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Abstract

It is shown how one can attain the desired locally causal property of
QM in Clifford-spaces despite the spacelike separation of two massive
spin-1

2 particles involved in the Einstein-Podolksy-Rosen (EPR) experi-
ment. This is achieved by proving why the addition laws of the particles
poly-vector-valued momentum in Clifford-space is null-like. This is the
key reason why it is possible to implement a locally causal QM theory
in Clifford-spaces despite that QM has a non-local character in ordinary
spacetime. The two particles can exchange signals in Clifford-space en-
coding their respective spin measurement values. Consequently, there
is no EPR paradox in the Clifford space associated with the Clifford
algebra Cl(3, 1) of the underlying 4D spacetime.

PACS numbers: 03.65.Ud, 03.67.-a, 02.10.Ud

Not so long ago Borchsenius [1] argued that when the quantum measure-
ment principle is adapted to the generating space of Clifford algebras the tran-
sition probabilities for two-fold degenerate paths in space-time equals the tran-
sition amplitudes for the underlying paths in Clifford space. This property was
used to show that the apparent non-locality of quantum mechanics in a double
slit experiment and in an EPR type of measurement is resolved when analyzed
in terms of the full paths in the underlying Clifford space.

Most recently, Christian [2] has shown that Bell’s theorem fails for Clifford-
algebra-valued local realistic variables. This was shown by exactly reproducing
the Quantum Mechanical expectation values for the EPR-Bohm type spin cor-
relations observables by means of local, deterministic, Clifford algebra valued
variables, and without necessitating either remote contextuality or backward
causation. Since the Clifford product of poly-vector (multivector) variables is
non-commutative in general, the spin correlations values derived within such
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a locally causal model violate the CHSH (Clauser-Horne-Shimonov-Holt) in-
equality just as strongly as their quantum mechanical counterparts.

In a lengthy review of Clifford algebras, Varlamov [3] has given very con-
vincing arguments as to why the division of physical fields into ”gauge” fields
(bosons) and ”matter” fields (spinors) has an artificial character that disap-
pears when one formulates the basic physical theories within the framework of
Clifford algebras; i.e. there should not be a division of wavelike phenomenon
(like Electromagnetism) and material one as envisioned many years ago in the
de Broglie-Jordan neutrino (spinorial) theory of light [4] and references in [3].

Using our results over the past years on the Extended Relativity Theory in
C-spaces (Clifford spaces) [7] we will prove that there is no EPR paradox in the
Clifford-space associated with the spacetime Clifford algebra Cl(3, 1). C-space
is a Clifford manifold in which there are coordinates xµ, xµ1µ2 , xµ1µ2µ3 , ... linked
to the basis vector γµ generator and to each element of the Clifford algebra :
the bi-vectors γµ ∧ γν , tri-vectors γµ1 ∧ γµ2 ∧ γµ3 ,....... including the Clifford
algebra unit element (associated to a scalar coordinate). These poly-vector
valued coordinates can be interpreted as the quenched-degrees of freedom of
an ensemble of p-loops associated with the dynamics of closed p-branes, for
p = 0, 1, 2, ...., D − 1, embedded in a target D-dim spacetime background.

The xµ coordinates represent the coordinates of a point (or the center of
mass of an extended object); xµ1µ2 are the area-coordinates enclosed [5] by the
projections of a closed loop onto the coordinates planes (”holographic” screens)
of the D-dim spacetime. xµ1µ2µ3 are the volume-coordinates enclosed by the
projections of a closed membrane ( a 2-loop ) onto the coordinates planes of the
D-dim spacetime, ..... and so forth. Since a p-loop space is infinite dimensional,
it is only in the quenched-approximation, by freezing the degrees of freedom,
that one can match the zero modes of these p-loop configurations with the
poly-vector valued coordinates of C-space. Further details on the Extended
Relativity Theory in curved C-spaces can be found in [6], [7], [9] where the
C-space metric GMN with poly-vector valued indices M, N represents lines,
areas, volumes, .... hyper-volumes metrics and has a generalized curvature
which admits an expansion in powers of the ordinary spacetime curvature and
torsion and permits a construction of a master action encompassing the unified
dynamics of an ensemble of p-branes for different values of p = 0, 1, 2, ...., D−1.
For references pertaining Clifford algebras see [10].

We begin by writing the C-space poly-vector-valued momentum in the form
described in [9]

P = π 1 + pµ γµ + pµν γµ ∧ γν + πµ γ5 γµ + p0123 γ5. (1)

where (γ5)
2 = −1, {γµ, γ5} = 0, the C-space invariant norm-squared of a

momentum poly-vector is defined by the scalar part of the Clifford geometric
product of < P∼ P > where P∼ is the reversal-conjugate of P obtained by
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reversing the order of the gamma factors in the decomposition of the poly-
vector P [10]. The norm-squared is

|| P ||2 = π2 + pµ pµ +
1

2
pµν pµν +

1

3!
pµνρ pµνρ +

1

4!
pµνρτ pµνρτ =

π2 + pµ pµ +
1

2
pµν pµν + πµ πµ − (p0123)2. (2)

it is necessary to introduce suitable powers of the Planck mass (that is set to
unity) in order to match the units in the terms of eqs-(1-2). The norm can
also be recast as

|| P ||2 = π2 + pµ pµ +
1

2
Sµν Sµν + πµ πµ − (p0123)2 (3)

by identifying the spin bi-vector Sµν with the momentum bi-vector pµν. The
physical motivation why the spin bi-vector Sµν can be represented by the
momentum bi-vector pµν (up to a power of m2

P lanck = 1) was explained by [8].
A natural coupling of the classical spin ( spin bi-vector Sµν ) to the linear
motion of the particle providing a new derivation of the Papapetrou equations
can be found in [8] .

As explained in detail in chapter 2 of the monograph by [9], the ordinary
momentum pµ is timelike :

pµpµ − (p0123)2 = 0 ⇒ pµpµ = (p0)2 − (�p)2 = (p0123)2 = m2 > 0, . (4)

since the p0123 pseudo-scalar component of the poly-momentum ( that is dual
to a scalar ) is identified with the standard mass m of the particle; whereas
the axial-vector is spacelike resulting from the condition

π2 + πµπµ = 0 ⇒ π2 = − πµπµ ⇒ πµπµ < 0, spacelike. (5)

The key to show why there is no EPR paradox in Clifford spaces (C-spaces)
relies in the crucial observation that one must not impose the transversality
constraints [8] Sµν pν = 0 and studied in [9] but instead recur to the self-duality
conditions of the spin bi-vector components (in a flat C-space) given by

Sµν =
1

2
εµνρσ Sρσ. (6)

The self-duality conditions admit a simple solution in the center of mass frame
when the two massive spin-1

2
particles involved in the EPR experiment are

moving along the z-axis ( in opposite directions ) given by

S01 = S02 = S13 = S23 = 0. (7)
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and the remaining non-vanishing spin bi-vector components are S03, S12 such
that

S03 =
1

2
ε0312 S12 +

1

2
ε0321 S21 = ε0312 S12 =

ε0123 S12 = S12 = S03; ε0123 = − ε0123 = 1. (8)

where the signature is chosen to be (+,−,−,−). Hence the solutions to the
self-duality conditions (6) in the center of mass frame amount to a null-like
condition on the spin bi-vector

Sµν Sµν = (S03)2 − (S12)2 = 0. (9)

The quadratic Casimir is defined in terms of the spatial components of the
spin bi-vector (in units of h̄ = 1) as

(Sij)2 = (S12)2 = s(s + 1) when S13 = S23 = 0. (10a)

where s is the spin of the particles. Thus one arrives at

(S03)2 − (S12)2 = 0 ⇒ (S03)2 = (S12)2 = s(s + 1). (10b)

and the poly-momentum corresponding to the particles is itself null-like if the
on-shell conditions eqs-(4-5) are satisfied :

if Sµν Sµν = 0 ⇒ || P ||2 = 0 (11)

despite the fact that m2 �= 0, π2 �= 0. The axial-vector πµ is just proportional
to the Pauli-Lubansky vector

Wσ = Sµν pρ εµνρσ. (12)

obeying the orthogonality condition Wσ pσ = Sµν pρ pσ εµνρσ = 0 due to
the symmetry of the product pρ pσ = pσ pρ. If pµ is timelike (spacelike), the
Pauli-Lubansky vector Wµ is spacelike (timelike).

For the solutions (7-8), the non-vanishing components of Wµ are

W0 = λ π0 = S12 p3 ε1230, W3 = λ π3 = S12 p0 ε1203. (13)

such that Wµ is spacelike

WµW µ = λ2 [ (π0)
2 − (π3)

2 ] = − λ2 π2 =

(S12)2 [ (p3)
2 − (p0)

2 ] = − m2 s(s + 1) < 0. (14)

with the aid of the on-shell condition (p0)
2 − (p3)

2 = m2 and (S12)2 = s(s+1).
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The normal addition of the timelike four-momentum of the two particles
in the center of mass frame is

p(1)
µ + p(2)

µ = ( 2p0, 0 ); p(1)
µ − p(2)

µ = ( 0, 2�p ). (15)

The addition of the spacelike axial-four-vectors differs from the addition
of timelike four-vectors in the center of mass frame. Taking the z-axis as the
direction of propagation, the non-vanishing components πµ for the particle 1
moving upwards are

π
(1)
0 = π

(1)
0 = ε0123 p123

(1) , π(1)
z = π

(1)
3 = ε0123 p012

(1) . (16)

whereas the non-vanishing components of the particle 2 moving downwards
are

π
(2)
0 = π

(2)
0 = ε0123 p123

(2) = − ε0123 p123
(1) = − π

(1)
0 . (17)

due to the fact that p123
(2) = −p123

(1) resulting from the relative change of sign of
the z-component of the tri-vector. The other component is

π(2)
z = π

(2)
3 = ε0123 p012

(2) = ε0123 p012
(1) = π

(1)
3 (18)

there is no sign change in this case for the tri-vector p012. Consequently, the
addition law of the axial-four-momentum (spacelike) has a ”dual” behavior
compared to the addition law of the ordinary four-momentum (timelike)

π(1)
µ + π(2)

µ = ( 0, 2�π ) = ( 0, 0, 0, 2π3 ); π(1)
µ − π(2)

µ = ( 2π0, 0, 0, 0 ).
(19)

The addition laws of the spin bivectors in the center of mass frame are

S(1)
µν + S(2)

µν = ( 0, 0 ), S(1)
µν − S(2)

µν = ( 2S0i, 2Sij ), i, j = 1, 2, 3.. (20)

consistent with the fact that the combined net spin of the two particles in the
EPR experiment is zero. Therefore, one has that the addition law of the spin
bi-vectors preserves the null-like condition

(Sµν)2
(1±2) = 4(S0i)

2
(1±2) − 4(Sij)

2
(1±2) = 0. (21)

resulting from the solutions (7-8) to the self-duality equations (6).
The addition laws of the scalar and pseudoscalar components of the poly-

momentum are

π(1) + π(2) = 2π; π(1) − π(2) = 0. (22)

m(1) + m(2) = 2m = 2 p0123; ; m(1) − m(2) = 0. (23)
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since we assumed the particles to be identical m(1) = m(2) = m and π(1) =
π(2) = π.

After this detailed analysis, from the above equations one can construct
the poly-momentum addition laws in C-space so that the norm

(P1 + P2)
2 = 4 ( (p0)

2 − (p0123)2 ) + 4 ( π2 − (π3)
2 ) =

4 (p3)
2 − 4 (π0)

2 ≥ 0 (24)

as a result of the on-shell conditions

(p0)
2 − (p3)

2 = m2 = (p0123)2; (π0)
2 − (π3)

2 = − π2. (25)

Similarly one can infer that

(P1 − P2)
2 = − 4 (p3)

2 + 4 (π0)
2 ≤ 0 (26)

as expected, eq-(26) has an overall sign change with respect to eq-(24). One
can deduce now from eqs-(24,26) that in the very special case p3 = π0 we have

if p3 = π0 ⇒ (P1 ± P2)
2 = 0. (27)

despite the fact that the addition law of the ordinary four-momentum obeys

(p(1)
µ + p(2)

µ )2 > 0, (p(1)
µ − p(2)

µ )2 < 0. (28)

Thus, despite that the addition of two momenta in ordinary spacetime remains
timelike and the difference of the momenta is spacelike, consistent with the
spacelike separation of the two particles 1, 2 moving along the z-axis in oppo-
site directions, the addition laws of the poly-momentum in C-space is null-like
! This is the key reason why it is possible to implement a locally causal
QM theory in C-spaces despite that QM has a non-local character in ordi-
nary spacetime. The particles 1, 2 can exchange signals in C-space encoding
their spin measurement values. The analog of ”photons” or ”light” signals in
C-space are tensionless strings (p-branes) and a thorough discussion can be
found in [7].

From the orthogonality condition

Wµ pµ = λ πµ pµ = λ (π0 p0 − π3 p3 ) = 0. (29)

when π0 = p3, resulting in the sought-after relation (P1 ± P2)
2 = 0, one

learns also that π3 = p0, which in turn leads to the important finding that
m = π and λ2 = s(s + 1) due to the on-shell conditions (25) and the Pauli-
Lubansky relation (14) .
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Concluding, after this detailed discussion involving the solutions to the
self-duality conditions on the spin bi-vector Sµν which is consistent with the
null like SµνSµν behavior, and which leads to the important results that the
value of the scalar part of the Clifford-valued poly-momentum π coincides
with the value of the pseudo-scalar component p0123 = m, and the constant
of proportionality λ between the Pauli-Lubansky and axial vector Wµ = λ πµ

obeys the relation λ2 = s(s + 1), we can attain the desired locally causal
property of QM in C-spaces.

This can be readily seen by noticing that if the particles are not subject to
any external fields (forces) and one neglects the gravitational, electromagnetic
... interactions between the two particles, one has that the poly-vector valued
coordinates in C-space are

X1 =
1

m
P1 τ ; X2 =

1

m
P2 τ ⇒ (X1−X2)

2 =
1

m2
(P1 − P2)

2 τ 2 = 0. (30)

where the proper-time τ elapsed for each of the particles is τ 2 = t2 − z2 �= 0
despite that their coresponding C-space norm is null X2

1 = X2
2 = 0. Since

the interval in C-space (X1 − X2)
2 is null one can exchange signals from

the locations 1, 2 in C-space. As mentioned earlier, ”light” signals in C-space
correspond to tensionless strings ( branes ) [7]. Concluding, under these
physical conditions there is no longer an Einstein-Podolsky-Rosen paradox in
the Clifford-space associated with the spacetime Clifford algebra Cl(3, 1). The
generalization of QM in Clifford spaces has been studied in [6] extending the
results of [9].
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