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We continue to study the Chern–Simons E8 Gauge theory of Gravity developed by the
author which is a unified field theory (at the Planck scale) of a Lanczos–Lovelock Grav-
itational theory with a E8 Generalized Yang–Mills (GYM) field theory, and is defined
in the 15D boundary of a 16D bulk space. The Exceptional E8 Geometry of the 256-
dim slice of the 256 × 256-dimensional flat Clifford (16) space is explicitly constructed
based on a spin connection ΩAB

M , that gauges the generalized Lorentz transformations
in the tangent space of the 256-dim curved slice, and the 256 × 256 components of the
vielbein field EA

M , that gauge the nonabelian translations. Thus, in one-scoop, the viel-
bein EA

M encodes all of the 248 (nonabelian) E8 generators and 8 additional (abelian)
translations associated with the vectorial parts of the generators of the diagonal sub-
algebra [Cl(8) ⊗ Cl(8)]diag ⊂ Cl(16). The generalized curvature, Ricci tensor, Ricci
scalar, torsion, torsion vector and the Einstein–Hilbert–Cartan action is constructed. A
preliminary analysis of how to construct a Clifford Superspace (that is far richer than
ordinary superspace) based on orthogonal and symplectic Clifford algebras is presented.
Finally, it is shown how an E8 ordinary Yang–Mills in 8D, after a sequence of symmetry
breaking processes E8 → E7 → E6 → SO(8, 2), and performing a Kaluza–Klein–Batakis
compactification on CP 2, involving a nontrivial torsion, leads to a (Conformal) Gravity
and Yang–Mills theory based on the Standard Model in 4D. The conclusion is devoted
to explaining how Conformal (super) Gravity and (super) Yang–Mills theory in any
dimension can be embedded into a (super) Clifford-algebra-valued gauge field theory.

Keywords: C-space gravity; Clifford algebras; grand unification; exceptional algebras;
string theory.

1. Introduction

Grand-Unification models in 4D based on the exceptional E8 Lie algebra have been
known for sometime [29]. Both gauge bosons Aa

µ and left-handed (two-component)
Weyl fermions are assigned to the adjoint 248-dim representation that coincides
with the fundamental representation (a very special case for E8). The Higgs bosons
Φ are chosen from among the multiplets that couple to the symmetric product
of two fermionic representations Ψa

LCΨb
LΦab (C is the charge conjugation matrix)

385
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such that [248× 248]S = 1 + 3875+ 27000. Bars and Gunaydin [29] have argued
that a physically relevant subspace in the symmetry breaking process of E8 is
SO(16) → SO(10) × SU(4), where the 128 remaining massless fermions (after
symmetry breaking) are assigned to the (16, 4̄) and (1̄6, 4) representations. SU(4)
serves as the family unification group (four fermion families plus four mirror fermion
families of opposite chirality) and SO(10) is the Yang–Mills GUT group.

This symmetry breaking channel occurs in the 135-dim representation of
SO(16) that appears in the SO(16) decomposition of the 3875-dim representation
of E8 : 3875 = 135 + 1820 + 1920. By giving a large v.e.v (vacuum expectation
value) to the Higgs Φab in the 135-dim representation of SO(16), corresponding
to a symmetric traceless tensor of rank 2, all fermions and gauge bosons become
super-heavy except for the adjoint representations of gauge bosons given in terms
of the SO(10)×SU(4) decomposition as (45, 1)+(1, 15). The spinor representations
of the massless fermions is 128 = (16, 4̄)+ (1̄6, 4), leading to 4 fermion families plus
their 4 mirror ones. In this process, only 120 fermions and 188 gauge bosons of the
initial 248 have gained mass.

In SO(10) GUT a right-handed massive neutrino (a SU(5) singlet) is added to
each Standard Model generation so that 16 (two-component) Weyl fermions can now
be placed in the 16-dim spinor representation of SO(10) and, which in turn, can be
decomposed in terms of SU(5) representations as 16 = 1+5∗+10 [32]. In the second
stage of symmetry breaking, the fourth family of 5∗ + 10; 5 + 10∗ becomes heavy
without affecting the remaining 3 families. Later on [30] found that a Peccei–Quinn
symmetry could be used to protect light fermions from acquiring super large masses.
If this protection is to be maintained without destroying perturbative unification,
three light families of fermion generations are singled out which is what is observed.
In addition to the other three mirror families, several exotic fermions also remain
light.

The other physically relevant symmetry breaking channel is E8 → E6 × SU(3)
with 3 fermion families (and their mirrors) assigned to the 27 (2̄7) dim representa-
tion of E6:

248 = (1, 8) + (78, 1) + (27, 3) + (2̄7, 3̄).

In this case, in addition to the 16 fermions assigned to the 16-dim dim spinor
representation of SO(10), there exist 11 exotic (two-component) Weyl fermions for
each generation. The low energy phenomenology of Superstring-inspired E6 models
has been studied intensively. New particles including new gauge bosons, massive
neutrinos, exotic fermions, Higgs bosons and their superpartners, are expected to
exist. See [34] for an extensive review and references.

The supersymmetric E8 model has more recently been studied as a fermion fam-
ily and grand unification model [28] under the assumption that there is a vacuum
gluino condensate but this condensate is not accompanied by a dynamical gener-
ation of a mass gap in the pure E8 gauge sector. A study of the interplay among
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Exceptional Groups, del Pezzo surfaces and the extra massless particles arising from
rational double point singularities can be found in [10].

Clifford algebras and E8 are key ingredients in Smith’s D4 − D5 − E6 − E7 −
E8 grand unified model in D = 8 [7]. Exceptional, Jordan, Division and Clifford
algebras are deeply related and essential tools in many aspects in Physics [12, 18–25,
44]. Ever since the discovery [1] that 11D supergravity, when dimensionally reduced
to an n-dim torus led to maximal supergravity theories with hidden exceptional
symmetries En for n ≤ 8, it has prompted intensive research to explain the higher
dimensional origins of these hidden exceptional En symmetries [2, 5]. More recently,
there has been a lot of interest in the infinite-dim hyperbolic Kac–Moody E10

and nonlinearly realized E11 algebras arising in the asymptotic chaotic oscillatory
solutions of Supergravity fields close to cosmological singularities [1, 2].

The classification of symmetric spaces associated with the scalars of N extended
Supergravity theories, emerging from compactifications of 11D supergravity to
lower dimensions, and the construction of the U -duality groups as spectrum-
generating symmetries for four-dimensional BPS black-holes [5] also involved
exceptional symmetries associated with the exceptional magic Jordan algebras
J3[R, C, H, O]. The discovery of the anomaly free 10-dim heterotic string for the
algebra E8 ×E8 was another hallmark of the importance of Exceptional Lie groups
in Physics.

Supersymmetric nonlinear σ models of Kahler coset spaces E8
SO(10)×SU(3)×U(1) ;

E7
SU(5) ;

E6
SO(10)×U(1) are known to contain three generations of quarks and leptons

as (quasi) Nambu–Goldstone superfields [26] (and references therein). The coset
model based on G = E8 gives rise to 3 left-handed generations assigned to the 16
multiplet of SO(10), and 1 right-handed generation assigned to the 16∗ multiplet of
SO(10). The coset model based on G = E7 gives rise to 3 generations of quarks and
leptons assigned to the 5∗ + 10 multiplets of SU(5), and a Higgsino (the fermionic
partner of the scalar Higgs) in the 5 representation of SU(5).

An E8 gauge bundle was instrumental in the understanding the topological part
of the M -theory partition function [8, 9]. A mysterious E8 bundle which restricts
from 12-dim to the 11-dim bulk of M theory can be compatible with 11-dim super-
symmetry. The nature of this 11-dim E8 gauge theory remains unknown. We hope
that the Chern–Simons E8 gauge theory of gravity in D = 15 advanced in this work
may shed some light into solving this question.

E8 Yang–Mills theory can naturally be embedded into a Cl(16) algebra Gauge
Theory and the 11D Chern–Simons (Super) Gravity [4] is a very small sector of a
more fundamental polyvector-valued gauge theory in Clifford spaces. Polyvector-
valued Supersymmetries [15] in Clifford-spaces turned out to be more fundamental
than the supersymmetries associated with M, F theory superalgebras [14]. For this
reason we believe that Clifford structures may shed some light into the origins
behind the hidden E8 symmetry of 11D Supergravity and reveal more important
features underlying M, F theory.
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In [31] we constructed a Chern–Simons E8 gauge theory of (Euclideanized)
Gravity in D = 15 (the 15-dim boundary of a 16-dim space) based on an octic
E8 invariant expression in D = 16 constructed by [27], and proposed that a grand
unification of gravity with all the other forces is possible after including Super-
symmetry in order to incorporate spacetime fermions (which are the gauginos of
the theory). The E8 invariant action had 37 terms and contained: (i) the Lanczos–
Lovelock Gravitational action associated with the 15-dim boundary ∂M16 of the
16-dim manifold; (ii) 5 terms with the same structure as the Pontryagin p4(F IJ )
16-form associated with the SO(16) spin connection ΩIJ

µ where the indices I, J

run from 1, 2, . . . , 16; (iii) the fourth power of the standard quadratic E8 invariant
[I2]4; (iv) plus 30 additional terms involving powers of the E8-valued F IJ

µν and Fα
µν

field-strength (2-forms).
The main purpose of this work is to extend the above results on Chern–Simons

E8 Gauge theories of Gravity in order to build the Exceptional E8 Geometry of
Cl(16) (super)space; to construct an E8 gauge theory of gravitation and to show
how to obtain unified field theories of Conformal (super) Gravity and (super)
Yang–Mills by exploiting the algebraic structures of (super) Clifford algebras in
higher dimensions, in particular 8D and 16D. A candidate action for an Excep-
tional E8 gauge theory of gravity in 8D was constructed recently [54]. It was
obtained by recasting the E8 group as the semi-direct product of GL(8, R) with a
deformed Weyl-Heisenberg group associated with canonical-conjugate pairs of vec-
torial and antisymmetric tensorial generators of rank two and three. This decom-
position of the E8 algebra generators in terms of GL(8, R) is presented in the
Appendix A.

2. The Exceptional E8 Geometry of Cl(16)
Superspace and Unification

2.1. A Chern–Simons E8 gauge theory gravity and

grand-unification in higher dimensions

In this section we will begin by reviewing our work [31] by showing why the E8

algebra is a subalgebra of Cl(16) = Cl(8) ⊗ Cl(8) and how E8 admits a 7-grading
decomposition in terms Sl(8, R) [5, 7], and provide the action corresponding to the
Chern–Simons E8 gauge theory of (Euclideanized) Gravity [31] which naturally
furnishes a Gravity-E8 Generalized Yang–Mills unified field theory in 15D (the
boundary of a 16D bulk space). We then proceed to discuss in detail why a E8

singlet chiral spinor Ψα has enough degrees of freedom to accommodate 4 fermion
families (plus 4 mirror ones) belonging to the 16-dim representations of the SO(10)
GUT group in 4D, after a dimensional reduction from 16D to 4D is performed.

It is well known among the experts that the E8 algebra admits the SO(16)
decomposition 248 → 120⊕128. The E8 admits also a SL(8, R) decomposition [5].
Due to the triality property, the SO(8) admits the vector 8v and spinor representa-
tions 8s,8c. After a triality rotation, the SO(16) vector and spinor representations
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decompose as [5]

16 → 8s ⊕ 8c. (2.1a)

128s → 8v ⊕ 56v ⊕ 1⊕ 28⊕ 35v. (2.1b)

128c → 8s ⊕ 56s ⊕ 8c ⊕ 56c. (2.1c)

To connect with (real) Clifford algebras [7], i.e. how to fit E8 into a Clifford struc-
ture, start with the 248-dim fundamental representation E8 that admits a SO(16)
decomposition given by the 120-dim bivector representation plus the 128-dim chiral-
spinor representations of SO(16). From the modulo 8 periodicity of Clifford algebras
over the reals one has Cl(16) = Cl(2 × 8) = Cl(8) ⊗ Cl(8), meaning, roughly, that
the 216 = 256×256 Cl(16)-algebra matrices can be obtained effectively by replacing
each single one of the entries of the 28 = 256 = 16 × 16 Cl(8)-algebra matrices
by the 16 × 16 matrices of the second copy of the Cl(8) algebra. In particular,
120 = 1 × 28 + 8 × 8 + 28 × 1 and 128 = 8 + 56 + 8 + 56, hence the 248-dim E8

algebra decomposes into a 120+128 dim structure such that E8 can be represented
indeed within a tensor product of Cl(8) algebras.

At the E8 Lie algebra level, the E8 gauge connection decomposes into the SO(16)
vector I, J = 1, 2, . . . , 16 and (chiral) spinor A = 1, 2, . . . , 128 indices as follows

Aµ = AIJ
µ XIJ + AA

µ YA, XIJ = −XJI ,

I, J = 1, 2, 3, . . . , 16, A = 1, 2, . . . , 128,
(2.2)

where XIJ , YA are the E8 generators. The Clifford algebra (Cl(8)⊗Cl(8)) structure
behind the SO(16) decomposition of the E8 gauge field AIJ

µ XIJ + AA
µ YA can be

deduced from the expansion of the generators XIJ , YA in terms of the Cl(16) algebra
generators. The Cl(16) bivector basis admits the decomposition

XIJ = aIJ
ij (γij ⊗ 1) + bIJ

ij (1⊗ γij) + cIJ
ij (γi ⊗ γj) (2.3)

where γi are the Clifford algebra generators of the Cl(8) algebra present in Cl(16) =
Cl(8) ⊗ Cl(8); 1 is the unit Cl(8) algebra element that can be represented by a
unit 16 × 16 diagonal matrix. The tensor products ⊗ of the 16 × 16 Cl(8)-algebra
matrices, like γi ⊗ 1, γi ⊗ γj , . . . furnish a 256 × 256 Cl(16)-algebra matrix, as
expected. Therefore, the decomposition in (2.3) yields the 28+28+8×8 = 56+64 =
120-dim bivector representation of SO(16); i.e. for each fixed values of IJ there are
120 terms in the r.h.s of (2.3), that match the number of independent components
of the E8 generators XIJ = −XJI , given by 1

2 (16 × 15) = 120. The decomposition
of YA is more subtle. A spinor Ψ in 16D has 28 = 256 components and can be
decomposed into a 128 component left-handed spinor ΨA and a 128 component
right-handed spinor ΨȦ. The 256 spinor indices are α = A, Ȧ; β = B, Ḃ, . . . with
A, B = 1, 2, . . . , 128 and Ȧ, Ḃ = 1, 2, . . . , 128, respectively.

Spinors are elements of right (left) ideals of the Cl(16) algebra and admit the
expansion Ψ = Ψαξα in a 256-dim spinor basis ξα which in turn can be expanded
as sums of Clifford polyvectors of mixed grade; i.e. into a sum of scalars, vectors,
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bivectors, trivectors, . . . Minimal left/right ideals elements of Clifford algebras may
be systematically constructed by means of idempotents e2 = e such that the geo-
metric product of Cl(p, q)e generates the ideal [25].

The commutation relations of E8 are [5]

[XIJ , XKL] = 4(δIKXLJ − δILXKJ + δJKXIL − δJLXIK).

[XIJ , Y α] = −1
2
Γαβ

IJ Yβ ; [Y α, Y β ] =
1
4
Γαβ

IJ XIJ , Γαβ
IJ = [ΓI , ΓJ ]αβ . (2.4)

The combined E8 indices are denoted by A ≡ [IJ ], α (120 + 128 = 248 indices in
total) that yield the Killing metric and the structure constants

ηAB =
1
60

TrTATB = − 1
60

fA
CDfBCD. (2.5a)

f IJ,KL,MN = −8δIKδLJ
MN + permutations; f IJ

αβ = −1
2
ΓIJ

αβ ;

ηIJKL = − 1
60

f IJ
CDfKL,CD.

(2.5b)

The E8 algebra as a sub-algebra of Cl(8)⊗Cl(8) is consistent with the SL(8, R)
7-grading decomposition of E8(8) (with 128 noncompact and 120 compact gener-
ators) as shown by [5]. Such SL(8, R) 7-grading is based on the diagonal part
[SO(8) × SO(8)]diag ⊂ SO(16) described in full detail by [5] and can be deduced
from the Cl(8) ⊗ Cl(8) 7-grading decomposition of E8 provided by Larsson [7] as
follows,

[γµ
(1) ⊕ γµν

(1) ⊕ γµνρ
(1) ] ⊗ 1(2) + 1(1) ⊗ [γµ

(2) ⊕ γµν
(2) ⊕ γµνρ

(2) ] + γµ
(1) ⊗ γν

(2). (2.6)

These tensor products of elements of the two factor Cl(8) algebras, described by
the subscripts (1), (2), furnishes the 7-grading of E8(8)

8 + 28 + 56 + 64 + 56 + 28 + 8 = 248. (2.7)

8 corresponds to the 8D vector γµ; 28 is the 8D bivector γµν ; 56 is the 8D trivector
γµνρ, and 64 = 8 × 8 corresponds to the tensor product γµ

(1) ⊗ γν
(2). In essence

one can rewrite the E8 algebra in terms of 8 + 8 vectors Za, Za (a = 1, 2, . . . , 8);
28 + 28 bivectors Z [ab], Z[ab]; 56 + 56 trivectors E[abc], E[abc], and the SL(8, R)
generators Eb

a which are expressed in terms of a 8 × 8 = 64-component tensor
Y ab that can be decomposed into a symmetric part Y (ab) with 36 independent
components, and an anti-symmetric part Y [ab] with 28 independent components.
Its trace Y cc = N yields an element N of the Cartan subalgebra such that the
degrees −3,−2,−1, 0, 3, 2, 1 of the 7-grading of E8(8) can be read from [51]

[N, Za] = 3Za; [N, Za] = −3Za; [N, Zab] = 2Zab; [N, Zab] = −2Zab.

(2.8a)

[N, Eabc] = Eabc; [N, Eabc] = −Eabc; [N, Eb
a] = 0 (2.8b)

where the 63 generators Eb
a (after subtracting the trace)

Eb
a =

1
8
(Γab

αβX [αβ] + Γab
α̇β̇

X [α̇β̇]) + Y (ab) − 1
8
δabN. (2.8c)
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for the (vector) indices a, b = 1, 2, . . . , 8 span the SL(8, R) subalgebra of E8(8).
The spinorial indices α, β = 1, 2, . . . 8 and α̇, β̇ = 1, 2, . . . 8 correspond to the chi-
ral/antichiral 8s,8c spinor representations of SO(8). The 64 components Y ab are
part of the 128 chiral SO(16) spinorial components Y A = (Y αβ̇ , Y ab) after perform-
ing the SO(8) decomposition of the chiral spinorial SO(16) indices into 64 + 64
components Y αβ̇ , Y ab, respectively. Whereas the 120 SO(16) bivectors XIJ are
decomposed in terms of X [αβ], X [α̇β̇] and Xαβ̇ with 28 + 28 + 64 = 120 compo-
nents, respectively. We refer to [51] for details.

The Cl(16) gauge theory that encodes the E8 gauge theory in D-dim is based
on the E8-valued field strengths

F IJ
µν XIJ = (∂µAIJ

ν − ∂νAIJ
µ )XIJ + AKL

µ AMN
ν [XKL, XMN ] + Aα

µAβ
ν [Yα, Yβ ].

(2.9)

FA
µνYα = (∂µAα

ν − ∂νAα
µ)Yα + Aα

µAIJ
ν [Yα, XIJ ]. (2.10)

The E8 actions in 4D are

STopological[E8] =
∫

d4x
1
60

Tr[FA
µνFB

ρτ TATB]εµνρτ =
∫

d4xFA
µνFB

ρτηABεµνρτ

=
∫

d4x[F IJ
µν FKL

ρτ ηIJKL + Fα
µνF β

ρτηαβ + 2F IJ
µν F β

ρτηIJβ ]εµνρτ

(2.11)

and

SY M [E8] =
∫

d4x
√

g
1
60

Tr[FA
µνFB

ρτTATB]gµρgντ =
∫

d4x
√

gFA
µνFB

ρτ ηABgµρgντ

=
∫

d4x
√

g[F IJ
µν FKL

ρτ ηIJKL + Fα
µνF β

ρτ ηαβ + 2F IJ
µν F β

ρτηIJβ ]gµρgντ .

(2.12)

The above E8 actions can be embedded onto more general Cl(16) actions with a
much larger number of terms as shown in [31].

The action that defines a Chern–Simons E8 gauge theory of (Euclideanized)
Gravity in 15-dim (the boundary of a 16D space) was based on the octic E8 invariant
constructed by [27] and is defined [31]

S =
∫
M16

〈FF · · ·F 〉E8

=
∫
M16

(FM1 ∧ FM2 ∧ · · · ∧ FM8)ΥM1M2M3···M8

=
∫

∂M16
L(15)

CS (A,F) . (2.13)

The E8 Lie-algebra valued 16-form 〈F 8〉 is closed: d(〈FM1TM1 ∧ FM2TM2 ∧ · · · ∧
FM8TM8〉) = 0 and locally can always be written as an exact form in terms of
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an E8-valued Chern–Simons 15-form as I16 = dL(15)
CS (A,F). For instance, when

M16 = S16 the 15-dim boundary integral (2.15) is evaluated in the two coordinate
patches of the equator S15 = ∂M16 of S16 leading to the integral of tr(g−1dg)15 (up
to numerical factors) when the gauge potential A is written locally as A = g−1dg
and g belongs to the E8 Lie-algebra. The integral is characterized by the elements of
the homotopy group π15(E8). S16 can also be represented in terms of quaternionic
and octonionic projectives spaces as HP 4, OP 2 respectively.

In order to evaluate the operation 〈 · · · 〉E8 in the action (2.13) it involves the
existence of an octic E8 group invariant tensor ΥM1,M2,...,M8 that was recently con-
structed by Cederwall and Palmkvist [27] using the Mathematica package GAMMA
based on the full machinery of the Fierz identities. The entire octic E8 invari-
ant contains powers of the SO(16) bivector XIJ and spinorial Y α generators
X8, X6Y 2, X4Y 4, X2Y 6, Y 8. The corresponding number of terms is 6, 11, 12, 5, 2
respectively giving a total of 36 terms for the octic E8 invariant involving 36 numer-
ical coefficients multiplying the corresponding powers of the E8 generators. There
is an extra term (giving a total of 37 terms) with an arbitrary constant multiplying
the fourth power of the E8 quadratic invariant I2 = − 1

2 tr[(F IJ
µν XJ)2 + (Fα

µνYα)2].
Thus, the E8 invariant action has 37 terms containing: (i) the Lanczos–Lovelock

Gravitational action associated with the 15-dim boundary ∂M16 of the 16-dim
manifold; (ii) 5 terms with the same structure as the Pontryagin p4(F IJ ) 16-form
associated with the SO(16) spin connection ΩIJ

µ and where the indices I, J run
from 1, 2, . . . , 16; (iii) the fourth power of the standard quadratic E8 invariant [I2]4;
(iv) plus 30 additional terms involving powers of the E8-valued F IJ

µν and Fα
µν field-

strength (2-forms).
Therefore, the essence of the action in Eq. (2.13) as explained in [31] comprises

a Chern–Simons (Euclideanized) Gravity coupled to a E8 Generalized Yang–Mills
theory in the 15D boundary of a 16D manifold. Certainly, the bulk in 16D theory
has large number of degrees of freedom. One can freeze-off a large number of them,
such that upon a dimensional reduction to 4D and truncation of degrees of freedom,
one will obtain 4D Gravity interacting with a E8 Yang–Mills theory. A supersym-
metrization program yields 4D SUGRA coupled to E8 SUSY YM (after dimensional
reduction and truncation). Why not start with the quartic invariant in 8D and/or
a quadratic invariant in 4D instead of the octic invariant in 16D? Because it is

the SO(16) maximal subgroup of E8(8) that requires us to build a theory in the
16D bulk space and its 15D boundary. To sum up, a Chern–Simons E8 Gauge
Theory of gravity requires a 16D bulk space which upon dimensional reduction to
4D and truncation of degrees of freedom leads to the desired 4D Gravitational and

E8 Yang–Mills theory. Thus we have a natural Gravity-E8 Yang–Mills unification
theory stemming from the Chern–Simons E8 Gauge Theory of Gravity in higher
dimensions.

A supersymmetric version of the octic E8 invariant action (2.13) involves a vec-
tor supermultiplet Am

µ , Ψm
α in D = 16, with 248 spacetime fermions Ψm

α in the
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fundamental 248-dim representation of E8 (m = 1, 2, . . . , 248), and 248 spacetime
vectors (gluons) Am

µ in the 248-dim adjoint representation, µ = 1, 2, 3, . . . , 16. The
16D spacetime chiral spinor index α runs over 1, 2, 3, . . . , 128. One should not con-
fuse the spacetime spinorial indices with the internal space ones associated with the
spinorial generators of E8. The fermions are the gluinos in this very special case
because the 248-dim fundamental and 248-dim adjoint representations of the excep-
tional E8 group coincide. The exceptional group E8 is unique in this respect. In
ordinary supersymmetric Yang–Mills the superpartners of the fermions are scalars,
however, in the supersymmetric E8 Yang–Mills case, the fermions Ψm

α (gluinos) and
the vectors Am

µ (gluons) comprise the vector supermultiplet.
It is true that the chiral spinors Ψm

α in D = 16 have many degrees of free-
dom, since m ranges over the 248 generators of E8 (120 vector and 128 spinorial
generators) and α = 1, 2, 3, . . . , 128. It is interesting to notice that if one had a
singlet spinor Ψα, belonging to the 1-dim trivial “scalar” representation of E8

and if, and only if, one could mix the internal spinorial indices of SO(10) and
SU(4) ∼ SO(6) with the 4D spacetime spinorial indices, after the dimensional
reduction process from 16D → 4D, the initial 128 spacetime spinorial components
in 16D (α = 1, 2, 3, . . . , 128) of the E8 singlet chiral spinor Ψα will have enough room
to accommodate 64 two-component chiral Weyl spinors in 4D (since 2× 64 = 128).
And, in turn, the 64 two-component Weyl spinors in 4D could assemble themselves
into 4 copies of 16 two-component Weyl spinors in 4D, where the 16 Weyl spinors
can be assigned to the 16-dim chiral spinorial representation of SO(10).

Therefore, one could argue that the E8 singlet chiral spinor Ψα in 16D has
precisely the right number of degrees of freedom to accommodate the 4 families of
fermions in the 16-dim chiral spinorial representation of the SO(10) GUT group in
4D. The 4 mirror fermion families would be assigned to the anti-chiral Weyl spinor
Ψα̇. To sum up, starting from a E8 singlet spinor in 16D, one would have recovered
upon dimensional reduction to 4D the same number of (four) fermion families as
those in the E8 GUT models of [29] in 4D, with the provision that one could mix
the internal spinorial indices of SO(10), SU(4) ∼ SO(6), with the 4D spacetime
spinorial indices in the dimensional reduction process. In this fashion, one would
have encoded all 4D fermions of all the families into a E8 singlet fermion Ψα in
16D. This possibility warrants further investigation.

To conclude, we must emphasize that the Chern–Simons E8 Gauge theory of
(Euclideanized) Gravity [31] in higher dimensions (the 15D boundary of a 16D

space), unifying a Lanczos–Lovelock gravitational theory with a E8 Generalized
Yang–Mills theory, involves a gauge theory of E8 comprised of higher powers of the
field strengths F rather than the mere quadratic ones as in ordinary YM, in addition
to a Lanczos–Lovelock gravitational theory which also involves higher powers of the
curvature field strengths R rather than the linear power R as in ordinary Einstein
Gravity. Despite the higher powers of field strengths and curvatures, the equations
of motion for the graviton and YM field are no higher than two [4] avoiding the
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problem of ghosts in higher derivative theories. This is the hallmark of theories
based on actions of the Chern–Simons form (Lanczos–Lovelock type for gravity).
Since Witten [6] has shown that 3D Chern–Simons gravity is exactly solvable as a
quantum theory, despite that ordinary 3D gravity is not perturbative renormaliz-
able, one might have a (non)perturbative finitely renormalizable and unitary (free
of ghosts) Quantum theory of Lanczos–Lovelock Gravity, unified with a E8 Gener-
alized Yang–Mills theory, based on the quantization of the Chern–Simons E8 Gauge
theory of Gravity [31] in higher dimensions. The issue of instabilities and anomalies
has to be analyzed in full depth since anomalies may spoil the quantum consis-
tency of the theory. For very deep connections between 3D Chern–Simons Gravity,
Extremal Conformal Field Theories with central charges c = 12k (k is an inte-
ger) and the Monster Group in classifying the physical states of a BTZ black-hole,
see [6].

The underlying reason why one has a unified Lanczos–Lovelock gravitational
theory with a E8 Generalized Yang–Mills theory, in one scoop, is due to very spe-
cial properties of the E8 Yang–Mills algebra involving SO(16) bivectorial generators
AIJ

µ , I, J = 1, 2, 3, . . . , 16, and SO(16) chiral spinorial ones AA
µ , A = 1, 2, 3, . . . , 128.

Commutators of the bivector generators yields bivector ones; commutators of spino-
rial generators yields also bivector ones, and commutators of bivectors with spinorial
generators yields spinorial ones. This mixing is what accounts for having a unified
Lanczos–Lovelock gravitational theory with a E8 Generalized Yang–Mills theory.
The SO(16) bivector pieces appearing in the E8 commutators encode both the terms
in the Lanczos–Lovelock gravitational sector theory, as well as the SO(16) bivector
parts of the E8 Generalized Yang–Mills gauge theory (120 of them). The SO(16)
spinorial pieces appearing in the commutators of the spinorial generators encode
the SO(16) spinorial parts of the E8 Generalized Yang–Mills (128 of them).

2.2. The exceptional E8 geometry of Cl(16)-superspaces

In this section we will develop a novel theory (to our knowledge) by generalizing
the construction of the Chern–Simons E8 Gauge theory of (Euclideanized) Gravity
to the Exceptional E8 Geometry of the C-space associated to the Clifford algebra
C(16) = Cl(8) ⊗ Cl(8) by taking the 256-dim diagonal slice of the 256 × 256-dim
space associated with Cl(16) algebra, such that we may decompose the symmetries
of the tangent space of such 256-dim diagonal space, as comprised of 1

2 256×255 =
32640 “rotations” and 256 “translations”. In the same fashion, one could have
decomposed the 248 roots of E8 as 240 + 8, where the 8 roots correspond to the
Cartan subalgebra of E8 which has rank 8. The 240 roots generate “rotations”
and the 8 roots generate “translations”. We prefer however the former geometrical
description directly in terms of the 256-dim slice of the C-space corresponding to
the C(16) algebra. This is what we call the Exceptional E8 Geometry of Cl(16)
spaces. At the end of this section we explain how to extend this construction to
Clifford Superspaces.
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On the speculative side, one could also think of this 256-dim slice of Cl(16)-
space, as if it were the world-manifold of an extended object moving in a flat
256 × 256-dim background space. Such extended object corresponds to a Cl(8)-
space-valued extended object; namely, an extended object spanning the 256 dimen-
sions associated with the C-space corresponding to the 256-dim Cl(8) algebra
(28 = 256). In [3] we described an action which unified extended objects of dif-
ferent intrinsic dimensions (strings, membranes . . . p-branes) in one footing by
embedding a Clifford-space valued world-manifold of dimensions 2d into a target
C-space background of dimensions 2D. The Extended Relativity theory in curved
C-spaces and Phase-Space Clifford spaces can be found in [3, 38].

This slicing of Cl(16)-space is compatible with the E8 algebra being a sub-
algebra of Cl(8)⊗ Cl(8) and consistent with the Sl(8, R) 7-grading decomposition
of E8(8) (with 128 noncompact and 120 compact generators) as shown by [5]. Such
Sl(8, R) 7-grading is based on the diagonal part [SO(8) × SO(8)]diag ⊂ SO(16)
described in full detail by [5] and can be deduced from the Cl(8)⊗Cl(8) 7-grading
decomposition of E8 provided by Larsson [7].

To construct the Exceptional E8 Geometry (Gravity) of Cl(16)-spaces we take
the 256-dim slice by choosing 256 gamma matrices of 16× 16 components (ΥA)αβ ,
where A = 1, 2, 3, . . . , 256 spans over the 256-dim slice, and α, β = 1, 2, 3, . . . , 16
are SO(8) spinorial indices. Such (ΥA) matrices live in the diagonal part of Cl(16):
[Cl(8)⊗Cl(8)]diag ⊂ Cl(16). For instance, in 4D one has 16 gamma 4× 4 matrices
spanning the Cl(4) algebra which is 24 = 16-dim. In 8D one has 256 gamma 16×16
matrices spanning the 28 = 256-dim Cl(8) algebra.

The generalized spin-connection and vielbein are ΩAB
M and EA

M , where M is
a Cl(8)-algebra-valued polyvector index spanning 256 degrees of freedom corre-
sponding to the scalar 1, vector Υµ, bivector Υµν , trivector Υµνρ, . . . of the
[Cl(8) ⊗ Cl(8)]diag diagonal-subalgebra generators of Cl(16). The 256-dim slice
of Cl(16)-space is associated with and underlying 8D spacetime which is a sub-
space of the 16D spacetime corresponding to the Cl(16) algebra. Once again,
one encounters 16D as we did in the Chern–Simons E8 gauge theory of grav-
ity [31]. A, B are the tangent-space Cl(8)-algebra-valued polyvector indices. The
spin-connection gauges the extended Lorentz symmetries of the tangent space
of the 256-dim slice of Cl(16)-space. The vielbein EA

M gauges the (nonabelian)
translations in the 256-dim slice of Cl(16)-space. The generalized gauge connec-
tion is decomposed into a spin-connection and a (nonabelian) translation part
as follows

AM = ΩAB
M [ΥA, ΥB] + AA

MPA. (2.14a)

The 256× 256 components of AA
M match the 256× 256 components of the vielbein

EA
M , hence, by setting the correspondence AA

M ↔ EA
M it gives

AM = ΩAB
M [ΥA, ΥB] + EA

MPA. (2.14b)
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The E8 generators are part of the vielbein one-form EA
MPAdXM . The 256 indices of

A = 1, 2, 3, . . . , 256 are spanned by the PA generators in the 256-dim tangent space
of the 256-dim curved slice of Cl(16)-space. The latter indices can be broken into
256 = 248 + 8. 248 of them are assigned to the nonabelian E8 gauge symmetries
and the remaining 8 indices correspond to the 8 abelian translation generators Pa

associated with the 8 translations in D = 8. Hence we have

PA ≡ 248 E8 generators for A = 1, 2, 3, . . . , 248, (2.15)

PA ≡ 8Pa=1,2,3,...,8 generators when A = 249, 250, . . . , 256. (2.16)

The 248 E8 generators can be decomposed explicitly in terms of the sl(8, R) 7-
grading of E8(8) as shown in Eq. (2.8) [5], [51] : 8 + 8 vectors Za, Za; 28 + 28
bivectors Z [ab], Z[ab]; 56 + 56 trivectors E[abc], E[abc]; the tensor Eb

a generator of
SL(8, R) with 63 elements and the trace N = Y cc of the tensor Y ab as shown in
Eqs. (2.8). The GL(8, R) subalgebra with 64 = 63 + 1 generators is comprised of
Eb

a and N . Therefore we may write the E8 sector (with 248 generators) of the 256
PA generators of the 256-dim slice as follows

A(E8)
M = Ea

MZa + EM,aZa + EM,[ab]Z
[ab] + E [ab]

M Z[ab]

+ EM,[abc]E
[abc] + E [abc]

M E[abc] + Ea
M,bE

b
a + EMN . (2.17)

The remaining contribution (to the 256 generators of the vielbein) from the 8
abelian translation generators Pa are written as Ea

MPa . Hence, one has a triad

of vector generators Za, Za and Pa compatible with the triality property of SO(8).
The vector generators Za, Za of E8(8) decompose into the following SL(8, R) rep-
resentations as follows [51]

Za =
1
4
Γa

αα̇(Xαα̇ + Y αα̇); Za = −1
4
Γa

αα̇(Xαα̇ − Y αα̇). (2.18a)

where the 120 SO(16) bivectors XIJ are decomposed in terms of X [αβ], X [α̇β̇] and
Xαβ̇ with 28 + 28 + 64 = 120 components, respectively. The commutators are [51]

[Za, Zb] = 0; [Za, Zb] = 0, [Za, Zb] = Eb
a − 3

8
δb
aN . (2.18b)

where [Pa, Pb] = 0 and the commutators of the E8 generators with the abelian
translations Pa are all [E8, Pa] = 0. Since the commutator of [Υi, Υj ] = 0, and the
E8 group is also nonabelian, we have in general nonabelian generalized transla-
tions [PA,PB] = 0. A Nonabelian complex gravity in Phase spaces [41], involving
symmetric and anti-symmetric metrics, was instrumental in the construction of a
General Relativity theory based on Born’s Reciprocity principle (of maximal speeds
and maximal proper forces) and gauging Low’s Quaplectic group [42].
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The generalized curvature and torsion two-forms in C-space associated with the
spin connection and vielbein one-forms

ΩAB ≡ ΩAB
M dXM , EA ≡ EA

MdXM (2.19)

are

RAB
MNdXM ∧ dXN = RAB = dΩAB + ΩA

C ∧ ΩCB, (2.20a)

T A
MNdXM ∧ dXN = TA = dEA + ΩA

B ∧ EB + EB ∧ ECfA
BC . (2.20b)

The structure constants fA
BC associated with the E8 × P8 algebra (248 + 8 = 256

generators) are given in Appendices A, B, as well as the structure constants of the
J AB algebra involving the Cl(8) algebra generators JAB = [ΥA, ΥB].

Below we shall define the Clifford-space d exterior derivative operator, the exte-
rior product, the super-extension of d, the ordinary Dirac operator and its super-
extension when orthogonal and symplectic Clifford algebras are introduced in order
to construct a Clifford Superspace, super-connections, super-polyvectors, etc. such
that we can assign all bosons and fermions into a single super-Clifford connection
and correct the problems of [13]. A true grand unification requires a Clifford Super-
space involving Supergravity and Super-Yang–Mills theory and which is consistent
with superstring, M, F theory. However Clifford Superspaces yields a far richer
plethora of tensorial gauge fields (higher spin theories), tensorial coordinates, etc.

The Ricci tensor, Ricci scalar, Torsion tensor, Torsion vector are defined as

RMN = EP
ARAB

MP EBN ; R = GMNRMN = RAB
MNEM

B EN
A ,

TM = T A
MNEN

A ; TMNP = T A
MNEAP , (2.21)

where the metric is defined in terms of the vielbein and the 256-dim tangent space
metric ηAB as

GMN ≡ EA
MEB

NηAB; ηAB = GMNEM
A EN

B ; EBN = ηABEA
N . (2.22)

The tangent space polyvector-valued indices are A, B, C, . . . = 1, 2, . . . , 256. The
base space polyvector-valued indices are M, N, P, Q, . . . = 1, 2, . . . , 256. The inverse
vielbein EM

A is defined as EM
A EB

M = δB
A .

An important remark is in order before continuing. We should not con-
fuse this metric GMN with the C-space metric (comprising a line-metric, area-
metric, volume-metric, . . . hyper-volume metric) [3] that can be written as sums
of antisymmetrized products of the underlying 8D spacetime metric gµν as
gµ1ν1gµ2ν2 · · · gµnνn + signed permutations. It can also be expressed in terms of
the determinant of the n × n block matrix GIJ whose entries are the metric ele-
ments gµiνj . Notice that the Exceptional geometry we are constructing involves
nonabelian translations (it is “noncommutative”) as opposed to the traditional
abelian translations in the tangent spacetime.

In the traditional description of C-spaces [3] there is one component of the
C-space metric Gscalar,scalar = Φ corresponding the scalar element of the Clifford
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algebra that must be included as well. Such scalar component is a dilaton-like
Jordan–Brans–Dicke scalar field. In [40] we were able to show how Weyl-geometry
solves the riddle of the cosmological constant within the context of a Robertson–
Friedmann–Lemaitre–Walker cosmology by coupling the Weyl scalar curvature to
the Jordan–Brans–Dicke scalar φ field with a self-interacting potential V (φ) and
kinetic terms (Dµφ)(Dµφ). Upon eliminating the Weyl gauge field of dilations Aµ

from its algebraic (nonpropagating) equations of motion, and fixing the Weyl gauge
scalings, by setting the scalar field to a constant φo such that φ2

o = 1
16πG, where

G is the present day observed Newtonian constant, we were able to prove that
V (φo) = 3H2

o

8πG was precisely equal to the observed vacuum energy density of the
order of 10−122M4

Planck. Ho is the present value of the Hubble scale.
After this detour, the Einstein–Hilbert–Cartan action is comprised of scalar

curvature plus torsion squared terms

S =
1

2κ2

∫
M256

[d(256)X]
√
|detGMN |[a1R + a2TMT M + a3TMNP T MNP ] (2.23a)

where the 256-dim measure of integration is defined by

[d(256)X] = dσ
∏

dxµ

∏
dxµ1µ2

∏
dxµ1µ2µ3 · · ·

∏
dxµ1µ2µ3···µ8 (2.23b)

in terms of the 256 components of the polyvector X which can be expanded in the
Υ basis corresponding to the diagonal subalgebra [Cl(8) ⊗ Cl(8)]diag ⊂ Cl(16) as

X = σ1 + xµΥµ + xµ1µ2Υ
µ1µ2 + · · ·xµ1µ2µ3···µ8Υ

µ1µ2···µ8 . (2.23c)

In order to match dimensions in the expansion (2.24) one requires to introduce
powers of a length scale [3] which we could set equal to the Planck scale and set it to
unity. In Clifford Phase Spaces [38] one needs two length scales parameters, a lower
and an upper scale. Fermionic matter and scalar-field actions can be constructed
in terms of Dirac–Barut–Hestenes spinors as in [3, 54]. A generalized Einstein-
Hilbert gravity action in C-spaces was given in [3] where in very special cases the
C-space scalar curvature R admits an expansion in terms of sums of powers of the
ordinary scalar curvature R, Riemann curvature Rµνρσ and Ricci Rµν tensor of
the underlying Riemannian spacetime manifold.

An alternative action to the one in Eq. (2.23a) is the one given by the Yang–Mills
action associated with the gauge field described by Eq. (2.14a)

S ∼
∫
M256

[d(256)X]
√
| detGMN | Trace [(FAB

MNJAB)2 + (FA
MNPA)2]. (2.24)

where the field strength FAB
MN = RAB

MN is identified with the curvature, and FA
MN

is given by the 248 elements of the E8 field strength and the 8 extra components
associated with the translations.
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Do we have an example of the 256-dim slice of Cl(16)-space? Let us choose
the ordinary space (comprised of vectorial coordinates) with 2 × 64 + 2 × 64 =
128 + 128 = 256-dimensions

Σ256 = (O × O)P2 × (O × O)P2 (2.25)

where (O × O)P2 is the octo-octonionic two-dim projective space whose isometry
group is E8. Since the isometry group of each copy (O × O) P2 is E8, then the
isometry group of Σ256 is E8×E8 group, which is the familiar symmetry group of the
anomaly free Heterotic string in 10D. The number of generators is 248+248 = 496
and the algebra has rank 8+8 = 16. The E8×E8 ⊂ Cl(16)×Cl(16) = Cl(32). The
bivector generators of Cl(32) correspond to the SO(32) group which is associated
with the anomaly-free open superstring in 10D and also has 496 generators and
rank 16. An open question is to find a realization of the space Σ256 in terns of
polyvector coordinates to see if in fact it admits a reinterpretation as the Cl(8)-
space associated to an underlying 8D manifold.

A different kind of Exceptional E8 Geometry of 11D SUGRA (Supergravity)
was investigated by [51] based on the formulation of 11D SUGRA with a local
SO(16) invariance, after enlarging the SO(2, 1) × SO(8) symmetry of the tangent
space, after a compactification from 11D to 3D, to the group SO(2, 1) × SO(16),
by introducing new gauge degrees of freedom carried by the new field called the
Kaluza–Klein vector Bm

µ , with µ, ν = 0, 1, 2, and m, n = 3, 4, . . . , 10. The ordinary
8 xm coordinates and additional 28 tensorial (bivectors) x[mn] coordinates were
needed. This model is quite different than the one described in this work based
on Cl(16)-spaces. It is interesting, however, that 28 tensorial x[mn] coordinates
and tensorial gauge tranformations were essential features in the construction [5].
Since we have polyvector-valued coordinates comprised of anti-symmetric tensorial
coordinates of rank 2, 3, . . . , 8 as well, it is warranted to explore further relations
between the work of [5] and ours. Generalized Yang–Mills field theories based on
tensorial gauge transformations in C-space and extensions of the Standard Model
were investigated in [54]. This is the reason why a Clifford Superspace is needed to
incorporate Supergravity into the picture as we shall see below.

For a recent E8 algebraic interpretation in terms of the Cl(8, 8) algebra and
SO(8, 8), see [43]. In [45] we discussed the relationship between an Octonionic string
and Octonionic Gravity based on an Octonionic (1, 1) world sheet of real dimensions
8 + 8 = 16, with 8 spatial and 8 temporal dimensions; i.e, the 16D space is two-
dimensional from the octonionic point of view. The connection stems from the fact
that the 16-dim C-space corresponding to the Clifford algebra Cl(4) associated with
an underlying a 4D space (let us our 4-dim spacetime), is comprised of a basis of
24 = 16 elements given by 1 scalar, 4 vectors, 6 bivectors, 4 axial vectors, and 1
pseudoscalar, and have a one-to-one correspondence to the 16 vectors of SO(8, 8).

To finalize, we explain how to construct the exterior Clifford calculus and its
supersymmetric extension in Clifford Superspaces. In order to achieve this one needs
an orthogonal Clifford algebra {Γµ, Γν} = 2gµν1, where µ, ν = 1, 2, . . . , m, as well as
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a symplectic Clifford algebra [49] defined by [Σ2i−1, Σ2j ] = δij1, and other relations,
where the components of the canonical symplectic two-form in a 2n-space (say a
Phase space), with indices running i, i = 1, 2, . . . , n can be written as a 2n × 2n

antisymmetric matrix with 1,−1 off the main diagonal. One has now ordinary Dirac
spinors as well as symplectic spinors [47, 48].

The bosonic differentials obey dxµ ∧ dxν = −dxν ∧ dxµ, while the Grassmanian
ones, defined in terms of anti-commuting coordinates {θi, θj} = 0, obey dθi ∧dθj =
dθj ∧ dθi.

The Cliford space differential is

d = dσ
∂

∂σ
+ dxµ ∂

∂xµ
+ dxµ1µ2

∂

∂xµ1µ2

+ · · ·dxµ1µ2···µm
∂

∂xµ1µ2···µm
(2.26)

where the tensorial coordinates are fully antisymmetric in their indices.
The Clifford Superspace differential requires adding the Grassmanian contribu-

tion to the bosonic differential

dθ
∂

∂θ
+ dθi ∂

∂θi
+ dθi1i2

∂

∂θi1i2

+ · · ·dθi1i2···i2n
∂

∂θi1i2···i2n
(2.27)

where the tensorial Grassmanian coordinates are fully symmetric in their indices.
The super-Dirac operator is [49] obtained by adding the Grassmanian contribu-

tion to the ordinary Dirac operator

m∑
1

Γµ ∂

∂xµ
+ 2

n∑
1

(
2j∑ ∂

∂θ2j−1
−

2j−1∑ ∂

∂θ2j

)
. (2.28)

The superdimension is defined by m− 2n. In ordinary 2D Conformal Field Theory
bosons have a central charge c = 1, while fermions have c = 1

2 . If m − 2n = 0 this
means that we have an equal number of bosonic and fermionic degrees of freedom,
which is what occurs in supersymmetric field theories.

We will define the Clifford Superspace extension of the super-Dirac operator by
including the tensorial bosonic and tensorial Grassmanian variables. Namely, by
having

D = 1
∂

∂σ
+ Γµ ∂

∂xµ
+ Γµ1µ2

∂

∂xµ1µ2
+ · · · + Γµ1µ2···µm

∂

∂xµ1µ2···µm

+ 1
∂

∂θ
+ 2

(
2j∑ ∂

∂θ2j−1
−

2j−1∑ ∂

∂θ2j

)

+ 2

(
2j1,2j2∑ ∂

∂θ2j1−1,2j2−1
−

2j1−1,2j2−1∑ ∂

∂θ2j1,2j2

)
+ · · ·
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+ 2

(
2j1,2j2,...,2jn∑ ∂

∂θ2j1−1,2j2−1,...,2jn−1

−
2j1−1,2j2−1,...,2jn−1∑ ∂

∂θ2j1,2j2,...,2jn

)
. (2.29)

where Σi1i2···ik are the sums of symmetrized products of the Σ’s consistent with
the tensorial Grassmanian coordinates being fully symmetric in their indices. This
is the reciprocal of the tensorial bosonic coordinates being fully antisymmetric in
their indices and the Γµ1µ2···µk being the sums of antisymmetrized products of the
Γ’s with unit weight.

The contraction of super-differential operators, the Laplace–Beltrami super-
differential operators, the solution to the super-harmonic oscillator, . . . for ordi-
nary superspace can be found in [49]. Their construction can be extended to Clif-
ford superspaces by similar methods outlined here. The exterior products of the
(Clifford-algebra-valued) spin-connection and vielbein one-forms in Clifford-space
given by Eqs. (2.19, 2.20) is

Ω ∧E = ΩA
C ∧ ECPA = ΩAB

M EC
N [[ΥA, ΥB],PC ]dXM ∧ dXN . (2.30a)

Ω ∧ Ω = ΩA
C ∧ ΩCB[ΥA, ΥB]

= ΩAC
M ΩCB

N [[ΥA, ΥC ], [ΥC , ΥB]]dXM ∧ dXN . (2.30b)

dΩ =
∂ΩAB

N

∂XM
[ΥA, ΥB]dXM ∧ dXN . (2.30c)

dE =
∂EA

N

∂XM
PAdXM ∧ dXN . (2.30d)

and can also be constructed in Clifford-superspace by including both orthogonal and
symplectic Clifford algebras and generalizing the Clifford super-differential exte-
rior calculus in ordinary superspace [49], to the full fledged Clifford-Superspace
outlined here. Notice that the commutators in Eqs. (2.30) are just the polyvec-
tor valued extensions of the usual Poincare algebra commutators [Mµν ,Mρσ] and
[Mµν , Pρ], when the Lorentz algebra generators are realized in terms of Clifford
bivectors as Mµν ∼ [γµ, γν ]. In Clifford spaces in order to evaluate the commuta-
tors involving polyvector generators requires the computation of all commutators
of all of the Clifford-algebra generators Γµ, Γµ1µ2 , Γµ1µ2µ3 , . . . , see [50]. Generalized
orthogonal Clifford algebras; symplectic Clifford algebras as subalgebras of super-
Clifford algebras; symplectic Clifford algebraic field theory . . . can be found in [47].
The full development of the Clifford Superspace exterior differential calculus will
be the subject of further investigation. In particular the construction of generalized
Supergravity and Super–Yang–Mills theory in Clifford Superspaces and the Clifford
(super) space extensions of (super)twistors.
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2.3. A conformal gravity and standard model unification in 4D

from E8 Yang–Mills in D = 8

Before embarking into this section we must say that the discussion, reasoning and
most of the results in this section are different from [7, 13]. There are some over-
laps with Smith’s model of gravity and particle physics involving Cl(8) algebras.
In particular, we avoid the problems encountered in the model [13] by attempt-
ing to assign all (massless fields prior to symmetry breaking) gauge bosons, Higgs
scalars and matter fermions as elements of a single E8 gauge connection with-
out invoking Supersymmetry nor a Quillen’s BRST-like superconnection. Within
the realm of the super Clifford algebras developed by Dixon [47, 49], based on
orthogonal and symplectic Clifford algebras, one can accommodate bosonic and
fermionic gauge degrees of freedom, as well as scalar and fermionic matter, into
a single super-Clifford-algebra polyvector-valued connection, by choosing a suffi-
ciently large algebra. An example of this assignment of many fields within a single
Clifford-algebra-valued polyvector-connection has been discussed in detail by [54].
Polyvectors contain scalars, pseudoscalars, vectors, axial-vectors, bivectors (anti-
symmetric tensors of rank 2), . . . thus one can have scalar matter and vector gauge
bosons within a polyvector. In Clifford-superspace one incorporates fermionic mat-
ter, gauginos, gravitinos, . . . as well.

As mentioned above, orthogonal and symplectic Clifford algebras have been
widely used by [49] to develop a Clifford algebraic formulation of Superspaces
present in Supersymmetry and Supergravity. In this fashion one can now accom-
modate bosons and fermions into a single super-Clifford-algebra polyvector-valued-
connection avoiding the problems of [13]. The tetrad em

µ , gravitino Ψµ, photon,
photino, Yang–Mills gauge fields, gauginos, the scalars Higgs, Higgsinos, . . . all
can now be assembled into the super-Clifford-algebra polyvector-valued connec-
tion. Ordinary supersymmetry rotates elements within a given multiplet. In a scalar
supermultiplet, scalars (spin 0) and fermions (spin 1

2 ) are rotated into each other. In
a vector multiplet, one has the gauge field (spin 1) rotated into a gaugino (spin 1

2 ). In
the graviton multiplet, the graviton (spin 2) is rotated into a gravitino (spin 3

2 ). In
Clifford Superspaces, however, all these fields from all these multiplets are encoded
into a single super-Clifford polyvector multiplet and can be rotated into each other
under polyvector-valued extensions of SUSY.

A Polyvector-valued extension of ordinary Poincare super-algebras in connection
to the M, F theory super-algebras [14], involving tensorial antisymmetric charges
and based on Clifford spaces was studied by [15]. Dixon [47] has also recurred to an
algebraic design in Nature and unification based on the four Division algebras Real,
Complex, Quaternions and Octonions. An Ashtekar formulation of Gravity in 8D
using the octonionic structure constants has been attained by [39]. For complex,
quaternionic and octonionic gravity see [46] and references therein.

After this preamble, as discussed in the introduction, the authors have analyzed
in detail [29, 30] the symmetry breaking of E8 → SO(10) × SU(4), where SO(10)
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is the GUT group and SU(4) is the four families (plus four mirror families) uni-
fication group. The symmetry breaking leaves 128 (i = 1, 2, 3, . . . , 128) massless
(chiral) spinors Ψi

α (out of the initial 248 since 120 have acquired large masses). It
leaves 60 gauge bosons massless and 188 massive. The remaining 60 unbroken gauge
symmetries admit the SO(10)×SU(4) decomposition given by (45, 1)+(1, 15) and,
as expected, the 45 gauge bosons are assigned to the adjoint representation of the
GUT group SO(10), and 15 gauge bosons are associated with the gauging of the
SU(4) family group.

The analysis of [29, 30] was restricted to 4D. If one begins with a E8 Yang–
Mills in 16D the number of degrees of freedom is far larger. By having 128 massless
spinors, since each chiral spinor in 16D is comprised of 128 components, in the
dimensional reduction process 16D → 4D, one would end up with a plethora of
4 × 64 fermion families, plus 4 × 64 mirror fermion families, of two-component
(left-handed and right-handed) Weyl spinors in 4D assigned to the 16-dim chi-
ral (anti-chiral) spinor representation of SO(10). One would argue that this leaves
us with too many families, a 64-fold increase . . . For this reason one would have
to freeze (truncate to zero) a large number of degrees of freedom of most of the
fermions (and scalars emerging from the gauge bosons) in the dimensional reduc-
tion process, in order to end up with Conformal Gravity and a SO(10) × SU(4)
Yang–Mills theory interacting with 4 fermion families (plus their 4 mirror fam-
ilies) in 4D. Another possibility that one can envision is to find a mechanism,
through the symmetry breaking process from SO(10) × SU(4) to the Standard
Model group, that brings about large masses for most of the fermion families,
except for 3 or 4 light ones at lower energies which is compatible with what
is observed.

Despite that a large number of families might destroy perturbative unification,
asymptotic freedom, . . . there is nothing wrong, in principle, after the symmetry
breaking process (there are other different symmetry breaking branches, we choose
one in particular)

E8 → SO(10) → SU(5) → SU(3)c × SU(2)L × U(1)Y → SU(3)c × U(1)EM

(2.30)

to end up with a large number of massive fermions, which in turn, can themselves
be regrouped into 64 hierarchical layers of increasing mass, with 4 families in each
layer, from ordinary energies all the way to the GUT scale MGUT and Planck
energy scale 1019 Gev. As we go from lower to higher energies, the 64 hierarchical
layers of fermions begin to unfold. Hence, in this scenario there would not be a
“desert” between lower energies and the GUT and Planck scale. Therefore, at first
hand we should not disregard this possibility. Of course, to avoid the plethora of
particles, and to simplify matters, it is more natural to start with an ordinary E8

Yang–Mills in 4D which must not be confused with the E8 Generalized Yang–Mills
theory associated with the Chern–Simons E8 Gauge theory of Gravity in higher
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dimensions involving polynomials in the E8 field strength, Riemann curvature and
torsion [31] and discussed in the previous section.

The GUT group SO(10) is very physically appealing for many reasons as stated
in [32]. In particular, it admits two physically relevant branchings [32]

E8 → SO(10) × SU(4) →
SO(10) → SO(6) × SO(4) ∼ SU(4) × SU(2)L × SU(2)R (2.31)

leading at the end of the chain to the Patti–Salam unification group. There is also
the SU(5) GUT model branch

E8 → SO(10) × SU(4) → SO(10) →
SU(5) × U(1) → [SU(3)c × SU(2)L × U(1)Y ] × U(1)B−L (2.32)

where the brackets include the Standard Model group and B − L denotes baryon
minus lepton number.

Starting now from an ordinary E8 Yang–Mills gauge field theory in 8D we shall
follow two different channels of symmetry breaking of the E8(−24) algebra with 112
noncompact and 136 compact generators such that the character of the real form is
122 − 136 = −24. The first channel is obtained by finding the judicious subgroups
H of E8(−24), E7(−5), E6(−14), respectively, from the table of the classification of
real forms and cosets G

H of exceptional groups in [33] and it leads to

E8(−24) → E7(−5) × SU(2) → E6(−14) × U(1) →
SO(8, 2) × U(1) → SO(8, 2). (2.33)

After 4 successive symmetry breakings, and following closely the tables in [33], one
finally has reached the sought after 8D Conformal group SO(8, 2) appearing in
the last term of the sequence and which will furnish a Conformal Gravitational
theory in 8D after gauging the Conformal group. At this stage of matters we shall
not be concerned about the details of the 4 symmetry breaking mechanisms from
the beginning of the chain of symmetries to the end. At the moment we are only
concerned with the algebraic group structures present in the branching chain of
group symmetries in (2.29).

The next step is to recur to the Kaluza–Klein compactification process of the 8D

Conformal Gravity theory down to 4D. Contrary to the lore that it is not possible
to obtain the Standard Model group SU(3) × SU(2) × U(1) in 4D directly from
a Kaluza–Klein compactification of Gravity from 8D to 4D, (higher dimensions
than D = 8 were thought to be needed to attain this goal) Batakis [11] uncovered
an extra SU(2) × U(1) gauge field structure to the SU(3) gauge field structure,
from a Kaluza–Klein compactification process of the form M8 → M4 × CP 2,
provided a nontrivial torsion in the total space is incorporated. Such torsion creates
a new possibility for the construction of a unified theory in 8D not envisioned
before. In particular, C-spaces have torsion [3]. Therefore, a compactification of the
8D theory down to 4D along the internal space CP 2 will lead to a (Conformal)
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Gravitational and Yang–Mills theory in 4D based on the Standard Model group
SU(3)c × SU(2)L ×U(1)Y . Therefore, starting from an E8 ordinary Yang–Mills in
8D, after a sequence of symmetry breaking processes, and performing a Kaluza–
Klein–Batakis compactification on CP 2, we are able to recover a Gravity–Yang–
Mills theory based on the Standard Model.

Another channel of symmetry breaking processes is

E8(−24) → E6(−14) × SU(3) → SO(8, 2) × U(1) → SO(8, 2). (2.34)

As stated in the introduction, the SU(3) in the first stage of the symmetry break-
ing process is the 3 fermion family unification group as it occurs in the Heterotic
string theory in 10D, with 3 fermion families (and their mirrors) assigned to the 27
(2̄7)-dim representation of E6:

248 = (1, 8) + (78, 1) + (27, 3) + (2̄7, 3̄). (2.35)

Once again, at the end of the chain (2.34) we recover the conformal group SO(8, 2)
in 8D. Gauging the conformal group yields 8D Conformal gravity and a Kaluza–
Klein compactification from 8D → 4D along an internal CP 2 space, a la Batakis
[11], yields a 4D (Conformal) Gravity and a Yang–Mills theory based on the Stan-
dard Model group SU(3)c × SU(2)L × U(1)Y . In this respect, the results (not
our arguments) of this section are very similar to those of Smith’s model of grav-
ity and particle physics which includes the determination of coupling constants,
particle masses, mixing angles, etc. [7]. A thorough analysis of the connections
between Smith’s model and Clifford Phase spaces associated with 8D was presented
in [38, 54].

The quasi conformal groups (with four times), like the SO(12, 4) in 12D do
arise in the E8(−24) symmetry breaking chain. It is one of the subgroups with 48
noncompact generators and 72 compact ones. 12D is the dimensions of Vafa’s F -
theory. The quasi conformal groups like SO(12, 4) have been studied by Gunaydin
et al. [29]. To our knowledge we are not aware of anyone gauging the quasi-conformal
group in order to obtain a quasi-conformal theory of Gravity in 12D. By imposing
suitable constraints; partially fixing some of the gauge symmetries and gauging
the remaining symmetries we should be able to recover the ordinary Gravitational
theory in 12D based on gauging the Poincare Group ISO(D−1, 1), the semi-direct
product of the Lorentz group SO(D−1, 1) with the Translation group TD in D-dim.
Bars for the past years has studied in depth the two times 2T physics based on the
conformal groups SO(D, 2) [36].

Metric affine theories of Gravity developed by Ne’eman and collaborators are
based in gauging the semi-direct product of GL(D, R) with the translation group
in D-dim. GL(D, R) admits infinite-dimensional spinorial representations but not
finite-dimensional ones. GL(D, R) spinors have an infinite number of components.
For this reason one cannot realize the GL(D, R) infinite-component spinors in terms
of left/right ideal elements of the Cl(D, R) algebra. One would require to have
the D → ∞ limit Cl(D, R) = Cl(8) × CL(8) × · · · by exploiting the modulo
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8 periodicity of real Clifford algebras. Complex Clifford algebras have a modulo
2 periodicity. This infinite product of Cl(8) has been discussed by Smith [7] in
relation to von Neumann’s type II1 algebras. Ogievetsky has shown long ago that
the algebra of gl(D, R) and the conformal algebra so(D, 2) does not close. However,
upon taking an infinite succession of nested commutators, one generates the infinite-
dim diffeomorphisms algebra in D-dim. This is a fundamental result because it
implies that Einstein gravity may be an emergent theory after a symmetry breaking
process. For example, the metric tensor gµν in D-dim has D(D + 1)/2 components
which match the dimensions of the noncompact coset space GL(D, R)/SO(D, R).

To conclude Sec. 2. In Subsec. 2.1 we have explained why the Chern–Simons
E8 Gauge theory of Gravity [31] is a unified field theory at the Planck scale of
a Lanczos–Lovelock Gravity (LL) and a E8 Generalized Yang–Mills (GYM) field
theory and defined in the 15D boundary of a 16D bulk space. The dimensional
reduction from 16D → 4D yields ordinary Gravity and a E8 Yang–Mills defined
in the 3D boundary of a 4D bulk space after a freezing (truncation) of degrees
freedom. Thus we have a Gravity-E8 Yang–Mills unification at the Planck scale in
4D. The rigorous details of the reduction of Chern–Simons gravitational theories
from higher to lower dimensions was presented by [37].

In Subsec. 2.2 we explained the nature of the Exceptional E8 Geometry associ-
ated to the 256-dim “curved ” slice of the 256×256-dimensional flat Cl(16) space. A
more general E8 gauge theory of gravity in such a 256-dim curved slice is obtained
by introducing the spin connection ΩAB

M , that gauges the generalized Lorentz trans-
formations in the tangent space of the 256-dim curved slice; M = 1, 2, 3, . . . , 256;
A, B = 1, 2, 3, . . . , 256. There are in addition 256× 256 components of the vielbein
one-form EA

MPAdXM , which encode in one-scoop, all the 248 E8 gauge fields and
8 additional translations associated with the vectorial parts of the generators Υi;
i = 1, 2, 3, . . . , 8 of the diagonal subalgebra [Cl(8)⊗Cl(8)]diag ⊂ Cl(16). Therefore,
the E8 gauge symmetry is just part of the 248 + 8 = 256 generalized nonabelian
translations along the tangent space of the 256-dim slice of the Cl(16)-space. We
constructed the curvature, Ricci tensor and Ricci scalar; the torsion tensor and
torsion vector, and finally we displayed the Einstein–Hilbert–Cartan action that
represents a generalized Exceptional E8 theory of gravity corresponding to the
256-dim curved slice in terms of its underlying “diagonal” embedding into a flat
Cl(16)-space background. Finally we described how to construct a Clifford Super-
space based on orthogonal, symplectic Clifford algebras (subalgebras of the super-
Clifford algebras [47]) and extending the Clifford analysis approach to superspace
of [49] to the one involving polyvectors.

At the beginning of Sec. 2.3 we reviewed briefly the E8 Yang–Mills theory in
4D, following the Bars–Gunaydin–Barr detailed analysis [29, 30] of the symmetry
breaking process E8(8) → SO(16) → SO(10)×SU(4) and leading to a SO(10) GUT
group and SU(4) family unification group (4 fermion families plus 4 mirror families).
Bars–Gunaydin and Barr, respectively, have analyzed in full detail how a symmetry
breaking of SO(10) and E6 leaves only 3 light families and a super-heavy fourth
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family, which is what is observed. Two branchings of the SO(10) GUT are possible
furnishing the Patti–Salam and/or the Standard Model group at low energies.

At the end of Sec. 2.3, we have explained how an E8 ordinary Yang–Mills in 8D,
after a sequence of symmetry breaking processes E8 → E7 → E6 → SO(8, 2), and
performing a Kaluza–Klein–Batakis compactification on CP 2, involving a nontrivial
torsion, one is able to recover a (Conformal) Gravity and Yang–Mills theory based
on the Standard Model in 4D. These end result agrees with Smith’s Cl(8) model
of gravity and particle physics [7].

3. Conclusion: Conformal Gravity–Yang–Mills Unification from
Clifford Gauge Field Theory

It is known that within the framework of Quantum Field Theory (QFT), the
Coleman-Mandula theorem requires that if symmetries are to be described in terms
of Lie algebras, the symmetries of the proposed Grand Unified Field theory must
be based on the direct product of the Poincare group with the internal symme-
try group G. Haag-Lopuszanski-Sohnius extended the Coleman-Mandula result to
Supersymmetric Quantum Field Theories by introducing spinorial generators. Nev-
ertheless, higher order algebraic extensions of the Poincare and Clifford algebras in
QFT, like ternary and higher order algebras, have been proposed more recently as
another possibility, see [55] and references therein. Since the Poincare group is a
natural subgroup of the Conformal group, we begin this conclusion by showing how
Conformal Gravity can be obtained by gauging the Conformal group and, which
in turn, is a very small sector of a more general Clifford algebra-valued gauge field
theory.

Let us construct the Clifford C(16) gauge field theory by writing the Cl(16)-
valued gauge field

Aµ = AA
µ ΓA = Aµ1 + Aa

µΓa + Aa1a2
µ Γa1a2 + Aa1a2a3

µ Γa1a2a3 + · · ·

+Aa1a2···a16
µ Γa1a2···a16 (3.1)

and the Cl(16)-algebra-valued field strength (omitting numerical coefficients
attached to the Γ’s) is

FA
µνΓA = ∂[µAν]1 + [∂[µAa

ν] + Ab2
[µAb1a

ν] ηb1b2 + · · · ]Γa

+ [∂[µAab
ν] + Aa

[µAb
ν] − Aa1a

[µ Ab1b
ν] ηa1b1 − Aa1a2a

[µ Ab1b2b
ν] ηa1b1a2b2 + · · · ]Γab

+ [∂[µAabc
ν] + Aa1a

[µ Ab1bc
ν] ηa1b1 + · · · ]Γabc

+ [∂[µAabcd
ν] − Aa1a

[µ Ab1bcd
ν] ηa1b1 + · · · ]Γabcd

+ [∂[µAa1a2···a5b1b2···b5
ν] + Aa1a2···a5

[µ Ab1b2···b5
ν] + · · · ]Γa1a2···a5b1b2···b5 + · · ·

(3.2)

and is obtained from the evaluation of the commutators of the Clifford-algebra
generators appearing in (3.1). The most general formulae for all commutators and
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anti-commutators of Γµ, Γµ1µ2 , . . . , with the appropriate numerical coefficients, can
be found in [50].

Therefore, E8 Yang–Mills actions (are part of) can be embedded onto more
general Cl(16) actions with a much larger number of terms given by

STopological[Cl(16)] =
∫

d4x〈FA
µνFB

ρτΓAΓB〉scalarεµνρτ

=
∫

d4xFA
µνFB

ρτGABεµνρτ (3.3)

and

SY M [Cl(16)] =
∫

d4x
√

g〈FA
µνFB

ρτ ΓAΓB〉scalargµρgντ

=
∫

d4x
√

gFA
µνFB

ρτ GABgµρgντ (3.4)

where 〈ΓAΓB〉 = GAB1 denotes the scalar part of the Clifford geometric product
of the gammas Γ. Notice that there are a total of 65536 terms in

FA
µνFB

ρτ GAB = FµνFρτ + F a
µνF a

ρτ + F a1a2
µν F a1a2

ρτ

+ · · · + F a1a2···a16
µν F a1a2···a16

ρτ (3.5)

where the indices run as a = 1, 2, . . . , 16. The Clifford algebra Cl(16) = Cl(8) ⊗
Cl(8) has the graded structure (scalars, bivectors, trivectors, . . . , pseudoscalar)
given by

1 16 120 560 1820 4368 8008 11440 12870
11440 8008 4368 1820 560 120 16 1

(3.6)

consistent with the dimension of the Cl(16) algebra 216 = 256 × 256 = 65536.
We proceed by showing how the conformal algebra so(D, 2) in D-dimensions and

the so(D + 2) algebras are particular subalgebras of the Cl(D − 1, 1) and Cl(D)
algebras, respectively. We may focus on the Cl(7, 1), Cl(8) algebras as examples. A
thorough discussion of Conformal transformations in ordinary spacetime from the
Clifford space perspective can be found in [3].

The 8D Lorentz SO(7, 1) is a subalgebra of Cl(7, 1) which may be real-
ized in terms of the 28 Clifford bivector generators Mµν = − i

4 [Γµ, Γν ] when
µ, ν = 1, 2, 3, . . . , 8. The Clifford Cl(7, 1) algebra is defined in terms of the anti-
commutators

{Γµ, Γν} = 2gµν1; Γ9 = Γ1Γ2Γ3 · · ·Γ8, {Γµ, Γ9} = 0; (Γ9)2 = −1. (3.7)

A Euclidean signature Clifford algebra Cl(8) would lead instead to (Γ9)2 = 1.
It is now when we borrow the results in [3] showing why the 8D Conformal

algebra SO(8, 2) (that contains the Lorentz algebra SO(7, 1)) is just a subalgebra
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of the Clifford algebra Cl(7, 1) after introducing the following realization of the
Conformal Group in D = 8, µ, ν = 1, 2, 3, . . . , 7, 8. The translation generator in
D = 8 is

Pµ = −1
2
Γµ(1 − Γ9) (3.8)

and can be interpreted as a linear combination of the rotation generators Mµ9 +
Mµ10, which from the C-space perspective involve the 8 Γµ generators, the unit
1 element of the Cl(7, 1) algebra which represents a particular direction in C-
space, and the antisymmetrized product of all gammas with unit weight Γ[123···8] ∼
Γ9ε123···8, that represents another direction in C-space [3], such that the effective
number of directions involved in C-space is 8+2 = 10, consistent with the fact that
the Conformal group in 8D is SO(8, 2).

The Conformal boost generator is

Kµ = −1
2
Γµ(1 + Γ9) (3.9)

and can be interpreted as the other independent linear combination of the rotation
generators Mµ9 −Mµ10. The Dilation generator is

D = −1
2
Γ9 (3.10)

and can be interpreted as rotation M9,10. The Lorentz generators are

Mµν = −1
4
[Γµ, Γν ] (3.11)

and can be interpreted as the usual rotations (boosts) around the axes perpendicular
to the xµ − xν planes.

Equipped with a Clifford algebraic realization of the (anti-Hermitian) generators
and after recurring to the Cl(7, 1) algebraic relations, it is a straightforward exercise
to find

[Mµν ,Mρσ] = −gνσMµρ + gνρMµσ + gµσMνρ − gµρMνσ. (3.12)

[Mµν , Pρ] = gνρPµ − gµρPν ; [Mµν , Kρ] = gνρKµ − gµρKν . (3.13)

[Pµ, Pν ] = [Kµ, Kν ] = 0; [Kµ, Pν ] = −2(gµνD + Mµν). (3.14)

[Kµ, D] = −Kµ; [Pµ, D] = Pµ. (3.15)

Notice that despite that the generators of the 8D Conformal Algebra SO(8, 2)
can be recast trivially in terms of the 45 bivectors of the Cl(8, 2) algebra, the key
result of the above Eqs. (3.8)–(3.11) is that it allows us to recast the conformal
SO(8, 2) algebra Eqs. (3.12)–(3.15) in D = 8 directly as a subalgebra of the algebra
associated to the Cl(7, 1) group which is 2D = 28 = 256-dimensional. The Cl(7, 1)
group is spanned by the antisymmetrized products of the 28 = 256 generators

1, Γµ, Γµ1 ∧ Γµ2 , Γµ1 ∧ Γµ2 ∧ Γµ3 , . . . , Γµ1 ∧ Γµ2 ∧ · · ·Γµ8 . (3.16)
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Similar results follow for the Euclidean Clifford algebra Cl(8) defined in terms
of the generators Υi, i = 1, 2, 3, . . . , 8 as

{Υi, Υj} = 2δij1; Υ9 = Υ1Υ2Υ3 · · ·Υ8, {Υi, Υ9} = 0; (Υ9)2 = 1. (3.17)

One may construct the SO(10) algebra realized in terms of the Υ1 generators in
the same way.

Gamma matrices can be used also to find a realization of Superconformal alge-
bras. In particular the realization of the superconformal algebra SU(2, 2|1) in D = 4
can be found in [32]. The superconformal algebra SU(2, 2|1) leaves the superspace
metric invariant

ds2 = dzµdz̄µ + dθ∗α(C−1)αβdθβ (3.18)

where C is the charge conjugation matrix.
To sum up, the so(10) algebra is a natural subalgebra of Cl(8), and the 8D

Conformal algebra so(8, 2) is a subalgebra of the Cl(7, 1) algebra. It is the SO(10)
group which provides one of the GUT groups. While the Conformal group SO(8, 2)
associated to the 8-dim spacetime is the symmetry group associated with the 8D

Conformal Gravity. Similar arguments apply to all Conformal groups SO(D, 2). In
particular, the conformal gravity action in 4D reads

S =
1

4g2

∫
M4

d4xκmnpqF
mn
µν F pq

ρσ εµνρσ (3.19)

where κmnpq is the Killing SO(4, 2) invariant metric defined in terms of the structure
constants of the so(4, 2) algebra as

κmnpq = f
[ab]
[mn][rs]f

[rs]
[ab][pq]. (3.20)

It is antisymmetric under the exchange of m ↔ n, p ↔ q indices and it is symmetric
under the exchange of pairs of indices κmnpq = κpqmn. One should not use εmnpq to
contract internal indices because it is not an SO(4, 2) invariant tensor. In 8D one
may construct the following actions

SY M =
∫

M8
[(F ∧ F) ∧ ∗(F ∧ F)], (3.21)

STopological =
∫

M8
[F ∧ F ∧F ∧ F] (3.22)

which are the 8D counterparts of the 4D actions. In order to contract internal
indices once again one needs to construct the proper group-invariant tensors.

The gist of all this discussion is that one can embed the gauge theories based on
the conformal group SO(D, 2) in D-dim, and the group SO(D′ + 2), into a single
gauge theory based on the Clifford group Cl(D + D′) by selecting judiciously the
proper values of D, D′ and recurring to the modulo 8 periodicity of Clifford algebras
defined over the reals. We display some examples:

D = 4; since SO(3, 1) × SO(8) ⊂ SO(4, 2) × SO(10) ⊂ Cl(3, 1)⊗ Cl(8) (3.23)
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the Cl(11, 1)-algebra gauge field theory defined over the 4D spacetime (base man-
ifold) contains the desired 4D Conformal Gravity (based on SO(4, 2)) and SO(10)
Yang–Mills field theory.

D = 4; since SO(3, 1) × E8 ⊂ SO(4, 2) × E8 ⊂ Cl(3, 1) ⊗ Cl(8) ⊗ Cl(8) (3.24)

the Cl(19, 1)-algebra gauge field theory defined over the 4D spacetime (base man-
ifold) contains the desired 4D Conformal Gravity theory (based on SO(4, 2)) and
E8 Yang–Mills theory.

D = 8; SO(7, 1) × SO(8) ⊂ SO(8, 2) × SO(10) ⊂ Cl(7, 1) ⊗ Cl(8) (3.25)

the Cl(15, 1)-algebra gauge field theory defined over the 8D spacetime (base man-
ifold) contains 8D Conformal Gravity (based on SO(8, 2)) and the SO(10) Yang–
Mills theory.

The main idea of this concluding section is that upon extending this construction
to the super-Clifford algebras case, all Grand-Unified field theories of Conformal
supergravity and Super–Yang–Mills in D-dimensions, with structure groups G =
E8, E7, E6, SO(10), SU(5), . . . , may be embedded into a super-Clifford-gauge field
theory defined over a D-spacetime after exploiting the modulo 8 periodicity of
Clifford algebras. The bosons and fermions are encoded into the various components
of the super-Clifford polyvector-valued super-connection. This will be the subject
of future investigation.
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Appendix A. The GL(8, R) Decomposition of E8

We shall reproduce the full appendix in [51] for the convenience of the reader. To
recover the SL(8, R) basis of [52], we will further decompose the above representa-
tions into representations of the subgroup SO(8) ≡ (SO(8)×SO(8))diag ⊂ SO(16).
The indices corresponding to the 8v,8s and 8c representations of SO(8), respec-
tively, will be denoted by a, α and α̇. After a triality rotation the SO(8) vector and
spinor representations decompose as

16 → 8s ⊕ 8c

128s → (8s ⊗ 8c) ⊕ (8v ⊗ 8v) = 8v ⊕ 56v ⊕ 1⊕ 28⊕ 35v

128c → (8v ⊗8s) ⊕ (8c ⊗ 8v) = 8s ⊕ 56s ⊕ 8c ⊕ 56c. (A.1)

respectively. We thus have I = (α, α̇) and A = (αβ̇, ab), and the E8 generators
decompose as

X [IJ] → (X [αβ], X [α̇β̇], Xαβ̇); Y A → (Y αα̇, Y ab). (A.2)



May 22, 2009 9:11 WSPC/IJGMMP-J043 00358

412 C. Castro Perelman

Next we regroup these generators as follows. The 63 generators

Eb
a :=

1
8
(Γab

αβX [αβ] + Γab
α̇β̇

X [α̇β̇]) + Y (ab) − 1
8
δabY cc. (A.3)

for 1 ≤ a, b ≤ 8 span an SL(8, R) subalgebra of E8. The generator N := Y cc

extends this subalgebra to GL(8, R). Γab, Γabc, . . . are antisymmetrized products of
gammas. The remainder of the E8 Lie algebra then decomposes into the following
representations of SL(8, R):

Za :=
1
4
Γa

αα̇(Xαα̇ + Y αα̇). (A.4)

Z[ab] = Zab :=
1
8
(Γab

αβX [αβ] − Γab
α̇β̇

X [α̇β̇]) + Y [ab]. (A.5)

E[abc] = Eabc := −1
4
Γabc

αα̇ (Xαα̇ − Y αα̇). (A.6)

and

Za := −1
4
Γa

αα̇(Xαα̇ − Y αα̇). (A.7)

Z [ab] = Zab := −1
8
(Γab

αβX [αβ] − Γab
α̇β̇

X [α̇β̇]) + Y [ab]. (A.8)

E[abc] = Eabc := −1
4
Γabc

αα̇ (Xαα̇ + Y αα̇). (A.9)

It is important to emphasize that Za = ηabZ
b, Zab = ηacηdbZ

cd, . . . for these reasons
one should use the following notation for the generators

Za
± ≡ (Za, Za); Zab

± ≡ (Zab, Zab); Zabc
± ≡ (Eabc, Eabc). (A.10a)

and

Eab = E(ab) + E [ab] ≡ Eb
a. (A.10b)

in Eq. (A.3).
The Cartan subalgebra is spanned by the diagonal elements E1

1 , . . . , E7
7 and N ,

or, equivalently, by Y 11, . . . , Y 88. The elements Eb
a for a < b (or a > b) together

with the elements for a < b < c generate the Borel subalgebra of E8 associated
with the positive (negative) roots of E8. Furthermore, these generators are graded
w.r.t. the number of times the root α8 (corresponding to the element N in the
Cartan subalgebra) appears, such that for any basis generator X we have [N, X ] =
deg(X) · X .

The degree can be read off from

[N, Za] = 3Za, [N, Za] = −3Za, [N, Zab] = 2Zab; [N, Zab] = −2Zab

[N, Eabc] = Eabc, [N, Eabc] = −Eabc; [N, Eb
a] = 0. (A.11)

The remaining commutation relations are given by

[Za, Zb] = 0; [Za, Zb] = 0; [Za, Zb] = Eb
a − 3

8
δb
aN. (A.12)

[Zab, Z
c] = 0; [Zab, Zc] = −Eabc; [Zab, Zcd] = 0;

[Zab, Z
cd] = 4δ

[c
[aE

d]
b] +

1
2
δcd
abN ; [Zab, Zc] = −Eabc; [Zab, Zc] = 0. (A.13)
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[Eabc, Zd] = 0; [Eabc, Z
d] = 3δd

[aZbc]; [Eabc, Zde] = −6δ
[ab
de Zc]; [Eabc, Zde] = 0.

(A.14)

[Eabc, Edef ] = − 1
32

εabcdefghZgh; [Eabc, Edef ] =
1
32

εabcdefghZgh. (A.15)

[Eabc, Zd] = 3δ
[a
d Zbc]; [Eabc, Zd] = 0; [Eabc, Zde] = 0; [Eabc, Z

de] = 6δde
[abZc].

(A.16)

[Eabc, Edef ] = −1
8
δ
[ab
[deEf ]

c] − 3
4
δabc
defN. (A.17)

[Eb
a, Zc] = −δc

aZ
b +

1
8
δb
aZc; [Eb

a, Zc] = δb
cZa − 1

8
δb
aZc. (A.18)

[Eb
a, Zcd] = −2δb

[cZd]a − 1
4
δb
aZcd; [Eb

a, Zcd] = 2δ[c
a Zd]b +

1
4
δb
aZcd. (A.19)

[Eb
a, Ecde] = −3δ[c

a Ede]b +
3
8
δb
aEcde : [Ea

b, Ecde] = 3δb
[cEde]a − 3

8
δb
aEcde. (A.20)

[Eb
a, Ed

c ] = δb
cE

d
a − δd

aEb
c . (A.21)

The elements {Za, Zab} (or equivalently {Za, Zab}) span the maximal 36-
dimensional abelian nilpotent subalgebra of E8 [53, 52]. Finally, the generators
are normalized according to the values of the traces given by

Tr(NN) = 60 · 8; Tr(ZaZb) = 60δa
b , T r(ZabZcd) = 60 · 2!δab

cd

Tr(EabcE
def ) = 60 · 3!δdef

abc , T r(Eb
aEd

c ) = 60δd
aδb

c −
15
2

δb
aδd

c . (A.22)

with all other traces vanishing.

Appendix B

The commutators involving the JAB generators of the 256-dim Clifford space asso-
ciated with the 8D Clifford algebra Cl(8) that is defined by the anti-commutators
{γb, γ

a} = 2δa
b 1, for a, b = 1, 2, . . . , 8, are obtained as follows

J a
b = [γb, γ

a] = 2γa
b ; J a1a2

b1b2
, = [γb1b2 , γ

a1a2 ] = −8δ
[a1

[b1
γ

a2]
b2]

. (B.1)

J a1a2a3
b1b2b3

= [γb1b2b3 , γ
a1a2a3 ] = 2γa1a2a3

b1b2b3
− 36δ

[a1a2
[b1b2

γ
a3]
b3] . (B.2)

J a1a2a3a4
b1b2b3b4

= [γb1b2b3b4 , γ
a1a2a3a4 ] = −32δ

[a1
[b1

γ
a2a3a4]
b2b3b4]

+ 192δ
[a1a2a3
[b1b2b3

γ
a4]
b4] . (B.3)

etc.
In general for pq = odd one has [50]

J a1a2···aq

b1b2···bp
= [γb1b2···bp , γa1a2···aq ] = 2γ

a1a2···aq

b1b2···bp
− 2p!q!

2!(p − 2)!(q − 2)!
δ
[a1a2

[b1b2
γ

a3···aq ]

b3···bp]

+
2p!q!

4!(p − 4)!(q − 4)!
δ
[a1···a4
[b1···b4 γ

a5···aq ]

b5···bp] − · · · (B.4)
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for pq = even one has

J a1a2···aq

b1b2···bp
= [γb1b2···bp , γa1a2···aq ] = − (−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ
[a1
[b1

γ
a2a3···aq ]

b2b3···bp]

− (−1)p−12p!q!
3!(p − 3)!(q − 3)!

δ
[a1···a3

[b1···b3 γ
a4···aq ]

b4···bp] + · · · (B.5)

The commutators involving the JA
B generators are

[J a1b1 ,J a2b2 ] = ηb1a2J a1b2 − ηa1a2J b1b2 − ηb1b2J a1a2 + ηa1b2J b1a2 . (B.6)

[J a1b1a2b2 ,J c1d1c2d2 ] = [ηb1a2J a1b2 ± · · · , ηd1c2J c1d2 ± · · · ]
= ηb1a2ηd1c2ηb2c1J a1d2 ± · · · (B.7)

etc.
The [J AB, E8] commutators are obtained by using the proper notation for the

E8 generators given by Eq. (A.10)

[J ab,Zc
±] = −ηacZb

± + ηbcZa
±; (B.8)

[J ab,Zcd
± ] = ηbcZad

± − ηacZbd
± − ηbdZac

± + ηadZbc
± . (B.9)

[J ab,Zcde
± ] = ηb[cZde]a

± − ηa[cZde]b
± . (B.10)

[J ab, E [cd]] = ηbcE [ad] − ηacE [bd] − ηbdE [ac] + ηadE [bc]. (B.11)

[J ab, E(cd)] = ηbcE(ad) − ηacE(bd) + ηbdE(ac) − ηadE(bc). (B.12)

[J ab, Ecd] = [J ab, E(cd) + E [cd]]

= ηbcEad − ηacEbd + ηbdEca − ηadEcb. (B.13)

and [J b
a ,N ] = 0.

The commutators of the abelian translations are [Pa, Pb] = 0 and all the commu-
tators of the E8 generators with the Pa generators are zero [E8, Pa] = 0, such that
the Jacobi identities involving the E8 and Pa generators will be trivially satisfied,
while the [J AB, P a] = 0:

[J ab, P c] = −ηacP b + ηbcP a. (B.14)

There are other nonzero commutators like

[J a1b1a2b2 ,Zc1c2± ] = [ηa1a2J b1b2 ± · · · ,Zc1c2± ] = ηa1a2ηb2c1J b1c2 ± · · · (B.15)

etc. From Appendix A, B one has all the commutators needed to evaluate the field
strengths in Eqs. (2.20).
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