
On Generalized Yang-Mills Theories and
Extensions of the Standard Model in

Clifford (Tensorial) Spaces

Carlos Castro∗

May, 2005 , Revised October 2005

Abstract

We construct the Clifford-space tensorial-gauge fields generalizations of Yang-Mills
theories and the Standard Model that allows to predict the existence of new particles
( bosons, fermions) and tensor-gauge fields of higher-spins in the 10 Tev regime. We
proceed with a detailed discussion of the unique D4−D5−E6−E7−E8 model of Smith
based on the underlying Clifford algebraic structures in D = 8, and which furnishes all
the properties of the Standard Model and Gravity in four-dimensions, at low energies.
A generalization and extension of Smith’s model to the full Clifford-space is presented
when we write explictly all the terms of the extended Clifford-space Lagrangian. We
conclude by explaining the relevance of multiple-foldings of D = 8 dimensions related
to the modulo 8 periodicity of the real Cliford algebras and display the interplay among
Clifford, Division, Jordan and Exceptional algebras, within the context of D = 26, 27, 28
dimensions, corresponding to bosonic string, M and F theory, respectively, advanced
earlier by Smith. To finalize we describe explicitly how the E8 × E8 Yang-Mills theory
can be obtained from a Gauge Theory based on the Clifford ( 16 ) group.

1 Introduction : Novel Physics in Tensorial Spaces

1.1 The Extended Relativity Theory in Clifford Spaces

The Extended Relativity theory in Clifford-spaces ( C-spaces ) is a natural extension of
the ordinary Relativity theory [2]. For a comprehensive review we refer to [1] . A natural
generalization of the notion of a space-time interval in Minkowski space to C-space is :

dX2 = dΩ2 + dxµdx
µ + dxµνdx

µν + ... (1− 1)
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The Clifford valued poly-vector:

X = XMEM = Ω 1 + xµγµ + xµνγµ ∧ γν + ...xµ1µ2....µDγµ1 ∧ γµ2 .... ∧ γµD
. (1− 2)

denotes the position of a polyparticle in a manifold, called Clifford space or C-space.
The series of terms in (2) terminates at a finite value depending on the dimension D.
A Clifford algebra Cl(r, q) with r + q = D has 2D basis elements. For simplicity, the
gammas γµ correspond to a Clifford algebra associated with a flat spacetime :

1/2{γµ, γν} = ηµν . (1− 3)

but in general one could extend this formulation to curved spacetimes with metric gµν .
The multi-graded basis elements EM of the Clifford-valued poly-vectors are

EM ≡ 1, γµ, γµ1 ∧ γµ2 , γµ1 ∧ γµ2 ∧ γµ3 , γµ1 ∧ γµ2 ∧ γµ3 ∧ ..... ∧ γµD . (1− 4)

It is convenient to order the collective M indices as µ1 < µ2 < µ3 < ...... < µD.
The connection to strings and p-branes can be seen as follows. In the case of a closed

string (a 1-loop) embedded in a target flat spacetime background of D-dimensions, one
represents the projections of the closed string (1-loop) onto the embedding spacetime
coordinate-planes by the variables xµν . These variables represent the respective areas
enclosed by the projections of the closed string (1-loop) onto the corresponding embedding
spacetime planes. Similary, one can embed a closed membrane (a 2-loop) onto a D-dim
flat spacetime, where the projections given by the antisymmetric variables xµνρ represent
the corresponding volumes enclosed by the projections of the 2-loop along the hyperplanes
of the flat target spacetimr background.

This procedure can be carried to all closed p-branes ( p-loops ) where the values
of p are p = 0, 1, 2, 3, ....D − 2. The p = 0 value represents the center of mass and
the coordinates xµν , xµνρ.... have been coined in the string-brane literature [56] as the
holographic areas, volumes, ...projections of the nested family of p-loops ( closed p-branes
) onto the embedding spacetime coordinate planes/hyperplanes.

The classification of Clifford algebras Cl(r, q) in D = r + q dimensions ( modulo 8 )
for different values of the spacetime signature r, q is discussed, for example, in the book of
Porteous [57]. All Clifford algebras can be understood in terms of CL(8) and the CL(k)
for k less than 8 due to the modulo 8 Periodicity theorem

CL(n) = CL(8)× Cl(n− 8)

. Cl(r, q) is a matrix algebra for even n = r + q or the sum of two matrix algebras for
odd n = r + q. Depending on the signature, the matrix algebras may be real, complex,
or quaternionic. For furher details we refer to [57].

If we take the differential dX and compute the scalar product among two polyvectors
< dX†dX >scalar [8] , [9] , [58] we obtain the C-space extension of the particles proper
time in Minkowski space. The symbol X+ denotes the reversion operation and involves
reversing the order of all the basis γµ elements in the expansion of X . It is the analog of
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the transpose ( Hermitian ) conjugation : (γµ∧ γν)† = γν ∧ γµ, etc... Therefore, the inner
product can be rewritten as the scalar part of the geometric product as < X†X >scalar .
The analog of an orthogonal matrix in Clifford spaces is R† = R−1 such that

< X ′†X ′ >scalar=< (R−1)†X†R†RXR−1 >scalar=

< RX†XR−1 >scalar=< X†X >scalar=

(Ω)2 + Λ2D−2(xµx
µ) + Λ2D−4(xµνx

µν) + ....+ (xµ1µ2.....µD
)(xµ1µ2.....µD) (1− 5)

we have explicitly introduced the Planck scale Λ since a length parameter is needed in
order to match units. The Planck scale can be set to unity for convenience.

This condition R† = R−1 , of course, will restrict the type of terms allowed inside the
exponential defining the rotor R in eq-(1-5) because the reversal of a p-vector obeys

(γµ1 ∧ γµ2 .....∧ γµp)
† = γµp ∧ γµp−1 .....∧ γµ2 ∧ γµ1 = (−1)p(p−1)/2γµ1 ∧ γµ2 .....∧ γµp (1− 6)

Hence only those terms that change sign ( under the reversal operation ) are permitted
in the exponential defining R = exp[θAEA]. For example, in D = 4, in order to satisfy
the condition R† = R−1, one must have from the behavior under the reversal operation
expressed in eq-(1-6) that :

R = exp [θµ1µ2γµ1 ∧ γµ2 + θµ1µ2µ3γµ1 ∧ γµ2 ∧ γµ3 ]. (1− 7)

such that
R† = exp [θµ1µ2(γµ1 ∧ γµ2)

† + θµ1µ2µ3(γµ1 ∧ γµ2 ∧ γµ3)
†] =

exp [−θµ1µ2γµ1 ∧ γµ2 − θµ1µ2µ3γµ1 ∧ γµ2 ∧ γµ3 ] = R−1. (1− 8)

These transformations are the analog of Lorentz transformations in C-spaces which
transform a poly-vector X into another poly-vector X ′ given by X ′ = RXR−1. The
theta parameters θµ1µ2 , θµ1µ2µ3 are the C-space version of the Lorentz rotations/boosts
parameters. The ordinary Lorentz rotation/boosts involves only the θµ1µ2γµ1 ∧ γµ2 terms,
because the Lorentz algebra generator can be represented as Mµν = [γµ, γν ]. The
θµ1µ2µ3γµ1 ∧ γµ2 ∧ γµ3 are the C-space corrections to the ordinary Lorentz transforma-
tions when D = 4.

The above transformations are active transformations since the transformed Clifford
number X ′ (polyvector) is different from the “original” Clifford number X. Considering
the transformations of components we have X ′ = X ′MEM = LM

N X
NEM = RXR−1,

from which we can deduce that the basis poly-vectors transform as LM
NEM = RENR

−1

so that
LM

N = 〈EM RENR
−1〉scalar ≡< EME ′

N >scalar (1− 9)

For example, in D = 4 an ordinary boost with parameter θt
x2 along the x2 direction is

tantamount of a ”rotation” with an imaginary angle along the x1 − x2 plane where x1

denotes the time coordinate and x2, x3, x4 are the spatial coordinates. In C-space one must
have as well a ”rotation” along the x1 − x12 directions with generalized boost parameter
θt
12 = θ1

12. Hence one has the generalized C-space transformations
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(t)′ = Lt
M(θt1; θt12)(XM) = Lt

t t + Lt
x x + Lt

12 x
12. (1− 10a)

(x)′ = Lx
M(θt1; θt12)(XM) = Lx

t t + Lx
x x + Lx

12 x
12. (1− 10b)

(x12)′ = Lx12

M (θt1; θt12)(XM) = Lx12

t t + Lx12

x x + Lx12

12 x12. (1− 10c)

notice the presence of the extra terms containing the area coordinates x12 in the trans-
formations for the t, x variables, which are not present in the standard Lorentz transfor-
mations. Also, there is an extra dependence on the boost parameter θt

12 = θ1
12 in the

generalized Lorentz matrices LM
N . In the more general case, when there are more non-

vanishing theta parameters , the indices M of the XM coordinates must be restricted to
those directions in C-space which involve the t, x1, x12, x123..... directions as required by
the C-space poly-particle dynamics.

The C-space invariant proper time associated with a polyparticle motion is then :

< dX†dX >scalar= dΣ2 = (dΩ)2 + Λ2D−2dxµdx
µ + Λ2D−4dxµνdx

µν + .. (1− 11)

Here we have explicitly introduced the Planck scale Λ since a length parameter is
needed in order to tie objects of different dimensionality together: 0-loops, 1-loops,...,
p-loops. Einstein introduced the speed of light as a universal absolute invariant in order
to “unite” space with time (to match units) in the Minkowski space interval:

ds2 = c2dt2 − dxidx
i. (1− 12)

A similar unification is needed here to “unite” objects of different dimensions, such as xµ,
xµν , etc... The Planck scale then emerges as another universal invariant in constructing
an extended scale relativity theory in C-spaces [2]

Another possibility is to complexify the C-space polyvector valued coordinates =
Z = ZAEA = XAEA+iY AEA and the boosts/rotation parameters θ allowing the unitarity
condition Ū † = U−1 to hold in the generalized Clifford unitary transformations Z ′ =
UZU † associated with the complexified polyvector Z = ZAEA such that the interval

< dZ̄† dZ >s = dΩ̄dΩ + dz̄µdzµ + dz̄µνdzµν + dz̄µνρdzµνρ + ..... (1− 13)

remains invariant ( upon setting the Planck scale Λ = 1 ).
The unitary condition Ū † = U−1 under the combined reversal and complex-conjugate

operation will constrain the form of the complexified boosts/rotation parameters θA ap-
pearing in the rotor : U = exp[ θAEA ]. The theta parameters θA are either purely real or
purely imaginary depending if the reversal EA

† = ±EA, to ensure that an overall change
of sign occurs in the terms θAEA inside the exponential defining U so that Ū † = U−1 holds
and the norm < Z̄†Z >s remains invariant under the analog of unitary transformations
in complexified C-spaces. These techniques are not very different from Penrose Twistor
spaces. As far as we know a Clifford-Twistor space construction of C-spaces has not been
performed so far.

Another alternative is to define the polyrotations by R = exp (ΘAB[EA, EB]) where the
commutator [EA, EB] = FABCEC is the C-space analog of the i[γµ, γν ] commutator which
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is the generator of the Lorentz algebra, and the theta parameters ΘAB are the C-space
analogs of the rotation/boots parameters θµν . The diverse parameters ΘAB are purely real
or purely imaginary depending whether the reversal [EA, EB]† = ±[EA, EB] to ensure that
R† = R−1 so that the scalar part < X†X >s remains invariant under the transformations
X ′ = RXR−1 . This last alternative seems to be more physical because a poly-rotation
should map the EA direction into the EB direction in C-spaces, hence the meaning of
the generator [EA, EB] which extends the notion of the [γµ, γν ] Lorentz generator. The
introduction of gravity in curved C-spaces involves area, volume, hypervolume ”metrics”
and leads to Higher Derivative Gravity with Torsion. We refer to the review [1] and [2],
[4], [7] for further details about the Extended Relativity Theory in Clifford spaces.

1.2 Higher Rank Tensor Gauge Symmetries and Higher Spin
Theories

Having discussed briefly the Extended Relativity principle in Clifford spaces (antisym-
metric tensorial backgrounds) where the analog of ”photons” corresponds to tensionless
p-branes [2] , [1] , [10] we may proceed with the study of higher-rank tensor gauge sym-
metries and higher spin theories within a completely different context and perspective.

An extension of the algebra of Abelian gauge transformations found in the study of
tensionles strings to the Nonabelian case was advanced recently by Savvidy [11]. Yang-
Mills theory becomes a member of a larger family comprised of tensor-gauge bosons of
arbitrary large number of integer spins s = 1, 2, 3, ....∞. It leads to a natural inclusion of
the Standard Model into a larger theory in which the vector gauge bosons and fermions
are part of a low-spin subgroup of an infinite enlarged family of tensor-gauge bosons and
spinor-tensorial particles with arbitrary higher ( half ) integer spins. Although there is no
experimental evidence of the existence of such tensor-gauge bosons and spinor-tensorial
particles at the energy ofGev, string theory predicts the existence of fundamental particles
of arbitrary large spins and masses of the order of the Planck mass where the multiplicity
of the particles grows exponentially. On the other hand, the number of particles in the
tensionless strings with a perimeter action has linear growth.

Formulations of conformal Higher Spin theories [12] based on twistor-particle dynamics
in tensorial spaces initiated by Fronsdal [13] , have captured a lot of interest recently.
Fronsdal conjectured that four-dim conformal higher spin field theory can be realized as
an ordinary field theory on a ten-dim tensorial manifold parametrized by the coordinates
xαβ = 1

2
xµγαβ

µ +1
4
yµνγαβ

[µν], where xµ are associated with the four coordinates of conventional
4D spacetime and yµν = −yνµ describe six spinning degrees of freedom. An infinite
tower of fields of increasing spin is obtained rather than an infinite tower of massive
states as in the conventional Kaluza-Klein mechanism. In D = 3, 4, 6, 10 dimensions the
conformal higher spin fields constitute the quantum spectrum of a twistor-like particle
propagating in tensorial spaces of corresponding dimensions [12]. One can notice that a
string propagating in the latter dimensions, has for transverse degrees of freedom D−2 =
1, 2, 4, 8 which precisely match the degrees of freedom of the real, complex, quaternion
and octonion normed-division algebras .

5



The Higher spin theories literature is very vast , see [64], [65], [66] , [14], [64] and
references therein. Consistent interactions of massless higher spin theories with gravity
are possible in Anti de Sitter backgrounds provided the value of the spin is arbitrary large
s = 2, 3, 4, ....∞. Interactions of massive bosonic higher spins in D-dim have recently been
reviewed by [14] . Roughly speaking, higher-spin theories bear many similiarties with
string-field theory and W∞ strings. Clifford Spaces are more fundamental than these
tensorial spaces ( have a richer structure ) because they require polyvector coordinates (
antisymmetric tensors) of variable rank ( greater than two ) until the rank saturates the
value of the spacetime dimension.

Higher spin symmetries of the curved target spacetime backgrounds where W∞ strings
propagate, in contrast to the higher conformal-spin symmetry of the two-dim world sheet
of strings, have been investigated thoroughly by [30]. For example, higher spin algebras
based on noncommutative star products in Anti de Sitter space haven been instrumental to
construct higher spin massless gauge theories in AdS backgrounds . Vasiliev’s construction
of higher spin gauge theories and their couplings to higher spin matter currents on AdS
spaces can be attained by introducing a suitable noncommutative but associative Vasiliev
star product on an auxiliary (commuting) Grassmaniann even ” fermionic phase space ”
whose deformation parameter is the inverse length scale characterizing the size of AdS4’s
throat λ = r−1. The Vasiliev star product encoding the nonlinear and nonlocal higher spin
fields dynamics is defined taking advantage of the local isomorphism between so(3, 2) ∼
sp(4, R). It has the same form as the Baker integral representation of the star product. We
should emphasize that one must not confuse Vasiliev’s defomation of the SO(3, 2) algebra
using the AdS throat-size as deformation parameter, with the Moyal star products in
phase spaces whose the deformation parameter is the Planck constant h̄ . Calixto has
recently studied higher-dim extensions of W∞ symmetries based on higher-spin U(2, 2)
fields in AdS spaces that are very relevant to radiation phenomena [34].

This in conjunction with the fact that Anti de Sitter spaces are required in Vasiliev’s
construction, may be very relevant in understanding more features about the AdS/CFT
duality conjecture. W∞ algebras were essential to identify the missing states in the
AdS/CFT correspondence [19]. Higher Derivative Gravity is also very relevant in the
AdS/CFT correspondence [20]. These higher spin algebras have been instrumental lately
in [21] to construct N = 8 Higher-Spin Supergravity in AdS4 which has been conjectured
to be the true field theory limit of M theory on AdS4 × S7. W∞ symmetries that are
higher conformal spin extensions of the Zamolodchikov W3 algebra [31] have been studied
extensively by numerous authors , for example, by [28], [29], [35], [36], [32], [37], [38],
[22], [23], [24], [39], [40], [42], [43]. In particular, W∞ symmetries appear in the physics of
membranes as well because noncritical W∞ strings [41] (with ghosts and Liouville sectors
) behave like membranes ( 3D theories ) in their critical D = 27 (D = 11) dimensions
[25] , [27].

Using a BRST analysis, it was shown [27] that a nilpotent BRST charge operator asso-
ciated with the noncritical W∞ superstring can be constructed by adjoining a q = N + 1
unitary superconformal model of the super WN algebra to a critical W∞ superstring
spectrum in the N = ∞ limit. Therefore, we have an anomaly-free noncritical W∞ su-
perstring in D = 11. Similar BRST analysis followed for the bosonic noncritical W∞
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string and we found that D = 27 was the required critical dimension of the target space-
time. D = 27 is the dimension of the alledgedly anomaly-free bosonic membrane as was
shown by Marquard, Scholl and Kaiser.

Hence, the massless spectrum sector of membranes living in the three-dim boundary
of AdS4 bears a relationship to the massless spectrum of (non-critical) W∞ strings. The
latter are effectively 3D theories living in the three-dim conformal boundary of AdS4.
Consequently, noncritical W∞ strings in AdS4 × S7 backgrounds are the sought-after
higher conformal-spin gauge theories associated with the three-dimensional conformal
group SO(3, 2) of the boundary of AdS4 and which have a one-to-one correspondence to
Vasiliev’s higher-spin massless gauge field theories in AdS4 spaces.

4-dim Gauge theories based on gauging the Virasoro algebra ( diffs of a circle) have
been constructed by [16] and 4-dim gauge theories based on the w∞ (area-preserving diffs
of the plane) algebras have been constructed by [17] using the Feigin-Fuks-Kaplansky
representation of w∞ algebras. Higgs matter fields in the adjoint representation were
introduced also with the typical quartic potential terms which generated an infinite tower
of massive spin 2 fields (massive higher spin fields in the case of w∞ gauge theories) after
an sponteaneous symmetry breaking. The action of Zhao [17] based on the w∞ symmetry
constitutes a first step to build higher spins extensions of the Standard Model . It has
been speculated by many authors that the tower of massive higher spin particles, after a
symmetry breaking via the Higgs mechanism of the massless states of W∞ strings, furnish
the infinite tower of massive string states of increasing spin ( Regge trajectories ).

Having presented this introduction on the extended Relativity in Clifford ( tensorial )
spaces and higher-spin theories, W∞ algebras, W∞ strings,....in the next sections we will
describe the Clifford-space (tensorial spaces) generalizations of Yang-Mills theories and
the Standard Model that will allow us to predict the existence of new particles and tensor-
gauge fields of higher spin beyond the 10 Tev regime (related to the observed value of
the vacuum energy density, cosmological constant). We conclude with a detailed outline
of the D4 − D5 − E6 − E7 − E8 model of Smith [50] based on the underlying Clifford
algebraic structure in D = 8 and which furnishes all the properties of the Standard Model
and Gravity in four-dim at low energies. We finalize by presenting the interplay among
Clifford, Division, Jordan and Exceptional algebras within the context of D = 26, 27, 28
dimensions corresponding to bosonic string, M and F theory, respectively and explain
how the E8 × E8 Yang-Mills theory can be embedded into a Cl(16) Gauge Theory.

2 Clifford-Space Generalized Yang-Mills Theories

2.1 Clifford-space Extension of Maxwell Electrodynamics

Finally, in this section we will review and complement the proposal of ref.[3], [1] to
generalize Maxwell Electrodynamics to C-spaces, namely, construct the Clifford algebra-
valued extension of the Abelian field strength F = dA associated with ordinary vectors
Aµ. Using Clifford algebraic methods we shall describe how to generalize Maxwell’s theory
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of Electrodynamics asociated with ordinary point-charges to a generalized Maxwell theory
in Clifford spaces involving extended charges and p-forms of arbitrary rank, not unlike
the couplings of p-branes to antisymmetric tensor fields.

Based on the standard definition of the Abelian field strength F = dA we shall use
the same definition in terms of polyvector-valued quantities and differential operators in
C-space

A = ANE
N = φ1 + Aµγ

µ + Aµνγ
µ ∧ γν + ...... (2− 1)

Once again, in order to match units in the expansion ( 2-1), it requires the introduction
of suitable powers of a length scale parameter L that maybe equal or not to the Planck
scale and which is conveniently set to unity. We shall study in the next sections the
very natural possibility of introducing an energy scale parameter E = 1/L ( in units of
h̄ = c = 1 ) of the order of 10 Tev and explain the origins of such energy scale .

In D = 4, for example, the first component in the expansion φ is a scalar field that
has the same units as the Aµ field which is the standard Maxwell field. The units of φ,Aµ

are (length)−1 = mass since the connection Aµ always couples to a dxµ infinitesimal line
element in the definition of a Wilson loop . When D 6= 4 the units of φ are no longer equal
to those of Aµ. For example, in D = 2 the scalar field φ is dimensionless. Therefore, in
this respect D = 4 is very special because both φ and Aµ have the same units and there
is no need to multiply φ by a length scale parameter L in order to match the units of Aµ

in the definition (2-1) of the polyvector.
The third component Aµν is a rank two antisymmetric tensor field of units (length)−2

....and the last component of the expansion Aµνρτ is a pseudo-scalar ( dual to a scalar ) with
units (length)−4 . The fact that a scalar and pseudo-scalar field appear very naturally in
the expansion of the C-space polyvector valued field AN suggests that one could attempt
to identify the latter fields with a dilaton-like and axion-like field, respectively.

The differential operator is the generalized Dirac operator

d = EM∂M = 1∂σ + γµ∂xµ + γµ ∧ γν∂xµν + ... (2− 2)

the polyvector-valued indices M,N.... range from 1, 2.....2D since a Clifford algebra in
D-dim has 2D basis elements. The generalized Maxwell field strength in C-space is

F = dA = EM∂M(ENAN) = EMEN∂MAN =
1

2
{EM , EN}∂MAN+

1

2
[EM , EN ]∂MAN =

1

2
F(MN){EM , EN}+

1

2
F[MN ][E

M , EN ]. (2− 3)

where one has decomposed the Field strength components into a symmetric plus antisym-
metric piece by simply writing the Clifford geometric product of two polyvectors EMEN

as the sum of an anticommutator plus a commutator piece respectively,

F(MN) =
1

2
(∂MAN + ∂NAM). (2− 4)

F[MN ] =
1

2
(∂MAN − ∂NAM). (2− 5)
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Let the C-space Maxwell action (up to a numerical factor) be given in terms of the
antisymmetric part of the field strength:

I[A] =
∫

[DX]F[MN ]F
[MN ]. (2− 6)

where [DX] is a C-space measure comprised of all the (holographic) coordinates degrees
of freedom

[DX] ≡ (dσ)(dx0dx1...)(dx01dx02...)....(dx012...D). (2− 7)

The action (2-6) is invariant under the gauge transformations

A′
M = AM + ∂MΛ (2− 8)

The matter-field minimal coupling (interaction term) is:∫
AMdX

M =
∫

[DX]JMA
M , (2− 9)

where one has reabsorbed the coupling constant, the C-space analog of the electric charge,
within the expression for the A field itself. Notice that this term (2-9) has the same form
as the coupling of p-branes (whose world volume is p + 1-dimensional) to antisymmetric
tensor fields of rank p+ 1.

The open line integral in C-space of the matter-field interaction term in the action is
taken from the polyparticle’s proper time interval S ranging from −∞ to +∞ and can be
recast via the Stokes law solely in terms of the antisymmetric part of the field strength.
This requires closing off the integration countour by a semi-circle that starts at S = +∞,
goes all the way to C-space infinity, and comes back to the point S = −∞. The field
strength vanishes along the points of the semi-circle at infinity, and for this reason the
net contribution to the contour integral is given by the open-line integral. Therefore, by
rewriting the

∫
AMdX

M via the Stokes law relation, it yields∫
AMdX

M =
∫
F[MN ]dS

[MN ] =
∫
F[MN ]X

MdXN =∫
dSF[MN ]X

M(dXN/dS). (2− 10)

where in order to go from the second term to the third term in the above equation we have
integrated by parts and then used the Bianchi identity for the antisymmetric component
F[MN ].

The integration by parts permits us to go from a C-space domain integral, represented
by the Clifford-value hypersurface SMN , to a C-space boundary-line integral∫

dSMN =
1

2

∫
(XMdXN −XNdXM). (2− 11)

The pure matter terms in the action are given by the analog of the proper time integral
spanned by the motion of a particle in spacetime:

κ
∫
dS = κ

∫
dS

√
dXM

dS

dXM

dS
. (2− 12)
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where κ is a parameter whose dimensions are (mass)p+1 and S is the polyparticle proper
time in C-space.

The Lorentz force relation in C-space is directly obtained from a variation of∫
dSF[MN ]X

M(dXN/dS). (2− 13)

and
κ

∫
dS = κ

∫ √
dXMdXM . (2− 14)

with respect tothe XM variables:

κ
d2XM

dS2
= eF[MN ]

dXN

dS
. (2− 15)

where we have re-introduced the C-space charge e back into the Lorentz force equation in
C-space. A variation of the terms in the action w.r.t the AM field furnishes the following
equation of motion for the A field:

∂MF
[MN ] = JN . (2− 16)

By taking derivatives on both sides of the last equation with respect to the XN coordinate,
one obtains due to the symmmetry condition of ∂M∂N versus the antisymmetry of F [MN ]

that
∂N∂MF

[MN ] = 0 = ∂NJ
N = 0. (2− 17)

which is precisely the continuity equation for the current.
The continuity equation is essential to ensure that the matter-field coupling term of

the action
∫
AMdX

M =
∫
[DX]JMAM is also gauge invariant, which can be readily verified

after an integration by parts and setting the boundary terms to zero:

δ
∫

[DX]JMAM =
∫

[DX]JM∂MΛ = −
∫

[DX](∂MJ
M)Λ = 0. (2− 18)

Gauge invariance also ensures the conservation of the energy-momentum (via Noether’s
theorem) defined in tems of the Lagrangian density variation. We refer to [3] for further
details.

The gauge invariant C-space Maxwell action as given in eq. (2-6) is in fact only a part
of a more general action given by the expression

I[A] =
∫

[DX]F † ∗ F =
∫

[DX] < F †F >scalar . (2− 19)

This action can also be written in terms of components, up to dimension-dependent
numerical coefficients, as [3] :

I[A] =
∫

[DX] (F(MN)F
(MN) + F[MN ]F

[MN ]) (2− 20)

For rigor, one should introduce the numerical coefficients in front of the F terms, notic-
ing that the symmetric combination should have a different dimension-dependent co-
efficient than the anti-symmetric combination since the former involves contractions of
{EM , EN}∗{EM , EN} and the latter contractions of [EM , EN ]∗[EM , EN ] .
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The latter action is strictly speaking not gauge invariant, since it contains not only the
antisymmetric but also the symmetric part of F . It is invariant under a restricted gauge
symmetry transformations. It is invariant ( up to total derivatives) under infinitesimal
gauge transformations provided the symmetric part of F is divergence-free ∂MF

(MN) = 0
[3] . This divergence-free condition has the same effects as if one were fixing a gauge
leaving a residual symmetry of restricted gauge transformations such that the gauge
symmetry parameter obeys the Laplace-like equation ∂M∂

MΛ = 0 ( in order to preserve
the gauge condition ) Such residual ( restricted ) symmetries are precisely those that leave
invariant the divergence-free condition on the symmetric part of F . Residual, restricted
symmetries occur, for example, in the light-cone gauge of p-brane actions leaving a residual
symmetry of volume-preserving diffs. They also occur in string theory when the conformal
gauge is chosen leaving a residual symmetry under conformal reparametrizations; i.e. the
so-called Virasoro algebras whose symmetry transformations are given by holomorphic
and anti-holomorphic reparametrizations of the string world-sheet.

This Laplace-like condition on the gauge parameter is also the one required such that
the action in [3] is invariant under finite (restricted) gauge transformations since under
such (restricted) finite transformations the Lagrangian changes by second-order terms of
the form (∂M∂NΛ)2, which are total derivatives if, and only if, the gauge parameter is
restricted to obey the analog of Laplace equation ∂M∂

MΛ = 0
Therefore the action of eq- (2-20) is invariant under a restricted gauge transformation

which bears a resemblance to volume-preserving diffeomorphisms of the p-branes action in
the light-cone gauge. A lesson that we have from these considerations is that the C-space
Maxwell action written in the form (2-20) automatically contains a gauge fixing term.
Analogous result for ordinary Maxwell field is known from Hestenes work [58], although
formulated in a slightly different way, namely by direclty considering the field equations
without emplying the action.

2.2 Nonabelian Gauge Field Theories in Clifford-spaces and
Multi-forms Fields

It remains to be seen if this construction of C-space generalized Maxwell Electrodynamics
of p-forms can be generalized to the Nonabelian case when we replace ordinary derivatives
by gauge-covariant ones:

F = dA→ F = DA = (dA+ A • A). (2− 21)

We should emphasize that these results based on Geometric Algebras in Cliffod Spaces
are very differentl that those results obtained from ordinary tensor calculus by Savvidy
[11] which obeyed more symmetry restrictions on the tensor indices.

Given a Lie algebra G whose generators are Ta for a = 1, 2, 3, ....dim G and [Ta, Tb] =
f c

abTc where the structure constants fabc are fully antisymmetric in their indices, the Lie-
algebra valued Clifford gauge fields are defined by A(X) = EMAa

M(X)Ta and from which
one can define the one-form A = (Aa

M(X)Ta)dX
M . The generalized Lie-algebra valued

field strength is

11



F = [F c
MN(X) Tc] dX

M ∧ dXN =

[ ∂[MA
c
N ](X)Tc + g Aa

M(X)Ab
N(X) f c

ab Tc ] dXM ∧ dXN . (2− 22)

In components
F c

[ [µ1µ2...µm] [ν1ν2.....νn] ] =

∂[µ1µ2...µm] A
c
[ν1ν2....νn] − ∂[ν1ν2...νn] A

c
[µ1µ2....µm] + g Aa

[µ1µ2...µm] A
b
[ν1ν2....νn] f

c
ab . (2− 23a)

The remaining components are of the form

F c
[0N ] = F c

[ 0 [ν1ν2.....νn] ] = ∂σ A
c
[ν1ν2....νn] − ∂[ν1ν2...νn] A

c
0 + g Aa

0 A
b
[ν1ν2....νn] f

c
ab . (2− 23b)

where Ac
0 is the Clifford-scalar part of the Lie-algebra valued Clifford-polyvector and in

general we must consider the m = n and m 6= n cases resulting from the mixing of
different grades ( ranks ). The antisymmetry with respect the collective indices MN is
explicit.

In order to raise, lower and contract polyvector indices in C-space it requires a gener-
alized metric GMN [1] . In flat C-space it is defined by the components :

Gµν = ηµν . Gµ1µ2 ν1ν2 = ηµ1ν1 ηµ2ν2 − ηµ1ν2 ηµ2ν1 etc.. (2− 24a)

in addition to the scalar-scalar component Gσσ = 1. It can be recast as :

Gµ1µ2....µm ν1ν2....νm = det GµIνJ =
1

m!
εi1i2...imεj1j2....jmη

µi1
νj1ηµi2

νj2 ......ηµimνjm . (2− 24b)

where GµIνJ is an m×m matrix whose entries are ηµiνj for i, j = 1, 2, 3, ......m ≤ D and
µ, ν = 1, 2, 3, ......D.

As a result of the expression for the flat C-space metric, given by sums of antisym-
metrized products of ηµν , the Clifford-space generalized Yang-Mills action is of the form

SY M = −1

2

∫
[DX]

∑
trace [ F a

[ [µ1µ2...µm] [ν1ν2.....νm] ] F
[ [µ1µ2...µm] [ν1ν2......νm] ] b TaTb ] +

−1

2

∫
[DX]

∑
trace [ F a

[ 0 [ν1ν2.....νm] ] F
[ [ 0 [ν1ν2......νm] ] b TaTb ] (2− 25)

where the C-space 2D-dim measure associated with a Clifford algebra in D-dim is once
again

[DX] = [dσ] [Π dxµ] [Π dxµ1µ2 ] [Π dxµ1µ2µ3 ].... [dxµ1µ2.....µd ] (2− 26)

and the indices are ordered as µ1 < µ2 < µ3....... < µm, etc...
The action (2-25) is invariant under the infinitesimal gauge transformations

δξ A
c
M = ∂Mξ

c + gf c
ab A

a
Mξ

b. δξ A
c
µ1µ2....µn

= ∂xµ1µ2....µn
ξc + gf c

ab A
a
µ1µ2....µn

ξb. (2− 27)

associated with a Lie-algebra valued Clifford-scalar parameter ξ(X) = ξa(X)Ta.
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One of the main differences between the Clifford Geometric Algebraic approach to
Generalized Yang-Mills theories and the results of [11] is that in the latter case the mixing
among the different rank tensors Aa

µ1 (ν1ν2...νj)
( that is symmetric in the ν’s indices instead

of being anti-symmetric ) is of the form

F c
[µ1µ2] (ν1ν2......νn)(x) = ∂µ1 A

c
µ2 (ν1ν2........νn)(x)− ∂µ2 A

c
µ1 (ν1ν2........νn)(x) +

j=n∑
j=0

∑
Permutations

gf c
ab A

a
µ1 (ν1ν2...νj)

(x) Ab
µ2 (νj+1νj+2....νn)(x) (2− 28)

where one must sum over permutations of the ν’s indices such that the gauge field strength
in eq-(2-28) is anti-symmetric in the first two-indices µ1, µ2 and symmetric with respect
to the other ν’s indices. Thus these ( anti ) symmetry properties are very different from
those of the C-space gauge field strengths.

The infinitesimal gauge transformations in [11] are :

δ Ac
µ1 (ν1ν2....νn)(x) = ( δcb∂µ1 + gf c

ab A
a
µ1

(x)) ξb
(ν1ν2....νn)(x) +

j=n∑
j=0

∑
Permutations

gf c
ab A

a
µ1ν1ν2....νj

(x)ξb
νj+1νj+2....νn

(x). (2− 29)

where the gauge parameters are tensor-valued ξa, ξa
ν , ξ

a
ν1ν2

, .... and one must sum over all
permutations of the ν’s indices such that the expression (2-29) is fully symmetric with
respect all the ν1, ν2, ....νn indices.

One should notice the differences between Clifford-valued fields A(X) and ordinary
tensor fields in spacetime Aµ(x), Aµν(x), Aµνρ(x), .... in [11]. In addition one has the
different ( anti) symmetry property of the indices and the different spin content of the
tensors of mixed-symmetry. There are an infinite number of tensor fields in [11] versus
an infinite number of modes associated with a finite number of 2D components of the
polyvector A(X) corresponding to the Cl(D,R) algebra. A mode expansion

AM(X) = AM (σ, xµ, xµ1µ2 , ...., xµ1µ2....µd) =∑
An0n2n3.....nd

M (xµ) u n0n2n3.....nd
(σ, xµ1µ2 , ........, xµ1µ2.....µd). (2− 30)

yields an infinite-number of modes. To excite these modes ( freezing the σ coordinate)
requires energies of the order of the Planck energy 1019 Gev since the coordinate polyvector
X = EMXM involves the Planck scale LP = Λ parameter in the expansion as shown
explicity in eq-(1-5 ) . Furthermore, in C-spaces one must extend the (super) Poincare
symmetry to the more general polyvector-valued (super) Poincare symmetry [53], [5]. For
a discussion of these generalized ( super ) symmetries and their applications to M,F
theory superalgebras involving tensorial charges we refer to [53], [65], [54]

On the other hand, the expansion of the Lie-algebra valued Clifford polyvector A =
EMAa

MTa into different ranks anti-symmetric tensors requires another length scale L (
energy E = 1/L in natural units h̄ = c = 1 ) parameter as shown in eqs-(2-1). This
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expansion parameter may or not be equal to the Planck ( energy ) scale. Below we will
argue why one may set this energy expansion parameter ( where the tensor corrections to
the Standard Model could be relevant ) to be of the order of the 10 Tev scale.

We finalize this section with a brief note about bi-forms and multi-forms. The abelian
( non-abelian ) Clifford-valued field strength discussed in this section is an extension
(generalization) of what is called in the Mathematics literature bi−forms,multi−forms
[52]. A bi-form is the GL(D,R) reducible tensor product space of p-forms and q-forms
on the exterior algebra whose elements are

T =
1

p!q!
Tµ1µ2....µp ν1ν2...νq dx

µ1 ∧ dxµ2 ∧ ..... ∧ dxµp ⊗ dxν1 ∧ dxν2 ∧ ..... ∧ dxνq . (2− 31)

All the standard operations on differential forms generalize to bi-forms [52]. Tensors in
representations corresponding to Young tableaux with two columns are irreducible under
GL(D,R). Decomposing a general bi-form into its irreducible components corresponds to
the GL(D,R) Young decomposition of the tensor product of a p-form with a q-form. This
construction of bi-forms can be generalized also to multi-forms that are tensor products
of p-forms, q-forms, r-forms...... For a detailed discussion of tensor gauge fields of mixed
symmetry, massive gauge-invariant field theories and multi-form gauge theories on spaces
of constant curvature, and their applications in superstrings compactifications, we refer
to [52] .

The analog of multi-forms in C-spaces will be :

F = FMn1Mn2 ....Mnk
dXMn1 ∧ dXMn2 ∧ .... ∧ dXMnk . (2− 32)

For example, the analog of a tri-form in C-space is

F [ [µ1µ2.....µp] [ν1ν2......νq ] [ρ1ρ2.....ρr] ] dxµ1µ2....µp ∧ dxν1ν2....νq ∧ dxρ1ρ2.....ρr . (2− 33)

Therefore, one could generalize all the standard results of ordinary bi-forms and multi-
forms to Clifford-spaces and extend the notion of polyvectors to polytensors.

3 Clifford-space Extensions of the Standard Model

3.1 Clifford-Space Generalized Actions for Bosonic Fields

The kinetic terms of a C-space scalar field action is

Sscalar =
∫

[DX] GMN (∂Mϕ) (∂Nϕ). (3− 1)

where ϕ is the scalar component of the Clifford-valued field Φ that is a section
of the Clifford-polyvector-bundle whose structure group is the generalization of the
GL(dim F , R) group acting on the fiber F ; namely it is the Clifford group acting on
the polyvector-valued-fiber and generated by the basis elements EA . A special case of
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a Clifford-polyvector-valued bundle is the Clifford-tangent-bundle when the fiber F has
the same dimension as the base manifold M . Hence, the multi-graded components of
the section Φ of the Clifford-polyvector-bundle are

Φ(X) = ΦAEA = ϕ(X) 1 + Φa(X)γa + Φab(X)γa ∧ γb + .... (3− 2)

and the Clifford-gauge-covariant derivative is

DMΦA = ∂MΦA + AA
BM ΦB. (3− 3)

where A is the conection associated with the Clifford-polyvector-bundle. A natural action
associated with the kinetic terms of the Clifford-analog of a massless field Φ is

S[Φ] =
∫

[DX] GMNDMΦADNΦBΥAB =

∫
[DX] GMN (∂MΦA +AA

CMΦC) (∂NΦB +AB
DNΦD)ΥAB. (3− 4)

The action above in the case that Φ is a section of the Clifford-Tangent-Bundle can
be rewritten as :

S[Φ] =
∫

[DX] < (DΦ)†(DΦ) >0=
∫

[DX] < (EMDMΦAEA)†(ENDNΦBEB) >0 .

(3− 5)
where the frame EA of the Clifford-Tangent-Bundle is covariantly constant DMEA = 0
and

GMN =
1

2
< (EM)†EN +EN(EM)† >0 . ΥAB =

1

2
< (EA)†EB+EB(EA)† >0 . (3− 6)

The Geometric product among the Clifford basis elements is multi-graded since it
contains objects of different grade given

(EM)†EN = {< (EM)†EN >r+s, < (EM)†EN >r+s−2, ..... < (EM)†EN >|r−s| }.
(3− 7)

when r = s , the scalar part coincides with

< (EM)†EN >|r−s|=< EN(EM)† >|r−s|=< (EM)†EN >0=< EN(EM)† >0 . (3− 8)

∂MΦA = { ∂ΦA

∂xµ
,

∂ΦA

∂xµν
,

∂ΦA

∂xµνρ
, .... }. (3− 9)

where :
∂ΦA

∂xµ
= { ∂ϕ

∂xµ
,

∂Φa

∂xµ
,

∂Φab

∂xµ
,

∂Φabc

∂xµ
, .... }. (3− 10)

∂ΦA

∂xµν
= { ∂ϕ

∂xµν
,

∂Φa

∂xµν
,

∂Φab

∂xµν
,

∂Φabc

∂xµν
, .... }. (3− 11)
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∂ΦA

∂xµνρ
= { ∂ϕ

∂xµνρ
,

∂Φa

∂xµνρ
,

∂Φab

∂xµνρ
,

∂Φabc

∂xµνρ
, .... }. (3− 12)

etc —————

For simplicity, one can introduce a group-multiplet of Clifford-valued non-gauge bosons
Φ = EMΦi

M in a flat C-space when Φ carries a representation of the group G and obey
the homogeneous transformations

δξ Φi
M = ξa Σij

a Φj
M . (3− 13)

the matrices Σij
a correspond to the representation of the group G according to which the

fields Φi
M transform homogeneously. The homogeneous transformations ( 3-13 ) differ

from the homogeneous transformations of the bosonic fields given by [11] which require
Lie-algebra-valued tensor parameters ξa

M , in the same manner that the inhomogeneous
transformations of the antisymmetric tensor-gauge fields (2-27) differed from those in
eqs-(2-29 ) . Hence, when Φi

M is now a group-multiplet of Clifford-polyvector valued
fields an invariant action in flat C-space under the transformations ( 3-13) is

S(bosons) =
∫

[DX]GM1N1 GM2N2 [ (δij∂M1+igAa
M1

Σij
a ) Φj

M2
]†[ (δik∂N1+igAa

N1
Σik

a ) Φk
N2

].

(3− 14)
To construct Clifford-space extensions of the Standard Model requires to include the
analog of the Higgs potential and to add fermions. This follows next.

3.2 Clifford-Space Generalized Actions for Fermionic Fields

We shall introduce the spinor-tensor fields Ψα = Ψα
M(X) EM

Ψα(X); Ψα
µ(X); Ψα

µ1µ2
(X); Ψα

µ1µ2µ3
(X); ....... Ψα

µ1µ2...µd
(X). (3− 15)

such that the fields

Ψα
M(X) = Ψα

M ( σ, xµ, xµ1µ2 , xµ1µ2µ3 , ........., xµ1µ2........µd ). (3− 16)

transform under generalized poly-rotations of the underlying C-space as

δ Ψα
M = LN

MΨα
N . LN

M =< RENR−1EM >0 . R = eΘ
MN [EM ,EN ]. (3− 17)

under ordinary tangent space Lorentz transformations

δ Ψα
M = ξab [γa, γb]

α
β Ψβ

M . (3− 18)

and under generalized-Lorentz tangent space transformations (poly-rotations in the
Clifford-tangent space ) :

δ Ψα
M = ξAB [EA, EB]αβ Ψβ

M . (3− 19)
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One may begin with the action

S
(1)
Fermions =

∫
[DX] Ψ̄M1 E

M1 EM2 EM3 ( − i∂M2 + ΩAB
M2

[EA, EB] ) ΨM3 . (3− 20)

ΩAB
M is the C-space extension of the spin-connection ωab

µ . Extended Relativity in curved
C-spaces has been studied in [1]. In particular, we have shown why the curvature scalar
in C-space admits an expansion into powers of curvature and torsion of the underlying
spacetime; i,e. Gravity in C-spaces is a associated to a higher derivative gravity with
torsion in the underlying spacetime. The action (3-20) is the C-space extension of the
covariant massless Dirac and Rarita-Schwinger actions, given respectively ( in curved
spacetimes ) by :

SDirac =
∫

[d4x] Ψ̄ γµ( − i∂µ + ωab
µ [γa, γb] ) Ψ. (3− 21)

Sgravitino =
∫

[d4x] Ψ̄µ γ
[µγνγρ] ( i∂ν + ωab

ν [γa, γb] ) Ψρ. (3− 22)

with ωab
µ is the Lorentz spin connection.

Given a matrix representation Υij
a of the group G according to which a multiplet of

spinor-tensors Ψi
M transform allows to introduce a gauge-invariant interaction of fermions

in flat C-spaces ( after omitting the spinor indices ) :

S
(2)
Fermions =

∫
[DX] Ψ̄i

M1
EM1 EM2 EM3 ( − iδij∂M2 + gAa

M2
Υij

a ) Ψj
M3
. (3− 23)

the spinor-tensor fields Ψj
M (omitting the spinor indices ) carry now a group index i

(like the quark fields which carry a SU(3) colour index) and transform under gauge
transformations as

δξ Ψi
M = −iξaΥij

a Ψj
M . (3− 24)

Another possible action in flat C-space is of the form :∫
[DX] Ψ̄i

M EN ( − iδij∂N + gAa
NΥij

a ) ΨM
j (3− 25)

but the action in (3-23) is the most general one.

3.3 Lagrangians for Clifford Space Extensions of the Standard
Model

The Lagrangian of the Clifford-space extensions of the Standard Model is

L = LBosons[Φ] + LY M [A] + LFermions[Ψ]− VHiggs[Φ] + LY ukawa[Φ,Ψ]. (3− 26)
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where LBosons, LY M and LFermions were given in eqs-(3-14, 2-25, 3-23 ) respectively. The
Higgs potential is given by

VHiggs(Φ) =
λ

2
[ (Φ)†Φ− 1

2
η2 ]2. (3− 27)

where we have omitted the several indices.
The Yukawa couplings of fermions to Higgs bosons that generate the fermion masses,

and the subsequent breakdown of the gauge symmetry by nonzero vacuum-expectation
values ( vev ) of the Higgs bosons, can also be generalized to Clifford-spaces. For example,
in the case of the SO(10) Grand Unified Models, to generate the possible mass terms for
the fermions one must write down gauge-invariant Yukawa couplings of the form [59]

ψ̃ BC−1γµ ψ φµ. ψ̃ BC−1γµγνγρ ψ φµνρ. etc.... (3− 28)

where ψ̃ stands for the transpose of ψ. B is the equivalent of the charge conjugation
matrix for SO(10), and C is the Dirac charge conjugation matrix. φµ, φµνρ are the
Higgs bosons belonging to the totally irreducible anti-symmetric 10-dim and 120-dim
representations of SO(10). The fermions ψ belong to the 16-dim spinor representation of
SO(10). The symmetry breaking patterns of the SO(10) gauge symmetry down to the
SU(3)c × SU(2)L × U(1)Y are very subtle. For further details we refer to [59].

To extend this construction to Clifford-spaces involves the introduction of polyvectors.
In the special case thatD = 2N , the Clifford bivectors Σab = Γa∧Γb are also the generators
of the SO(2N) algebra. The SO(2N) generators can be rewritten also in terms of a
spinorial SU(N) basis. Thus, the generalized Yukawa couplings of the spinor-tensors ΨM

to the tensorial Higgs bosons ΦM in the Clifford spaces associated with the CL(2N,R)
algebra are of the form :

LY ukawa = Ψ̃M1 BC
−1 ΓM1 ΓM2 ΓM3 ΨM2ΦM3 . ΓM = 1, Γµ, Γµ1∧Γµ2 , Γµ1∧Γµ2∧Γµ3 , ..........

(3− 29)
We may notice that a fermionic action corresponding to the SO(2N) algebra

I
(1)
fermions =

∫
Cliff (2N)

[DX] Ψ̄M1 ΓM1 ΓM2 ΓM3 ( − i∂M2 +Aab
M2

[Γa,Γb] ) ΨM3 . (3− 30)

is part of the most general action based on the Clifford group Cl(2N,R) :

I
(2)
Fermions =

∫
Cliff (2N)

[DX] Ψ̄M1 ΓM1 ΓM2 ΓM3 ( −i∂M2 +AAB
M2

[ΓA,ΓB] ) ΨM3 . (3− 31)

where the ΓA,ΓB.... are anti-symmetrized products of the ordinary 2N×2N gamma matri-
ces inD = 2N . The C-space measure [DX] corresponds to the 22N -dim measure belonging
to the Cl(2N,R) algebra. The polyvector-valued gauge connection is AAB

M .
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The generalized bosonic action in this case is given by

I[Φ] =
∫

[DX] GMNDMΦADNΦBΥAB =∫
[DX] GMN (∂MΦA +AA

CMΦC) (∂NΦB +AB
DNΦD)ΥAB. (3− 32)

The generalized Yang-Mills action is provided by eqs-(2-23, 2-25) where one replaces
the structure constants fabc of the Lie algebra SO(2N) for those structure constants fABC

associated with the full 22N -dimensional algebra corresponding to the Clifford Group
Cl(2N,R) and represented by the 2N × 2N gamma matrices in D = 2N :

[ΓA,ΓB] = fC
ABΓC . ΓA = 1, Γa, Γa1 ∧ Γa2 , Γa1 ∧ Γa2 ∧ Γa3 , ......Γa1 ∧ Γa2 ∧ ........ ∧ Γa2N .

(3− 33)
Therefore, the generalized Yang-Mills action related to the Cl(2N,R) algebra is :

IY M = −1

2

∫
[DX]

∑
trace [ FA

[ [µ1µ2...µm] [ν1ν2.....νm] ] F
[ [µ1µ2...µm] [ν1ν2......νm] ] B ΓAΓB ] +

−1

2

∫
[DX]

∑
trace [ FA

[ 0 [ν1ν2.....νm] ] F
[ [ 0 [ν1ν2......νm] ] B ΓAΓB ] (3− 34)

The importance of the Cl(8, R) algebra in the description of the Standard Model and
Gravity in 4D, along with the Exceptional Grand Unified Theories [50] will be analyzed
in full detail in section 4 . Therefore, the actions described in eqs-(3-31, 3-32, 3-34 ) are
instrumental to the sought-after Clfford-space generalization of Smith’s model [50] .

3.4 New Particles and Interactions of Tensorial Extensions of
the Standard Model and the origins of the 10 Tev scale

As explained earlier, the expansion of the Lie-algebra valued Clifford polyvector A =
EMAa

MTa into different ranks anti-symmetric tensors requires another length scale L (
energy E = 1/L in natural units h̄ = c = 1 ) parameter as shown in eqs-(2-1). This
expansion parameter may or not be equal to the Planck ( energy ) scale. Below we will
argue why one may set this energy expansion parameter ( where the tensor corrections to
the Standard Model could be relevant ) to be of the order of the 10 Tev scale.

In [44] we have shown why the MacDowell-Mansouri-Chamseddine-West formulation
of Gravity, with a cosmological constant and a topological Gauss-Bonnet invariant term,
can be obtained from an action inspired from a BF-Chern-Simons-Higgs theory based
on the conformal SO(3, 2) group. The AdS4 space is a natural vacuum of the theory.
The vacuum energy density was derived ( instead of postulated ) to be precisely the
geometric-mean between the UV Planck scale and the IR throat size of de Sitter ( Anti
de Sitter ) space . Setting the throat size to coincide with the future horizon scale (of an
accelerated de Sitter Universe ) given by the Hubble scale ( today ) RH , the geometric
mean relationship yields the observed value of the vacuum energy density

ρ ∼ (LP )−2(RH)−2 = (LP )−4(L2
P/R

2
H) ∼ 10−120M4

Planck = m4. (3− 35)
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from which we can infer that m = 10−30MPlanck ∼ 10−11 Gev = 10−2 ev which is of the
order of the electron neutrino mass.

The 10 Tev energy scale can be obtained if one postulates the geometric-mean rela-
tionship [60]:

L−2 = mMPlanck = E2 ⇒ E =
√
mMP ∼ 10 Tev. (3− 36)

It is desirable to derive this last geometric-mean relationship in the same way that we
derived the observed value of the vacuum energy density as the geometric mean between
the UV and IR scales [44]. Nottale [45] gave a different argument to explain the small
value of ρ based on Scale Relativity theory.

• Irreducible representations of the Poincare group determine the spin content of
tensor-fields of mixed symmety via the Young tableaux diagramatic techniques. The
spin content of the antisymmetric tensor fields corresponding to the Clifford polyvectors
is different in general from the spin content of the symmetric tensors of Savvidy [11].
Despite these differences in the spin content, we shall outline the most salient features of
Savvidy’s tensorial extensions of the Standard Model to get a feeling of what the first rung
of the ( infinite ) particle ladder hierarchy looks like. Notice that at the first level the spin
content s = 3/2 of the spinor-tensors of our model ( after freezing all the modes except
those stemming from xµ ) is the same as in the model of [11]. As stated earlier, in D = 4
we also have the scalar A0 = φ part of the polyvector A with the same dimensions as that
of Aµ in the expansion of eq-(2-1). It is warranted to find the physical interpretation of
such scalar ( a dilaton-like field ).

• The first members of the new leptons of the higher-spin hierarchy (ψα)µ(x) are given
by 6 left-handed new leptons of spin s = 3/2, plus 3 right-handed new leptons of spin
s = 3/2 which are associated with the standard 6 left-handed leptons that appear in SU(2)
doublets (e,νe)L; (µ,νµ)L; (τ, ντ )L and 3 right-handed leptons eR, µR, τR , respectively,
with their antiparticles that we shall leave for granted in our discussion here.

• There are 6 new spinor-tensors of spin s = 3/2 associated with the standard 6
left-handed quarks (SU(2) doublets ) (u, d)L; (c, s)L; (t, b)L and 6 right-handed quarks
uR, dR.......

• There are 4 new tensor-gauge bosons of spin s = 2 associated with the vector-gauge
bosons W±, Z, γ of the electroweak SU(2)L × U(1)Y interaction; and 8 new tensor-gauge
bosons of spin s = 2 associated with the 8 gluons of the color SU(3)c force.

• These first order extensions of the tree level SU(2)L × U(1)Y Lagrangian described
by Savvidy [11] furnish new interactions of the ordinary vector-gauge bosons γ, Z,W±

with the new leptons e3/2, ν3/2, ...... ( spinor-tensors of spin 3/2 ) . It also yields new
interactions of the tensor-gauge bosons ( s = 2 ) with the ordinary leptons e1/2, ν1/2, .......
and the new leptons e3/2, ν3/2, ... ( of spin s = 3/2).

• The vacuum expectation value ( vev ) of the scalar fields is the same as the Standard
Model < φ >vev= η/

√
2. The vev of the non-gauge boson φµ is equal to zero and does

not break Poincare invariance.
• The Higgs boson mass is mH = λη.
• It predicts a tree-level degeneracy of the mass spectrum of the new tensor-gauge

bosons of mass m = gη.
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• Decay of the standard vector-gauge bosons into new leptons through the channels :

γ, Z → e−3/2 + e+3/2. γ, Z → ν3/2 + ν̄3/2. W → ν3/2 + e3/2. . (3− 37)

• Decay of the tensor-gauge bosons into ordinary and new leptons through the channels
:

Zµ1µ2 → e+3/2 + e−1/2. Zµ1µ2 → ν3/2 + ν̄1/2. (3− 38)

Wµ1µ2 → e3/2 + ν1/2. Wµ1µ2 → ν3/2 + e1/2. . (3− 39)

• The new interaction vertices yields also the new two-step process :

e+1/2 + e−1/2 → Z → W+
µ1ν1

+W−
µ1µ2

. (3− 40)

followed by a final decay of the tensor-gauge bosons W±
µ1µ2

into an ordinary and a new
lepton displayed by eq- (3-39). For more details we refer to [11].

4 On Clifford-space Extensions of the Standard

Model based on the Cl ( 8, R) Algebra

As mentioned in the last section, the importance of the Cl(8, R) algebra ( in D = 8 ) in
obtaining the Standard Model and Gravity in four-dimensions, along with the Exceptional
Grand Unified Theories [50] will be analyzed in full detail next. The actions described in
eqs-(3-31, 3-32, 3-34 ) are instrumental in the construction of the Clfford-space generaliza-
tion of Smith’s model [50] described below . Since we have already displayed the actions
in eqs-(3-31, 3-32, 3-34 ) that define the Clifford space extension of Smith’s model, we
shall focus below on the importance of Smith’s work that reproduces all of the features of
the Standard Model ( quark masses, coupling constants, Higgs mass, , Yukawa couplings,
Kobayashi-Maskawa matrix parameters, ...) and Gravity in 4-dim.

Contrary to the standard lore that is not possible to obtain the SU(3)×SU(2)×U(1)
gauge field structure from a Kaluza-Klein framework in D = 8, Batakis [46] uncovered
an extra SU(2) × U(1) gauge field structure to the SU(3) gauge field stucture from a
Kaluza-Klein mechanism in M4 ×CP 2 provided a nontrivial torsion in the total space is
incorporated. Such torsion creates a new and nontrivial possibility for the accomodation
of a fully unified theory in D = 8 not envisioned before in the physics literature. Clifford
spaces have torsion [1]. For these reasons we shall outline now the important results of
Smith [50] based on Clifford algebraic structures in D = 8.

4.1 Gravity and the Standard Model from a Cl(1,7) Group
Graded Structure in D = 8

We will follow very closely the main results of Smith [50] to get a representation of all
the known particles and fields in Physics based on the real Clifford group Cl(1, 7) ( one
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timelike and 7 spacelike directions ) . The Cl(1, 7) is 28 = 256 = 16× 16 dimensional and
has a graded structure :

1 8 28 56 35 + 35 56 28 8 1 (4− 1)

into a scalar, vector, bivector, 3-vector, ...... pseudoscalar. The middle 70 is written as
35 + 35 because it is self-dual under Hodge duality. By Hodge duality, the 1 8 28 56 35 is
dual to the 35 56 28 8 1. It can be shown that the 1 8 28 56 35 correspond to physical fields
in the coordinate representation while the 35 56 28 8 1 correspond to physical fields in
the momentum representation and complementarity between space-time and momentum-
energy is achieved by bit inversion, which interconverts between position representation
and momentum representation. The model [50] does use all the graded parts of Cl(8),
and also the spinor structure of Cl(8), but the 56 and 35 parts are not physically effective
at low energies after dimensional reduction, and consequently they are not written down
explicitly in the 8D Lagrangian below which is used to calculate force strengths, particle
masses, etc in the low energy region where we do experiments today.

• The correct 4D spacetime signature (1, 3) .

The model is also consistent with the quaternionic structure of conformal Cl(2, 4) =
4 × 4 quaternionic matrices and with the quaternionic structure of Cl(1, 3) = 2 × 2
quaternionic matrices, so the 4-dim physical spacetime has the correct signature (1, 3)
and not the signature (3, 1) of Cl(3, 1) = 4×4 real matrices. Hence, the (1, 7)-dimensional
vector representation corresponds to an 8-dim high-energy spacetime with octonionic
structure that reduces at lower energies to quaternionc structures that correspond to
the (1, 3)-dim physical spacetime and a (0, 4)-internal symmetry space.

• Emergence of Gravity and SU(3)⊗ SU(2)⊗ U(1) .
There is a 28-dim bivector representation ( 28 = 16 + 12 ) that corresponds to the

gauge symmetry Lie algebra of Spin(1, 7) that reduces at lower energies to ( i ) a
16-dim U(2, 2) = U(1) ⊗ SU(2, 2) = U(1) ⊗ Spin(2, 4) whose conformal Lie algebra
structure leads to gravity (with a cosmological constant ) via the MacDowell-Mansouri-
Chamseddine-West mechanism, and ( ii ) a 12-dim SU(3) ⊗ SU(2) ⊗ U(1) Standard
Model symmetry group involving 12 Gauge Bosons ( 8 gluons, 3 weak bosons W±, Z0 ,
and the photon) that can be represented on an internal 4-dim symmetry space by the
coset structure SU(3)/U(2) = SU(3)/SU(2) ⊗ U(1) associated with a CP 2 projective
space.

• Unified Lagrangian in 8D .
The above structures fit together into an 8D ( 4D spacetime with a 4D internal

symmetry space ) Lagrangian :∫
8D

F ∧ ∗F + +Ψ̄dΨ + (dΦ + [A,Φ]) ∧ ∗(dΦ + [A,Φ]). (4− 2)

Ψ̄ = Ψ†Γ0 and d = ΓM∂M . that reduces to the Lagrangian of Gravity plus the Standard
Model upon dimensional reduction as shown in [50]

• Hermitian Symmetric Spaces.

The geometry of these representation spaces is associated with complex homogeneous
domains with Shilov boundaries. In conjunction with the combinatorial structure of the
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second and third generation fermions (based on paths along the internal dimensions)
allows the explicit calculation and derivation of the relative force strength of all coupling
constants and particle masses, [50]. Most recently the derivation of the observed coupling
constants were obtained based on Geometric Probability [51]. Smith started with the
structure and data of the Standard Model plus a MacDowell-Mansouri formulation of
Gravity, and proceeded to construct the D4−D5−E6−E7−E8 Physics Model noticing
that:

• the four forces correspond to the four types of 4-dimensional quaternionic symmetric
spaces;

• the relative strengths of the four forces correspond to geometric structures related
to those symmetric spaces, using a generalization of the ideas of Armand Wyler;

• the Lie algebra generators of the forces correspond to the root vectors of the D4

(SO(8) ) Lie algebra, the adjoint representation of which can therefore be (in an un-
conventional way) be broken down to form all the forces of the Standard Model plus
Gravity;

• the chiral-spinor representations of D4 correspond to the first generation fermion
particles and antiparticles, and to the basis 1, i, j, k, E, I, J,K of the octonions;

• the vector representation of D4 corresponds to a (1,7) 8-dimensional octonionic
spacetime;

• picking a particular quaternionic subspace of the octonions (freezing it out)
breaks the 8-dimensional spacetime into (1,3) 4-dimensional physical spacetime plus a
4-dimensional CP 2 internal symmetry space similar to [46].

• the spacetime dimensional reduction breaks the D4 generators into the groups of
Gravity plus the Standard Model;

• the spacetime dimensional reduction produces 3 generation of fermion particles,
whose relative masses can be calculated from the symmetric space geometric structures
and some combinatorial relations connected with the 3-generation structure;

• the D4 Lie algebra and its representations fit inside the Cl(8) Clifford algebra; which
is the fundamental building block of all Clifford algebras of arbitrary high dimension be-
cause of 8-fold periodicity, which leads to formulation of a real generalized hyperfinite
Type II1 von Neumann algebra factor, a unique structure that satisfies Einstein’s Crite-
rion: ”... a theorem which at present can not be based upon anything more than upon
a faith in the simplicity, i.e., intelligibility, of nature: there are no arbitrary constants
... that is to say, nature is so constituted that it is possible logically to lay down such
strongly determined laws that within these laws only rationally completely determined
constants occur (not constants, therefore, whose numerical value could be changed with-
out destroying the theory). ...”.

To sum up : the approach of Smith [50] is fiundamentally ”bottom-up” in that it begins
with noticing some unusual symmetries among the known characteristics of particles and
fields, but it leads to a unique real generalized hyperfinite Type II1 von Neumann algebra
factor that might be called a Unique Theory of Physics at sub-Planck energy levels.
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4.2 On Clifford, Division, Jordan and Exceptional Algebras

Exceptional Gauge Theories can be constructed from Clifford algebras. Models of Grand
Unified Theories based on exceptional groups were initially proposed by Gursey and fol-
lowed by many others. For example, early E8 GUT models were advanced by [49], [48]
with and without supersymmetry, respectively, with the prediction of additional quarks
and leptons families. Physical applications of Jordan algebras to strings have been studied
by many authors, in particular by [61], [62], [63]. More closely related to string, M, F
theory, there is an interplay among the Cl(8) algebra, Division, Jordan and Exceptional
Lie algebras where D = 26, 27, 28 dimensions play a fundamental role.

Roughly speaking, we can interpret D = 26, 27, 28 dimensions as the 3-foldings of
8-dimenions with strings, membranes and three-branes living transversely to these 3-
folds : 24 = 3 × 8 ; i.e. the number of transverse degrees for the strings, membranes
and three-branes moving in D = 26, 27, 28 dimensions are 24 in all of these cases. The
world-manifolds of a string, brane and three-brane are two, three and four-dimensional
respectively. Hence, a bosonic and/or supersymmetric String, M, F theory correspond to
the following dimensions :

8k + 2, D = 10 superstring for k = 1; and D = 26 Bosonic string for k = 3.
8k + 3, D = 11 M theory for k = 1; and D = 27 Bosonic membrane for k = 3 .
8k + 4, D = 12 F theory for k = 1; and D = 28 Bosonic 3-brane for k = 3.

The interplay among D = 26, 27, 28 dimensions as explained by Smith [50] goes as
follows. The 28-real-dimensional degree-4 quaternionic Jordan algebra J4(Q) of 4 × 4
Hermitian matrices over the Quaternions

p D B A
D∗ q E C
B∗ E∗ r F
A∗ C∗ F ∗ t
where * denotes conjugate and p, q, r, t are real R and A,B,C,D,E, F are

quaternionic-valued. The 4 × 28 = 112-real dimensional Quaternification of J4(Q) can
be represented as the Symmetric Space E8/E7 × SU(2). J4(Q) contains the traceless
28 − 1 = 27-dimensional subalgebra J4(Q)tr that has the unique structure of the 27-
dimensional exceptional Jordan algebra J3(O) of 3 × 3 Hermitian matrices over the Oc-
tonions

p B A
B∗ q C
A∗ C ∗ r
where * denotes conjugate and p, q, r are reals R and A,B,C are Octonionic valued .

The 2×27 = 54-real dimensional Complexification of J3(O) = J4(Q)tr can be represented
as the Symmetric Space E7/E6×U(1). J3(O) contains a traceless 27−1 = 26-dimensional
subalgebra J3(O)tr that can be represented as the Symmetric Space E6/F4.

In other words, the chain of dimensions D = 26, 27, 28 corresponding to bosonic string,
M,F theory, respectively, yields Jordan algebra J3(O)tr, J3(O) = J4(Q)tr, J4(Q) related
to the exceptional Lie algebras F4, E6, E7, E8. The exceptional group G2 is the auto-
morphsim group of the Octonions. Recently, the Chern-Simons Lagrangians correspond-
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ing to the large N limit of Exceptional Jordan Matrix models by Smolin and Ohwashi
[67] were presented in [68] that may describe the nonperturbative behaviour of a bosonic
M,F theory.

4.3 The E8 × E8 Yang-Mills from a Cl(16) Gauge Theory

It is well known among the experts that the E8 algebra admits the SO(16) decomposition
248 → 120 ⊕ 128. The E8 admits also a SL(8, R) decomposition. Due to the triality
property , the SO(8) admits the vector 8v and spinor representations 8s,8c. After a
triality rotation, the SO(16) vector and spinor representations decompose as

16 → 8s ⊕ 8c.

128s → 8v ⊕ 56v ⊕ 1⊕ 28⊕ 35v.

128c → 8s ⊕ 56s ⊕ 8c ⊕ 56c. (4− 3)

To connect with (real) Clifford algebras, i.e. how to fit E8 into a Clifford structure ,
start with the 248-dim E8 = 120-dim bivector adjoint of D8 + 128-dim D8 chiral-spinor
and so embed E8 in the Clifford algebra Cl(16), with graded structure

1 16 120 560 1820 4368 8008 11440 12870

11440 8008 4368 1820 560 120 16 1. (4− 4)

and total dimension 216 = 65, 536 = (128 + 128)(128 + 128).
From the modulo 8 periodicity of Clifford algebras one has Cl(16) = Cl(2 × 8) =

Cl(8) ⊗ Cl(8), meaning that the 216 = 256 × 256 Cl(16) matrices can be obtained by
replacing each single one of the entries of the 28 = 256 = 16 × 16 Cl(8) matrices by
16× 16 matrices. In particular, 120 = 1× 28 + 8× 8 + 28× 1 and 128 = 8× 8 + 8× 8 ,
hence the 248-dim E8 algebra decomposes into a 120+128 dim structure such that E8 can
be represented indeed within a tensor product of Cl(8) algebras. At the E8 Lie algebra
level, the E8 gauge connection decomposes into the SO(16) vector I, J = 1, 2, ...16 and
spinor A = 1, 2, ...128 indices as follows

Aµ = AIJ
µ XIJ +AA

µYA

where XIJ , YA are the E8 generators. The Clifford algebra structure behind AIJXIJ and
AAYA is

AIJ
µ XIJ = Ai1i2

µ (γi1i2 ⊗ 1) + Aj1j2
µ (1⊗ γj1j2) + Aij

µ (γi ⊗ γj) (4− 5)

The decomposition in (4-5) yields the 28 + 28 + 64 = 120-dim vector representation of
SO(16), and the decomposition

AA
µYA = Ai1

µ (γi1⊗1)+Ai1i2i3
µ (γi1i2i3⊗1)+Ai1i2.....i5

µ (γi1i2....i5⊗1)+Ai1i2i3.....i7
µ (γi1i2i3....i7⊗1).

(4− 6)
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yields the 8+56+56+8 = 128-dim spinor representation of SO(16). Therefore, a E8×E8

Yang-Mills theory can naturally be embedded into a gauge theory in Clifford-spaces based
on the Cl(16) group. The details of this will be presented in future work.

The global structure of physics could be described by many copies of E8, or equivalently
by a very large Clifford algebra so that the Cl(8) building blocks are consistently connected
with each other so that their 8-dim vector spaces fit together to form a large E8 lattice. We
may recall that the conventional von Neuman Hyperfinite II1 factor is roughly an infinite-
dimensional version of the spinor representation of Complex Clifford algebras, which have
periodicity 2 and so are like an infinite limit of what Baez calls ”... the fermionic Fock
space over C(2n) ...” and then generalize it to the case of Real Clifford Algebras with
periodicity 8 so that one gets is an infinite limit of a tensor product of a lot of copies of
256-dim Cl(8).

Each Cl(8) factor would describe physics locally in the neighborhood of a given space-
time point, and all the Cl(8) factors in the generalized Hyperfinite II1 factor (roughly
an infinite tensor product) would be linked together to form (at the next higher energy
level above our quaternionic 4-dim physical spacetime plus 4-dim CP 2 internal symmetry
space) a higher-energy real/octonionic 8-dim spacetime as described in [50]. When one
takes quantum superpositions in the many-worlds quantum theory, quantum loops/graphs
of higher and higher order appear, whose description involves the prime numbers and
which may be closely related to the p-adic geometry.

This completes our outline about the gist of Smith’s work [50] that emphasize the
crucial importance of Cl(8, R) and D = 8 to correctly describe the Standard Model
and Gravity in 4-dim; in conjunction to explaining how the Exceptional gauge structures
appear within the context of Jordan algebras. As stated earlier, a Clifford-space extension
of Smith’s D = 8 Lagrangian (4-2) is provided by eqs-(3-31, 3-32, 3-34) and deserves
further investigations.

This concludes our work. One needs to study the full quantum theory and solve the
questions about ghosts, unitarity, renormalization, anomalies, asymptotic freedom....of
these Clifford ( tensorial ) space extensions of the Standard Model and whether or not
to slide the 10 Tev scale onto the Planck scale if no experimental signals of these new
particles are seen at the 10 Tev scale. These are very difficult questions.
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