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Abstract

It is shown that the wave equation cannot be solved for the general
spreading of the cylindrical wave using the method of separation of vari-
ables. But an equation is presented in case of its solving the above act
will have occurred. Also using this equation the above-mentioned general
spreading of the cylindrical wave for large distances is obtained which
contrary to what is believed consists of arbitrary functions.

1 Introduction

The wave equation ∂2ξ/∂t2 = v2∇2ξ is one of the most well-known equa-
tions in the classical physics. Particular solutions to this equation showing
general spreading of plane and spherical waves are obtained easily using
the method of guessing and trying (to these solutions is pointed in this
paper). But by using this method finding the particular solution to this
equation showing general spreading of a cylindrical wave has not been
possible yet (we see this matter in the paper). Therefore, for finding this
particular solution some of the physicists resort to another method named
as the separation of variables (eg see Optics by Hecht and Zajak, Addison-
Wesley, 1974, and Optics by Ajoy Ghatak, Tata McGraw Hill, 1977) and
by using this method and the result obtained from it infer that the wave
equation has been solved for the general spreading of the cylindrical wave
excepting that contrary to the cases related to the plane and spherical
waves there is no solution in terms of arbitrary functions in this case and
eg for very far distances form of the wave function is restricted to only
trigonometric functions (surprising that how a relation of wave motion
can be restricted to only some particular functions).

In this article firstly it is shown that applying the method of separation
of variables for obtaining the general spreading of the cylindrical wave
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from the wave equation is invalid, because with this act in fact only a
particular state of spreading of cylindrical waves arising from interference
of waves (producing nodes and bulges) can be obtained (of course if the
boundary and initial conditions are satisfied) not general spreading of
the cylindrical wave. Secondly, using the same method of guessing and
trying we obtain the general spreading of the cylindrical wave for far
distances from the wave equation such that includes arbitrary functions
(and therefore there won’t be necessary that in this case, contrary to other
ones, to limit suddenly the arbitrary selection of functions for the wave
function).

We implicitly get two results, one being that obtaining the general
spreading of the cylindrical wave such that satisfies the wave equation
appears to be an unsolved problem, and the other being that applying the
method of separation of variables in the case of wave equations does not
yield the general spreading of the waves but with satisfying the boundary
and initial conditions only can show a particular state of the interference
of waves providing that also in the process of solving the problem we don’t
encounter any contradictions, otherwise the problem can not be solved by
this method at all. (This matter is important in general solving of the
Schrodinger wave equation in which the method of separation of variables
is used for obtaining the general spreading of the wave.)

2 Invalidity of the separation of variables
for obtaining cylindrical wave function from
the wave equation

Consider a stretched membrane fixed along its entire boundary in the
xy-plane. The tension per unit length T and the mass per unit area
m are constant. The deflection z of the membrane, supposing that is
comparatively small, should be obtained from the following equation (see
eg Differential Equations by Simmons, McGraw-Hill, 1972 or Advanced
Engineering Mathematics by Kreyszig, John Wiley and Sons, 1979):

∂2z

∂t2
= a2(

∂2z

∂x2
+

∂2z

∂y2
) , a =

√
T/m (1)

If this membrane is a circular one of radius ρ = ρ0 and the boundary
condition is z(ρ0, θ, t) = 0 and the initial conditions are z(ρ, θ, 0) = f(ρ)
and ∂z/∂t |t=0= 0 (ie it is fixed along its boundary and in t = 0 it is
motionless and has the symmetric form of f(ρ)), then the solution of the
equation (1) using the method of separation of variables and considering
these conditions results in the following relation:

z =

∞∑
n=1

anJ0(
λn

ρ0
ρ) cos(

λn

ρ0
at) , an =

2

ρ2
0J1(λn)2

∫ ρ0

0

ρf(ρ)J0(
λn

ρ0
ρ)dρ
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Practically wherever the interference of waves and producing of standing
waves are concerned, the method of separation of variables is efficacious for
solving the wave equation. The reason of this matter can be seen cursorily
in the result of the interference of the progressive wave sink(ρ− vt) with
the retrogressive wave cosk(ρ + vt):

sink(ρ− vt) + cosk(ρ + vt) = (coskρ + sinkρ)(coskvt− sinkvt) (2)

As it is seen the variables are separated (the first parenthesis is a function
of only ρ, and the second one is a function of only t, and we have obvi-
ously node situations). But while we are not faced by the phenomenon
of interference of waves and the problem is only finding the relation of
wave motion or in other words obtaining the general spreading of wave by
proper particular solution of the wave equation, the method of separation
of variables is wrong, because it is obvious that in this method we ac-
cept the existence of node situations implicitly, and anyway the relation
of wave motion must have some arguments like ρ ± vt in order that it
can demonstrate a wave motion and this is obviously contradictory to the
separation of variables.

For clearing the above-mentioned material we try to solve the wave
equation ∂2ξ/∂t2 = v2∇2ξ for the relation of cylindrical wave motion
using the method of separation of variables and to see what the difficulty
is. Suppose that source of the wave is the z-axis. Since the wave function
ξ is independent of φ and z, the wave equation takes the form of

∂2ξ

∂ρ2
+

1

ρ

∂ξ

∂ρ
=

1

v2

∂2ξ

∂t2
. (3)

Suppose that the general solution of this equation is
ξ(ρ, t) =

∑
n

bnun(ρ)wn(t). Consider the general statement of this general
solution, ξn(ρ, t) = bnun(ρ)wn(t). Applying this ξn in the equation (3)
yields

d2u

dρ2

1

u
+

1

ρ

du

dρ

1

u
=

1

v2

d2w

dt2
1

w

each side of which must be equal to a unique constant. We show this
separation constant as −λ2

n (with λn > 0; it is easy to see why this
constant cannot be non-negative). Therefore, the right side is solved
as w(t) = c1 cos λnvt + c2 sin λnvt, and the left side results in Bessel’s
equation ρ2u′′(ρ) + ρu′(ρ) + λ2

nρ2u(ρ) = 0 which is solved as u(ρ) =
c′1J0(λnρ) + c′2Y0(λnρ).

Thus ξn(ρ, t) = bn(c′1J0(λnρ)+c′2Y0(λnρ))(c1 cos(λnvt)+c2 sin(λnvt))
which for very large ρ’s is reduced to

ξn(ρ, t) ≈ bn

√
2

λnπρ
(c′1 cos(λnρ−π

4
)+c′2 sin(λnρ−π

4
))(c1 cos(λnvt)+c2 sin(λnvt)).

The first parenthesis is a vibrating function of only ρ, and the second one
is a vibrating function of only t, and obviously we have node situations,
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and the obtained form of ξn is rather similar to the cursory example (2)
showing the result of interference of waves not spreading of a wave.

Maybe it is claimed hopelessly that although ξn does not show spread-
ing of any wave (and can be result of some interference of waves), sum-
mation of all the ξn’s can probably demonstrate spreading of a wave. But
with some contemplation it can be understood that a theorem which is
not true in case of the components, can not be true in case of the whole; in
other words each ξn, as a particular solution, must demonstrate a physical
independent wave. Furthermore, even if this matter is probable, for find-
ing all the constant coefficients, the initial and boundary conditions must
be applied and for application of the initial conditions we must have form
of the wave in a definite time beforehand, while our problem is just find-
ing the very form of the wave! This vicious circle in addition to all other
material presented so far decisively shows that using the method of sep-
aration of variables for obtaining the general spreading of the cylindrical
wave from the wave equation is invalid.

3 The way that the wave equation can
be solved for the cylindrical wave

Equation ∂2ξ/∂t2 = v2∇2ξ appears in physics repeatedly wherever we
know physically that the physical property ξ is being propagated with the
speed v. Therefore, it is named as wave equation. So far, the general
solution of this equation has not been obtained analytically such that
generally it would have been proven that the obtained general solution
is the same relation of wave motion causing propagation of the property
ξ. (Of course in the one-dimensional case of this equation ∂2ξ/∂t2 =
v2∂2ξ/∂x2 , the general solution ξ(x, t) = f1(x − vt) + f2(x + vt) with
arbitrary functions f1 and f2 is obtained showing clearly a wave motion
along the x-axis propagating the form of the arbitrary functions f1 and
f2 with the speed v along this axis.) But since everywhere a wave motion
is encountered this equation appears, we can be certain that the general
solution to this equation is really a wave motion relation and each wave
motion relation satisfies this equation. Therefore, eg we expect the motion
relation of a plane wave propagating along the û with the speed v, ie
ξ(r, t) = f1(û · r − vt) + f2(û · r + vt), to satisfy the wave equation. (f1

and f2 are arbitrary functions. It is clear that in a plane wave the wave
amplitude is constant.) Considering the direction cosines of the constant
unit vector û and Cartesian components of r, it can easily be seen that
this relation satisfies the wave equation.

We also expect that a spherical or cylindrical wave (or other forms of
wave eg an ellipsoid one) to satisfy the wave equation. A spherical wave
has the form of

ξ1(r, t) = g1(r, t)(f1(r − v1t) + f2(r + v1t)), (4)
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and a cylindrical wave has the form of

ξ2(r, t) = g2(ρ, t)(f3(ρ− v2t) + f4(ρ + v2t)), (5)

in which f1, f2, f3 and f4 are arbitrary functions, and g1 and g2 are
amplitude coefficients (because it is clear that with wave spreading its
amplitude decreases and probably is periodic in time in terms of the form
of the wave).

We accept the general validity of the wave equation and apply it to
the relations (4) and (5) in order that the amplitude coefficients will be
obtained; then we shall justify the form of the waves obtained with these
amplitudes physically.

If the independent variables in the spherical and cylindrical polar coor-
dinates are (r, θ, φ) and (ρ, φ, z) respectively, because of the independence
of ξ1 from θ and φ and of ξ2 from φ and z we shall have the following
equations (using the Laplacian in its proper form in each coordinates):

∂2ξ1

∂t2
= v2

1
1

r2

∂

∂r
(r2 ∂ξ1

∂r
) (6)

being the wave equation for the spherical wave ξ1, and

∂2ξ2

∂t2
= v2

2
1

ρ

∂

∂ρ
(ρ

∂ξ2

∂ρ
) (7)

being the wave equation for the cylindrical wave ξ2.

After some simple differentiations and algebraic operations, we shall
have

∂2g1

∂t2
+ v1A1

∂g1

∂t
= v2

1(
∂2g1

∂r2
+ (B1 +

2

r
)
∂g1

∂r
+

B1

r
g1) (8)

and
∂2g2

∂t2
+ v2A2

∂g2

∂t
= v2

2(
∂2g2

∂ρ2
+ (2B2 +

1

ρ
)
∂g2

∂ρ
+

B2

ρ
g2) (9)

for the spherical and cylindrical waves respectively, in which

A1 = A1(r, t) = 2(−df1/d(r − v1t) + df2/d(r + v1t))/(f1 + f2),

B1 = B1(r, t) = 2(df1/d(r − v1t) + df2/d(r + v1t))/(f1 + f2),

A2 = A2(ρ, t) = 2(−df3/d(ρ− v2t) + df4/d(ρ + v2t))/(f3 + f4)

and B2 = B2(ρ, t) = (df3/d(ρ− v2t) + df4/d(ρ + v2t))/(f3 + f4).

To obtain g1 and g2 the partial differential equations (8) and (9) must
be solved. It is obvious that these equations can not be solved by the
method of separation of variables. We shall now solve the equation (8)
easily and also solve the equation (9) for when ρ approaches infinity, but
its general solution should be found by interested physicists or mathe-
maticians.

In order to solve (8) we try a solution that is independent of time
(causing the left side of the equation to be zero) and its dependence on
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r is such that the terms including B1 cancel each other, ie some g1 that
satisfies the equation

B1
∂g1

∂r
+

B1

r
g1 = 0. (10)

Then for finding out that this solution is acceptable or not we must try it
for other terms (excluding B1) of the right side. If sum of them is zero,
g1 will be the acceptable solution of (8).

Thus, first of all we solve the equation (10). Its solution, considering
being independent of time, is:

g1 =
1

r
(11)

Trying of this solution shows that sum of all the terms of the right side and
also each term of the left side is zero. Then (11) is really the solution of (8).
Therefore, the spherical wave has the form of (1/r)(f1(r−vt)+f2(r+vt)),
and this is quite natural physically, because the conservation law of energy
necessitates that since the sphere surface is proportional to r2 causing the
proportion of the surface density of energy to 1/r2, the wave amplitude is

proportional to
√

1/r2 or 1/r.

Trying to solve the equation (9) we try the same method used for solv-
ing the equation (8). Then, we solve the equation 2B2∂g2/∂ρ + (B2/ρ)g2 = 0
and obtain the solution:

g2 =
1
√

ρ
(12)

But trying of this solution yields the expression

v2 1

4
ρ−5/2 (13)

for the right side of (9), while the left side will be zero. Then generally
(12) is not an acceptable solution to (9), but when ρ approaches infin-
ity, (13) approaches zero ie approaches being equal to the left side being
zero. Thus, for infinite ρ’s the solution of (9) is (12). In other words the
cylindrical wave, when ρ approaches infinity, has the form of

ξ =
1
√

ρ
(f1(ρ− vt) + f2(ρ + vt)), (14)

and this is also natural physically, because the conservation law of energy
necessitates that since the lateral area of the cylinder is proportional to ρ
causing the proportion of the surface density of energy to 1/ρ, the wave
amplitude is proportional to 1/

√
ρ. But, why is this physical justification

true only for very large ρ’s? Because generally all the energy produced
from the cylinder axis is not propagated through the lateral surface, but
some of it propagates through the two bases of the cylinder which this
itself does not allow the coefficient to be 1/

√
ρ exactly. (Visualize the

wavelets produced from each point of the axis which necessarily spread
through the bases.) Furthermore, it is comprehensible that the part of the
energy that passes through the bases depends also on the form (or shape)
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of the wave which this itself justifies the dependence of the amplitude
on the time which probably we shall observe after obtaining the general
solution of (9).

But when ρ increases, the bases area increases proportional to ρ2, while
the lateral area increases proportional to ρ. If we suppose that the corner
wavelets (at the circumferences of the bases) transmit the same energy
through the bases as through the lateral surface, then we conclude that
when ρ increases the surface density of the energy of the waves passing
through the bases decreases proportional to 1/ρ2, while the surface den-
sity of the energy of the same waves passing through the lateral surface
decreases proportional to 1/ρ. It is obvious that when ρ increases very
much the importance of the wave energy passing through the bases de-
creases very much in comparison with the one passing through the lateral
surface.

The other similar manner to obtain (14) as the cylindrical wave for
infinite ρ’s is trying (14) in each side of the wave equation ∂2ξ/∂t2 =
v2∇2ξ. For the left and right sides the following expressions are obtained
respectively:

∂2ξ

∂t2
= v2ρ−1/2(

d2f1

d(ρ− vt)2
+

d2f2

d(ρ + vt)2
) (15)

v2∇2ξ = v2ρ−1/2(
d2f1

d(ρ− vt)2
+

d2f2

d(ρ + vt)2
) +

v2

4
ρ−5/2(f1 + f2) (16)

It is clear that when ρ increases very much the importance of the
second term of the right side of the relation (16) decreases in comparison
with the first term, and when ρ approaches infinity we can relinquish it,
and then deduce from (15) and (16) that (14) satisfies the wave equation
for infinite ρ’s.
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