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Abstract

We argue why the static spherically symmetric (SSS) vacuum solutions of Ein-
stein’s equations described by the textbook Hilbert metric gµν(r) is not diffeo-
morphic to the metric gµν(|r|) corresponding to the gravitational field of a point
mass delta function source at r = 0. By choosing a judicious radial function
R(r) = r + 2G|M |Θ(r) involving the Heaviside step function, one has the correct
boundary condition R(r = 0) = 0 , while displacing the horizon from r = 2G|M | to
a location arbitrarily close to r = 0 as one desires, rh → 0, where stringy geometry
and quantum gravitational effects begin to take place. We solve the field equations
due to a delta function point mass source at r = 0, and show that the Euclidean grav-
itational action (in h̄ units) is precisely equal to the black hole entropy (in Planck
area units). This result holds in any dimensions D ≥ 3 . In the Reissner-Nordsrom
(massive-charged) and Kerr-Newman black hole case (massive-rotating-charged) we
show that the Euclidean action in a bulk domain bounded by the inner and outer
horizons is the same as the black hole entropy. When one smears out the point-mass
and point-charge delta function distributions by a Gaussian distribution, the area-
entropy relation is modified. We postulate why these modifications should furnish
the logarithmic corrections (and higher inverse powers of the area) to the entropy
of these smeared Black Holes. To finalize, we analyse the Bars-Witten stringy black
hole in 1 + 1 dim and its relation to the maximal acceleration principle in phase
spaces and Finsler geometries.

Keywords : General Relativity; Black Holes; Strings. PACS : 04.60.-m, 04.65.+e, 11.15.-q,
11.30.Ly
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1 The Difference between a Point Mass Source and

the Vacuum Solutions

We begin by writing down the class of static spherically symmetric (SSS) vacuum
solutions of Einstein’s equations [1] studied by [5] given by a infinite family of solutions
parametrized by a family of admissible radial functions R(r) ( in c = 1 units )

(ds)2 = (1− 2G M

R
) (dt)2 − (1− 2G M

R
)−1 (dR)2 − R2(r) (dΩ)2. (1.1)

where the solid angle infinitesimal element is

(dΩ)2 = (dφ)2 + sin2(φ)(dθ)2, (1.2)

This expression of the metric in terms of the radial function R(r) ( a radial gauge ) does
not violate Birkoff’s theorem since the metric (1.1, 1.2 ) expressed in terms of the radial
function R(r) has exactly the same functional form as that required by Birkoff’s theorem
and 0 ≤ r ≤ ∞ . In this work we will solve the SSS solutions when a point mass delta
function source is present at the location r = 0. Notice that the vacuum SSS solutions of
Einstein’s equations, with and without a cosmological constant, do not determine the form
of the radial function R(r). In [34] we were able to show why the cosmological constant is
not zero and why it is so tiny based on a judicious choice of the radial function. A Weyl
geometric extension of the Jordan-Brans-Dicke scalar-tensor theory gravity [34] furnished
also the correct value of the vacuum energy density. In the appendix we construct the
Schwarzcshild-like solutions in any dimensions D > 3 and show that the radial function
R(r) is completely arbitrary [45].

There are two interesting cases to study based on the boundary conditions obeyed
by R(r) : ( i ) the Hilbert textbook ( black hole ) solution [4] when R(r) = r obeying
R(r = 0) = 0, R(r → ∞) → r. And : ( ii ) the Abrams-Schwarzschild radial gauge
based on choosing the cutoff R(r = 0) = 2GM such that gtt(r = 0) = 0 which apparently
seems to ”eliminate” the horizon and R(r → ∞) → r. This was the original solution of
1916 found by Schwarzschild. However, the choice R(r = 0) = 2GM has a serious flaw
and is : How is it possible for a point-mass at r = 0 to have a non-zero area 4π(2GM)2

and a zero volume simultaneously ? so it seems that one is forced to choose the Hilbert
gauge R(r = 0) = 0. Nevertheless we will show how by choosing a judicious choice of
R(r) ( not contemplated before to our knowledge ), one can cure the flaw and have the
correct boundary condition R(r = 0) = 0 while displacing the horizon from r = 2GM to
a location arbitrarily close to r = 0 as one desires, rh → 0, and where stringy geometry
and Quantum Gravitational effects begin to take place. Many authors [5], [6], [7], [8], [9],
[13], [10], among many others, have explored the gauge choice obeying R(r = 0) = 2GM ,
after Brillouin [3] , Schwarzschild [2] found that possibility long ago. Unfortunately the
solution to this serious problem was never found.

In this work we will propose a very straightforward solution to this cut-off problem
by choosing a radial gauge function like R(r) = r + 2GMΘ(r), where the Heaviside Step
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function is defined Θ(r) = 1 when r > 0, Θ(r) = −1 when r < 0 and Θ(r = 0) = 0
(the arithmetic mean of the values at r > 0 and r < 0). When R ∼ r for r >> 2GM
and one recovers the correct Newtonian limit in the asymptotic regime. It is now, via the
Heaviside step function, that we may maintain the correct behaviour R(r = 0) = 0, when
r = 0, consistent with our intuitive notion that the spatial area and spatial volume of a
point r = 0 has to be zero. 1

Since r = ±
√

x2 + y2 + z2, a negative r branch is mathematically possible and
is compatible with the double covering inherent in the Fronsdal-Kruskal-Szekeres [12]
analytical continuation in terms of the u, v coordinates. Each point of spacetime inside
r < 2GM is represented twice ( black hole and white hole picture ). However there is
a fundamental difference (besides others) with the Fronsdal-Kruskal-Szekeres extension
into the interior of r = 2GM , their metric description is no longer static in r < 2GM ,
whereas in our case the metric is static for all values of r.

A rigorous correct treatment of point mass distributions has been provided based
on Colombeau’s [14] theory of nonlinear distributions, generalized functions and non-
linear calculus. This permits the proper multiplication of distributions since the old
Schwarz theory of linear distributions is invalid in nonlinear theories like General Rel-
ativity. Colombeau’s nonlinear distributional geometry supersedes the no-go results of
Geroch and Traschen [16] stating that there is no proper framework to study distribu-
tions of matter of co-dimensions higher than two (neither points nor strings in D = 4 )
in General Relativity. Colombeau’s theory of Nonlinear Distributions (and Nonstandard
Analysis) is the proper way to deal with point-mass sources in nonlinear theories like
Gravity and where one may rigorously solve the problem without having to introduce a
boundary of spacetime at r = 0.

Due to the essential technical subtlety in order to generate δ(r) terms in the right hand
side of Einstein’s equations, one must replace everywhere r → |r| as required when point-
mass sources are inserted. The Newtonian gravitational potential due to a point-mass
source at r = 0 is given by −GNM/|r| and is consistent with Poisson’s law which states
that the Laplacian of the Newtonian potential −GM/|r| = 4πGρ corresponding to a mass
distribution ρ = (M/4πr2)δ(r). However, the Laplacian in spherical coordinates of (1/r)
is zero. For this reason, there is a fundamental difference in dealing with expressions
involving absolute values |r| like 1/|r| from those which depend on r like 1/r [11]. Had one
not use the modulus |r| in the expression for the metric components gtt = 1 − 2GM/|r|
one will not generate the desired δ(r) terms in the right hand side of Einstein’s equations
Rµν − 1

2
gµνR = 8πG Tµν 6= 0. Instead, one would get an expression identically equal to

zero (consistent with the vacuum solutions in the absence of matter) instead of the δ(r)
terms [35]. Section 3 will be devoted to the study of metrics of the form gµν(|r|) and
gµν(|R(r)|).

Active diffs must not be confused with passive diffs. One defines an active diffs by

1We thank Michael Ibison for pointing out the importance of the Heaviside step function and the use
of the modulus |r| to account for point mass sources at r = 0 . If one wishes to be strictly rigorous one
may write the radial function as R(r) = r + 2G|M |Θ(r) to ensure that R(r < 0) = −R(r > 0) < 0 and
that solutions with r < 0, M > 0 have a one-to-one correspondence to the solutions with r > 0, M < 0
( ”white hole” ) because | −M | = |M |.
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mapping r → R(r) such that the metric gµν [R(r)] is diffeomorphic to gµν(r) if, and only
if, the R(r) is a smooth and invertible mapping. However, in order to recover the field
due to a point mass delta function source at r = 0 one must use the modulus function
|r| instead of r. Since the derivative of the function |r| has a discontinuity at r = 0, the
right and left derivatives are ±1 respectively, the second derivative yields a δ(r) term,
the function R(r) = |r| strictly speaking is not smooth in all of the points in a domain
enclosing the singularity r = 0. Consequently, the metric gµν(|r|) is not diffeomorphic to
the Hilbert textbook metric gµν(r). It is shown in section 3 that the former leads to a
scalar curvature R = −2GMδ(r)/r2, due to δ(−r) = δ(r) = δ(|r|) and |r|2 = r2; whereas
the latter textbook metric yields an identically zero expression for the Ricci tensor and
scalar curvature Rµν = R = 0.

The same reasoning applies to the metric gµν(|R(r)|) when |R(r)| = |r + 2GMΘ(r)|
and which is not diffeomorphic to the Hilbert textbook metric gµν(r) nor to the metric
gµν(|r|) due to the fact that the step function Θ(r) is discontinuous at r = 0. We will
explain why the location of the horizon at r = 2GM is gauge artifact in the sense that
it can be displaced to the location r = 0, in the radial gauge R(r) = r + 2GMΘ(r),
where Θ is the Heaviside step function. The metric is smooth and differentiable for all
r > 0 and one will have Rµν = R = 0 ( in the region r > 0 empty of matter and
radiation). The metric gµν [|R(r)|] is discontinuous only at the location of the point mass
singularity r = 0 whose world-line which may be thought of as the boundary of spacetime
or transition region to the white hole solution. The scalar curvature is infinite at r = 0
due to the delta function point mass source at r = 0, it jumps from zero to infinity at
r = 0.

To sum up, by using |R(r)| = |r + 2GM Θ(r)|, we will have a globally static metric
associated with a point mass source at r = 0 and gµν [ |R(r)| ] is not diffeomorphic
to the Hilbert textbook metric gµν(r). The latter is not globally static as Fronsdal-
Kruskal-Szekeres have shown after performing the analytical continuation into the region
r < 2GM using the u(r, t), v(r, t) coordinates. In such case there is a space-like singularity
at r = 0; it is tachyonic like. Whereas in our case we have a globally static metric with
a discontinuity of the metric gµν(|R(r)|) at the location of the displaced horizon and
singularity given by r = 0. Therefore, because R(r) = ε + 2GM , when r = ε > 0, the
horizon to be can the be displaced from r = 2GM to a location as arbitrarily close to
r = 0 as desired rHorizon → 0. To be more precise, the horizon occurs at r = 0+ and at
r = 0 one hits the singularity due to the discontinuity of the metric.

Since the notion of distance and separation of spacetime points only has meaning
when it is referred to a gravitational field (metric) [18], when one has a metric of the form
gµν [(R(r)], it means that after performing the mapping from r to R(r) in the spacetime
manifold M, a void (hole) surrounding R = r = 0 forms; i.e. a void in the region
0 < R < 2GM with the singularity remaining at the center r = 0 = R(r = 0) = 0 and a
ring extending from R = 2GM to R = r =∞ ( when M = finite ). In the r-coordinates
picture there is a discontinuity of the metric (and scalar curvature) at r = 0, the location
of the point mass source. Because this is an infinitely compact source there is nothing
wrong with having a discontinuity of the metric at r = 0. In the R-coordinate picture,
due to the correct condition R(r = 0) = 0 consistent with the fact that a point must have
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zero area (since Θ(r = 0) = 0), one can interpret the discontinuity of the metric as if the
region of 0 < R < 2GM were eliminated from the spacetime manifold to make the surface
at R = 2GM a boundary of the spacetime while leaving the singularity at r = 0 behind.

The Physical reason behind the notion of a spacetime ”void” near space-like singu-
larities can be also be inferred from many articles [17] related to the de − emergence
of spacetime near spacelike cosmological singularities based on Hyperbolic Kac Moody
algebras in M theory and Cosmological billiards in General Relativity. This spacetime
”void ” has very deep and profound consequences, in particular, related to the holographic
principle where boundary degrees of freedom encode information about the bulk. Roughly
speaking, due to the infinite mass density of the point-mass located at r = 0, its gravita-
tional field will rip and tear apart the fabric of spacetime in its neighborhood and create a
”void” in spacetime in the region 0 < R < 2GM . Thus, instead of a Black Hole, we really
have a void bulk region 0 < R < 2GM empty of spacetime while leaving the point-mass
singularity at r = 0 = R(r = 0) = 0 behind.

Having explained why the field of a point mass source at r = 0 is not given by the
Hilbert textbook solution gµν(r) , but instead it is given by non-diffeomorphic solutions
of the form gµν(|r|) and gµν(|R(r)|), when R(r) = r +2GMΘ(r), to be elaborated further
in section 3, we proceed in section 2 with a regularization procedure of the point mass
delta function source via a smeared Gaussian mass density and prove why the Euclidean
gravitational action involving an Euclidean thermal time is precisely equal to the En-
tropy. Furthermore, we show that the Euclidean action in a bulk domain bounded by the
inner and outer horizons is the same as the Black Hole entropy in the Reissner-Nordsrom
(massive-charged) and Kerr-Newman Black Hole case (massive-rotating-charged).

In section 4 another potential solution of the problem of introducing the unacceptable
cut-off R(r = 0) = 2GM is proposed [45] based on the stringy nature of a ”point” mass.
A string world-sheet has an area but a zero volume. The Bars-Witten stringy black hole
solution in 1 + 1-dim [46], [47] with a null horizon at r = 0 can be embedded into the
3 + 1-dim solutions of the form (1.1) involving a very specific radial function (related
to the tortoise radial coordinate ) and obeying R(r = 0) = 2GM , after a conformal
rescaling of the metric is performed to ensure that (ds)2 → 0 at r = 0.

The hallmark of being able to embed the Bars-Witten stringy black hole in 1+1 into
our solutions in 3 + 1(2 + 2) dimensions [45] is that it has a null horizon at r = 0 but
the singularities lie in the complex plane r = 2GM (0 + iNπ/2), N = odd . One can
complexify the Schwarzschild problem by working with Complex Gravity such that one
can have a path from r =∞ to r = −∞ by starting to move along the real axis r = ρ+ iε,
approach the null horizon r = 0 at r = ε + iε to continue upwards along the vertical axis,
surround the singularity at r = 2GM (0 + iπ/2), in a counter-clockwise fashion , move
downwards along the vertical axis to r = −ε + iε and then continue to the r = −ρ + iε
region; i.e. in complex gravity we may be able to tunnel from r > 0 to r < 0 through the
null horizon at r = 0 of the Bars-Witten stringy black hole circumventing the singularity
at r = 2GM (0 + iπ/2).

To finalize this section let us outline the most relevant features in order to dispel any
misconceptions about our solutions :

• In sections 1, 2, 3 it is shown very clearly why the solutions based on the modulus
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function |r| and |R| = |r+2GMΘ(r)| are not diffeomorphic to the Hilbert text-book solu-
tion; i.e our solutions are not obtained by a change of coordinates (radial reparametriza-
tion) of the text-book solution because r and |r| are different functions. R(r) and |R(r)|
are different functions as well.

• The solutions described in this work do not have the same expression for the scalar
curvature as the text-book solution. Our solutions correspond to an expression for the
scalar curvature involving the delta function solution like R = −(2GM δ(r))/r2 as ex-
plained in section 3 and which is not the same expression as the identically zero R = 0
solution of the text-book solution.

• Our solutions are not obtained by gluing solutions with M < 0 into the region
r > 2G|M |. The mass parameter M > 0. If one wishes to be strictly rigorous one
may write the radial function as R(r) = r + 2G|M |Θ(r) to ensure that R(r < 0) =
−R(r > 0) < 0 and that solutions with r < 0, M > 0 have a one-to-one correspondence
to the solutions with r > 0, M < 0 because | −M | = |M |. The latter M < 0 repulsive
gravity regime is what it is called a ”white” hole.

• It is shown explicitly in the Appendix that when one plugs eq-(A.12) directly into eq-
(A.10) and despite that the derivatives dR

dr
= 1+2G|M |δ(r) and (d2R/dr2) = 2G|M |δ′(r)

are singular at r = 0, there is an exact and precise cancellation of these singular derivatives
(and the ordinary derivatives of any radial function R(r)) in eq-(A.10) ; i.e. the latter
eq-(A.10) is satisfied for any radial function, irrespective if it has singular derivatives at
r = 0 or not, for the solutions given by eq-(A.12). Speaking of singular derivatives, it is
well known that the Jacobian from the Fronsdal-Kruskal-Szekeres coordinates u, v to the
r, t coordinates is singular at the horizon r = 2GM .

• Our solutions have a discontinuity of the metric at r = 0 where the magnitude of the
gtt component jumps from 0 to ∞ at r = 0 in the same fashion that the scalar curvature
jumps from 0 to ∞ at r = 0. Such discontinuity of the metric at r = 0 is due to the
discontinuity of the radial function given by R(r = 0) = 0, R(r = 0+) = 2GM .

• Having R(r = 0) = 0 and R(r = 0+) = 2GM , our solutions near the singularity can
be represented by the right and left regions (quadrants) of the Rindler-wedge formed by
the straight (null) lines r = 0+, t = +∞ and r = 0+, t = −∞ at +45,−45 degrees re-
spectively. These (null) lines should be compared with the (null) lines r = 2GM, t = ±∞
corresponding to the text-book solution after performing the Fronsdal-Kruskal-Szekeres
change of coordinates

u = (
r

2GM
− 1)

1
2 er/4GM cosh (

t

4GM
), v = (

r

2GM
− 1)

1
2 er/4GM sinh (

t

4GM
) ⇒

u2 − v2 = (
r

2GM
− 1) er/2GM . (1.3)

leading to a metric

ds2 =
4(2GM)3

r
e−r/2GM (dv2 − du2 ) − r2(dΩ)2. (1.4)

In our case we must replace r → R in eqs-(1.3,1.4)

6



u = (
R

2GM
− 1)

1
2 eR/4GM cosh (

t

4GM
), v = (

R

2GM
− 1)

1
2 eR/4GM sinh (

t

4GM
) ⇒

u2 − v2 = (
R

2GM
− 1) eR/2GM . (1.5)

leading to a metric

ds2 =
4(2GM)3

R
e−R/2GM (dv2 − du2 ) −R2(dΩ)2. (1.6)

such that an incoming photon, starting at point P in the right region (quadrant) of the
Rindler wedge, moves upwards parallel to the −45 degrees null-line and reaches the null-
line branch given by r = 0+, R(r = 0+) = 2GM and t =∞, at point P ′. Then it ”tunnels”
through the spacetime void and reaches the spacelike singularity r = 0, R(r = 0) = 0 at
point P ′′ whose value of t(P ′′) is finite. This ”tunneling” behaviour from P ′ to P ′′ is a
direct consequence of the discontinuity of the metric at r = 0 resuting in a separation
between the points P ′ = (r = 0+, t =∞) and P ′′ = (r = 0, t = finite).

Similar behaviour occurs for an infalling timelike path starting at Q : it reaches the
null-line branch given by r = 0+, R(r = 0+) = 2GM and t = ∞ at point Q′. Then it
”tunnels” through the spacetime void (due to the discontinuity of the metric at r = 0)
reaching the spacelike singularity r = 0, R(r = 0) = 0 at point Q′′ whose value of t(Q′′) is
finite.

In essence, the singularity r = 0, R(r = 0) = 2GM has been spliced-off from the rest
of spacetime by carving out the future and past regions (quadrants) of the Rindler wedge
(creating a spacetime void) leaving only the right and left regions (quadrants) bounded by
the null lines r = 0+, R(r = 0+) = 2GM at t = ±∞. The fact that we end up only with
the left and right regions of the Rindler wedge might have some relationship to the factor
of two discrepancy of the Hawking radiation temperature which appears when working
with the left-right versus the future-right regions of the Rindler wedge [19].

• Due to the discontinuity of the metric at r = 0, the location r = 0, R(r = 0) = 0
corresponds to a spacelike singularity since gtt(r = 0) = −∞ < 0 : it changes sign.
Whereas grr(r = 0) = 0 because the quantity r(1 + 2GMδ(r))2 = 0 when r = 0, due
to the fact that it is an odd function of r so the latter expression vanishes at r = 0.
Therefore, since gtt(r = 0) = −∞ < 0 has changed sign, it is now spacelike, we must
emphasize that no violation of the cosmic censorship conjecture occurs ! (that rules out
timelike singularities).
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2 The Euclidean Gravitational Action as Entropy

2.1 The Gaussian Distribution as a smeared delta function
source and Wave-Particle Duality

Our aim is to solve the field equations with a delta function point mass source at r = 0
in D = 3 + 1 dimensions. There are two ways of solving this problem. In this section we
will smear the point mass delta function distribution using a Gaussian of finite width and
calculate the metric, curvature, and stress energy tensor. At the end of the calculations,
when one goes back and computes the Einstein-Hilbert action, and takes the σ → 0
limit, one will get the same answer as if one had started with a pure delta function point
mass source as shown in this section. This is a consequence of the semi-classical properties
inherent in the Gaussian matter distribution and associated with the wave-particle duality
in QM; namely, the mass and charge density distributions ( in the case of EM interactions)
are just the square of the Gaussian wave function amplitude (times a mass and charge
factor) as shown by [21].

Delta-function point sources for general-relativisitic gravity in 1 + 1 dimensions yields
a rich variety of solutions. Exact solution for 2 point sources on a line, 3 point sources
on a line and N point sources on a circle have been found. For 3 point sources the
system is chaotic and is a simple model where to study relativistic chaos [20] besides the
Kasner-Misner mixmaster chaotic cosmological models. Before doing so, we shall model
the mass distribution by a smeared delta function ρ [22], by starting with the following
field equations associated with the signature (+,−,−,−)

G00 = R00 −
1

2
g00 R = 8πGN T00 = g00 8πGN ρ(r), Rij −

1

2
gij R = 8πGN Tij (2.1)

where ρ(r) is a smeared delta function given by the Gaussian, GN is the Newtonian
coupling constant 2 and the Tij elements are comprised of a radial and tangential pressures
of a self-gravitating anisotropic fluid [22]

ρ(r) = Mo
e−r2/4σ2

(4πσ2)3/2
, pr = − ρ(r), ptan = pθ = pφ = −ρ(r)− r

2

dρ

dr
. (2.2)

The components of the mixed stress energy tensor are T µ
ν = diagonal (−ρ(r), pr, pθ, pφ).

The radial pressure pr = −ρ is negative pointing towards the center r = 0 consistent with
the self-gravitating picture of the droplet. The radial dependence of the mass distribution
is explicitly given in terms of the incomplete Gamma function γ[a, r] as

M(r, σ) = Mo

∫ r

0

e−r2/4σ2

(4πσ2)3/2
4πr2 dr =

2Mo√
π

γ[
3

2
,

r2

4σ2
]. (2.3)

2GN is the Newtonian coupling constant that in some places we write as G.
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In the limit σ2 → 0 one recovers the delta function

limσ→0
e−r2/4σ2

(4πσ2)3/2
→ δ(r)

4πr2
. (2.4)

and the incomplete Gamma function reduces to the ordinary Gamma function Γ(3
2
) =

(
√

π/2) and M(r, σ →∞) tends to Mo. The stress energy tensor for a point mass source is
given explicitly by the zero-width limit of the Gaussian in the right hand side of eqs-(2.1,
2.2), as shown explicitly in eqs-(2.4), ( 2.9) and ( 2.10).

The line element which solves Einstein’ s equations in the presence of the smeared delta
function ρ(r) distribution can be obtained by a direct application of Birkoff’s theorem by
evaluating the (variable ) mass M(r, σ) enclosed by a radius r [22]

(ds)2 = (1− 2GN M(r, σ)

r
) (dt)2 − (1− 2GN M(r, σ)

r
)−1 (dr)2 − r2 (dΩ)2. (2.5)

In the Appendix we check that the line element (2.5) based on the radial mass distribution
M(r, σ) given by the incomplete Gamma function solves Einstein’s equations (2.1).

The scalar curvature is given by 8πGN trace (Tµν)

R = − 8πGN 2ρ(r) [ 2− r2

4σ2
] = − 8πGN 2Mo

e−r2/4σ2

(4πσ2)3/2
[ 2− r2

4σ2
] (2.6)

At r = 0 one has R(r = 0, σ) = −4GNMo /
√

π σ3 and blows up when σ = 0. At
r =∞, R = 0.

he σ → 0 limit must be taken after, and only after, performing the calculations. For
instance, the Einstein-Hilbert action in the domain bounded by [0, r] will contain the
incomplete gammas γ[5

2
, r2

σ2 ] and γ[3
2
, r2

σ2 ]

S = − 1

16πGN

∫
R

√
|det g| d4x =

1

16πGN

∫ ∫ r

0
8πGN 2Mo

e−r2/4σ2

(4πσ2)3/2
[ 2− r2

4σ2
] (4πr2 dr dt) =

2Mo√
π

[ 2 γ(
3

2
,
r2

σ2
) − γ(

5

2
,
r2

σ2
) ]

∫
dt. (2.7a)

In the σ → 0 limit, the incomplete gammas become the ordinary Euler Γ[5
2
], Γ[3

2
] giving

2Mo√
π

[ 2
1

2

√
π − 3

2

1

2

√
π ]

∫
dt =

Mo

2

∫
dt. (2.7b)

Thus, the limit σ → 0 has the same effect as if one took the upper r limit of the action
integral from r = finite all the way to r →∞ irrespective of the value assigned to σ ( as
long as σ 6= ∞) ; ie. we may evaluate the action all over space (as one should) by fixing
the value of σ and integrating r from 0 to ∞. The incomplete gammas will turn into the
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Euler gammas when r = ∞ and one arrives at the same answer (2.7b). Whether or not
this has a relationship to the holographic principle is worth investigating.

The Euclideanized Einstein-Hilbert action associated with the scalar curvature in the
limit σ → 0 is obtained after a compactification of the temporal direction along a circle
S1 giving an Euclidean time coordinate interval of 2πtE and which is defined in terms
of the Hawking temperature TH ( in the limit σ → 0 ) and Boltzman constant kB as
2πtE = (1/kBTH) = 8πGNMo. The Euclidean action becomes

SE = (
Mo

2
) (2πtE) = 4π GN M2

o =
1

4

4π(2GNMo)
2

GN

=
Area

4 L2
P

. (2.7c)

which is the Black Hole Entropy in Planck area units GN = L2
P ( h̄ = c = 1 ). We will

show below in eq-(2.7c) that the Euclidean action associated with the scalar curvature
corresponding to the delta function point mass source given by

R = − 2GNMo δ(r)

r2
. (2.8)

yields precisely the same value for the action and entropy (2.7c) in the limit σ → 0.
After, and only after, having solved Einstein’s equations, one may take the σ → 0

limit of those equations and not before. The order in taking this limiting procedure is
essential. It is when this limit is properly taken when one recaptures the true solution
due to a point mass delta function source Mo at r = 0. Upon performing the σ = 0 limit
in the right order we get

ρ(r, σ = 0) = −pr =
Moδ(r)

4πr2
, pθ(r, σ = 0) = pφ(r, σ = 0) = − Moδ(r)

4πr2
− r

2
∂r (

Moδ(r)

4πr2
).

(2.9)
such

R(r, σ = 0) = − 8πGNMo [
4δ(r)

4πr2
+ r ∂r (

δ(r)

4πr2
) ] ⇒

− 1

16πGN

∫ ∫
R(r, σ = 0) (4πr2 dr dt) = − 1

16πGN

∫ ∫ −2GNMo δ(r)

r2
(4πr2 dr dt).

(2.10)
after an integration by parts since at r =∞, rδ(r)→ 0. The relation between the action
expressed in terms of R(r, σ = 0) and the point mass source delta function case is one of
the most important results of this work.

At any given value of σ, the location of the horizon rs(σ) is now shifted to a new
location dependent now on the Gaussian width σ parameter

1− 2GN M(rs, σ)

rs

= 0 ⇒ rs = 2GNMo
2√
π

γ[
3

2
,

r2
s

4σ2
] (2.11)

The solution(s) ( if any ) of this transcendental equation yields the new location(s) rs =
rs(2GNMo, σ) of the horizon . In the σ → 0 limit, rs → 2GNMo as expected. The
authors [22] plotted the function g00(r, 2GNMo/σ) and found that there are one, two
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and no horizons depending on the values of the ratio GNMo/σ. The critical value of
the mass below which no horizon forms was GNMo ∼ 1.9 σ ( our notation differs from
[22] ) which corresponds to rs(2GNMo, σ) ∼ 3 σ. Similar findings have been found in the
Renormalization-Group improved Schwarzchild solutions by [44] based on the running flow
of the Newtonian constant G(r) with a non-Gaussian ultraviolet fixed point G(r = 0) = 0
( asymptotic freedom).

Modifications of the standard thermo-dynamical properties of black holes (logarithmic
corrections to the black hole entropy ) based on the solutions of (2.5) within the context of
Noncommutative geometry and stringy uncertainty relations have been studied by several
authors. See [41] and references therein. In [36] a derivation of the logarithmic corrections
to the entropy was found based on a generalized p-Loop oscillator in Clifford spaces and
an upper limiting Planck temperature was obtained where Black Hole evaporation stops
at the Planck scale.

2.2 The Euclidean-Action-Entropy Relation in the Point Mass
Schwarzschild case

After having shown how to construct SSS solutions of Einstein’s equations in the presence
of a delta function mass source at r = 0, as a limiting procedure σ → 0 of a smeared-
delta function mass distribution, we can return now to the introduction of a particular
σ-dependent radial gauge, R(r, σ) = r + rs(σ) Θ(r) ( notice the presence of rs(σ) ) and
replace the metric (2.5) by :

(ds)2 = (1− 2GN M(R, σ)

R
) (dt)2 −(1− 2GN M(R, σ)

R
)−1 (dR)2 − R2(r) (dΩ)2. (2.12)

with the upshot that R(r = 0) = 0 as required ( the area and volume of the point r = 0
has to be zero ) and such that the location of the horizon rh → 0 can be shifted to a
location arbitrarily close to r = 0, since R(rh = 0 + ε) = ε + rs ∼ rs where rs is the
solution ( if any ) to the prior transcendental equation (2.11) depending on the ratio
GNMo/σ [22]. However, when the radial gauge R(r) = r + rsΘ(r) is chosen, rs is no
longer equal to rh → 0. Once again, to be more precise, the horizon actually never forms
at r = 0 when σ = 0 (one hits the singularity). When σ 6= 0, there is one, two and
no horizons depending on the values of GNMo/σ [22]. When there is no horizon then
R(r) = r. When there is one horizon R(r) = r + rs Θ(r). When there is an outer r+

s

and inner horizon r−s , by choosing R(r) = r + r−s Θ(r) then R → r−s as one approaches
r = 0 + ε and R(r = 0) = 0; while R = r+

s when r = r+
s − r−s .

At r = 0 → R = 0, the mass is M(R = 0) = 0 ( when σ 6= 0 ). Therefore, the
behaviour of the metric component g00(R = 0) = limit R→0 (1 − 2GNM(R)/R) requires

a very careful evaluation due to the 0
0

ratio of M(R)
R

at R = 0. Using the properties of the

incomplete gammas, the ratio M(R)
R

∼ γ[3
2
, R2

4σ2 ]/R for very small values of R behaves as
R3/R = R2 → 0. Hence, when σ 6= 0, the metric component g00(R = 0) = 1 in agreement
with the diagrams of [22].
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The scalar curvature corresponding to the metric (2.12) is

R = − 8πGN 2ρ (R(r), σ) [ 2 − R2(r)

4σ2
] = − 16π GNMo

e−R(r)2/4σ2

(4πσ2)3/2
[ 2 − R2(r)

4σ2
].

(2.13a)
in the σ → 0 limit, the scalar curvature contribution to the action may be evaluated once
again by simply inserting

R→ −2 GN Mo δ(r)

R2(dR/dr)
. (2.13b)

into the action in the same manner described by eq-(2.10).
Therefore, the Euclideanized Einstein-Hilbert action associated with the scalar curva-

ture delta function is obtained after a compactification of the temporal direction along
a circle S1 giving an Euclidean time coordinate interval of 2πtE and which is defined in
terms of the Hawking temperature TH ( when σ → 0 ) and Boltzman constant kB as
2πtE = (1/kBTH) = 8πGNMo. The measure of integration is 4πR2 dR dtE, leading to :

SE = − 1

16πGN

∫ ∫
( − 2GNMo

R2(dR/dr)
δ(r) ) (4πR2 dR dt) =

− 1

16πGN

∫ ∫
( − 2GNMo

r2
δ(r) ) (4πr2 dr dt) =

4π(GNMo)
2

L2
Planck

=
4π (2GNMo)

2

4 L2
Planck

=
Area

4 L2
Planck

=

1

16πGN

lim σ→0

∫ ∫ R

0
16π GNMo

e−R(r)2/4σ2

(4πσ2)3/2
[ 2 − R2(r)

4σ2
] (4πR2 dR dt) =

1

16πGN

∫ ∫ ∞

0
16π GNMo

e−R(r)2/4σ2

(4πσ2)3/2
[ 2 − R2(r)

4σ2
] (4πR2 dR dt) (2.14)

when equating GN = L2
P and after performing the integration in terms of the incom-

plete gammas and taking the σ → 0 limit. Once again, the limit σ → 0 has the same
effect as if one took the upper R limit of the action integral from R = finite all the
way to R → ∞ ( as one should to define the action ) while keeping σ fixed. It is inter-
esting that the Euclidean action ( in h̄ units ) is precisely the same as the black hole
entropy in Planck area units. This result holds in any dimensions D ≥ 3 . This is not
a numerical coincidence and is deeply related to the thermal nature of Euclidean time;
namely, the conserved global charges associated to the Euclidean Einstein-Hilbert action
obey a relation that could be interpreted as a thermodynamical equation of state. Fur-
thermore, the action is invariant of the choices of R(r), whether or not it is the Hilbert
text book choice R(r) = r or another. The choice of the radial function R(r) amounts to
a radial gauge that leaves the action invariant but it does not leave the scalar curvature,
nor the measure of integration, invariant. Only the action ( integral of the scalar curva-
ture ) remains invariant. This follows directly from the relations R[R(r)] = R′(r) 6= R(r)
and R(r) = R′(r′).
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The physical picture behind the Euclidean action = entropy relation is based on the
wave-particle duality in QM where the Gaussian mass density distribution ρ = Mo|Ψ|2
is proportional to the square of the Gaussian wave amplitude. [21]. One can imagine
the point mass delta function source at r = 0 as being smeared all over spacetime, from
r = 0 to r = ∞ by a Gaussian mass density distribution of a variable width σ. As long
as σ 6=∞ the answer (2.14) is the same whether one integrates all over space, keeping σ
fixed, or if one integrates up to a given r and takes the subsequent σ = 0 limit, consistent
with the delta function distribution being the zero width limit of a Gaussian. In the delta
function case for the scalar curvature , we know thatR = 0, r > 0 thus the contribution to
the action is zero for all r > 0 ; only the delta function behaviour of the scalar curvature
at r = 0 contributes to the action. A detailed study of the nonzero σ modifications of
the Hawking temperature, entropy and horizon may be found in [22], [41], [24]. However,
as we have seen in the last term of eq-(2.14), when one integrates all over space for any
fixed value of σ 6= ∞ one always gets the same answer in terms of the mass parameter
SE = 4πGM2

o , if, and only if, kBTH = (8πGNMo)
−1.

If it is only the relationship between Mo and the modified horizon rs = rs(2GNMo, σ)
that changes when σ 6= 0, the immediate question is what functional relation between the
area (4πr2

s) and entropy one would find if we restricted the domain of integration from
r = 0 to rs for fixed values of σ 6= 0 ? If one views the Hawking emission of particles as
a tunneling phenomenon through the horizon [25], when there are two horizon solutions
to the transcendental equation (2.11) one may compute the Euclidean Einstein-Hilbert
action in the bounded domain determined by the outer and inner horizons r±(σ) defined
by :

SE =
1

16πGN

∫ r+(σ)

r−(σ)
16π GNMo

e−r2/4σ2

(4πσ2)3/2
[ 2 − r2

4σ2
] (4πr2 dr)

∫ 1/kBT

0
dtE. (2.15)

The Euclidean time interval, the thermal time interval, 2πtE = 1/kBTH(σ) is given
in terms of the inverse of the deformed Hawking temperature ( setting the Boltzman
constant kB = 1 ) by the formula [22]

TH(σ) =
1

4π

dgtt

dr
(r = r+(σ)) =

1

4πr+(σ)
[ 1−

r3
+(σ)

4σ3

e−r2
+(σ)/4σ2

γ[3
2
;

r2
+(σ)

4σ2 ]
]. (2.16)

Hence the inverse temperature ( the Euclidean time interval of integration ) is

1

TH(σ)
= 4πr+(σ) [ 1−

r3
+(σ)

4σ3

e−r2
+(σ)/4σ2

γ[3
2
;

r2
+(σ)

4σ2 ]
]−1 (2.17)

and the Euclidean action bounded by the outer and inner horizons r±(σ) is

SE =
1

16πGN

∫ r+(σ)

r−(σ)
16π GNMo

e−r2/4σ2

(4πσ2)3/2
[ 2 − r2

4σ2
] (4πr2 dr) ×
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4πr+(σ) [ 1−
r3
+(σ)

4σ3

e−r2
+(σ)/4σ2

γ[3
2
;

r2
+(σ)

4σ2 ]
]−1 (2.18)

In the σ → 0 limit ( equivalent to the large Mo/σ → ∞ limit ) the inner horizon
shrinks to zero r−(σ) → 0 [22], the outer horizon r+(σ) → 2GM and the deformed
Hawking temperature becomes the ordinary one TH(σ)→ 1/8πGM . The spatial integral
of the scalar curvature ( times 1/16πGN ) in the σ → 0 limit was already evaluated in
eq-(2.10) after an integration by parts of the derivatives of the delta function terms, and
it yields Mo/2 because the domain of integration contains r = 0. Therefore, in the σ → 0
limit of eq-(2.18) one recovers the usual result of SE = 1

4
(Area/L2

P ) = 1
4GN

4π(2GNM)2 =

4πGNM2.
The impending question now is what is the functional relationship between the Eu-

clidean action bounded by the outer and inner horizons of eq-(2.18) and the area of the
outer horizon 4πr+(σ)2 ? Due to the fact the the expression for the inner and outer
horizons r±(σ) is no longer analytic, we postulate that this modified Euclidean action-
area-entropy relation could be expressed in terms of a power series (logarithmic corrections
to the entropy) of the form

S[A(σ)] =
A(σ)

4GN

+b(σ) log
A(σ)

4GN

+
n=∞∑
n=0

an(σ) (
A(σ)

4GN

)−n, A(σ) = 4πr+(σ)2. (2.19a)

where the coefficients b(σ) and an(σ) are explicitly σ-dependent. In the σ → 0 limit
one recovers the standard action-area-entropy relation in natural units h̄ = c = kB = 1
S[A(σ = 0)] = A(σ = 0)/4GN = 4π(2GNM)2/4GN = 4πGNM2.

Another way to obtain the corrections to the entropy-area law is by integrating the
first law of black hole thermo-dynamics

TdS = dM ⇒ S =
∫ dM

T (M, σ)
. (2.19b)

where the expression T (M, σ) is not analytical and is implicitly given in terms of the
outer horizon solutions r+(σ; M) given by eqs-(2.11, 2.16). The authors [41] have obtained
the corrections to the area-entropy relation by recurring to the minimal length stringy
uncertainty relations by postulating a mass-temperature relation of the form

(∆x) (∆p) ≥ 1

2
(1 + a2G(∆p)2) ⇒ (2GM) (kBT ) ∼ 1

2
(1 + α2G(kBT )2). (2.19c)

that allows to find the solve for T = T (M) and to integrate (2.19b). For further details
we refer to [41].

The most salient feature of eq-(2.14), besides the action-entropy relation, can be in-
ferred by looking at the second term of (1.16). By replacing r → −r, tE → −tE ⇒ T →
−T and because δ(r) = δ(−r), one leaves the action, the entropy, invariant. There-
fore, negative temperatures ( but positive entropy ) are inherently associated with the
repulsive gravity white-hole picture in the region r < 0. The concept of anti − entropy
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is a very different story that has been explored by mathematical biologists and deserves
further investigation. Even further, by working with Complex Gravity, the complex time
τ = t + iβ has for imaginary component β = 1/kBT , and allows to extend ordinary QM
to Complex QM where the Hamiltonians are no longer Hermitians which is what one
expects due to the irreversibility nature of a complex temporal evolution of the com-
plex Hamiltonian. A complex time associated with Complex Gravity is where one can
more rigorously implement the notion of S-duality in linearized Gravity [49] to the full
nonlinear theory.

The action − entropy connection has been obtained from a different argument, for
example, by Padmanabhan [32] by showing how it is the surface term added to the action
which is related to the entropy, interpreting the horizon as a boundary of spacetime. The
surface term is given in terms of the trace of the extrinsic curvature of the boundary. The
surface term in the action is directly related to the observer-dependent-horizon entropy,
such that its variation, when the horizon is moved infinitesimally, is equivalent to the
change of entropy dS due to the virtual work. The variational principle is equivalent to
the thermodynamic identity TdS = dE +pdV due to the variation of the matter terms in
the right hand side. A bulk and boundary stress energy tensors are required to capture
the Hawking thermal radiation flux seen by an asymptotic observer at infinity as the black
hole evaporates.

Finding dynamical solutions M(r, t, σ) are the subject of another investigation. The
author [37] by using the principle of invariance of the 4-dim world-volume has found
that the gravitational mass of the neutral mass-point tends to zero, after an eternal
gravitational collapse of a star has shed off all of its mass, by radiating away its available
mass energy ( to infinity ). Notice, however, that the measure 4πR2 dR dt is not invariant,
when we change the radial gauges, for example, from R(r) = r + rs(σ)Θ(r) to another
R(r) = [r2 + r2

s(σ)Θ(r)]1/2. Thus one can bypass the results of [37] that relied on the
invariance of the 4-dim measure. Furthermore, the argument of [37] relies on having a
finite value of the bare mass which may not be the case. Once again, what remains
invariant is the action (2.14) as a whole, not the measure, nor the scalar curvature R.
We have shown that the gravitational field of a point mass delta function source is a
mathematically sound problem that has a solution for M 6= 0. Another problem that
needs to be revisited is the gravitational collapse of a compact star taking into account
the freedom of choosing radial gauges involving the step function that have not been
explored before.

Naturally, Quantum Gravitational effects become very relevant at small (Planck)
scales. The ultra-violet cutoff R(r = 0) = 2GNMo is compatible with the exact Non-
perturbative Renormalization Group flow of the Newtonian coupling G = G(r) (that
has a non-Gaussian ultraviolet fixed point G(r = 0) = 0) in Quantum Einstein Gravity
[44] based on Weinberg’s Asymptotic Safety scenario. The presence of an ultra-violet
cutoff R = 2GNMo originates from the mere presence of matter and permits to relate
gtt = 1 − 2GNMo/R(r) to gtt = 1 − 2G(r)M(r)/r such that gtt(r = 0) = 0 and which is
compatible with the ultra-violet cutoff of the radial function R(r = 0) = 2GNMo. GN is
the value of the Newtonian coupling in the deep infrared and M = Mo is the Kepler mass
as seen by an observer at asymptotic infinity. The non-perturbative exact Renormaliza-
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tion Group program for Quantum Einstein Gravity helps to determine the choice R(r)
uniquely R = r + 2GNMo from the infinite family of plausible radial functions R(r).

When r = 0 a careful analysis yields M(r → 0) ∼ 1
2 GN Mo

therefore, the running
mass parameter at r = 0, M(r = 0) ∼ 1/R(r = 0) = 1/(2GNMo) is finite instead of
being infinite. The running mass at r = 0 has a cutoff given by the inverse of the ultra-
violet cutoff R(r = 0) = 2GNMo ( up to a numerical constant ). If one includes the step
function in R(r) = r + 2GNMΘ(r) there is no cutoff R(r = 0) = 0 and the bare mass
should be M(r = 0) = ∞ as expected. When r → ∞ one has M(r → ∞) → Mo as
expected, where Mo is the Kepler mass observed by an observer at asymptotic infinity (
deep infrared ). For further details we refer to [43].

2.3 The Euclidean Action-Entropy Relation in the Charged-
Kerr Black holes case

Let us begin with the Einstein-Maxwell action

S = − 1

16πG

∫
d4x

√
g R +

1

4e2

∫
d4x

√
g Fµν F µν =

− 1

16πG

∫
d4x

√
g [ R − 4πG

e2
Fµν F µν ]. (2.20)

We will calculate the entropy in the special case when the charge e satisfies the condition
4πG = e2, the charge e has length units. In this particular case the Euclidean action
matches the entropy. In the case that 4πG 6= e2 the Euclidean action is proportional to
the black hole entropy. The constant of proportionality is 4πG/e2.

The charged massive Reissner-Nordstrom solution has for metric components

gtt = 1− 2GNM

r
+

e2

r2
, grr = − 1

gtt

. (2.21)

the angular part is the same r2(dΩ)2. In the point mass and point charge case, we should
replace r → |r| in order to recover delta function point mass and point charge singularities
at r = 0. In the region r > 0 the only contribution to the field equations is from the EM
field stress-energy tensor. Einstein’s equations in the case that 4πG = e2 are

δS

δgµν
= 0 ⇒ Rµν −

1

2
gµν R = 8πG Tµν =

− [ gαβ (Fµα Fνβ + Fνα Fµβ) − 1

2
gµν FαβFαβ ], r > 0. (2.22)

In D = 4 the trace of the stress EM energy tensor is zero consistent with the conformal
invariance of the Maxwell action in D = 4. This results simply follows from a variation
under conformal scalings

if 2 δS = −√g Tµν δgµν = −λ
√

g w(gµν) Tµν gµν = 0 ⇒ T = Tµν gµν = 0. (2.23a)
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since the Weyl weight w(gµν) 6= 0. The minus sign of the second term in the r.h.s of (2.22)
is due to the variation of the determinant of the metric gµν resulting from the identities√

det gµν = e
1
2
trace ln (gµν) = e−

1
2
trace ln (gµν), gµν = (gµν)

−1. (2.23b)

δ
√

g = − 1

2

√
g gµνδg

µν =
1

2

√
g gµν δgµν , . (2.24)

Therefore, when r > 0 the point mass terms don’t contribute to the stress energy tensor
and the relevant term is then the EM part of the action density :

1

4e2
FαβFαβ =

E2(r)

4e2
=

1

4e2
(

e

r2
)2 =

1

16πG

e2

r4
, when 4πG = e2. (2.25)

the outer and inner horizons of the Reissner-Nordstrom massive charged black hole in the
natural units is given by the solutions of the algebraic equation

1− 2GM

r
+

e2

r2
= 0 ⇒ r± = GM ±

√
(GM)2 − e2. (2.26)

From eq-(2.25) we can evaluate the EM part of the action bounded by the outer and inner
horizons of the Reissner-Nordstrom massive charged black hole

1

16πG

∫ ∫ r+

r−
Fµν F µν (4πr2 dr dt) (2.27)

The spatial integral yields

1

16πG

∫ r+

r−

e2

r4
4πr2 dr =

e2

4G
[

1

r−
− 1

r+

] =
e2

4G

r+ − r−
r+ r−

=
e2

4G

2
√

(GM)2 − e2

e2
. (2.28)

Upon a compactification the Euclidean thermal-time interval is 2πt = 1/kBT ( we will
set kB = 1). The temperature of the Reissner-Nordstrom Black Hole [38] is

TH =
1

2π

√
(GM)2 − e2

2(GM)2 + 2GM
√

(GM)2 − e2 − e2
=

1

4π

r+ − r−
r2
+

. (2.29)

The full spatial-temporal integration corresponding to the EM part of the action bounded
by the outer and inner horizons of the Reissner-Nordstrom Black Hole is then :

1

16πG

∫ r+

r−

e2

r4
(4πr2 dr)

∫ 1/kBT

0
dtE =

[
2π e2

4G
] [

2
√

(GM)2 − e2

e2
] [

2(GM)2 + 2GM
√

(GM)2 − e2 − e2√
(GM)2 − e2

] =
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[
π

G
] [ GM +

√
(GM)2 − e2 ]2 =

π r2
+

G
=

4πr2
+

4G
=

Area

4L2
Planck

. (2.30)

Therefore, we have shown that when 4πG = e2, the (Euclideanized) EM part of the
action associated with the bulk region bounded by the outer and inner horizons of the
Reissner-Nordstrom massive charged black hole is precisely equal to the Black Hole En-
tropy 4πr2

+/4G. The relationship between G and e is reminiscent of what occurs in
Kaluza-Klein compactifications from 5D to 4D. In Loop Quantum Gravity there is an
undetermined Immirizi parameter in the Entropy-Area relation based on the SU(2) spin-
networks calculation.

The Reissner-Nordstrom black hole entropy can be recast as

SRN
E =

e2

4G
[

1

r−
− 1

r+

]
1

TH

=
e2

4G

r+ − r−
r+ r−

4πr2
+

r+ − r−
=

4πr2
+

4G
. (2.31)

since e2 = r+r− resulting from eq-(2.26) and after using eq-(2.29). In the extremal
Reissner-Nordstrom black hole case, GM = e, the outer and inner horizons coincide
r+ = r− = GM so the spatial integral of the scalar curvature bounded by a domain of
size zero is zero. However since the temperature in this extremal case is also zero, when
one computes the Entropy in this case one will get 0

0
which is undetermined, however due

to the exact cancellation of the terms r+ − r− in the numerator and denominator of eq-
(2.31) the Entropy value becomes precisely equal to (Area/4G) where Area = 4πr2

+ =
4πr2

− = 4π (GM)2 for the extremal Reissner-Nordstrom Black hole.
The charged rotating ring solution given by the Kerr-Newman Black Hole has an

angular momentum per unit mass a = J
M

and the Hawking temperature corresponding to
the outer horizon is [38]

TH(M, e, a =
J

M
) =

1

2π

√
(GM)2 − a2 − e2

2(GM)2 + 2GM
√

(GM)2 − a2 − e2) − e2
=

1

4π

r+ − r−
r2
+ + a2

. (2.32)

The outer and inner horizons are solutions of the equation :

∆ = r2 − 2GM r + a2 + e2 = 0 ⇒ r± = GM ±
√

(GM)2 − a2 − e2. (2.33)

the Entropy is

SE =
1

4G
4π [r2

+ + a2] = [
π

G
] [ GM +

√
(GM)2 − a2 − e2 ]2 =

Area

4L2
Planck

. (2.34)

As a direct consequence of the temperature relation (2.32) and the rotational-energy
density (1/16πG) (J/Mr2)2 = (1/16πG) (a/r2)2 contribution to the energy, the Kerr-
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Newman back-hole entropy can still be re-written as

SKN
E =

e2 + a2

4G
[

1

r−
− 1

r+

]
1

TH

=
e2 + a2

4G

r+ − r−
r+ r−

4π(r2
+ + a2)

r+ − r−
=

4π(r2
+ + a2)

4G
.

(2.35)
since e2 + a2 = r+r− resulting from (2.33). Based on the entropy functional forms given
by eqs-(2.31, 2.35) (in the form energy × time) of the Reissner-Nordstrom and Kerr-
Newman back-hole entropies, it is warranted to compare these expressions with those
corresponding to charged and spinning p-branes. For instance, the charge-mass-spin
(angular momentum) relationship of the Kerr-Newman back-hole horizon was re-derived
within the context of poly-particle actions in Clifford poly-vector valued spaces in [62].

If one evaluates the bulk integral of the EM part of the action 1
4e2 FµνF

µν in the Kerr-
Newman stationary solution expressed in Boyer-Lindquist coordinates one gets

SE =
1

4e2

∫
dt

∫
dφ

∫ r+

r−
dr

∫ +1

−1
d(cosφ) (r2 + a2cos2φ)

e2

(r2 + a2cos2φ)2
=

π [
iLi2 [− ia

r
] − iLi2 [ ia

r
]

2a
]r+
r−

1

TH

. (2.36)

where Li2 is the di-logarithm. The poly-logarithm is defined by Lin(z) =
∑

k=1
zk

kn . Hence,
it is only to leading order in powers of a

r
that one recovers from the integral of eq-(2.36)

the Kerr-Newman black hole entropy

SE ∼ π [
1

r−
− 1

r+

]
1

TH

=
π(r+ − r−)

r+ r−

4π(r2
+ + a2)

r+ − r−
=

π

e2 + a2
4π(r2

+ + a2) =
4π(r2

+ + a2)

4G
, when e2 + a2 = 4πG. (2.37)

with the provision that the condition e2 + a2 = 4πG is obeyed. The Reissner-Nordstrom
entropy was recovered in eq-(2.30) when the condition e2 = 4πG was satisfied. To sum
up, the expression

SE =
e2 + a2

4G
[

1

r−
− 1

r+

]
1

TH

. (2.38)

recaptures the Kerr-Newman entropy as well as the Reissner-Nordstrom, Kerr and
Schwarzschild entropy when a2 = 0, e2 = 0, e2 = a2 = 0, respectively.

The first law of thermodynamics relating the change of the internal energy dU with
the change of entropy TdS and work dW is :

TdSE − dW = dU ⇒ TdSE − JdΩ − ΦdQ = dU = d (M −QΦ− JΩ). (2.39)

where Φ = e/r+ is the electrostatic potential at the outer-horizon, Ω is the angular velocity
of the outer horizon; J is the angular momentum and M is the ADM mass. The first law
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can be interpreted as the relationship among the global charges, parameters (M, e, J) and
T, S which is obtained by performing a variation of the Euclidean action resulting from
perturbing the location of the inner and outer horizons. Viewing the Hawking radiation
and emission of particles as a quantum tunneling that shrinks the size of the horizons [25]
is another way of perturbing the value of the Euclidean action. For a thorough discussion
of interpreting Einstein’s field equations as just a thermo-dynamical equation of state see
[26] and Wald’s entropy expression related to the global Noether charge of diffs under
the Killing vector field which generates the event horizon in the stationary black hole
background and which is given by a local geometric density integrated over a space-like
section of the horizon [39]. An analysis of non-extremal black hole entropy and U duality
in four dimensions was provided by [40].

One could smear the point mass and point charge distributions by a Gaussian of
variable width and height and repeat the whole exercise of the previous section. The
σ-modified Reissner-Nordstrom Black hole has a metric given by

gtt = 1− 2 Gm(r, σ)

r
+

e2 f(r, σ)

r2
, grr = − 1

gtt

. (2.40)

where f(r) is determined by solving the coupled Einstein-Maxell equations

Rµν −
1

2
gµν R = − 8πG

1

2
[ gαβ Fµα Fνβ + µ↔ ν − 1

2
gµν FαβFαβ ] + 8πG Tmatter

µν .

1√
|g|

∂µ [
√
|g| F µν ] = Jν

since the functions are known : m(r) = 2mo√
π

γ[3
2
, r2

4σ2 ] and a similar expression for the charge

q(r) enclosed by r and which furnishes the electrostatic field at any point E(r) = q(r)/r2

by a simple application of Gauss law. The authors [23] found that the functional form of
f(r) is :

f(r) =
1

π
γ[

1

2
,

r2

4σ2
]2 − r√

2 πσ
γ[

1

2
,

r2

4σ2
]. (2.41)

f(r) has a singularity at σ = 0. If the metric is expressed in terms of the ADM mass M

gtt = 1− 2 GM(r, σ)

r
+

e2 F (r, σ)

r2
. (2.42)

the new function F (r) obtained by [23]

F (r) = f(r) +

√
2 r

π σ
γ[

3

2
,

r2

4σ2
]. (2.43)

F (r) is not singular at σ = 0 due to the cancellation of the 1/σ terms when σ = 0 resulting
from the limit γ[c, x] → Euler gammas when x = ∞. This means that the singularity at
σ = 0 may be absorbed by a renormalization of the bare mass and bare charge. If one
proceeds with Birkhoff’s theorem and defines the mass-energy content inside the radius
r as the contributions of the combined matter and Electrostasic energy, this would allow
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us to evaluate the expression for f(r) in terms of the EM mass-energy content MEM(r)
due to the Electrostatic energy density E(r)2 associated with the electric field E(r) :

e2f(r)

r2
≡ 2 GMEM(r)

r
=

2

8π r

∫ r

0
[E(r)]2 4πr2dr =

1

4π r

∫ r

0
[
q(r)

r2
]2 4πr2dr =

1

4π r

∫ r

0
[ (

2 e√
π

γ[
3

2
;

r2

4σ2
] ) (

1

r2
) ]2 4πr2 dr. (2.44)

The integration can be carried out by a change of variables (r/2σ)2 = x. The relevant
indefinite integral is given in terms of the error function erf [x] and the incomplete upper
Gammas Γ[c, x], it is

∫
γ[

3

2
, x]2 x−3/2 dx =

1

2
√

x

√
2πx erf(

√
2x)− 1

2
√

x
e−2x [−2 ex Γ[

3

2
, x] +2

√
x +ex

√
π ]2.

(2.45)
One can verify that the above integral expression at x = 0 ( r = 0 ) is well behaved and is
given by 0, such that the lower limit of the integral in eq-(2.44) times the 1/r pre-factor
is finite at r = 0. Therefore, there is no need to reabsorb infinities due to the r = 0
contribution into a renormalization of the bare mass and bare charge, we refer to [21]
for further details. We need to compare our result for the terms e2f(r)/r2 in eqs-(2.44,
2.45) based on Birkhoff’s theorem with the results of (2.43) by [23]. A detailed graphical
analysis of the behaviour of the σ-deformed Hawking temperature TH(σ) and the outer
and inner deformed horizons can be found in [23]. Once more, one may evaluate the
(Euclideanized) EM part of the action in the bulk domain bounded by the inner and
outer deformed horizons r±(σ) :

SE =
1

16πG

∫ r+(σ)

r−(σ)
[E(r, σ)]2 (4πr2 dr)

∫ 1/kBT (σ)

0
dtE. (2.46)

The inner and outer rRN
± (σ) deformed horizons are given in terms of solutions to a

trascendental equation, and because they are not given any longer by analytical expres-
sions, this entails the possibility of writing the definite integral IRN = IRN [r+(σ), r−(σ)]
corresponding to the deformed Reissner-Nordstrom case ( RN ) in terms of a power series
expansion in the variable σ of the form :

SE[ARN(σ)] =
ARN(σ)

4GN

+ bRN(σ) log
ARN(σ)

4GN

+
n=∞∑
n=0

aRN
n (σ) (

ARN(σ)

4GN

)−n. (2.47)

where A(σ) = 4π(rRN
+ (σ))2 and the σ-dependent coefficients b(σ) and an(σ) are defined

implicitly by the integral IRN [r+(σ), r−(σ)] . In the σ → 0 limit one recovers the standard
action-area-entropy relation in natural units h̄ = c = kB = 1 given by S[ARN(σ = 0)] =
ARN(σ = 0)/4GN = 4π(rRN

+ )2/4GN as shown by eq-(2.30), since the inner and outer
horizons and temperature will attain their undeformed values in the σ = 0 limit.

The σ deformed charged-rotating Kerr-Newman Black hole has not been constructed
to our knowledge. One would proceed similarly to the σ-deformed Reissner-Nordstrom
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case. One would smear the rotating charged ring by an extended charged spinning object,
like a spinning p-brane which behaves like a charged spinning fluid filling all of space and
whose density profile is given by a Gaussian distribution. Another configuration besides
the Gaussian might be modeled by Spinning Gravitational Skyrmions. To finalize this
section, I have been informed by 3 that the Spectroscopy of σ-deformed Black holes
(quasi-normal modes expansion) can be studied by fluctuations of the location and shape
of the horizon, in particular by fluctuations in the value of σ. For a recent treatment of
Gravitational Entropy and Ricci-Finsler flows within the context of Grisha Perelman’s
work [30] we refer to [29], [28], [31].

3 Why the use of the modulus |r| is necessary to

yield delta function terms

The direct approach in solving Einstein’s equation in the presence of a point mass delta
function source requires replacing everywhere r → |r| in the radial gauge R(|r|) = |r| +
2GM Θ(|r|). If one does not properly use |r| ( instead of r ) in the metric one will get an
identically zero expression for the Einstein tensor as in the vacuum case. To illustrate
how relevant it is to take the proper absolute values, we recall (in flat space) that the
Laplacian in spherical coordinates of 1/|r| is

1

r2
(d/dr)[ r2(d/dr)(1/|r|) ] =

1

r2
(d/dr)[ r2(−1/|r|2) sign(r) ] =

− 1

r2
(d/dr)sign(r) = −(1/r2) δ(r) (3.1)

since r2 = |r|2, which is consistent with Poisson’s law which states that the Laplacian
of the Newtonian potential −GM/|r| is 4πGρ. This is true here if, and only if, ρ =
(M/4πr2)δ(r) that is indeed the case in Newtonian gravity. To reiterate once more, the
Laplacian in spherical coordinates of (1/r) is zero. For this reason, there is a fundamental
difference in dealing with expressions involving absolute values |r| like 1/|r| from those
which depend on r like 1/r [11].

Let us try to solve Einstein’s equations for a point mass, firstly, by writing the compo-
nents of Tµν associated with a point mass particle which is moving in its own gravitational
background (neglecting the back reaction on the particle ) in terms of the appropriately de-
fined covariantized delta function The worldline of the point mass source is parametrized
by the four functions

X0 = t(τ), X1 = r(τ); X2 = θ(τ); X3 = φ(τ) (3.2)

The matter action is

Smatter = −Mo

∫
dτ = −Mo

∫ √
gµν(dXµ/dτ)(dXν/dτ) dτ =

3J.F Gonzalez, private communication
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−Mo

∫ √
g dnx

∫ δn(xµ −Xµ(τ))√
|g|

√
gµν(dxµ/dτ)(dxν/dτ) dτ. (3.3)

From which we can deduce the expression for the stress energy tensor density

T µν = − 2
√

g

δSmatter

δgµν

=

Mo

∫ (dxµ/dτ)(dxν/dτ)√
(dxσ/dτ)(dxσ/dτ)

1√
|g|

δ(r− r(τ)) δ(θ−θ(τ)) δ(φ−φ(τ))δ(t−x0(τ)) dτ. (3.4)

The worldline of an inert point mass ( ignoring the back reaction of the gravitational
field ) at fixed values of

r = ro = constant 6= 0; θ = θo = constant, φ = φo = constant (3.5a)

is determined by the temporal function x0 = t = x0(τ) such that

(dτ)2 = g00(dt)2 ⇒
∫

τ =
∫ √

g00 dt⇒ dt

dτ
=

1
√

g00

(dx0/dτ)(dx0/dτ) =
1

g00

= g00. (3.5b)

For this particular timelike worldline history (on-shell so (dxσ/dτ)(dxσ/dτ) = 1) the
only non-vanishing component of the stress energy tensor is

T00 = Mo

∫ (dx0/dτ)2√
|g|

δ(r − r(τ)) δ(θ − θ(τ)) δ(φ− φ(τ))
δ(t− x0(τ))√

(dxσ/dτ)(dxσ/dτ)
dτ =

T00 = Mo

∫ g00( |~r − ~ro| )√
|g|

δ(r − ro) δ(θ − θo) δ(φ− φo) δ(t− x0(τ)) dτ =

T00 = Mo
g00( |~r − ~ro| )√

|g|
δ(r − ro) δ(θ − θo) δ(φ− φo). (3.6)

As expected, we have found that the T00 component is just related to the mass density
ρ in spherical ccordinates for a point mass source located at ~ro = (xo, yo, zo) 6= 0. If the
point mass source is located at the origin of the spherical coordinates system ~ro = 0,

the Jacobian in this case becomes
√
|g| = R2(dR/dr) sinφ, and g00(|~r − ~ro|) = g00(|r|) .

However, since the angles are degenerate at r = 0 ( the angles are not well defined at the
origin ) to cure this ambiguity one can perform the average over all solid angle directions
( from 0 to 4π) and which furnishes a crucial (1/4π) factor that is deeply connected to
the ubiquitous 2M term, as follows

1

4π

∫
T00 sin(φ) dφ dθ =

Mo

4π

∫ g00(r)

R2(dR/dr) sinφ
δ(r) δ(θ−θo) δ(φ−φo) sin(φ) dφ dθ =
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< T00 >solid angle = g00(r)
Mo

4πR2(dR/dr)
δ(r). (3.7)

Using the rules of differentiation outlined in eqs-(3.9, 3.10), the Einstein tensor, ob-
tained by replacing r → |r| in the solutions (1.1), has non-vanishing diagonal elements
involving a stress energy tensor with both pressure and density terms proportional to
δ(r) [35]. However, despite this unexpected finding, we found that the integral of 8πG
times the trace of the stress energy tensor does satisfy the condition [35]∫

8πGN trace Tµν =
∫

8πGN gµν Tµν =
∫

8πGN g00 < T00 > =

−
∫
R =

∫ 2GNMo

R2(r) (dR/dr)
δ(r) (4πR2) dR dt =

∫ 2GNMo

r2
δ(r) (4πr2) dr dt. (3.8)

in accordance to the results involving the integrals in the σ → 0 limit of (2.7a, 2.7b).
The scalar curvature associated with radial gauges involving the modulus |r| ( instead

of r ) generates the sought after δ(r) terms only in those expressions involving second
derivatives of the metric. This is a consequence of

d gµν(|r|)
dr

=
d gµν(|r|)

d|r|
d|r|
dr

=
d gµν(|r|)

d|r|
sign (r) ⇒ (

d gµν(|r|)
dr

)2 = (
d gµν(|r|)

d|r|
)2.

(3.9)

d2 gµν(|r|)
dr2

=
d2 gµν(|r|)

d|r|2
+

d gµν(|r|)
d|r|

δ (r), since sign(r)2 = 1,
dsign(r)

dr
= δ(r).

(3.10)
Writing the metric components

g00 = 1− 2GM

|r|
= 1− 2GM

r

r

|r|
= 1− 2GM

r
f(r); f(r) ≡ r

|r|
. (3.11a)

grr = − 1

g00

. (3.11b)

such that the derivatives

f ′(r) =
df(r)

dr
= δ(r); f ′′(r) =

d2f(r)

dr2
= δ′(r). (3.12)

reveals that the nonvanishing R is given by :

R = − 2GM [
f ′′(r)

r
+ 2

f ′(r)

r2
] =

− 2GM [
δ′(r)

r
+ 2

δ(r)

r2
]. (3.13)

the signature chosen is (+,−,−,−).
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Therefore, the Einstein-Hilbert action involving both density and pressure terms is
exactly equal to an integral involving 2GMδ(r)/r2 :

S = − 1

16πG

∫
R 4πr2 dr dt =

1

16πG

∫
2GM [

δ′(r)

r
+ 2

δ(r)

r2
] 4πr2 dr dt. (3.14)

Integrating by parts yields

1

16πG

∫
8πGM [ 2δ(r) − δ(r) ] dr dt =

1

16πG

∫
8πG (

M δ(r)

4πr2
) 4πr2 dr dt =

1

16πG

∫
8πG ρ(r) 4πr2 dr dt =

1

2

∫
M dt ⇒ ρ(r) ≡ M δ(r)

4πr2
. (3.15)

which is precisely the same result as the integral in eq-(2.10) . Notice that the authors [15]
chose a very different function f(r) = rλ than the one chosen above f(r) = r/|r|, and in
the limit λ→ 0, arrived at similar results for the distribution-valued scalar curvature. A
different approach based on Colombeau’s nonlinear distributional calculus was undertaken
by [14].

In showing why the integral of the trace of Einstein’s equations corresponding to
both density and pressure terms, given by eqs-(3.13, 3.14, 3.15), yields the same integral
corresponding to the scalar curvature associated to a density and pressure terms given by
eqs-(2.9, 2.10) is basically a similar exercise as integrating the Schroedinger equation in
the presence of a delta function potential :

∫ +∞

−∞
[ − h̄2

2m

d2 Ψ

dx2
+ λ δ(x) Ψ(x) ] dx =

∫ +∞

−∞
E Ψ dx ⇒

λ Ψ (x = 0) = E
∫ +∞

−∞
Ψ(x) dx. (3.16)

since the wave function and its derivative is required to obey the boundary conditions
Ψ(x = ±∞) = Ψ′(x = ±∞) = 0 and normalized

∫
|Ψ|2 = 1. The solution to (3.16) is

Ψ ∼ e−k|x| where λ = 2E/k. The matter density ρ(r, σ) chosen by [22] is just the QM
analog of the square |Ψ|2 of a spherically symmetric Gaussian wave function Ψ(r, σ(t)) in
3-dim. The σ = 0 limit corresponds to a delta function localized source at r = 0.

The black hole horizon can be displaced from rh = 2GM to a location arbitrarily close
to r = 0 by simply choosing the proper radial function R = r+2GMΘ(r) with the correct
behavior at r = 0 given by R(r = 0) = 0. The novel metric which is not diffeomorphic
to the metric in (3.11) due to the discontinuity at r = 0, resulting from the definition of
the Heaviside step function Θ(r) = 1, r > 0; Θ(r = 0) = 0 and Θ(r) = −1, r < 0, has for
components

g00 = 1− 2GM

|R|
= 1− 2GM

R

R

|R|
= 1− 2GM

R
f(R); f(R) ≡ R

|R|
. (3.17a)
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gRR = − 1

g00

(3.17b)

such that the nonvanishing R is given by :

R = − 2GM [
f ′′(R)

R
+ 2

f ′(R)

R2
] =

− 2GM [
δ′(R)

R
+ 2

δ(R)

R2
]. (3.18)

The Einstein-Hilbert action involving both density and pressure terms is exactly equal to
an integral involving 2GMδ(R)/R2 :

S = − 1

16πG

∫
R 4πR2 dR dt =

1

16πG

∫
2GM [

δ′(R)

R
+ 2

δ(R)

R2
] 4πR2 dR dt. (3.19)

Integrating by parts yields

1

16πG

∫
8πGM [ 2δ(R) − δ(R) ] dR dt =

1

16πG

∫
8πG (

M δ(R)

4πR2
) 4πR2 dR dt =

1

16πG

∫
8πG ρ(R) 4πR2 dR dt =

1

2

∫
M dt ⇒ ρ(R) ≡ M δ(R)

4πR2
. (3.20)

One learns also that the integrals are equal despite that the integrands and integration
measures are not equal

1

16πG

∫
8πG (

M δ(R)

4πR2
) 4πR2 dR dt =

1

16πG

∫
8πG (

M δ(r)

4πr2
) 4πr2 dr dt. (3.21)

Only for the Schwarzschild radial gauge R3 = r3 + (2GM)3, as a result of the condition
R2 dR = r2 dr, and δ(R) = δ(r)/(dR/dr) one can see that the integrands and measures
in (3.21) are also the same. However, the Schwarzschild radial gauge is not correct since
it leads to a contradiction due to the fact that it imposes a finite non-zero area condition
for the point mass A(r = 0) = 4πR(r = 0)2 = 4π(2GM)2, while having a zero volume
simultaneously. The point mass location is the center of spherical symmetry, and as such,
cannot have a finite non-zero area. To cure this problem one must choose a radial gauge
like R = r + 2GMΘ(r) to insure that R(r = 0) = 0 and such that the black hole horizon
can be displaced from rh = 2GM to a location arbitrarily close to r = 0. The metric
is static everywhere, contrary to the Hilbert text-book solution that ceases to be static
inside the horizon, and is discontinuous only at the location of the point mass singularity
r = 0 as expected.

Many still argue that the initial assumption of a point mass at r = 0 is not physical.
This is why we have modeled the delta function by a smeared Gaussian distribution and
such that in the zero width limit one recover the same effects of the point mass source.
A Gaussian wave function that begins as a delta function source localized at r = 0, then
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it diffuses all over space but the center of the Gaussian remains fixed (static) at r = 0 (
zero group velocity). The point mass at r = 0 behaves as if it were delocalized all over
space consistent with the wave-particle duality property in QM. To summarize : solutions
invloving the modulus |r| like gµν(|r|) are not diffeomorphic to those found by Hilbert
gµν(r) and have a clear physical interpretation within the context of wave-particle duality
in QM. A Gaussian mass distribution is inherently Quantum Mechanical when the mass
density ρ is the square of the wave function.

We end this section by analyzing the de Sitter vs Anti de Sitter behaviour of the metric
in section 2.1 at small distances and the issue of negative temperature and entropy. It is
true that the behaviour of M(r, σ)/r for small values of r behaves like (1/r) (r2/4σ2)3/2.
Since one must not forget the square root present in the power 3/2, there are plus or
minus choices to consider. If one chooses the plus-sign branch of the square root one gets
the de Sitter like behaviour of the metric gtt ∼ 1 − λr2 at small scales found by [22].
But if one chooses the minus sign in front of the square root one will get the Anti de
Sitter behaviour gtt ∼ 1 + λr2. Both de Sitter and Anti de Sitter features have also been
found by [44] in their work on the Renormalization Group improved Schwarzschild Black
holes based on a running flow of the Newtonian coupling G(r) where one, two and no
horizons, were also obtained depending on the values of the mass Mo. The behaviour of
G(r) [44] at r = 0 and r → ∞ is similar to the one of M(r, σ) [22]. G(r = 0) = 0 and
G(r → ∞) → GN whereas M(r = 0, σ) = 0, M(r = ∞, σ) = Mo for a finite non-zero
value of σ. In [43] we explored the case when both G(r) and M(r) vary with scale.

Finally, the location of the horizon at r = 2GNM , or any other location for that
matter, is a just a gauge artifact of the radial function one chooses to use. Choosing
the step function radial gauge R(r) = r + 2GM Θ(r) or R(r, σ) = r + rs(σ) Θ(r) to
enforce R(r = 0) = 0, allows to shift the location of the horizon-to-be at r = 2GNM
(or r = rs ) to r = 0. Similar conclusions, a formation of a horizon at r = 0 due
to modifications of the black hole interior metric, have been found by [50] using Loop
Quantum Gravity techniques (Loop Quantum Black Holes). Concluding, it is in this
fashion, by this shifting of horizon locations, how we may avoid the problem of having
negative temperatures and negative entropies and the like, because when one tries to go
lower than r = 0, one has entered into the white-hole solution region r < 0 of repulsive
gravity. Nevertheless this does not mean that non-extensive Tsallis statistics or exotic
q-statics in Fractal spacetimes are not relevant in the future as viable solutions to the
problem of negative entropy and temperature [41]. The interplay between Non-extensive
statistics, Chaos and fractal strings was studied in [55].

4 Stringy Black Holes, Finsler Geometry and Maxi-

mal Acceleration in Phase Spaces

Another possibility to study the field of a point mass is to formulate the problem in
phase space, in particular within the framework of the Finsler geometry associated with

27



the (co) tangent bundle of spacetime. A point mass may have a zero area from the
space-time perspective but a non-zero area from the phase space point of view due to the
incorporation of the momentum degrees of freedom into the picture ; i.e. in the static case
pµ = (E = M, 0, 0, 0) there is a non-vanishing phase space area element ( setting aside the
nature of curved phase space for the moment ) A = E t = M t . A compactification of the
temporal direction t along a circle S1 gives an Euclidean time coordinate interval of 2πtE
which is defined in terms of the Hawking temperature TH and Boltzman constant kB as
2πtE = (1/kBTH) = 8πGNM . From which we infer that tE = 4GNM . Therefore the area
element in phase space, A , after equating GN = L2

Planck, ( in natural units h̄ = c = 1 ) is

A = E tE = M × 4GNM = 4GNM2 =
4π(2GNM)2

4 πL2
P

=
Horizon Area

4 Planck Disc
. (4.1)

where the area of the Planck disc is π(LP )2. Therefore, the phase space area element
E tE, in units of h̄, is the same as the Black Hole Entropy ( one quarter of the area of
the spherical horizon at r = 2GNM ) in units of the area of a Planck disc. This fact may
have some relation to the Holographic principle and warrants investigation.

In [43] a natural cut-off of the form R(r = 0) = 2GNM was interpreted from the
standard Noncommutative spacetime coordinates algebra [xµ, xν ] = iΣµν , [pµ, pν ] =
0, [xµ, pν ] = ih̄ηµν where Σµν are c-numbers of (Planck length)2 units. A change
of coordinates in phase space x′µ = xµ + 1

2
Σµν pν leads to commuting coordinates

x′µ and allows to define r′(r) =
√

(xi + 1
2

Σiρ pρ) (xi + 1
2

Σiτ pτ ). One can select Σµν

such that r′(xi = 0) = r′(r = 0) = 2GNMo, upon using pµp
µ = M2

o in the static
case pµ = (Mo, 0, 0, 0) [43] which is precisely the cut-off corresponding to the Abrams-
Schwarzschild radial gauge. Noncommutative Finsler gravity ( Lagrange-Finsler mani-
folds ) associated with the spacetime tangent bundle and the Hamilton-Cartan geometry
of Noncommutative phase spaces, is the arena where properly one can study the Non-
commutative Gravity of the spacetime tangent ( co-tangent ) bundle [27].

Since coordinates and velocities (momenta in phase spaces ) are treated on equal
footing, Lagrange-Finsler ( Hamilton-Cartan ) geometry is the backdrop where one may
achieve a Geometrization of matter and have a space-time-matter unity. The natural
group acting in phase spaces is U(1, 3) = SU(1, 3) × U(1) to account for acceleration
and boosts transformations. The maximal proper force (acceleration) postulated by Max
Born many years ago that a fundamental particle may experience is mPlanck c2/LPlanck.
The group SU(1, 3) is not the same as the conformal group SU(2, 2). Finsler spaces have
torsion which is the hallmark of spin. An entirely different approach to treat point mass
delta function source can be found in [42].

A Planck scale cut-off can be derived in terms of noncommutative Moyal star products

f(x) ∗ g(x) simply by replacing r → r∗ =
√

r ∗ r =
√

r2 + Σijxixj/r2 + .... so r∗(x
i =

0) 6= 0, and receives Planck scale corrections. A point is fuzzy and delocalized, henceforth
it has a non-zero fuzzy area and fuzzy volume. An open problem is to verify whether or
not Schwarzschild deformed metrics of the form
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gtt(r∗) = 1− 2GM

r∗
, grr = −g−1

tt , r∗ =
√

r ∗ r =
√

r2 + Σijxixj/r2 + .... . (4.2a)

with the angular part r∗ ∗ r∗ (dΩ)2, solve the Noncommutative Gravity field equations
to all orders in the noncommutative parameter Σµν . A p-Adic norm naturally attains
the feature of delocalization since a p-Adic disc has no center. Every point is the center.
Notice the difference between the latter Planck scale cut-off in ordinary spacetime with
the former mass (momentum) dependent cut-off 2GNMo in the spacetime tangent ( co-
tangent ) bundle. Yang’s Noncommutative algebra in phase space, has both an ultraviolet
and infrared cut-off related to the minimal ( Planck ) and maximal ( Hubble ) scale. A
Moyal-Fedosov-Kontsevich star products deformations of p-branes were constructed in
[33] based on Yang’s algebra.

We will show in this section how the horizon of the standard black hole solution at
r = 2GNM ( when the Hilbert textbook choice is taken R(r) = r ) can be displaced
to the location of the point mass r = 0, when the radial function is chosen to have a
cutoff R(r = 0) = 2GNM , if, and only if, one embeds the problem in phase space ( or
the spacetime tangent bundle ) that is the proper arena to incorporate the role of the
physical point mass M at r = 0. Relativity in phase space is the arena where one may
unify space, time and matter due to the equivalence between mass and energy. In the
Kruskal-Fronsdal-Szekeres coordinates u, v description, to describe what happens when
one crosses the horizon r = 2GNM of topology R×S2 and whose spatial slice is a sphere
of radius r = 2GM , one has a null hyper-surface at r = 2GNM due to the tipping of
the lightcone as one approaches the horizon. When the radial function obeys a different
boundary condition R(r = 0) = 2GNM than the Hilbert textbook one, one may displace
the null horizon from r = 2GNM to a null horizon in r = 0 but such horizon lives in
the spacetime tangent bundle (phase space) to account for the presence of a point-mass
M at r = 0. Furthermore, to corroborate our proposal, we will show the relationship
between our description of the field of a point mass, within the framework of phase spaces
(Hamilton-Cartan Geometry ) or in the spacetime tangent bundle (Finsler geometry),
and the Bars-Witten stringy black hole in 1 + 1-dim that has a null horizon at r = 0.
The stringy black hole singularity occurs in the complex realm when r is extended to the
field of complex numbers r = 0 + i(2GNM)(π/2). Whereas the horizon ( the null surface
) actually lives at r = 0.

The physical motivation of embedding the problem in a larger space (phase space )
was already evisioned by Max Born [57] who was the first to propose a Reciprocal ( or
Dual ) Relativity Principle in Phase Spaces, where in addition to a limiting speed given
by the speed of light, there is a limiting proper force (acceleration). Since speed is the rate
of change of position, and force is the rate of change of momentum, then the reciprocal
principle of Relativity in Phase Spaces requires a limiting speed given by the speed of light
and a maximal force experienced by a fundamental particle that can be conjectured to
be F = mPlanck c2/LPlanck = M(Universe) c2/RHubble and which leads to the Weyl-
Dirac-Eddington large numbers coincidence in Cosmology [59]. A maximal acceleration
c2/LPlanck is also consistent with the Finsler geometry of the spacetime tangent bundle
[58] and the stringy minimal Planck length uncertainty relations [60]
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∆X ≥ h̄

∆P
+ L2

Planck ∆P. (4.2b)

The most general p-brane uncertainty relations based on a unified treatment of p-branes,
for all values of p, in Clifford spaces was derived in [61].

The physical interpretation of the phase space null horizon at r = 0, null from the
perspective of the full fledged phase space metric gµν(x, p), or Finsler metric gµν(x, v) is
that it is the ”attractor” region where a test particle (of mass m ) approaches asymptoti-
cally as it moves in the gravitational background produced by the point mass M located
at r = 0 (when m <<< M ) . As the test particle approaches the horizon at r = 0, its
speed and acceleration approach asymptotically the speed of light c and the maximal ac-
celeration c2/LP . This is very reminiscent of what occurs when one uniformly accelerates
a massive test particle in flat Minkowski spacetime, the trajectory is a hyperbola which
asymptotically approaches the light cone passing through the Minkowski spacetime origin
r = 0. The speed tends asymptotically to the speed of light.

We will explain now why the Bars-Witten stringy 1 + 1-dim black-hole solution can
be embedded into the conformally re-scaled 4-dim metrics of the form in eq-(1.1) for a
unique choice of the radial function given by the tortoise radial coordinate [45]

R + 2GNM ln (
R− 2GNM

2GNM
) = 2GNM ln [ sinh

r

2GNM
]. (4.3)

such that
R(r = 0) = 2GNM ; R(r →∞) → R ∼ r. (4.4)

The radial function R(r = 0) = 2GNM has also a lower ( ultraviolet cutoff ) bound given
by 2GNM . An interesting analysis of how a string ( an extended object ) can probe
space-time points was presented by Aspinwall [53]. This requires altering our classical
conceptions of Topology and Geometry at very small scales.

The Bars-Witten black-hole 1 + 1-dim metric ( setting 2GM = 1 ) is :

ds2 = (dr)2 − tanh2(r) (dt)2 = − dudv

1− uv
. (4.5)

with

u =
1

2
exp [ r + t + log(1− e−2r) ]; v = −1

2
exp [ r − t + log(1− e−2r) ]. (4.6)

the Euclidean analytical continuation of the metric in eq-(4.5) is obtained by setting
θ = it, such that the metric is ds2 = dr2 + tanh2 r dθ2 and its Euclidean geometry has
the shape of a semi-infinite cigar that asymptotically approaches R1 × S1 for r → ∞.
We should notice that the Lorentzian metric of eq-(4.5) has a singularity at a complex
value r = 0 + iπ/2 ( setting 2GM = 1 ) since tanh2(iπ/2) = −tan2(π/2) = −∞ which is
consistent with the singularities at the location where uv = −1

4
e2r(1 − e−2r)2 = 1, when

r = 0 + iπ/2, and a horizon at r = 0, since uv = 0 when r = 0.
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However this is not the end of the story. The Bars-Witten black hole in 1 + 1-dim
is obtained from a gauged Sl(2, R)/U(1) WZNW model with central charge c = 2 + 6/k
and is a consistent bosonic string background solution in a 1 + 1 target background
given by the two-dim coset Sl(2, R)/U(1). Namely, the CFT corresponding to the gauged
Sl(2, R)/U(1) WZNW model with central charge c = 2+6/k is a solution of equations de-
rived from the vanishing beta functions required by conformal invariance of the non-linear
sigma model. For example, the relevant massless bosonic closed-string fields in a D = 26
dim target background ( a different CFT ) are the antisymmetric tensor Bµν(X

ρ(σa));
the dilaton Φ(Xρ(σa)) and the gravitational field gµν(X

ρ(σa))); where σa = σ1, σ2 are the
world-sheet variables. The conditions for the vanishing of the one loop beta functions,
required by Weyl invariance of the non-linear sigma model, to leading order in the string
tension α′ turn out to be [52]

Rµν +
1

4
Hλρ

µ Hνλρ − 2DµDνΦ = 0. (4.6a)

DλH
λ
µν − 2(DλΦ)Hλ

µν = 0. (4.6b)

4(DµΦ)2 − 4DµD
µΦ +R+

1

12
HµνρH

µνρ = 0. (4.6c)

where
Hµνρ = ∂µBνρ + ∂ρBµν + ∂νBρµ. (4.7d)

is the third rank antisymmetric tensor field strength that is invariant under the transfor-
mations δBµν = ∂µΛν − ∂νΛµ.

Nevertheless, we will show how the Bars-Witten 1 + 1-dim black hole metric can be
embedded into the 3 + 1-dim solutions of the appendix [45], up to a conformal factor eΥ

, since the latter metrics were Ricci flat by construction. The embedding of the 1+1-dim
metric (4.5) into the conformally re-scaled 3+1-dim solutions of the appendix are obtained
by introducing the mass parameter 2M ( in units of G = c = 1 ) in the appropriate places
in order to have consistent units, and by writing :

eΥ(r) (1− 2M

R(r)
) = tanh2 (

r

2M
); eΥ(r) (dR/dr)2

1− 2M/R(r)
= 1. (4.8)

leading to the solutions for Υ(r) and R(r) respectively

eΥ =
1

1− 2M/R(r)
tanh2 (

r

2M
). (4.9a)

where ∫ dR

1− 2M/R
= R + 2M ln (

R− 2M

2M
) =

∫ dr

tanh r/2M
=

2M ln [ sinh
r

2M
]. (4.9b)

this last equation (4.9b) yields the functional form R(r) ( tortoise radial variable ) in
implicit form for the radial function R(r). From eq-(4.9b) one can infer that ( in units
c = G = 1 )
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R(r = 0) = 2M ; R(r →∞) → R ∼ r. (4.10)

The radial function R has a lower ( ultraviolet cutoff ) bound given by 2M . The fact that
the ”point” r = 0 can have a non-zero proper area but zero volume seems to indicate a
”stringy” nature underlying the very notion of a point-mass itself. The string worldsheet
has area but no volume. Aspinwall [53] has studied how a string ( an extended object )
can probe space-time ”points”.

Notice that if we allow for complex values of r, like r = 0 + i 2M(π/2), that furnish
singularities in the metric (4.5), one must include a constant of integration R0 = 2M(1 +
iπ/2) to the solution in eq-(4.9b)

R − 2M(1 + iπ/2) + 2M ln (
R− 2M

2M
) = 2M ln [ sinh

r

2M
]. (4.11)

such that when one plugs in the value r = 0 + i 2M(π/2) in the right hand side of eq-
(4.11), it coincides with the left hand side of (4.11) when the value of the radial function
R( r = 0 + i 2Mπ/2 ) = 2M (1 + i π/2) , after an analytical continuation into the
complex plane is performed. This is just a consequence of the relation ln [sinh (iπ/2)] =
ln [i sin (π/2)] = ln i = iπ/2.

This complex analytical continuation into regions where r, R are complex-valued
roughly speaking amounts to looking into the ”interior” of the point-mass. Having com-
plex coordinates to probe into the ”interior” of a point-mass is not so farfetched. This
suggests that Quantum spacetime might be intrinsically fractal, meaning that the Haus-
dorff topological dimension of an object ( let us say of a point ) does not coincide with
the fractal dimension. For a throrough and profound treatment of complex dimensions,
fractal strings and the zeros of Riemman zeta function see [54]. The interplay among
non-extensive statistics, chaos, complex dimensions, logarithmic periodicity in the renor-
malization group and fractal strings see [55].

The conformal factor is

eΥ =
1

1− 2M/R(r)
tanh2 (

r

2M
). (4.12)

where R(r) is given implicitly by (4.9b). Notice that from the conditions in (4.10) the
conformal factor eΥ becomes unity at r =∞ as it should if one wishes to have asymptotic
flatness. When r = 0 the conformal factor (4.12) is 0

0
undefined. A careful study reveals

that the conformal factor eΥ at r = 0 is zero so that eΥ(r=0)R2(r = 0) = 0 and the
conformally re-scaled proper area at r = 0 is zero. Therefore, at r = 0 the conformally
rescaled interval ds2 is zero consistent with the fact that the 1 + 1-dim metric exhibits a
null horizon at r = 0. Concluding, in this fashion, we have shown how one can embed the
1+1-dim Bars-Witten stringy black hole solution into the conformally re-scaled 3+1-dim
solutions of section of the appendix and are given by :

ds2 = − tanh2 (
r

2M
) (dt)2 + (dr)2 + eΥ(r) R2(r) dΩ2. (4.13)
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Notice that the conformally re-scaled metric (4.13) is not Ricci flat; it has singularities at
complex values r = 0 + i 2Mπ/2 ⇒ eΥ = ∞; R = 2M(1 + iπ/2) upon using eq-(4.11).
There is a difference between the metric (4.13) with the Ricci flat metric ( outside the
singularity at the point mass source ) given in the Fronsdal-Kruskal-Szekeres coordinates
by

ds2 = − eW (u,v) du dv

1− uv
+ (R∗(u, v))2 [ sin2 φ (dθ)2 + (dφ)2 ] =

− eW (u,v) du dv

1− uv
+ (R∗(u, v))2 dΩ2 (4.14)

where W (u, v) and R∗(u, v) are now two complicated functions of the two variables u, v (
since when one crosses the horizon the metric is no longer static) . Whereas in eq-(4.13)
one truly has a static metric everywhere and two functions of one variable Υ(r), R(r)
instead.

Having discussed the stringy black hole, we turn to Finsler geometry. The geometric
proper displacement in the spacetime tangent bundle involving coordinates and velocities
typical of Finsler metrics is

(dσ)2 = (ds)2 + L2
P (dvµ)2 = (ds)2 [ 1 + L2

P (
dvµ

ds
)2 ] = (1− a2(s)

a2
o

) (ds)2.

− a2(s) ≡ (
dvµ

ds
)2 < 0. (4.15)

the acceleration is spacelike when the velocity is timelike, this accounts for the minus sign
in the last term of (4.15).

We are naturally assuming that the test particle does not follow a geodesic in the base
spacetime manifold, otherwise a = 0. For example, when the test particle remains static,
the acceleration is the force per unit mass required to maintain the test particle at a fixed
position ( since the metric is static ) and prevent it from falling into the point mass M
source at r = 0. The closer it gets to r = 0, the greater the force is required to hold
it in that place. The force ( acceleration ) has an upper limit in our case due to Born’s
relativity principle in phase space. If one ignores the back-reaction of the gravitational
field on the point mass M at r = 0, the world line of the very own point mass M , as it is
inmersed in its own gravitational field background, is a timelike geodesic at r = 0 such it
does not experience an acceleration. So the world line interval corresponding to the point
mass location (dσ)2 coincides with (ds)2 in this case.

The conformal factor in front of the standard spacetime interval (ds)2 vanishes when
the acceleration of the test particle moving in such background is a2 = a2

o, where ao is
the maximal acceleration c2/LPlanck . When (ds)2 is given by the Schwarzschild solutions
of eq-(2.1) and when the radial functions R(r) is subjected to the cutoff R(r = 0) =
2GNM we have a divergence of (ds)2(r = 0) = ∞, due to grr(r = 0) = ∞, while the
conformal factor is zero, since a test particle attains the limiting upper value of the proper
acceleration when it asymptotically reaches r = 0. Its speed also asymptotically tends to
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the speed of light as it approaches r = 0. One then ends up with an interval (dσ)2 of the
form 0×∞ which nevertheless tends to zero.

The most salient feature of (4.15) is that at r = 0 we end up with

(1− a2(s)

a2
o

) (ds)2 = 0×∞→ 0. (4.16)

implying that the conformally rescaled Schwarzschild metrics (1.1) yield a null interval,
a null surface (dσ)2 = 0, in the spacetime tangent bundle at the precise location of the
point mass source r = 0. In the stringy black hole case the location r = 0 is also a
null surface and coincides with the Bars-Witten stringy black hole horizon. Hence, the
horizon that a test particle ( of mass m << M ) experiences as it approaches r = 0
asymptotically, is a null surface that lives in the spacetime tangent bundle corresponding
to the coordinates xµ(s), vµ(s) associated with the world-line of the test particle. This is

because the conformally rescaled area (1− a2(s)
a2

o
) 4πR(r)2 that the test particle sees, as

it approaches r = 0, tends to zero due to the vanishing of the conformal factor when the
maximal acceleration is attained, despite the fact that 4π(R(r = 0))2 = 4π(2GNM)2 6= 0.
This is a peculiar feature of Finsler geometry when a metric is velocity ( momentum )
dependent in addition to position dependent.

To see why phase space metrics can behave like stringy black hole metrics, let us
look for the analog of a static spherically symmetric metric in phase space ( or in the
spacetime tangent bundle ), which is for example, gtt(r, pr); grr(r, pr) where pr is the radial
conjugate momentum to the radial variable r. This dependence on the conjugate pair of
variables (r, pr) resembles the Bars-Witten stringy-black hole metric (ds)2 = guv(u, v)dudv
depending on the pair of variables u, v. Thus, the maximal proper acceleration ao =
c2/LPlanck acts as regulator in spacetime [58] in the same vein that there is a maximum
value of tidal forces ( acceleration ) in string theory [60] due to the minimal length
string uncertainty relations. This maximal acceleration regulator is consistent with the
introduction of an ultra-violet cutoff R(r = 0) = 2GNM .

5 Appendix A: Schwarzschild-like solutions in any di-

mension D > 3

In this Appendix we follow closely our prior calculations [45]. Let us start with the line
element

ds2 = −eµ(r)(dt1)
2 + eν(r)(dr)2 + R2(r)g̃ijdξidξj. (A.1)

Here, the metric g̃ij corresponds to a homogeneous space and i, j = 3, 4, ..., D− 2 and the
temporal and radial indices are denoted by 1, 2 respectively. In our text we denoted the
temporal index by 0. The only non-vanishing Christoffel symbols are

Γ1
21 = 1

2
µ′, Γ2

22 = 1
2
ν ′, Γ2

11 = 1
2
µ′eµ−ν ,

Γ2
ij = −e−νRR′g̃ij, Γi

2j = R′

R
δi
j, Γi

jk = Γ̃i
jk,

(A.2)
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and the only nonvanishing Riemann tensor are

R1
212 = −1

2
µ′′ − 1

4
µ′2 + 1

4
ν ′µ′, R1

i1j = −1
2
µ′e−νRR′g̃ij,

R2
121 = eµ−ν(1

2
µ′′ + 1

4
µ′2 − 1

4
ν ′µ′), R2

i2j = e−ν(1
2
ν ′RR′ −RR′′)g̃ij,

Ri
jkl = R̃i

jkl −R′2e−ν(δi
kg̃jl − δi

l g̃jk).

(A.3)

The field equations are

R11 = eµ−ν(
1

2
µ′′ +

1

4
µ′2 − 1

4
µ′ν ′ +

(D − 2)

2
µ′

R′

R
) = 0, (A.4)

R22 = −1

2
µ′′ − 1

4
µ′2 +

1

4
µ′ν ′ + (D − 2)(

1

2
ν ′

R′

R
− R′′

R
) = 0, (A.5)

and

Rij =
e−ν

R2
(
1

2
(ν ′ − µ′)RR′ −RR′′ − (D − 3)R′2)g̃ij +

k

R2
(D − 3)g̃ij = 0, (A.6)

where k = ±1, depending if g̃ij refers to positive or negative curvature. From the combi-
nation e−µ+νR11 +R22 = 0 we get

µ′ + ν ′ =
2R′′

R′ . (A.7)

The solution of this equation is

µ + ν = ln R′2 + a, (A.8)

where a is a constant.
Substituting (A.7) into the equation (A.6) we find

e−ν ( ν ′RR′ − 2RR′′ − (D − 3)R′2 ) = − k(D − 3) (A.9)

or

γ′RR′ + 2γRR′′ + (D − 3)γR′2 = k(D − 3), (A.10)

where

γ = e−ν . (A.11)

The solution of (A.10) for an ordinary D-dim spacetime ( one temporal dimension )
corresponding to a D − 2-dim sphere for the homogeneous space can be written as

γ = (1− 16πGDM

(D − 2)ΩD−2RD−3
) (

dR

dr
)−2 ⇒
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grr = eν = (1− 16πGDM

(D − 2)ΩD−2RD−3
)−1 (

dR

dr
)2. (A.12)

where ΩD−2 is the appropriate solid angle in D−2-dim and GD is the D-dim gravitational
constant whose units are (length)D−2. Thus GDM has units of (length)D−3 as it should.
When D = 4 as a result that the 2-dim solid angle is Ω2 = 4π one recovers from eq-(A.12)
the 4-dim Schwarzchild solution. The solution in eq-(A.12) is consistent with Gauss law
and Poisson’s equation in D − 1 spatial dimensions obtained in the Newtonian limit.

For the most general case of the D − 2-dim homogeneous space we should write

−ν = ln(k − βDGDM

RD−3
)− 2 ln R′. (A.13)

where βD is a constant. Thus, according to (A.8) we get

µ = ln(k − βDGDM

RD−3
) + constant. (A.14)

we can set the constant to zero, and this means the line element (A.1) can be written as

ds2 = −(k − βDGDM

RD−3
)(dt1)

2 +
(dR/dr)2

(k − βDGDM
RD−3 )

(dr)2 + R2(r)g̃ijdξidξj. (A.15)

One can verify, taking for instance (A.5), that the equations (A.4)-(A.6) do not determine
the form R(r). It is also interesting to observe that the only effect of the homogeneous
metric g̃ij is reflected in the k = ±1 parameter, associated with a positive ( negative )
constant scalar curvature of the homogeneous D − 2-dim space. k = 0 corresponds to a
spatially flat D − 2-dim section.

The stress energy tensor for a point mass source is given explicitly by the zero-width
limit of the Gaussian in the right hand side of eqs-(2.1,2.2), as shown explicitly in eqs-
(2.4), (2.9) and (2.10). Let us now verify that the line element (2.5) is a solution of
Einstein’s equations (2.1) in the presence of a mass distribution density ρ(r) . The tem-
poral components of (2.1) yield

R00 −
1

2
g00 R = eµ−ν [

ν ′

r
− 1

r2
] +

eµ

r2
. (A.16)

Defining the new solutions corresponding to the mass distribution M(r, σ) by

eµ = 1− 2 GN M(r, σ)

r
; eν = e−µ; µ = − ν = log (1− 2 GN M(r, σ)

r
). (A.17)

inserting eqs-(A.16, A.17) into the temporal components of eq-(2.1), and after factoring
out the metric component g00(r) = eµ, it becomes

2GN

r2
(
d M(r, σ)

dr
) =

2GN

r2
4π r2 Mo e−r2/4σ2

(4πσ2)3/2
= 8π GN ρ(r) = − 8πGN T00. (A.18)
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as expected. Notice that the sign change in (A.18) compared to eq-(2.1) is due to the
choice of signature (−, +, +, +) in this appendix. Similarly, one can verify that

Rij −
1

2
gij R = − 8πGN Tij. (A.19)

by solving the covariant conservation equation of the stress energy tensor [22]

∇ν T µν = 0 ⇒ ∂r T r
r = − 1

2
g00(∂rg00) (T r

r − T 0
0 ) − gθθ(∂rgθθ) (T r

r − T θ
θ ). (A.20)

for

T µ
ν = diagonal (−ρ, pr, pθ, pφ), pr = −ρ, pθ = pφ = −ρ− r

2
∂rρ = −ρ (1− r2

4σ2
).

(A.21)

Acknowledgments

We are indebted to M. Bowers for assistance and Michael Ibison for emphasizing
the importance of using absolute values. We thank Abhas Mitra, Kourosh Nozari, Ed-
uardo Guendelman, Stephen Crothers, Jorge Mahecha, Paul Zielinski, Jack Sarfatti, Matej
Pavsic for many discussions, and, especially, to Antonio Nieto, J.F Gonzalez for many in-
sightful discussions and collaborations. Special thanks to the referee for providing very
insightful remarks and references.

References

[1] A. Einstein, Sitzungsber Preuss Akad Berlin II, 831 (1915).

[2] K. Schwarzschild, Sitzungsber Preuss Akad Berlin I,189 (1916); English translation
by S. Antoci and A. Loinger can be found in physics/9905030.

[3] M. Brillouin, Jour. Phys. Rad 23, 43 ( 1923); English translation by S. Antoci can
be found at physics/0002009.

[4] D. Hilbert, Nachr. Ges. Wiss Gottingen Math. Phys K1, 53 (1917); H. Weyl, Ann.
Physik (Leipzig) 54, 117 (1917); J. Droste, Proc. Ned. Akad. West Ser. A 19, 197
(1917).

[5] L. Abrams, Can. J. of Physics 67, 919 (1989); Physical Review D 20, 2474 (1979);
Physical Review D 21, 2438 (1980); Physical Review D 21, 2941 (1980).

[6] A. Loinger, ”On Black Holes and Gravitational Waves ” (La Goliardica Pavese,
2002); A. Loinger and T. Marsico, ”On the gravitational collapse of a massive star
” physics/0512232; S. Antoci, D.E. Liebscher, ” Reinstating Schwarzschild’s original
Manifold and its Singularity” gr-qc/0406090.

37



[7] S. Crothers, Progress in Physics vol 1, 68 (2005); Progress in Physics vol 2, 3
(2005) 3; Progress in Physics vol 3, 7 (2005).

[8] N. Stavroulakis, Progress in Physics, Vol. 2, 68 (2006).

[9] M. Pavsic, Obzornik za Matematiko in Fiziko, Vol. 28, 5 (1981).

[10] S. Antoci and D.E. Liebscher, ” Reinstating Schwarzschild’s original Manifold and
its Singularity” gr-qc/0406090.

[11] Michael Ibison, Private Communication.

[12] C. Fronsdal, Phys. Rev 116, 778 (1959); M. Kruskal, Phys. Rev 119, 1743 (1960);
G. Szekers, Publ. Mat. Debreca 7, 285 (1960).

[13] P. Fiziev, ”Gravitational Field of Massive Point Particle in General Relativity”,
gr-qc/0306088; P. Fiziev and S.V. Dimitrov, ”Point Electric Charge in General
Relativity” hep-th/0406077; P. Fiziev, ”The Gravitational Field of Massive Non-
Charged Point Source in General Relativity”, gr-qc/0412131; P. Fiziev, ”On the
Solutions of Einstein Equations with Massive Point Source”, gr-qc/0407088.

[14] J.F. Colombeau, New Generalized Functions and Multiplcation of Distributions
(North Holland, Amsterdam, 1984); Elementary introduction to Generalized Func-
tions ( North Holland, Amsterdam, 1985); J. Heinzke and R. Steinbauer, ” Remarks
on the distributional Schwarzschild Geometry” gr-qc/0112047; R. Steinbauer and J.
Vickers, ” The use of generalized functions and distributions in General Relativity”
gr-qc/0603078; M. Grosser, M. Kunzinger, M. Oberguggenberger, and R. Stein-
bauer, Geometric Theory of Generalized Functions with Applications to Relativity
(Kluwer series on Mathematics and its Applications vol. 537, Kluwer, Dordrecht,
2001).

[15] H. Balasin and H. Nachbagauer, ”On the distributional nature of the Energy Mo-
mentum Tensor of a Black hole or what curves the Schwarzschild Geometry” gr-
qc/9305009; ”Distributional Energy-Momentum Tensor of the Kerr-Newman Space-
Time Family” gr-qc/9312028.

[16] R. Geroch and J. Traschen, Physical Review D 36, 1017 (1987).

[17] T. Damour and H. Nicolai, ”Symmetries, Singularities and the De-emergence of
Spacetime” hep-th/0705.2643; T. Damour, ”Cosmological Singularities and a Con-
jectured Gravity/Coset Correspondence” hep-th/0704.0732; T. Damour, M. Hen-
neaux, B. Julia, and H. Nicolai, Phys. Letts B 509, 323 (2001).

[18] C. Rovelli, Quantum Gravity (Cambridge University Press, 2004); Class and Quan-
tum Gravity, 8, 297 (1991); Class and Quantum Gravity 8, 317 (1991).

[19] T. Nakamura, ” Factor two discrepancy of Hawking radiation temperature” hep-
th/0706.2916.

38



[20] T. Ohta and R. Mann, Class.Quant.Grav. 13, 2585 (1996); R. Mann, D. Robbins,
and T. Ohta, Phys. Rev. Lett. 82, 3738 (1999); F. Burnell, R. Mann, and T. Ohta,
Phys. Rev. Lett. 90,134101 (2003); R. Kerner and R. Mann, Class. Quant .Grav.
20, L133 (2003).

[21] L. Lewis, Coulomb Potential of a Point in Theta Noncommutative Geometry” hep-
th/0605140.

[22] P. Nicolini, A. Smalagic, and E. Spallucci, Phys. Letts B 632, 547 (2006); P. Nicol-
ini, J. Phys. A 38, L631 (2005).

[23] S. Ansoldi, P. Nicolini, A. Smalagic, and E. Spallucci, ”Noncommutative Geome-
try Inspired Charged Black holes” gr-qc/0612035; K. Nozari and S. Mehdipour, ”
Noncommutative Geometry inspired Charged Black Holes in Extra Dimensions”,
hep-th/0707.1080.

[24] T. Rizzo, JHEP 0609, 021 (2006).

[25] Q.Q. Jiang, S.Q Wu, and X. Cai, ”Hawking radiation as tunneling from the Kerr
and Kerr-Newman balck holes” hep-th/0512351.

[26] J. Makela and A. Peltola, ” Gravitation and Spacetime : The Einstein equation of
State Revisited” gr-qc/0612078.

[27] S. Vacaru, P. Stavrinos, E. Gaburov, and D. Gonta, ”Clifford and Riemann-
Finsler Structures in Geometric Mechanics and Gravity”, , Selected Works Differ-
ential Geometry-Dynamical Systems Monograph (Geometry Balkan Press, 2006);
S. Vacaru, Phys. Letts B 498, 74 (2001); Jour. Math Phys 46, 042503 (2005); Jour.
Math Phys 46, 032901 (2005); Jour. Math Phys 47, 093504 (2006).

[28] S, Vacaru, ”Nonholonomic Ricci Flows: I. Riemann Metrics and Lagrange-Finsler
Geometry”, math.DG/0612162.

[29] A. Kholodenko, ”Towards physically motivated proofs of the Poincare’ and the
geometrization conjectures” hep-th/0701084.

[30] G. Perelman, ”Finite extinction time for the solutions to the Ricci flow on certain
three-manifolds” math.DG/0307245; ”Ricci flow with surgery on three-manifolds”
math.DG/0303109; ”The entropy formula for the Ricci flow and its geometric ap-
plications” math.DG/0211159.

[31] I. Bakas, D. Orlando, and P. Petropoulos, ”Ricci flows and expansion in axion-
dilaton cosmology” hep-th/0610281.

[32] T. Padmanabhan, ”Dark Energy : Mystery of the Millennium” astro-ph/0603114.

[33] C. Castro, Phys. Letts B 626, 209 (2005) 209; Foundations of Physics 35, 971
(2005); Progress in Physics vol 2, 86 (2006).

39



[34] C. Castro, Mod. Phys. Lett A 21, 2685 (2006); Foundations of Physics 37, 366
(2007); Mod. Phys. Lett A17, 2095 (2002).

[35] C. Castro, ”Novel Remarks on Horizonless Static Spherically Symmetric Solutions
of Einstein equations” CTSPS preprint, April 2006.

[36] C. Castro and A. Granik, Foundations of Physics 33, 445 (2003); C. Castro, Journal
Entropy 3, 12 (2001).

[37] A. Mitra, Found. Phys. Letts 13, 543 (2000); Found. Phys. Letts 15, 439 (2002);
Mon. Not. R. Astron. Soc, 369, 492 (2006).

[38] R. Wald, General Relativity (University of Chicago Press, 1984).

[39] R. Wald, Phys. Rev D 48, R3427 (1993); T. Jacobson, G. Kang, and R. Myers,
”Black Hole entropy in higher curvature gravity” gr-qc/9502009.

[40] G. Horowitz, J. Maldacena, and A. Strominger, Phys. Letts B 383, 151 (1996); G.
Horowitz, D. Lowe, and J. Maldacena, Phys. Rev. Lett 77, 430 (1996).

[41] K. Nozari and S. H. Mehdipour, ” Failure of standard Thermodynamics in Planck
Scale Back Hole System ” hep-th/0610076.

[42] G. Shipov, ”Dark Energy in the theory of Physical Vacuum”
[http://www.shipov.com].

[43] C. Castro, J. A. Nieto, and J. F Gonzalez, ”Running Newtonian coupling and hori-
zonless solutions in Quantum Einstein Gravity” in Quantization in Astrophysics,
Brownian motion and Supersymmetry ( MathTiger publishers, Chennai, India; F.
Smarandache and V. Christianato, eds, 2006).

[44] A. Bonanno and M. Reuter, ”Renormalization group improved black hole space-
time” hep-th/0002196; M. Reuter and J.M. Schwindt, ”A Minimal Length from
Cutoff Modes in Asymptotically Safe Quantum Gravity” hep-th/0511021; M. Reuter
and J.M. Schwindt, ” Scale-dependent structures and causal structures in Quantum
Einstein Gravity ” hep-th/0611294; A.Bonanno, M.Reuter ” Spacetime Structure
of an Evaporating Black Hole in Quantum Gravity ” hep-th/0602159; Phs. Rev. D
73, 0830005 (2006).

[45] C. Castro and J. A. Nieto, ” On 2+2 dimensions, Strings, Black Holes and Maximal
acceleration in Phase Spaces”, Int. J Mod. Phys A 22, 2021 (2007).

[46] I. Bars, Lecture at Strings 91 (Stonybrook, June 1991).

[47] E. Witten, ”On black holes in string theory” Lecture given at Strings ’91 (Stony
Brook, June 1991) hep-th/9111052.

[48] E. Witten, Phys. Rev. D 44, 314 (1991).

40



[49] J. A. Nieto, Phys. Lett A 262, 274 (1999).

[50] L. Modesto, ”Evaporating loop quantum black hole” gr-qc/0612084; ”Black hole
interior from loop quantum gravity” gr-qc/0611043; ”Gravitational collapse in loop
quantum gravity” gr-qc/0610074.

[51] S. Ketov, Quantum Non-linear Sigma Models, Conformal Field Theory, Supersym-
metry, Black Holes and Strings (Springer Verlag Berlin-Heidelberg, 2000).

[52] M. Green, J. Schwarz, and E. Witten, Superstring Theory ( Cambridge University
Press, 1986).

[53] P. S. Aspinwall, ”The Breakdown of Topology at Small Scales” JHEP 0407, 021
(2004); ”A Point’s Point of View of Stringy Geometry” JHEP 0301, 002 (2003).

[54] M. Lapidus and M. Frankenhuysen, Complex Dimensions and the Zeros of the Zeta
Functions, (Birkhauser, New York, 2000).

[55] C. Castro, Physica A 347, 184 (2005).

[56] J. Wess, ”Einstein-Riemann Gravity on Deformed Spaces” hep-th/0611025.

[57] M. Born, Proc. Royal Society A 165, 291 (1938); E. Caianiello, Lett. Nuov. Cimento
32, 65 (1981); G. Lambiase, G. Papini, and G. Scarpetta, Phys. Letts A 263, 147
(1999); M. Toller, Int. Jour. Theor. Phys 29, 963 (1990); V. Nesterenko, Class.
Quan. Grav 9, 1101 (1992).

[58] H. Brandt, Contemporary Mathematics 196, 273 (1996); Chaos, Solitons and Frac-
tals 10, 267 (1999).

[59] C. Castro, Foundations of Physics, 35, 971 (2005); Progress in Physics, 1, 20 (2006).

[60] D. Amati, M. Ciafaloni, and G. Veneziano, Phys. Letts B 197, 81 (1987); D. Gross
and P. Mende, Phys. Letts B 197, 129 (1987).

[61] C. Castro, Jour. Phys A : Math. Gen 39, 14205 (2006).

[62] C.Castro, ”The Charge-Mass-Spin relation of a Clifford Polyparticle and Kerr-
Newman Black Holes Foundations of Physics 34, 107 (2004).

41


