
NONCOMMUTATIVE (SUPER) p-BRANES AND MOYAL-YANG
STAR PRODUCTS WITH A LOWER AND UPPER SCALE

Carlos Castro
Center for Theoretical Studies of Physical Systems

Clark Atlanta University
Atlanta, GA. 30314, USA

castro@ctsps.cau.edu

April 2005, Revised July 2005

ABSTRACT

Noncommutative p-brane actions, for even p+1 = 2n-dimensional world-volumes, are written explicitly
in terms of the novel Moyal-Yang ( Fedosov-Kontsevich ) star product deformations of the Noncommutative
Nambu Poisson Brackets (NCNPB) that are associated with the noncommuting world-volume coordinates
qA, pA for A = 1, 2, 3, ...n. The latter noncommuting coordinates obey the noncommutative Yang algebra
with an ultraviolet LP (Planck) scale and infrared (R ) scale cutoff. It is shown why our p-brane actions in
the ”classical” limit h̄eff = h̄LP /R → 0 still acquire nontrivial noncommutative corrections that differ from
ordinary p-brane actions. Super p-branes actions in the light-cone gauge are also amenable to Moyal-Yang
star product deformations as well due to the fact that p-branes moving in flat spacetime backgrounds, in the
light-cone gauge, can be recast as gauge theories of volume-preserving diffeomorphisms. The most general
construction of noncommutative super p-branes actions based on non ( anti ) commuting superspaces and
quantum group methods remains an open problem.

1. THE YANG’S NONCOMMUTATIVE SPACETIME AGEBRA

Yang’s noncommutative space time algebra [1] is a generalization of the Snyder algebra [2] (where now
both coordinates and momenta are not commuting) that has received more attention recently [3]. The
isomorphism of Yang’s algebra [1] to the 4D (angular momentum algebra) conformal algebra SO(4, 2) was
established by Tanaka [3] (within the context of the holographic principle) by using the correspondence
Xµ ↔ LP Σµ5 where LP is an ultraviolet scale ( Planck scale ) and Pµ ↔ (h̄/R)Σµ6 where R is an infrared
scale ( the throat size of de Sitter, Anti de Sitter space ) . h̄Σµν , h̄Σµ5, h̄Σµ6, h̄Σ56 are the angular momentum
operators in 6D. This construction [2] can be generalized to higher dimensional extensions of Yang’s algebra
[1] by simply replacing the SO(4, 2) algebra with SO(D, 2).

Using this correspondence allows to write the exchange commutators of the Yang’s spacetime algebra (
which exchange X and P in units c = 1 )

[Pµ,N ] = −iη66 h̄

R2
Xµ. [Xµ,N ] = iη55 L2

P

h̄
Pµ. N ≡ LP

R
Σ56. (1− 1)

The coordinates and momenta are no longer commuting:

[Xµ, Xν ] = −iη55L2
P Σµν . [Pµ, P ν ] = −iη66 h̄2

R2
Σµν . (1− 2)

where h̄Σµν ≡ Mµν are angular-momentum like operators. The signatures for AdS5 space are η55 = +1;
η66 = −1 and for the Euclideanized AdS5 space are η55 = +1 and η66 = +1. The modified Weyl-Heisenberg
algebra is :

[Xµ, Pµ] = −ih̄ηµν LP

R
Σ56 = −ih̄ηµνN . (1− 3)
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The other commutation relations are the standard angular momentum ones

[Σµν ,Σρσ] = i(ηµσΣνρ + ηνρΣµσ − ηµρΣνσ − ηνσΣµρ). (1− 4)

and
[Σµν , Xρ] = i(ηνρXµ − ηµρXν). [Σµν , Pρ] = i(ηνρPµ − ηµρPν). (1− 5)

These commutators obey the Jacobi identities. When LP → 0 and R → ∞ one recovers the ordinary
commutative spacetime algebra. The Snyder algebra [2] is recovered by setting R → ∞ while leaving LP

intact. To recover the ordinary Weyl-Heisenberg algebra is more subtle. Tanaka [3] has shown that the
spectrum of the operator N = (LP /R)Σ56 is discrete given by n(LP /R) . This is not suprising since the
angular momentum generator M56 associated with the Euclideanized AdS5 space is a rotation in the now
compact x5 − x6 directions. This is not the case in AdS5 space since η66 = −1 and this timelike direction
is no longer compact. Rotations involving timelike directions are equivalent to noncompact boosts with a
continuous spectrum.

In order to recover the standard Weyl-Heisenberg algebra from Yang’s Noncommutative spacetime
algebra, and the standard uncertainty relations ∆x∆p ≥ h̄ with the ordinary h̄ term , rather than the nh̄
term, one needs to take the limit n →∞ limit in such a way that the net combination of nLP

R → 1.
This can be attained when one takes the double scaling limit of the quantities as follows :

LP → 0. R →∞. LP R → L2. limn→∞ n
LP

R
= n

L2
P

LP R
=

nL2
P

L2
→ 1. (1− 6)

From eq-(1-6) one learns then that nL2
P = LP R = L2 where the spectrum n corresponds to the

quantization of the angular momentum operator in the x5−x6 direction (after embedding the 5D hyperboloid
of throat size R onto 6D ) . Tanaka [3] has shown why there is a discrete spectra for the spatial coordinates
and spatial momenta in Yang’s spacetime algebra that yields a minimum length LP ( ultraviolet cutoff in
energy ) and a minimum momentum p = h̄/R ( maximal length R , infrared cutoff ) . The energy and
temporal coordinates had a continous spectrum.

The physical interpretation of the double-scaling limit of eq-(1-6) is that the the area L2 = LP R becomes
now quantized in units of the Planck area L2

P as L2 = nL2
P . Thus the quantization of the area ( via the

double scaling limit ) L2 = LP R = nL2
P is a result of the discrete angular momentum spectrum in the x5−x6

directions of the Yang’s Noncommutative spacetime algebra when it is realized by ( angular momentum )
differential operators acting on the Euclideanized AdS5 space ( two branches of a 5D hyperboloid embedded
in 6D ). A general interplay between quantum of areas and quantum of angular momentum, for arbitrary
values of spin, in terms of the square root of the Casimir A ∼ L2

P

√
j(j + 1), has been obtained a while ago in

Loop Quantum Gravity by using spin-networks techniques and highly technical area-operator regularization
procedures [4] .

In [5] we have shown why AdS4 gravity with a topological term; i.e. an Einstein-Hilbert action with
a cosmological constant plus Gauss-Bonnet terms can be obtained from the vacuum state of a BF-Chern-
Simons-Higgs theory without introducing by hand the zero torsion condition imposed in the MacDowell-
Mansouri-Chamsedine-West construction. One of the most salient features of [5] was that a geometric mean
relationship was derived from first principles, among the cosmological constant ρvacuum , the Planck area
L2

P and the AdS4 throat size squared R2 given by (ρv)−1 = (LP )2(R2). A similar geometric mean relation is
also obeyed by the condition LP R = L2(= nL2

P ) in the double scaling limit of Yang’s algebra which suggests
to identify the cosmological constant as ρvacuum = L−4 . Notice that by setting the infrared scale R equal
to the Hubble radius horizon (today) RH and LP equal to the Planck scale one reproduces precisely the
observed value of the vacuum energy density : ρ ∼ L−2

PlanckR−2
H = L−4

P (LPlanck/RH)2 ∼ 10−120M4
Planck .

Non (anti) commuting superspaces have been studied by several authors [6] , however the supersymmetric
version ( if possible ) of the full fledged Yang’s algebra, for noncommuting coordinates and momenta, with
an upper R and lower scale Lp , is not known, to our knowledge. Having presented this introductory review
of Yang’s algebra we proceed with the main results of this work.

2. MOYAL-YANG STAR PRODUCTS AND NONCOMMUTATIVE BRANES
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Brane actions from quenched SU(N) QCD in the large N → ∞ limit have been constructed in [7] by
means of Moyal deformation quantization methods. Moyal deformations of Gravitational actions via SU(∞)
gauge theories were presented in [8]. Some time ago, Self Dual Gravity from SU(∞) Self Dual Yang Mills
was provided in [9,10] . The area-preserving diffeomorphisms ( diffs ) algebra of the sphere was shown to
be isomorphic to a basis-dependent limit of SU(∞) by [11] and many important physical applications of
membranes and higher spin theories within the context of W∞ algebras was analyzed by many authors,
in particular by [12]. The task now is to construct novel Moyal star product deformations of ( super )
p-brane actions based on the noncommutative spacetime Yang’s algebra where the deformation parameter
is h̄eff = h̄LP /R for nonzero values of h̄.

The modified Poisson bracket is now given by

{ F (qA, pA) , G (qA, pA) }Ω = (∂ZAF) ΩAB (∂ZBG) = (∂qAF) {qA, qB} (∂qBG) + (∂pAF) {pA, pB} (∂pBG) +

(∂qAF) {qA, pB} (∂pBG) + (∂pAF) {pA, qB} (∂qBG). (2− 1)

where the entries {qA, qB} 6= 0, {pA, pB} 6= 0, and {pA, qB} = −{pA, qB} can be read from the commutators
described in the previous section by simply defining the deformation parameter h̄eff ≡ h̄(LP /R).

Denoting the coordinates qA, pA by ZA and when the Poisson structure ΩAB is given in terms of
constant numerical coefficients, the Moyal star product is defined in terms of the deformation parameter
h̄eff = h̄LP /R as

( F ∗ G )(Z) ≡ exp [ (ih̄eff ) ΩAB ∂
(Z1)
A ∂

(Z2)
B ] F(Z1) G(Z2)|Z1=Z2=Z . (2− 2)

where the derivatives ∂
(Z1)
A act only on the F(Z1) term and ∂

(Z2)
B act only on the G(Z2) term.

Because in our case the Poisson structure ΩAB is given in terms of variable coefficients, it is a function of
the coordinates ∂ΩAB 6= 0, since the Yang’s algebra is basically an angular momentum algebra, the suitable
Moyal-Yang star product ( in Rd ) given by Kontsevich [13] will acquire corrections to the ordinary Moyal
star product :

f ∗ g = fg + ih̄eff Ωij (∂if∂jg) +
(ih̄eff )2

2
Ωi1j1 Ωi2j2 (∂2

i1i2f) (∂2
j1j2g) +

(ih̄eff )2

3
[ Ωi1j1(∂j1Ω

i2j2)(∂i1∂i2f∂j2g − ∂i2f∂i1∂j2g) ] + O(h̄3
eff ). (2− 3)

The Kontsevich star product is associative up to second order [13] (f ∗ g) ∗ h = f ∗ (g ∗ h) + O(h̄3
eff ). The

most general expression of the Kontsevich star product in Poisson manifolds is quite elaborate and shall not
be given here [13]. Star products in curved phase spaces have been constructed by Fedosov [14] . Despite
these technical subtlelties it will not affect the final expressions for the ”classical” Noncommutative p-brane
actions (shown below) when one takes the h̄eff → 0 ”classical” limit. We will show below that in that limit
there are still nontrivial noncommutative corrections to the ordinary p-brane actions .

Our final expressions below, in the h̄eff → 0 limit, already encode the Noncommutative structures
inherent in the noncommuting world volume coordinates. We shall display as well the Kontsevich star
products corrections . The Noncommutative Moyal-Yang Bracket defined in terms of the Kontsevich star
product is : {{F , G}} ≡ F ∗ G − G ∗ F . In particular, when one relates the (in the even-dimensional
world-volume case , p + 1 = 2n) world-volume coordinates σ1, σ2, ......, σp+1 of p-branes to the 2n phase
space variables qA, pA as shown in [7,8] , one has

{{ Xµ(qA, pA) , Xν(qA, pA) }} = Xµ ∗ Xν − Xν ∗ Xµ. (2− 4)

where one has rewritten Xµ(σ1, σ2, .....) by Xµ(qA, pB). A Moyal-Yang star-product deformation of the
Nambu-Poisson Brackets (MYNPB) can be defined when p + 1 = 2n = even [15] :

{{ Xµ1 , Xµ2 , ....., Xµp+1}}MY NPB = {{ Xµ1 , Xµ2 }} ∗ {{ Xµ3 , Xµ4 }} ∗ ..... ∗ {{ Xµp , Xµp+1 }} ± ........
(2− 5)
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where the ellipsis denotes signed permutations; i.e. the Moyal-Yang star-product deformations of the Nambu-
Poisson-Brackets ( MYNPB ) can be decomposed as suitable antisymmetrized sums of Moyal-Yang star
products of the Moyal-Yang brackets (MYB) among pairs of variables.

When p+1 = odd, attempts have bee made to introduce deformations based on the Zariski star product
deformations of the Nambu Poisson Brackets ( NPB), but unfortunately these deformed brackets failed to
obey all the required algebraic properties of a ( quantum ) bracket [15]. Therefore, to our knowledge, only
when p+1 = 2n is even one can perform a suitable star product deformations of the NPB. The Dirac-Nambu
p-brane action is

S = T

∫
[dp+1σ]

√
|det (Gab)| = T

∫
[dp+1σ]

√
|det [Gµν (∂aXµ) (∂bXν)]|. (2− 6)

where T is the p-brane tension. When the target spacetime background is flat, Gµν = ηµν , the determinant
can be rewritten in terms of Nambu Poisson Brackets ( NPB ) as

det (Gab) = { Xµ1 , Xµ2 , ....., Xµp+1 } { Xµ1 , Xµ2 , ....., Xµp+1}NPB . (2− 7)

However, when the target spacetime background is curved, Gµν = Gµν(Xρ(σ)) , the determinant is :

det (Gab) = { Xµ1 , Xµ2 , ....., Xµp+1 } { Xν1 , Xν2 , ....., Xνp+1}NPB Gµ1ν1Gµ2ν2 ............Gµp+1νp+1 . (2− 8)

and one cannot naively pull the metric factors Gµν inside the brackets and perform the index contractions
inside the brackets. The Noncommutative branes action is simply obtained in a two step process. Firstly,
we construct the Moyal-Yang action S∗MY by using Moyal-Yang star products and brackets in the special
case p + 1 = 2n = even

S∗MY = T

∫
[d2nσ]

√
| det [ Gab(Xρ(σ)) ] |∗. (2− 9)

where the Moyal-Yang deformations of the determinant det [ Gab(Xρ(σ)) ]∗ are :

1
(ih̄eff )2n

{{ Xµ1 , Xµ2 , ....., Xµp+1 }} ∗ {{ Xν1 , Xν2 , ....., Xνp+1}} ∗ Gµ1ν1 ∗ Gµ2ν2 ∗ ............ ∗ Gµp+1νp+1 .

(2− 10)
The correct Moyal-Yang deformed action S∗MY , for p-branes ( such that p + 1 = 2n ) moving in curved
backgrounds, must involve naturally the Moyal-Yang deformations of the determinant det (Gab)∗ as shown
in eq-(2-10) . However, when the target spacetime is flat one could use the other form of the action given
by

S∗Moyal = T

∫
d2nσ

√
1

(ih̄eff )2n(2n)!
| {{ Xµ1 , Xµ2 , ....., Xµ2n }} ∗ {{ Xµ1 , Xµ2 , ....., Xµ2n}} |. (2− 11)

The second step after eq-(2-10) is to take the h̄eff → 0 limit such that the star products of functions reduce
to ordinary pointwise products and the Moyal-Yang Brackets ( MYB) reduce to Noncommutative Poisson
Brackets ( NCPB)

limh̄eff→0
1

ih̄eff
{{Xµ, Xν}} → {Xµ, Xν}NCPB = (∂qAXµ) {qA, qB} (∂qBXν) +

(∂pAXµ) {pA, pB} (∂pBXν) + (∂qAXµ) {qA, pB} (∂pBXν) + (∂pAXµ) {pA, qB} (∂qBXν). (2− 12)

where the entries {qA, qB} 6= 0, {pA, pB} 6= 0, and {pA, qB} = −{pA, qB} can be read from the 4D Yang’s
algebra, in the particular case η55 = η66 = 1 (which is associated with an Euclideanized AdS space )

{qA, qB}NCPB = limh̄eff→0
1

ih̄eff
[qA, qB ] = −L2

h̄
ΣAB . (2− 13a)
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{pA, pB}NCPB = limh̄eff→0
1

ih̄eff
[pA, pB ] = − h̄

L2
ΣAB (2− 13b)

{qA, pB}NCPB = limh̄eff→0
1

ih̄eff
[qA, pB ] = −ηAB . (2− 13c)

with
ΣAB ≡ 1

h̄
(qApB − qBpA). qA = q1, q2. pA = p1, p2 (2− 13d)

one can generalize Yang’s original 4-dim algebra [1] to Noncommutative 2n-dim world-volumes and/or space-
times by working with the 2n + 2-dim angular-momentum algebra SO(d, 2) = SO(p + 1, 2) = SO(2n, 2).
Therefore, the SNC action may now be written in terms of the Noncommutative Nambu Poisson Brackets
(NCNPB)

SNC = T

∫
d2nσ

√
1

(2n)!
| { Xµ1 , Xµ2 , ....., Xµ2n }NC { Xν1 , Xν2 , ....., Xνp+1}NC Gµ1ν1Gµ2ν2 ......|.

(2− 14)
defined as

{ Xµ1 , Xµ2 , ....., Xµp+1}NCNPB ≡

{ Xµ1 , Xµ2 }NCPB { Xµ3 , Xµ4 }NCPB .............{ Xµp
, Xµp+1 }NCPB + permutations. (2− 15)

where the { Xµ1 , Xµ2 }NCPB , ..... brackets are defined by eqs-(2-12, 2-13). Notice that the measure :

d2nσ ≡ dq1 ∧ dp1 ∧ dq2 ∧ dp2 ∧ ..... ∧ dqn ∧ dpn. (2− 16)

has world-volume dimensions h̄n that compensates for the dimensions h̄−n of the square root expression of
( 2-14) stemming from the brackets.

To illustrate the corrections to the ordinary p-brane actions due to the inherent noncommutative world
volume coordinates we will present the explicit corrections to the p-brane action described by (2-17a) whose
world volume is p+1 = 2n-dimensional spanned by the q1, q2, ....qn and p1, p2, ....pn coordinates. The NCPB
are :

{Xµ1 , Xµ2}NCPB =
i=n∑
i=1

∂[piXµ1∂qi]X
µ2 − L2

h̄2

∑
i,j i 6=j

(qipj − qjpi) ∂[qiXµ1∂qj ]X
µ2 −

1
L2

∑
i,j i 6=j

(qipj − qjpi) ∂[piXµ1∂pj ]X
µ2 . (2− 17)

these NCPB are the ones that define the NCNPB

{ Xµ1 , Xµ2 , Xµ3 , ............ Xµ2n}NCNPB ≡

{ Xµ1 , Xµ2 }NCPB { Xµ3 , Xµ4 }NCPB ........ { Xµ2n−1 , Xµ2n }NCPB . + signed permutations. (2− 18)

and which are inserted into the Noncommutative p-brane action (2-14) when p+1 = 2n. The last two terms
in the r.h.s of (2-17) explicitly furnish the corrections to the ordinary p-brane actions (2-14) due to the
inherent noncommutative world-volume coordinates expressed in eqs-(2-13a, 2-13b, 2-13c, 2-13d). Notice
that the limits h̄ = 0 and/or L = 0,∞ in eq-(2-17) are singular even if one were to take take L2/h̄2 → 1. As
it was stated earlier, in the ”classical ” h̄eff → 0 limit, there are still nontrivial noncommutative corrections
to the ordinary classical p-brane actions, and for this reason our p-brane actions described in (2-14) differ
from the standard p-brane actions.

Concluding, the action (2-14) written explicitly in terms of NCNPB given by eqs-(2-17, 2-18) is the
sought-after Noncommutative p-brane action associated with the noncommuting world-volume coordinates
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qA, pA given by the Yang’s algebra (2-12, 2-13) after one identifies the p + 1 = 2n world-volume coordinates
σ’s with the 2n-dim phase space variables qA, pB . Finally, the Moyal-Yang (Kontsevich) deformed p-brane
action (2-11), for non-zero values of h̄eff , requires to write

1
ih̄eff

{{Xµ1 , Xµ2}}∗ = {Xµ1 , Xµ2}NCPB +
(ih̄eff )

2
Ωi1j1 Ωi2j2 (∂2

i1i2X
[µ1) (∂2

j1j2X
µ2]) +

(ih̄eff )
3

[ Ωi1j1(∂j1Ω
i2j2)(∂i1∂i2X

[µ1∂j2X
µ2] − ∂i2X

[µ1∂i1∂j2X
µ2]) ] + O(h̄2

eff ). (2− 19)

that are introduced in the expression ( 2-11) for the Moyal-Yang deformed p-brane action S∗ after using eqs-
(2-3, 2-5, 2-13) for the Kontsevich star product, the MYNPB and the symplectic matrix Ωij

2n×2n respectively.

3. NONCOMMUTATIVE SUPER p-BRANES,

p-branes as composite antisymmetric tensor field theories with a volume preserving diffs invariance were
studied in [16,17]. In this section we will precisely show how light-cone gauge super p-branes actions are
amenable for star product deformations as well due to the fact that p-branes can be recast as gauge theories
of volume-preserving diffs in the light-cone gauge [18]. Super p-branes actions exist only for certain values
of (p, D), and for certain values of the world-volume and target spacetime background signatures, due to
constraints which originate by marching the number of physical bosonic and fermionic degrees of freedom.
For example, supermembranes ( p = 2 ) of Minkowski signatures can only be constructed in D = 4, 5, 7, 11
dimensions. The number of physical bosonic degrees of freedom is D − 3 = 1, 2, 4, 8 which matches the
fermionic physical degrees of freedom.

The lightcone gauge is obtained after imposing the conditions [18] :

X± =
1√
2
(X0 ±XD−1). X+ = x+ + p+τ. g00 = −h = −det (gik). g0i = 0. Γ+Θ = 0. (3− 1)

The lightcone gauge action for super p-branes of spherical topology, moving in flat target spacetime
backgrounds, can be rewritten in terms of Nambu-Poisson brackets of the physical lightcone variables
XI(τ, σa),Ψ(τ, σa) as follows [18]

S = −1
2
T

∫
dp+1σ [ (D0X

I)2 − 1
p!
{ Xi1 , Xi2 , ....., Xip }2+

i

2
Ψ̄D0Ψ +

1
(p− 1)!

Ψ̄ γi1i2...ip−1 { Xi1 , Xi2 , ....., Xip−1 ,Ψ } ]. (3− 2)

where I = 1, 2, 3, .....D − 2 and σa = σ1, σ2, ......, σp are the spatial p-degrees of freedom of the super p-
brane. Since the action (3-2) involves taking the Nambu Poisson Brackets w.r.t to the p spatial variables
of the p-brane, the only even p values for the super p-branes correspond now to p = 2 ( membranes ) in
D = 4, 5, 7, 11 dimensions and p = 4 in D = 9 dimensions. The Moyal-Yang (Kontsevich ) star products
deformations of (3-2) are displayed below in eq-(3-11, 3-12).

The covariant world-volume temporal derivative is defined

D0X
I =

∂XI

∂τ
+ ua∂aXI =

∂XI

∂τ
+ { A1, A2, ....., Ap−1, XI }. (3− 3)

in terms of the world-volume gauge field ua satisfying the divergence free condition ∂aua = 0.
For p-branes with spherical topology the world-volume gauge field ua can be expressed as the multi-

symplectic gradient of the p− 1 functions A1, A2, ...Ap−1 as follows

ua = εa1a2....ap−1a ∂A1

∂σa
1

∂A2

∂σa
2

........
∂Ap−1

∂σa
p−1

= ∂bW
ab ≡ ∂b [ εa1a2....ap−2ba ∂A1

∂σa1

∂A2

∂σa2
........Ap−1 ]. (3− 4)
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The action displays a gauge invariance under p-volume preserving diffs

δXI = λa ∂XI

∂σa
.

∂λa

∂σa
= 0. (3− 5)

The divergence free condition of the parameters is required to preserve the p-volumes and

δua = −∂λa

∂τ
− ub∂bλ

a + λb∂bu
a. (3− 6)

These transformations can be rewritten in terms of Nambu-Poisson brackets by rewriting the parameters λa

as the multi-symplectic gradient involving another set of parameters ( functions ) Λa(σ1, σ2, ....., σp) :

λa = εa1a2....ap−1a ∂Λ1

∂σa1

∂Λ2

∂σa2
........

∂Λp−1

∂σap−1
. (3− 7)

δXI = { Λ1,Λ2, ....., Λp−1, XI }. (3− 8)

δua = −∂λa

∂τ
− { A1, A2, ....., Ap−1, λa }+ { Λ1,Λ2, ....., Λp−1, ua }. (3− 9)

There is the residual Abelian gauge invariance W ab → W ab + ∂cΘabc.
The Moyal-Yang (Kontsevich ) star products deformations require to replace the term (D0X

I)2 in (3-2)
by

(D0X
I)2∗ = (

∂XI

∂τ
+ {{ A1, A2, ....., Ap−1, XI }}∗ ) ∗ (

∂XI

∂τ
+ {{ A1, A2, ....., Ap−1, XI }}∗ ) (3− 10)

The term

{ Xi1 , Xi2 , ....., Xip
}2 → {{ Xi1 , Xi2 , ....., Xip

}}∗ ∗ {{ Xi1 , Xi2 , ....., Xip
}}∗ etc...... (3− 11)

and, naturally, the symmetry transformations (3–8, 3-9) require the use of Moyal-Nambu brackets
We conclude by adding that it is desirable to recur to superspace methods to build covariant actions

beyond the light cone gauge and to deform these super p-brane actions in superspace by deforming the
superspace measure associated with the super p-branes. In order to achieve this one would need the proper
formulation of Non (anti ) commuting superspace algebras. This remains an open problem. Another inter-
esting avenue to pursue the study of noncommutative branes is based on the fact that Yang’s algebra can
also be realized in terms of the holographic area-coordinates algebra of the Clifford-space associated with the
6D Clifford algebra. Namely, the holographic-area coordinates algebra is isomorphic to the Yang’s algebra
by recurring to the coordinates/angular momentum correspondence found by Tanaka [3]. A current review
of the Extended Relativity program in Clifford spaces can be found in [19].
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