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Abstract

Two methods to prove the Riemann Hypothesis are presented. One is
based on the modular properties of Θ (theta) functions and the other on
the Hilbert-Polya proposal to find an operator whose spectrum reproduces
the ordinates ρn (imaginary parts) of the zeta zeros in the critical line :
sn = 1

2
+ iρn. A detailed analysis of a one-dimensional Dirac-like operator

with a potential V (x) is given that reproduces the spectrum of energy lev-
els En = ρn, when the boundary conditions ΨE(x = −∞) = ± ΨE(x =
+∞) are imposed. Such potential V (x) is derived implicitly from the
relation x = x(V ) = π

2
(d N (V )/dV ), where the functional form of N (V )

is given by the full-fledged Riemann-von Mangoldt counting function of
the zeta zeros, including the fluctuating as well as the O(E−n) terms.
The construction is also extended to self-adjoint Schroedinger operators.
Crucial is the introduction of an energy-dependent cut-off function Λ(E).
Finally, the natural quantization of the phase space areas (associated to
nonperiodic crystal-like structures) in integer multiples of π follows from
the Bohr-Sommerfeld quantization conditions of Quantum Mechanics. It
allows to find a physical reasoning why the average density of the primes
distribution for very large x (O( 1

logx
)) has a one-to-one correspondence

with the asymptotic limit of the inverse average density of the zeta zeros
in the critical line suggesting intriguing connections to the Renormaliza-
tion Group program.

Keywords: Quantum Mechanics, Dirac Operators, Riemann Hypothesis, Hilbert-
Polya conjecture, Area Quantization, Modularity, Renormalization Group, String
Theory.
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1 Introduction : Riemann Hypothesis, Scaling
and Modular Invariance

Riemann’s outstanding hypothesis [1] that the non-trivial complex zeros of the
zeta-function ζ(s) must be of the form sn = 1/2± iρn, is one of most important
open problems in pure mathematics. The zeta-function has a relation with the
number of prime numbers less than a given quantity and the zeros of zeta are
deeply connected with the distribution of primes [1]. References [2] are devoted
to the mathematical properties of the zeta-function.

The RH has also been studied from the point of view of mathematics and
physics [6], [9], [14], [18], [11], [19] among many others. A novel physical inter-
pretation of the location of the nontrivial Riemann zeta zeros which corresponds
to the presence of tachyonic-resonances/tachyonic-condensates in bosonic string
theory was found in [7] : if there were zeros outside the critical line violating the
RH these zeros do not correspond to any poles of the string scattering amplitude.
The spectral properties of the ρn’s are associated with the random statistical
fluctuations of the energy levels (quantum chaos) of a classical chaotic system
[14]. Montgomery [8] has shown that the two-level correlation function of the
distribution of the ρn’s coincides with the expression obtained by Dyson with
the help of random matrices corresponding to a Gaussian unitary ensemble.

In [10] by constructing of a continuous family of scaling-like operators involv-
ing the Gauss-Jacobi theta series and logarithmic derivatives, and after invoking
a CT -symmetry corresponding to a judicious charge conjugation C and time re-
versal T operation, we were able to show that the Riemann Hypothesis follows.
The charge conjugation operation C is related to scalings transformations, and
time reversal T operation, is related to the inversions t → (1/t) such that
log(t) → −log(t). A ” Wick rotation” of variables t = iz furnishes z → −(1/z)
which is a modular SL(2, Z) transformation z → (az + b/cz + d) with unit
determinant ad− bc = 1.

For these reasons, before entering into the next two sections we deem it
very important to review the results [10], [16] based on a family of scaling-
like operators in one dimension involving the Gauss-Jacobi theta series and
an infinite parameter family of theta series where the inner product of their
eigenfunctions Ψs(t; l) is given by (2/l)Z [ 2l (2k − s∗ − s)], where Z(s) is the
Riemann completed zeta function and the l, k parameters are constrained to
obey (l + 4)/8 = k in order to have CT -invariance.

There is a one-to-one correspondence among the zeta zeros sn ( Z[sn] = 0 ⇒
ζ(sn) = 0 ) with the eigenfunctions Ψsn

(t; l) (of the latter scaling-like operators)
when the latter are orthogonal to the ”ground” reference state Ψso

(t; l); where
so = 1

2 + i0 is the center of symmetry of the location of the nontrivial zeta zeros
. We shall present a concise review [10] and show why the Riemann Hypothesis
follows from a CT invariance when the pseudo-norm of the eigenfunctions <
Ψs|CT |Ψs > is not null. Had the pseudo-norm < Ψs|CT |Ψs > been null, the
RH would have been false.
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The Scaling Operators related to the Gauss-Jacobi Theta series and the
Riemann zeros [16] are given by

D1 = − d

d ln t
+

dV

d ln t
+ k. (1.1)

such that its eigenvalues s are complex-valued, and its eigenfunctions are given
by

ψs(t) = t−s+keV (t). (1.2a)

D1 is not self-adjoint since it is an operator that does not admit an adjoint
extension to the whole real line characterized by the real variable t. The pa-
rameter k is also real-valued. The eigenvalues ofD1 are complex valued numbers
s. The charge conjugation operation C acting on the eigenfunctions is defined
as

ψs(t) = t−s+keV (t) → ψs∗(t) = t−s∗+keV (t) =

t−s∗+s ψs(t). (1.2b)

which is related to scalings transformations of ψs(t) by t-dependent (local) scal-
ing factors

t−s∗+s = e(−s∗+s) ln t = e 2 i Im(s) lnt ⇒ a phase rotation (1.2c)

where Im(s) is the imaginary part of s. Since local t-dependent (lnt dependent
to be precise ) phase rotations resemble U(1) gauge transformations one can
then interpret the (dV/dlnt) term in D1 as a gauge field (potential) in one-
dimension that gauges the scalings transformations. V is the pre-potential and
A = (dV/dlnt) is the potential. Thus charge conjugations (1.2b) can be recast
as scaling transformations (1.2c).

We also define the ”mirror” operator to D1 as follows,

D2 =
d

d ln t
− dV (1/t)

d ln t
+ k. (1.3)

that is related to D1 by the substitution t→ 1/t and by noticing that

dV (1/t)
d ln(1/t)

= −dV (1/t)
d ln t

. (1.4)

where V (1/t) is not equal to V (t) and D2 is not self-adjoint either. When
l = 4(2k− 1), the eigenfunctions of the D2 operator are Ψs( 1

t ) (with eigenvalue
s), and which can be shown to be equal to Ψ1−s(t) [16]. This results from the
properties of the Gauss-Jacobi theta series under the x→ 1/x transformations.
Since V (t) can be chosen arbitrarily, we chose it to be related to the Bernoulli
string spectral counting function, given by the Jacobi theta series,

e2V (t) =
∞∑

n=−∞
e−πn2tl

= 2ω(tl) + 1. (1.5)
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this is where the l parameter appears in (1.5); the k parameter appears in (1.1,
1.3). The condition l = 4(2k−1) [16] is required so the orthogonal states Ψsn(t)
(parametrized by the complex eigenvalues sn) to the ground state Ψs=1/2(t)
have a one-to-one correspondence to the zeta zeros zn in such a way that the
quartets of numbers {sn} are symmetrically located w.r.t the critical line, and
real axis, in the same way that the zeta zeros zn are : the quartets are {sn} =
sn; 1 − sn; s∗n; 1 − s∗n. Furthermore the condition l = 4(2k − 1) is required in
order construct CT -invariant (but not Hermitian) Hamiltonians as we describe
below.

The related theta function defined by Gauss was

G(1/x) =
∞∑

n=−∞
e−πn2/x = 2ω(1/x) + 1. (1.6)

where ω(x) =
∞∑

n=1
e−πn2x. The Gauss-Jacobi series obeys the relation

G(
1
x

) =
√
x G(x). (1.7)

resulting from the Poisson re-summation formula. The V (t) is defined as e2V (t) =
G(tl) where x = tl. The pair of mirror Hamiltonians HA = D2D1 and HB =
D1D2, when l = 4(2k − 1) obey

HA Ψs(t) = s(1− s)Ψs(t). HB Ψs(
1
t
) = s(1− s)Ψs(

1
t
). (1.8)

due to the relation Ψs(1/t) = Ψ1−s(t) based on the modular properties of the
Gauss-Jacobi series, G( 1

x ) =
√
x G(x). Therefore, despite that HA,HB are not

Hermitian they have the same spectrum s(1 − s) which is real-valued only in
the critical line and in the real line. Eq-(1.8) is the one-dimensional version of
the eigenfunctions of the two-dimensional hyperbolic Laplacian given in terms
of the Eisenstein’s series.

Had HA,HB been Hermitian one would have had an immediate proof of the
RH. Hermitian operators have a real spectrum, hence if s(1 − s) is real this
means that s = 1

2 + iρ, and/or s = real. The trivial zeta zeros are located
at the negative even integers (real) and the nontrivial zeta zeros are located
in the critical line s = 1

2 + iρ. From eq-(1.8) and using the properties of the
Gauss-Jacobi series G( 1

x ) =
√
x G(x) it follows that under the ”time reversal

” T operation t→ 1
t the eigenfunctions Ψs(t) behave as

T Ψs(t) = Ψs(
1
t
) = Ψ1−s(t). (1.9)

such that the Hamiltonian operators HA = D2D1, HB = D1D2 transform as

T HB T −1 = HA, T HA T −1 = HB . (1.10a)

the combined action of CT transformations is implemented on the states as
follows

C T HA [ C T ]−1 Ψs(t) = HA Ψs(t)
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C T HB [ C T ]−1 Ψs(t) = HB Ψs(t). (1.10b)

since Ψs(t) span a continuum of eigenfunctions, for a continuum of s values, eqs-
(1.10b) result in the vanishing of the commutators [HA, CT ] = [HB , CT ] = 0.
When the operators HA,HB commute with CT , there exits new eigenfunctions
ΨCT

s (t) of the HA operator with eigenvalues s∗(1 − s∗). Let focus only in the
HA operator since similar results follow for the HB operator. Defining

| ΨCT
s (t) > ≡ CT | Ψs(t) > . (1.11)

one can see that it is also an eigenfunction of HA with eigenvalue s∗(1− s∗) :

HA | ΨCT
s (t) > = HA CT | Ψs(t) > = HA | Ψ1−s∗(t) > =

s∗(1− s∗) | Ψ1−s∗(t) > = s∗(1− s∗) CT | Ψs(t) > = (Es)∗ | ΨCT
s (t) > .

(1.12)
where we have defined (Es)∗ = s∗(1 − s∗). The CT action on s(1 − s) Ψs is
defined to be linear : s(1 − s) CT Ψs since C acts only on the states Ψs(t) as
scalings (1.2b), and not on the numbers s(1− s). Therefore, one has

[HA, CT ] = 0 ⇒ < Ψs | [HA, CT ] | Ψs > = 0 ⇒

< Ψs | HA CT | Ψs > − < Ψs | CT HA | Ψs > =

(Es)∗ < Ψs | CT | Ψs > − Es < Ψs | CT | Ψs > =

(E∗s − Es) < Ψs | CT | Ψs > = 0. (1.13)

Similar results follow for the HB operator. From (1.13) one has two cases to
consider.

• Case A : If the pseudo-norm is null

< Ψs | CT | Ψs > = 0 ⇒ (Es − E∗s ) 6= 0 (1.14)

then the complex eigenvalues Es = s(1 − s) and E∗s = s∗(1 − s∗) are complex
conjugates of each other. In this case the RH would be false and there are
quartets of non-trivial Riemann zeta zeros given by sn, 1− sn, s

∗
n, 1− s∗n.

• Case B : If the pseudo-norm is not null :

< Ψs | CT | Ψs > 6= 0 ⇒ (Es − E∗s ) = 0 (1.15)

then the eigenvalues are real given by Es = s(1 − s) = E∗s = s∗(1 − s∗) and
which implies that s = real ( location of the trivial zeta zeros ) and/or s =
1
2 + iρ ( location of the non-trivial zeta zeros). In this case the RH would be
true and the non-trivial Riemann zeta zeros are given by sn = 1

2 + iρn and
1−sn = s∗n = 1

2 − iρn. We are going to prove next why Case A does and cannot
occur, therefore the RH is true because we are left with case B.
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The inner product are defined as follows,

〈f |g〉 =

∞∫
0

f∗g
dt

t
.

Based on this definition the inner product of two eigenfunctions of D1 is

〈ψs1 |ψs2〉 =

∞∫
0

e2V t−s12+2k−1dt

=
2
l
Z

[
2
l
(2k − s12)

]
,

. (1.16)

where we have denoted s12 = s∗1 +s2 = x1 +x2 + i(y2−y1) and used the expres-
sions for the Gauss-Jacobi theta function and the definition of the completed
zeta function Z[s] resulting from the Mellin transform as shown below.

We notice that
〈ψs1 |ψs2〉 = 〈ψso

|ψs〉, . (1.17)

thus, the inner product of ψs1 and ψs2 is equivalent to the inner product of ψso

and ψs, where so = 1/2 + i0 and s = s12 − 1/2. The integral is evaluated by
introducing a change of variables tl = x (which gives dt/t = (1/l)dx/x) and
using the result provided by the Gauss-Jacobi Theta given in Karatsuba and
Voronin’s book [2]. The completed function Z[s] in eq-(1.16) can be expressed
in terms of the Jacobi theta series, ω(x) defined by eqs-(1.5, 1.6) as

∞∫
0

∞∑
n=1

e−πn2xxs/2−1dx =

∫ ∞

0

xs/2−1ω(x)dx

=
1

s(s− 1)
+

∫ ∞

1

[xs/2−1 + x(1−s)/2−1] ω(x)dx

= Z(s) = Z(1− s),

.

(1.18)
where the completed zeta function is

Z(s) ≡ π−s/2 Γ(
s

2
) ζ(s), . (1.19)

which obeys the functional relation Z(s) = Z(1 − s), which is a self-duality
relation [26].

In [10] we recurred to an infinite family of HA,HB operators associated
with an infinite family of potentials Vjm(t) corresponding to an infinite family
of theta series with the advantage that no regularization of the inner products is
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necessary. Another salient feature is that the pseudo-norm < Ψjm
s | CT |Ψjm

s >
is not null ( see below eq-(1.28) ) as result that the zeta function ζ(s) has
no zeros at s = 1

2 − 2m, m = 1, 2, 3, ....,∞. The relevance of the behavior of
ζ( 1

2 − 2m) 6= 0, m = 1, 2, 3, ...,∞ is that it automatically avoids looking at the
behavior of zeta at s = 1/2. Armitage [3] has found a zeta function ζL(s) defined
over the algebraic number field L that has a zero at s = 1/2 and presumably
satisfies the RH . This finding would not be compatible with the result of eq-
(1.16) and which was based on a regularized inner product. Therefore, the well
defined inner product where no regularization is needed leads to the result (see
below eq-(1.28) ) < Ψjm

s | CT |Ψjm
s > ∼ ζ( 1

2 − 2m) 6= 0, m = 1, 2, 3, ...,∞
and which is no longer in variance with the behaviour of the zeta function ζL(s)
defined over the algebraic number field L and that has a zero at s = 1/2 [3].

Analogous results follow if we had defined a new family of potentials V2j(t)
in terms of a weighted theta series Θ2j(t) and whose Mellin transform yields
the infinite family of extended zeta functions of Keating [4] and their associated
completed zeta functions as shown by Coffey [5]. The Hermite polynomials
weighted theta series associated to 2j = even degree polynomials are defined by

e2V2j(t) = Θ2j(t) ≡
n=∞∑

n=−∞
(8π)−j H2j(n

√
2πt) e−πn2t. (1.20)

and are related to the potentials V2j(t) which appear in the definitions of the
differential operators (1.1, 1.2). The weighted theta series obeys the relation

(−1)j

√
t

Θ2j(
1
t
) = Θ2j(t). (1.21)

Only when j = even in (1.21) one can implement CT invariance in the new
family of Hamiltonians HA,HB associated with the potentials V2j(t) of (1.20)
because HAΨs(t) = s(1− s)Ψ(t) and HBΨs( 1

t ) = s(1− s)Ψs( 1
t ) would only be

valid when j = even as a result of the relations (1.1, 1.2, 1.3) and (1.20, 1.21).
The Mellin transform based on the weighted Θ2j(t) [5] requires once again to

extract the zero mode n = 0 contribution of Θ2j(t) (to regularize the divergent
integrals) in order to arrive at

∫ ∞

0

1
2
[ Θ2j(t) − (8π)−2j H2j(0) ] ts/2−1 dt = Pj(s) π−s/2 Γ(

s

2
) ζ(s), Re s > 0.

(1.22)
in the definition of the (regularized) inner products of the eigenstates associ-
ated to the new potentials (1.20). The polynomial pre-factor in front of the
completed Riemann zeta Z(s) = π−s/2 Γ( s

2 ) ζ(s) is given in terms of a termi-
nating Hypergeometric series [5]

Pj(s) = (8π)−j(−1)j (2j)!
j! 2F1(−j,

s

2
;
1
2
; 2). (1.23)
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The orthogonal states Ψsn(t) to the ground state Ψso(t) ( so = 1
2 + i0) will now

be enlarged to include the nontrivial zeta zeros and the zeros of the polynomial
Pj(s).

The polynomial Pj(s) has simple zeros on the critical line Re s = 1
2 , obeys

the functional relation Pj(s) = (−1)jPj(1− s) and in particular Pj(s = 1
2 ) = 0

when j = odd [5]. It is only when j = even that Pj(s = 1
2 ) 6= 0 and when we

can implement CT invariance resulting from the relation (1.21) and which is
consistent with the results of eqs-(1.8, 1.10a. 1.10b).

In order to avoid the regularization of the integrals involving the Mellin
transform (1.22), we proposed another family of theta series where no regular-
ization is needed in the construction of the inner products. There is a two-
parameter family of theta series Θ2j,2m(t) that yield well defined inner products
without the need to extract the zero mode n = 0 divergent contribution. Given

e2V2j,2m(t) = Θ2j,2m(t) ≡
n=∞∑

n=−∞
n2m H2j(n

√
2πt) e−πn2t. (1.24)

when m 6= 0, the zero mode n = 0 does not contribute to the sum and the
Mellin transform of Θ2j,2m(t) , after exploiting the symmetry of the even-degree
Hermite polynomials, is [4], [5]∫ ∞

0

[ 2
n=∞∑
n=1

n2m H2j(n
√

2πt) e−πn2t ] ts/2−1 dt =

2 (8π)j Pj(s) π−s/2 Γ(
s

2
) ζ(s− 2m); Re s > 1 + 2m, m = 1, 2, .... (1.25)

In order to find the analytical continuation of the Mellin transform (1.25) for
all values of s in the complex plane we must use the analytical continuation of
ζ(s) was found by Remann in his celebrated paper. A Poisson re-summation
formula for Θ2j,2m(t) (1.24) leads to similar modular behaviour as eq-(1.21)
and only when j = even one can implement CT invariance in the new family of
Hamiltonians HA,HB associated with the new potentials V2j,2m(t) of (1.24)

Therefore one has now at our disposal a well defined inner product of the
states Ψs(t) (without the need to regularize it by extracting out the zero n = 0
mode of the theta series). In particular the inner product of the states Ψs(t)
with the shifted ”ground” states Ψ 1

2+2m(t), m = 1, 2, .... corresponding to the
potentials in (1.24), by recurring to the result (1.25) and following similar steps
as in (1.16) is

< Ψ 1
2+2m(t) | Ψs(t) > = − 2 (8π)j Pj(s+2m) π−(s+2m)/2 Γ(

s+ 2m
2

) ζ(s).

(1.26)
this result requires fixing uniquely the values l = −2; k = 1

4 . The nontrivial
zeta zeros sn correspond to the states Ψsn

(t) orthogonal to the shifted ”ground”
states Ψ 1

2+2m(t) in eq-(1.26) :
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< Ψ 1
2+2m(t) | Ψsn(t) > =

− 2 (8π)j Pj(sn + 2m) π−(sn+2m)/2 Γ(
sn + 2m

2
) ζ(sn) = 0; m = 1, 2, 3, .....

(1.27)
It remains to prove when l = −2, k = 1

4 and s12 = s∗1 +s2 = s∗1 +(1−s∗1) = 1
that

< Ψs | CT | Ψs > = < Ψs || Ψ1−s∗ > =∫ ∞

0

[ 2
n=∞∑
n=1

n2m H2j(n
√

2πt) e−πn2t ] t
2(−s12+2k)

2l −1 dt =

− 2 (8π)j Pj(s =
1
2
) π−1/4 Γ(

1
4
) ζ(

1
2
− 2m) 6= 0; j = even, m = 1, 2, 3, .....

(1.28)
Hence, one arrives at a definite solid conclusion based on a well defined inner
product : because ζ( 1

2 − 2m) 6= 0 when m = 1, 2, ...., and Pj( 1
2 ) 6= 0 when

j = even in eq-(1.28), the pseudo-norm < Ψs | CT | Ψs > 6= 0, and this
rules out case A in eq-(1.14) , and singles out case B in eq-(1.15) leading to
the conclusion that Es = s(1 − s) = real ⇒ s = 1

2 + iρ ( and/or s = real ),
and consequently the RH follows if, and only if, CT invariance holds. The key
reason why the Riemann hypothesis follows is due to the CT invariance of the
Hamiltonians HA,HB and that the pseudo-norm < Ψs|CT |Ψs > is not null.
Had the pseudo-norm < Ψs|CT |Ψs > been null, the RH would have been false.
It remains to be seen whether our procedure is valid to prove the grand-Riemann
Hypothesis associated to the L-functions.

2 The Dirac and Schroedinger Operators that
reproduce the zeta zeroes

The previous section was devoted to a family of scaling operators needed in the
construction of a pair of non-Hermitian Hamiltonians, involving Θ(t) functions,
whose spectrum Es = s(1− s) = E∗s = s∗(1− s∗) was shown to be real valued
resulting from CT invariance, and whose solutions for s are s = 1

2 + iρ and/or
s = real, showing how the Riemann Hypothesis is a physical realization of CT
invariant QM. In this section we will find the Dirac-like Operator (with a poten-
tial V (x)) in one-dimension whose spectrum reproduces exactly the imaginary
parts (ordinates) ρn = En of the zeta zeroes : ζ( 1

2 ± iEn) = 0. At the end
we will also provide a different potential V (x) associated with a Schroedinger
operator in one-dimension that provides the same spectrum ρn = En

The Dirac-like equation in one-dimension in the presence of a potential V (x)
is
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{ − i
∂

∂x
+ V (x) } ΨE(x) = E ΨE(x); h̄ = c = 1. (2.1)

where the one-dim Clifford algebra with 21 = 2 generators is realized in terms
of the unit element 1 and a 1 × 1 matrix γ whose entry is −i. Eq-(2.1) is the
operator representation of the (constraint) dispersion relation

P(x) + V (x) = E, when P → − i
∂

∂x
(2.2)

such that the Bohr-Sommerfield quantization condition yields the number of
energy levels E1, E2, ..., En (the number of the first n zeta zeroes on the critical
line)

2
π

∫ xn

xo=0

P(x) dx =
2
π

∫ xn

xo=0

[ En − V (x) ] dx =

2
π

∫ En

Vo

(En − V )
dx

dV
dV = N (En) − N (Vo). (2.3)

We have set the lower integration limits at x = 0 because we assume that
the potential is symmmetric. In fact, the potential will also turn out to be
multivalued. The potential used by Wu-Sprung [13] for the Schroedinger oper-
ator

{ − h̄2

2m
∂2

∂x2
+ VWS(x) } Ψ = E Ψ; h̄2 = 2m = 1. (2.4)

turned out to be symmetric VWS(−x) = VWS(x) for the choice of the average
energy level counting function given by

N(E) =
E

2π
[ log(

E

2π
) − 1 ] +

7
8
. (2.5)

(where log is the natural Neper logarithm in the Euler number base) after
recurring to the solutions to Abel’s integral equation of the first kind obtained
after differentiation w.r.t the E parameter of the Bohr-Sommerfield quantization
condition

2
π

∫ E

0

√
E − V dx =

2
π

∫ E

Vo

√
E − V

dx

dV
dV = N(E)−N(Vo). (2.6)

where Vo = V (x = 0) was chosen to obey the boundary condition N(Vo) = 0

N(Vo) =
Vo

2π
[ log(

Vo

2π
) − 1 ] +

7
8

= 0 ⇒ Vo ∼ 3.10073 π. (2.7)

A differentiation of eq-(2.6) w.r.t to E (using Liebnitz rule) gives

2
π

d

dE

∫ E

Vo

√
E − V

dx

dV
dV =

1
π

∫ E

Vo

1√
E − V

dx

dV
dV =
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dN(E)
dE

=
1
2π

log(
E

2π
). (2.8)

The above equation belongs to the family of Abel’s integral equations associated
with the unknown function f(V ) ≡ (dx/dV )

J α [
dx

dV
] =

1
Γ(α)

∫ E

0

(dx/dV )
(E − V )1−α

dV =
1
2π

log(
E

2π
); 0 < α < 1 (2.9)

The reason one had to differentiate eq-(2.6) w.r.t E is to enforce the condition
0 < α < 1 . Abel’s integral equation is basically the action of a fractional
derivative operator J α [12] , for the particular value α = 1

2 , on the unknown
function f(V ) = (dx/dV ) . Inverting the action of the fractional derivative
operator (fractional anti-derivative) yields the solution for

dx

dV
=

1
Γ(1− α)

d

dV

∫ V

0

1
2π

log (
E

2π
)

1
(V − E)α

dE. (2.10a)

After setting the value α = 1
2 in (2.10a) , Wu-Sprung [13] found the solution

in terms of quadratures for the dx/dV function, and a subsequent integration
w.r.t V , gives

x = x(V ) =
1
π

√
V − Vo log (

Vo

2πe2
) +

1
π

√
V log [

√
V +

√
V − Vo√

V −
√
V − Vo

]. (2.10b)

where e = 2.71828... is Euler’s number and when V = Vo ⇒ xo = x(Vo) =
0 consistent with the condition V (x = 0) = Vo ∼ 3.10073 π. The sought
after potential VWS(x) that reproduces the average level density of zeta zeroes
(energy eigenvalues) given by N(E) is implicitly given from the relation x(V )
upon inverting the function. It was after the fitting process of the first 500
Riemann zeta zeroes on the critical line when Wu-Sprung found numerically
that a fractal − shaped potential (obtained as a perturbation of the smooth
VWS(x)) of dimension d = 1.5 was needed. A further fitting of the first 4000
zeroes furnished identical results for the fractal dimension d = 1.5 [15] associated
with the shape of the potential.

Based on these findings we proposed within the context of Supersymmetric
QM a Weierstrass fractal function [16] as the fractal-shaped corrections to the
smooth potential (2.10b) and consistent with the numerical findings by [13],
[15] in order to model the fractal behaviour of the potential that fitted those
zeta zeroes. Later on, Slater [17] performed an exhaustive detailed numerical
analysis of our Weierstrass fractal function (and other fractal functions) to find
a numerical fit for the first n = 25, 50, 75, .... zeta zeroes.

The relevant feature of the expression for x(V ) (2.10b) is that it is explicitly
given in terms of square roots (quadratures), such that changing the signs of the
square roots containing the variable V will yield a change of sign : x(−

√
V ) =

−x(
√
V ) consistent with the assumption that V was symmetric V (−x) = V (x).

11



One can verify why this must be so from Abel’s solution (2/10a) . If (dx/dV )
changes to −(dx/dV ) by replacing x → −x, leaving V fixed, one must take
the minus sign of the 1/

√
V − E terms appearing in the r.h.s of (2.10a) when

α = 1
2 .

In general, when one replaces the average level counting function N(E) by
the more general expression N (E) obtained by Riemann-von Mangoldt formula
(given below in eq-(2.12)) one has the solution ( for α = 1

2 )

dx

dV
=

1
Γ(1− α)

d

dV

∫ V

0

dN (E)
dE

1
(V − E)α

dE ⇒

x(V )− x(Vo) =
1

Γ(1− α)

∫ V

0

dN (E)
dE

1
(V − E)α

dE; α =
1
2
. (2.11)

At the end of this section we shall return to the solution (2.11) corresponding
to the Schroedinger operator. Solutions to eq-(2.11) for a truncated version of
the Riemann-von Mangoldt formula (2.12), where the oscillatory terms and the
integral terms were dropped, was given by Slater [17] using the Mathematica
Integrator package.

By recurring to a Dirac-like operator it allows to use the full expression
for number of zeroes (energy levels) N (E), including the fluctuating/oscillatory
terms, leading to a symmetric and multi-valued potential due to the oscillatory
terms in N (E). The coordinate function x(V ) is assumed to be single-valued,
but its inverse, the potential V (x) is not necessarily single-valued, and in fact,
it will turn out to be multi-valued. The typical example is the sine function
x = sin(V ) (single-valued) whose inverse V = arcsin(x) is multi-valued.

A knowledge of the functional form of the number of zeroes N (E) in the
above integral-differential equation (2.3) gives the potential V (x) implicitly.
Let us write the functional form for N (E) to be given by the Riemann-von
Mangoldt formula which is valid for E ≥ 1

NRvM (E) =
E

2π
[ log(

E

2π
) −1 ] +

7
8

+
1
π
arg [ ζ(

1
2

+iE) ] +
1
π
δ(E). (2.12)

where the (infinitely many times) strongly oscillating function is given by the
argument of the zeta function evaluated in the critical line

S(E) =
1
π
arg [ ζ(

1
2

+ iE) ] = limε→0
1
π
Im log [ ζ(

1
2

+ iE + ε) ]. (2.13)

the argument of ζ( 1
2 + iE) is obtained by the continuous extension of arg ζ(s)

along the broken line starting at the point s = 2 + i 0 and then going to the
point s = 2 + iE and then to s = 1

2 + iE. If E coincides with the imaginary
part of a zeta zero, then

S(En) = limε→0
1
2

[S(En + ε) + S(En − ε)]. (2.14)
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An extensive analysis of the behaviour of S(E) can be found in [20]. In par-
ticular the property that S(E) is a piecewise smooth function with discontinuities
at the ordinates En of the complex zeroes of ζ(sn = 1

2 + iEn) = 0. When E
passes through a point of discontinuity, En, the function S(E) makes a jump
equal to the sum of multiplicities of the zeta zeroes at that point. The zeroes
found so far in the critical line are simple [22]. In every interval of continuity
(E,E′), where En < E < E′ < En+1, S(E) is monotonically decreasing with
derivatives given by

S′(E) = − 1
2π

log (
E

2π
) + O(E−2); S′′(E) = − 1

2πE
+ O(E−3). (2.15)

The most salient feature of these properties is that the derivative S′(E) blows
up at the location of the zeta zeroes En due the discontinuity (jump) of S(E) at
En. Also, the strongly oscillatory behaviour of S(E) forces the potential V (x)
to be a multi-valued function of x.

The expression for δ(E) is [20]

δ(E) =
E

4
log (1+

1
4E2

) +
1
4
arctan (

1
2E

) − E

2

∫ ∞

0

ρ(u) du
(u+ 1/4)2 + (E/2)2

.

(2.16)
with ρ(u) = 1

2 − {u}, where {u} is the fractional part of u and which can be
written as u− [u], where [u] is the integer part of u. In this way one can perform
the integral involving [u] in the numerator by partitioning the [0,∞] interval in
intervals of unit length : [0, 1], [1, 2], [2, 3], .....[n, n+ 1], .... The definite integral
when the upper limit is bound by an ultra-violet regulator Λ is

−E
2

∫ Λ

0

ρ(u) du
(u+ 1/4)2 + (E/2)2

=
E

4
log [

(E/2)2 + (Λ + 1/4)2

(E/2)2 + (1/4)2
] −

[Λ]∑
n=1

n [ arctan(
4n+ 5

2E
) − arctan(

4n+ 1
2E

) ] −

3
4

[ arctan(
4Λ + 1

2E
) − arctan(

1
2E

) ] (2.17a)

It is the Euler-Maclaurin summation formula

N−1∑
k=1

fk =
∫ N

0

f(k) dk − 1
2

[f(0) + f(N)] +

1
12

[f ′(N)− f ′(0)] − 1
720

[f ′′′(N)− f ′′′(0)] + ..... (2.17b)

that permits the exact evaluation of the Λ →∞ limit of the expression (2.17a):
the divergent terms E log(Λ) in (2.17a) cancel out exactly leading to the δ(E)
terms of (2.16)

13



δ(E) = − E

4
+

E2

8
[ arctan(

5
2E

) − arctan(
1

2E
) ] +

1
32

[ 33 arctan(
1

2E
)−25 arctan(

5
2E

) ] +
E

16
[ 5 log (1+

25
4E2

)− log (1+
1

4E2
) ] +

1
12

[ arctan(
5

2E
) − arctan(

1
2E

) ] + ........ (2.17c).

For large E, a Taylor expansion of δ(E) gives

δ(E) =
1
48

1
E

+ O(
1
E3

). (2.17d)

Thus the leading term of δ(E) is of the order (1/E) as expected. However, it
is important to keep all the terms involving E given by (2.17c) when E is not
large.

We must search now for solutions to the integral equation associated with
the Dirac-like operator in one-dimension

1
π

∫ E

Vo

( E − V )
dx

dV
dV = N (E) −N (Vo) (2.18)

associated with the unknown function f = f(V ) ≡ dx
dV and subject to the

boundary condition V (x = 0) = Vo. i.e. the integral transform of f(V ) defined
by eq-(2.18) is the counting function N (E). The solutions to Abel’s integral
equations will not be necessary in our case to find dx/dV . What should the
choice of Vo be ? To answer this question we need to discuss the following
points. The integral (2.18) is trivially zero when the upper limit E coincides
with Vo, which is consistent with the trivial fact : N (E = Vo)−N (Vo) = 0.

Despite that the Riemann-van Mangoldt expression (2.12) is only valid for
E ≥ 1, one can still verify by inspection that when Vo = 0 ⇒ N (E = Vo =
0) = 0. This can be seen if one chooses the argument of ζ(1/2) = −1.46 to
be given by −π, instead of π. With this choice for the argument and taking
arctan(∞) = π

2 , then (2.12) becomes

N (E = 0) =
7
8

+
1
π

(−π) +
1
4π

π

2
= 0. (2.19)

Had one chosen the argument π one would have N (E = 0) = 2 which is the
wrong answer since there are no zeros at ζ(1/2). The choice Vo = 0 is a very
natural one from the physical point of view and compatible with the E = 0
ground state of Supersymmetric Quantum Mechanics (SQM) in one-dimension.
The super-potential W (x) in SQM vanishes at x = 0 if Supersymmetry is not
broken.

Upon taking derivatives on both sides of eq- (2.18 ) w.r.t to E gives

2
π

∫ E

0

dx(V )
dV

dV =
2
π

∫ x

0

dx =
2x(E)
π

=
dN (E)
dE

(2.20)
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Notice that despite the derivatives N ′(E) blow up at the location of the zeta
zeroes E = En, due the discontinuity (jump) of S(E) at En, the expression
(2.20) is nevertheless correct because it just means that the function x(E) also
blows up x(En) = ∞ when E = En. Therefore, the fact that N ′(E) blows up at
a discrete number of locations E = En does not preclude us from differentiating
both sides of eq-(2.18) w.r.t to E.

From the above relation (2.20) we will show that the solution to the integral
equation (2.18) is

2x
π

=
2x(V )
π

=
dN (V )
dV

≡ ρ(V ). (2.21)

where N (V ) has the same functional form as N (E). The physical interpre-
tation of (2.21) is that the coordinate function x = x(V ) is just proportional
to the density of zeroes ρ(V ) (times π/2) : the number of zeros per unit of
energy. On dimensional grounds this makes sense, since length has the dimen-
sions of inverse of energy when h̄ = c = 1. Therefore, one can infer that when
V = En ⇒ x = x(En) = xn = ∞ for all values of n = 1, 2, 3, ..... due to the
singular behaviour of the derivatives N ′(V = En) at the ordinates of the zeta
zeroes resulting from the discontinuity of the argument of the zeta function at
En. The last expression (2.21) for x(V ) furnishes the sought-after potential
V = V (x) in implicit form. x(V ) is single-valued but V (x) is multi-valued. In
particular, V (x = ∞) = En, n = 1, 2, 3, ......

Equipped with the known expression for the functional form of N(V ) (2.12)
(after replacing E for V ) the quantization condition (2.18) reads∫ E

Vo

(E − V )
d2N (V )
dV 2

dV = N (E) − N (Vo) . (2.22)

Taking derivatives on both sides of (2.22) w.r.t to E and using the most general
Liebnitz formula for differentiation of a definite integral when the upper b(E)
and lower b(E) limits are functions of a parameter E :

d

dE

∫ b(E)

a(E)

f(V ;E) dV =
∫ b(E)

a(E)

(
∂f(V ;E)

∂E
) dV +

f(V = b(E) ;E) (
d b(E)
dE

) − f(V = a(E) ;E) (
d a(E)
dE

). (2.23)

leads to ∫ E

Vo

d2N (V )
dV 2

dV =
dN (E)
dE

. (2.24)

since the lower limit Vo is taken to be independent of E and the integrand
vanishes in the upper limit V = b(E) = E. The integral (2.24) is straightforward

dN (V )
dV

(V = E) − dN (V )
dV

(Vo) =
dN (E)
dE

. (2.25)
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from which one infers that one must have N ′(Vo) = dN (V )
dV (Vo) = 0 since the

functional forms of N (V ) and N (E) are the same.
However, there is a potential problem because there is no assurance that

the function N (V ) obeys the condition N ′(Vo) = 0 unless one chooses the value
of Vo to be the solution to the transcendental equation

1
2π

log (
Vo

2π
) +

1
π
Im

i ζ ′( 1
2 + iVo)

ζ( 1
2 + iVo)

+
1
4π
log (1 +

1
4V 2

o

) − 3
2π

1
1 + 4V 2

o

−

1
2π

∫ ∞

0

ρ(u) du
(u+ 1/4)2 + (Vo/2)2

+
Vo

2π

∫ ∞

0

ρ(u) (Vo/2) du
[ (u+ 1/4)2 + (Vo/2)2 ]2

= 0.

(2.26)
If, and only if, there is a real-valued solution Vo to eq-(2.26) that fixes the
value of the zero-point energy Vo and that falls in the range 1 ≤ Vo < E1, then
one has that x(V ) = π

2 (dN (V )/dV ) yields the potential V (x) in implicit form
reproducing the ordinates of the zeta zeros for the spectrum En.

However, if there is no real-valued solution Vo to the transcendental equation
(2.26) that falls in the range 1 ≤ Vo < E1, then one can go ahead and truncate
the upper limit of the definite integral appearing in the definition of δ(E) in eqs-
(2.16, 2.17) by introducing an E-dependent ultraviolet cutoff Λ = Λ(E), such
that the zero derivative condition is modified from the form given by (2.26) to
the one given by

N ′(Vo,Λ(Vo)) =

1
2π

log (
Vo

2π
) +

1
π
Im

i ζ ′( 1
2 + iVo)

ζ( 1
2 + iVo)

+
1
4π
log (1 +

1
4V 2

o

) − 3
2π

1
1 + 4V 2

o

−

1
2π

∫ Λ(Vo)

0

ρ(u) du
(u+ 1/4)2 + (Vo/2)2

+
Vo

2π

∫ Λ(Vo)

0

ρ(u) (Vo/2) du
[ (u+ 1/4)2 + (Vo/2)2 ]2

−

Vo

2π
ρ(Λ(Vo))

[ (Λ(Vo)) + (1/4) ]2 + (Vo/2)2
(
dΛ(V )
dV

)(V = Vo) = 0. (2.27)

Therefore, the above condition N ′(Vo,Λ(Vo)) = 0 provides the necessary con-
straint between Vo and Λ(Vo) to satisfy our goal. It is customary in the Renor-
malization Group process in Quantum Field Theories (QFT) to introduce an
energy cut-off; here Λ(E) is a running and increasing function of E which tends
to infinity when E →∞.

To sum up, if there is a real-valued solution Vo to eq-(2.26) that fixes the
value of the zero-point energy Vo and that falls in the range 1 ≤ Vo < E1, then
x(V ) = π

2 (dN (V )/dV ) yields the potential V (x) in implicit form. If there is no
real-valued solution Vo to the transcendental equation (2.26) that falls in the
range 1 ≤ Vo < E1, then one truncates the upper limit of the definite integral
leading to a modified equation (2.27) and x(V ) = π

2
dN (V,Λ(V ))

dV determines the
potential implicitly in terms of the cut-off function Λ(V ).
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Next we describe how one determines the functional form of the cut-off
function Λ(V ) in such a case. Because Λ(E) is a cutoff-function that runs with
energy E, one has now enough freedom to impose the exact conditions

N (En ; Λ(En)) − N (Vo ; Λ(Vo)) = n; n = 1, 2, 3, ..... ; 1 ≤ Vo < E1

(2.28a)
when E1, E2, E3, .......En, En+1, ..... are the (positive) imaginary parts (ordi-
nates) of the zeta zeroes in the critical line. In order to evaluate N (V ) at
V = En due to the discontinuity of the fluctuating term S(E) of (2.12) at En

one must take the arithmetic mean as described by eq-(2.14). The upper limit of
the values of Vo should be bounded by the first zero E1 avoiding having potential
singularities in eq-( 2.27) due to the zeros of zeta appearing in the denominator
of second term. The lower bound of Vo should be 1 since the domain of validity
of the Riemann-van Mangoldt expression is E ≥ 1.

If one were to replace the values Λ(En) = λn for Λ = ∞ one may rewrite
eq-(2.28) as follows

N (En;λn)−N (Vo; Λ(Vo)) = [N (En; Λ = ∞) + ∆(λn, En) ]−N (Vo; Λ(Vo)) =

(n − δn) + ∆(λn, En) − N (Vo ; Λ(Vo)) = n. (2.28b)

where the number of levels (zeros) just below the n-th zero given by the Riemann-
van Mongoldt expression are N (En; Λ = ∞) = n − δn (if the Riemann Hypoth-
esis is true), and δn is a fraction such that 0 < δn < 1. The positive-definite
quantity ∆(λn, En) is the deficit value of the integral appearing in eqs-(2.16,
2.17) given by (En/2)

∫∞
λn

(....).
Finally, one can derive implicitly the potential of the Dirac-like operator

that reproduces the zeta zeros from

2x
π

=
2x(V )
π

=
dN (V ; Λ(V ))

dV
=

∂N (V ; Λ(V ))
∂V

+
dΛ(V )
dV

∂N (V ; Λ(V ))
∂Λ(V )

⇒

xo = x(Vo) =
π

2
dN (V ; Λ(V ))

dV
(V = Vo) = 0.

Next we describe how to solve the system of eqs-(2.27-2.28). Firstly, one
begins by truncating the series expansion for the cut-off function Λ(V ) as follows

Λ(V ) =
k=∞∑
k=0

ak V
k ⇒ Λ(V ;N) =

k=N∑
k=0

ak V
k ⇒

(
dΛ(V,N)

dV
) =

k=N∑
k=0

ak k V
k−1 (2.29)

We are going to display two case scenarios how to solve eqs-(2.27-2.28). In
the first case we are going to drastically simplify these equations by choosing
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Vo = 0, despite that the domain of values for Vo in the definition of N (Vo) given
by the Riemann-van Mongoldt formula should be 1 ≤ Vo < E1. In the second
case scenario we shall enforce the latter conditions on Vo. Hence, eqs-(2.27-2.28)
are automatically simplified by setting Vo = 0 ⇒ N (Vo = 0 ;λo) = 0, which
follows from eq-(2.19 ), so now the value of λo = Λ(Vo = 0) is determined from
the relation (2.27) for Vo = 0

− 1
2π

log (4π) +
1
π
Im

iζ ′( 1
2 )

ζ( 1
2 )

− 3
2π

− 1
2π

∫ λo

0

ρ(u) du
(u+ 1/4)2

= 0. (2.30)

after noticing a cancellation between the singular log(Vo = 0) − log(Vo = 0)
terms associated with the first and third terms of (2.27) resulting from the
relation limVo→0 (1/4π) log(1+ 1

4V 2
o

) → −(1/2π) log(Vo = 0) = +∞. The value
of the integral in (2.30) can be inferred from (−2/E)× the value of the integral
in eq-(2.17). When E → 0, it requires the use of L’Hopital’s rule giving a finite
result for a finite value of λo. The values ζ ′( 1

2 ) = −3.92265; ζ( 1
2 ) = −1.46 in

eq-(2.30) yields a negative value for λo given by

−0.0787 =
1
2

∫ λo

0

ρ(u) du
(u+ 1/4)2

= − 1
2

∫ 0

λo

ρ(u) du
(u+ 1/4)2

; with −1
4
< λo < 0.

The quantization conditions (2.28a, 2.28b) corresponding to N (Vo = 0;λo) = 0,
and Λ(Vo = 0) ≡ λo < 0 given by the solution to eq-(2.30), and by writing
Λ(En) ≡ λn, become

N (En ;λn) − N (Vo = 0 ;λo) = N (En ;λn) = n; n = 1, 2, 3, ......... ∞ ⇒

∆(λn, En) =
En

2

∫ ∞

λn

ρ(u) du
[ (u+ 1/4)2 + (En/2)2 ]

= δn = n − N (En; Λ = ∞).

(2.31)
∆(λn, En) is positive definite because the contributions to the integral in all
of the intervals [ [u], [u] + 1 ] which do not contain λn are all positive due to
the increasing values of the denominator, whereas the magnitude of the values
ρ(u) = 1

2−{u} are symmetrically distributed about the midpoint of the intervals
while being positive and negative definite in the intervals [ [u], [u] + 1

2 ], [ [u] +
1
2 , [u] + 1 ] respectively. The integral in the interval [ [λn], [λn] + 1 ] is positive,
negative or zero depending on the location of λn. One can always choose the
value of λn to obey the relations in eq-(2.31).

To sum up, given a set of N + 1 integers n = 0, 1, 2, 3, ......N bounded by N ,
Eqs-(2.30, 2.31) yield a system of N + 1 equations which in principle determine
the values of the N + 1 unknown cut-off parameters λo, λ1, λ2, ....... , λN in
terms of the ordinates of the zeta zeros E1, E2, E3, ....., EN . The value of λo

has already been fixed from eq-(2.30). Eqs-(2.31) determine the remaining ones
λn, n = 1, 2, 3, ....N .

Finally, after solving eqs-(2.30, 2.31), the defining relations
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Λ(Vo ;N) =
k=N∑
k=0

ak (Vo)k = λo ⇒ Λ(Vo = 0 ;N) = ao = λo. (2.32)

and

Λ(V = En ;N) =
k=N∑
k=0

ak (En)k = λn. (2.33)

yield a linear system of algebraic equations for the N coefficients a1, a2, .... , aN

associated with the truncating series (2.29), and whose solutions are given in
terms of the imaginary parts of the zeta zeroes En and the values of the cut-
off parameters Λ(Vo = 0) = λo, Λ(En) = λn. The latter cut-off parameters
have themselves been determined from the solutions to eqs-(2.27, 2.28). The
solutions for the coefficients ak can be written compactly in terms of the van
der Monde determinant ∆ of the (N +1)× (N +1) matrix comprised of N rows
whose entries in the n-th row are 1, En, E

2
n, E

3
n, ........, E

N
n , for n = 1, 2, 3, ...., N .

The first row has entries 1, 0, 0, 0, ....., 0 since Vo = Eo = 0, so the total number
of rows and columns is N + 1. The van der Monde determinant is

∆ =
∏

(Ei − Ej), for i > j. (2.34)

The other determinants involved in the solutions ∆k correspond to the (N+1)×
(N +1) matrices obtained by replacing the k-th column by a column comprised
of the entries λo, λ1, λ2, λ3, ......., λn. The solutions for the coefficients that define
the cut-off function Λ(E,N) at level N are compactly written as

a
(N)
k =

∆k ( λo, {λn} ;Vo = 0; {En} )∏
(Ei − Ej)

. i > j, i, j = 0, 1, 2, 3, .......N. (2.35)

with Eo = Vo = 0. If the large N limit converges

limN→∞ a
(N)
k ( λo, λ1, λ2, ...., λN ;E1, E2, ....., EN ) → a∗k, a fixed point.

(2.36)
to a fixed point, the full fledged energy-dependent cut-off function Λ(E) is de-
termined by the infinite series

Λ(E) =
k=∞∑
k=0

a∗k E
k. (2.37)

which is defined in terms of the infinite number of coefficients given by the
infinite number of fixed points a∗k. The spectral statistics of Random Matrix
Models in the large N limit have been known for a long time to have deep con-
nection to the zeta zeroes since Montgomery-Dyson found the pair-correlation
functions of the ordinates of the zeta zeroes with normalized spacings in terms
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of an integrand involving the function 1−( sinπx
πx )2. This function is the pair cor-

relation function for the eigenvalues of very large Random Hermitian matrices
measured with a Gaussian measure (the Gaussian Unitary Ensemble) [21].

Since fixed points in Renormalization Group (RG) techniques in QFT are
ubiquitous, it is warranted to explore the connections among the putative fixed
points a∗k with the fixed points associated with the beta function in QFT. A
RG analysis was performed by Peterman [23] to shed some light as to why the
density of primes numbers decreases as 1/logx. The zeta function has also been
used extensively in Regularization methods (of infinities) in QFT, see [24] and
references therein. The ”Russian doll Renormalization” group has been found
to have connections to the RH [19].

Finally, once the cut-off function Λ(V ) is constructed from the definition

Λ(V ) =
k=∞∑
k=0

a∗k( λo, {λn};Vo = 0; {En} ) V k. (2.38)

for all values n = 1, 2, 3, ....,∞, the sought-after potential is implicitly deter-
mined from the fundamental result

2x
π

=
2x(V )
π

=
d N (V ; Λ(V ))

dV
. (2.39)

where the functional form ofN (V ; Λ(V )) is given by the Riemann-von Mangoldt
formula (2.12) by replacing E → V and by inserting the energy-dependent
cut-off Λ(V ) found in eq-(2.38) into the upper limit of the integral appearing
in the definition of the δ(E) terms in eq-(2.16). Naturally, due to numerical
limitations, the potential can only be constructed iteratively, level by level,
N,N + 1, N + 2, ......,∞. Another salient feature to look for is to verify that
the family of coefficients a(N)

k does indeed converge to the fixed points values a∗k
when N →∞. This is where the results of large N Random Matrices methods
are relevant.

The second case scenario is more complicated to solve if one forces Vo to lie
in the domain 1 ≤ Vo < E1. Choosing a particular value of Vo = V ∗o in that
range, one has for eqs- (2.29)

Λ(V ∗o ;N) =
k=N∑
k=0

ak (V ∗o )k = λ∗o . (2.40)

and

Λ(V = En ;N) =
k=N∑
k=0

ak (En)k = λn. (2.41)

when Vo = V ∗o 6= 0, one has new solutions for the coefficients ao, a1, a2, ......aN

ak = ak(λ∗o, λn;V ∗o , En) =
∆k ( λ∗o, {λn} ;V ∗o , {En} )∏

(Ei − Ej)
; i > j (2.42)
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for i, j = 0, 1, 2, 3, .......N and where the first row of the matrix involved in
the van der Monde determinant now must include the 1, V ∗o , (V

∗
o )2, ......., (V ∗o )N

terms.
Equipped with the above solutions ak (2.42) one inserts them into the ex-

pression for the derivative term

(
dΛ(V,N)

dV
) (V ∗o ) =

k=N∑
k=0

ak( λ∗o, λn;V ∗o , En ) k (V ∗o )k−1. (2.43)

which appears in eq-(2.27). The latter equations (2.27, 2.40, 2.41, 2.42, 2.43)
combined with eq-(2.28), where now N (V ∗o , λ

∗
o) 6= 0, furnishes a system of N+1

equations which determines in principle the numerical values for the cut-off
parameters λ∗o, λn’s . From these latter values one reconstructs the the ak

coefficients from eqs-(2.42), and which in turn, will determine the sought-after
cut-off function Λ(V ;N) eq-( 2.29) (at level N), so that finally one can write the
full explict form of N (V,Λ(V )) (given by the Riemann-van Mongoldt formula).
Its derivative yields dN (V,Λ(V ))

dV = (2x(V )/π) which finally furnishes the form of
the sought-after potential V (x) (implicitly). Naturally, the equations to solve
in this second case scenario are far more difficult that the ones when one simply
chooses Vo = 0 simplifying drastically these calculations.

There is a more general third case scenario when one has N + 2 undeter-
mined parameters V ∗∗o , λ∗∗o , λn, n = 1, 2, 3, ...., N at each level N which are
constrained to obey N+2 equations given by the N+1 eqs-(2.27, 2.28), plus an
additional extra condition involving the second derivatives N ′′(V ∗∗o , λ∗∗o ) = 0.
The procedure to solve this far more complicated system of N + 2 equations is
still similar to the second case scenario, the only difference is that now V ∗∗o is
not put in by hand, but instead is another unknown parameter to be determined
from the solutions of these N+2 equations. The open question remains whether
or not the solutions for V ∗∗o fall in the range 0 ≤ V ∗∗o < E1. Even perhaps, the
solution for V ∗∗o might be negative. Out of these three cases, the simplest one
to follow is the one when one takes Vo = 0 which simplifies drastically all the
calculations and allows us to provide with actual numerical results. The full
numerical analysis of eqs-(2.27, 2.28, 2.29, ...) is beyond the scope of this work.
It requires very sophisticated computations.

To complete this subsection, we need to discuss the nature of the solutions
Ψ(x) to the one-dim Dirac-like equation (2.1) on the line [−∞,∞] given by

ΨE(x) = Ψo,E exp [ i
∫ x

−∞
P (x′) dx′ ] =

Ψo,E exp [ i
∫ x

−∞
( E − V (x′) ) dx′ ]. (2.44)

where E is a real-valued continuous parameter and Ψo,E is a constant ampli-
tude.
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The operator −i∂/∂x would be self-adjoint in the full line [−∞,∞], or in
the compact interval [xa, xb], if one could impose suitable vanishing boundary
conditions on the above ΨE(x) solutions at ±∞ and/or at xa, xb. However,
the solutions ΨE(x) are just proportional to a pure phase factor so the Ψ’s are
nonvanishing for all value of x, unless one constrains the amplitudes Ψo,E to zero
that will render the solutions trivial. Therefore, since one cannot find nontrivial
solutions ΨE(x) obeying the boundary conditions ΨE(x = ±∞) = 0 and/or
ΨE(x) = 0 at xa, xb, the operator −i∂/∂x is not self-adjoint in [−∞,∞], or in
the compact interval [xa, xb], for the space of solutions given by (2.44). If one had
a second order operator D2 = −h̄2

2m (∂2/∂x2) like the Schroedinger operator, there
are no problems with finding self-adjoint extensions. For example, a free particle
inside a box of length 2L admits normalizable wave-functions Ψn(x) ∼ sin (nπx

L )
obeying the suitable boundary conditions Ψn(x = ±L) = 0.

For these reasons we conclude that the self-adjointness property is not re-
quired to fulfill our goals. We saw in section 1 how by working with a pair
of non-Hermitian Hamiltonian operators was sufficient to show why it was the
CT symmetry which forced the energy spectrum to be real : Es = s(1− s) =
E∗s = s∗(1 − s∗), leading to the only possible solutions s = 1

2 + iρ and/or
s = real, and consistent with the fact that the Riemann zeta function has
trivial zeroes on the negative even integers and nontrivial zeroes in the critical
line Re s = 1

2 . For the Dirac-like operator (2.1) all we need is to impose PT
symmetry where this time by T reversal symmetry we do not mean inversion
t → (1/t) ⇒ log(t) → −log(t), but the standard t → −t symmetry used in PT
symmetric QM.

The momentum p = dx/dt is invariant under PT symmetry since x and
t both reverse signs, this means that i → −i under PT symmetry so that the
momentum operator remains invariant p̂ = −ih̄(∂/∂x). There is nothing strange
by having i change sign under PT symmetry since Clifford algebras in D = 1
have two generators, the identity element 1 and the 1× 1 matrix γ whose entry
is just −i, so that {γ, γ} = 2i2 = −21, if one takes the metric of the one-dim
space to be g11 = −1. Therefore under PT symmetry γ → −γ which implies
that i→ −i.

This leaves us with having to impose the condition V (−x) = V (x) on the
potential in order to have a PT symmetric Dirac-like operator −i∂/∂x +V (x).
In order to define V (x) in the regions x < 0 one must choose the minus sign in
front x(V ) = −π

2
dN (V,Λ(V ))

dV . The positive sign selects the solutions in the region
x > 0. Furthermore, it is important to emphasize that the one-dimensional
Jacobian (from the change of variables) is (dx/dV ) in the x > 0 region, but it is
−(dx/dV ) in the mirror x < 0 region. There is a crucial sign change to ensure
that the portion of the line-integral along the left region does not trivially cancel
out the portion of the line-integral in the right region. The Bohr-Sommerfeld
quantization rule involves the closed contour in phase space that in the case of
a symmetric potential gives

∮
pdx = 4

∫∞
o
pdx = 2nπ, thus care must be taken

with the signs of dx/dV .
To sum up this discussion : the self-adjointness (Hermitian) property is not

22



required to prove the Riemann Hypothesis. What matters was the CT symmetry
in section 1 and PT symmetry in this section related to the spectrum of the
Dirac-like operator in one-dimension. To finalize, once we extend the domain of
V (x) to the region x < 0 by taking the mirror image of the potential constructed
in this section; the solutions associated with the discrete family of zeta zeroes
En (embedded in the continuum of solutions) are is simply obtained by inserting
the value of E = En inside the integrand of (2.45)

ΨEn
(x) =

1√
L
exp [ i

∫ x

−∞
( En − V (x′) ) dx′ ]. (2.45)

where in the region x < 0 one must use the branch of the potential solution
given by x(V ) = −π

2
dN (V,Λ(V ))

dV to ensure that indeed we are selecting solutions
which obey V (−x) = V (x). L is an infrared cutoff that is required so that the
wave-functions ΨEn

(x) are square integrable on the line

limL→∞ {
∫ L/2

−L/2

Ψ†
En

(x) ΨEn
(x) dx } = 1. (2.46)

One must take the L→ ∞ limit after the integration (2.47) is performed and
not before otherwise one gets the trivial result for the wavefunctions Ψ = 0.

Finally, when one evaluates the discrete family of wave functions at the cusps
points xn = +∞ (where the values of the potential are V (x = xn = +∞) = En)
one arrives at

ΨEn
(x = xn = ∞) =

1√
L
exp [ i

∫ xn=∞

−∞
( En − V (x′) ) dx′ ] =

1√
L
exp [ 2 i

∫ xn=∞

0

( En − V (x′) ) dx′ ] =

1√
L
exp { i π [ N (En ; Λ(En)) − N (Vo ; Λ(Vo)) ] } =

1√
L
exp [ i n π] =

(−1)n

√
L

. (2.47)

as a direct result of the conditions in eq-(2.28) and eq-(2.3). Therefore, at the
cusps points x = xn = +∞ the wave functions ΨEn

(xn) alternate in sign.
This changing of sign is related to the presence of Gram points in the Riemann
Siegel formula, with the only difference that the phase factors in (2.47) involve
the full-fledged zeroes (discrete energy levels En) counting function N (E,Λ(E))
whereas in the Riemann-Siegel formula only the average energy level counting
function is used given by the first two terms of eq-(2.12) [2].

The values of the wave-functions at the x = −∞ are simply ΨEn
(x = −∞) =

1√
L

. For even n the wavefunctions are periodic (with an infinite period) in
the sense that ΨEn

(x = −∞) = ΨEn
(x = +∞). For odd values of n the

wavefunctions are anti-periodic in the sense ΨEn
(x = −∞) = − ΨEn

(x = +∞).
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Therefore, the imaginary parts of the zeta zeroes En in the critical line are
the only values among the E-continuum of values which obey the boundary
conditions ΨE(x = −∞) = ± ΨE(x = +∞). This physical interpretation
of the discrete values En among the E-continuum must have bearing on the
periodic orbits associated with the ”chaotic” Riemann dynamics whose periods
are multiples of logarithms of prime numbers as described by Berry and Keating,
and based on their classical Hamiltonian H = xp [14]

Notice that if one were to replace the values λn and Λ(Vo) for Λ = ∞, one
would have for phases in the wave functions (2.47) the following values

π { N (En; Λ = ∞) − N (Vo; Λ = ∞) } =

π { n − δn − N (Vo; Λ = ∞) } = π n − φn − φo. (2.48)

where now the zero-point energy Vo is the one determined from the solution
to the transcendental equation (2.26). Therefore, if no cut-offs are set in the
upper limits of the integral defining the δ(E) terms (2.16, 2.17) there would be
a nontrivial phase− shift in the wave functions as shown in eq-(2.48) and one
would no longer have the nice periodicity (anti-periodicity) behaviour as before;
i.e. one would have now a quasi-periodicity behaviour.

To finalize this section we return to the solution of Abel’s integral equation
(2.11) (α = 1

2 ) in the Schroedinger operator case

x(V )− x(Vo) =
1

Γ(1/2)

∫ V

0

dN (E)
dE

1√
(V − E)

dE. (2.49)

To control the divergences in the integral once again we may introduce a cut-off
function Λ(E) in the counting function and have dN (E,Λ(E))

dE inserted into the
above integral where the cut-off function Λ(E) is defined by the series expansion
of eq-(2.38). The coefficients a∗k are the fixed points of the large N limit of
the family a(N)

k (λo, Vo = 0; {λn}, {En}) given explicitly by the relations (2.35)
involving the van der Monde determinant.

The values of the λn’s as functions of En are obtained by solving eqs-(2.28),
however, now the value of λo is no longer determined from eq-(2.27), because
that equation no longer applies, but it is left out as a free parameter that
is related to the integration constant x(Vo = 0) = xo in the l.h.s of (2.48).
Therefore, one has now, at each level N,N + 1, N + 2..... a well behaved cutoff
function Λ(E,N) in the expression N (E,Λ(E)) given by eq-(2.12) that can be
inserted into the above integral (2.48), and provide solutions for x(V ) − xo (
x(Vo = 0) = xo ), and which defines implicitly, the potential V (x) of the self-
adjoint Schroedinger operator defined in the whole real line that reproduces the
zeta zeros.
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3 Area Quantization in Phase Space, Duality,
Spacetime Singularities, Renormalization Group
and Distribution of Primes and Zeta Zeros

To finalize this work , we will derive the Area Quantization condition in Phase
Space An = n π of the intervals [0, En] for n = 1, 2, 3, ......∞ and show why
area quantization is one physical reason why the average distribution of primes
density for very large x given by O( 1

log x ), has a one-to-one correspondence
with the inverse average density of zeta zeros in the critical line. As the number
density of primes decreases asymptotically with large x as (1/log x), the average
density of zeta zeros in the critical line increases asymptotically (for very large
E) as 1

2π log(
E
2π ). This finding is consistent with the results of Petermann [23]

who found the 1/logx behaviour to be connected to the Renormalization Group
program in QFT.

In the previous section we found that the potential function V (x) obtained
implicitly from eq-(2.40) turns out to be a multi-valued function of x which
requires splitting the energy regions into different bands, branches, like a non-
periodic crystal lattice

[0, E1], [E1, E2], [E2, E3], ............ , [En−1, En], ...... (3.1)

such that at the boundaries of those bands : x(V = En) = π
2N

′(V = En) = ∞
due to the discontinuity of the S(E) term (2.12) at En.

The left and right derivatives of x(V ) at V = En are (dx/dV ) = ±∞
which is also consistent with taking the second derivatives of the Heaviside step
function Θ′′(E − En) = δ′(E − En), since the counting function is defined by
N (EN ) =

∑N
1 Θ(E − En). In the infinitesimal region V = En ± εn, for a

suitable infinitesimal εn(En) > 0, one expects a sudden jump of the function
N (V,Λ(V )), from values less than n, to values greater than n, while reaching
the precise value of n at V = En due to the conditions imposed in (2.28). This
sudden jump is provided for by the S(E) term in the Riemann-von Mangoldt
formula.

On a separate problem, we exploited this singular behaviour of the deriva-
tives of the Heaviside step function to construct a different solution to the static
spherically symmetric gravitational field produced by a point mass M at r = 0
than the standard text book solution. The solutions for the metric [32] were
continuous except at the location r = 0 of the point mass, leading to a delta
function for the scalar curvature R = (2GMδ(r)/r2) instead of R = 0. The
Euclideanized Einstein-Hilbert action coincided precisely with the Black Hole
Entropy where the area of the horizon which has now been displaced at the
location r = 0+ (due to the discontinuity of the metric at r = 0 ) is the usual
value 4π(2GM)2. The area-radial function chosen was ρ(r) = r + 2G|M |Θ(r)
so that ρ(r = 0) = 0; ρ(r = 0+) = 2G|M |; ρ(r = 0−) = −2G|M | due to the
definition of the Heaviside step function : it is 1 for r > 0; −1 for r < 0, and
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is 0 for r = 0. This discontinuity has the same form as the discontinuity of the
argument of ζ( 1

2 + iE). For this reason we believe that John Nash’s approach
to the RH based on spacetime singularities was on the right path.

Between two consecutive cusps where the coordinate function blows up
x(V ) = π

2N
′(V ; Λ(V )) = ∞ at V = En, En+1, lies a ”valley” region where there

are inflection points of N (V,Λ(V )) at the locations E(n)
∗ , within the intervals

En < E
(n)
∗ < En+1, such that N ′′(E(n)

∗ ,Λ(E(n)
∗ )) = 0; i.e. (dx/dV ) = 0 at the

bottom of the valleys V = E
(n)
∗ , while (dx/dV ) = ±∞ at the cusps En. One

can visualize the coordinate graph function x(V ) as an infinitely long suspen-
sion bridge (from V = 0 to V = ∞) with infinitely high poles/spikes x(V ) = ∞
at the specific locations V = E1, E2, E3, ......., and with the suspension cables
falling into the U -shaped valley regions in between.

With this picture in mind, the areas An in the Phase Space comprised by this
non − periodic crystal lattice of peaks and valleys, are quantized in multiples
of π as follows

2
∫ xn=∞

0

P (x) dx = 2
∫ En

0

(En − V )
dx

dV
dV =

2
∫ E1

0

(En − V )
dx

dV
dV + 2

∫ E2

E1

(En − V )
dx

dV
dV +

2
∫ E3

E2

(En − V )
dx

dV
dV + ...........+ 2

∫ En

En−1

(En − V )
dx

dV
dV =

A(n)
1 + A(n)

2 +A(n)
3 + ....... +A(n)

n = n π; n = 1, 2, 3, .... (3.2)

For a given value of n = 1, 2, 3, ..... the sum of each one of these n- aperiodic-
crystal-like bands contributes to a net value of area An = n π. This is not to
say that the areas in (3.2) are equally partitioned in one unit of π ! It is the
whole sum which adds up to nπ. For any given value of n one can take the
ratios of areas to obtain a sequence of fractions

A(n)
1

nπ
,
A(n)

2

nπ
,
A(n)

3

nπ
, .......

A(n)
n

nπ
; n = 1, 2, 3, ..... (3.3)

(one should take themagnitude of the areas in the case of negative contributions
in the integrals). It is known that the self-similarity of the Farey sequence of
fractions posses remarkable fractal properties [27] that is very relevant to the
validity of the Riemann Hypothesis (RH) based on Farey fractions and the
Franel-Landau shifts [28]. Do the area-fractions (3.3) follow a Farey sequence
when 2x(V )/π = N ′(V,Λ(V ))?

A fractal SUSY QM model to fit the spectrum of the imaginary parts of the
zeta zeros ρn was studied in [16] based on a Hamiltonian operator that admits
a factorization into two factors involving fractional derivative operators whose
fractional (irrational) order is one-half of the fractal dimension (d = 1.5) of the
fractal potential found by Wu-Sprung [13]. A model of fractional spin has been
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constructed by Wellington da Cruz [29] in connection to the Fractional Quantum
Hall effect based on the filling factors associated with the Farey fractions. This
approach based an a fractional Quantum Hall should be contrasted with the
ordinary Quantum Hall Effect approach to the RH [19].

The integral depicting the phase space area of a domain D can be written
as a result of Stokes theorem as∫

D
dX ∧ dP =

1
2

∮
C

(PdX − XdP ). (3.4)

where the line (contour) integral is defined along the boundary region of the
domain D of phase space. Since the potential is symmetric V (−x) = V (x)
another way of obtaining the same result for the net areas is to compute the
areas from the line integral (3.4) using the equality due to the symmetry of the
potential

1
2

∮
C

P dX = − 1
2

∮
X dP. (3.5)

The relation P + V = En ⇒ P = En − V yields

An = −
∮

X dP = −
∮

X d (En − V ) = 2
∫ En

0

X dV =

π

∫ En

0

dN (V,Λ(V ))
dV

dV = π [N (En,Λ(En))−N (V = 0,Λ(V = 0)) ] = n π.

(3.6)
Therefore, in general, one has the dual or reciprocal forms for the same phase
space area An as a direct consequence of Stokes theorem

An = 2
∫ En

0

X(V ) dV = 2
∫ E1

0

X(V ) dV + 2
∫ E2

E1

X(V ) dV +

2
∫ E3

E2

X(V ) dV + ...........+ 2
∫ En

En−1

X(V ) dV =

I(n)
1 + I(n)

2 + I(n)
3 + ....... + I(n)

n = n π; n = 1, 2, 3, .... (3.7)

where we have re-written x asX. Because of the relationship 2X(V ) = π dN (V,Λ(V ))
dV

derived in the previous section, and by setting N (V = 0,Λ(V = 0)) = 0, one
has

An = 2
∫ En

0

X(V ) dV = π

∫ En

0

dN (V,Λ(V ))
dV

dV = π N (En,Λ(En)) = n π .

(3.8)
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From eqs-(3.7, 3,8) one can write the values of the integrals associated to each
one of the respective intervals [0, E1], [E1, E2], [E2, E3], ......, [En−1, En] as

π + π(2−1) + π(3−2) + ....... + π(n−(n−1)) = π + π + π + ....... + π = n π.
(3.9)

which is a direct consequence of the quantization conditions (2.28) when N (V =
0,Λ(V = 0)) = 0

N (E1,Λ(E1)) = 1; N (E2,Λ(E2)) = 2; ........., N (En,Λ(En)) = n. (3.10)

Therefore, from this decomposition of the areas in terms of
∫
X dV integrals,

one has now an equipartition of the area An = nπ into n-single bits and whose
quantum of area is π

I(n)
1 = π, I(n)

2 = π, I(n)
3 = π, ....... I(n)

n = π. (3.11)

A full cycle requires starting at −∞, going to +∞ and back to −∞, thus the
full cycle will generate 2nπ area-bits, consistent why the n-th-winding number
of the orbit associated with the n-th zeta zero En. This is where one can
make contact with the work by Berry and Keating [14] on the periodic orbits
associated with the ”chaotic” Riemann dynamics whose periods are multiples
of logarithms of prime numbers based on the classical Hamiltonian H = xp [14]
and the Gutzwiller trace formula.

Now we are ready to find the relationship between area quantization, and
the distribution of primes and zeta zeros. The following integrals Yn, for n =
1, 2, 3.... also give the same values of nπ, after the renaming of variables y = V

2πn

Yn = − 1
2

∫ 2πn

0

log (
V

2πn
) dV = − n π

∫ 2πn

0

log (
V

2πn
) d(

V

2πn
) =

−n π
∫ 1

0

log (y) dy = { − n π y ( log y − 1 ) }10 = n π. (3.12)

because 0 log 0 → 0. Upon equating the 3 integrals (3.2, 3.7, 3.12), and after
using the results of the previous section x(V ) = π

2N
′(V ) ⇒ x′(V ) = π

2N
′′(V ),

the area quantization in phase space reads

An

π
=

∫ En

V =0

( En − V )
d2N
dV 2

dV =
∫ En

0

dN (V,Λ(V ))
dV

dV =

− 1
2π

∫ 2πn

0

log (
V

2πn
) dV = −n

∫ 1

0

log (y) dy = n; n = 1, 2, 3, ...... (3.13)

The fact that the integrals are equal does not mean the integrands are equal,
nevertheless one can still establish the following one-to-one correspondence of
the integrands and domains of integration as follows
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− 1
2π

log (
V

2πn
) ↔ dN (V,Λ(V ))

dV
≡ ρ(V ); 2 π n ↔ En. (3.14)

dN (V,Λ(V ))
dV

↔ ( En − V )
d2N (V ; Λ(V ))

dV 2
. (3.15)

From the correspondence (3.14) one learns that the irregularly spaced zeta
zeroes En has a correspondence with the evenly spaced energy levels given by
2πn. While the logarithmic integrand − 1

2π log(
V

2πn ) = − 1
2π log(y), which has

the same functional form as the inverse average density of primes log(x) (up to
a sign and numerical factor) has a correspondence to the density of zeta zeros
ρ(V ) in the critical line. The negative sign − 1

2π log(
V

2πn ) has a connection to
Connes work on the RH and Noncommutative Trace formula where the location
of the zeta zeroes were interpreted as absorption lines of the spectrum, instead
of emission lines [18] .

The prime number theorem states the the number of primes P(N) in the
interval [0, N ], for large N , is of the order of P(N) ∼ (N/logN). The average
number density of primes is P(N)/N ∼ (1/logN), so its inverse is log(N). The
density of primes is instead dP(N)/dN = (1/logN) − (1/logN)2. We believe
this is no coincidence for the even harmonious spacing of the energy levels 2πn
is related to the imaginary parts of the zeros of :

sin(iz) = i sinh(z) = i sinh(x+iy) = i sinh(x) cos(y)−cosh(x) sin(y) = 0 ⇒

sinh(x) cos(y) = 0, and cosh(x) sin(y) = 0. (3.16)

The solutions to these last 2 equations is x = 0, y = ±2πn. Therefore the
zeroes of the function sin(iz) = i sinh(z) = 0 are are zn = 0 ± i2πn, which
satisfy an analog of the Riemann Hypothesis. They all line in the vertical line
Re(z) = 0, with the main difference being that the latter zeros are all evenly
and harmoniously spaced in intervals of 2π along the imaginary axis. Thus,
the En ↔ 2πn correspondence would be another reflection of the irregular but
”harmonious” distribution of the primes.

It is warranted to explore the connections to the area quantization of the
quantum droplets in the Quantum Hall Effect. Studies of the Lowest Landau
Levels in the quantum mechanical model for a charged particle on a plane in
a constant uniform perpendicular magnetic field by [19], have shown to yield
the absorption level spectrum of the zeta zeros by Connes [18] and related to
the Berry-Keating [14] model of the average level density of the zeta zeroes
based on the classical Hamiltonian H = xp. It was conjectured [19] that the
fluctuating part S(E) of the counting functionN (E) (2.12) might be accounted
for by the higher Landau levels. The upshot of our results is that we have been
involved with the full-fledged Riemann-van Mangoldt expression N (E) in eq-
(2.12) which not only has the fluctuating part S(E), but also the higher order
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O(E−n) corrections as well, the δ(E) terms, in addition to the standard terms
E
2π (log E

2π − 1) + 7/8.
To finalize, we should add that since we are dealing with Dirac-like operators

one must not forget the existence of anti-particles with negative energy states
−En, although we are not working in four dimensions where the CPT theorem
applies. Negative energy states is consistent with the fact that the zeta zeros in
the critical line appear in pairs of complex conjugates 1

2± iEn. The absence of a
positive-energy electron behaves as if a positron of positive charge and negative
energy were created. Eq-(2.1) admits the analog of negative energy in one-
dimension, ( or 0+1-dim ) by simply writing the dispersion relation (P +V )2 =
M2 ⇒ (P + V ) = ±M = ±E. Therefore, the existence of ±E eigenvalues is
compatible with the zeros appearing in pairs of complex conjugates 1

2 ± iEn

along the critical line. In Electro-Magnetism (EM) the canonical momentum is
defined by the replacement pµ → pµ−eAµ, where Aµ is the EM potential and −e
is the negative charge of the electron. Thus having the generalized momentum
P + V bears some relation to the canonical momentum in EM , which brings
up again the connection to the work on Landau Lowest Levels, Quantum Hall
Effect... by [19].

In future work we will explore the relations of our work to
• Chaotic Renormalization Group Flows, Universal Mandelbrot Set, Phase

transitions, attractors, Julia sets, .... by [31].
• Fractal strings, fractal membranes, noncommutative spaces, Dirac-like op-

erators, spectral triples , quasi-crystals, modular flows of the moduli space of
fractal membranes, adeles, arithmetic geometries, ..... in connection to the flows
of zeroes of zeta functions towards the critical line, by Lapidus et al [26]

• Connes noncommutative trace formula [18]. The fermionic Trace Formula,
supersymmetry, Witten index and the Mobius function [30]

• Black Hole entropy and area quantization in Loop Quantum Gravity; Farey
sequences, fractal statistics, and the fractional Quantum Hall Effect [29].

• Cyclotomy, Phase quantization, Ramanujan sums, ...... by Planat et al
[25].

To summarize this work, in sections 1 and 2 we have presented two plausi-
ble methods to prove the Riemann Hypothesis. One was based on the modular
properties of Θ functions and the other on the Hilbert-Polya proposal to find
an operator whose spectrum reproduces the ordinates of the zeta zeros in the
critical line. We described in detail how the Dirac-like operator with a poten-
tial V (x) in eq-(2.1) reproduces the spectrum after the boundary conditions
ΨE(x = −∞) = ± ΨE(x = +∞) are imposed. Such potential V (x) was derived
implicitly from the relation x = x(V ) = π

2 ρ(V ) = π
2 (dN (V,Λ(V ))/dV ). At

the end of section 2 , we explained how to provide the implicit form of the
potential V (x) for the self-adjoint Schroedinger operator that also reproduces
the zeta zeros. Crucial in the construction, was the introduction of an energy-
dependent cut-off function Λ(E). In the final section 3 the natural quantization
of the phase space areas (associated to nonperiodic crystal-like structures) in
integer multiples of π follows from the Bohr-Sommerfeld quantization condi-
tions of Quantum Mechanics. It allows to find a physical reasoning as to why
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the average density of the primes distribution for very large x : O( 1
logx ), has

a one-to-one correspondence with the asymptotic limit of the inverse average
density of zeta zeros in the critical line.
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