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Abstract

Born’s reciprocal relativity in flat spacetimes is based on the principle
of a maximal speed limit (speed of light) and a maximal proper force
(which is also compatible with a maximal and minimal length duality)
and where coordinates and momenta are unified on a single footing. We
extend Born’s theory to the case of curved spacetimes and construct a
deformed Born reciprocal general relativity theory in curved spacetimes
(without the need to introduce star products) as a local gauge theory of
the deformed Quaplectic group that is given by the semi-direct product
of U(1, 3) with the deformed (noncommutative) Weyl-Heisenberg group
corresponding to noncommutative generators [Za, Zb] 6= 0. The Hermi-
tian metric is complex-valued with symmetric and nonsymmetric compo-
nents and there are two different complex-valued Hermitian Ricci tensors
Rµν ,Sµν . The deformed Born’s reciprocal gravitational action linear in
the Ricci scalars R,S with Torsion-squared terms and BF terms is pre-
sented. The plausible interpretation of Zµ = Ea

µ Za as noncommuting
p-brane background complex spacetime coordinates is discussed in the
conclusion, where Ea

µ is the complex vielbein associated with the Hermi-
tian metric Gµν = g(µν) + ig[µν] = Ea

µ Ēb
ν ηab. This could be one of the

underlying reasons why string-theory involves gravity.

Born’s reciprocal (”dual”) relativity [1] was proposed long ago based on the
idea that coordinates and momenta should be unified on the same footing, and
consequently, if there is a limiting speed (temporal derivative of the position
coordinates) in Nature there should be a maximal force as well, since force is
the temporal derivative of the momentum. A curved phase space case scenario
has been analyzed by Brandt [2] within the context of the Finsler geometry
of the 8D tangent bundle of spacetime where there is a limiting value to the
proper acceleration and such that generalized 8D gravitational equations reduce
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to ordinary Einstein-Riemannian gravitational equations in the infinite accel-
eration limit. Other relevant work on the principle of maximal acceleration can
be found in [3]. For a recent monograph on Finsler geometry see Vacaru [4].

Born’s reciprocal ”duality” principle is nothing but a manifestation of the
large/small tension duality principle reminiscent of the T -duality symmetry
in string theory; i.e. namely, a small/large radius duality, a winding modes/
Kaluza-Klein modes duality symmetry in string compactifications and the Ultra-
violet/Infrared entanglement in noncommutative field theories. Hence, Born’s
duality principle in exchanging coordinates for momenta could be the underlying
physical reason behind T -duality in string theory. The generalized velocity and
acceleration boosts (rotations) transformations of the 8D Phase space, where
X, T, E, P are all boosted (rotated) into each-other, were given by [5] based on
the group U(1, 3) and which is the Born version of the Lorentz group SO(1, 3).
It was found later on [6] that Planck-Scale Areas are Invariant under pure ac-
celeration boosts which may be relevant to string theory.

Invariant actions for a point-particle in reciprocal Relativity involving Casimir
group invariant quantities can be found in [7]. Casimir invariant field equa-
tions; unitary irreducible representations based on Mackey’s theory of induced
representations; the relativistic harmonic oscillator and coherent states can be
found in [5]. The granular cellular structure of spacetime, the Schrodinger-
Robertson inequality, multi-mode squeezed states, a ”non-commutative” rela-
tivistic phase space geometry, in which position and momentum are interchange-
able and frame-dependent was studied by [8]. Born’s reciprocity principle in
atomic physics and galactic motion based on (1/r) + (b/p) potentials was stud-
ied recently by [9] with little effect on atomic physics but with relevant effects
on galactic rotation without invoking dark matter.

In this letter we construct a local gauge theory of the deformed (noncom-
mutative) Quaplectic group given by the semidirect product of U(1, 3) with the
deformed (noncommutative) Weyl-Heisenberg goup. The U(1, 3) arises as the
group that leaves invariant the interval in 8D phase dxµdxµ + dpµdpµ space, as
well as invariant the symplectic two-form ω = ωµν dxµ ∧ dpν , simultaneously.
The novel result in this letter is the modification of the Weyl-Heisenberg alge-
bra, not unlike Yang’s noncommutative phase space algebra [10].

The deformed Weyl-Heisenberg algebra involves the generators

Za =
1√
2

(
Xa

λl
− i

Pa

λp
); Z̄a =

1√
2

(
Xa

λl
+ i

Pa

λp
); a = 1, 2, 3, 4. (1)

Notice that we must not confuse the generators Xa, Pa (associated with the
fiber coordinates of the internal space of the fiber bundle) with the ordinary base
spacetime coordinates and momenta xµ, pµ. The gauge theory is constructed
in the fiber bundle over the base manifold which is a 4D curved spacetime
with commuting coordinates xµ = x0, x1, x2, x3. The (deformed) Quaplectic
group acts as the automorphism group along the internal fiber coordinates.
Therefore we must not confuse the deformed complex gravity constructed here
with the noncommutative gravity work in the literature [11] where the spacetime
coordinates xµ are not commuting.

2



The four fundamental length, momentum, temporal and energy scales are
respectively

λl =

√
h̄c

b
; λp =

√
h̄b

c
; λt =

√
h̄

bc
; λe =

√
h̄bc. (2)

where b is the maximal proper force associated with the Born’s reciprocal rel-
ativity theory. In the natural units h̄ = c = b = 1 all four scales become unity.
The gravitational coupling is given by

G =
c4

Fmax
=

c4

b
. (3)

and the four scales coincide then with the Planck length, momentum, time and
energy, respectively and we can verify that

Fmax = mP
c2

LP
∼ MUniverse

c2

RH
. (4)

it was proposed in [6] that a certain large (Hubble) /small (Planck) scale
duality was operating in this Born’s reciprocal relativity theory reminiscent
of the T -duality in string theory compactifications. The Hermitian generators
Zab, Za, Z̄a, I of the U(1, 3) algebra and the deformed Weyl-Heisenberg algebra
obey the relations

(Zab)† = Zab; (Za)† = Z̄a; I† = I; a, b = 1, 2, 3, 4. (5)

The standard Quaplectic group [5] is given by the semi-direct product of the
U(1, 3) group and the unmodified Weyl-Heisenberg H(1, 3) group : Q(1, 3) ≡
U(1, 3) ⊗s H(1, 3) and is defined in terms of the generators Zab, Za, Z̄a, I with
a, b = 1, 2, 3, 4.

A careful analysis reveals that the complex generators Za, Z̄a (with Hermi-
tian and anti-Hermitian pieces) of the deformed Weyl-Heisenberg algebra can
be defined in terms of the Hermitian U(1, 4) algebra generators ZAB , where
A,B = 1, 2, 3, 4, 5; a, b = 1, 2, 3, 4; ηAB = diag (+,−,−,−,−), as follows

Za = (−i )1/2 ( Za5 − iZ5a ); Z̄a = ( i )1/2 ( Za5 + iZ5a ); Z55 =
I
2

(6)

the Hermitian generators are ZAB ≡ EB
A and ZBA ≡ EA

B ; notice that the position
of the indices is very relevant because ZAB 6= ZBA. The commutators are

[Eb
a, Ed

c ] = −i δb
c Ed

a +i δd
a Eb

c ; [Ed
c , E5

a ] = −i δd
a E5

c ; [Ed
c , Ea

5 ] = i δa
c Ed

5 . (7)

and [E5
5 , Ea

5 ] = −i δ5
5 Ea

5 .... such that now I(= 2Z55) no longer commutes with
Za, Z̄a. The generators Zab of the U(1, 3) algebra can be decomposed into the
Lorentz-subalgebra generators Lab and the ”shear”-like generators Mab as

Zab ≡
1
2

(Mab−iLab); Lab = L[ab] = i (Zab−Zba); Mab = M(ab) = (Zab+Zba),

(8)
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one can see that the ”shear”-like generators Mab are Hermitian and the Lorentz
generators Lab are anti − Hermitian with respect to the fiber internal space
indices. The explicit commutation relations of the Hermitian generators Zab

can be rewritten as

[Lab, Lcd] = (ηbcLad − ηacLbd − ηbdLac + ηadLbc). (9a)

[Mab, Mcd] = − (ηbcLad + ηacLbd + ηbdLac + ηadLbc). (9b)

[Lab, Mcd] = (ηbcMad − ηacMbd + ηbdMac − ηadMbc). (9c)

Defining Zab = 1
2 (Mab − iLab), Zcd = 1

2 (Mcd − iLcd) after straightforward
algebra it leads to the U(3, 1) commutators

[ Zab, Zcd ] = − i ( ηbc Zad − ηad Zcb ). (9d)

as expected, and which requires that the commutators [M,M ] ∼ L otherwise
one would not obtain the U(3, 1) commutation relations (9d) nor the Jacobi
identities will be satisfied 1 . The commutators of the (anti-Hermitian) Lorentz
boosts generators Lab with the Xc, Pc generators are

[Lab, Xc] = ( ηbc Xa − ηac Xb ); [Lab, Pc] = ( ηbc Pa − ηac Pb ). (10a)

Since the Hetmitian Mab generators are the reciprocal boosts transformations
which exchange X for P , in addition to boosting (rotating) those variables, one
has in

[Mab,
Xc

λl
] = − i

λp
( ηbc Pa + ηac Pb ); [Mab,

Pc

λp
] = − i

λl
( ηbc Xa + ηac Xb )

(10b)
such that upon recurring to eqs-(6, 7) and/or eqs-(10) after lowering indices it
leads to 2

[ Zab, Zc ] = − i

2
ηbc Za +

i

2
ηac Zb −

1
2

ηbc Z̄a − 1
2

ηac Z̄b

[ Zab, Z̄c ] = − i

2
ηbc Z̄a +

i

2
ηac Z̄b +

1
2

ηbc Za +
1
2

ηac Zb . (10c)

In the noncommutative Yang’s phase-space algebra case [10], associated with
a noncommutative phase space involving noncommuting spacetime coordinates
and momentum xµ, pµ, the generatorN which appears in the modified [xµ, pν ] =
ih̄ηµνN commutator is the exchange operator x ↔ p, [pµ,N ] = ih̄xµ/R2

H and

1This corrects a typo in [12]
2These commutators differ from those in [5] because he chose all generators X, P, M, L

to be anti-Hermitian so there are no i terms in the commutators in the r.h.s of eq-(10b) and
there are also sign changes
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[xµ,N ] = iL2
P pµ/h̄. LP , RH are taken to be the minimal Planck and maximal

Hubble length scales, respectively. The Hubble upper scale RH corresponds to
a minimal momentum h̄/RH , because by ”duality” if there is a minimal length
there should be a minimal momentum also.

Yang’s [10] noncommutative phase space algebra is isomorphic to the confor-
mal algebra so(4, 2) ∼ su(2, 2) after the correspondence xµ ↔ Lµ5, pµ ↔ Lµ6,
and N ↔ L56. In the deformed Quaplectic algebra case, it is in addition to the
I generator, the Mab generator which plays the role of the exchange operator
of X with P and which also appears in the deformed Weyl-Heisenberg algebra
leading to a matrix-valued generalized Planck-constant, and noncommutative
fiber coordinates, as follows

[
Xa

λl
,
Pb

λp
] = i αh̄ (ηab I+Mab); [Xa, Xb] = − (λl)2 L[ab]; [Pa, Pb] = (λp)2 L[ab];

(11)
One could interpret the term ηab I + Mab as a matrix-valued Planck constant
h̄ab (in units of h̄). The deformed (noncommutative) Weyl-Heisenberg algebra
can also be rewritten as

[Za, Z̄b] = −αh̄ ( ηab I + Mab ); [Za, Zb] = [Z̄a, Z̄b] = −i Z[ab] = −Lab.

[Za, I] = 2 Z̄a; [Z̄a, I] = − 2 Za; [Zab, I] = 0. I = 2 Z55. (12)

where [Xa

λl
, I] = 2iPa

λp
; [Pa

λp
, I] = 2iXa

λl
and the metric ηab = (+1,−1,−1,−1) is

used to raise and lower indices . The Planck constant is given in terms of the
length and momentum scales of eq-(2) as h̄ = αh̄ λl λp ⇒ αh̄ = 1, since λlλp =
h̄. The deformed Quaplectic algebra given by eqs-(7-12) obeys the Jacobi
identities by virtue of the definitions in eq-(6) along with the commutators of
eq-(7). No longer I commutes with Za, Z̄a, it exchanges them, as one can see
from eq-(12) since Z55 = I/2. A Matrix-valued generalized Planck-constant of
Noncommutative QM in Clifford Spaces have been advanced by [13].

The complex tetrad Ea
µ which transforms under the fundamental represen-

tation of U(1, 3) is defined as

Ea
µ =

1√
2

( ea
µ + ifa

µ ); Ēa
µ =

1√
2

( ea
µ − ifa

µ ). (13)

The complex Hermitian metric is given by

Gµν = Ēa
µ Eb

ν ηab = g(µν) + ig[µν] = g(µν) + iBµν . (14)

such that

(Gµν)† = Ḡνµ = Gµν ; Ḡµν = Gνµ. (15)

where the bar denotes complex conjugation. Despite that the metric is complex
the infinitesimal line element is real

ds2 = Gµν dxµ dxν = g(µν) dxµ dxν , because i g[µν] dxµ dxν = 0. (16)
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The (deformed) Quaplectic-algebra-valued anti-Hermitian gauge field (Aµ)† = −
Aµ is given by

Aµ = Ωab
µ Zab +

i

Lp
( Ea

µ Za + Ēa
µ Z̄a ) + i Ωµ I . (17)

where a length scale that we chose to coincide with the the Planck length scale
LP has been introduced in the second terms in the r.h.s since the connection Aµ

must have units of (length)−1. In natural units of h̄ = c = 1 the gravitational
coupling in 4D is G = L2

P . Decomposing the anti-Hermitian components of the
connection Ωab

µ into anti-symmetric [ab] and symmetric (ab) pieces with respect
to the internal indices

Ωab
µ = Ω[ab]

µ + i Ω(ab)
µ . (18)

gives the anti-Hermitian U(1, 3)-valued connection

Ωab
µ Zab = (Ω[ab]

µ + i Ω(ab)
µ )

1
2
(Mab − i Lab) =

− i

2
Ω[ab]

µ Lab +
i

2
Ω(ab)

µ Mab ⇒ (Ωab
µ Zab)† = − Ωab

µ Zab. (19)

since (Zab)† = Zab

The deformed Quaplectic algebra-valued (anti-Hermitian) field strength is
given by

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] =

F ab
µν Zab + i (F a

µν Za + F̄ a
µν Z̄a) + Fµν I =

i

2
F (ab)

µν Mab −
i

2
F [ab]

µν Lab + i (F a
µν Za + F̄ a

µν Z̄a) + Fµν I (20)

after decomposing Zab = 1
2 (Mab − iLab). The components of the curvature

two-form associated with the anti-Hermitian connection Ωab
µ = Ω[ab]

µ + iΩ(ab)
µ

are

−i F [ab]
µν = ∂µΩ[ab]

ν − ∂νΩ[ab]
µ + Ω[ac]

[µ Ω[cb]
ν] −

Ω(ac)
[µ Ω(cb)

ν] +
1

L2
P

Ea
[µ Eb

ν] +
1

L2
P

Ēa
[µ Ēb

ν] . (21)

i F (ab)
µν = ∂µΩ(ab)

ν − ∂νΩ(ab)
µ + Ω(ac)

[µ Ω[cb]
ν] + Ω(bc)

[µ Ω[ca]
ν] +

1
L2

P

Ea
[µ Ēb

ν] +
1

L2
P

Eb
[µ Ēa

ν] (22)

where a summation over the repeated c indices is implied and [µν] denotes
the anti-symmetrization of indices with weight one. Notice the presence of the
extra terms EE in the above expressions for the deformed field strengths due
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to the noncommutative [Za, Zb] 6= 0, and which in turn, modifies the Weyl-
Heisenberg algebra due to the Jacobi identities. In the undeformed ordinary
Quaplectic-algebra case [12] these terms are absent because [Za, Zb] = 0, ... and,
furthermore, there is no Mab term in the ordinary Weyl-Heisenberg algebra.
These extra terms EE in eqs-(21,22) are one of the hallmarks of the deformed
Quaplectic gauge field theory formulation of the deformed Born’s Reciprocal
Complex Gravity.

The components of the torsion two-form are :

F a
µν = ∂µEa

ν − ∂νEa
µ − i Ω[ac]

[µ Ec
ν] + i Ω(ac)

[µ Ēc
ν] − 2i Ēa

[µ Ων]. (23a)

F̄ a
µν = ∂µĒa

ν − ∂νĒa
µ + i Ω[ac]

[µ Ēc
ν] − i Ω(ac)

[µ Ec
ν] + 2i Ea

[µ Ων]. (23b)

The remaining field strength has roughly the same form as a U(1) field
strength in noncommutative spaces due to the additional contribution of Bµν

resulting from the nonabelian nature of the Weyl-Heisenberg algebra in the
internal space (fibers) and which is reminiscent of the noncommutativity of the
coordinates with the momentum :

Fµν = i ∂µΩν − i ∂νΩµ +
1

L2
P

Ea
µ Ēb

ν ηab −
1

L2
P

Ēa
µ Eb

ν ηab =

i ∂µΩν − i ∂νΩµ +
1

L2
P

( Gµν − Gνµ ) = i Ω[µν] + i
2

L2
P

G[µν] (24)

after recurring to the commutation relations (for αh = 1) in eqs-(11, 12) and
the Hermitian property of the metric

Gµν = Ēa
µ Eb

ν ηab = [ Ea
µ Ēb

ν ηab ]∗ = (Gνµ)∗ ⇒ (Gµν)∗ = Gνµ. (25)

where ∗ stands for (bar) complex conjugation.
The curvature tensor is defined in terms of the anti-Hermitian connection

Ω[ab]
µ + i Ω(ab)

µ as

Rρ
µνλ ≡ ( F [ab]

µν + i F (ab)
µν ) (Eρ

a Ebλ + Ēρ
a Ēbλ ). (26)

where the explicit components F
[ab]
µν and F

(ab)
µν can be read from the defining

relations (21,22). Note that both values of values of F
[ab]
µν and F

(ab)
µν are purely

imaginary such that one may rewrite the complex-valued F ab
µν field strength

as (F (ab)
µν + iF [ab]

µν ) for real valued F (ab)
µν , F [ab]

µν expressions. The contraction of
indices yields two different complex-valued (Hermitian) Ricci tensors 3 given by

Rµλ = gσν gρσ Rρ
µνλ = δν

ρ Rρ
µνλ = R(µλ) + i R[µλ]; (Rµλ)∗ = Rλµ (27)

3There is a third Ricci tensor Q[µν] = Rρ
µνλ

δλ
ρ related to the curl of the nonmetricity

Weyl vector Qµ [14] and which we set to zero
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and
Sµλ = gσν gσρ Rρ

µνλ = S(µλ) + i S[µλ]; (Sµλ)∗ = Sλµ (28)

due to the fact that

gσν gρσ = δν
ρ and gσν gσρ 6= δν

ρ . (29)

because gσρ 6= gρσ. The position of the indices is crucial.
A further contraction yields the generalized (real-valued) Ricci scalars

R = (g(µλ) + i g[µλ]) ( R(µλ) + i R[µλ] ) =

R = g(µλ) R(µλ) − Bµλ R[µλ]; g[µλ] ≡ Bµλ. (30a)

S = (g(µλ) + i g[µλ]) ( S(µλ) + i S[µλ] ) =

S = g(µλ) S(µλ) − Bµλ S[µλ]. (30b)

The first term g(µλ) R(µλ) corresponds to the usual scalar curvature of the
ordinary Riemannian geometry. The presence of the extra terms Bµλ R[µλ] and
Bµλ S[µλ] due to the anti-symmetric components of the metric and the two
different types of Ricci tensors are one of the hallmarks of the deformed Born
complex gravity. We should notice that the inverse complex metric is

g(µλ) + ig[µλ] = [ g(µν) + ig[µν] ]−1 6= (g(µν))−1 + (ig[µν])−1. (31)

so g(µν) is now a complicated expression of both gµν and g[µν] = Bµν . The same
occurs with g[µν] = Bµν . Rigorously we should have used a different notation
for the inverse metric g̃(µλ) + iB̃[µλ], but for notational simplicity we chose to
drop the tilde symbol.

One could add an extra contribution to the complex-gravity real-valued
action stemming from the terms iBµνFµν which is very reminiscent of the BF
terms in Schwarz Topological field theory and in Plebanksi’s formulation of
gravity. In the most general case, one must include both the contributions
from the torsion and the i BµνFµν terms. The contractions involving Gµν =
g(µν) + iBµν with the components Fµν (due to the antisymmetry property of
Fµν = −Fνµ) lead to

i Bµν Fµν = − Bµν ( ∂µΩν − ∂νΩµ )− 2 Bµν Bµν = − Bµν Ωµν − 2 Bµν Bµν .
(32)

where we have set the length scale LP = 1 for convenience. These BF terms
contain a mass-like term for the Bµν field. Mass terms for the Bµν and a massive
graviton formulation of bi-gravity (in addition to a massles graviton) based on
a SL(2, C) gauge formulation have been studied by [14], [15], [16],. When the
torsion is not constrained to vanish one must include those contributions as well.
The real-valued torsion two-form is (F a

µνZa + F̄ a
µνZ̄a)dxµ ∧ dxν and the torsion

tensor and torsion vector are

T ρ
µν ≡ (F a

µν Eρ
a + F̄ a

µν Ēρ
a); Tµνρ = gρσ T σ

µν ; Tµ = δν
ρ T ρ

µν . (33)
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The (real-valued) action, linear in the two (real-valued) Ricci curvature
scalars and quadratic in the (real-valued) torsion is of the form

1
2κ2

∫
M4

d4x
√
| det (g(µν) + iBµν) | ( a1 R+ a2 S + a3 Tµνρ Tµνρ + a4 Tµ Tµ+complex conjugate).

(34)
where κ2 = 8πG is the gravitational coupling and in natural units h̄ = c = 1 one
has G = L2

Planck. We may add the BF terms (32) to the action (34) as well 4.
The action (34) is invariant under infinitesimal U(1, 3) gauge transformations of
the complex tetrad δEa

µ = (ξa
b(1) + iξa

b(2))E
b
µ where the real ξ

(1)
[ab] and imaginary

ξ
(2)
(ab) components of the complex parameter are anti-symmetric and symmetric,

respectively, with respect to the indices a, b for anti-Hermitian infinitesimal
U(1, 3) gauge transformations.

The a1, a2, a3, a4 are suitable numerical coefficients that will be constrained
to have certain values if one wishes to avoid the presence of ghosts, tachyons and
higher order poles in the propagator, not unlike it occurs in Moffat’s nonsym-
metric gravity theory [14]. The instabilities of Moffat’s nonsymmetric gravity
found by [15] are bypassed when one extends the theory to spacetimes with
complex coordinates [16]. The action (34) defined in 4D can be extended to a
4D complex spacetime; i.e. an action in 8D real-dimensional Phase Space asso-
ciated with the cotangent bundle of spacetime. The geometry of curved Phase
spaces and bounded complex homogeneous domains has been studied by [17].
The presence of matter sources can be incorporated, for example, by recurring
to the invariant action for a point-particle in Born’s Reciprocal Relativity in-
volving Casimir group invariant quantities associated with the world-line of the
particle. The quantization of a point-particle corresponding to the undeformed
Quaplectic group is far richer than the ordinary Poincare case since acceleration
boosts can change the spin of the particle. The spectrum contains towers of
integer massive spin states, as well as unconventional massless representations
[7].

To conclude, we should emphasize that the complex deformed Born Re-
ciprocal Gravitational theory advanced here differs from the modified grav-
itational theories in the literature [14], [16], [18], and it is mainly due to the
fact that we have constructed a deformed complex Born’s reciprocal gravita-
tional theory in 4D as a gauge theory of the deformed Quaplectic group given
by the semidirect product of U(1, 3) with the deformed (noncommutative)
Weyl-Heisenberg algebra of eqs-(11, 12a, 12b). The deformed Weyl-Heisenberg
algebra already encodes the noncommutativity of the fiber coordinates such
that Zµ(wi) = Ea

µ(wi) Za and Z̄µ(wi) = Ēa
µ(wi) Z̄a could be interpreted as

the p-brane noncommutative target complex-spacetime background embedding
functions Zµ(wi), Z̄µ(wi) in terms of the p + 1 world-volume coordinates wi (
i = 1, 2, ...., p + 1). Since the vielbein Ea

µ is required in the definition of the
embedding coordinates Zµ, Z̄µ, it is not surprising to see why string-theory (p-

4Yang-Mills types of actions F ∧∗ F can also be included
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branes) encodes gravity. For plausible relations between nonsymmetric gravity
and string theory see [14], [16], [19] and references therein. Noncommutative
p-branes actions based on Moyal-Yang-Kontsevich star products with a lower
and upper length scales were constructed in [20]. Finally, gravitational theories
based on Born’s reciprocal relativity principle [12], involving a maximal speed
limit and a maximal proper force, is a very promising avenue to quantize grav-
ity that does not rely in breaking the Lorentz symmetry at the Planck scale,
in contrast to other approaches based on deformations of the Poincare algebra,
Hopf algebras, quantum groups, etc...
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