

THE EXCEPTIONAL E₈ GEOMETRY OF CLIFFORD (16) SUPERSPACE AND CONFORMAL GRAVITY YANG-MILLS GRAND UNIFICATION

CARLOS CASTRO PERELMAN

Center for Theoretical Studies of Physical Systems Clark Atlanta University, Atlanta, GA. 30314 perelmanc@hotmail.com

> Received 2 July 2008 Accepted 12 November 2008

We continue to study the Chern–Simons E_8 Gauge theory of Gravity developed by the author which is a unified field theory (at the Planck scale) of a Lanczos-Lovelock Gravitational theory with a E_8 Generalized Yang–Mills (GYM) field theory, and is defined in the 15D boundary of a 16D bulk space. The Exceptional E_8 Geometry of the 256dim slice of the 256×256 -dimensional flat *Clifford* (16) space is explicitly constructed based on a spin connection Ω_M^{AB} , that gauges the generalized Lorentz transformations in the tangent space of the 256-dim curved slice, and the 256×256 components of the vielbein field E_M^A , that gauge the nonabelian translations. Thus, in one-scoop, the vielbein E_M^A encodes all of the 248 (nonabelian) E_8 generators and 8 additional (abelian) translations associated with the vectorial parts of the generators of the diagonal subalgebra $[Cl(8) \otimes Cl(8)]_{diag} \subset Cl(16)$. The generalized curvature, Ricci tensor, Ricci scalar, torsion, torsion vector and the Einstein-Hilbert-Cartan action is constructed. A preliminary analysis of how to construct a Clifford Superspace (that is far richer than ordinary superspace) based on orthogonal and symplectic Clifford algebras is presented. Finally, it is shown how an E_8 ordinary Yang–Mills in 8D, after a sequence of symmetry breaking processes $E_8 \to E_7 \to E_6 \to SO(8,2)$, and performing a Kaluza–Klein–Batakis compactification on CP^2 , involving a nontrivial torsion, leads to a (Conformal) Gravity and Yang–Mills theory based on the Standard Model in 4D. The conclusion is devoted to explaining how Conformal (super) Gravity and (super) Yang-Mills theory in any dimension can be embedded into a (super) Clifford-algebra-valued gauge field theory.

Keywords: C-space gravity; Clifford algebras; grand unification; exceptional algebras; string theory.

1. Introduction

Grand-Unification models in 4D based on the exceptional E_8 Lie algebra have been known for sometime [29]. Both gauge bosons A^a_{μ} and left-handed (two-component) Weyl fermions are assigned to the adjoint 248-dim representation that coincides with the fundamental representation (a very special case for E_8). The Higgs bosons Φ are chosen from among the multiplets that couple to the symmetric product of two fermionic representations $\Psi^a_L C \Psi^b_L \Phi_{ab}$ (C is the charge conjugation matrix) such that $[248 \times 248]_S = 1 + 3875 + 27000$. Bars and Gunaydin [29] have argued that a physically relevant subspace in the symmetry *breaking* process of E_8 is $SO(16) \rightarrow SO(10) \times SU(4)$, where the 128 remaining massless fermions (after symmetry breaking) are assigned to the $(16, \bar{4})$ and $(\bar{1}6, 4)$ representations. SU(4)serves as the family unification group (four fermion families plus four mirror fermion families of opposite chirality) and SO(10) is the Yang–Mills GUT group.

This symmetry breaking channel occurs in the **135**-dim representation of SO(16) that appears in the SO(16) decomposition of the **3875**-dim representation of $E_8: 3875 = 135 + 1820 + 1920$. By giving a large v.e.v (vacuum expectation value) to the Higgs Φ_{ab} in the **135**-dim representation of SO(16), corresponding to a symmetric traceless tensor of rank 2, *all* fermions and gauge bosons become super-heavy except for the adjoint representations of gauge bosons given in terms of the $SO(10) \times SU(4)$ decomposition as (45, 1) + (1, 15). The spinor representations of the massless fermions is $128 = (16, \bar{4}) + (\bar{1}6, 4)$, leading to 4 fermion families plus their 4 mirror ones. In this process, only 120 fermions and 188 gauge bosons of the initial 248 have gained mass.

In SO(10) GUT a right-handed massive neutrino (a SU(5) singlet) is added to each Standard Model generation so that 16 (two-component) Weyl fermions can now be placed in the **16**-dim spinor representation of SO(10) and, which in turn, can be decomposed in terms of SU(5) representations as $\mathbf{16} = \mathbf{1} + \mathbf{5}^* + \mathbf{10}$ [32]. In the second stage of symmetry breaking, the fourth family of $\mathbf{5}^* + \mathbf{10}$; $\mathbf{5} + \mathbf{10}^*$ becomes heavy without affecting the remaining 3 families. Later on [30] found that a Peccei–Quinn symmetry could be used to protect light fermions from acquiring super large masses. If this protection is to be maintained without destroying perturbative unification, *three* light families of fermion generations are singled out which is what is observed. In addition to the other three mirror families, several exotic fermions also remain light.

The other physically relevant symmetry breaking channel is $E_8 \rightarrow E_6 \times SU(3)$ with 3 fermion families (and their mirrors) assigned to the 27 ($\overline{2}7$) dim representation of E_6 :

$$248 = (1,8) + (78,1) + (27,3) + (\overline{2}7,\overline{3}).$$

In this case, in addition to the 16 fermions assigned to the 16-dim dim spinor representation of SO(10), there exist 11 exotic (two-component) Weyl fermions for each generation. The low energy phenomenology of Superstring-inspired E_6 models has been studied intensively. New particles including new gauge bosons, massive neutrinos, exotic fermions, Higgs bosons and their superpartners, are expected to exist. See [34] for an extensive review and references.

The supersymmetric E_8 model has more recently been studied as a fermion family and grand unification model [28] under the assumption that there is a vacuum gluino condensate but this condensate is *not* accompanied by a dynamical generation of a mass gap in the pure E_8 gauge sector. A study of the interplay among Exceptional Groups, del Pezzo surfaces and the extra massless particles arising from rational double point singularities can be found in [10].

Clifford algebras and E_8 are key ingredients in Smith's $D_4 - D_5 - E_6 - E_7 - E_8$ grand unified model in D = 8 [7]. Exceptional, Jordan, Division and Clifford algebras are deeply related and essential tools in many aspects in Physics [12, 18–25, 44]. Ever since the discovery [1] that 11D supergravity, when dimensionally reduced to an *n*-dim torus led to maximal supergravity theories with hidden exceptional symmetries E_n for $n \leq 8$, it has prompted intensive research to explain the higher dimensional origins of these hidden exceptional E_n symmetries [2, 5]. More recently, there has been a lot of interest in the infinite-dim hyperbolic Kac–Moody E_{10} and nonlinearly realized E_{11} algebras arising in the asymptotic chaotic oscillatory solutions of Supergravity fields close to cosmological singularities [1, 2].

The classification of symmetric spaces associated with the scalars of N extended Supergravity theories, emerging from compactifications of 11D supergravity to lower dimensions, and the construction of the U-duality groups as spectrumgenerating symmetries for four-dimensional BPS black-holes [5] also involved exceptional symmetries associated with the exceptional magic Jordan algebras $J_3[R, C, H, O]$. The discovery of the anomaly free 10-dim heterotic string for the algebra $E_8 \times E_8$ was another hallmark of the importance of Exceptional Lie groups in Physics.

Supersymmetric nonlinear σ models of Kahler coset spaces $\frac{E_8}{SO(10) \times SU(3) \times U(1)}$; $\frac{E_7}{SU(5)}$; $\frac{E_6}{SO(10) \times U(1)}$ are known to contain three generations of quarks and leptons as (quasi) Nambu–Goldstone *superfields* [26] (and references therein). The coset model based on $G = E_8$ gives rise to 3 left-handed generations assigned to the **16** multiplet of SO(10), and 1 right-handed generation assigned to the **16**^{*} multiplet of SO(10). The coset model based on $G = E_7$ gives rise to 3 generations of quarks and leptons assigned to the **5**^{*} + **10** multiplets of SU(5), and a Higgsino (the fermionic partner of the scalar Higgs) in the **5** representation of SU(5).

An E_8 gauge bundle was instrumental in the understanding the topological part of the *M*-theory partition function [8, 9]. A mysterious E_8 bundle which restricts from 12-dim to the 11-dim bulk of M theory can be compatible with 11-dim supersymmetry. The nature of this 11-dim E_8 gauge theory remains unknown. We hope that the Chern–Simons E_8 gauge theory of gravity in D = 15 advanced in this work may shed some light into solving this question.

 E_8 Yang-Mills theory can naturally be embedded into a Cl(16) algebra Gauge Theory and the 11D Chern-Simons (Super) Gravity [4] is a very small sector of a more fundamental polyvector-valued gauge theory in Clifford spaces. Polyvectorvalued Supersymmetries [15] in Clifford-spaces turned out to be more fundamental than the supersymmetries associated with M, F theory superalgebras [14]. For this reason we believe that Clifford structures may shed some light into the origins behind the hidden E_8 symmetry of 11D Supergravity and reveal more important features underlying M, F theory. In [31] we constructed a Chern–Simons E_8 gauge theory of (*Euclideanized*) Gravity in D = 15 (the 15-dim boundary of a 16-dim space) based on an octic E_8 invariant expression in D = 16 constructed by [27], and proposed that a grand unification of gravity with all the other forces is possible after including Supersymmetry in order to incorporate spacetime fermions (which are the gauginos of the theory). The E_8 invariant action had 37 terms and contained: (i) the Lanczos– Lovelock Gravitational action associated with the 15-dim boundary $\partial \mathcal{M}^{16}$ of the 16-dim manifold; (ii) 5 terms with the same structure as the Pontryagin $p_4(F^{IJ})$ 16-form associated with the SO(16) spin connection Ω^{IJ}_{μ} where the indices I, Jrun from $1, 2, \ldots, 16$; (iii) the fourth power of the standard quadratic E_8 invariant $[I_2]^4$; (iv) plus 30 additional terms involving powers of the E_8 -valued $F^{IJ}_{\mu\nu}$ and $F^{\alpha}_{\mu\nu}$ field-strength (2-forms).

The main purpose of this work is to extend the above results on Chern–Simons E_8 Gauge theories of Gravity in order to build the Exceptional E_8 Geometry of Cl(16) (super)space; to construct an E_8 gauge theory of gravitation and to show how to obtain unified field theories of Conformal (super) Gravity and (super) Yang–Mills by exploiting the algebraic structures of (super) Clifford algebras in higher dimensions, in particular 8D and 16D. A candidate action for an Exceptional E_8 gauge theory of gravity in 8D was constructed recently [54]. It was obtained by recasting the E_8 group as the semi-direct product of GL(8, R) with a deformed Weyl-Heisenberg group associated with canonical-conjugate pairs of vectorial and antisymmetric tensorial generators of rank two and three. This decomposition of the E_8 algebra generators in terms of GL(8, R) is presented in the Appendix **A**.

2. The Exceptional E_8 Geometry of Cl(16)Superspace and Unification

2.1. A Chern-Simons E_8 gauge theory gravity and grand-unification in higher dimensions

In this section we will begin by reviewing our work [31] by showing why the E_8 algebra is a subalgebra of $Cl(16) = Cl(8) \otimes Cl(8)$ and how E_8 admits a 7-grading decomposition in terms Sl(8, R) [5, 7], and provide the action corresponding to the Chern–Simons E_8 gauge theory of (*Euclideanized*) Gravity [31] which naturally furnishes a Gravity- E_8 Generalized Yang–Mills unified field theory in 15D (the boundary of a 16D bulk space). We then proceed to discuss in detail why a E_8 singlet chiral spinor Ψ_{α} has enough degrees of freedom to accommodate 4 fermion families (plus 4 mirror ones) belonging to the **16**-dim representations of the SO(10) GUT group in 4D, after a dimensional reduction from 16D to 4D is performed.

It is well known among the experts that the E_8 algebra admits the SO(16) decomposition $248 \rightarrow 120 \oplus 128$. The E_8 admits also a SL(8, R) decomposition [5]. Due to the triality property, the SO(8) admits the vector $\mathbf{8}_v$ and spinor representations $\mathbf{8}_s, \mathbf{8}_c$. After a triality rotation, the SO(16) vector and spinor representations

decompose as [5]

$$\mathbf{16} \to \mathbf{8}_s \oplus \mathbf{8}_c. \tag{2.1a}$$

$$\mathbf{128}_s \to \mathbf{8}_v \oplus \mathbf{56}_v \oplus \mathbf{1} \oplus \mathbf{28} \oplus \mathbf{35}_v. \tag{2.1b}$$

$$128_c \to 8_s \oplus 56_s \oplus 8_c \oplus 56_c. \tag{2.1c}$$

To connect with (real) Clifford algebras [7], i.e. how to fit E_8 into a Clifford structure, start with the 248-dim fundamental representation E_8 that admits a SO(16)decomposition given by the 120-dim bivector representation plus the 128-dim chiralspinor representations of SO(16). From the modulo 8 periodicity of Clifford algebras over the reals one has $Cl(16) = Cl(2 \times 8) = Cl(8) \otimes Cl(8)$, meaning, roughly, that the $2^{16} = 256 \times 256 Cl(16)$ -algebra matrices can be obtained effectively by replacing each single one of the *entries* of the $2^8 = 256 = 16 \times 16 Cl(8)$ -algebra matrices by the 16×16 matrices of the second copy of the Cl(8) algebra. In particular, $120 = 1 \times 28 + 8 \times 8 + 28 \times 1$ and 128 = 8 + 56 + 8 + 56, hence the 248-dim E_8 algebra decomposes into a 120 + 128 dim structure such that E_8 can be represented indeed within a tensor product of Cl(8) algebras.

At the E_8 Lie algebra level, the E_8 gauge connection decomposes into the SO(16) vector I, J = 1, 2, ..., 16 and (chiral) spinor A = 1, 2, ..., 128 indices as follows

$$\mathcal{A}_{\mu} = \mathcal{A}_{\mu}^{IJ} X_{IJ} + \mathcal{A}_{\mu}^{A} Y_{A}, \quad X_{IJ} = -X_{JI}, I, J = 1, 2, 3, \dots, 16, \quad A = 1, 2, \dots, 128,$$
(2.2)

where X_{IJ}, Y_A are the E_8 generators. The Clifford algebra $(Cl(8) \otimes Cl(8))$ structure behind the SO(16) decomposition of the E_8 gauge field $\mathcal{A}^{IJ}_{\mu}X_{IJ} + \mathcal{A}^{A}_{\mu}Y_A$ can be deduced from the expansion of the generators X_{IJ}, Y_A in terms of the Cl(16) algebra generators. The Cl(16) bivector basis admits the decomposition

$$X^{IJ} = a_{ij}^{IJ}(\gamma_{ij} \otimes \mathbf{1}) + b_{ij}^{IJ}(\mathbf{1} \otimes \gamma_{ij}) + c_{ij}^{IJ}(\gamma_i \otimes \gamma_j)$$
(2.3)

where γ_i are the Clifford algebra generators of the Cl(8) algebra present in $Cl(16) = Cl(8) \otimes Cl(8)$; **1** is the unit Cl(8) algebra element that can be represented by a unit 16×16 diagonal matrix. The tensor products \otimes of the 16×16 Cl(8)-algebra matrices, like $\gamma_i \otimes \mathbf{1}, \gamma_i \otimes \gamma_j, \ldots$ furnish a 256×256 Cl(16)-algebra matrix, as expected. Therefore, the decomposition in (2.3) yields the $28+28+8\times8=56+64=120$ -dim bivector representation of SO(16); i.e. for each fixed values of IJ there are 120 terms in the r.h.s of (2.3), that match the number of independent components of the E_8 generators $X^{IJ} = -X^{JI}$, given by $\frac{1}{2}(16 \times 15) = 120$. The decomposition of Y_A is more subtle. A spinor Ψ in 16D has $2^8 = 256$ components and can be decomposed into a 128 component left-handed spinor Ψ^A and a 128 component right-handed spinor $\Psi^{\dot{A}}$. The 256 spinor indices are $\alpha = A, \dot{A}; \beta = B, \dot{B}, \ldots$ with $A, B = 1, 2, \ldots, 128$ and $\dot{A}, \dot{B} = 1, 2, \ldots, 128$, respectively.

Spinors are elements of right (left) ideals of the Cl(16) algebra and admit the expansion $\Psi = \Psi_{\alpha}\xi^{\alpha}$ in a 256-dim spinor basis ξ^{α} which in turn can be expanded as sums of Clifford polyvectors of *mixed* grade; i.e. into a sum of scalars, vectors,

bivectors, trivectors, ... Minimal left/right ideals elements of Clifford algebras may be systematically constructed by means of idempotents $e^2 = e$ such that the geometric product of Cl(p,q)e generates the ideal [25].

The commutation relations of E_8 are [5]

$$[X^{IJ}, X^{KL}] = 4(\delta^{IK} X^{LJ} - \delta^{IL} X^{KJ} + \delta^{JK} X^{IL} - \delta^{JL} X^{IK}).$$
$$[X_{IJ}, Y^{\alpha}] = -\frac{1}{2} \Gamma^{\alpha\beta}_{IJ} Y_{\beta}; \quad [Y^{\alpha}, Y^{\beta}] = \frac{1}{4} \Gamma^{\alpha\beta}_{IJ} X^{IJ}, \quad \Gamma^{\alpha\beta}_{IJ} = [\Gamma_{I}, \Gamma_{J}]^{\alpha\beta}.$$
(2.4)

The combined E_8 indices are denoted by $\mathcal{A} \equiv [IJ]$, α (120 + 128 = 248 indices in total) that yield the Killing metric and the structure constants

$$\eta^{\mathcal{A}\mathcal{B}} = \frac{1}{60} Tr T^{\mathcal{A}} T^{\mathcal{B}} = -\frac{1}{60} f^{\mathcal{A}}_{\mathcal{C}\mathcal{D}} f^{\mathcal{B}\mathcal{C}\mathcal{D}}.$$
 (2.5a)

$$f^{IJ,KL,MN} = -8\delta^{IK}\delta^{LJ}_{MN} + \text{permutations}; \quad f^{IJ}_{\alpha\beta} = -\frac{1}{2}\Gamma^{IJ}_{\alpha\beta};$$

$$\eta^{IJKL} = -\frac{1}{60}f^{IJ}_{\mathcal{CD}}f^{KL,\mathcal{CD}}.$$
(2.5b)

The E_8 algebra as a sub-algebra of $Cl(8) \otimes Cl(8)$ is consistent with the SL(8, R)7-grading decomposition of $E_{8(8)}$ (with 128 noncompact and 120 compact generators) as shown by [5]. Such SL(8, R) 7-grading is based on the diagonal part $[SO(8) \times SO(8)]_{\text{diag}} \subset SO(16)$ described in full detail by [5] and can be deduced from the $Cl(8) \otimes Cl(8)$ 7-grading decomposition of E_8 provided by Larsson [7] as follows,

$$[\gamma_{(1)}^{\mu} \oplus \gamma_{(1)}^{\mu\nu} \oplus \gamma_{(1)}^{\mu\nu\rho}] \otimes \mathbf{1}_{(2)} + \mathbf{1}_{(1)} \otimes [\gamma_{(2)}^{\mu} \oplus \gamma_{(2)}^{\mu\nu} \oplus \gamma_{(2)}^{\mu\nu\rho}] + \gamma_{(1)}^{\mu} \otimes \gamma_{(2)}^{\nu}.$$
(2.6)

These tensor products of elements of the two factor Cl(8) algebras, described by the subscripts (1), (2), furnishes the 7-grading of $E_{8(8)}$

$$8 + 28 + 56 + 64 + 56 + 28 + 8 = 248.$$

$$(2.7)$$

8 corresponds to the 8D vector γ^{μ} ; 28 is the 8D bivector $\gamma^{\mu\nu}$; 56 is the 8D trivector $\gamma^{\mu\nu\rho}$, and $64 = 8 \times 8$ corresponds to the tensor product $\gamma^{\mu}_{(1)} \otimes \gamma^{\nu}_{(2)}$. In essence one can rewrite the E_8 algebra in terms of 8 + 8 vectors Z^a, Z_a $(a = 1, 2, \ldots, 8)$; 28 + 28 bivectors $Z^{[ab]}, Z_{[ab]}$; 56 + 56 trivectors $E^{[abc]}, E_{[abc]}$, and the SL(8, R) generators E_a^b which are expressed in terms of a $8 \times 8 = 64$ -component tensor Y^{ab} that can be decomposed into a symmetric part $Y^{(ab)}$ with 36 independent components, and an anti-symmetric part $Y^{[ab]}$ with 28 independent components. Its trace $Y^{cc} = N$ yields an element N of the Cartan subalgebra such that the degrees -3, -2, -1, 0, 3, 2, 1 of the 7-grading of $E_{8(8)}$ can be read from [51]

$$[N, Z^{a}] = 3Z^{a}; \quad [N, Z_{a}] = -3Z_{a}; \quad [N, Z_{ab}] = 2Z_{ab}; \quad [N, Z^{ab}] = -2Z^{ab}.$$
(2.8a)

$$[N, E^{abc}] = E^{abc}; \quad [N, E_{abc}] = -E_{abc}; \quad [N, E^b_a] = 0$$
(2.8b)

where the 63 generators E_a^b (after subtracting the trace)

$$E_a^b = \frac{1}{8} \left(\Gamma_{\alpha\beta}^{ab} X^{[\alpha\beta]} + \Gamma_{\dot{\alpha}\dot{\beta}}^{ab} X^{[\dot{\alpha}\dot{\beta}]} \right) + Y^{(ab)} - \frac{1}{8} \delta^{ab} N.$$
(2.8c)

for the (vector) indices a, b = 1, 2, ..., 8 span the SL(8, R) subalgebra of $E_{8(8)}$. The spinorial indices $\alpha, \beta = 1, 2, ..., 8$ and $\dot{\alpha}, \dot{\beta} = 1, 2, ..., 8$ correspond to the chiral/antichiral $\mathbf{8}_s, \mathbf{8}_c$ spinor representations of SO(8). The 64 components Y^{ab} are part of the 128 chiral SO(16) spinorial components $Y^A = (Y^{\alpha\dot{\beta}}, Y^{ab})$ after performing the SO(8) decomposition of the chiral spinorial SO(16) indices into 64 + 64components $Y^{\alpha\dot{\beta}}, Y^{ab}$, respectively. Whereas the 120 SO(16) bivectors X^{IJ} are decomposed in terms of $X^{[\alpha\beta]}, X^{[\dot{\alpha}\dot{\beta}]}$ and $X^{\alpha\dot{\beta}}$ with 28 + 28 + 64 = 120 components, respectively. We refer to [51] for details.

The Cl(16) gauge theory that encodes the E_8 gauge theory in *D*-dim is based on the E_8 -valued field strengths

$$F^{IJ}_{\mu\nu}X_{IJ} = (\partial_{\mu}\mathcal{A}^{IJ}_{\nu} - \partial_{\nu}\mathcal{A}^{IJ}_{\mu})X_{IJ} + \mathcal{A}^{KL}_{\mu}\mathcal{A}^{MN}_{\nu}[X_{KL}, X_{MN}] + \mathcal{A}^{\alpha}_{\mu}\mathcal{A}^{\beta}_{\nu}[Y_{\alpha}, Y_{\beta}].$$
(2.9)
$$F^{A}_{\mu\nu}Y_{\alpha} = (\partial_{\mu}\mathcal{A}^{\alpha}_{\nu} - \partial_{\nu}\mathcal{A}^{\alpha}_{\mu})Y_{\alpha} + \mathcal{A}^{\alpha}_{\mu}\mathcal{A}^{IJ}_{\nu}[Y_{\alpha}, X_{IJ}].$$
(2.10)

The E_8 actions in 4D are

$$S_{\text{Topological}}[E_8] = \int d^4x \frac{1}{60} Tr[F^{\mathcal{A}}_{\mu\nu}F^{\mathcal{B}}_{\rho\tau}T_{\mathcal{A}}T_{\mathcal{B}}]\epsilon^{\mu\nu\rho\tau} = \int d^4x F^{\mathcal{A}}_{\mu\nu}F^{\mathcal{B}}_{\rho\tau}\eta_{\mathcal{A}\mathcal{B}}\epsilon^{\mu\nu\rho\tau}$$
$$= \int d^4x [F^{IJ}_{\mu\nu}F^{KL}_{\rho\tau}\eta_{IJKL} + F^{\alpha}_{\mu\nu}F^{\beta}_{\rho\tau}\eta_{\alpha\beta} + 2F^{IJ}_{\mu\nu}F^{\beta}_{\rho\tau}\eta_{IJ\beta}]\epsilon^{\mu\nu\rho\tau}$$
(2.11)

and

$$S_{YM}[E_8] = \int d^4x \sqrt{g} \frac{1}{60} Tr[F^{\mathcal{A}}_{\mu\nu} F^{\mathcal{B}}_{\rho\tau} T_{\mathcal{A}} T_{\mathcal{B}}] g^{\mu\rho} g^{\nu\tau} = \int d^4x \sqrt{g} F^{\mathcal{A}}_{\mu\nu} F^{\mathcal{B}}_{\rho\tau} \eta_{\mathcal{AB}} g^{\mu\rho} g^{\nu\tau}$$
$$= \int d^4x \sqrt{g} [F^{IJ}_{\mu\nu} F^{KL}_{\rho\tau} \eta_{IJKL} + F^{\alpha}_{\mu\nu} F^{\beta}_{\rho\tau} \eta_{\alpha\beta} + 2F^{IJ}_{\mu\nu} F^{\beta}_{\rho\tau} \eta_{IJ\beta}] g^{\mu\rho} g^{\nu\tau}.$$
(2.12)

The above E_8 actions can be embedded onto more general Cl(16) actions with a much larger number of terms as shown in [31].

The action that defines a Chern–Simons E_8 gauge theory of (*Euclideanized*) Gravity in 15-dim (the boundary of a 16D space) was based on the *octic* E_8 invariant constructed by [27] and is defined [31]

$$S = \int_{\mathcal{M}^{16}} \langle FF \cdots F \rangle_{E_8}$$

=
$$\int_{\mathcal{M}^{16}} (F^{M_1} \wedge F^{M_2} \wedge \cdots \wedge F^{M_8}) \Upsilon_{M_1 M_2 M_3 \cdots M_8}$$

=
$$\int_{\partial \mathcal{M}^{16}} \mathcal{L}_{CS}^{(15)}(\mathbf{A}, \mathbf{F}). \qquad (2.13)$$

The E_8 Lie-algebra valued 16-form $\langle F^8 \rangle$ is closed: $d(\langle F^{M_1}T_{M_1} \wedge F^{M_2}T_{M_2} \wedge \cdots \wedge F^{M_8}T_{M_8} \rangle) = 0$ and locally can always be written as an exact form in terms of

an E_8 -valued Chern–Simons 15-form as $I_{16} = d\mathcal{L}_{CS}^{(15)}(\mathbf{A}, \mathbf{F})$. For instance, when $\mathcal{M}^{16} = S^{16}$ the 15-dim boundary integral (2.15) is evaluated in the two coordinate patches of the equator $S^{15} = \partial \mathcal{M}^{16}$ of S^{16} leading to the integral of $tr(\mathbf{g}^{-1}d\mathbf{g})^{15}$ (up to numerical factors) when the gauge potential \mathbf{A} is written locally as $\mathbf{A} = \mathbf{g}^{-1}d\mathbf{g}$ and \mathbf{g} belongs to the E_8 Lie-algebra. The integral is characterized by the elements of the homotopy group $\pi_{15}(E_8)$. S^{16} can also be represented in terms of quaternionic and octonionic projectives spaces as HP^4 , OP^2 respectively.

In order to evaluate the operation $\langle \cdots \rangle_{E_8}$ in the action (2.13) it involves the existence of an *octic* E_8 group invariant tensor $\Upsilon_{M_1,M_2,\ldots,M_8}$ that was recently constructed by Cederwall and Palmkvist [27] using the Mathematica package GAMMA based on the full machinery of the Fierz identities. The entire *octic* E_8 invariant contains powers of the SO(16) bivector X^{IJ} and spinorial Y^{α} generators $X^8, X^6Y^2, X^4Y^4, X^2Y^6, Y^8$. The corresponding number of terms is 6, 11, 12, 5, 2 respectively giving a total of **36** terms for the octic E_8 invariant involving **36** numerical coefficients multiplying the corresponding powers of the E_8 generators. There is an extra term (giving a total of **37** terms) with an *arbitrary* constant multiplying the fourth power of the E_8 quadratic invariant $I_2 = -\frac{1}{2}tr[(F_{\mu\nu}^{IJ}X_J)^2 + (F_{\mu\nu}^{\alpha}Y_{\alpha})^2]$.

Thus, the E_8 invariant action has 37 terms containing: (i) the Lanczos–Lovelock Gravitational action associated with the 15-dim boundary $\partial \mathcal{M}^{16}$ of the 16-dim manifold; (ii) 5 terms with the same structure as the Pontryagin $p_4(F^{IJ})$ 16-form associated with the SO(16) spin connection Ω^{IJ}_{μ} and where the indices I, J run from $1, 2, \ldots, 16$; (iii) the fourth power of the standard quadratic E_8 invariant $[I_2]^4$; (iv) plus 30 additional terms involving powers of the E_8 -valued $F^{IJ}_{\mu\nu}$ and $F^{\alpha}_{\mu\nu}$ fieldstrength (2-forms).

Therefore, the essence of the action in Eq. (2.13) as explained in [31] comprises a Chern–Simons (Euclideanized) Gravity coupled to a E_8 Generalized Yang–Mills theory in the 15D boundary of a 16D manifold. Certainly, the bulk in 16D theory has large number of degrees of freedom. One can freeze-off a large number of them, such that upon a dimensional reduction to 4D and truncation of degrees of freedom, one will obtain 4D Gravity interacting with a E_8 Yang–Mills theory. A supersymmetrization program yields 4D SUGRA coupled to E_8 SUSY YM (after dimensional reduction and truncation). Why not start with the quartic invariant in 8D and/or a quadratic invariant in 4D instead of the *octic* invariant in 16D? Because it is the SO(16) maximal subgroup of $E_{8(8)}$ that requires us to build a theory in the 16D bulk space and its 15D boundary. To sum up, a Chern–Simons E_8 Gauge Theory of gravity requires a 16D bulk space which upon dimensional reduction to 4D and truncation of degrees of freedom leads to the desired 4D Gravitational and E_8 Yang-Mills theory. Thus we have a natural Gravity- E_8 Yang-Mills unification theory stemming from the Chern–Simons E_8 Gauge Theory of Gravity in higher dimensions.

A supersymmetric version of the octic E_8 invariant action (2.13) involves a vector supermultiplet $A^m_{\mu}, \Psi^m_{\alpha}$ in D = 16, with 248 spacetime fermions Ψ^m_{α} in the fundamental 248-dim representation of E_8 (m = 1, 2, ..., 248), and 248 spacetime vectors (gluons) A^m_{μ} in the 248-dim adjoint representation, $\mu = 1, 2, 3, ..., 16$. The 16D spacetime chiral spinor index α runs over 1, 2, 3, ..., 128. One should not confuse the spacetime spinorial indices with the internal space ones associated with the spinorial generators of E_8 . The fermions are the *gluinos* in this very special case because the 248-dim fundamental and 248-dim adjoint representations of the exceptional E_8 group coincide. The exceptional group E_8 is unique in this respect. In ordinary supersymmetric Yang–Mills the superpartners of the fermions are scalars, however, in the supersymmetric E_8 Yang–Mills case, the fermions Ψ^m_{α} (gluinos) and the vectors A^m_{μ} (gluons) comprise the vector supermultiplet.

It is true that the chiral spinors Ψ_{α}^{m} in D = 16 have many degrees of freedom, since *m* ranges over the 248 generators of E_8 (120 vector and 128 spinorial generators) and $\alpha = 1, 2, 3, \ldots, 128$. It is interesting to notice that if one had a singlet spinor Ψ_{α} , belonging to the **1**-dim trivial "scalar" representation of E_8 and if, and only if, one could mix the internal spinorial indices of SO(10) and $SU(4) \sim SO(6)$ with the 4D spacetime spinorial indices, after the dimensional reduction process from $16D \rightarrow 4D$, the initial 128 spacetime spinorial components in $16D (\alpha = 1, 2, 3, \ldots, 128)$ of the E_8 singlet chiral spinor Ψ_{α} will have enough room to accommodate 64 two-component chiral Weyl spinors in 4D (since $2 \times 64 = 128$). And, in turn, the 64 two-component Weyl spinors in 4D, where the 16 Weyl spinors can be assigned to the **16**-dim chiral spinorial representation of SO(10).

Therefore, one could argue that the E_8 singlet chiral spinor Ψ_{α} in 16D has precisely the right number of degrees of freedom to accommodate the 4 families of fermions in the 16-dim chiral spinorial representation of the SO(10) GUT group in 4D. The 4 mirror fermion families would be assigned to the anti-chiral Weyl spinor $\Psi_{\dot{\alpha}}$. To sum up, starting from a E_8 singlet spinor in 16D, one would have recovered upon dimensional reduction to 4D the same number of (four) fermion families as those in the E_8 GUT models of [29] in 4D, with the provision that one could mix the internal spinorial indices of $SO(10), SU(4) \sim SO(6)$, with the 4D spacetime spinorial indices in the dimensional reduction process. In this fashion, one would have encoded all 4D fermions of all the families into a E_8 singlet fermion Ψ_{α} in 16D. This possibility warrants further investigation.

To conclude, we must emphasize that the Chern–Simons E_8 Gauge theory of (Euclideanized) Gravity [31] in higher dimensions (the 15D boundary of a 16D space), unifying a Lanczos–Lovelock gravitational theory with a E_8 Generalized Yang–Mills theory, involves a gauge theory of E_8 comprised of higher powers of the field strengths **F** rather than the mere quadratic ones as in ordinary YM, in addition to a Lanczos–Lovelock gravitational theory which also involves higher powers of the curvature field strengths **R** rather than the linear power **R** as in ordinary Einstein Gravity. Despite the higher powers of field strengths and curvatures, the equations of motion for the graviton and YM field are no higher than two [4] avoiding the

problem of ghosts in higher derivative theories. This is the hallmark of theories based on actions of the Chern–Simons form (Lanczos–Lovelock type for gravity). Since Witten [6] has shown that 3D Chern–Simons gravity is exactly solvable as a quantum theory, despite that ordinary 3D gravity is not perturbative renormalizable, one might have a (non)perturbative finitely renormalizable and unitary (free of ghosts) Quantum theory of Lanczos–Lovelock Gravity, unified with a E_8 Generalized Yang–Mills theory, based on the quantization of the Chern–Simons E_8 Gauge theory of Gravity [31] in higher dimensions. The issue of instabilities and anomalies has to be analyzed in full depth since anomalies may spoil the quantum consistency of the theory. For very deep connections between 3D Chern–Simons Gravity, Extremal Conformal Field Theories with central charges c = 12k (k is an integer) and the Monster Group in classifying the physical states of a BTZ black-hole, see [6].

The underlying reason why one has a unified Lanczos–Lovelock gravitational theory with a E_8 Generalized Yang–Mills theory, in one scoop, is due to very special properties of the E_8 Yang–Mills algebra involving SO(16) bivectorial generators \mathcal{A}_{μ}^{IJ} , $I, J = 1, 2, 3, \ldots, 16$, and SO(16) chiral spinorial ones \mathcal{A}_{μ}^A , $A = 1, 2, 3, \ldots, 128$. Commutators of the bivector generators yields bivector ones; commutators of spinorial generators yields also bivector ones, and commutators of bivectors with spinorial generators yields spinorial ones. This mixing is what accounts for having a unified Lanczos–Lovelock gravitational theory with a E_8 Generalized Yang–Mills theory. The SO(16) bivector pieces appearing in the E_8 commutators encode both the terms in the Lanczos–Lovelock gravitational sector theory, as well as the SO(16) bivector parts of the E_8 Generalized Yang–Mills gauge theory (120 of them). The SO(16)spinorial pieces appearing in the commutators of the spinorial generators encode the SO(16) spinorial parts of the E_8 Generalized Yang–Mills (128 of them).

2.2. The exceptional E_8 geometry of Cl(16)-superspaces

In this section we will develop a novel theory (to our knowledge) by generalizing the construction of the Chern–Simons E_8 Gauge theory of (Euclideanized) Gravity to the Exceptional E_8 Geometry of the C-space associated to the Clifford algebra $C(16) = Cl(8) \otimes Cl(8)$ by taking the 256-dim *diagonal* slice of the 256 × 256-dim space associated with Cl(16) algebra, such that we may decompose the symmetries of the *tangent* space of such 256-dim diagonal space, as comprised of $\frac{1}{2}$ 256 × 255 = 32640 "rotations" and 256 "translations". In the same fashion, one could have decomposed the 248 roots of E_8 as 240 + 8, where the 8 roots correspond to the Cartan subalgebra of E_8 which has rank 8. The 240 roots generate "rotations" and the 8 roots generate "translations". We prefer however the *former* geometrical description directly in terms of the 256-dim slice of the C-space corresponding to the C(16) algebra. This is what we call the Exceptional E_8 Geometry of Cl(16)spaces. At the end of this section we explain how to extend this construction to Clifford Superspaces. On the speculative side, one could also think of this 256-dim slice of Cl(16)space, as if it were the world-manifold of an extended object moving in a flat 256 × 256-dim background space. Such extended object corresponds to a Cl(8)space-valued extended object; namely, an extended object spanning the 256 dimensions associated with the *C*-space corresponding to the 256-dim Cl(8) algebra $(2^8 = 256)$. In [3] we described an action which unified extended objects of different intrinsic dimensions (strings, membranes ... *p*-branes) in one footing by embedding a Clifford-space valued world-manifold of dimensions 2^d into a target *C*-space background of dimensions 2^D . The Extended Relativity theory in *curved C*-spaces and Phase-Space Clifford spaces can be found in [3, 38].

This slicing of Cl(16)-space is compatible with the E_8 algebra being a subalgebra of $Cl(8) \otimes Cl(8)$ and consistent with the Sl(8, R) 7-grading decomposition of $E_{8(8)}$ (with 128 noncompact and 120 compact generators) as shown by [5]. Such Sl(8, R) 7-grading is based on the *diagonal* part $[SO(8) \times SO(8)]_{\text{diag}} \subset SO(16)$ described in full detail by [5] and can be deduced from the $Cl(8) \otimes Cl(8)$ 7-grading decomposition of E_8 provided by Larsson [7].

To construct the Exceptional E_8 Geometry (Gravity) of Cl(16)-spaces we take the 256-dim slice by choosing 256 gamma matrices of 16×16 components $(\Upsilon_A)^{\alpha\beta}$, where $A = 1, 2, 3, \ldots, 256$ spans over the 256-dim slice, and $\alpha, \beta = 1, 2, 3, \ldots, 16$ are SO(8) spinorial indices. Such (Υ_A) matrices live in the *diagonal* part of Cl(16): $[Cl(8) \otimes Cl(8)]_{\text{diag}} \subset Cl(16)$. For instance, in 4D one has 16 gamma 4×4 matrices spanning the Cl(4) algebra which is $2^4 = 16$ -dim. In 8D one has 256 gamma 16×16 matrices spanning the $2^8 = 256$ -dim Cl(8) algebra.

The generalized spin-connection and vielbein are Ω_M^{AB} and E_M^A , where M is a Cl(8)-algebra-valued polyvector index spanning 256 degrees of freedom corresponding to the scalar 1, vector Υ^{μ} , bivector $\Upsilon^{\mu\nu}$, trivector $\Upsilon^{\mu\nu\rho}$, ... of the $[Cl(8) \otimes Cl(8)]_{\text{diag}}$ diagonal-subalgebra generators of Cl(16). The 256-dim slice of Cl(16)-space is associated with and underlying 8D spacetime which is a subspace of the 16D spacetime corresponding to the Cl(16) algebra. Once again, one encounters 16D as we did in the Chern–Simons E_8 gauge theory of gravity [31]. A, B are the tangent-space Cl(8)-algebra-valued polyvector indices. The spin-connection gauges the extended Lorentz symmetries of the tangent space of the 256-dim slice of Cl(16)-space. The vielbein E_M^A gauges the (nonabelian) translations in the 256-dim slice of Cl(16)-space. The generalized gauge connection is decomposed into a spin-connection and a (nonabelian) translation part as follows

$$\mathcal{A}_M = \Omega_M^{AB}[\Upsilon_A, \Upsilon_B] + \mathcal{A}_M^A \mathcal{P}_A.$$
(2.14a)

The 256 × 256 components of \mathcal{A}_M^A match the 256 × 256 components of the vielbein E_M^A , hence, by setting the correspondence $\mathcal{A}_M^A \leftrightarrow E_M^A$ it gives

$$\mathcal{A}_M = \Omega_M^{AB}[\Upsilon_A, \Upsilon_B] + E_M^A \mathcal{P}_A. \tag{2.14b}$$

The E_8 generators are *part* of the vielbein one-form $E_M^A \mathcal{P}_A dX^M$. The 256 indices of $A = 1, 2, 3, \ldots, 256$ are spanned by the \mathcal{P}_A generators in the 256-dim tangent space of the 256-dim curved slice of Cl(16)-space. The latter indices can be broken into 256 = 248 + 8. 248 of them are assigned to the nonabelian E_8 gauge symmetries and the remaining 8 indices correspond to the 8 abelian translation generators P_a associated with the 8 translations in D = 8. Hence we have

$$\mathcal{P}_A \equiv 248 \ E_8$$
 generators for $A = 1, 2, 3, \dots, 248$, (2.15)

$$\mathcal{P}_A \equiv 8P_{a=1,2,3,\dots,8}$$
 generators when $A = 249, 250, \dots, 256.$ (2.16)

The 248 E_8 generators can be decomposed explicitly in terms of the sl(8, R) 7grading of $E_{8(8)}$ as shown in Eq. (2.8) [5], [51] : 8 + 8 vectors Z^a, Z_a ; 28 + 28 bivectors $Z^{[ab]}, Z_{[ab]}$; 56 + 56 trivectors $E^{[abc]}, E_{[abc]}$; the tensor E_a^b generator of SL(8, R) with 63 elements and the trace $\mathcal{N} = Y^{cc}$ of the tensor Y^{ab} as shown in Eqs. (2.8). The GL(8, R) subalgebra with 64 = 63 + 1 generators is comprised of E_a^b and \mathcal{N} . Therefore we may write the E_8 sector (with 248 generators) of the 256 \mathcal{P}_A generators of the 256-dim slice as follows

$$\mathcal{A}_{M}^{(E_{8})} = \mathcal{E}_{M}^{a} Z_{a} + \mathcal{E}_{M,a} Z^{a} + \mathcal{E}_{M,[ab]} Z^{[ab]} + \mathcal{E}_{M}^{[ab]} Z_{[ab]} + \mathcal{E}_{M,[abc]} E^{[abc]} + \mathcal{E}_{M}^{[abc]} E_{[abc]} + \mathcal{E}_{M,b}^{a} E_{a}^{b} + \mathcal{E}_{M} \mathcal{N}.$$
(2.17)

The remaining contribution (to the 256 generators of the vielbein) from the 8 abelian translation generators P_a are written as $E_M^a P_a$. Hence, one has a *triad* of vector generators Z^a , Z_a and P_a compatible with the *triality* property of SO(8). The vector generators Z^a , Z_a of $E_{8(8)}$ decompose into the following SL(8, R) representations as follows [51]

$$Z^{a} = \frac{1}{4} \Gamma^{a}_{\alpha\dot{\alpha}} (X^{\alpha\dot{\alpha}} + Y^{\alpha\dot{\alpha}}); \quad Z_{a} = -\frac{1}{4} \Gamma^{a}_{\alpha\dot{\alpha}} (X^{\alpha\dot{\alpha}} - Y^{\alpha\dot{\alpha}}).$$
(2.18a)

where the 120 SO(16) bivectors X^{IJ} are decomposed in terms of $X^{[\alpha\beta]}$, $X^{[\dot{\alpha}\dot{\beta}]}$ and $X^{\alpha\dot{\beta}}$ with 28 + 28 + 64 = 120 components, respectively. The commutators are [51]

$$[Z^a, Z^b] = 0; \quad [Z_a, Z_b] = 0, \quad [Z_a, Z^b] = E^b_a - \frac{3}{8}\delta^b_a \mathcal{N}.$$
 (2.18b)

where $[P_a, P_b] = 0$ and the commutators of the E_8 generators with the abelian translations P_a are all $[E_8, P_a] = 0$. Since the commutator of $[\Upsilon_i, \Upsilon_j] \neq 0$, and the E_8 group is also nonabelian, we have in general *nonabelian* generalized translations $[\mathcal{P}_A, \mathcal{P}_B] \neq 0$. A Nonabelian complex gravity in Phase spaces [41], involving symmetric and anti-symmetric metrics, was instrumental in the construction of a General Relativity theory based on Born's Reciprocity principle (of maximal speeds and maximal proper forces) and gauging Low's Quaplectic group [42]. The generalized curvature and torsion two-forms in C-space associated with the spin connection and vielbein one-forms

$$\mathbf{\Omega}^{AB} \equiv \Omega_M^{AB} dX^M, \quad \mathbf{E}^A \equiv E_M^A dX^M \tag{2.19}$$

are

$$\mathcal{R}_{MN}^{AB} dX^M \wedge dX^N = \mathbf{R}^{AB} = \mathbf{d} \mathbf{\Omega}^{AB} + \mathbf{\Omega}_C^A \wedge \mathbf{\Omega}^{CB}, \qquad (2.20a)$$

$$\mathcal{T}_{MN}^{A} dX^{M} \wedge dX^{N} = \mathbf{T}^{A} = \mathbf{d}\mathbf{E}^{A} + \mathbf{\Omega}_{B}^{A} \wedge \mathbf{E}^{B} + \mathbf{E}^{B} \wedge \mathbf{E}^{C} f_{BC}^{A}.$$
 (2.20b)

The structure constants f_{BC}^A associated with the $E_8 \times P_8$ algebra (248 + 8 = 256 generators) are given in Appendices **A**, **B**, as well as the structure constants of the \mathcal{J}^{AB} algebra involving the Cl(8) algebra generators $\mathcal{J}_{AB} = [\Upsilon_A, \Upsilon_B]$.

Below we shall define the Clifford-space **d** exterior derivative operator, the exterior product, the super-extension of **d**, the ordinary Dirac operator and its superextension when orthogonal *and* symplectic Clifford algebras are introduced in order to construct a Clifford Superspace, super-connections, super-polyvectors, etc. such that we can assign all bosons and fermions into a single super-Clifford connection and correct the problems of [13]. A true grand unification *requires* a Clifford Superspace involving Supergravity and Super-Yang–Mills theory and which is consistent with superstring, M, F theory. However Clifford Superspaces yields a far richer plethora of tensorial gauge fields (higher spin theories), tensorial coordinates, etc.

The Ricci tensor, Ricci scalar, Torsion tensor, Torsion vector are defined as

$$\mathcal{R}_{MN} = E_A^P \mathcal{R}_{MP}^{AB} E_{BN}; \quad \mathcal{R} = G^{MN} \mathcal{R}_{MN} = \mathcal{R}_{MN}^{AB} E_B^M E_A^N,$$
$$\mathcal{T}_M = \mathcal{T}_{MN}^A E_A^N; \quad \mathcal{T}_{MNP} = \mathcal{T}_{MN}^A E_{AP}, \quad (2.21)$$

where the metric is defined in terms of the vielbein and the 256-dim tangent space metric η_{AB} as

$$G_{MN} \equiv E_M^A E_N^B \eta_{AB}; \quad \eta_{AB} = G_{MN} E_A^M E_B^N; \quad E_{BN} = \eta_{AB} E_N^A.$$
 (2.22)

The tangent space polyvector-valued indices are $A, B, C, \ldots = 1, 2, \ldots, 256$. The base space polyvector-valued indices are $M, N, P, Q, \ldots = 1, 2, \ldots, 256$. The inverse vielbein E_A^M is defined as $E_A^M E_M^B = \delta_A^B$.

An important remark is in order before continuing. We should not confuse this metric G^{MN} with the C-space metric (comprising a line-metric, areametric, volume-metric, ... hyper-volume metric) [3] that can be written as sums of antisymmetrized products of the underlying 8D spacetime metric $g^{\mu\nu}$ as $g^{\mu_1\nu_1}g^{\mu_2\nu_2}\cdots g^{\mu_n\nu_n}$ + signed permutations. It can also be expressed in terms of the determinant of the $n \times n$ block matrix \mathbf{G}^{IJ} whose entries are the metric elements $g^{\mu_i\nu_j}$. Notice that the Exceptional geometry we are constructing involves nonabelian translations (it is "noncommutative") as opposed to the traditional abelian translations in the tangent spacetime.

In the traditional description of C-spaces [3] there is one component of the C-space metric $G^{\text{scalar,scalar}} = \Phi$ corresponding the scalar element of the Clifford

algebra that must be included as well. Such scalar component is a dilaton-like Jordan-Brans-Dicke scalar field. In [40] we were able to show how Weyl-geometry solves the riddle of the cosmological constant within the context of a Robertson-Friedmann-Lemaitre-Walker cosmology by coupling the Weyl scalar curvature to the Jordan-Brans-Dicke scalar ϕ field with a self-interacting potential $V(\phi)$ and kinetic terms $(\mathcal{D}_{\mu}\phi)(\mathcal{D}^{\mu}\phi)$. Upon eliminating the Weyl gauge field of dilations A_{μ} from its algebraic (nonpropagating) equations of motion, and fixing the Weyl gauge scalings, by setting the scalar field to a constant ϕ_o such that $\phi_o^2 = \frac{1}{16}\pi G$, where G is the present day observed Newtonian constant, we were able to prove that $V(\phi_o) = \frac{3H_o^2}{8\pi G}$ was precisely equal to the observed vacuum energy density of the order of $10^{-122}M_{\text{Planck}}^4$. H_o is the present value of the Hubble scale.

After this detour, the Einstein–Hilbert–Cartan action is comprised of scalar curvature plus torsion squared terms

$$S = \frac{1}{2\kappa^2} \int_{\mathcal{M}^{256}} [d^{(256)} \mathbf{X}] \sqrt{|\det G^{MN}|} [a_1 \mathcal{R} + a_2 \mathcal{T}_M \mathcal{T}^M + a_3 \mathcal{T}_{MNP} \mathcal{T}^{MNP}] \quad (2.23a)$$

where the 256-dim measure of integration is defined by

$$[d^{(256)}\mathbf{X}] = d\sigma \prod dx_{\mu} \prod dx_{\mu_1\mu_2} \prod dx_{\mu_1\mu_2\mu_3} \cdots \prod dx_{\mu_1\mu_2\mu_3\cdots\mu_8}$$
(2.23b)

in terms of the 256 components of the polyvector **X** which can be expanded in the Υ basis corresponding to the diagonal subalgebra $[Cl(8) \otimes Cl(8)]_{\text{diag}} \subset Cl(16)$ as

$$\mathbf{X} = \sigma \mathbf{1} + x_{\mu} \Upsilon^{\mu} + x_{\mu_{1}\mu_{2}} \Upsilon^{\mu_{1}\mu_{2}} + \dots + x_{\mu_{1}\mu_{2}\mu_{3}\dots\mu_{8}} \Upsilon^{\mu_{1}\mu_{2}\dots\mu_{8}}.$$
 (2.23c)

In order to match dimensions in the expansion (2.24) one requires to introduce powers of a length scale [3] which we could set equal to the Planck scale and set it to unity. In Clifford Phase Spaces [38] one needs two length scales parameters, a lower and an upper scale. Fermionic matter and scalar-field actions can be constructed in terms of Dirac–Barut–Hestenes spinors as in [3, 54]. A generalized Einstein-Hilbert gravity action in C-spaces was given in [3] where in very special cases the *C*-space scalar curvature \mathcal{R} admits an expansion in terms of sums of powers of the ordinary scalar curvature R, Riemann curvature $R_{\mu\nu\rho\sigma}$ and Ricci $R_{\mu\nu}$ tensor of the underlying Riemannian spacetime manifold.

An alternative action to the one in Eq. (2.23a) is the one given by the Yang–Mills action associated with the gauge field described by Eq. (2.14a)

$$S \sim \int_{\mathcal{M}^{256}} [d^{(256)} \mathbf{X}] \sqrt{|\det G^{MN}|} \operatorname{Trace} \left[(\mathcal{F}^{AB}_{MN} \mathcal{J}_{AB})^2 + (\mathcal{F}^{A}_{MN} P_A)^2 \right].$$
(2.24)

where the field strength $\mathcal{F}_{MN}^{AB} = \mathcal{R}_{MN}^{AB}$ is identified with the curvature, and \mathcal{F}_{MN}^{A} is given by the 248 elements of the E_8 field strength and the 8 extra components associated with the translations.

Do we have an example of the 256-dim slice of Cl(16)-space? Let us choose the ordinary space (comprised of vectorial coordinates) with $2 \times 64 + 2 \times 64 =$ 128 + 128 = 256-dimensions

$$\Sigma^{256} = (O \times O)\mathbf{P}^2 \times (O \times O)\mathbf{P}^2 \tag{2.25}$$

where $(O \times O)\mathbf{P}^2$ is the octo-octonionic two-dim projective space whose isometry group is E_8 . Since the isometry group of each copy $(O \times O) \mathbf{P}^2$ is E_8 , then the isometry group of Σ^{256} is $E_8 \times E_8$ group, which is the familiar symmetry group of the anomaly free Heterotic string in 10*D*. The number of generators is 248 + 248 = 496and the algebra has rank 8 + 8 = 16. The $E_8 \times E_8 \subset Cl(16) \times Cl(16) = Cl(32)$. The bivector generators of Cl(32) correspond to the SO(32) group which is associated with the anomaly-free open superstring in 10*D* and also has 496 generators and rank 16. An open question is to find a realization of the space Σ^{256} in terms of *polyvector* coordinates to see if in fact it admits a reinterpretation as the Cl(8)space associated to an underlying 8*D* manifold.

A different kind of Exceptional E_8 Geometry of 11D SUGRA (Supergravity) was investigated by [51] based on the formulation of 11D SUGRA with a local SO(16) invariance, after enlarging the $SO(2,1) \times SO(8)$ symmetry of the tangent space, after a compactification from 11D to 3D, to the group $SO(2,1) \times SO(16)$, by introducing new gauge degrees of freedom carried by the new field called the Kaluza–Klein vector B^m_{μ} , with $\mu, \nu = 0, 1, 2$, and $m, n = 3, 4, \dots, 10$. The ordinary 8 x_m coordinates and additional 28 tensorial (bivectors) $x_{[mn]}$ coordinates were needed. This model is quite different than the one described in this work based on Cl(16)-spaces. It is interesting, however, that 28 tensorial $x_{[mn]}$ coordinates and tensorial gauge tranformations were essential features in the construction [5]. Since we have polyvector-valued coordinates comprised of anti-symmetric tensorial coordinates of rank $2, 3, \ldots, 8$ as well, it is warranted to explore further relations between the work of [5] and ours. Generalized Yang–Mills field theories based on tensorial gauge transformations in C-space and extensions of the Standard Model were investigated in [54]. This is the reason why a Clifford Superspace is needed to incorporate Supergravity into the picture as we shall see below.

For a recent E_8 algebraic interpretation in terms of the Cl(8,8) algebra and SO(8,8), see [43]. In [45] we discussed the relationship between an Octonionic string and Octonionic Gravity based on an Octonionic (1, 1) world sheet of real dimensions 8 + 8 = 16, with 8 spatial and 8 temporal dimensions; i.e., the 16D space is twodimensional from the octonionic point of view. The connection stems from the fact that the 16-dim C-space corresponding to the Clifford algebra Cl(4) associated with an underlying a 4D space (let us our 4-dim spacetime), is comprised of a basis of $2^4 = 16$ elements given by 1 scalar, 4 vectors, 6 bivectors, 4 axial vectors, and 1 pseudoscalar, and have a one-to-one correspondence to the 16 vectors of SO(8,8).

To finalize, we explain how to construct the exterior Clifford calculus and its supersymmetric extension in Clifford Superspaces. In order to achieve this one needs an orthogonal Clifford algebra $\{\Gamma_{\mu}, \Gamma_{\nu}\} = 2g_{\mu\nu}\mathbf{1}$, where $\mu, \nu = 1, 2, ..., m$, as well as

a symplectic Clifford algebra [49] defined by $[\Sigma_{2i-1}, \Sigma_{2j}] = \delta_{ij} \mathbf{1}$, and other relations, where the components of the canonical symplectic two-form in a 2*n*-space (say a Phase space), with indices running i, i = 1, 2, ..., n can be written as a $2n \times 2n$ antisymmetric matrix with 1, -1 off the main diagonal. One has now ordinary Dirac spinors as well as symplectic spinors [47, 48].

The bosonic differentials obey $dx^{\mu} \wedge dx^{\nu} = -dx^{\nu} \wedge dx^{\mu}$, while the Grassmanian ones, defined in terms of anti-commuting coordinates $\{\theta^i, \theta^j\} = 0$, obey $d\theta^i \wedge d\theta^j = d\theta^j \wedge d\theta^i$.

The Cliford space differential is

$$\mathbf{d} = d\sigma \frac{\partial}{\partial \sigma} + dx^{\mu} \frac{\partial}{\partial x^{\mu}} + dx^{\mu_{1}\mu_{2}} \frac{\partial}{\partial x^{\mu_{1}\mu_{2}}} + \cdots dx^{\mu_{1}\mu_{2}\cdots\mu_{m}} \frac{\partial}{\partial x^{\mu_{1}\mu_{2}\cdots\mu_{m}}}$$
(2.26)

where the tensorial coordinates are fully antisymmetric in their indices.

The Clifford Superspace differential requires adding the Grassmanian contribution to the bosonic differential

$$d\theta \frac{\partial}{\partial \theta} + d\theta^{i} \frac{\partial}{\partial \theta^{i}} + d\theta^{i_{1}i_{2}} \frac{\partial}{\partial \theta^{i_{1}i_{2}}} + \cdots d\theta^{i_{1}i_{2}\cdots i_{2n}} \frac{\partial}{\partial \theta^{i_{1}i_{2}\cdots i_{2n}}}$$
(2.27)

where the tensorial Grassmanian coordinates are fully symmetric in their indices.

The super-Dirac operator is [49] obtained by adding the Grassmanian contribution to the ordinary Dirac operator

$$\sum_{1}^{m} \Gamma^{\mu} \frac{\partial}{\partial x^{\mu}} + 2 \sum_{1}^{n} \left(\sum_{1}^{2j} \frac{\partial}{\partial \theta^{2j-1}} - \sum_{1}^{2j-1} \frac{\partial}{\partial \theta^{2j}} \right).$$
(2.28)

The superdimension is defined by m - 2n. In ordinary 2D Conformal Field Theory bosons have a central charge c = 1, while fermions have $c = \frac{1}{2}$. If m - 2n = 0 this means that we have an equal number of bosonic and fermionic degrees of freedom, which is what occurs in supersymmetric field theories.

We will define the Clifford Superspace extension of the super-Dirac operator by including the tensorial bosonic and tensorial Grassmanian variables. Namely, by having

$$\mathbf{D} = \mathbf{1}\frac{\partial}{\partial\sigma} + \Gamma^{\mu}\frac{\partial}{\partial x^{\mu}} + \Gamma^{\mu_{1}\mu_{2}}\frac{\partial}{\partial x^{\mu_{1}\mu_{2}}} + \dots + \Gamma^{\mu_{1}\mu_{2}\dots\mu_{m}}\frac{\partial}{\partial x^{\mu_{1}\mu_{2}\dots\mu_{m}}}$$
$$+ \mathbf{1}\frac{\partial}{\partial\theta} + 2\left(\sum^{2j}\frac{\partial}{\partial\theta^{2j-1}} - \sum^{2j-1}\frac{\partial}{\partial\theta^{2j}}\right)$$
$$+ 2\left(\sum^{2j_{1},2j_{2}}\frac{\partial}{\partial\theta^{2j_{1}-1,2j_{2}-1}} - \sum^{2j_{1}-1,2j_{2}-1}\frac{\partial}{\partial\theta^{2j_{1},2j_{2}}}\right) + \dots$$

$$+2\left(\sum_{j_{1}-1,2j_{2}-1,...,2j_{n}}^{2j_{1},2j_{2},...,2j_{n}}\frac{\partial}{\partial\theta^{2j_{1}-1,2j_{2}-1,...,2j_{n}-1}}\right)$$
$$-\sum_{j_{1}-1,2j_{2}-1,...,2j_{n}-1}^{2j_{1}-1,2j_{2}-1,...,2j_{n}-1}\frac{\partial}{\partial\theta^{2j_{1},2j_{2},...,2j_{n}}}\right).$$
(2.29)

where $\Sigma^{i_1 i_2 \cdots i_k}$ are the sums of symmetrized products of the Σ 's consistent with the tensorial Grassmanian coordinates being fully symmetric in their indices. This is the reciprocal of the tensorial bosonic coordinates being fully antisymmetric in their indices and the $\Gamma^{\mu_1\mu_2\cdots\mu_k}$ being the sums of antisymmetrized products of the Γ 's with unit weight.

The contraction of super-differential operators, the Laplace–Beltrami superdifferential operators, the solution to the super-harmonic oscillator,... for ordinary superspace can be found in [49]. Their construction can be extended to Clifford superspaces by similar methods outlined here. The exterior products of the (Clifford-algebra-valued) spin-connection and vielbein one-forms in Clifford-space given by Eqs. (2.19, 2.20) is

$$\mathbf{\Omega} \wedge \mathbf{E} = \mathbf{\Omega}_C^A \wedge \mathbf{E}^C \mathcal{P}_A = \Omega_M^{AB} E_N^C[[\Upsilon_A, \Upsilon_B], \mathcal{P}_C] dX^M \wedge dX^N.$$
(2.30a)

$$\boldsymbol{\Omega} \wedge \boldsymbol{\Omega} = \boldsymbol{\Omega}_{C}^{A} \wedge \boldsymbol{\Omega}^{CB}[\boldsymbol{\Upsilon}_{A}, \boldsymbol{\Upsilon}_{B}]$$

$$= \Omega_{M}^{AC} \Omega_{N}^{CB}[[\boldsymbol{\Upsilon}_{A}, \boldsymbol{\Upsilon}_{C}], [\boldsymbol{\Upsilon}_{C}, \boldsymbol{\Upsilon}_{B}]] dX^{M} \wedge dX^{N}.$$

$$(2.30b)$$

$$\mathbf{d}\mathbf{\Omega} = \frac{\partial \Omega_N^{AB}}{\partial X^M} [\Upsilon_A, \Upsilon_B] dX^M \wedge dX^N.$$
(2.30c)

$$\mathbf{dE} = \frac{\partial E_N^A}{\partial X^M} \mathcal{P}_A dX^M \wedge dX^N.$$
(2.30d)

and can also be constructed in Clifford-superspace by including both orthogonal and symplectic Clifford algebras and generalizing the Clifford super-differential exterior calculus in ordinary superspace [49], to the full fledged Clifford-Superspace outlined here. Notice that the commutators in Eqs. (2.30) are just the polyvector valued extensions of the usual Poincare algebra commutators $[\mathcal{M}_{\mu\nu}, \mathcal{M}_{\rho\sigma}]$ and $[\mathcal{M}_{\mu\nu}, P_{\rho}]$, when the Lorentz algebra generators are realized in terms of Clifford bivectors as $\mathcal{M}_{\mu\nu} \sim [\gamma_{\mu}, \gamma_{\nu}]$. In Clifford spaces in order to evaluate the commutators involving *polyvector* generators requires the computation of all commutators of all of the Clifford-algebra generators $\Gamma^{\mu}, \Gamma^{\mu_1\mu_2}, \Gamma^{\mu_1\mu_2\mu_3}, \ldots$, see [50]. Generalized orthogonal Clifford algebras; symplectic Clifford algebras as subalgebras of super-Clifford algebras; symplectic Clifford algebraic field theory ... can be found in [47]. The full development of the Clifford Superspace exterior differential calculus will be the subject of further investigation. In particular the construction of generalized Supergravity and Super-Yang-Mills theory in Clifford Superspaces and the Clifford (super) space extensions of (super)twistors.

2.3. A conformal gravity and standard model unification in 4D from E_8 Yang-Mills in D = 8

Before embarking into this section we must say that the discussion, reasoning and most of the results in this section are different from [7, 13]. There are some overlaps with Smith's model of gravity and particle physics involving Cl(8) algebras. In particular, we avoid the problems encountered in the model [13] by attempting to assign all (massless fields prior to symmetry breaking) gauge bosons, Higgs scalars and matter fermions as elements of a single E_8 gauge connection without invoking Supersymmetry nor a Quillen's BRST-like superconnection. Within the realm of the *super* Clifford algebras developed by Dixon [47, 49], based on orthogonal and symplectic Clifford algebras, one can accommodate bosonic and fermionic gauge degrees of freedom, as well as scalar and fermionic matter, into a single super-Clifford-algebra *polyvector*-valued connection, by choosing a sufficiently large algebra. An example of this assignment of many fields within a single Clifford-algebra-valued *polyvector*-connection has been discussed in detail by [54]. Polyvectors contain scalars, pseudoscalars, vectors, axial-vectors, bivectors (antisymmetric tensors of rank 2), ... thus one can have scalar matter and vector gauge bosons within a polyvector. In Clifford-superspace one incorporates fermionic matter, gauginos, gravitinos, ... as well.

As mentioned above, orthogonal and symplectic Clifford algebras have been widely used by [49] to develop a Clifford algebraic formulation of Superspaces present in Supersymmetry and Supergravity. In this fashion one can now accommodate bosons and fermions into a single super-Clifford-algebra polyvector-valuedconnection avoiding the problems of [13]. The tetrad e_{μ}^{m} , gravitino Ψ_{μ} , photon, photino, Yang–Mills gauge fields, gauginos, the scalars Higgs, Higgsinos, ... all can now be assembled into the super-Clifford-algebra polyvector-valued connection. Ordinary supersymmetry rotates elements within a given multiplet. In a scalar supermultiplet, scalars (spin 0) and fermions (spin $\frac{1}{2}$) are rotated into each other. In a vector multiplet, one has the gauge field (spin 1) rotated into a gaugino (spin $\frac{1}{2}$). In the graviton multiplet, the graviton (spin 2) is rotated into a gravitino (spin $\frac{3}{2}$). In Clifford Superspaces, however, all these fields from all these multiplets are encoded into a single super-Clifford polyvector multiplet and can be rotated into each other under polyvector-valued extensions of SUSY.

A Polyvector-valued extension of ordinary Poincare super-algebras in connection to the M, F theory super-algebras [14], involving tensorial antisymmetric charges and based on Clifford spaces was studied by [15]. Dixon [47] has also recurred to an algebraic design in Nature and unification based on the four Division algebras Real, Complex, Quaternions and Octonions. An Ashtekar formulation of Gravity in 8Dusing the octonionic structure constants has been attained by [39]. For complex, quaternionic and octonionic gravity see [46] and references therein.

After this preamble, as discussed in the introduction, the authors have analyzed in detail [29, 30] the symmetry breaking of $E_8 \rightarrow SO(10) \times SU(4)$, where SO(10) is the GUT group and SU(4) is the four families (plus four mirror families) unification group. The symmetry breaking leaves 128 (i = 1, 2, 3, ..., 128) massless (chiral) spinors Ψ_{α}^{i} (out of the initial 248 since 120 have acquired large masses). It leaves 60 gauge bosons massless and 188 massive. The remaining 60 unbroken gauge symmetries admit the $SO(10) \times SU(4)$ decomposition given by (45, 1) + (1, 15) and, as expected, the 45 gauge bosons are assigned to the adjoint representation of the GUT group SO(10), and 15 gauge bosons are associated with the gauging of the SU(4) family group.

The analysis of [29, 30] was restricted to 4D. If one begins with a E_8 Yang-Mills in 16D the number of degrees of freedom is far larger. By having 128 massless spinors, since each chiral spinor in 16D is comprised of 128 components, in the dimensional reduction process $16D \rightarrow 4D$, one would end up with a plethora of 4×64 fermion families, plus 4×64 mirror fermion families, of two-component (left-handed and right-handed) Weyl spinors in 4D assigned to the 16-dim chiral (anti-chiral) spinor representation of SO(10). One would argue that this leaves us with too many families, a 64-fold increase ... For this reason one would have to freeze (truncate to zero) a large number of degrees of freedom of most of the fermions (and scalars emerging from the gauge bosons) in the dimensional reduction process, in order to end up with Conformal Gravity and a $SO(10) \times SU(4)$ Yang–Mills theory interacting with 4 fermion families (plus their 4 mirror families) in 4D. Another possibility that one can envision is to find a mechanism, through the symmetry breaking process from $SO(10) \times SU(4)$ to the Standard Model group, that brings about large masses for *most* of the fermion families, except for 3 or 4 light ones at lower energies which is compatible with what is observed.

Despite that a large number of families might destroy perturbative unification, asymptotic freedom,... there is nothing wrong, in principle, after the symmetry breaking process (there are other different symmetry breaking branches, we choose one in particular)

$$E_8 \to SO(10) \to SU(5) \to SU(3)_c \times SU(2)_L \times U(1)_Y \to SU(3)_c \times U(1)_{EM}$$
(2.30)

to end up with a large number of massive fermions, which in turn, can themselves be regrouped into 64 hierarchical layers of increasing mass, with 4 families in each layer, from ordinary energies *all* the way to the *GUT* scale M_{GUT} and Planck energy scale 10¹⁹ Gev. As we go from lower to higher energies, the 64 hierarchical layers of fermions begin to unfold. Hence, in this scenario there would not be a "desert" between lower energies and the *GUT* and Planck scale. Therefore, at first hand we should not disregard this possibility. Of course, to avoid the plethora of particles, and to simplify matters, it is more natural to start with an ordinary E_8 Yang–Mills in 4D which must not be confused with the E_8 Generalized Yang–Mills theory associated with the Chern–Simons E_8 Gauge theory of Gravity in higher dimensions involving polynomials in the E_8 field strength, Riemann curvature and torsion [31] and discussed in the previous section.

The GUT group SO(10) is very physically appealing for many reasons as stated in [32]. In particular, it admits two physically relevant branchings [32]

$$E_8 \to SO(10) \times SU(4) \to$$

$$SO(10) \to SO(6) \times SO(4) \sim SU(4) \times SU(2)_L \times SU(2)_R$$
(2.31)

leading at the end of the chain to the Patti–Salam unification group. There is also the SU(5) GUT model branch

$$E_8 \to SO(10) \times SU(4) \to SO(10) \to$$

$$SU(5) \times U(1) \to [SU(3)_c \times SU(2)_L \times U(1)_Y] \times U(1)_{B-L}$$
(2.32)

where the brackets include the Standard Model group and B - L denotes baryon minus lepton number.

Starting now from an ordinary E_8 Yang–Mills gauge field theory in 8D we shall follow two different channels of symmetry breaking of the $E_{8(-24)}$ algebra with 112 noncompact and 136 compact generators such that the character of the real form is 122 - 136 = -24. The first channel is obtained by finding the judicious subgroups H of $E_{8(-24)}, E_{7(-5)}, E_{6(-14)}$, respectively, from the table of the classification of real forms and cosets $\frac{G}{H}$ of exceptional groups in [33] and it leads to

$$E_{8(-24)} \to E_{7(-5)} \times SU(2) \to E_{6(-14)} \times U(1) \to \\SO(8,2) \times U(1) \to SO(8,2).$$
(2.33)

After 4 successive symmetry breakings, and following closely the tables in [33], one finally has reached the sought after 8D Conformal group SO(8, 2) appearing in the last term of the sequence and which will furnish a Conformal Gravitational theory in 8D after *gauging* the Conformal group. At this stage of matters we shall not be concerned about the details of the 4 symmetry breaking mechanisms from the beginning of the chain of symmetries to the end. At the moment we are only concerned with the *algebraic* group structures present in the branching chain of group symmetries in (2.29).

The next step is to recur to the Kaluza–Klein compactification process of the 8DConformal Gravity theory down to 4D. Contrary to the lore that it is not possible to obtain the Standard Model group $SU(3) \times SU(2) \times U(1)$ in 4D directly from a Kaluza–Klein compactification of Gravity from 8D to 4D, (higher dimensions than D = 8 were thought to be needed to attain this goal) Batakis [11] uncovered an extra $SU(2) \times U(1)$ gauge field structure to the SU(3) gauge field structure, from a Kaluza–Klein compactification process of the form $\mathcal{M}^8 \to \mathcal{M}^4 \times CP^2$, provided a nontrivial torsion in the total space is incorporated. Such torsion creates a new possibility for the construction of a unified theory in 8D not envisioned before. In particular, C-spaces have torsion [3]. Therefore, a compactification of the 8D theory down to 4D along the internal space CP^2 will lead to a (Conformal) Gravitational and Yang-Mills theory in 4D based on the Standard Model group $SU(3)_c \times SU(2)_L \times U(1)_Y$. Therefore, starting from an E_8 ordinary Yang-Mills in 8D, after a sequence of symmetry breaking processes, and performing a Kaluza-Klein-Batakis compactification on CP^2 , we are able to recover a Gravity-Yang-Mills theory based on the Standard Model.

Another channel of symmetry breaking processes is

$$E_{8(-24)} \to E_{6(-14)} \times SU(3) \to SO(8,2) \times U(1) \to SO(8,2).$$
 (2.34)

As stated in the introduction, the SU(3) in the first stage of the symmetry breaking process is the 3 fermion family unification group as it occurs in the Heterotic string theory in 10D, with 3 fermion families (and their mirrors) assigned to the 27 ($\overline{27}$)-dim representation of E_6 :

$$248 = (1,8) + (78,1) + (27,3) + (\overline{27},\overline{3}). \tag{2.35}$$

Once again, at the end of the chain (2.34) we recover the conformal group SO(8, 2)in 8D. Gauging the conformal group yields 8D Conformal gravity and a Kaluza– Klein compactification from $8D \rightarrow 4D$ along an internal CP^2 space, a la Batakis [11], yields a 4D (Conformal) Gravity and a Yang–Mills theory based on the Standard Model group $SU(3)_c \times SU(2)_L \times U(1)_Y$. In this respect, the results (not our arguments) of this section are very similar to those of Smith's model of gravity and particle physics which includes the determination of coupling constants, particle masses, mixing angles, etc. [7]. A thorough analysis of the connections between Smith's model and Clifford Phase spaces associated with 8D was presented in [38, 54].

The quasi conformal groups (with four times), like the SO(12, 4) in 12D do arise in the $E_{8(-24)}$ symmetry breaking chain. It is one of the subgroups with 48 noncompact generators and 72 compact ones. 12D is the dimensions of Vafa's Ftheory. The quasi conformal groups like SO(12, 4) have been studied by Gunaydin et al. [29]. To our knowledge we are not aware of anyone gauging the quasi-conformal group in order to obtain a quasi-conformal theory of Gravity in 12D. By imposing suitable constraints; partially fixing some of the gauge symmetries and gauging the remaining symmetries we should be able to recover the ordinary Gravitational theory in 12D based on gauging the Poincare Group ISO(D-1, 1), the semi-direct product of the Lorentz group SO(D-1, 1) with the Translation group T_D in D-dim. Bars for the past years has studied in depth the two times 2T physics based on the conformal groups SO(D, 2) [36].

Metric affine theories of Gravity developed by Ne'eman and collaborators are based in gauging the semi-direct product of GL(D, R) with the translation group in *D*-dim. GL(D, R) admits *infinite*-dimensional spinorial representations but *not* finite-dimensional ones. GL(D, R) spinors have an infinite number of components. For this reason one cannot realize the GL(D, R) infinite-component spinors in terms of left/right ideal elements of the Cl(D, R) algebra. One would require to have the $D \to \infty$ limit $Cl(D, R) = Cl(8) \times CL(8) \times \cdots$ by exploiting the modulo 8 periodicity of real Clifford algebras. Complex Clifford algebras have a modulo 2 periodicity. This infinite product of Cl(8) has been discussed by Smith [7] in relation to von Neumann's type II_1 algebras. Ogievetsky has shown long ago that the algebra of gl(D, R) and the conformal algebra so(D, 2) does not close. However, upon taking an infinite succession of nested commutators, one generates the infinitedim diffeomorphisms algebra in D-dim. This is a fundamental result because it implies that Einstein gravity may be an emergent theory after a symmetry breaking process. For example, the metric tensor $g_{\mu\nu}$ in D-dim has D(D+1)/2 components which match the dimensions of the noncompact coset space GL(D, R)/SO(D, R).

To conclude Sec. 2. In Subsec. 2.1 we have explained why the Chern–Simons E_8 Gauge theory of Gravity [31] is a unified field theory at the Planck scale of a Lanczos–Lovelock Gravity (LL) and a E_8 Generalized Yang–Mills (GYM) field theory and defined in the 15D boundary of a 16D bulk space. The dimensional reduction from $16D \rightarrow 4D$ yields ordinary Gravity and a E_8 Yang–Mills defined in the 3D boundary of a 4D bulk space after a freezing (truncation) of degrees freedom. Thus we have a Gravity- E_8 Yang–Mills unification at the Planck scale in 4D. The rigorous details of the reduction of Chern–Simons gravitational theories from higher to lower dimensions was presented by [37].

In Subsec. **2.2** we explained the nature of the Exceptional E_8 Geometry associated to the 256-dim "curved" slice of the 256×256 -dimensional flat Cl(16) space. A more general E_8 gauge theory of gravity in such a 256-dim curved slice is obtained by introducing the spin connection Ω_M^{AB} , that gauges the generalized Lorentz transformations in the tangent space of the 256-dim curved slice; $M = 1, 2, 3, \ldots, 256$; $A, B = 1, 2, 3, \ldots, 256$. There are in addition 256×256 components of the vielbein one-form $E_M^A \mathcal{P}_A dX^M$, which encode in one-scoop, all the 248 E_8 gauge fields and 8 additional translations associated with the vectorial parts of the generators Υ_i ; $i = 1, 2, 3, \ldots, 8$ of the diagonal subalgebra $|Cl(8) \otimes Cl(8)|_{\text{diag}} \subset Cl(16)$. Therefore, the E_8 gauge symmetry is just part of the 248 + 8 = 256 generalized nonabelian translations along the tangent space of the 256-dim slice of the Cl(16)-space. We constructed the curvature, Ricci tensor and Ricci scalar; the torsion tensor and torsion vector, and finally we displayed the Einstein-Hilbert-Cartan action that represents a generalized Exceptional E_8 theory of gravity corresponding to the 256-dim curved slice in terms of its underlying "diagonal" embedding into a flat Cl(16)-space background. Finally we described how to construct a Clifford Superspace based on orthogonal, symplectic Clifford algebras (subalgebras of the super-Clifford algebras [47]) and extending the Clifford analysis approach to superspace of [49] to the one involving polyvectors.

At the beginning of Sec. 2.3 we reviewed briefly the E_8 Yang–Mills theory in 4D, following the Bars–Gunaydin–Barr detailed analysis [29, 30] of the symmetry breaking process $E_{8(8)} \rightarrow SO(16) \rightarrow SO(10) \times SU(4)$ and leading to a SO(10) GUT group and SU(4) family unification group (4 fermion families plus 4 mirror families). Bars–Gunaydin and Barr, respectively, have analyzed in full detail how a symmetry breaking of SO(10) and E_6 leaves only 3 *light* families and a super-heavy fourth

family, which is what is observed. Two branchings of the SO(10) GUT are possible furnishing the Patti–Salam and/or the Standard Model group at low energies.

At the end of Sec. 2.3, we have explained how an E_8 ordinary Yang–Mills in 8D, after a sequence of symmetry breaking processes $E_8 \rightarrow E_7 \rightarrow E_6 \rightarrow SO(8, 2)$, and performing a Kaluza–Klein–Batakis compactification on CP^2 , involving a nontrivial *torsion*, one is able to recover a (Conformal) Gravity and Yang–Mills theory based on the Standard Model in 4D. These end result agrees with Smith's Cl(8) model of gravity and particle physics [7].

3. Conclusion: Conformal Gravity–Yang–Mills Unification from Clifford Gauge Field Theory

It is known that within the framework of Quantum Field Theory (QFT), the Coleman-Mandula theorem requires that if symmetries are to be described in terms of Lie algebras, the symmetries of the proposed Grand Unified Field theory must be based on the direct product of the Poincare group with the internal symmetry group G. Haag-Lopuszanski-Sohnius extended the Coleman-Mandula result to Supersymmetric Quantum Field Theories by introducing spinorial generators. Nevertheless, higher order algebraic extensions of the Poincare and Clifford algebras in QFT, like ternary and higher order algebras, have been proposed more recently as another possibility, see [55] and references therein. Since the Poincare group is a natural subgroup of the Conformal group, we begin this conclusion by showing how Conformal Gravity can be obtained by gauging the Conformal group and, which in turn, is a very small sector of a more general Clifford algebra-valued gauge field theory.

Let us construct the Clifford C(16) gauge field theory by writing the Cl(16)-valued gauge field

$$\mathbf{A}_{\mu} = \mathcal{A}_{\mu}^{A} \Gamma_{A} = \mathcal{A}_{\mu} \mathbf{1} + \mathcal{A}_{\mu}^{a} \Gamma_{a} + \mathcal{A}_{\mu}^{a_{1}a_{2}} \Gamma_{a_{1}a_{2}} + \mathcal{A}_{\mu}^{a_{1}a_{2}a_{3}} \Gamma_{a_{1}a_{2}a_{3}} + \cdots + \mathcal{A}_{\mu}^{a_{1}a_{2}\cdots a_{16}} \Gamma_{a_{1}a_{2}\cdots a_{16}}$$
(3.1)

and the Cl(16)-algebra-valued field strength (*omitting* numerical coefficients attached to the Γ 's) is

$$\begin{aligned} \mathcal{F}^{A}_{\mu\nu}\Gamma_{A} &= \partial_{[\mu}A_{\nu]}\mathbf{1} + [\partial_{[\mu}A^{a}_{\nu]} + A^{b_{2}}_{[\mu}A^{b_{1}a}_{\nu]}\eta_{b_{1}b_{2}} + \cdots]\Gamma_{a} \\ &+ [\partial_{[\mu}A^{ab}_{\nu]} + A^{a}_{[\mu}A^{b}_{\nu]} - A^{a_{1}a}_{[\mu}A^{b_{1}b}_{\nu]}\eta_{a_{1}b_{1}} - A^{a_{1}a_{2}a}_{[\mu}A^{b_{1}b_{2}b}_{\nu]}\eta_{a_{1}b_{1}a_{2}b_{2}} + \cdots]\Gamma_{ab} \\ &+ [\partial_{[\mu}A^{abc}_{\nu]} + A^{a_{1}a}_{[\mu}A^{b_{1}bc}_{\nu]}\eta_{a_{1}b_{1}} + \cdots]\Gamma_{abc} \\ &+ [\partial_{[\mu}A^{abcd}_{\nu]} - A^{a_{1}a}_{[\mu}A^{b_{1}bcd}_{\nu]}\eta_{a_{1}b_{1}} + \cdots]\Gamma_{abcd} \\ &+ [\partial_{[\mu}A^{a_{1}a_{2}\cdots a_{5}b_{1}b_{2}\cdots b_{5}} + A^{a_{1}a_{2}\cdots a_{5}}_{[\mu}A^{b_{1}b_{2}\cdots b_{5}} + \cdots]\Gamma_{a_{1}a_{2}\cdots a_{5}b_{1}b_{2}\cdots b_{5}} + \cdots \end{aligned}$$
(3.2)

and is obtained from the evaluation of the commutators of the Clifford-algebra generators appearing in (3.1). The most general formulae for all commutators and

anti-commutators of $\Gamma^{\mu}, \Gamma^{\mu_1 \mu_2}, \ldots$, with the appropriate numerical coefficients, can be found in [50].

Therefore, E_8 Yang–Mills actions (are part of) can be embedded onto more general Cl(16) actions with a much larger number of terms given by

$$S_{\text{Topological}}[Cl(16)] = \int d^4x \langle F^{\mathcal{A}}_{\mu\nu} F^{\mathcal{B}}_{\rho\tau} \Gamma_{\mathcal{A}} \Gamma_{\mathcal{B}} \rangle_{\text{scalar}} \epsilon^{\mu\nu\rho\tau}$$
$$= \int d^4x F^{\mathcal{A}}_{\mu\nu} F^{\mathcal{B}}_{\rho\tau} G_{\mathcal{A}\mathcal{B}} \epsilon^{\mu\nu\rho\tau}$$
(3.3)

and

$$S_{YM}[Cl(16)] = \int d^4x \sqrt{g} \langle F^{\mathcal{A}}_{\mu\nu} F^{\mathcal{B}}_{\rho\tau} \Gamma_{\mathcal{A}} \Gamma_{\mathcal{B}} \rangle_{\text{scalar}} g^{\mu\rho} g^{\nu\tau}$$
$$= \int d^4x \sqrt{g} F^{\mathcal{A}}_{\mu\nu} F^{\mathcal{B}}_{\rho\tau} G_{\mathcal{A}\mathcal{B}} g^{\mu\rho} g^{\nu\tau}$$
(3.4)

where $\langle \Gamma_{\mathcal{A}} \Gamma_{\mathcal{B}} \rangle = G_{\mathcal{A}\mathcal{B}} \mathbf{1}$ denotes the *scalar* part of the Clifford geometric product of the gammas Γ . Notice that there are a total of 65536 terms in

$$F^{\mathcal{A}}_{\mu\nu}F^{\mathcal{B}}_{\rho\tau}G_{\mathcal{AB}} = F_{\mu\nu}F_{\rho\tau} + F^{a}_{\mu\nu}F^{a}_{\rho\tau} + F^{a_{1}a_{2}}_{\mu\nu}F^{a_{1}a_{2}}_{\rho\tau} + \cdots + F^{a_{1}a_{2}\cdots a_{16}}_{\mu\nu}F^{a_{1}a_{2}\cdots a_{16}}_{\rho\tau}$$
(3.5)

where the indices run as a = 1, 2, ..., 16. The Clifford algebra $Cl(16) = Cl(8) \otimes Cl(8)$ has the graded structure (scalars, bivectors, trivectors, ..., pseudoscalar) given by

$$\frac{1\ 16\ 120\ 560\ 1820\ 4368\ 8008\ 11440\ 12870}{11440\ 8008\ 4368\ 1820\ 560\ 120\ 16\ 1} \tag{3.6}$$

consistent with the dimension of the Cl(16) algebra $2^{16} = 256 \times 256 = 65536$.

We proceed by showing how the conformal algebra so(D, 2) in *D*-dimensions and the so(D + 2) algebras are particular subalgebras of the Cl(D - 1, 1) and Cl(D)algebras, respectively. We may focus on the Cl(7, 1), Cl(8) algebras as examples. A thorough discussion of Conformal transformations in ordinary spacetime from the Clifford space perspective can be found in [3].

The 8D Lorentz SO(7,1) is a subalgebra of Cl(7,1) which may be realized in terms of the 28 Clifford *bivector* generators $\mathcal{M}_{\mu\nu} = -\frac{i}{4}[\Gamma_{\mu},\Gamma_{\nu}]$ when $\mu,\nu = 1,2,3,\ldots,8$. The Clifford Cl(7,1) algebra is defined in terms of the anticommutators

$$\{\Gamma^{\mu}, \Gamma^{\nu}\} = 2g^{\mu\nu}\mathbf{1}; \quad \Gamma^{9} = \Gamma^{1}\Gamma^{2}\Gamma^{3}\cdots\Gamma^{8}, \quad \{\Gamma^{\mu}, \Gamma^{9}\} = 0; \quad (\Gamma^{9})^{2} = -1.$$
(3.7)

A Euclidean signature Clifford algebra Cl(8) would lead instead to $(\Gamma^9)^2 = 1$.

It is now when we borrow the results in [3] showing why the 8D Conformal algebra SO(8,2) (that contains the Lorentz algebra SO(7,1)) is just a *subalgebra*

of the Clifford algebra Cl(7,1) after introducing the following realization of the Conformal Group in $D = 8, \mu, \nu = 1, 2, 3, ..., 7, 8$. The translation generator in D = 8 is

$$P_{\mu} = -\frac{1}{2}\Gamma_{\mu}(\mathbf{1} - \Gamma_9) \tag{3.8}$$

and can be interpreted as a linear combination of the rotation generators $\mathcal{M}_{\mu9} + \mathcal{M}_{\mu10}$, which from the C-space perspective involve the 8 Γ^{μ} generators, the unit 1 element of the Cl(7,1) algebra which represents a particular direction in C-space, and the antisymmetrized product of all gammas with unit weight $\Gamma^{[123\cdots8]} \sim \Gamma^9 \epsilon^{123\cdots8}$, that represents another direction in C-space [3], such that the effective number of directions involved in C-space is 8+2=10, consistent with the fact that the Conformal group in 8D is SO(8,2).

The Conformal boost generator is

$$K_{\mu} = -\frac{1}{2}\Gamma_{\mu}(\mathbf{1} + \Gamma_{9}) \tag{3.9}$$

and can be interpreted as the other independent linear combination of the rotation generators $\mathcal{M}_{\mu9} - \mathcal{M}_{\mu10}$. The Dilation generator is

$$D = -\frac{1}{2}\Gamma_9 \tag{3.10}$$

and can be interpreted as rotation $\mathcal{M}_{9,10}$. The Lorentz generators are

$$\mathcal{M}_{\mu\nu} = -\frac{1}{4} [\Gamma_{\mu}, \Gamma_{\nu}] \tag{3.11}$$

and can be interpreted as the usual rotations (boosts) around the axes perpendicular to the $x_{\mu} - x_{\nu}$ planes.

Equipped with a Clifford algebraic realization of the (anti-Hermitian) generators and after recurring to the Cl(7, 1) algebraic relations, it is a straightforward exercise to find

$$[\mathcal{M}_{\mu\nu}, \mathcal{M}_{\rho\sigma}] = -g_{\nu\sigma}\mathcal{M}_{\mu\rho} + g_{\nu\rho}\mathcal{M}_{\mu\sigma} + g_{\mu\sigma}\mathcal{M}_{\nu\rho} - g_{\mu\rho}\mathcal{M}_{\nu\sigma}.$$
 (3.12)

$$[\mathcal{M}_{\mu\nu}, P_{\rho}] = g_{\nu\rho}P_{\mu} - g_{\mu\rho}P_{\nu}; \quad [\mathcal{M}_{\mu\nu}, K_{\rho}] = g_{\nu\rho}K_{\mu} - g_{\mu\rho}K_{\nu}. \quad (3.13)$$

$$[P_{\mu}, P_{\nu}] = [K_{\mu}, K_{\nu}] = 0; \quad [K_{\mu}, P_{\nu}] = -2(g_{\mu\nu}D + M_{\mu\nu}). \tag{3.14}$$

$$[K_{\mu}, D] = -K_{\mu}; \quad [P_{\mu}, D] = P_{\mu}.$$
(3.15)

Notice that despite that the generators of the 8D Conformal Algebra SO(8,2) can be recast trivially in terms of the 45 bivectors of the Cl(8,2) algebra, the key result of the above Eqs. (3.8)–(3.11) is that it allows us to recast the conformal SO(8,2) algebra Eqs. (3.12)–(3.15) in D = 8 directly as a subalgebra of the algebra associated to the Cl(7,1) group which is $2^D = 2^8 = 256$ -dimensional. The Cl(7,1) group is spanned by the antisymmetrized products of the $2^8 = 256$ generators

$$\mathbf{1}, \Gamma^{\mu}, \Gamma^{\mu_1} \wedge \Gamma^{\mu_2}, \Gamma^{\mu_1} \wedge \Gamma^{\mu_2} \wedge \Gamma^{\mu_3}, \dots, \Gamma^{\mu_1} \wedge \Gamma^{\mu_2} \wedge \dots \Gamma^{\mu_8}.$$
(3.16)

Similar results follow for the Euclidean Clifford algebra Cl(8) defined in terms of the generators $\Upsilon_i, i = 1, 2, 3, \ldots, 8$ as

$$\{\Upsilon^i, \Upsilon^j\} = 2\delta^{ij}\mathbf{1}; \quad \Upsilon^9 = \Upsilon^1\Upsilon^2\Upsilon^3 \cdots \Upsilon^8, \quad \{\Upsilon^i, \Upsilon^9\} = 0; \quad (\Upsilon^9)^2 = 1.$$
(3.17)

One may construct the SO(10) algebra realized in terms of the Υ^1 generators in the same way.

Gamma matrices can be used also to find a realization of Superconformal algebras. In particular the realization of the superconformal algebra SU(2, 2|1) in D = 4 can be found in [32]. The superconformal algebra SU(2, 2|1) leaves the superspace metric invariant

$$ds^2 = dz_\mu d\bar{z}^\mu + d\theta^*_\alpha (C^{-1})_{\alpha\beta} d\theta_\beta \tag{3.18}$$

where C is the charge conjugation matrix.

To sum up, the so(10) algebra is a natural subalgebra of Cl(8), and the 8DConformal algebra so(8, 2) is a subalgebra of the Cl(7, 1) algebra. It is the SO(10)group which provides one of the GUT groups. While the Conformal group SO(8, 2)associated to the 8-dim spacetime is the symmetry group associated with the 8DConformal Gravity. Similar arguments apply to all Conformal groups SO(D, 2). In particular, the conformal gravity action in 4D reads

$$S = \frac{1}{4g^2} \int_{M^4} d^4 x \kappa_{mnpq} F^{mn}_{\mu\nu} F^{pq}_{\rho\sigma} \epsilon^{\mu\nu\rho\sigma}$$
(3.19)

where κ_{mnpq} is the Killing SO(4, 2) invariant metric defined in terms of the structure constants of the so(4, 2) algebra as

$$\kappa_{mnpq} = f_{[mn][rs]}^{[ab]} f_{[ab][pq]}^{[rs]}.$$
(3.20)

It is antisymmetric under the exchange of $m \leftrightarrow n, p \leftrightarrow q$ indices and it is symmetric under the exchange of pairs of indices $\kappa_{mnpq} = \kappa_{pqmn}$. One should not use ϵ_{mnpq} to contract internal indices because it is *not* an SO(4, 2) invariant tensor. In 8D one may construct the following actions

$$S_{YM} = \int_{M^8} [(\mathbf{F} \wedge \mathbf{F}) \wedge {}^*(\mathbf{F} \wedge \mathbf{F})], \qquad (3.21)$$

$$S_{\text{Topological}} = \int_{M^8} [\mathbf{F} \wedge \mathbf{F} \wedge \mathbf{F} \wedge \mathbf{F}]$$
(3.22)

which are the 8D counterparts of the 4D actions. In order to contract internal indices once again one needs to construct the proper group-invariant tensors.

The gist of all this discussion is that one can embed the gauge theories based on the conformal group SO(D, 2) in *D*-dim, and the group SO(D' + 2), into a single gauge theory based on the Clifford group Cl(D + D') by selecting judiciously the proper values of D, D' and recurring to the modulo 8 periodicity of Clifford algebras defined over the reals. We display some examples:

$$D = 4; \text{ since } SO(3,1) \times SO(8) \subset SO(4,2) \times SO(10) \subset Cl(3,1) \otimes Cl(8) \quad (3.23)$$

the Cl(11, 1)-algebra gauge field theory defined over the 4D spacetime (base manifold) contains the desired 4D Conformal Gravity (based on SO(4, 2)) and SO(10)Yang–Mills field theory.

$$D = 4; \text{ since } SO(3,1) \times E_8 \subset SO(4,2) \times E_8 \subset Cl(3,1) \otimes Cl(8) \otimes Cl(8) \quad (3.24)$$

the Cl(19, 1)-algebra gauge field theory defined over the 4D spacetime (base manifold) contains the desired 4D Conformal Gravity theory (based on SO(4, 2)) and E_8 Yang–Mills theory.

$$D = 8; \quad SO(7,1) \times SO(8) \subset SO(8,2) \times SO(10) \subset Cl(7,1) \otimes Cl(8)$$
(3.25)

the Cl(15, 1)-algebra gauge field theory defined over the 8D spacetime (base manifold) contains 8D Conformal Gravity (based on SO(8, 2)) and the SO(10) Yang– Mills theory.

The main idea of this concluding section is that upon extending this construction to the super-Clifford algebras case, *all* Grand-Unified field theories of Conformal supergravity and Super-Yang-Mills in *D*-dimensions, with structure groups $G = E_8, E_7, E_6, SO(10), SU(5), \ldots$, may be embedded into a super-Clifford-gauge field theory defined over a *D*-spacetime after exploiting the modulo 8 periodicity of Clifford algebras. The bosons and fermions are encoded into the various components of the super-Clifford polyvector-valued super-connection. This will be the subject of future investigation.

Acknowledgments

We thank Frank (Tony) Smith for discussions and M. Bowers for assistance.

Appendix A. The GL(8, R) Decomposition of E_8

We shall reproduce the full appendix in [51] for the convenience of the reader. To recover the SL(8, R) basis of [52], we will further decompose the above representations into representations of the subgroup $SO(8) \equiv (SO(8) \times SO(8))_{\text{diag}} \subset SO(16)$. The indices corresponding to the $\mathbf{8}_v, \mathbf{8}_s$ and $\mathbf{8}_c$ representations of SO(8), respectively, will be denoted by a, α and $\dot{\alpha}$. After a triality rotation the SO(8) vector and spinor representations decompose as

$$\begin{split} \mathbf{16} &\to \mathbf{8_s} \oplus \mathbf{8_c} \\ \mathbf{128_s} &\to (\mathbf{8_s} \otimes \mathbf{8_c}) \oplus (\mathbf{8_v} \otimes \mathbf{8_v}) = \mathbf{8_v} \oplus \mathbf{56_v} \oplus \mathbf{1} \oplus \mathbf{28} \oplus \mathbf{35_v} \\ \mathbf{128_c} &\to (\mathbf{8_v} \otimes \mathbf{8_s}) \oplus (\mathbf{8_c} \otimes \mathbf{8_v}) = \mathbf{8_s} \oplus \mathbf{56_s} \oplus \mathbf{8_c} \oplus \mathbf{56_c}. \end{split} \tag{A.1}$$

respectively. We thus have $I = (\alpha, \dot{\alpha})$ and $A = (\alpha\beta, ab)$, and the E_8 generators decompose as

$$X^{[IJ]} \to (X^{[\alpha\beta]}, X^{[\dot{\alpha}\dot{\beta}]}, X^{\alpha\dot{\beta}}); \quad Y^A \to (Y^{\alpha\dot{\alpha}}, Y^{ab}).$$
(A.2)

Next we regroup these generators as follows. The 63 generators

$$E_a^b := \frac{1}{8} \left(\Gamma_{\alpha\beta}^{ab} X^{[\alpha\beta]} + \Gamma_{\dot{\alpha}\dot{\beta}}^{ab} X^{[\dot{\alpha}\dot{\beta}]} \right) + Y^{(ab)} - \frac{1}{8} \delta^{ab} Y^{cc}.$$
(A.3)

for $1 \leq a, b \leq 8$ span an SL(8, R) subalgebra of E_8 . The generator $N := Y^{cc}$ extends this subalgebra to GL(8, R). $\Gamma^{ab}, \Gamma^{abc}, \ldots$ are antisymmetrized products of gammas. The remainder of the E_8 Lie algebra then decomposes into the following representations of SL(8, R):

$$Z^{a} := \frac{1}{4} \Gamma^{a}_{\alpha\dot{\alpha}} (X^{\alpha\dot{\alpha}} + Y^{\alpha\dot{\alpha}}).$$
 (A.4)

$$Z_{[ab]} = Z_{ab} := \frac{1}{8} \left(\Gamma^{ab}_{\alpha\beta} X^{[\alpha\beta]} - \Gamma^{ab}_{\dot{\alpha}\dot{\beta}} X^{[\dot{\alpha}\dot{\beta}]} \right) + Y^{[ab]}.$$
(A.5)

$$E^{[abc]} = E^{abc} := -\frac{1}{4} \Gamma^{abc}_{\alpha\dot{\alpha}} (X^{\alpha\dot{\alpha}} - Y^{\alpha\dot{\alpha}}).$$
(A.6)

and

$$Z_a := -\frac{1}{4} \Gamma^a_{\alpha\dot{\alpha}} (X^{\alpha\dot{\alpha}} - Y^{\alpha\dot{\alpha}}).$$
(A.7)

$$Z^{[ab]} = Z^{ab} := -\frac{1}{8} (\Gamma^{ab}_{\alpha\beta} X^{[\alpha\beta]} - \Gamma^{ab}_{\dot{\alpha}\dot{\beta}} X^{[\dot{\alpha}\dot{\beta}]}) + Y^{[ab]}.$$
 (A.8)

$$E_{[abc]} = E_{abc} := -\frac{1}{4} \Gamma^{abc}_{\alpha\dot{\alpha}} (X^{\alpha\dot{\alpha}} + Y^{\alpha\dot{\alpha}}).$$
(A.9)

It is important to emphasize that $Z_a \neq \eta_{ab} Z^b$, $Z_{ab} \neq \eta_{ac} \eta_{db} Z^{cd}$, ... for these reasons one should use the following notation for the generators

 $\mathcal{Z}^a_{\pm} \equiv (Z^a, Z_a); \quad \mathcal{Z}^{ab}_{\pm} \equiv (Z^{ab}, Z_{ab}); \quad \mathcal{Z}^{abc}_{\pm} \equiv (E^{abc}, E_{abc}). \tag{A.10a}$

and

$$\mathcal{E}^{ab} = \mathcal{E}^{(ab)} + \mathcal{E}^{[ab]} \equiv E^b_a. \tag{A.10b}$$

in Eq. (A.3).

The Cartan subalgebra is spanned by the diagonal elements E_1^1, \ldots, E_7^7 and N, or, equivalently, by Y^{11}, \ldots, Y^{88} . The elements E_a^b for a < b (or a > b) together with the elements for a < b < c generate the Borel subalgebra of E_8 associated with the positive (negative) roots of E_8 . Furthermore, these generators are graded w.r.t. the number of times the root α_8 (corresponding to the element N in the Cartan subalgebra) appears, such that for any basis generator X we have $[N, X] = deg(X) \cdot X$.

The degree can be read off from

$$[N, Z^{a}] = 3Z^{a}, \ [N, Z_{a}] = -3Z_{a}, \ [N, Z_{ab}] = 2Z_{ab}; \ [N, Z^{ab}] = -2Z^{ab}$$
$$[N, E^{abc}] = E^{abc}, \ [N, E_{abc}] = -E_{abc}; \ [N, E^{b}_{a}] = 0.$$
(A.11)

The remaining commutation relations are given by

$$[Z^{a}, Z^{b}] = 0; \quad [Z_{a}, Z_{b}] = 0; \quad [Z_{a}, Z^{b}] = E^{b}_{a} - \frac{3}{8}\delta^{b}_{a}N.$$
(A.12)

$$[Z_{ab}, Z^c] = 0; \quad [Z_{ab}, Z_c] = -E_{abc}; \quad [Z_{ab}, Z_{cd}] = 0;$$
$$[Z_{ab}, Z^{cd}] = 4\delta^{[c}_{[a}E^{d]}_{b]} + \frac{1}{2}\delta^{cd}_{ab}N; \quad [Z^{ab}, Z^c] = -E^{abc}; \quad [Z^{ab}, Z_c] = 0.$$
(A.13)

$$[E^{abc}, Z^d] = 0; \quad [E_{abc}, Z^d] = 3\delta^d_{[a} Z_{bc]}; \quad [E^{abc}, Z_{de}] = -6\delta^{[ab}_{de} Z^{c]}; \quad [E_{abc}, Z_{de}] = 0.$$
(A.14)

$$[E^{abc}, E^{def}] = -\frac{1}{32} \epsilon^{abcdefgh} Z_{gh}; \quad [E_{abc}, E_{def}] = \frac{1}{32} \epsilon_{abcdefgh} Z^{gh}.$$
(A.15)

$$[E^{abc}, Z_d] = 3\delta_d^{[a} Z^{bc]}; \quad [E_{abc}, Z_d] = 0; \quad [E^{abc}, Z^{de}] = 0; \quad [E_{abc}, Z^{de}] = 6\delta_{[ab}^{de} Z_{c]}.$$
(A.16)

$$[E^{abc}, E_{def}] = -\frac{1}{8} \delta^{[ab}_{[de} E_{f]}{}^{c]} - \frac{3}{4} \delta^{abc}_{def} N.$$
(A.17)

$$[E_a^b, Z^c] = -\delta_a^c Z^b + \frac{1}{8} \delta_a^b Z^c; \quad [E_a^b, Z_c] = \delta_c^b Z_a - \frac{1}{8} \delta_a^b Z_c.$$
(A.18)

$$[E_a^b, Z_{cd}] = -2\delta^b_{[c} Z_{d]a} - \frac{1}{4}\delta^b_a Z_{cd}; \quad [E_a^b, Z^{cd}] = 2\delta^{[c}_a Z^{d]b} + \frac{1}{4}\delta^b_a Z^{cd}.$$
(A.19)

$$[E_a^b, E^{cde}] = -3\delta_a^{[c}E^{de]b} + \frac{3}{8}\delta_a^b E^{cde} : [E_a^b, E_{cde}] = 3\delta_{[c}^b E_{de]a} - \frac{3}{8}\delta_a^b E_{cde}.$$
 (A.20)

$$[E_a^b, E_c^d] = \delta_c^b E_a^d - \delta_a^d E_c^b. \tag{A.21}$$

The elements $\{Z^a, Z_{ab}\}$ (or equivalently $\{Z_a, Z^{ab}\}$) span the maximal 36dimensional abelian nilpotent subalgebra of E_8 [53, 52]. Finally, the generators are normalized according to the values of the traces given by

$$Tr(NN) = 60 \cdot 8; \quad Tr(Z^{a}Z_{b}) = 60\delta_{b}^{a}, \quad Tr(Z^{ab}Z_{cd}) = 60 \cdot 2!\delta_{cd}^{ab}$$
$$Tr(E_{abc}E^{def}) = 60 \cdot 3!\delta_{abc}^{def}, \quad Tr(E_{a}^{b}E_{c}^{d}) = 60\delta_{a}^{d}\delta_{c}^{b} - \frac{15}{2}\delta_{a}^{b}\delta_{c}^{d}.$$
(A.22)

with all other traces vanishing.

Appendix B

The commutators involving the \mathcal{J}_{AB} generators of the 256-dim Clifford space associated with the 8D Clifford algebra Cl(8) that is defined by the anti-commutators $\{\gamma_b, \gamma^a\} = 2\delta_b^a \mathbf{1}$, for a, b = 1, 2, ..., 8, are obtained as follows

$$\mathcal{J}_{b}^{a} = [\gamma_{b}, \gamma^{a}] = 2\gamma_{b}^{a}; \quad \mathcal{J}_{b_{1}b_{2}}^{a_{1}a_{2}}, = [\gamma_{b_{1}b_{2}}, \gamma^{a_{1}a_{2}}] = -8\delta_{[b_{1}}^{[a_{1}}\gamma_{b_{2}}^{a_{2}]}. \tag{B.1}$$

$$\mathcal{J}_{b_1 b_2 b_3}^{a_1 a_2 a_3} = [\gamma_{b_1 b_2 b_3}, \gamma^{a_1 a_2 a_3}] = 2\gamma_{b_1 b_2 b_3}^{a_1 a_2 a_3} - 36\delta_{[b_1 b_2}^{[a_1 a_2} \gamma_{b_3}^{a_3]}.$$
 (B.2)

$$\mathcal{J}_{b_1 b_2 b_3 b_4}^{a_1 a_2 a_3 a_4} = [\gamma_{b_1 b_2 b_3 b_4}, \gamma^{a_1 a_2 a_3 a_4}] = -32\delta_{[b_1}^{[a_1} \gamma_{b_2 b_3 b_4]}^{a_2 a_3 a_4]} + 192\delta_{[b_1 b_2 b_3}^{[a_1 a_2 a_3} \gamma_{b_4]}^{a_4]}.$$
(B.3)

etc.

In general for pq = odd one has [50]

$$\mathcal{J}_{b_{1}b_{2}\cdots b_{p}}^{a_{1}a_{2}\cdots a_{q}} = [\gamma_{b_{1}b_{2}\cdots b_{p}}, \gamma^{a_{1}a_{2}\cdots a_{q}}] = 2\gamma_{b_{1}b_{2}\cdots b_{p}}^{a_{1}a_{2}\cdots a_{q}} - \frac{2p!q!}{2!(p-2)!(q-2)!}\delta_{[b_{1}b_{2}}^{[a_{1}a_{2}}\gamma_{b_{3}\cdots b_{p}}^{a_{3}\cdots a_{q}}] + \frac{2p!q!}{4!(p-4)!(q-4)!}\delta_{[b_{1}\cdots b_{4}}^{[a_{1}\cdots a_{4}}\gamma_{b_{5}\cdots b_{p}}^{a_{5}\cdots a_{q}}] - \cdots$$
(B.4)

for pq = even one has

$$\mathcal{J}_{b_{1}b_{2}\cdots b_{p}}^{a_{1}a_{2}\cdots a_{q}} = [\gamma_{b_{1}b_{2}\cdots b_{p}}, \gamma^{a_{1}a_{2}\cdots a_{q}}] = -\frac{(-1)^{p-1}2p!q!}{1!(p-1)!(q-1)!}\delta^{[a_{1}}_{[b_{1}}\gamma^{a_{2}a_{3}\cdots a_{q}}_{b_{2}b_{3}\cdots b_{p}}] -\frac{(-1)^{p-1}2p!q!}{3!(p-3)!(q-3)!}\delta^{[a_{1}\cdots a_{3}}_{[b_{1}\cdots b_{3}}\gamma^{a_{4}\cdots a_{q}}_{b_{4}\cdots b_{p}}] + \cdots$$
(B.5)

The commutators involving the \mathcal{J}_B^A generators are

$$[\mathcal{J}^{a_1b_1}, \mathcal{J}^{a_2b_2}] = \eta^{b_1a_2}\mathcal{J}^{a_1b_2} - \eta^{a_1a_2}\mathcal{J}^{b_1b_2} - \eta^{b_1b_2}\mathcal{J}^{a_1a_2} + \eta^{a_1b_2}\mathcal{J}^{b_1a_2}.$$
(B.6)
$$[\mathcal{J}^{a_1b_1a_2b_2}, \mathcal{J}^{c_1d_1c_2d_2}] = [\eta^{b_1a_2}\mathcal{J}^{a_1b_2} \pm \cdots, \eta^{d_1c_2}\mathcal{J}^{c_1d_2} \pm \cdots]$$

$$= \eta^{b_1 a_2} \eta^{d_1 c_2} \eta^{b_2 c_1} \mathcal{J}^{a_1 d_2} \pm \cdots$$
 (B.7)

etc.

The $[\mathcal{J}^{AB}, E_8]$ commutators are obtained by using the proper notation for the E_8 generators given by Eq. (A.10)

$$[\mathcal{J}^{ab}, \mathcal{Z}^c_{\pm}] = -\eta^{ac} \mathcal{Z}^b_{\pm} + \eta^{bc} \mathcal{Z}^a_{\pm}; \tag{B.8}$$

$$[\mathcal{J}^{ab}, \mathcal{Z}^{cd}_{\pm}] = \eta^{bc} \mathcal{Z}^{ad}_{\pm} - \eta^{ac} \mathcal{Z}^{bd}_{\pm} - \eta^{bd} \mathcal{Z}^{ac}_{\pm} + \eta^{ad} \mathcal{Z}^{bc}_{\pm}.$$
 (B.9)

$$[\mathcal{J}^{ab}, \mathcal{Z}^{cde}_{\pm}] = \eta^{b[c} \mathcal{Z}^{de]a}_{\pm} - \eta^{a[c} \mathcal{Z}^{de]b}_{\pm}.$$
 (B.10)

$$[\mathcal{J}^{ab}, \mathcal{E}^{[cd]}] = \eta^{bc} \mathcal{E}^{[ad]} - \eta^{ac} \mathcal{E}^{[bd]} - \eta^{bd} \mathcal{E}^{[ac]} + \eta^{ad} \mathcal{E}^{[bc]}.$$
 (B.11)

$$[\mathcal{J}^{ab}, \mathcal{E}^{(cd)}] = \eta^{bc} \mathcal{E}^{(ad)} - \eta^{ac} \mathcal{E}^{(bd)} + \eta^{bd} \mathcal{E}^{(ac)} - \eta^{ad} \mathcal{E}^{(bc)}.$$
(B.12)
$$[\mathcal{J}^{ab}, \mathcal{E}^{cd}] = [\mathcal{J}^{ab}, \mathcal{E}^{(cd)} + \mathcal{E}^{[cd]}]$$

$$[\mathcal{F}, \mathcal{E}^{cd}] = [\mathcal{J}^{ab}, \mathcal{E}^{(cd)} + \mathcal{E}^{[cd]}]$$
$$= \eta^{bc} \mathcal{E}^{ad} - \eta^{ac} \mathcal{E}^{bd} + \eta^{bd} \mathcal{E}^{ca} - \eta^{ad} \mathcal{E}^{cb}.$$
(B.13)

and $[\mathcal{J}_a^b, \mathcal{N}] = 0.$

The commutators of the abelian translations are $[P_a, P_b] = 0$ and all the commutators of the E_8 generators with the P_a generators are zero $[E_8, P_a] = 0$, such that the Jacobi identities involving the E_8 and P_a generators will be trivially satisfied, while the $[\mathcal{J}^{AB}, P^a] \neq 0$:

$$[\mathcal{J}^{ab}, P^c] = -\eta^{ac} P^b + \eta^{bc} P^a.$$
(B.14)

There are other nonzero commutators like

$$[\mathcal{J}^{a_1b_1a_2b_2}, \mathcal{Z}^{c_1c_2}] = [\eta^{a_1a_2}\mathcal{J}^{b_1b_2} \pm \cdots, \mathcal{Z}^{c_1c_2}_{\pm}] = \eta^{a_1a_2}\eta^{b_2c_1}\mathcal{J}^{b_1c_2} \pm \cdots$$
(B.15)

etc. From Appendix **A**, **B** one has all the commutators needed to evaluate the field strengths in Eqs. (2.20).

References

E. Cremmer, B. Julia and J. Scherk, *Phys. Letts B* **76** (1978) 409; T. Damour, A. Kleinschmidt and H. Nicolai, Hidden symmetries and the fermionic sector of 11-dim supergravity, hep-th/0512163; H. Nicolai and H. Samtleben, Compact and noncompact gauged maximal supergravities in three dimensions.

- S. de Buyl, M. Henneaux and L. Paulot, Extended E₈ invariance of 11-dim supergravity, hep-th/0512292; P. West, *Class. Quan. Grav.* 18 (2001) 4443; V. A. Belinksy, I. M. Khalatnikov and E. M. Lifshitz, *Adv. Phys.* 19 (1970) 525.
- [3] C. Castro and M. Pavsic, Progress in Physics 1 (2005) 31; Phys. Letts B 559 (2003) 74; Int. J. Theor. Phys. 42 (2003) 1693.
- [4] J. Zanelli, Lecture notes on Chern–Simons (super) gravities, hep-th/0502193; R. Troncoso and J. Zanelli, Gauge supergravities for all odd dimensions, hep-th/9807029; M. Hassaine, R. Troncoso and J. Zanelli, Poincare invariant gravity with local super-symmetry as a gauge theory for the M algebra, hep-th/0306258; F. Izaurieta, E. Rodriguez and P. Salgado, Euler–Chern–Simons gravity from Lovelock Born infeld gravity, hep-th/0402208.
- [5] M. Gunaydin, K. Koepsell and H. Nicolai, The minimal unitary representation of E₈₍₈₎, hep-th/0109005; M. Gunaydin, Unitary realizations of U-duality groups as conformal and quasi conformal groups and extremal black holes of supergravity theories, hep-th/0502235; M. Gunaydin and O. Pavlyk, Generalized spacetimes defined by cubic forms and the minimal unitary realizations of their quasi-conformal groups, hep-th/0506010; M. Gunaydin, K. Koepsell, and H. Nicolai, Comm. Math. Phys. 221 (2001) 57. Adv. Teor. Math. Phys. 5 (2002) 923; M. Gunaydin, A. Neitzke, B. Pioline and A. Waldron, BPS black holes, Quantum attractor flows and automorphic forms, hep-th/0512296.
- [6] E. Witten, Three dimensional gravity reconsidered arXiv: 0706.3359 (hep-th), A. Maloney and E. Witten, Quantum gravity partition functions in three dimensions arXiv: 0712.0155 (hep-th).
- [7] F. D. Smith Jr, The physics of E_8 and $Cl(16) = Cl(8) \otimes Cl(8)$ www.tony5m17h. net/E8physicsbook.pdf (Carterville, Georgia, 2008). E_6 , Strings, Branes and the Standard Model [CERN CDS EXT-2004-031]; Int. J. Theor. Phys. 24 (1985) 155; Int. J. Theor. Phys. 25 (1985) 355; From sets to quarks, hep-ph/9708379; The $D_4 - D_5 - E_6 - E_7 - E_8$ Model, [CERN CDS EXT-2003-087].
- [8] P. Horava and E. Witten, 11-dim Supergravity on a manifold with boundary, Nucl. Phys. B 475 (1996) 94, hep-th/9603142; E. Witten, On Flux quantization in M Theory and the Effective action, J. Geom. Phys. 22 (1997) 1; E. Diaconescu, G. Moore and E. Witten, E₈ Gauge Theory and a derivation of K theory from M Theory, hep-th/0005090.
- M. Fabinger and P. Horava, Casimir effect between world-branes in heterotic M Theory, hep-th/0002073.
- [10] R. Friedman and J. Morgan, Exceptional groups and del Pezzo Surfaces, math.AG/0009155.
- [11] N. Batakis, Class and Quantum Gravity 3 (1986) L 99.
- [12] G. Trayling, A geometric approach to the Standard Model, hep-th/9912231.
- [13] G. Lisi, An exceptional simple theory of everything [arXiv: 0711.0711].
- [14] D. Alekseevsky, V. Cortes, C. Devchand and A. Van Proeyen, Polyvector super-Poincare algebras, hep-th/0311107; I. Rudychev and E. Sezgin, Superparticles, *p*-form coordinates and the BPS condition, hep-th/9711128; I. Bars and C. Kounnas, A new supersymmetry, hep-th/9612119; I. Bandos and J. Lukierski, Generalized superconformal symmetries and supertwistor dynamics, hep-th/9912264.
- [15] C. Castro, Polyvector super Poincare algebras, M, F theory algebras and generalized supersymmetry in Clifford spaces, Int. J. Mod. Phys. A 21(10) (2006) 2149.
- [16] G. Saviddy, Generalizations of Yang–Mills theory, hep-th/0505033.
- [17] C. Castro, On generalized Yang-Mills and extensions of the standard model in Clifford (tensorial) spaces, Annals Physics **321**(4) (2006) 813; Mod. Phys. Lett. A **19** (2004) 14.

- [18] F. Gursey, Mod. Phys. Letts. A 3 (1988) 115; F. Gursey, Proc. Conf. Group Theoretical Methods in Physics (1978).
- [19] J. Adams, Lectures on Exceptional Lie Groups, Chicago Lectures in Mathematics (Univ. Chicago Press, 1996).
- [20] C. H. Tze and F. Gursey, On the Role of Divison, Jordan and Related Algebras in Particle Physics (World Scientific, Singapore, 1996); S. Okubo, Introduction to Octonion and Other Nonassociative Algebras in Physics (Cambridge Univ. Press, 2005); R. Schafer, An Introduction to Nonassociative Algebras (Academic Press, New York, 1966); G. Dixon, Division Algebras, Octonions, Quaternions, Complex Numbers, and the Algebraic Design of Physics (Kluwer, Dordrecht, 1994); G. Dixon, J. Math. Phys. 45(10) (2004) 3678; P. Ramond, Exceptional groups and physics, hep-th/0301050; J. Baez, Bull. Amer. Math. Soc. 39(2) (2002) 145.
- [21] C. Castro, Mod. Phys. A 17 (2002) 2095.
- [22] Y. Ohwashi, E₆ Matrix Model, hep-th/0110106; Sp(4, H)/Z₂ Pair Universe in E₆ Matrix Models, hep-th/0510252; L. Smolin, The exceptional Jordan Algebra and the Matrix String, hep-th/0104050; M. Rios, The Geometry of Jordan Matrix Models, hep-th/0503015.
- [23] C. Castro, The large N limit of exceptional Jordan Matrix Models and M, F Theory, J. Geometry Physics 57 (2007) 1941.
- [24] P. Jordan, J. von Neumann and E. Wigner, Ann. Math. 35 (1934) 2964; K. MacCrimmon, A Taste of Jordan Algebras (Springer-Verlag, New York, 2003); H. Freudenthal, Nederl. Akad. Wetensch. Proc. Ser A (1954) 218; J. Tits, Nederl. Akad. Wetensch. Proc. Ser 65 A (1962) 530; T. Springer, Nederl. Akad. Wetensch. Proc. Ser 65 A (1962) 259.
- [25] I. R. Porteous, Clifford Algebras and Classical Groups (Cambridge Univ. Press, 1995).
- [26] K. Itoh, T. Kugo and H. Kunimoto, Progress of Theoretical Physics 75(2) (1986) 386.
- [27] M. Cederwall and J. Palmkvist, The octic E_8 invariant, hep-th/0702024.
- [28] S. Adler, Further thoughts on supersymmetric E_8 as family and grand unification theory, hep-th/0401212.
- [29] I. Bars and M. Gunaydin, Phys. Rev. Lett. 45 (1980) 859; N. Baaklini, Phys. Lett. B
 91 (1980) 376; S. Konshtein and E. Fradkin, Pis'ma Zh. Eksp. Teor. Fiz. 42 (1980)
 575; M. Koca, Phys. Letts. B 107 (1981) 73; R. Slansky, Phys. Reports 79 (1981) 1.
- [30] S. Barr, *Phys. Rev. D* **37** (1988) 204.
- [31] C. Castro, A Chern–Simons E_8 gauge theory of gravity in D = 15, grand-unification and generalized gravity in clifford spaces, *Int. J. Geom. Meth. Mod. Phys.* **4**(8) (2007) 1239.
- [32] R. Mohapatra, Unification and Supersymmetry, The Frontiers of Quark-Lepton Physics (Springer-Verlag, 1986).
- [33] R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications (Dover Publication, 2002).
- [34] J. Hewett and T. Rizzo, *Phys. Reports* **183** (1989) 193.
- [35] C. Castro, On Chern–Simons (super) gravity, E₈ Yang–Mills and polyvector-valued gauge theories in Clifford spaces, J. Math. Phys. 47(1) (2006) 112301.
- [36] I. Bars, Gravity in 2T-Physics, arXiv: 0804.1585; I. Bars and G. Quelin, Dualities among 1T-Field Theories with Spin, Emerging from a Unifying 2T-Field Theory, arXiv: 0802.1947 (hep-th).
- [37] H. Nastase, D = 4 Einstein gravity from higher dimensional Chern–Simons Born– Infeld gravity and an alternative to dimensional reduction, hep-th/0703034.
- [38] C. Castro, Foundations of Physics 35(6) (2005) 971; Progress Phys. 1 (2005) 20.

- [39] J. A. Nieto, Towards a background independent quantum gravity in eight dimensions arXiv: 0704.2769 (hep-th).
- [40] C. Castro, Foundations of Phys. 37(3) (2007) 366; Mod. Phys. Lett. A 21(35) (2006) 2685–2701. Does Weyl geometry solves the riddle of dark energy, Quantization Astro-physics, Brownian Motion and Supersymmetry eds. F. Smarandache and V. Christianato (Math. Tiger, Chennai, India, 2007), pp. 88–96.
- [41] C. Castro, Born's reciprocal general relativity theory and complex nonabelian gravity as gauge theory of the quaplectic group: A novel path to quantum gravity, Int. J. Mod. Phys. A 23(10) (2008) 1487–1506.
- [42] S. Low, J. Phys. A Math. Gen. 35 (2002) 5711; J. Math. Phys. 38 (1997) 2197; Hamilton relativity group for noninertial states in quantum mechanics [arXiv: math-ph/0710.3599]; Poincare and Heisenberg quantum dynamical symmetry: Casimir invariant field equations of the Quaplectic Group [arXiv: math-ph/0502018]; Reciprocally relativity of noninertial frames: Quantum mechanics [arXiv: math-ph/0606015].
- [43] M. Pavsic, A novel view on the physical origin of E_8 , arXiv: 0806.4365 (hep-th).
- [44] M. Pavsic, The Landscape of Theoretical Physics: A Global View, From Point Particles to the Brane World and Beyond, in Search of a Unifying Principle (Kluwer Academic Publishers, Dordrecht–Boston–London, 2001).
- [45] J. Schray and C. Manogue, Foundations of Physics 26 (1996) 17.
- [46] C. Castro, The noncommutative and nonassociative geometry of octonionic spacetime, modified dispersion relations and grand unification, J. Math. Phys. 48(7) (2007) 073517.
- [47] G. Dixon, Symplectic Clifford algebraic field theory, Ph.D Thesis (1982) Brandeis University, Lett. Math. Phys. 5 (1981) 411; Phys. Rev. D 28(4) (1983) 833; Phys. Rev. D 29(6) (1984) 1276.
- [48] A. Crumeyrolle, Orthogonal and Symplectic Clifford Algebras: Spinor Structures (Dordrecht, Boston, Kluwer Academic Publishers, 1990); B. Konstant and S. Sternberg, Annals of Phys. 176(1) (1987) 49; K. Habermann, Comm. Math. Phys. 184 (1997) 629.
- [49] H. De Bie and F. Sommen, A Clifford analysis to superspace arXiv: 0707.2859; Hermite and Gegenbauer polynomials in superspace using Clifford analysis, arXiv: 0707.2863.
- [50] K. Becker, M. Becker and J. Schwarz, String Theory and M Theory (Cambride University Press, 2007) pp. 543–545.
- [51] K. Koepsell, H. Nicolai and H. Samtleben, An Exceptional Geometry of d = 11Supergravity hep-th/0006034.
- [52] E. Cremmer, B. Julia, H. Lu and C. N. Pope, *Nucl. Phys. B* **523** (1998) 73.
- [53] A. Malcev, Izv. Akad. Nauk SSR, Ser. Mat. 9 (1945) 291.
- [54] C. Castro, An Exceptional E_8 Gauge Theory of Gravity in D = 8, Clifford Spaces and Grand Unification, submitted to Annals of Physics, to be appeared in *Int. J. Geom. Meth. Mod. Phys.* 6 (2009).
- [55] M. Rausch de Traubenberg, Some results on cubic and higher order extensions of the poincare algebra arXiv.org : 0811.1465.