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Abstract

The Octonionic Geometry (Gravity) developed long ago by Oliveira and Mar-
ques is extended to Noncommutative and Nonassociative Spacetime coordinates
associated with octonionic-valued coordinates and momenta. The octonionic
metric Gµν already encompasses the ordinary spacetime metric gµν , in addi-
tion to the Maxwell U(1) and SU(2) Yang-Mills fields such that implements
the Kaluza-Klein Grand Unification program without introducing extra space-
time dimensions. The color group SU(3) is a subgroup of the exceptional G2

group which is the automorphism group of the octonion algebra. It is shown
that the flux of the SU(2) Yang-Mills field strength ~Fµν through the area-
momentum ~Σµν in the internal isospin space yields corrections O(1/M2

Planck)
to the energy-momentum dispersion relations without violating Lorentz invari-
ance as it occurs with Hopf algebraic deformations of the Poincare algebra. The
known Octonionic realizations of the Clifford Cl(8), Cl(4) algebras should per-
mit the construction of octonionic string actions that should have a correspon-
dence with ordinary string actions for strings moving in a curved Clifford-space
target background associated with a Cl(3, 1) algebra.

Keywords: Nonassociative Geometry, Clifford algebras, Quaternions, Octonionic
Gravity, Unification, Strings.
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1 Introduction

Exceptional, Jordan, Division, Clifford and Noncommutative algebras are deeply
related and essential tools in many aspects in Physics, see for instance [1], [2],
[3], [4], [5], [6], [7]., [9], [8], [36], [11], [15], [13], [14], [16], [24]. [29], [56], [35].
Ever since the discovery [58] that 11D supergravity, when dimensionally reduced
to an n-dim torus led to maximal supergravity theories with hidden exceptional
symmetries En for n ≤ 8, it has prompted intensive research to explain the
higher dimensional origins of these hidden exceptional En symmetries. More re-
cently, there has been a lot of interest in the infinite-dim hyperbolic Kac-Moody
E10 and non-linearly realized E11 algebras arising in the asymptotic chaotic os-
cillatory solutions of Supergravity fields close to cosmological singularities [57]
.

The classification of symmetric spaces associated with the scalars of N ex-
tended Supergravity theories, emerging from compactifications of 11D super-
gravity to lower dimensions, and the construction of the U -duality groups as
spectrum-generating symmetries for four-dimensional BPS black-holes [27], [34]
also involved exceptional symmetries associated with the exceptional magic Jor-
dan algebras J3[R,C, H, O]. The discovery of the anomaly free 10-dim heterotic
string for the algebra E8 × E8 was another hallmark of the importance of Ex-
ceptional Lie groups in Physics.

Exceptional Jordan Matrix Models based on the compact E6 involve a double
number of the required physical degrees of freedom inherent in a complex-valued
action [11]. This led Ohwashi to construct an interacting pair of mirror universes
within the compact E6 matrix model and equipped with a Sp(4,H)/Z2 symme-
try based on the quaternionic valued symplectic group. The interacting picture
resembles that of the bi-Chern-Simons gravity models. The complex counterpart
of the Chern-Simon-Witten theory has been studied by [62] where the complex
(holomorphic) analogue of the Gauss linking number for complex curves em-
bedded in a Calabi-Yau threefold was defined. A nonassociative formulation of
bosonic strings in D = 26 using Jordan algebras was presented a while back by
[35]. A construction of nonassociative Chern-Simons membranes and 3-branes
based on the large N limit of Exceptional Jordan algebras was put forward by
[12].

Some recent developments related to Jordan exceptional algebras and octo-
nions have been found. The E7 Cartan quartic invariant was used by [32] to
construct the entanglement measure associated with the tripartite entanglement
of seven quantum-bits represented by the group SL(2, C)3 and realized in terms
of 2 × 2 × 2 cubic matrices. It was shown by [33] that this tripartite entangle-
ment of seven quantum-bits is entirely decoded into the discrete geometry of
the octonion Cayley-Fano plane. The analogy between quantum information
theory and supersymmetric black holes in 4d string theory compactifications
was extended further by [33]. The role of Jordan algebras associated with the
homogeneous symmetric spaces present in the study of extended supergravities,
BPS black holes, quantum attractor flows and automorphic forms can be found
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in [27].
The E8 group was proposed long ago [26] as a candidate for a grand unifica-

tion model building in D = 4. The supersymmetric E8 model has more recently
been studied as a fermion family and grand unification model [26] under the
assumption that there is a vacuum gluino condensate but this condensate is not
accompanied by a dynamical generation of a mass gap in the pure E8 gauge sec-
tor. A study of the interplay among Exceptional Groups, del Pezzo surfaces and
the extra massless particles arising from rational double point singularities can
be found in [44], [43] . Clifford algebras and E8 are key ingredients in Smith’s
D4 −D5 − E6 − E7 − E8 grand unified model in D = 8 [17].

A novel Chern-Simons E8 gauge theory of Gravity in D = 15 based on an
octic E8 invariant expression in D = 16 (recently constructed by Cederwall and
Palmkvist) was developed by [47]. A grand unification model of gravity with
the other forces is very plausible within the framework of a supersymmetric
extension (to incorporate spacetime fermions) of this Chern-Simons E8 gauge
theory. An E8 gauge bundle formulation was instrumental in understanding the
topological part of the 11-dim M -theory partition function. The nature of this
11-dim E8 gauge theory remains unknown. The Chern-Simons E8 gauge theory
of Gravity in D = 15 may shed some light into solving this problem after a
dimensional reduction.

A complexification of ordinary gravity (not to be confused with Hermitian-
Kahler geometry ) has been known for a long time. Complex gravity requires
that gµν = g(µν)+ig[µν] so that now one has gνµ = (gµν)∗, which implies that the
diagonal components of the metric gz1z1 = gz2z2 = gz̃1z̃1 = gz̃2z̃2 must be real.
A treatment of a non-Riemannan geometry based on a complex tangent space
and involving a symmetric g(µν) plus antisymmetric g[µν] metric component was
first proposed by Einstein-Strauss [10] (and later on by [19] ) in their unified
theory of Electromagentism with gravity by identifying the EM field strength
Fµν with the antisymmetric metric g[µν] component.

Borchsenius [18] formulated the quaternionic extension of Einstein-Strauss
unified theory of gravitation with EM by incorporating appropriately the SU(2)
Yang-Mills field strength into the degrees of a freedom of a quaternionc-valued
metric. Oliveira and Marques [20] later on provided the Octonionic Gravita-
tional extension of Borchsenius theory involving two interacting SU(2) Yang-
Mills fields and where the exceptional group G2 was realized naturally as the
automorphism group of the octonions.

Ashtekar’s formulation of Gravity in D = 12 dimensions using octonionic
structure constants has been formulated by [40]. Modified dispersion relations
based on the simplest Octonionic geometry has been discussed in a very dif-
ferent context than the work presented here by [41]. The (para) octonionic
geometry of the projective plane has been analyzed extenisvely by [42]. Octo-
nionc spinors have been studied by [28], [46], among others. The bar operations
and hyper-complex group theory to formulate a consistent Octonionic QM have
been developed by [45]. The non-Desarguesian geometry of the Moufang pro-
jective plane to describe Octonionic QM was discussed by [15].

It was shown in [21] how one could generalize Octonionic Gravitation into

3



an Extended Relativity theory in Clifford spaces, involving poly-vector valued
(Clifford-algebra valued) coordinates and fields, where in addition to the speed
of light there is also an invariant length scale (set equal to the Planck scale)
in the definition of a generalized metric distance in Clifford spaces encoding,
lengths, areas, volumes and hyper-volumes metrics. An overview of the basic
features of the Extended Relativity in Clifford spaces can be found in [21].
E8 Yang-Mills theory can naturally be embedded into a Cl(16) algebra Gauge
Theory [48] and the 11D Chern-Simons (Super) Gravity [60] is a very small
sector of a more fundamental polyvector-valued gauge theory in Clifford spaces.
Polyvector-valued Supersymmetries [61] in Clifford-spaces [51] turned out to
be more fundamental than the supersymmetries associated with M,F theory
superalgebras.

Generalized Complex geometry was developed by Hitchin and involves a
metric and a two-form, an antisymmetric field Bµν ( not the same as g[µν]) and
plays an important role in string theory compactifications with flux. Recently
Hitchin’s geometry has been generalized to manifolds with a metric and p-
forms by [30] as the appropriate geometry for M theory. Generalized Complex
geometry has also been instrumental in the Geometric Langlands Program in
Physics advanced by [31].

The purpose of this work is is to advance further the Octonionic Geometry
(Gravity) of [20] by enlarging the ordinary spacetime coordinates to octonionic-
valued coordinates furnishing a natural realization of a Noncommutative and
Nonassociative spacetime. The most salient feature of the decomposition of
the split-octonionic metric Gµν is that it already encompasses the ordinary
spacetime metric gµν , in addition to the Maxwell EM field and SU(2) Yang-
Mills fields. Therefore, it automatically implements the Kaluza-Klein program
without introducing extra spacetime dimensions. Clifford algebras have been
used by [17], [22], [23], among others to attain unification without extra space-
time dimensions. It is shown that the flux of ~Fµν through the area-momentum
~Σµν in the internal isospin space yields the corrections O(1/M2

Planck) to the
energy-momentum dispersion relations.

The automorphism group of the octonionic algebra is the 14-dim exceptional
G2 group that admits a SU(3) subgroup leaving invariant the idempotents uo, u

∗
o

of the split-octonionic algebra. This SU(3)c was identified as the color group act-
ing on the quarks and antiquarks triplets [15] Ψα = ui Ψi

α, Ψ̄α = −u∗i Ψ̄i
α, i =

1, 2, 3, respectively. Octonionic realizations of the Clifford Cl(8), Cl(4) algebras
should permit the construction of octonionic strings where the 1+1-octonionic-
dim worldsheet of an octonionic string has a correspondence with an 8 + 8
real-dimensional spacetime of split signature corresponding to the Cl(4)-space.
For all these reasons we deem very important to explore further the novelties
behind the octonionic geometry developed here within the framework of the
unification of gravity with the other forces and the role played by the Planck
scale in the modifications of the dispersion relations without violating Lorentz
invariance.
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2 Octonionic Geometry of Noncommutative and
Nonassociative Spacetime

Given an octonion X it can be expanded in a basis (eo, em) as

X = xo eo + xm em, m, n, p = 1, 2, 3, .....7. (1)

where eo is the identity element. The Noncommutative and Nonassociative
algebra of octonions is determined from the relations

e2
o = eo, eoei = eieo = ei, eiej = −δijeo + cijkek, i, j, k = 1, 2, 3, ....7. (2)

where the fully antisymmetric structure constants cijk are taken to be 1 for the
combinations (123), (516), (624), (435), (471), (673), (672). The octonion conju-
gate is defined

X̄ = xo eo − xm em. (2)

and the norm

N(X) = < X X > = Real (X̄ X) = (xo xo + xk xk). (3)

The inverse

X−1 =
X̄

N(X)
, X−1X = XX−1 = 1. (4)

The non-vanishing associator is defined by

{X,Y,Z} = (XY)Z−X(YZ) (5)

In particular, the associator

{ei, ej , ek} = dijkl el, dijkl = εijklmnp cmnp, i, j, k.... = 1, 2, 3, .....7 (6)

The generators of the split-octonionic algebra admit a realization in terms
of the 4× 4 Zorn matrices (in blocks of 2× 2 matrices) by writing

uo =
1
2

(eo + ie7), u∗o =
1
2

(eo − ie7)

ui =
1
2

(ei + iei+3), u∗i =
1
2

(ei − iei+3) (7)

uo =
(

0 0
0 ωo

)
u∗o =

(
ωo 0
0 0

)
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ui =
(

0 0
ωi 0

)
u∗i =

(
0 −ωi

0 0

)
(8)

The quaternionic generators ωo, ωi, i = 1, 2, 3 obey the algebra ωiωj = εijkωk−
δijωo and are related to the Pauli spin 2× 2 matrices by setting σi = i ωi and
ωo = 12×2. The ui, u

∗
i behave like fermionic creation and annihilation operators

corresponding to an exceptional (non-associative) Grassmannian algebra

{ui, uj} = {u∗i , u∗j} = 0, {ui, u
∗
j} = −δij . (9a)

1
2
[ui, uj ] = εijk u∗k,

1
2
[u∗i , u

∗
j ] = εijk uk, u2

o = uo, (u∗o)
2 = u∗o. (9b)

Unlike the octonionic algebra, the split-octonionic algebra contains zero divisors
and therefore is not a division algebra.

The automorphism group of the octonionic algebra is the 14-dim excep-
tional G2 group that admits a SU(3) subgroup leaving invariant the idempo-
tents uo, u

∗
o. This SU(3)c was identified as the color group acting on the quarks

and antiquarks triplets [15] Ψα = ui Ψi
α, Ψ̄α = −u∗i Ψ̄i

α, i = 1, 2, 3, respec-
tively. From the split-octonionic algebra multiplication table one learns that
triplet × triplet = anti triplet and triplet × anti triplet = singlet providing a
very natural algebraic interpretation of confinement of 3 quarks. An effective
dynamical SUSY and the phenomenological manifestation of quark dynamics
inside hadrons leading to the classification of mesons an baryons can be found
in [16], [5] and references therein.

The Zorn matrix product of

A =
(

Ao ωo −Ai ωi

Bi ωi Bo ωo

)
B =

(
Co ωo −Ci ωi

Di ωi Do ωo

)
(10)

is defined by

A•B =
(

(AoCo + AiDi) ωo −(AoCk + DoAk + εijkBiDj) ωk

(CoBk + BoDk + εijkAiCj) ωk (BoDo + BiCi) ωo

)
(11)

where we have used

ωi ωj = εijkωk − δijωo ⇒ ωi ωi = −ωo, for each i = 1, 2, 3 ⇒

~x.~y = (xiωi) (yiωi) = −xiyi ωo. (12)

the last minus sign must be kept in my mind in the products that follow. The
multiplication product of the split-octonions generators uo, u

∗
o, ui, u

∗
i is repro-

duced in this Zorn matrix realization.
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The split-octonionic-valued spacetime vector Zµ, µ = 1, 2, 3, ......, D can be
represented in terms of the 4× 4 (spacetime vector-valued) Zorn matrix Zµ

ab as

Zµ = xµ
o u∗o + yµ

o uo + xµ
i u∗i + yµ

i ui =
(

xµ
o ωo −xµ

i ωi

yµ
i ωi yµ

o ωo

)
(13)

xµ
o , xµ

k , yµ
o , yµ

k are real valued variables. When the spacetime metric is ηµν 14×4,
the bilinear form

1
4

Trace [ ηµν Zµ • Zν ] =
1
4

ηµν [ xµ
o xν

o +yµ
o yν

o +xµ
k yν

k +xν
k yµ

k ] Trace [12×2] =

1
2

ηµν [ xµ
o xν

o + yµ
o yν

o + xµ
k yν

k + xν
k yµ

k ]. (14)

furnishes the analog of an inner product. We may notice that when xµ
o = yµ

o ,
the fist two terms of the last expression combine to agree with the standard
quadratic norm of a vector in Minkowski spacetime ηµνxµ

oxν
o .

The octononic conjugation is defined by eo → eo and em → −em, so

Z̄µ = xµ
o uo + yµ

o u∗o − xµ
i u∗i − yµ

i ui =
(

yµ
o ωo xµ

i ωi

−yµ
i ωi xµ

o ωo

)
(15)

When xµ
o , yµ

o , xµ
i , yµ

i are complex valued one may define the ”Hermitian” conju-
gate by taking the complex conjugate of the components of Z̄µ :

(Zµ)† = (xµ
o )∗ uo +(yµ

o )∗ u∗o− (xµ
i )∗ u∗i − (yµ

i )∗ ui =
(

(yµ
o )∗ ωo (xµ

i )∗ ωi

−(yµ
i )∗ ωi (xµ

o )∗ ωo

)
(16)

It should be emphasized that the dagger operation † must not be confused
with the Hermitian adjoint operation but it is defined by taking the complex
conjugate of the components of Z̄µ.

The split-octonionic-valued metric Gµν = Gab
µν obeying (Gµν)† = Gνµ can

be represented by a 4× 4 (tensor-valued) Zorn matrix as [20]

Gµν =

(
(gµν + i g[µν]) ωo − si

[µν] ωi

ri
[µν] ωi ( gµν + i g[µν] ) ωo

)
=

(
(gµν + iκ2Fµν) ωo κ2λ2 F (1)

µνi ωi

−κ2λ2 F (2)
µνi ωi (gµν + iκ2Fµν) ωo

)
, (Gµν)† = Gνµ

(17)
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Fµν is the Maxwell U(1) valued electromagnetic field strength. F (1)
µν = F (1)

µνi ωi

and F (2)
µν = F (2)

µνi ωi are two SU(2) valued field strengths of the Yang-Mills type
corresponding to an internal SU(2)L × SU(2)R symmetry.

The length parameter κ is defined

κ2 = 4π
L2

P

e2
, ⇒ κ = 2

√
137 π LPlanck ∼ 4.15× 10−32 cm. (18)

in h̄ = c = 1 units and λ = −e/Q is the ratio of the electric charge e and
the isotopic charge Q. The most salient feature of the decomposition of the
split-octonionic metric Gµν in the form (17) is that it already encompasses
the ordinary spacetime metric gµν , in addition to the Maxwell EM field and
SU(2) Yang-Mills fields. Therefore, it automatically implements the Kaluza-
Klein program without introducing extra spacetime dimensions ! A realization
of this idea appears also in Smith’s Unified model of gravity with all the other
forces based on the Cliff(8) algebra [17] and in the Cliff(4) algebra spin gauge
theory model of [22], for example . The geometric basis of the Standard Model
based on Clifford algebras can be found in [23].

When the spacetime is four-dimensional, when one takes into account the
internal directions 0, 1, 2, 3 corresponding to the generators ωo, ω1, ω2, ω3 one has
an effective 4+4 = 8-dim space. A unified model involving an 8-dim space based
on the Clifford algebra Cl(8) and octonions has been constructed by Smith [17].
A generalization of Smith’s model to C-spaces was advanced in [49].

Despite the fact that the octonions are non-associative the Zorn matrix prod-
uct does satisfy the cyclic trace property

Trace [ A •B ] = Trace [ B •A ]. (19)

and also the relations

Trace [ (A •B) •C ] = Trace [ A • (B •C) ] = Trace [ A •B •C ] =

Trace [ C •A •B ] = Trace [ B •C •A ]. (20)

Taking into account these properties of the trace of Zorn matrix products , the
novel line interval proposed in this work can be unambiguously defined by

ds2 =
1
4

Trace [Gµν • dZµ • dZν ] =

1
2
gµν dxµ

o dxν
o +

1
2
sk

µν dyµ
k dxν

o +
1
2
gµν dxµ

k dyν
k +

1
2
sk

µν dyν
k dyµ

o +

1
2
εijk ri

µν dyµ
j dyν

k +
1
2
rk
µν dxν

k dxµ
o +

1
2
gµν dyµ

k dxν
k +

1
2
εijk si

µν dxµ
j dxν

k +
1
2
rk
µν dxµ

k dyν
o +

1
2
gµν dyµ

o dyν
o (21)
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It is very important to emphasize that the line interval considered by [20]
did not involve octonionic valued spacetime coordinates, thus their line interval
was given by :

ds2 =
1
4

Trace [Gµν dxµxν ] =
1
4

( Trace [Gµν ] ) dxµxν = gµν dxµ dxν .

(22)
which clearly differs from the most general one when xµ → Zµ. The reason
this choice of interval (22) was selected by [20] is because it is invariant under
internal octonionic transformations acting on the metric and leaving invariant
the ordinary spacetime coordinates xµ since dxµdxν = dxµdxν14×4

G′
µν = U • Gµν •U−1. (23)

where
U = eαiui+βu∗i ≡ mou

∗
o + nouo + miu

∗
i + niui

such that
Z′µ =

1
2
[(U • Zµ) •U−1 + U • (Zµ •U−1)]. (24)

If, and only if, U−1 = Ū

U−1U = UU−1 = ŪU = UŪ = 14×4 = (uo + u∗o). (25)

then one can show [20]

Z′µ =
1
2
[(U • Zµ) •U−1 + U • (Zµ •U−1)] = U • Zµ •U−1 (26)

resulting from the Moufang identity a(bā) = (ab)ā when a = U and b = Zµ.
Hence, using the cyclic properties of the trace of products of the Zorn matrices,
it leads to

Trace [G′
µν ] = Trace [U • Gµν •U−1] = Trace [U−1 •U • Gµν ] =

Trace [ (U−1 •U) • Gµν ] = Trace [ Gµν ] (27)

consequently, the line interval is U -invariant

1
4

( Trace [G′
µν ] ) dxµ dxν =

1
4

( Trace [Gµν ] ) dxµ dxν . (28)

However, when the spacetime coordinates are replaced by octononic valued
ones, xµ → Zµ, it is not necessarily true that the transformation of the interval
(ds)2 → (ds′)2

(ds′)2 =
1
4

Trace [G′
µν • dZ′µ • dZ′ν ] =

9



1
4

Trace [(U •Gµν •U−1) • (U • dZµ •U−1) • (U • dZν •U−1) ] . (29)

remains invariant under the internal octonionic transformations. To prove this
one may recur to the Moufang identity (ab)(ca) = a(bc)a in the simpler case
when Gµν is reduced to an ordinary Minkowski (diagonal) metric ηµν14×4 :

1
4

ηµν Trace [ dZ′µ•dZ′ν ] =
1
4

ηµν Trace [(U•dZµ•U−1)•(U•dZν •U−1) ] .

(30)
By setting

UdZ = a, U−1 = b, U = c, dZ U−1 = d 6= a ⇒ (ab) (cd) 6= a (bc) d ⇒

(U dZ U−1) (U dZ U−1) 6= U dZ (U−1U) dZ U−1 = (U dZ) (dZ U−1) ⇒
1
4

ηµν Trace [ (U • dZµ •U−1) • (U • dZν •U−1) ] 6=

1
4

ηµνTrace [(U • dZµ) • (dZν •U−1) ] =

1
4

ηµνTrace [ (dZν •U−1) • (U • dZµ) ] =

1
4

ηµνTrace [dZν • (U−1 •U) • dZµ] =

1
4

ηνµTrace [(dZν • dZµ] =
1
4

ηµνTrace [(dZµ • dZν ]. (31)

due to the symmetry of ηµν = ηνµ of the ordinary Minkowski (diagonal) metric.
Therefore, one can see by means of the Moufang identities and the cyclic

trace property why the interval ( 14 ) is not invariant under U -transformations
because the transformed interval of eq-(30) is not the same as the original in-
terval of eq-(14). The same conclusion applies to the most general interval
involving octonionic valued metric and coordinates. Nevertheless, there is in-
variance with respect to a SU(2) diagonal subalgebra of SU(2)L × SU(2)R in
the restricted case that

mo = no, mi = ni ⇒ U = eαiui+βu∗i ≡ mo(u∗o + uo) + mi(u∗i + ui) =

mo ωo + mi ωi (32)

and it reduces to the standard associative quaternionic U transformation. In
this restricted quaternionic case the line interval (29) would remain invariant
when U is quaternionc valued becuase quaternions are associative. Thus using
the associative property of quaternionic products, and the cyclic trace property,
leads to an U -invariant line interval if, and only if, the Gµν and Zµ are also
restricted to be quaternionic-valued, meaning that now one must impose the
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constraints xµ
o = yµ

o and xµ
i = yµ

i among the components of the split-octonion
Zµ, and F (1)

µν = F (2)
µν among the components of the metric.

Therefore, under these conditions, the line interval (and bilinear forms) given
by eq-(21) are invariant under the diagonal subalgebra SU(2)diag ⊂ SU(2)L ×
SU(2)R; i.e. under internal quaternionic U -rotations the interval ds2 remains
invariant. In the case of ordinary spacetime coordinates xµ but octonionic
valued metric Gµν the octonionc affinity is [20]

Υρ
µν = Ωρ

µν (uo + u∗o) + δρ
µ [Lνi u∗i + Kνiui]. (33)

where the spacetime connection is

Ωρ
µν = Γρ

(µν) + i Γρ
[µν]. (34)

naturally there is a nontrivial torsion due to the antisymmetric components of
the connection.

The octonionic curvature is :

Rσ
ρµν = Rσ

ρµν [Ωρ
µν ] (uo + u∗o) + δσ

ρ Pµν . (35)

where Rσ
ρµν [Ωρ

µν ] is the ordinary spacetime curvature corresponding to the
connection Ωρ

µν . The internal space curvature is given by

Pµν = Θµ,ν −Θν,µ − [ Θµ , Θν ]. (36)

in terms of the internal space affinity

Θµ = [Lνi u∗i + Kνi
ui]. (37)

The internal space covariant derivative of an octonionic-valued scalar field
Φ(xµ) is

Dµ Φ = Φ,µ + [ Θµ , Φ ]. (38)

The commutator of two internal space covariant derivatives

[Dµ, Dν ] Φ = Pµν Φ−Φ Pνµ + { Θµ ,Θν , Φ }. (39)

contains a crucial non-vanishing associator term { Θµ ,Θν , Φ } which is the
hallmark of the octonionic structure; also there is a nontrivial ordering of the
terms Pµν Φ−Φ Pνµ that is a reflection of the noncommutativity.

The full covariant derivative (from the spacetime and internal space perspec-
tive) of a split-octonionic valued spacetime tensor is

Dα Aρ
µ = Aρ

µ,α + Ωρ
σα Aσ

µ − Ωσ
µα Aρ

σ + [ Θα, Aρ
µ ]. (40)

the commutator of two derivatives is

[ Dα, Dβ ] Aµ = Rµ
ραβ Aρ + Aµ Pαβ + { Υµ

ρα ,Υρ
τβ , Aτ } −
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{ Υµ
ρβ ,Υρ

τα, Aτ } + 4 { Θα ,Θβ , Aµ } − 2 Aµ
;ρ Ωρ

[αβ]. (41)

where the full-fledged curvature tensor in eq-(35) involving the spacetime and
internal space curvature can also be written as

Rµ
ραβ = Υµ

ρα,β − Υµ
ρβ,α + Υµ

τβ Υτ
ρα − Υµ

τα Υτ
ρβ . (42)

the spacetime covariant derivative is

Aµ
;α = Aµ

,α + Ωµ
ρα Aρ. (43)

and the Ricci tensor is Rµν = Rρ
µρν . The inverse Gµν is such GµνGµν =

δν
µ (uo +u∗o) which permits to construct the scalar curvature R = Gµν Rµν and

the analog of the Einstein-Hilbert action [20]. A Palatini independent variation
of the metric and connection furnishes the equations of motion of the coupled
Einstein-Maxwell-Yang-Mills equations

Rµν = 0,
1√
|G|

∂ν (
√
|G| Fµν) = 0. (44)

− 1√
|G|

∂ν (
√
|G| Fµν

(1) k ) + 2 εijk Kνi Fµν
(2) j = 0

− 1√
|G|

∂ν (
√
|G| Fµν

(2) k ) + 2 εijk Lνi Fµν
(1) j = 0. (45)

where G = 1
4Trace [ det (Gµν) ].

The construction of the full-fledged octonionic gravity complicates even fur-
ther when the spacetime coordinates themselves are octonionic valued, xµ → Zµ,
since now the left and right derivatives are not the same; the line interval is
not U -invariant as we have shown, it is only invariant under the SU(2)diag ⊂
SU(2)L×SU(2)R when restrictions are imposed; among other subtleties dealing
with the notion of octonionic/quaternionic analytical functions. As far as we
know this nonassociative and noncommutative octonionic spacetime geome-
try has not been developed so far. It is warranted to develop the full fledged
nonassociative and noncommutative octonionic gravity because it is very ap-
pealing for the reasons that it would not require to introduce Quantum Groups,
Fuzzy spaces, Moyal and Hopf algebraic deformations of the spacetime Poincare
algebra; nor to introduce by hand the noncommutativity of the spacetime coor-
dinates and momenta [54], [55], [53].

The split-octonionic momentum is

Pµ = pµ
o u∗o + qµ

o uo + πµ
i u∗i + σµ

i ui =
(

pµ
o ωo −πµ

i ωi

σµ
i ωi qµ

o ωo

)
(46)

An immediate consequence of the noncommutative and nonassociative space-
time geometry is the modified dispersion relations which can be inferred from
the expression of the norm of an octonionic-valued momentum vector Pµ
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||Gµν Pµ Pν || =
1
4

Trace [Gµν •Pµ •Pν ] =

1
2
gµν pµ

o pν
o +

1
2
sk

µν σµ
k pν

o +
1
2
gµν πµ

k σν
k +

1
2
sk

µν σν
k qµ

o +

1
2
εijk ri

µν σµ
j σν

k +
1
2
rk
µν πν

k pµ
o +

1
2
gµν σµ

k πν
k +

1
2
εijk si

µν πµ
j πν

k +
1
2
rk
µν πµ

k qν
o +

1
2
gµν qµ

o qν
o (47)

When one imposes the constraints pµ
o = qµ

o and πµ
i = σµ

i among the com-
ponents of the split-octonion Pµ, and F (1)

µν = F (2)
µν among the components of

the metric, then the norm ||Gµν Pµ Pν || given by eq-(47) is invariant under
the diagonal subalgebra SU(2)diag ⊂ SU(2)L × SU(2)R; i.e. under the internal
quaternionic U -rotations, the momentum norm (47) remains invariant.

Under these restrictions on the components, the corrections of order κ2 to
the ordinary norm

1
2

gµν (pµ
o pν

o + qµ
o qν

o + 2 πµ
k σν

k) = gµν (pµ
o pν

o + πµ
k πν

k). (48)

are then given by

(κ)2 (λ)2 εijk F i
µν πµ

j πν
k + .... = (κ)2 (λ)2 ~Fµν . ~Σµν + ..... (49)

One of the most important novel conclusions of this work is that one has
found in eq- (47), (49) the modified dispersion relations of the momentum,
whose corrections are proportional to the length scale squared κ2 (of the order of
the Planck scale squared, i.e. 1/M2

Planck ) involving the coupling of the internal
components of the left/right isospin-momentum πµ

k , σµ
k to the SU(2)L, SU(2)R

Yang-Mills field strengths F (1)
µν ,F (2)

µν . In the particular case that

sk
µν σµ

k = rk
µν πν

k = 0. (50a)

the O(κ2) ∼ O(1/M2
Planck) corrections are due entirely to the flux of the Yang-

Mills fields through the area-momentum in the internal isospin space

Σµν
i = εijk πµ

j πν
k . (50b)

given by

Φflux = εijk F i
µν πµ

j πν
k = ~Fµν . ~Σµν , (50c)

Thus, the flux of ~Fµν through the area-momentum ~Σµν in the internal isospin
space yields the corrections O(1/M2

Planck) to the energy-momentum dispersion
relations and without violating Lorentz invariance.

This finding is not unique to octonions and quaternions. Next we will re-
view how the minimal length string uncertainty relations can be obtained from

13



polyparticle dynamics in Clifford-spaces (C-spaces) [50]. The truly C-space in-
variant norm of a momentum poly-vector is defined (after introducing suitable
powers of the Planck mass that is set to unity in order to match units)

||P ||2 = π2 + pµpµ + pµνpµν + pµνρp
µνρ + .... = M2 (51)

The way to generate different expressions for the M2 is by taking slices
(sections ) of the 2D-dim mass-shell hyper-surface in C-space onto subspaces of
smaller dimensionality. This is achieved by imposing the following constraints
on the components of the poly-vector-momentum. In doing so one is explicitly
breaking the poly-dimensional covariance and for this reason one can obtain an
infinity of possible choices for the Casimirs M2.

To demonstrate this, we impose the following constraints :

pµνpµν = a2(pµpµ)2 = a2p
4. pµνρp

µνρ = a3(pµpµ)3 = a3p
6. ...... (52)

Upon doing so the norm of the poly-momentum becomes:

||P ||2 = PAPA =
n=D∑
n=0

anp2n = M2(ao, a2, a3, ..., aD) (53)

Therefore, by a judicious choice of the coefficients an, and by reinserting the
suitable powers of the Planck scale, which have to be there in order to combine
objects of different dimensions, one can reproduce all the possible Casimirs in
the form:

M2 = m2 [f(Λm/h̄)]2. m2 ≡ pµpµ = p2. (54)

The simplest way to infer the effects of the poly-vector-valued coordinates
of C-space on the commutation relations is by working with an effective energy
dependent h̄eff that appears in the nonlinear de Broglie dispersion relation.
The mass-shell condition in C-space, after imposing the constraints among the
poly-vector valued components, yields an effective mass M = mf(Λm/h̄). The
generalized de Broglie relations, which are no longer linear, are [50]

|Peffective| = |p| f(Λm/h̄) = h̄effective(k2) |k|.

h̄effective(k2) = h̄f(Λm/h̄) = h̄
n=N∑
n=0

an(Λm/h̄)2n = h̄
n=N∑
n=0

an(Λk)2n

m2 = p2 = pµpµ = (h̄k)2. (55)

where the upper limit in the sum N = D is given by the spacetime dimen-
sion. Using the effective h̄eff in the well known relation based on the Schwartz
inequality and the fact that |z| ≥ |Imz| leads to

∆xi∆pj ≥ 1
2
|| < [xi, pj ] > ||. [xi, pj ] = i h̄eff (k2) δij . (56)
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The use of the inequalities,

< p2 > ≥ (∆p)2; < p4 > ≥ (∆p)4; ..... < p2n > ≥ (∆p)2n (57)

in the above equations leads to :

< h̄effective(k2) > ≥ h̄
n=N∑
n=0

an (Λ/h̄)2n (< (pn)2n >) ≥

h̄
n=N∑
n=0

an (Λ/h̄)2n (∆p)2n. (58)

Finally, we get that for each pair of conjugate canonical variables (x, px); (y, py); (z, pz); ..
the product of uncertainties (we omit indices for simplicity) is given by

∆x ∆p ≥ 1
2
h̄ +

a1h̄

2
(
Λ
h̄

)2 (∆p)2 +
a2h̄

2
(
Λ
h̄

)4 (∆p)4 + ............ (59)

The second term of last relation yields the stringy contribution to the modified
uncertainty relations , whereas the higher order corrections in eq-(58) stem from
the higher rank components of the poly-momentum and represent the mem-
brane, 3-brane.... and D− 1-brane contributions to the generalized uncertainty
relations given by :

∆x ≥ h̄

2∆p
+

a1

2
Λ2

h̄
∆p +

a2

2
Λ4

h̄3 (∆p)3 + ..... (60)

By replacing lengths by times and momenta by energy one reproduces the
minimal Planck time uncertainty relations. By keeping only the first two terms
of eq-(60) one can infer that there is a minimum uncertainty of the order of
the Planck scale Λ.

QM in Clifford-spaces (C-spaces) is very rich with many novelties [50]. A
novel Weyl-Heisenberg algebra in Clifford-spaces was constructed that is based
on a matrix-valued HAB extension of Planck’s constant [50]. As a result of
this modified Weyl-Heisenberg algebra one will no longer be able to measure,
simultaneously, the pairs of variables (x, px); (x, py); (x, pz); (y, px), ... with ab-
solute precision. New Klein-Gordon and Dirac wave equations and dispersion
relations in Clifford-spaces were presented. The latter Dirac equation were a
generalization of the Dirac-Lanczos-Barut-Hestenes equation.

Another important conclusion deals with the role of the anti-symmetric com-
ponent of the metric g[µν] = κ2 Fµν that is related to the Maxwell EM field
strength in the Einstein-Strauss, Moffat-Boal nonsymmetric theory of gravity
[19]. The Noncommutative momentum variables in Yang’s noncommutative
phase space spacetime obey the algebra
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[ pµ, pν ] = i (
h̄

R
)2 Jµν . (61)

where Jµν is the generator of the Lorentz algebra (angular momentum) and R is
an infrared upper cutoff length scale ( a minimum momentum). Consequently,
the norm of the Moyal-Kontsevich star product

[ g(µν) + ig[µν] ] pµ ∗ pν = g(µν) pµpν − (
h̄

R
)2 g[µν] Jµν + .... (62)

will receive corrections of the order ( h̄
R )2 κ2 Fµν Jµν .

An explicit isomorphism between Yang’s Noncommutative space-time alge-
bra and the area-coordinates algebra associated with Clifford spaces was found
in [50]. The former Yang’s algebra involves noncommuting coordinates and
momenta with a minimum Planck scale Λ (ultraviolet cutoff) and a minimum
momentum p = h̄/R (maximal length R, infrared cutoff ). The double-scaling
limit of Yang’s algebra Λ → 0, R → ∞, in conjunction with the large n → ∞
limit, leads naturally to the area quantization condition ΛR = L2 = nΛ2 ( in
Planck area units ) given in terms of the discrete angular-momentum eigenval-
ues n. Modified Newtonian dynamics were also a consequence of Yang’s algebra
resulting from the modified Poisson brackets.

To finalize, we must add that Nonassociative Gauge theories based on the
Moufang S7 loop product ( not a Lie algebra ) have been constructed by [39].
They are based on the Moufang S7-loop valued field strength

F = dA + A ∧A + g−1 {g, A, A}. (63)

where g is an S7-valued function, called a gauge, it is a section of the S7

principal bundle and physically it represents a frame with respect to which one
can describe charged fields. Taking the algebra of octonions with a unit norm as
the Moufang S7-loop one reproduces a nonassociative octonionic gauge theory
which is a generalization of the Maxwell and Yang-Mills gauge theories based
on Lie algebras. BPST -like instantons solutions in D = 8 were also found.
These solutions represented the physical degrees of freedom of the transverse
8-dimensions of superstring solitons in D = 10 preserving one and two of the 16
spacetime supersymmetries.

Nonassociative Gauge theories based on the left and right bimodules of the
octonionic algebra were constructed by [38]. The octonionic gauge formulation
of EM Dyons involving both electric e and magnetic charges g (which couple to
a complex-valued potential Vµ = Aµ− iBµ ) and Gravitational-Dyons involving
real and imaginary masses have been studied by [37], [38].

An E8 exceptional geometric structure of D = 11 Supergravity was con-
jectured by [59] after performing a 3 + 8 split of the fields in D = 11. The
exceptional metric GMN whose indices M,N involve 8 vector m = 1, 2, ....8
indices and 28 bi-vector-valued indices [mn] in d = 8-dimensions. The metric
GMN encoded the propagating bosonic fields gmn, A[mnp] of Supergravity in one
scoop and was explicitly given in terms of a generalized 248× 36 matrix VAM by
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GMN = VAM VAN , M = m, [mn] = 8 + 28 = 36; A = 1, 2, 3, ......, 248. (64)

the A indices run over the 248 dimenions of E8.
Despite that octonions are nonassociative there are in fact Octonionic re-

alizations of the (associative) Cl(8) and Cl(4) algebras in [46], [45], [38], by
means of left/right products. The known Octonionic realizations of the Clifford
Cl(8), Cl(4) algebras should permit the construction of octonionic string ac-
tions that should have a correspondence with ordinary string actions for strings
moving in a curved Clifford-space target background associated with a Cl(3, 1)
algebra,. For instance, the Cl(3, 1)-space interval involving poly-vectors admits
an 8 + 8 split [22] of the form

| dX |2 = dΩ2 + (dx0)2 − (dxi)2 − (dx0i)2 + (dxij)2 − (dx123)2 +

(dx023)2 + (dx013)2 + (dx012)2 − (dx0123)2; i, j, k = 1, 2, 3. (65)

when a Clifford-valued poly-vector in D = 4 ( after setting the Planck scale to
unity ) admits the expansion

X = XM EM = Ω 1 + xµγµ + x[µν]γ[µν] + x[µνρ]γ[µνρ] + x[µνρτ ]γ[µνρτ ]. (66)

and can be decomposed into a scalar, vector, second rank antisymmetric tensor,
axial-vector and pseudo-scalar yielding a total of 24 = 16 = 8 + 8 components.

An octonionic string ( p-brane ) action is defined in terms of octonionic-
valued maps Zµ(ξa), a = 1, 2, ..., p + 1 from the p + 1-dim world-volume of
the string ( p-brane ) into the octonionic-valued target spacetime background
Zµ, µ = 1, 2, 3, .....D, as

S =
Tp

2

∫
dp+1ξ

√
h hab [

1
4

Trace ( ∂aZµ • ∂bZν • Gµν ) − (p−1) ]. (67)

where hab is the auxiliary p + 1-dim world-volume metric correspoding to the
p-brane. When p = 1 the string world-sheet is two-dim, thus the embed-
ding spacetime target background must have at least D = 2 and whose two
octonionic-valued spacetime coordinates are Zµ = Z0,Z1 with a net number of
2× 8 = 16 real components that match the number of 24 = 16 components of a
Clifford poly-vector X corresponding to the Clifford algebra Cl(3, 1). We leave
for future investigation the correspondence between the octonionc string action
(68) ( p = 1 ) and an ordinary string action corresponding to a string moving
in a curved Clifford space background given by [21]

S =
T

2

∫
d2ξ

√
h hab ∂aXM ∂bXN GMN . (68)

where GMN is the curved C-space ( Clifford space ) metric that can be decom-
posed into sums of antisymmetrized products of the ordinary D = 4 spacetime
metric as
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Gµν = gµν , Gµi1µi2 νj1νj2
=

1
2!

εi1i2 εj1j2 gµi1νj1
gµi2νj2

. (69a)

Gµi1µi2µi3 νj1νj2νj3
=

1
3!

εi1i2i3 εj1j2j3 gµi1νj1
gµi2νj2

gµi3νj3
. (69b)

Gµi1µi2µi3µi4 νj1νj2νj3νj4
=

1
4!

εi1i2i3i4 εj1j2j3j4 gµi1νj1
gµi2νj2

gµi3νj3
gµi4νj4

.

(69c)
A lot remains ahead, some preliminary work can be found in [47], [48], [49],

[50] , [51] , [52], [53], [12].
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