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Abstract

To color a given map we first find its related map with the most mutual
adjacencies and color it by only four colors, then we trace back.

1 Introduction

It can be proven easily that on a planar map there can be no more than
four mutually adjacent regions. Since every two regions require two dif-
ferent colors to be distinguished, it seems that we can conclude that we
won’t need more than four colors to color the regions of the map distinctly.
That we need no more than four colors to color any planar map needs to
be proven, because for instance we have a map consisting of no more than
three mutually adjacent regions but requiring at least four colors to be
colored; see the following figure.
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——————| |

————

2 The proof

First we color all the regions and the background on the given map by
the color 1: see Fig. 1. Then we choose a region and color it by 2: see
Fig. 2. If no region is adjacent to this region or a region surrounds it, we
can use its color (2) to color other regions; in this state we say we ignore
this region. But if a region is adjacent to it we color it by 3: see Fig. 3.

Now we can ignore these regions if no region is adjacent to any one of
them or a region surrounds both of them. If a region surrounds only one
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of them we can ignore the surrounded region and the situation is as if we
have again two adjacent regions. Thus, we recognize two states:
1. A region is adjacent to only one of these region.
2. A region is adjacent to both of these regions.

In the first state we have the general state shown in Fig. 4. (Of course
Fig. 4′ is equivalent to Fig. 4, and then we don’t discuss about it.)

We suppose that the line between the two points“a ” and“b ” is not
crossed by any border of any other region; in fact we choose the first
region adjacent to 2 and most near to the right 3 as the left 3 (Fig. 4). In
such a case we can slip the points“a ” and“b ” toward each other along
the line ab and continue to slip one of them along a part of the border of
the other region to obtain Fig. 5 in which we have changed the color of
one of the two previously 3-colored regions.

Instead of coloring Fig. 4 we can try to color mutually adjacent regions
of Fig. 5 and then use the same coloring for Fig. 4. That we suppose that
there is no cross points on ab and that brief displacement of the probable
cross points caused by the borders of other regions on the borders of 3
and 4 (without altering their order) is possible proves that each form of
coloring applicable to Fig. 5 can be used for Fig. 4 too. About how Fig. 5
is colorable we speak soon.

Now we consider the second state. There is a region, colored by 4 in
Fig. 6, which is adjacent to both of the regions 2 and 3. (Fig. 5 is of this
kind.) Now, if no region is adjacent to these regions or a region surrounds
all of these regions we can ignore them. If a region is adjacent to only
one of these regions the general state shown in Fig. 7 will be obtained.
In this figure we have chosen that region (adjacent to 3) that causes the
line cd not to be crossed by any border of any region. In this state in
a manner similar to what used in obtaining Fig. 5 from Fig. 4 we can
obtain Fig. 8 (with a similar reasoning). If we can color Fig. 8, certainly
its coloring form will be applicable to Fig. 7. Thus, we should see if Fig. 8
is colorable, and this is the next subject.

Now if a region is adjacent to only two regions of Fig. 6, then the
general state shown in Fig. 9 will be obtained in which the new region
has been colored by 2.

Now we want to see, continuing our manner, if we can change the
subject of coloring such a set into the subject of coloring a set of mutually
adjacent regions. It is possible: Let’s construct Fig. 10 from Fig. 9. We
have only extended the top region 2 over 4 reaching the under region 2,
the only condition being that all the cross points of the borders of other
probable regions along ef has been transferred to the partial border EF
(without any change in their order).

It’s evident that the coloring performed on Fig. 10 is not valid and
then we change it into Fig. 11 in which only the colors of the extended
top region and the background have been changed.
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Now we want to return to our original figure, Fig. 9. After that
eventually (following any procedure) all the regions, that are adjacent to
1 along EF, have been colored, certainly none of them will have the color
1. This says to us that when returning from Fig. 11 to Fig. 9, if after
coincidence of EF with ef we only change the color of the central region
(in Fig. 11) from 4 to 1, no problem will occur; in this state it will be
also necessary to change the color of the remaining top region from 1 to
2 which is in fact its original color (in Fig. 9). In this manner we reach
eventually to Fig. 12 which is equivalent to Fig. 9 (because in Fig. 9 we
are free to change the colors 4 and 1 to each other):

And eventually, we have no other choice to find its related set of mu-
tually adjacent regions. As it is seen, our lemma in proving the four-color
theorem for a given map is providing its related map which has the most
mutual adjacencies. Every form of coloring applicable to this related map
will be suitably applicable to the original map when tracing back. There-
fore, if we can prove the four-color theorem for a map with the most
mutual adjacencies, this theorem will have been proven for any map.

The proof of the 4CT for a map with the most mutual adjacencies:

Choose a region and color it by 1. Choose a region adjacent to it and
color it by 2. Choose a region adjacent to both of these colored regions
and color it by 3. Choose a fourth region adjacent to all of these three
regions and color it by 4. This region causes one of the regions 1, 2 and
3 to become an inside region capable of being ignored in coloring other
regions; thus we use the color of this inside region in coloring the next
region. This next region should be chosen adjacent to 4 and those two
regions out of 1, 2 and 3 which have not become inside regions. This next
region again surrounds one of the colored regions which have not become
inside regions yet, and we can continue the same procedure to color all
the regions using only 4 colors.

The general figure of a map with the most mutual adjacencies is as
shown in Fig. 13 or Fig. 14 or a combination of these.

As an example in the following we see a map with the most mutually
adjacent regions but with a lower order (because in it one region does
not follow the rules of the game, and probably this is why eventually we
will encounter two choices when coloring it directly through the above-
mentioned algorithm presented for coloring a map with the most mutual
adjacencies (without previous using of the presented lemma).)

It may be in the form as shown in Fig. 15. And its equivalent form is
as shown in Fig. 16. (As it is seen, we have incompatibility in the region
“= ”.)

In practice there is no difference between the lemma that changes Fig. 4
to Fig. 5 and the lemma that changes Fig. 7 to Fig. 8 and the lemma
that changes Fig. 9 to Fig. 10, because in the second and third ones we
do in fact the same act as done in the first one.
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As an exercise let’s color the map shown in Fig. 17 according to the
proof and using its lemma to obtain Fig. 18 and then Fig. 19. This is
now a map with the most mutual adjacencies and can be colored using the
presented algorithm to obtain for instance a = 1, d = 2, c = 3, b = 4, e = 1
and f = 4, which are applicable to the original map.

It’s evident that every change in the boundaries of a map with the
most mutual adjacencies in such a manner that creates a necessity for a
new color is simultaneous with removal of the necessity for an existent
color. Naturally (of course not probably directly but with several color
displacing depending on the complexity of the map), the color which its
necessity has been removed will be used as the new necessary color. Thus,
we can conclude intuitively that every change in the boundaries of a map
with the most mutual adjacencies causes no necessity to any fifth color.

It’s evident (or can be proven as a theorem) that every configuration
of maps can be obtained by proper changes in the boundaries of proper
maps with the most mutual adjacencies. If so, considering the conclusion
of the previous paragraph we infer that there is no map needing more
than four colors.

And we can follow a constant (but not straightforward) method for
coloring all the planar maps: we should create related map with the most
mutual adjacencies and color it by four colors and then return step by
step in each of which doing all the color displacements initially caused
due to construction of the map with the most mutual adjacencies using
the stated lemmas and we should consider all the effects of these color
displacements on all the patches of the map. (Of course this act in complex
maps is difficult but is a constant method. I think proof for its truth and
applicability is parallel with any proof for the above-mentioned theorem
(ie this fact that suitable changes in the boundaries of maps with the most
mutual adjacencies will create every wanted configuration of any map)).

As an example suppose that the entire map looks like Fig. 20. To
construct its related map with the most mutual adjacencies we apply two
transformations:
1: We extend the boundary of 2′ over 4 to reach to 2.
2: We extend the boundary of E over 2′ to reach to A.

After these transformations the related map with the most mutual
adjacencies will be as shown in Fig. 21.

Using the presented algorithm we can easily color this map with four
colors. The colors that these regions get in this manner won’t be applica-
ble to the original map unless we consider displacement of colors when we
reverse the applied transformations. If one is patient can consider these
displacements (and esp their effects on other regions) until the final col-
oring (correct for the original map) is obtained. Anyway, since reversing
each of the above transformations creates the necessity for a new color si-
multaneous with removing the necessity for an existent color, it is evident
that reversing these transformations won’t create any necessity for a new
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color but only, during the reversing, the colors of the regions will be dis-
placed suitably until the final (and in fact original) map will be obtained
(with the correct coloring with at most four colors).

Let’s see the process of reversing in this example: Let our four colors
be a, b, c and d.

Beginning from the recent map (with the most mutual adjacencies):

a b c d
—————

0 : 2 3 4 2′

E B A D
C 1

1 : 2 3 4 D
E B A
2′ C 1

2 : 2 3 A D
E B 1 4
2′ C

3 : 2 3 A D
2′ B 1 4

C E

4 : 2 3 A 4
2′ B 1 E
D C

This coloring is applicable to the map shown in Fig. 22.

And we continue:

a b c d
—————

0′ : 2 3 A 4
2′ B 1 E
D C

1′ : 2 3 A 4
2′ B 1
D C E

2′ : 2 3 A 4
2′ B 1 C
D E

3′ : 2 3 A 4
2′ B E C
D 1

And this coloring is applicable to the (original) map as shown in
Fig. 23.
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