) fate of space (and matter) at cosmological singularities. The hidden
symmetries of the fermionic sector of 11D supergravity, and the role of the com-
pact subalgebra K(E10) was also studied and a consistent model of a massless
spinning particle on an E10

K(E10)
coset manifold was found whose dynamics can

be mapped onto the fermionic and bosonic dynamics of 11D supergravity in the
near space-like singularity limit. This E10 -invariant super-particle dynamics
might provide the basis of a new definition of M -theory, and describe the ”de-
emergence” of space-time near a cosmological singularity. The role of E11 in
Higher Spin Theories and symmetries of M theories were studied by [10], [11].
A nice review of Hyperbolic Kac-Moody algebras, Cosmological Billiards and
11D SUGRA can be found in [8].

The relationship between coset models based on the infinite-dimDiffs (N10)
algebra and the Hyperbolic Kac-Moody E10 algebras, to our knowledge, has not
been investigated. The commutators of the general linear and conformal alge-
bra [GL(D), SO(D, 2)] do not close and the infinite nested family of multiple
commutators generates the infinite-dim Diffs(RD) algebra in D-dimensions
[12]. The commutators [At, gab] present in the derivatives Dtgab of eq-(1.36)
are expressed as the Lie derivative of gab along the vector field Aa

t , the gen-
erators of diffs of the internal 10-sim space N10. Such Lie derivative can be
expanded into an infinite number of terms ( or levels ) given by the modes
of Aa

t (t; ya) =
∑

Aa
t,{m}(t) y

m1ym2 ......ymn with m = m1 + m2 + ... + mn.
Each level m denoted by m is related to a series of nested commutators of
[GL(D), SO(D, 2)]. It is in this fashion how one can make contact with the
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coset models based on E10
K(E10)

that admit a similar level by level structure re-
lated to a gradient expansion of the fields.

A decomposition of R(11) in terms of R(0+11) is reminiscent of a dimensional
reduction to a point where the infinite-dim diffs algebra is that of the internal
11-dim space N11. Such algebra Diffs(N11) might bear some relationship to
the E11 algebra.

2 A w∞, w1+∞ Gauge Field Theory in 2D from
4D Gravity and Moyal star products deforma-
tions

It is well known that the Yang-Mills theory action in lower dimensions can be
obtained from the Einstein-Hilbert Gravitational action in higher dimensions.
In this section we will show how the w∞, w1+∞ Gauge Field Theory actions
in 2D emerge directly from 4D Gravity via eq-(1.34). Moyal star products
deformations of these actions follow. It is important to remark that the main
findings of this section are new.

Zamolodchikov [14] was the first to pioneer the theory of higher conformal
spin algebras WN , N = 2, 3, 4, ...., N in 2D that are the higher conformal spin
extensions of the Virasoro algebra that arise in various physical systems as 2D
quantum gravity, the quantum Hall effect, the membrane, the large N QCD,
gravitational instantons, topological QFT, etc.... see [17] for an extensive review
and references. The w1+∞ algebra is isomorphic to the area-preserving diffs
algebra of the cylinder S1 ×R1 :

[vi
m , vj

n] = [(j + 1)m − (i+ 1)n] vi+j
m+n. (2.1)

where the index i, j = −1, 0, 1, 2, .... is related to the su(1, 1) conformal spin
s = 1, 2, 3, .... and m,n label their respective Fourier modes. The spin s = 1
correspond to an extra spin 1 current. The w∞ algebra is the area-preserving
diffs algebra of the two-dim plane and is comprised of higher spin generators
whose conformal spin range is s = 2, 3, 4, .... and it is a subalgebra of w1+∞;
whereas su(∞) is the area-preserving diffs algebra of a sphere S2. A realization
of the higher conformal spin generators of w1+∞ is

vl
m = − i eimθ yl [−im y ∂y + (l + 1) ∂θ]. (2.2)

A complete set of functions ( not orthogonal ) on the cylinder S1 ×R1 is

ul
m = − ieimθ yl+1; −∞ ≤ m ≤ ∞, l ≥ − 1. (2.3)

where the conformal su(1, 1)-spin s in D = 2 is given by s = l + 2 ≥ 1.
The w∞, w1+∞ gauge invariant Lagrangian density was constructed by [35]
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L =
∑
~i,~j

(Φ6(x))−~i−~j F~i
+−(x) F~j

+−(x) +

∑
~k

(D+Φ−~k(x)) (D−Φ~k(x)) + V (Φ~k(x)). (2.6)

The gauge field A
~k
µ is Hemitian ( w.r.t a well defined scalar product ) (A~k

µ)∗ =

A−
~k

µ = Aµ,~k and belongs to the adjoint representation Vα,β constructed by

Feigin-Fuks-Kaplansky ( FFK ) [36], [37] with α = 1, β = 0. Φ~k is an infinite-
component complex scalar multiplet belonging to the infinite-dim vector repre-
sentation Vα,β with α = −1/2, β = 0. In order to write invariant actions based
on a scalar product the weights must obey α∗ + α + 1 = 0 and β∗ − β = 0
where α∗, β∗ are the weights of the dual representation V ∗α,β = V−1−α,−β . For
further details we refer to [35]. The gauge invariant Lagrangian based on the
Virasoro w2 algebra involving only the conformal spin 2 current ( stress energy
tensor) was constructed by [34] and can be obtained from the w∞ Lagrangian
by a simple truncation.

The field strength in the adjoint representation of FFK is

F~k
+− = ∂+A

~k
− − ∂−A

~k
+ − ie [ A+, A− ]~k. (2.7)

The commutator of the gauge fields in the adjoint representation is [35]

[ A+, A− ]~k = [ m1 (k2 + 2) − (m2 + 1) k1 ] A~m
+ A~k−~m

− . (2.8)

where ~k denotes a two-dim lattice index

~k = (k1, k2), ~m = (m1,m2), (2.9a)

and their values are constrained by

k2 ≥ −1; m2 ≥ −1; −∞ ≤ k1 ≤ ∞; −∞ ≤ m1 ≤ ∞. (2.9b)

since the conformal su(1, 1)-spin s associated with the 2D higher conformal
spin generators vk2

k1
of the w1+∞ algebra is given by s = k2 + 2 ≥ 1 such

that s = 1, 2, 3, ...... Whereas, the index k1 labels the infinite Fourier modes
associated with each one of the conformal spin-s generators. The covariant
derivative is

(D±Φ~k) = ∂±Φ~k + ie [ (m2+1)(
m1

2
−k1) − (

m2

2
−k2)m1 ] A~m

± Φ~k−~m. (2.10)

The integration of the Yang-Mills-like terms of eq-(1.34) w.r.t the internal
coordinates of the two-dim surface N2 furnishes the correspondence with the
terms of the w∞, w1+∞ gauge invariant Lagrangian [35] associated with the
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two-dim base spacetime M2. Integrating over a cylinder S1 × R1 whose base
S1 has unit radius yields∫

dy dθ e2σ(x;y,θ) [ F y
+− F

y
+− + F θ

+− F
θ
+− ] ↔

∑
~i,~j

(Φ6(x))−~i−~j F~i
+−(x) F~j

+−(x).

(2.11)
where one has set ρab = δab. The scalar kinetic terms correspondence based on
eq-(1.34) is∫

dy dθ eσ(x;y,θ) D+σ D−σ ↔
∑
~k

(D+Φ−~k(x)) (D−Φ~k(x)). (2.12)

And ∫
dy dθ eσ gab Rab ↔ V (Φ~k). (2.13)

yields the correspondence with the self-interacting scalar potential V (Φ~k).
The resulting integrals in eqs-(2.11, 2.12, 2.13) yield the functional relations

among the infinite component fields σlm(xµ), Aa
±,lm(xµ) in the decomposition

σ = σ(xµ, y, θ) =
∑
lm

σlm(xµ) eimθ yl+1. (2.14a)

Aa
± = Aa

±(xµ, y, θ) =
∑
lm

Aa
±,lm(xµ) eimθ yl+1. (2.14b)

with s = l + 2 ≥ 1, l = −1, 0, 1, 2, 3, ..., −∞ ≤ m ≤ ∞, and the fields

Φ~k(x+, x−), A~k
±(x+, x−), ~k = (k1, k2). (2.15)

associated with the FFK representations of the w1+∞ algebra and which appear
in the 2D Lagrangian density of the w1+∞-gauge field theory [35]. Therefore,
the 1+1-dim Lagrangian density of the w1+∞ gauge theory is inherently present
in the 1 + 1-dim description of the algebraically special class of space-times in
4-dim that contain a twist-free null vector field [3].

More precisely, one may define the Lagrangian density of a Yang-Mills-like
w∞, w1+∞ gauge field coupled to a scalar field Φ valued in the adjoint repre-
sentation of w∞, w1+∞ and subject to a self-interacting scalar potential V (Φ)
given by

L = Trace [ − 1
2

F+− F+− + D+Φ D−Φ + V (Φ) ]. (2.16)

The trace operation given by an infinite sum over all the generators of w∞, w1+∞
can be replaced by an integration over the internal y1, y2 coordinates of the
internal two-dim surface N leading to an expression of the form

L =
∫

d2y eσ [ − 1
2
eσ F a

+− F a
+− + (D+ σ) (D− σ) + V (σ) ]. (2.17)
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withR2 = V (σ) after performing a similar correspondence as given by eqs-(2.11,
2.12, 2.13).

We finalize this section with an analysis of the Moyal Star Product Deforma-
tions of su(∞), w1+∞, w∞ Gauge Theories that will allow to build a Moyal star
product deformation of the Lagrangians displayed in eqs-(2.16, 2.17). The au-
thors [25] have shown that upon quantization of field theories exhibiting symme-
tries provided by classical algebras w1+∞, w∞ these symmetries get deformed
to the quantum algebras W1+∞, W∞ whose commutation relations are

[V i
m , V j

n ] =
∑

l

gij
2l(m,n) V I+j−2l

m+n + ci(m) δij δm+n,0. (2.18)

where the structure constants gij
2l(m,n) are complicated expressions given in

terms of the generalized Saalschutzian hyper-geometric functions, binomial co-
efficients, ... and the ci are the central charges associated with all of the higher
spin sectors [22], [23], [24], [25], [26], [53]. The deformation of the classical
algebras w1+∞, w∞ can be obtained from a Moyal-Fedosov-Kontesevich star
product deformation program as shown by [18], [19], [20], [21] and in this fash-
ion one may generate the structure constants gij

2l(m,n) that were originally
obtained by a tour de force method [22], [23], [24], [25]. In addition, there are
also modifications in the central charges where the central charge term present
only in the Virasoro sector [18] is extended to all of the higher conformal spin
sectors of the quantum W∞,W1+∞ algebras. The origin of the modifications
of the central charge terms is due to universal gauge anomalies of the algebras
[53].

The ordinary Moyal star-product of two functions in phase space f(x, p), g(x, p)
is :

(f ∗ g)(x, p) =
∑

s

h̄s

s!

s∑
t=0

(−1)tC(s, t) (∂s−t
x ∂t

pf(x, p)) (∂t
x∂

s−t
p g(x, p)) (2.19)

where C(s, t) is the binomial coefficient s!/t!(s− t)!. In the h̄→ 0 limit the star
product f ∗ g reduces to the ordinary pointwise product fg of functions. The
Moyal product of two functions of the 2n-dim phase space coordinates (qi, pi)
with i = 1, 2...n is:

(f ∗ g)(x, p) =
n∑
i

∑
s

h̄s

s!

s∑
t=0

(−1)tC(s, t) (∂s−t
xi

∂t
pi
f(x, p)) (∂t

xi
∂s−t

pi
g(x, p))

(2.20)
The noncommutative, associative Moyal bracket is defined:

{f, g}MB =
1
ih̄

(f ∗ g − g ∗ f). (2.21)
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In the h̄ → 0 limit the star product f ∗ g reduces to the ordinary pointwise
product fg of functions and the Moyal bracket reduces to the Poisson one.
Thus, the Moyal deformations of the Yang-Mills-like terms are∫

dy dθ e2σ
∗ ∗ [ F y

+− ∗ F y
+− + F θ

+− ∗ F θ
+− ]. (2.22)

F+− = ∂+A− − ∂−A+ + { A+, A− }MB . (2.23)

D±σ = ∂±σ + { A± , σ }MB . (2.24)

D± eσ
∗ = ∂± eσ

∗ + { A± , eσ
∗ }MB . (2.25)

Due to the fact that for higher derivatives

∂n
ya eσ(xµ,ya) 6= eσ(xµ,ya) ∂n

ya σ(xµ, ya) ⇒

{ A± , eσ }MB 6= eσ { A± , σ }MB . (2.26)

and
{ A± , eσ

∗ }MB 6= eσ
∗ { A± , σ }MB . (2.27)

the correct Moyal deformations of the scalar kinetic terms are∫
dy dθ eσ

∗ ∗ [ (e−σ
∗ ∗ D+ eσ

∗ ) ∗ (e−σ
∗ ∗ D− eσ

∗ ) ]. (2.28)

where the star-deformed exponential function is defined by

eσ
∗ = 1 + σ +

1
2!
σ ∗ σ +

1
3!
σ ∗ σ ∗ σ + ....... (2.29)

There are ordering ambiguities in the definition of eq-(2.28) that for the moment
shall not concern us. The star-deformed potential V∗(σ) is defined by star-
deformed Taylor expansion of the original potential V (σ)

V∗(σ(x, y)) ≡
∑

n

gn (σ)n
∗ =

∑
n

gn σ ∗ σ ∗ σ ∗ ..... ∗ σ. (2.30)

where the couplings gn are obtained by taking the n-th derivatives of V (σ) w.r.t
σ and evaluated at σ = 0

gn ≡
1
n!
∂nV (σ)
∂σn

(σ = 0). (2.31)

The Moyal deformed-action S∗ is highly nontrivial. The leading terms h̄0

coincide with the undeformed action based on the Poisson bracket algebra of
area-preserving diffs of the two-dim internal N2 surface. In the case that the
internal two-dim space has the topology of a sphere, this Poisson bracket alge-
bra is isomorphic to the basis-dependent limit of the N → ∞ limit of SU(N)
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[49]. For arguments refuting the ismorphism behind the large N limits of
su(N) algebras and the area-preserving diffs of a sphere S2 see [50], [51] . The
Moyal-deformations of the area-preserving-diffs S2 symmetry transformations
that leave invariant the Moyal-deformed gravitationally induced action-density
L∗(x) are given by

δAµ(x, y) = − [ ∂µξ(x, y) − {Aµ(x, y), ξ(x, y)}MB ]. (2.32a)

where we have set e = 1 for convenience.

δFµν(x, y) = −{ξ(x, y),Fµν(x, y)}MB . (2.32b)

δσ(x, y) = −{ξ(x, y), σ(x, y)}MB . (2.32c)

δDµσ = −{ξ(x, y), Dµσ}MB . (2.32d)

δV∗(σ) = −{ξ, V∗(σ)}MB . (2.32e)

and the variation of L∗(x) is given by a sum of total derivatives that vanishes
after integration by parts since the internal sphere has no boundaries

δL∗(x, y) = −{ξ, L∗(x, y)}MB ⇒ δL∗(x) =
∫

d2y δL∗(x, y) =

−
∫

d2y {ξ, L∗(x, y)}MB =
∫

(sum of total derivatives) = 0. (2.33)

To show this requires the use of the Liebnitz property of the Moyal Brackets

{ξ , Fµν F
µν}MB = {ξ , Fµν}MB Fµν + Fµν {ξ , Fµν}MB . (2.34)

and∫
d2y Fµν ∗ Fµν =

∫
d2y (Fµν F

µν + total derivatives) =
∫

d2y Fµν F
µν ⇒

δ

∫
d2y Fµν ∗ Fµν = δ

∫
d2y Fµν F

µν =∫
d2y {ξ , Fµν}MB Fµν + Fµν {ξ , Fµν}MB =∫

d2y {ξ , Fµν F
µν}MB =

∫
sum of total derivatives = 0. (2.35)

if there are no boundaries or if the fields vanish fast enough at infinity. Similar
results follow for the kinetic terms. In general, the generators of w∞, w1+∞
admit a parametrization in terms of an infinity family of functions f as
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Lf = ωab ∂bf ∂a, ωab = symplectic structure. (2.36)

where the Lie-Poisson structure is deformed into a Lie-Moyal one upon quanti-
zation

[Lf , Lg] = L{f,g} → [Lf , Lg]∗ = L{f,g}∗ . (2.37)

For instance, When the topology of the internal two-dim surface is that of a
cylinder S1 ×R1 one may expand the function f and generators Lf as

f(y, θ) = flm eimθ yl+1; Lf = flm vlm = flm eimθ [m yl+1 ∂y +i(l+1) yl ∂θ].
(2.38)

from which one may read the commutation relations of the (deformed )currents
vl

m, V
l
m from the Lie-Poisson and Lie-Moyal algebraic structures upon deforma-

tion quantization. Similar results follow for the sphere and the two-dim plane by
choosing the appropriate basis of functions. The algebras admit central charges
or not depending on the genus of the two-dim surfaces [15],[16], [17].

3 4D Quantum Gravity via 2D Quantum W∞
Gauge Theories, Collective Fields and Matrix
Models

In this section we shall show how Quantum Gravity inD = 3 can be described by
a W∞ Matrix Model in D = 1 that can be solved exactly. 4D Quantum Gravity
is more complicated, nevertheless its quantization program can be attained from
the perspective of a 2D Quantum W∞ gauge theory coupled to an infinite-
component scalar-multiplet whose action is described by eqs-(2.16, 2.17); i.e.
Quantization of Einstein Gravity in 4D admits a reformulation in terms of a
2D Quantum W∞ gauge theory coupled to an infinite family of scalars.

It has been known for some time [45], [46], that the bosonization program
of non-relativistic fermions in one space dimension can be used to describe
the low energy excitations of a Fermi gas in terms of a Fermi fluid of various
shapes with the same area as the ground state configuration if one insists in
fermion number conservation. The Fermi fluid exists in the 2-dim phase space
of the single fermion and changes in the state of the Fermi theory correspond
to area− preserving shape changes of the Fermi fluid.

The Das-Jevicki-Sakita [43], [44] collective field theory approximation stud-
ies the fluctuations of the phase-space density and in the semi classical limit
describes the low energy excitations of the Fermi fluid near the Fermi surface
when one restricts the shapes of the Fermi fluid to have a quadratic profile for
the Fermi energy µF = 1

2 (p2−q2) related to an inverted one-dim harmonic oscil-
lator potential. A direct proof of bosonization of non-interacting non-relativistic
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fermions in one space dimension was derived by Wadia et al [45], [46] by using
W∞ coherent states in the fermion path-integral. The bosonized action was
derived earlier by the method of coadjoint orbits associated with the W∞ alge-
bra. The classical limit of the bosonized theory and the precise nature of the
truncation of the full theory that leads to the Das-Jevicki-Sakita collective field
theory was also described by [45], [46].

The use of W∞ coherent states in the fermionic path-integral was made
possible by the observation [41], [42] that the bosonized problem is analogous to
that of a spin in a magnetic field. This system has a W∞ spectrum generating
algebra that follows from the existence of the w∞ symmetry of the harmonic
oscillator. It is natural to rewrite the collective field theory in 0 + 1 dimensions
as a 1 + 1 relativistic field theory so the collective field theory is a theory of a
massless boson that reproduces the fluctuations in the density.

The quantum algebra W∞ may be realized [47], [48] as the algebra of modes
of the Fermion bilinears : ∂kΨ(z)∂lΨ(z) :. A bosonization relates the fermion-
bilinears to the bosonic currents 1

s : e−φ(z)∂seφ(z) : and similarly to the left
movers by replacing z → z̄. The key point was that although the collective field
theory is not a free theory it has a spectrum generating algebra given by charges

Qlm =
∫
dx

∫ p+

p−

dp (p+ x)l+m+1 (p− x)l−m+1. (3.1)

that satisfy a w∞ algebra isomorphic to the Poisson-bracket algebra of the
charges {Qlm , Ql′m′ }PB .

After this historical this preamble one may notice that the action (1.24)
obtained from the decomposition of Einstein gravity in D = 1 + 2 ( instead of
D = 2+2 ) is much simpler since there are no Yang-Mills-like and gauged-Ricci
scalar curvature terms in a one-dimensional base space M1, so when ρab = δab

the Einstein-Hilbert action in D = 1 + 2 action reduces to

S =
∫

dt L =
∫

dt

∫
dy dθ eσ [ D+σ D−σ + R2 ] =

∫
dt

∫
dy dθ eσ [ D+σ D−σ + V (σ) ]. (3.2)

where R2 = V (σ). The Moyal star product deformation is

∫
dt L∗ =

∫
dt

∫
dy dθ eσ

∗ ∗ [ e−σ
∗ ∗ e−σ

∗ ∗ D+ eσ
∗ ∗ D− eσ

∗ + V∗(σ) ]. (3.3)

and has the same functional form ( up to scaling factors in the integration
measure ) as the W∞ and w∞ Matrix Model Lagrangians in D = 1 studied by
[41], [42].

L = trace [
1
2

( ∂t M(t) + { At (t) , M(t) } )2 − V (M) ] =
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∫
d2z

1
2

[ ∂t M(t, z, z̄) + { At (t, z, z̄) , M(t, z, z̄) }MB ]2∗ − V∗(M). (3.4a)

where the infinite-dimensional trace operation is replaced by an integration
trace→

∫
d2z and

( ∂t M + { At, , M }MB)2∗ =

( ∂t M + { At, , M }MB) ∗ ( ∂t M + { At , M }MB)

the one-dim w∞ Matrix Model is based on the Lagrangian

L =
∫

d2y
1
2

[ ∂t M(t, y1, y2) + { At (t, y1, y2) , M(t, y1, y2) }PB ]2 −V (M).

(3.4b)
the internal coordinates y1, y2 of the two-dim surface N2 are represented by
the complex coordinates z = 1√

2l
(y1 + iy2), z̄ = 1√

2l
(y1 − iy2) associated with

the coherent-states representation and l is length scale parameter . The Moyal
brackets of two functions ξ1(z, z̄), ξ2(z, z̄) in units of h̄ = c = 1 is

{ ξ1(z, z̄) , ξ2(z, z̄) }MB =

i
∞∑

n=1

(−1)n

n!
[ ∂n

z (ξ1(z, z̄)) ∂n
z̄ (ξ2(z, z̄)) − ∂n

z̄ (ξ1(z, z̄)) ∂n
z (ξ2(z, z̄)) ]. (3.5)

The canonical quantization leads to the Hamiltonians expressed in terms of
momentum variables

H =
∫

d2z
1
2

(P (z, z̄)) ∗ (P (z, z̄)) + V∗(M) =∫
d2z

1
2

∞∑
n=0

1
n!

[ ∂n
z (P (z, z̄)) ∂n

z̄ (P (z, z̄)) + V∗(M). (3.6a)

H =
∫

d2y
1
2

(P (y1, y2)) (P (y1, y2)) + V (M). (3.6b)

The W∞, w∞ gauge invariance of the actions leads to the following con-
straints on the state vector |Ψ >∫

d2z { ξ , M }MB P (z, z̄) |Ψ > = 0. (3.7a)

∫
d2y { ξ , M }PB P (y1, y2) |Ψ > = 0. (3.7b)

Kavalov and Sakita solved the problem by using the techniques based on the col-
lective field method [43], [44] that requires a change of variables from P (z, z̄),M(z, z̄)
to π(x), φ(x) . The procedure is quite elaborate. The end result yields the fol-
lowing Hamiltonians for the collective field associated with the W∞ algebra
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H =
∫

dx [
1
2
(∂xπ(x))2φ(x)+

π

6
φ(x)3 +V (x) φ(x) ] −λ(

∫
dx φ(x) − N).

(3.8a)
and

H =
∫

dx [
1
2
(∂xπ(x))2φ(x)+

κ

8
(∂xφ(x))2

φ(x)
+V (x) φ(x) ]−λ(

∫
dx φ(x)− L2).

(3.8b)
associated with the w∞ algebra. N is the number of fermions, L2 is the area of
the fluid, κ is a numerical parameter and λ a Lagrange multiplier enforcing the
constraints. After a suitable scaling transformations, in the N → ∞ limit the
excitation spectrum found by Kavalov and Sakita [41], [42] turned out to be

H =
1
2

∞∑
n=0

(p2
n + ω2

n q2n), [qn, pn] = iδmn, h̄ = c = 1. (3.9)

for the W∞ one-dim Matrix model case the frequencies are

ωn =
nπ

T
, T =

∫ x2

x1

dx√
2(Eo − U(x))

,
1
π

∫ x2

x1

dx
√

2(Eo − U(x)) = 1.

(3.10a)
and for the w∞ one-dim Matrix model the frequencies are obtained from the
energy levels of the solutions of the Schroedinger equation

ωn = En − Eo, [−1
2
∂2

x + V (x) ] ψn(x) = En ψn(x). (3.10b)

where

U(x) =
∑

n

N
n
2−1gnx

n =
∑

n

an xn. (3.11a)

and

V (x) =
∑

n

κn−2g̃nx
n =

∑
n

(κl)n−2gnx
n =

∑
n

bn xn. (3.11b)

respectively. As mentioned above, the key point was that although the collec-
tive field theory is not a free theory it has a w∞ spectrum generating algebra
associated with the harmonic oscillator

As stated earlier, quantization of Einstein Gravity in 4D admits a refor-
mulation in terms of a 2D Quantum W∞ gauge theory coupled to an infinite
family of scalars. The starting point is the classical w∞, w1+∞ gauge invariant
Lagrangian density constructed by [35]

L =
∑
~i,~j

(Φ6(x))−~i−~j F~i
+−(x) F~j

+−(x) +
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∑
~k

(D+Φ−~k(x)) (D−Φ~k(x)) + V (Φ~k(x)). (3.12)

Or one may define the Lagrangian density of a Yang-Mills-like w∞, w1+∞ gauge
field coupled to a scalar field Φ valued in the adjoint representation of w∞, w1+∞
and subject to a self-interacting scalar potential V (Φ) given by eqs-(2.16, 2.17)

L = Trace [ − 1
2

F+− F+− + D+Φ D−Φ + V (Φ) ] ↔

L =
∫

d2y eσ [ − 1
2
eσ F a

+− F a
+− + (D+ σ) (D− σ) + V (σ) ]. (3.13)

A quantization of eqs-(3.12, 3.13) will deform the classical w∞, w1+∞ sym-
metry algebras of the classical Lagrangian to the quantum W∞,W1+∞ symme-
try of the quantum theory ( a BRST quantization procedure ) and such that the
latter quantum algebras will be the spectrum generating algebras. Since there
are an infinite number of higher conformal spin generators the highest weight
representations will generate an infinite number of states at each level. Kac
and Radul [58] solved this problem by constructing quasi-finite highest weight
representations that were used by [59] to develop the full fledged representation
theory of the quantum W1+∞ algebra. Free field realizations, (Super) Matrix
generalizations, the structure of subalgebras such as the W∞ algebra, determi-
nant formulae and character formulae can be found in [59].

Quantum Effective actions for W∞ Gravity have been known for a long time
[80], [81]. They have the form of the Wess-Zumino quantum effective action of
chiral W∞ -symmetric system of matter fields coupled to a general chiral W∞-
gravity background. It is expressed as a geometric action on a coadjoint orbit
of the deformed group of area-preserving diffeomorphisms whose underlying Lie
algebra is the centrally-extended algebra of symbols of differential operators on
the circle. This action was also found based on the functional integral quantiza-
tiom method of the equation which describes the development of cross sections
in a Twistor space corresponding to 4D Self Dual Gravity [82]. The result is
an infinite sum of 2D anomalous effective actions associated with the central
charges that correspond to the higher-conformal spin generators of W∞. The
infinite sum is basically a sum over the generalized higher order Schwarzians.
The anomalous effective action corresponding to W2 is just the 2D Polyakov
induced gravity action in the light-cone gauge.

The knowledge of the Quantum Effective actions for W∞ Gravity might be
a guidance principle when one wishes to evaluate the quantum effective action
in terms of the higher spin gauge fields associated with the actions represented
in eq-(3.12, 3.13), respectively

eiΓ[A
~k
µ] =

∫
[DΦ~k] eiS[A

~k
µ,Φ

~k]. (3.14a)

eiΓ[Aµ] =
∫

[Dσ] eiS[Aµ,σ]. (3.14b)
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The evaluation of the Quantum Effective actions Γ[A~k
µ], Γ[Aµ] in eqs-(3.14a,

3.14b) is a daunting task.
The Bars-Witten stringy black hole in D = 2 has a nonlinear Ŵ∞(k = 9

4 )
for hidden symmetry [20] that can be used as its spectrum generating algebra;
a W∞ symmetry of the Nambu-Goto string in 4D was also found in [21] based
on a SU(2)/U(1) coset model. Closely related to black-holes in 3D, Witten has
shown [63] that the energy spectrum of three-dimensional gravity with negative
cosmological constant associated with the BTZ black-hole can be determined
exactly. Witten has argued that the dual Conformal Field Theory (CFT) is
very likely to be the Monster theory of Frenkel, Lepowsky, and Meurman. The
partition function was found to be a polynomial in the modular invariant Klein
function j(q). Manschot has shown more recently that the partition function
can be obtained as a modular sum over geometries [64].

Not so long ago, the authors [65] inspired by a formal resemblance of certain
q-expansions of modular forms and the master field formalism of matrix models
in terms of Cuntz operators, constructed a Hermitian one-matrix model that was
coined the “Modular Matrix Model” which naturally encode the Klein elliptic
j(q)-invariant and the irreducible representations of the Fischer-Griess Monster
group resulting from the Moonshine conjecture. These results relating Modular
Matrix Models, quantum gravity and the Monster, in particular the role of W∞
algebras, warrant a furher investigation. For an extensive review of 2D Gravity,
Matrix Models and String theory see [47], [48].

Isomonodromic quantization of dimensionally reduced Gravity can be found
in [57]. The relationship between W∞ gravity (geometry) and the Fedosov
deformation quantization of the 4D Self-Dual Gravity [38] associated with the
complexified co-tangent space of a two-dim Riemann surface was studied by
[40],[39]. String and p-branes actions can be obtained by a Moyal deformation
quantization of (Generalized ) Yang-Mills as shown in [29], [30], [31], [32], [33].
A natural Fedosov type quantization of generalized Lagrange models and gravity
theories with metrics lifted on tangent bundle, or extended to higher dimensions,
has been attained by Vacaru [60], [61], [62]. The constructions are possible due
to a synthesis of the nonlinear connection formalism developed in Finsler and
Lagrange geometries and deformation quantization methods. The connection
Aµ(x.y) in the decomposition of eq-(1.1) is precisely the nonlinear connection
associated with Lagrange-Finsler spaces.

Higher spin field theories in D > 2 have been extensively studied over the
years by Vasiliev [28] and Calixto [54] has constructed Generalized W∞-type
Higher Spin Algebras in Higher dimensions D > 2 where non-linear realization
methods [55], [56] could be used to build higher spin extensions of Gravity
theories. In section 5 we will review the interplay among quantum membranes,
the continuous Toda theories and non-critical W∞ (super) strings [66] to show
why non-critical W∞ (super) strings in D = 27(11) dimensions are devoid of
BRST anomalies. Such D = 27(11) dimensions coincide with the alleged critical
dimensions of the quantum (super) membrane, respectively. To finalize, we must
say that Noncommutative 4D Gravity based on deformed diffs and Poincare
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algebras developed by [67] deserves further investigation within the context of
2D W∞ gauge theory.

4 Strings and Membranes from 4D Einstein
Gravity

The findings of this Section 4 are new where we show how string and membrane
actions emerge from Gravitational actions. We must emphasize that a very
different construction of p-brane actions from graviton-dilaton effective actions
was provided by [68] and which differs from the nonlinear connection formalism
of eq-(1.1) (typical of Finsler geometries) leading to eq-(1.34) and that is the
basis of our derivations below.

4.1 Strings in 2D and 3D from 4D Einstein Gravity

In eqs-(1.3-1.5) and (2.34-2.36) we described the relationship (isomorphism) be-
tween the area-preserving diffs algebra and the algebra of symplectic diffs asso-
ciated with the internal two-dim space N2. In particular we have the correspon-
dence between Lie and Poisson brackets that is compatible with the Lie-Poisson
structure given by

[ LAµ , LAν ] = L[Aµ,Aν ] ↔ L{Aµ,Aν}. (4.1)

the first term in the l.h.s denotes the Lie commutator of two Lie derivative oper-
ators along the vector fields Aµ, Aν ; the second term denotes the Lie derivative
associated with the commutator (Lie bracket) of Aµ, Aν . While the term in
the r.h.s denotes the generator L of symplectic diffs associated with the Poisson
bracket {Aµ,Aν}.

It is important to emphasize that one is not equating the nonlinear con-
nection Aa(xµ, ya) with Aµ(xµ, ya). We are only establishing a correspondence
(isomorphism) between the l.h.s and the r.h.s of eq-(4.1). One can also re-
place Poisson brackets for Moyal ones and obtain the isomorphism between the
quantum deformed (centerless) algebras W∞,W1+∞ and Moyal deformations of
w∞, w1+∞, respectively, as discussed in section 2.2.

It is this isomorphism (correspondence) between the area-preserving diffs
algebra and the algebra of symplectic diffs that permits to show why the Eguchi-
Schild (ES) string action can be obtained in a straightforward manner from the
expression in eqs-(1.32-1.34) by replacing Lie brackets for Poisson ones and
setting σ = 0, ρab = δab which implies that the internal space Ricci scalar
(when φab solely depends on y1, y2 ) corresponding to φab = eσδab = δab is
R2(φab = δab) = 0 ⇒ V (σ = 0) = 0. Hence, in this particular case, eq-(1.34)
gives
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− 1
2

∫
d2y F+− F+− ; where F+− = ∂+A− − ∂−A+ + {A+ , A−}PB .

(4.2)
The validity of eq-(4.2) can also be justified by our results of [29], [30], [31],

[32], [33] which showed rigorously why the large N limit of quenched QCD
(quenched to a point and a line), after performing a Moyal deformation quan-
tization procedure of the corresponding SU(N) Yang-Mills theory, furnished
string and membrane actions, respectively, in the ”classical” h̄ → 0 limit and
which was tantamount to the N → ∞ limit since h̄ ∼ 1

N . A Moyal quanti-
zation procedure of Generalized Yang-Mills theories based on actions involving
F ∧ F ∧ F... yielded p-brane actions. The large N limit of Dirac-Born-Infeld
models and its relationship to the Dirac-Nambu-Goto string was also provided
in [33].

The large N limit SU(N) in a suitable basis yields an algebra isomorphic
to the area-preserving diffs of the sphere [49]. The author [50], [51] has shown
that this isomorphism is not truly exact, nevertheless for our purposes this fact
does not affect our findings. w∞, w1+∞ correspond to the area-preserving diffs
of a plane and cylinder respectively.

When the gauge fields Aµ(y1, y2) solely depend on the internal space N2

coordinates and that is also consistent with the quenching procedure to a point
of the large N limit of SU(N) Yang-Mills [30], the above expression becomes

−1
2

∫
d2y {A+ , A−}PB {A+ , A−}PB . (4.3)

which is precisely the Eguchi-Schild (ES) string action for a string moving
in a flat 2D space-time background after establishing the gauge field/string-
coordinates correspondence A0(y1, y2) ↔ X0(y1, y2), A1(y1, y2) ↔ X1(y1, y2)
[29], [30]

SES = T

∫
d2y

1
2
{X0 , X1}PB {X0 , X1}PB . (4.4)

and upon recurring to the defining relations X± = 1√
2
(X0±X1) and introducing

the string tension T ∼ l−2
Planck to render the action dimensionless. The source of

the Planck scale in the string tension stems directly from the presence of the 4D
Newton constant G ∼ l2Planck in the starting Einstein-Hilbert action of eq-(1.9)
when m = 2, n = 2 given by 2κ2 = 16πG.

We will show how one can obtain the Eguchi-Schild string action in a flat
3D space-time background in the case one has small values of the internal space
( N2) dilaton-field configurations σ such that

eσ ∼ 1 + σ, V (σ) ∼ V (0) +
∂V (σ)
∂σ

|σ=0 σ, V (σ = 0) = 0. (4.5)

where σ(y1, y2) is constrained also to depend only on the internal coordinates
y1, y2a of N2. Thus, the lowest order terms in σ of the action of eq-(1.34)
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∫
d2y eσ [ − 1

2
eσ F+− F+− + (D+ σ) (D− σ) + V (σ) ]. (4.6)

after performing the gauge field/string correspondence and introducing the
string tension leads to the following action

T

∫
d2y [

1
2
{X0 , X1}2 +

1
2
{X0 , σ}2 −

1
2
{X1 , σ}2 +

∂V (σ)
∂σ

|σ=0 σ + ......].

(4.7)
hence, one obtains corrections to the Eguchi-Schid string action in 2D result-
ing from the higher mode expansion of eσ and the potential V (σ). One may
interpret those corrections as the terms associated with the Eguchi-Schild action
for a string moving now in a 3D target space time background of coordinates
X0, X1, X2 if one identifies the extra string coordinate X2(y1, y2) with the scalar
field σ(y1, y2). It is well known in non-critical string theory that the Liouville
scalar field acquires an extra space time coordinate interpretation.

Therefore, by identifying the coordinate X2 with σ, the first 3 terms of (4.7)
lead to the Eguchi-Schild string action in a flat 3D space time background. If
the condition ∂V (σ)

∂σ (σ = 0) = 0 in (4.7) holds, then one may conclude that the
expansion to lowest order terms in the dilaton σ associated with the internal
two-dim space N2 metric φab = eσρab = eσδab, furnish the Eguchi-Schild string
action for a string moving in a flat 3D space-time background. To zeroth order
in σ one obtains the string action in 2D as shown in eq-(4.4).

4.2 Membranes in 3D from 4D Einstein Gravity

To obtain membrane actions one requires a Killing symmetry reduction from
2D (associated to the base space time M2) to 1D by setting a dependence on
x0, y1, y2, with x0 = 1√

2
(x+ + x−), such as

Aµ = Aµ(x0, ya); σ = σ(x0, ya), (4.8)

∂A

∂x+
=

∂A

∂x−
=

1√
2
∂A

∂x0
⇒ ∂A

∂x1
= 0. (4.9)

Such Killing symmetry reduction to 1D is essentially equivalent to the quenching
procedure of the large N QCD to a line [31], [32]. The gauge fields/membrane
coordinates correspondence is Aµ(x0, ya) ↔ Xµ(x0, ya). Because a membrane
has a three-dim world volume it requires an embedding space-time dimension
of D ≥ 3. The 3 variables X0, X1, X2 = σ match the minimum number of
the target space time background membrane coordinates if one identifies the
coordinate x0 with the membrane’s world volume clock τ = x0. Note that
one should not confuse the membrane space time coordinate X0 with the clock
variable x0 = τ . The former is a function of the latter X0 = (τ, y1, y2)
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Hence, upon imposing the Killing symmetry reduction conditions ∂+ = ∂− =
1√
2
∂τ in eq-(1.34) gives

L3 =
1
2

[ (
∂X1

∂τ
+ {X0 , X1} )2 + (

∂σ

∂τ
+ {X0 , σ} )2 − {X1 , σ}2 ] + ......

(4.10)
after introducing the membrane tension one can see that the first three terms
in eq-(4.10) are precisely the same as those terms given by the light-cone mem-
brane Lagrangian moving in a flat 3D background [49]. One is integrating now
over the three variables among the four coordinates xµ, ya present in the 2 + 2
decomposition of the initial 4D Einstein-Hilbert action of eq-(1.6)∫

dx1

∫
dx0 d2y L3(x0, ya) = L

∫
dτ d2y L3(τ, ya). (4.11)

where L is the length scale along the x1 direction. One can notice that upon
setting ∂X1

∂τ = ∂σ
∂τ = 0 in the Lagrangian (4.10) one recovers the Eguchi-Schild

string action in 3D.
To sum up, following the gauge field/membrane coordinate correspondence

Aµ(x0, ya) ↔ Xµ(x0, ya), a Killing symmetry reduction condition ∂+ = ∂− =
1√
2
∂τ in eq-(1.34), leads to the light-cone membrane Lagrangian for a mem-

brane moving in a flat 3D space-time background if one identifies the scalar
field variable σ(x0 = τ ; ya) ↔ X2(x0 = τ ; ya) with the extra embedding space-
time coordinate X2. Therefore, we have shown in this section how string and
membrane actions (in lower 2D and 3D dimensions) emerge from 4D Gravity.

5 On SU(∞) Yang-Mills, Gravity, Membranes
and W∞ Strings

5.1 Non-critical W∞ (super) strings and the Critical (su-
per) Membrane Dimension

The purpose of this subsection is to review our proof [66] that non-critical W∞
(super) strings are devoid of BRST anomalies in dimensions D = 27, 11, respec-
tively, and which coincide with the the critical (super) membrane dimensions
D = 27, 11 found by [69], [70]. We deem this review important due to the re-
lationship between the large N limit of Self-Dual SU(N) Yang-Mills and Self
Dual Gravity [71]. A Killing symmetry reduction of 4D SD Gravity furnishes
the 3D continuous SL(∞, R) Toda theory [1] which exhibits a w∞ symmetry (a
Killing symmetry reduction of a CP 1 loop algebra over w∞). Conversely, the
induced 2D quantum W∞ gravity action in the light-cone gauge has a hidden
SL(∞, R) Kac-Moody symmetry [27]. The classical geometry of 2D w∞ gravity
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is linked to the 4D Self-Dual gravity associated with the 4D cotangent space
of 2D Riemann surfaces [38] and admits a Fedosov deformation quantization.
[40].

It was shown in [72], [73], that the effective induced action of WN gravity in
the conformal gauge takes the form of a Toda action for the scalar fields and the
WN currents take the familiar free field form. The same action can be obtained
from a constrained WZNW model (modulo the global aspects of the theory
due to the topology). Richer structures emerge in the reduction process by a
quantum Drinfeld-Sokolov reduction of the SL(∞, R) Kac-Moody algebra at
the level k [74]. Each of these quantum Toda actions posseses a WN symmetry.
A Moyal quantization of the continuous Toda theory and its relation to 4D
Self-Dual gravity and self-dual membranes was provided in [75], [76].

In what follows, by WN string we mean the string associated to the W
algebra corresponding to the AN−1 Lie algebra. In general, non-critical WN

strings are constructed the same way : by coupling WN matter to WN gravity.
The matter and Liouville sector (stemming from WN gravity) of the WN algebra
can be realized in terms of N−1 scalars, φk, σk repectively. These realizations in
general have background charges which are fixed by the Miura transformations
[77], [78]. The non-critical string is characterized by the central charges of the
matter and Liouville sectors, cm, cL. To achieve a nilpotent BRST operator
these central charges must satisfy :

cm + cL = −cghost = 2
N∑

s=2

(6s2 − 6s+ 1) = 2(N − 1)(2N2 + 2N + 1). (5.1)

In the N →∞ limit a zeta function regularization yields cm + cL = −2.
The authors [78] have shown that the BRST operator can be written as a

sum of nilpotent BRST operators , Qn
N , and that a nested basis can be chosen

either for the Liouville sector or the matter sector but not for both. If the nested
basis is chosen for the Liouville sector then [78] found that the central charge
for the Liouville sector is

cL = (N − 1)[1− 2x2N(N + 1)]. (5.2)

were x is an arbitrary parameter which makes it possible to avoid the relation
with the WN minimal models if one wishes to. By choosing , if one wishes, x
appropriately one can, of course, get the qth unitary minimal models by fixing
x2 to be :

x2
o = −2− 1

2q(q + 1)
. (5.3)

where q is an integer. In this case, since cm + cL = −cgh , the central charge
for the matter sector must be :

cm = (N − 1)(1− N(N + 1)
q(q + 1)

). (5.4)
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which corresponds precisely to the qth minimal model of the WN string as one
intended to have by choosing the value of x2

o. In the present case one has the
freedom of selecting the minimal model since the value of q is arbitrary. If
q = N then cm = 0 and the theory effectively reduces to that of the “critical”
WN string. Conversely, if one chooses for the nested basis that corresponding
to the matter sector instead of the Liouville sector, the roles of “matter” and
“Liouville” are reversed. One would then have cL = 0 instead.

Noncritical strings involve two copies of the WN algebra. One for the matter
sector and other for the Liouville sector. Since WN is nonlinear, one cannot add
naively two realizations of it and obtain a third realization. Nevertheless there
is a way in which this is possible [78], This was achieved by using the nested sum
of nilpotent BRST operators, Qn

N . One requires to have all the matter fields
φk; plus the scalars of the Liouville sector in the nested basis , σn−1, ....σN−1

and the ghost and antighost fields of the spin n, n + 1, ....N symmetries where
n ranges between 2 and N . Central charges were computed for each set of the
nested set of stress energy tensors, Tn

N depending on all of the above fields which
appear in the construction of the BRST charges : Qn

N .
In order to find a space-time interpretation, the coordinates Xµ must be

related to a very specific scalar field of the Liouville sector (since one decided
to choose the nested basis in the Liouville sector) and that field is σ1. It is this
central charge, associated with the scalar field σ1, that always appears through
its energy momentum tensor in the Miura basis. Because σ1 always appears
through its energy momentum tensor, it can be replaced by an effective Teff of
any conformal field theory as long as it has the same value of the central charge
given by c = 1 + 12α2 ≡ 1− 12x2, where α is a background charge.

T (σ1) = − 1
2
(
∂σ1

∂z
)2 − α∂

2σ1

∂z2
. (5.5)

In particular, the stress energy tensor corresponding to D worldsheet scalars,
Xµ, with a background charge vector, αµ is

Teff = − 1
2

(∂zX
µ) (∂zXµ) −αµ (∂2

zX
µ); ceff = D +12 αµα

µ = 1+12α2.

(5.6)
For example, in the critical W∞ string case, one is bound to the unitary

minimal models that are related to Toda fields [77], [78] and one must pick for
central charge associated with the scalar, σ1, the value α2 = −x2 = −x2

o given
by (5.3). Thus, in this way the explicit value of c of the critical W∞ string is
obtained

ccrit = 1 +12 (αo)2 = 1−12x2
o = 1−12 (−2− 1

2q(q + 1)
) = 25; q = N →∞.

(5.7)
In the case of the ordinary critical string, WN = W2, q = N = 2, one has
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x2
o = −2− 1

2q(q + 1)
⇒ − 2− 1

12
⇒ ceff = 1− 12x2

o = 1 + 25 = 26 = ccrit.

(5.8)
Since the parameter x in the non-critical string case is an arbitrary param-

eter that is no longer bound to be equal to xo, the effective central charge in
the non-critical WN string is now 1 − 12x2 in contradistinction to the critical
WN string case : 1 − 12x2

o. Therefore, if one wishes to make contact with
D = 27 Xµ scalars instead of D = 25 one can choose x in such a way that it
obeys 1 − 12x2 = (1 − 12x2

o) + cmo
where cmo

will turn out to be the central
charge of the q = N + 1 unitary minimal model of the WN algebra.

If one does not wish to break the target space-time Lorentz invariance one
cannot have background charges for the D Xµ coordinates. Therefore, for the
case that q = N+1 ⇒ cmo = 2(N−1)

N+1 ( instead of zero) is obtained from eq-(5.4),
and the effective central charge is now :

ceff ≡ 1− 12x2 = (1− 12x2
o) + cmo

=

[ 26 − ( 1 − 6
(N + 1)(N + 2)

) ] + [ 2
N − 1
N + 2

] (5.9)

then one concludes from eq-(5.9) that ceff = D = 25 + 2 = 27 is recovered in
the N → ∞ limit. The reason why one wrote the last term of eq-(5.8) in such
a peculiar way will be clarified shortly.

In this way, by having ceff = D = 27 in eq-(5.9) we have shown that the
expected critical dimension for the bosonic membrane background, D = 27,
has the same number of Xµ coordinates as that of a non− critical W∞ string
background if one adjoins the q = N + 1 unitary minimal model of the WN

algebra to that of a critical WN string spectrum in the N → ∞ limit. This
phenomenon is very similar to seeing the D = 26 critical string as a non-critical
string in D = 25 if one adjoins the Liouville mode that plays the role of the
extra dimension.

For these reasons, one should expect that the physical membrane spectrum
in D = 27 should contain a sector related to a critical W∞ string adjoined to a
q = N + 1 unitary minimal model of the WN algebra in the N →∞ limit. The
critical W∞ string [77] is a generalization of the ordinary string in the sense that
instead of gauging the two-dimensional Virasoro algebra one gauges the higher
conformal spin algebra generalization ; the W∞ algebra. The spectrum can
be computed exactly and is equivalent to an infinite set of spectra of Virasoro
strings with unusual central charges and intercepts [77]. As stated earlier , the
critical WN string ( linked to the AN−1 algebra) has for central charge the value
( q = N) :

c = 1− 12x2
o = 26− (1− 6

q(q + 1)
) = 26− (1− 6

N(N + 1)
) = 25 (5.10)

Unitarity is achieved if the conformal-spin two-sector intercept is :
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ω2 = 1− k2 − 1
4N(N + 1)

; 1 ≤ k ≤ N − 1. (5.11)

An important remark is in order : we have to emphasize that one should
not confuse ceff with cm, cL in the same way that one must not confuse x2 with
x2

o. The ordinary (W2) string is a very special case insofar that ceff = cm or
cL depending on our choice for the nested basis. The D = 27 Xµ spacetime
interpretation of the theory is hidden in the stress energy tensor of the σ1 field
T (σ1) → T (Xµ) with ceff = c(D) = D = 27. And, in addition to the 27 Xµ

space-time coordinates, one still has the infinite number of scalars φ1, φ2, ....
and the infinite number of remaining fields , σ2, σ3, ..... of the Liouville sector.
Clearly the situation is vastly more complex that the ordinary string ( the W2

string ).
The connection to the unitary Virasoro minimal models was established in

eq-(5.10) by setting q = N + 1 :

D − 2 = 25 = cstring − [1− 6
q(q + 1)

] = 26− [1− 6
(N + 1)(N + 2)

]. (5.12)

This shall guide us in repeating the arguments for the supersymmetric case.
Since 10 is the critical dimension of the ordinary superstring the value of the cen-
tral charge when one has 10 worldsheet scalars and 10 fermions is csuperstring =
10(1 + 1

2 ) = 30
2 . In order to find the central charge of a critical super W∞

string one requires to employ also the central charge of the super-Virasoro uni-
tary minimal super-conformal models given by csuperconformal = 3

2 . Hence, the
supersymmetric analog of the terms in the r.h.s of eq-(5.12) are then

csuperstring − csuperconformal =
30
2
− 3

2
=

27
2
. (5.13)

The supersymmetric analog of the term cmo
= 2(N−1)

N+1 → 2 in the l.h.s of eq-
(5.12) is given by 2(1 + 1

2 ) = 3. One chooses the parameter x2 such to make
contact with the bosonic sector of the q = N + 1 unitary minimal model of
the super WN algebra in the N → ∞ limit. Writing down the corresponding
supersymmetric analog of each single one of the terms appearing in the r.h.s of
eq-(5.12), and the same for the l.h.s , one has that D Xµ and D ψµ (anticom-
muting spacetime vectors and world sheet spinors) without background charges
yield a central charge ceff = D(1 + 1

2 ) = 3D
2 . Therefore, the supersymmetric

extension of each one of the corresponding terms of eq-(5.12) yields

ceff − cmo = [ csuperstring − csuperconformal ] ⇒
3D
2

= [ 10 (1 +
1
2
) − 3

2
] + 2 (1 +

1
2
) =

33
2
⇒ D = 11. (5.14)

Concluding , one obtains the expected critical dimension for the super-membrane
D = 11 from eq-(5.14) if one adjoins a q = N +1 unitary super-conformal min-
imal model of the super WN algebra to a critical super WN string spectrum
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in the N → ∞ limit. The bosonic case yields D = 27. We have shown why
non-critical W∞ (super) strings are devoid of BRST anomalies in dimensions
D = 27, 11, respectively, and which coincide with the critical (super) membrane
dimensions D = 27, 11 found by [69], [70]. For this reason we believe that the
quantum (super) membrane should contain non-critical (super) W∞ strings; i.e.
it must be related to quantum W∞ Gravity. Some preliminary attempts along
these lines were undertaken by [79]. A W∞ symmetry of the Nambu-Goto string
in 4D was found by [21].

5.2 The Self Dual Membrane from SU(∞) Self Dual Yang-
Mills and the Continuous Toda Molecule

It was found in [75], [76] that spherical membranes moving in flat target space-
time backgrounds admit a class of integrable solutions linked to SU(∞) SDYM
equations (dimensionally reduced to one temporal dimension). After a suitable
ansatz, the SDYM equations can be recast in the form of the continuous Toda
molecule equations whose symmetry algebra is the dimensional reduction of the
W∞ ⊕ W̄∞ algebra.

Some time ago we were able to show [71] that the D = 4 SU(∞) (super)
SDYM equations (an effective 6 dimensional theory) can be reduced to 4D (su-
per) Plebanski’s Self-Dual Gravitational equations with spacetime signatures
(4, 0); (2, 2). The symmetry algebra of D = 4 SU(∞) SDYM is a Kac-Moody
extension of W∞ as shown by [85]. In particular, new hidden symmetries were
found which are affine extensions of the Lorentz rotations. These new sym-
metries form a Kac-Moody-Virasoro type of algebra. By rotational Killing-
symmetry reductions one obtains the w∞ algebra of the continuous Toda theory.
For metrics with translational Killing symmetries one obtains the symmetry of
the Gibbons-Hawking equations. A rotational Killing symmetry reduction of
Plebanski’s heavenly equations for Self-Dual Gravity in D = 4 yields

∂2u(z, z̄, t)
∂z ∂z̄

= − ∂2eu

∂t2
. (5.15)

which is the the 3D continuous Toda equation and a dimensional reduction of
the 3D → 2D continuous Toda equation is

∂2u(τ, t)
∂τ2

= − ∂2eu

∂t2
, iτ ≡ r = z + z̄. (5.16)

the SU(∞) Toda molecule. Eq-(5.16) is an effective 2D equation and in this
fashion the original 3D membrane can be related to a 2D theory (where the
W∞ string lives in) after the light-cone gauge is chosen. The Lagrangian and
the Plebanski second-heavenly equations for the 4D SD gravity can be obtained
from a dimensional reduction of the SU(∞) SDYM (an effective six-dimensional
one) [71],[84]

L =
∫

dz dz̃ dy dỹ [
1
2

(Θ,y Θ,z −Θ,ỹ Θ,z̃) +
1
3

Θ {Θ,y, Θ,ỹ} ]. (5.17)
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where Θ(z, z̃, y, ỹ) is Plebanski’s second heavenly form and the Poisson brackets
are taken w.r.t y, ỹ variables. A real slice can be taken by setting : z̃ = z̄, ỹ = ȳ.

A rotational Killing symmetry reduction, t ≡ yỹ, yields the Lagrangian
for the 3D Toda theory and a futher dimensional reduction z + z̃ = r gives
the Toda molecule Lagrangian. One could use the original Killing symmetry
reduction of Plebanski first heavenly equation due to Boyer and Finley [88] and
also discussed by Park [89], that takes the original r ≡ yȳ; z, z̄ variables into the
new ones (t, w = z̄, w̄ = z).; such that r ≡ eu(t, w, w̄ obeys the continuous Toda
equation if, and only if, Ω obeys Plebanski first heavenly equation :

u,ww̄ = eu
,tt, t ≡ r Ω,r, (rΩ,r),r Ω,zz̄ − r Ω,rz Ω,rz̄ = 1. (5.18)

A solution of the Toda equation, u = u(t, w, w̄) upon inversion yields t = rΩ,r =
f(u,w, w̄) which defines implicitly Ω in terms of u through the function ( upon
inversion) f(u,w, w̄). And, finally, one makes contact with the Lagrangian of
the Toda molecule [83] with unit coupling β = 1

L =
∫
dt [

1
2

(
∂2x

∂r ∂t
)2 + e(∂

2x/∂t2) ], ρ(r, t) ≡ ∂2x

∂t2
. (5.19)

The general classical solution to (5.15) depending on two variables , say
r ≡ z+ + z− and t ( not to be confused with time !) was given by Saveliev [83].
The solution is determined in terms of two arbitrary functions , ϕ(t) and d(t)

exp [−x(r, t)] = exp [−xo(r, t)] {1+
∑
≥1

(−1)n
∑
ω

∫ ∫
.... exp [ r

n∑
m=1

ϕ(tm)]

×
m=n∏
m=1

dtm d(tm) [
n∑

p=m

ϕ(tp) ]−1 [
n∑

q=m

ϕ(tω(q)) ]−1

×[ εm(ω) δ(t− tm)−
m−1∑
l=1

δ′′(tl − tm) θ[ω−1(m)− ω−1(l) ] ] }. (5.20)

with : ρo = ∂2xo/∂t
2 = rϕ(t) + ln d(t). This defines the boundary values of

the solution x(r, t) in the asymptotic region r → ∞. θ is the Heaviside step-
function. ω is any permutation of the indices from [2..........n] → [j2, ..........jn].
ω(1) ≡ 1. εm(ω) is a numerical coefficient. See [83] for details. An expansion of
(5.20) yields :

exp [−x] = exp [−xo] {1 − µ +
1
2
µ2 + ........}. (5.21)

where :

µ ≡ d(t) exp [ r ϕ(t) ]
ϕ2

. (5.22)

In what follows we shall fix the function d(t) = 1.
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To sum up this subsection and the relationship to the results in [75],[76] the
spectrum generating symmetry algebra W∞⊕W̄∞ acting on the Toda molecule,
stems from the bosonic sector of the self-dual SU(∞) Supersymmetric Gauge
Quantum Mechanical Model associated with the light-cone gauge of the self-
dual (spherical) supermembrane : a dimensionally-reduced super SDYM theory
to one temporal dimension. The membrane’s time coordinate ( X+) has a
correspondence with the r = z + z̄ ”temporal” variable. The extra coordinate
arises from the t parameter so the initial 3D continuous (super) Toda theory is
dimensionally-reduced to a 1 + 1 ( super ) Toda molecule : Θ(z, z̄, t) → ρ(r, t)
and, in this way, an effective two-dimensional theory emerges [75],[76] . Hence,
the intrinsic 3D Self Dual membrane spectrum can be obtained from the spec-
trum generating algebra of the effective two-dimensional (super) Toda molecule
theory. The full membrane spectrum remains an open question. Perhaps (non-
linear) integrable deformations beyond the selfdual theories (non-conformal field
theories) might give us more clues about the full theory.

6 Quantum Self Dual Gravity and Highest Weight
Representations of W∞ via the continuous Toda
Theory

Our main objective in this section is to establish the correspondence between
the states associated with the quasi finite highest weights irreducible represen-
tations of W∞, W̄∞ algebras and the quantum states of the Toda molecule.
Schroedinger-like QM wave functional equations are derived and solutions are
found in the zeroth order approximation. As far as we know the main results
of this section have not been published before.

6.1 Highest Weight Representations

The purpose of this subsection is to obtain important information about the
highest weights representations associated with the dimensional reduction of
W∞⊕W̄∞ algebra which acts on the continuous Toda molecule as the symmetry
algebra in the same way that the Virasoro algebra does for the string.

We can borrow now the results by [59],[86], [87] on the quasi-finite highest
weight irreducible representations of W1+∞ and W∞ algebras. The latter is a
subalgebra of the former. For each highest weight state, |λ > parametrized by a
complex number λ the above authors constructed representations consisting of a
finite number of states at each energy level by succesive application of ladder-like
operators. A suitable differential constraint on the generating function ∆(x) for
the highest weights ∆k of the representations was necessary in order to ensure
that, indeed, one has a finite number of states at each level. The highest weight
states are defined :
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W (znDk) |λ > = 0, n ≥ 1, k ≥ 0, W (Dk) |λ > = ∆k |λ >, k ≥ 0.
(6.1)

The W1+∞ algebras can be defined as central extensions of the Lie algebra
of differential operators on the circle. D ≡ zd/dz, n belongs to Z and k is a
positive integer. The generators of the W1+∞ algebra are denoted by W (znDk);
i.e. there is a one to one mapping between zn(z ∂

∂z )k and the W1+∞ generators.
The W∞ generators are obtained from the former : W̃ (znDk) = W (znDk+1) .
The commutation relations of the W∞ are

[ W̃ [zn(z
∂

∂z
)k], W̃ [ zm(z

∂

∂z
)l] ] = W̃ [zn+m(z

∂

∂z
+m)k(z

∂

∂z
)l(z

∂

∂z
+m)]−

W̃ [zn+m(z
∂

∂z
)k(z

∂

∂z
+n)l(z

∂

∂z
+n)] + C Ψ[ zn(z

∂

∂z
)k(z

∂

∂z
), zm(z

∂

∂z
)l(z

∂

∂z
) ].

(6.2)
The central charge term is given by the two-cocycle Ψ times the constant C.
The anti-chiral W̄∞ is given exactly the same by replacing everywhere z → z̄
and ∂z → ∂z̄. (There is no spin one current).

The generating function ∆(x) for the weights is

∆(x) =
k=∞∑
k=0

∆k
xk

k!
⇒ −W (exD) |λ > = ∆(x) |λ > . (6.3a)

The generating function ∆(x) for the weights satisfies the following differential
equation resulting from the quasi-finiteness property in the number of states at
each level

b(d/dx) [ (ex − 1)∆(x) + C ] = 0. (6.3b)

and the solution is

∆(x) =
∑K

i=1 pi(x) eλix − C

ex − 1
. (6.3c)

where pi(x) is a polynomial of degree mi − 1. C is the central charge and b(w)
is the characteristic polynomial

b(w) =
∏

(w − λi)mi , λi 6= λj . (6.4a)

Unitary representations were studied by [59],[86], [87] and the necessary and
sufficient condition for a unitary representation is that C is a non-negative
integer so the weight function that solves the differential equation (6.3b) is
given by
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∆(x) =
∑C

i=1 eλix − 1
ex − 1

, λi = real (6.4b)

All unitary representations can be realized by tensoring C pairs of bc ghosts
representations as displayed by eq-(6.4b). The generating function for the W∞
case is ∆̃(x) = (d/dx)∆(x) and the central charge is c = −2C. The Verma
module ( a representation) is spanned by the states :

| vλ > = W (z−n1Dk1) W (z−n2Dk2) ........... W (z−nmDkm) |λ > . (6.5)

The energy level is
∑i=m

i=1 ni. Highest weight unitary representations for the
W∞ algebra obtained from field realizations with central charge c = 2 were
constructed in [59],[86]. The weights associated with the highest weight state
|λ > will be obtained from the expansion in (6.2). In particular, the ”energy”
operator acting on |λ > will be :

W (D) |λ > = ∆1 |λ > . (6.6)

Lo = −W (D) counts the energy level : [Lo,W (znDk)] = −n W (znDk). As an
example, the weight function ∆(x) corresponding to the free-field realization of
W∞ in terms of free fermions or bc ghosts [59] is given by

∆(x) = C
eλx − 1
ex − 1

⇒ ∂∆
∂λ

= C
x eλx

ex − 1
. (6.7)

which agrees with the expression in eq-(6.4b) when λi = λ for all λi. The second
term is the generating function for the Bernoulli polynomials

x eλx

ex − 1
= 1 + (λ− 1

2
) x + (λ2−λ+

1
6
)
x2

2!
+ (λ3− 3

2
λ2+

1
2
λ)

x3

3!
+ ......... (6.8)

Integrating (6.8) with respect to λ yields back :

∆(x) = C
eλx − 1
ex − 1

=
∑
k=0

∆k
xk

k!
. (6.9)

The first few weights (modulo a factor of C) can be read from integrating (6.8)
w.r.t λ and matching the numerical values with the coefficients ∆k in the r.h.s
of (6.9)

∆0 = λ, ∆1 =
1
2
(λ2 − λ), ∆2 =

1
3
λ3 − 1

2
λ2 +

1
6
λ ..... (6.10)

The generating function for the W∞ case is ∆̃(x) = d∆(x)
dx ⇒ ∆̃λ

k = ∆λ
k+1.

Now we proceed to relate the construction of quasi-finite highest weight unitary
representations of W∞ with the quantum states associated to the continuous
sl(∞) Toda molecule.
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6.2 Correspondence between Highest Weight representa-
tions and the quantum states of the continuous Toda
molecule

We are going to construct the dimensional reduction of the W∞ ⊕ W̄∞ alge-
bra associated with the symmetries of the continuous Toda molecule. From
the previous discussion we learnt that ∆̃λ

1 = ∆λ
2 is the weight associated with

the ”energy” operator. In the ordinary string, W2 algebra, the Hamiltonian is
related to the Virasoro generator, H = Lo + L̄o and states are built in by apply-
ing the ladder-like operators to the highest weight state, the ”vacuum”. In the
W1+∞,W∞ case it is not longer true, as we shall see, that the Hamiltonian ( to
be given later ) can be written exactly in terms of the zero modes w.r.t the z, z̄
variables of the W2 generator, once the realization of the W∞ algebra is given
in terms of the dressed continuous Toda field , Θ(z, z̄, t), given by Savaliev [83].
The chiral generators are

W+
2 =

∫ to

dt1

∫ t1

dt2 exp[−Θ(z, z̄; t1)]
∂

∂z
exp[Θ(z, z̄; t1)−Θ(z, z̄; t2)]

∂

∂z
exp[Θ(z, z̄; t2)].

(6.11a)

W+
n =

∫ to

dt1

∫ t1

dt2 .....

∫ tn−1

dtn D(0)
+ D(1)

+ ...... D(n−1)
+ exp[Θ(z, z̄; tn)].

(6.11b)
with

D(0)
+ = exp [−Θ(z, z̄; t1)]

∂

∂z
; D(m)

+ ≡ exp[Θ(z, z̄; tm)−Θ(z, z̄; tm+1) ]
∂

∂z
, m ≥ 1.

(6.12)
The antichiral generators are obtained upon replacing ∂/∂z by ∂/∂z̄ in eqs-
(6.11,6.12). Hence, the chiral generators have the formW+

h,0[∂
2ρ/∂z2....∂hρ/∂zh]

where h are the conformal chiral weights. A similar expression for the anti-chiral
generators W−

0,h̄
is obtained by replacing ∂z → ∂z̄. After performing a dimen-

sional reduction from 3D → 2D, and by defining r = z + z̄ one has

W̃2(r, to) =
∫ to

dt1

∫ t1

dt2 exp[−ρ(r, t1)]
∂

∂r
exp [ρ(r, t1)−ρ(r, t2)]

∂

∂r
exp[ρ(r, t2)].

(6.13a)
And similar procedure applies to eqs-(6.11b, 6.12)

W̃n =
∫ to

dt1

∫ t1

dt2 ....

∫ tn−1

dtn D(0) D(1) ...... D(n−1) exp [ρ(r; tn)].

(6.13b)
with
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D(0) ≡ exp [−ρ(r; t1)]
∂

∂r
, D(m) ≡ exp [ρ(r; tm) − ρ(r; tm+1)]

∂

∂r
. (6.13c)

When ρ(r, t) is quantized, eqs-(6.13) involve the operator, ρ̂(r, t), acting on
a suitable Hilbert space of states, |ρ >, and in order to evaluate (6.13) one
needs to perform the highly complicated Operator Product Expansion among
the operators ρ̂(r, t1), ρ̂(r, t2), ...... Since these are no longer free fields it is no
longer trivial to compute the operator products of

∂ρ

∂r
eρ, eρ(r,t1) eρ(r,t2) ..... (6.14)

As we have discussed in 2 quantization deforms the classical w∞ algebra into
the W∞ algebra. Since the w∞ algebra has been effectively quantized the clas-
sical Poisson bracket algebra is retrieved by taking single contractions in the
Operator Product Expansion of the operators ρ̂(r, t1), ρ̂(r, t2), ..... which appear
in the continuous Toda field realizations of the quantum algebra W∞ ⊕ W̄∞.
Hence, the expectation value of the quantum Ŵ2 operator < ρ| Ŵ2(ρ̂) |ρ >
in the asymptotic limit (r → ∞), yields after the dimensional reduction the
following results

∂ρ

∂r
= ϕ,

∂2ρ

∂r2
=

∂2eρ

∂t2
→ 0, r →∞ (6.15a)

such that

limr→∞ < ρ|Ŵ2|ρ > =
∫ 2π

0

dt (
∫ t

0

dt′ ϕ(t′) )2 (6.15b)

after the normalization condition is chosen

< ρ′|ρ >= δ(ρ′ − ρ). < ρ|ρ >= 1 (6.16)

The purpose becomes now to relate the states |ρ > to the quasi-finite highest
weight representations of W∞ ⊕ W̄∞ generated from the highest weight states
|λ, λ∗ >. It is useful to recall the results from ordinary 2D conformal field
theory. Given the holomorphic current generator of two-dimensional conformal
transformations, T (z) = W2(z), the mode expansion is

W2(z) =
∑
m

Wm
2 z−m−2 ⇒ Wm

2 =
∮

dz

2πi
zm+2−1W2(z). (6.17)

the closed integration contour encloses the origin. When the closed contour
surrounds z = ∞, this requires performing the conformal map z → (1/z) and
replacing

z → (1/z), dz → (−dz/z2), W2(z) → (−1/z2)2W2(1/z) = W2(z)+
c

12
S[z′, z]

(6.18)
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in the integrand. S[z′, z] is the Schwarzian derivative of z′ = 1/z w.r.t the z
variable. There is also a one-to-one correspondence between local fields and
states in the Hilbert space

|φ > ↔ limz,z̄→0 φ̂(z, z̄) |0, 0 > . (6.19)

This is usually referred as the | in > state. A conformal transformation z →
1/z; z̄ → 1/z̄: defines the < out | state at z = ∞

< out| = limz,z̄→0 < 0, 0| φ̂(1/z, 1/z̄) (−1/z2)h (−1/z̄2)h̄. (6.20)

where h, h̄ are the conformal weights of the field φ(z, z̄).
The analog of eqs-(6.19,6.20) is to consider the states parametrized by the

functions ϕ(t), d(t)

|ρ >ϕ(t),d(t) ≡ limr→∞ |ρ(r, t) > ≡ |ρ(out) > .

|ρ >−ϕ(t),d(t) ≡ limr→−∞ |ρ(r, t) > ≡ |ρ(in) > . (6.21)

since the continuous Toda equation is symmetric under r → −r, then ρ(−r, t)
is also a solution and it’s obtained from the general solution (5.20) by setting
ϕ→ −ϕ to ensure convergence at r → −∞. The state |ρ(r, t) > is parametrized
in terms of the functions ϕ(t), d(t) resulting from the solutions (5.20) and for
this reason one should always keep this in mind. The temporal evolution of
the state |ρ > is governed by the Hamiltonian, thus knowing the |ρ(in) > state
at the ”time” r = −∞, upon radial quantization, the Hamiltonian yields the
”temporal” evolution to another value of r. What is required now is to establish
the correspondence (a functor) between the representation space realized in
terms of the continuous Toda field and that representation space (the Verma
module) built from the highest weights |λ >

< λ|W̃ (D)|λ > = ∆̃1 ≡ ∆2 ↔ < ρ|Ŵ2[ρ̂(r, t)|ρ > . (6.22)

The contour integral (6.17) means evaluating quantities for fixed ”times”,
which in the language of the z, z̄ coordinates, implies choosing circles of fixed
radius around the origin and integrating w.r.t the angular variable which is
represented by t. Therefore, the conserved Noether charges (the Virsoro gener-
ators in the string case ) are just the integrals of the conserved currents at fixed
contour-radius ( fixed ”times” ). The expression to evaluate in our case is the
expectation value w.r.t the | in > state, of the zero modes of the quantity

Ŵ2[f ] =
∫ 2π

0

dt′ f(t′)Ŵ2[ρ(r′, t′)]. (6.24a)

when the real valued function, f(t) can be expanded into a Fourier series as

f(t) =
∑

n

an cos(nt). (6.24b)

37



Rigorously speaking, when one writes f(t) one means values at a given ”time”
r. Hence, by zero mode expectation value one means those w.r.t the angle
variable t and not w.r.t the z, z̄ variables associated with the 3D continuous
Toda equation and whose dimensional reduction furnishes the 2D continuous
Toda molecule. The zero-mode of the expectation value of eq-(6.24) w.r.t the
|in > state is given by

< Ŵ
(2)
0 [f ] > = limr→−∞ < ρ | [

∫ 2π

0

dt a0 Ŵ2[ρ̂(r, t)] ] |ρ > . (6.25a)

and a similar expression holds for the zero modes of the higher conformal spin
generators

< Ŵ
(k)
0 [f ] > = limr→−∞ < ρ | [

∫ 2π

0

dt a0 Ŵk[ρ̂(r, t)] ] |ρ > . (6.25b)

Due to the dimensional reduction of the algebra W∞ ⊕ W̄∞, one must take a
suitable real-valued linear combination of the weights of the chiral and anti-
chiral algebras before we can impose relations with the expectation values of
eqs-(6.25). Firstly, one imposes the conditions (∆k)∗ = ∆̄k, λ̄ = (λ)∗ on
all of the anti-chiral highest weights and afterwards one performs the linear
combination of chiral and anti-chiral weights. For example, in the particular
case of free Fermi fields or in the bc ghost system whose weights are explicitly
given by eq-(6.10), one has a linear combination as follows

∆0 + ∆̄0 = (λ+ λ̄), ∆1 + ∆̄1 =
1
2
[(λ2 + λ̄2)− (λ+ λ̄)]

∆2 + ∆̄2 =
1
3
(λ3 + λ̄3)− 1

2
(λ2 + λ̄2) +

1
6
(λ+ λ̄); ........ (6.26)

In general, the expression for the weights is more complicated than (6.26). One
should notice that one is adding the weights as vectors in a Hilbert space and not
the values of λ, λ∗. Going back to eq-(6.24), the nth mode component associated
with the function f(t) =

∑
an cos(nt) leads to

Ŵ (2)
n [Cr] =

∫ 2π

0

dt an cos(nt) Ŵ2[ρ(r, t)]. (6.27)

and similarly for the other generators

Ŵ (s)
n [Cr] =

∫ 2π

0

dt′ an cos(nt) Ŵs[ρ(r, t)]. (6.28)

where a radial quantization has been imposed such that Cr stands for a circle
of fixed radius (a fixed ”time”) r, for all values of the ”angles” t and is obtained
by mapping the cylinder determined by the r, t variables, −∞ ≤ r ≤ +∞ and
0 ≤ t ≤ 2π into the complex plane Z = e−i(t+ir), Z̄ = ei(t−ir). Notice that the
variables z, z̄ are not the same as Z, Z̄ because r = z + z̄.
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With these findings at hand after recurring to eqs-(6.27, 6.28) and evaluating
the expectation values associated with the zero modes given by eqs-(6.25) one
arrives at

1
2

( ∆k + ∆̄k ) = lim r→−∞ < ρ| [
∫ 2π

0

dt a0 Ŵs[ ρ̂(r, t)] ] |ρ > . (6.29)

with k = 1, 2, 3, 4......∞ and s = k + 1 = 2, 3, 4, .....∞; the coefficient a0 is
1/2π. The weight function corresponding to quasi-finite highest weight unitary
representations of W∞ was given by (6.4b)

∆(x) =
∑C

i=1 eλix − 1
ex − 1

=
∑
k=0

∆k[λ1, λ2, ...., λC ]
xk

k!
, λi = real, λi 6= λj

(6.30a)
a similar expansion follows for the anti-chiral weights, and it leads to a polyno-
mial expression in the parameters λi, λ̄i as follows

∆k [λ1, λ2, ......., λC ] + ∆̄k [λ̄1, λ̄2, ......λ̄C ] =
n=k+1∑

n=1

a(k)
n ( λn

1 + λn
2 + ...... + λn

C ) + ā(k)
n ( λ̄n

1 + λ̄n
2 + ........ + λ̄n

C ). (6.30b)

Since the weights in the l.h.s of eq-(6.29) due to eq-(6.30b) have an explicit
polynomial dependence on the λi, λ̄i parameters, the functions ϕ(t), d(t) which
parametrize the space of solutions of ρ(r, t) in eq-(5.20) must also encode such
an explicit polynomial dependence on λi, λ̄i. One may fix the function d(t) = 1
leaving the ϕλi,λ̄i

(t) to be a family of functions of the form

ϕ{λi,λ̄i}(t) =
∑

l

ϕl(t) ( λl
1 + λl

2 ...... + λl
C ) + ϕ̄l(t) ( λ̄l

1 + λ̄l
2....... + λ̄l

C ) =

∑
l

∑
m

ϕm
l cos(mt) ( λl

1 + λl
2...... + λl

C ) + ϕ̄m
l cos(mt) ( λ̄l

1 + λ̄l
2....... + λ̄l

C ).

(6.31)
The number of coefficients a(k)

n corresponding to k = 0, 1, 2, 3, ....N − 1 is∑k=N−1
k=0 (k+1) = (N+1)(N)/2 . The number of coefficients ϕ(m)

l correspond-
ing to m = 1, 2, ...N and l = 1, 2, 3, ....N is N2. If one sets ϕ(m)

l as the com-
ponents of a symmetric N ×N matrix the number of independent components
is (N)(N + 1)/2 which matches the number of coefficients a(k)

n corresponding
to k = 0, 1, 2, 3, ....N − 1. In this fashion one has a precise match among the
number of coefficients a(k)

n and ϕ(m)
l for all values of N .

To sum up, the generators Ŵ2, Ŵ3, ..... are realized in terms of ρ(r, t) by the
expressions in eqs-(6.13) which depend in general on two arbitrary functions
ϕ(t), d(t). We have fixed the function d(t) = 1. Thus, an explicit realization of
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the Ŵ2, Ŵ3, ... generators in terms ϕ(t), d(t) permits the evaluation of the inte-
grals (6.29). The eqs-(6.13, 6.30, 6.31) are required to evaluate the expectation
values in eqs-(6.29) for k = 1, 2, 3, .... which establish the one-to-one correspon-
dence among the coefficients ϕm

l , ϕ̄
m
l associated with the modes of the family of

functions ϕ{λi,λ̄i}(t) (6.31) and the coefficients a(k)
n , ā

(k)
n corresponding to the

polynomial expressions of the conformal weights ∆k[{λi}] + ∆̄k[{λ̄i}] given by
eq-(6.30b). Since the coefficients a(k)

n , ā
(k)
n are not arbitrary this implies that the

modes of the family of functions ϕ{λi,λ̄i}(t) cannot be arbitrary either, meaning
that the family of functions ϕ{λi,λ̄i}(t) cannot be arbitrary in the same vein
that the energy levels of a harmonic oscillator or the hydrogen atom are not
arbitrary either. This is a consequence of quantization.

6.3 Casimir invariant Wave Equations for the W∞ algebra
and Energy spectrum of the continuous Toda molecule

If the classical 2D Toda molecule is indeed an exact integrable system it must
posess an infinite number of functionally independent classical integrals of mo-
tion whose Poisson Brackets are zero; i.e the conserved charges are in involution.
At the Quantum level one should have an infinite number of mutually commut-
ing operator charges obtained from the classical-quantum correspondence

In → Qn, {In, Im} = 0 → 1
ih̄

[Qn, Qm] = 0. (6.32)

The quantum integrals of motion are conserved so their expectation values in
the |in > state given by | ρ(r = −∞, t) > do not depend on ”time” r. The
expectation values can be computed in terms of the asymptotic states; i.e. in
terms of the values of the function ϕλ,λ̄(t) when d(t) = 1. The Casimirs in the
classical case are [4]

In =
∫ 2π

0

dt (
∫ t

0

dt′ ϕ(t′) )n. (6.33)

The explicit expression relating the infinite number of involutive conserved
quantum charges in terms of the generators of the chiral W∞ algebra has been
given by [90]

Q̂2 =
∮

Ŵ2 dz, Q̂3 =
∮

Ŵ3 dz, Q̂4 =
∮

( Ŵ4 − Ŵ2 Ŵ2 ) dz.

Q̂5 =
∮

( Ŵ5 − 6 Ŵ2 Ŵ3 ) dz

Q̂6 =
∮

( Ŵ6 − 12 Ŵ2 Ŵ4 − 12 Ŵ3 Ŵ3 + 8 Ŵ2 Ŵ2 Ŵ2 ) dz, ...... (6.34)
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Similar expressions hold for the antichiral algebra. In the dimensionall-reduction
of the W∞⊕ W̄∞ algebra, these expressions hold as well where now the integral
expressions are those given in eqs-(6.25) by replacing the contour integrals in the
complex plane z, z̄ by integrals w.r.t. the ”angular” t variable. Upon evaluation
of the expectation values in the |in > state | ρ(r = −∞, t) > one has expressions
of the type :

E = I2 = lim r→−∞ < ρ|
∫

dt Ŵ2[ρ(r, t)] |ρ > . (6.35a)

I3 = lim r→−∞ < ρ|
∫

dt Ŵ3[ρ(r, t)] |ρ > . (6.35b)

and similar procedure with the other expectation values

I4 = <

∫
dt (Ŵ4 − Ŵ2 Ŵ2) >, I5 = <

∫
dt ( Ŵ5 − 6 Ŵ2 Ŵ3) >, ......

(6.35c)
The Hamiltonian associated with the 2D continuous Toda field theory is [83]

H =
∫

dt [ − 1
2
β2 (

∂2x

∂r ∂t
)2 + (

m2

β2
) exp ( β ∂2x/∂t2 ) ], ρ ≡ ∂2x

∂t2
(6.36)

The wave functional is defined by Ψ[ρ(r, t)] ≡ < ρ(r, t) | Ψ > where the state
|ρ(r, t) > has an explicit dependence on the two-parameter family of functions
ϕλ,λ̄(t) as stated earlier. From eqs-(5.19,6.36) for unit coupling β = 1 one learns
that (∂2x/∂r∂t) is the momentum-conjugate variable πρ corresponding to the
continuous Toda molecule field ρ ≡ (∂2x/∂t2); the time variable is r and the
angle variable is t. Without loss of generality we will set m = β = 1 in (6.36).
Therefore one has the momentum-operator correspondence given by

∂2x

∂r ∂t
= πρ ⇒ ∂2x

∂r ∂t
↔ − ih̄ δ

δρ(r, t)
. (6.37)

there are two related functional wave equations of the formHΨ = EΨ associated
with the Hamiltonian (6.36)

∫ 2π

0

dt [ exp {ρ(r, t)} − (−ih̄ δ

δρ(r, t)
)2 − E ] Ψ[ ρ(r, t) ] = 0. (6.38a)

and

{
∫ t

0

dt′ [ exp {ρ(r, t′)} − (−ih̄ δ

δρ(r, t′)
)2 ] } Ψ[ ρ(r, t) ] = E Ψ[ ρ(r, t) ].

(6.38b)
when m = β = 1. One must not interpret Ψ as a probability amplitude but as
a field operator linked to a continuous Toda field in a given quantum state |ρ >
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parametrized by the family of functions ϕ{λi,λ̄i}(t). The functional differential
equation (6.38) is quite complicated. A naive zeroth-order simplification will be
given shortly. This is because the Ψ can have the form Ψ = Ψ[ρ, ρt′ , ρt′t′ , .......].
The equation in the momentum representation does not have that complexity
but it has an exponential functional differential operator. Evenfurther, the Ψ is
a non-local object. In string field theory the string field is a multilocal object
that depends on all of the infinite points along the string.

One can expand |Ψ > in an infinite dimensional basis spanned by the Verma
module associated with the highest weight states |λ > ( |λ̄ >). This is very
reminiscent of the string-field Φ[Xµ(σ)] = < Xµ| |Φ > where the state |Φ >
is comprised of an infinite array of point fields associated with the center of
mass xµ

o (σ) coordinates of the open-string

|Φ > = φ(xµ
o )|0 > + Aµ(xµ

o ) a†µ1 |0 > + gµν(xµ
o ) a†µ1 a†ν1 |0 > +..... (6.39)

where the first field is the tachyon, the second is the massless Maxwell photon
field, the third is the massive graviton... The oscillators play the role of ladder-
like operators acting on the ”vacuum”|0 > in the same manner that the Verma
module is generated from the highest weight states |λ > by successive applica-
tions of a series of W (z−nDk) operators acting on |λ >. The state |ρ(r, t) >
is the relative of the string state |Xµ(σ1, σ2) >, whereas |Ψ > is the relative
of the string field state |Φ >. This picture is also consistent with the fact that
the Liouville field in non-critical strings backgrounds can be viewed as an extra
string coordinate.

Now we can write the zeroth order approximation of the functional wave
equation (6.38) in the Schroedinger-like fashion by setting h̄ = 1 as follows

( ∂2
y + ey ) Ψ(y) = E Ψ(y). (6.40)

A change of variables x = 2 ey/2 converts (6.40) into Bessel’s equation

( x2 ∂2
x + x ∂x + x2 − 4 E ) Φ(x) = 0. (6.41)

where Ψ(y(x)) = Φ(x) and whose solution is

Φ(x) = c1 Jν(x) + c2 J−ν(x). (6.42)

where ν ≡ 2
√
E and c1, c2 constants. The wavefunctional solution of (6.38) in

the zeroth order approximation is then given by

Ψ[ ρ(r, t) ] = c1 Jν( 2eρ(r,t)/2 ) + c2 J−ν( 2eρ(r,t)/2). (6.43)

This completes section 6 where the main results are displayed by eqs-(6.29,6.30,6.31)
and eqs-(6.38,6.42,6.43).
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7 Concluding Remarks

To recapitulate, sections 1, 3, 5 contain known material necessary to derive
the results of sections 2, 4, 6 which are new. To finalize we will summarize
some important points related to W∞ strings and membranes in a wide variety
of physical models .

1- The 3-dim world volume of the membrane as the boundary of a four
dimensional anti-deSitter spacetime, AdS4, [100].

2- The membrane as a coherent state of an infinite number of strings . This
is reminiscent of the Sine-Gordon soliton being the fundamental fermion of
the massive Thirring model, a quantum lump. The lowest fermion-antifermion
bound state (soliton-antisoliton doublet) is the fundamental meson of Sine-
Gordon theory. Higher level states are built from excitations of the former
in the same way that infinitely many massless states can be built from just two
singletons.

3- The membrane as a Matrix [104] model. Uncompactified D = 11 M -
theory was found to have an equivalence with the N = ∞ limit of supersym-
metric matrix quantum mechanics describing D 0 branes. Matrix models of 2D
gravity and Toda theory have been discussed by Gerasimov et al [105] and by
Kharchev et al [103].

4- W∞ symmetry in the Edge states of Quantum Hall Fluids [95], the set of
unitary highest weight irreps of W1+∞ have been used to algebraically charac-
terize the low energy edge-excitations of the incompressible ( area preserving)
Quantum Hall Fluids.

5-Perhaps the most relevant physical applications of the membrane quantiza-
tion program will be in the behaviour of black hole horizons [92]. The connection
between black hole physics and non-abelian Toda theory has been studied in
[93]. W gravity was formulated as chiral embeddings of a Riemann surface into
CPn. Toda theory plays a crucial role as well [94].

6- In understanding the string vacua : The ordinary bosonic string has been
found to be a special vacua of the N = 1 superstring [96]. It appears that
there is a whole hierarchy of string theories : w2 string is a particular vacua
of the w3 string and so forth......If this is indeed correct one has then that the
(super) membrane, viewed as noncritical W∞ string theory, is, in this sense, the
universal space of string theory. The fact, advocated by many, that a Higgs
symmetry-breakdown-mechanism of the infinite number of massless states of
the membrane generates the infinite massive string spectrum fits within this
description.

7- Membranes as gauge theories of area preserving diffs [97] and as composite
antisymmetric tensor field theories [98],[99]. And many more. We hope that
the essential role that Self Dual SU(∞) Yang-Mills theory has played in the
origins of the membrane-Toda theory, will shed more light into the origin of
duality in string theory and the full membrane spectrum. In [99] the analogs of
S, T duality were built in from the very start. For a review of duality in string
theory [50] and the status of string solitons see [101]. As of now we must have
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all unitary irreps of W∞ to construct no-ghost theorems and be able to have
the OPE of the Toda exponentials to fully exploit the results of 6.

A lot remains ahead, we hope that the contents of this work based on gauge
theories of Diffs (area-preserving diffs ) may shed some light into the geomet-
rical foundations of string theory. Since higher-spin W∞ symmetries are very
relevant in the study of 2D W∞ Gravity, the Quantum Hall effect, large N
QCD, strings, membranes, topological QFT, gravitational instantons, Noncom-
mutative 4D Gravity, Modular Matrix Models and the Monster group,.... it is
warranted to explore further the interplay among all these theories.
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