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Preface

This book belongs to a series of online books summarizing the recent state Topological Geometro-
dynamics (TGD) and its applications. TGD can be regarded as a unified theory of fundamental
interactions but is not the kind of unified theory as so called GUTs constructed by graduate stu-
dents at seventies and eighties using detailed recipes for how to reduce everything to group theory.
Nowadays this activity has been completely computerized and it probably takes only a few hours to
print out the predictions of this kind of unified theory as an article in the desired format. TGD is
something different and I am not ashamed to confess that I have devoted the last 32 years of my life
to this enterprise and am still unable to write The Rules.

I got the basic idea of Topological Geometrodynamics (TGD) during autumn 1978, perhaps it
was October. What I realized was that the representability of physical space-times as 4-dimensional
surfaces of some higher-dimensional space-time obtained by replacing the points of Minkowski space
with some very small compact internal space could resolve the conceptual difficulties of general rela-
tivity related to the definition of the notion of energy. This belief was too optimistic and only with
the advent of what I call zero energy ontology the understanding of the notion of Poincare invariance
has become satisfactory.

It soon became clear that the approach leads to a generalization of the notion of space-time with
particles being represented by space-time surfaces with finite size so that TGD could be also seen as
a generalization of the string model. Much later it became clear that this generalization is consistent
with conformal invariance only if space-time is 4-dimensional and the Minkowski space factor of
imbedding space is 4-dimensional.

It took some time to discover that also the geometrization of also gauge interactions and elementary
particle quantum numbers could be possible in this framework: it took two years to find the unique
internal space providing this geometrization involving also the realization that family replication
phenomenon for fermions has a natural topological explanation in TGD framework and that the
symmetries of the standard model symmetries are much more profound than pragmatic TOE builders
have believed them to be. If TGD is correct, main stream particle physics chose the wrong track leading
to the recent deep crisis when people decided that quarks and leptons belong to same multiplet of the
gauge group implying instability of proton.

There have been also longstanding problems.

• Gravitational energy is well-defined in cosmological models but is not conserved. Hence the
conservation of the inertial energy does not seem to be consistent with the Equivalence Princi-
ple. Furthermore, the imbeddings of Robertson-Walker cosmologies turned out to be vacuum
extremals with respect to the inertial energy. About 25 years was needed to realize that the sign
of the inertial energy can be also negative and in cosmological scales the density of inertial energy
vanishes: physically acceptable universes are creatable from vacuum. Eventually this led to the
notion of zero energy ontology which deviates dramatically from the standard ontology being
however consistent with the crossing symmetry of quantum field theories. In this framework the
quantum numbers are assigned with zero energy states located at the boundaries of so called
causal diamonds defined as intersections of future and past directed light-cones. The notion of
energy-momentum becomes length scale dependent since one has a scale hierarchy for causal
diamonds. This allows to understand the non-conservation of energy as apparent. Equivalence
Principle generalizes and has a formulation in terms of coset representations of Super-Virasoro
algebras providing also a justification for p-adic thermodynamics.

• From the beginning it was clear that the theory predicts the presence of long ranged classical
electro-weak and color gauge fields and that these fields necessarily accompany classical electro-
magnetic fields. It took about 26 years to gain the maturity to admit the obvious: these fields
are classical correlates for long range color and weak interactions assignable to dark matter.
The only possible conclusion is that TGD physics is a fractal consisting of an entire hierarchy
of fractal copies of standard model physics. Also the understanding of electro-weak massivation
and screening of weak charges has been a long standing problem, and 32 years was needed to
discover that what I call weak form of electric-magnetic duality gives a satisfactory solution of
the problem and provides also surprisingly powerful insights to the mathematical structure of
quantum TGD.
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I started the serious attempts to construct quantum TGD after my thesis around 1982. The
original optimistic hope was that path integral formalism or canonical quantization might be enough
to construct the quantum theory but the first discovery made already during first year of TGD was that
these formalisms might be useless due to the extreme non-linearity and enormous vacuum degeneracy
of the theory. This turned out to be the case.

• It took some years to discover that the only working approach is based on the generalization
of Einstein’s program. Quantum physics involves the geometrization of the infinite-dimensional
”world of classical worlds” (WCW) identified as 3-dimensional surfaces. Still few years had
to pass before I understood that general coordinate invariance leads to a more or less unique
solution of the problem and implies that space-time surfaces are analogous to Bohr orbits. Still
a coupled of years and I discovered that quantum states of the Universe can be identified as
classical spinor fields in WCW. Only quantum jump remains the genuinely quantal aspect of
quantum physics.

• During these years TGD led to a rather profound generalization of the space-time concept.
Quite general properties of the theory led to the notion of many-sheeted space-time with sheets
representing physical subsystems of various sizes. At the beginning of 90s I became dimly
aware of the importance of p-adic number fields and soon ended up with the idea that p-adic
thermodynamics for a conformally invariant system allows to understand elementary particle
massivation with amazingly few input assumptions. The attempts to understand p-adicity from
basic principles led gradually to the vision about physics as a generalized number theory as
an approach complementary to the physics as an infinite-dimensional spinor geometry of WCW
approach. One of its elements was a generalization of the number concept obtained by fusing real
numbers and various p-adic numbers along common rationals. The number theoretical trinity
involves besides p-adic number fields also quaternions and octonions and the notion of infinite
prime.

• TGD inspired theory of consciousness entered the scheme after 1995 as I started to write a book
about consciousness. Gradually it became difficult to say where physics ends and consciousness
theory begins since consciousness theory could be seen as a generalization of quantum measure-
ment theory by identifying quantum jump as a moment of consciousness and by replacing the
observer with the notion of self identified as a system which is conscious as long as it can avoid
entanglement with environment. ”Everything is conscious and consciousness can be only lost”
summarizes the basic philosophy neatly. The idea about p-adic physics as physics of cognition
and intentionality emerged also rather naturally and implies perhaps the most dramatic gener-
alization of the space-time concept in which most points of p-adic space-time sheets are infinite
in real sense and the projection to the real imbedding space consists of discrete set of points.
One of the most fascinating outcomes was the observation that the entropy based on p-adic
norm can be negative. This observation led to the vision that life can be regarded as something
in the intersection of real and p-adic worlds. Negentropic entanglement has interpretation as
a correlate for various positively colored aspects of conscious experience and means also the
possibility of strongly correlated states stable under state function reduction and different from
the conventional bound states and perhaps playing key role in the energy metabolism of living
matter.

• One of the latest threads in the evolution of ideas is only slightly more than six years old.
Learning about the paper of Laurent Nottale about the possibility to identify planetary orbits
as Bohr orbits with a gigantic value of gravitational Planck constant made once again possible to
see the obvious. Dynamical quantized Planck constant is strongly suggested by quantum classical
correspondence and the fact that space-time sheets identifiable as quantum coherence regions can
have arbitrarily large sizes. During summer 2010 several new insights about the mathematical
structure and interpretation of TGD emerged. One of these insights was the realization that
the postulated hierarchy of Planck constants might follow from the basic structure of quantum
TGD. The point is that due to the extreme non-linearity of the classical action principle the
correspondence between canonical momentum densities and time derivatives of the imbedding
space coordinates is one-to-many and the natural description of the situation is in terms of local
singular covering spaces of the imbedding space. One could speak about effective value of Planck
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constant coming as a multiple of its minimal value. The implications of the hierarchy of Planck
constants are extremely far reaching so that the significance of the reduction of this hierarchy to
the basic mathematical structure distinguishing between TGD and competing theories cannot
be under-estimated.

From the point of view of particle physics the ultimate goal is of course a practical construction
recipe for the S-matrix of the theory. I have myself regarded this dream as quite too ambitious taking
into account how far reaching re-structuring and generalization of the basic mathematical structure
of quantum physics is required. It has indeed turned out that the dream about explicit formula
is unrealistic before one has understood what happens in quantum jump. Symmetries and general
physical principles have turned out to be the proper guide line here. To give some impressions about
what is required some highlights are in order.

• With the emergence of zero energy ontology the notion of S-matrix was replaced with M-matrix
which can be interpreted as a complex square root of density matrix representable as a diagonal
and positive square root of density matrix and unitary S-matrix so that quantum theory in zero
energy ontology can be said to define a square root of thermodynamics at least formally.

• A decisive step was the strengthening of the General Coordinate Invariance to the requirement
that the formulations of the theory in terms of light-like 3-surfaces identified as 3-surfaces at
which the induced metric of space-time surfaces changes its signature and in terms of space-like
3-surfaces are equivalent. This means effective 2-dimensionality in the sense that partonic 2-
surfaces defined as intersections of these two kinds of surfaces plus 4-D tangent space data at
partonic 2-surfaces code for the physics. Quantum classical correspondence requires the coding
of the quantum numbers characterizing quantum states assigned to the partonic 2-surfaces to
the geometry of space-time surface. This is achieved by adding to the modified Dirac action a
measurement interaction term assigned with light-like 3-surfaces.

• The replacement of strings with light-like 3-surfaces equivalent to space-like 3-surfaces means
enormous generalization of the super conformal symmetries of string models. A further general-
ization of these symmetries to non-local Yangian symmetries generalizing the recently discovered
Yangian symmetry of N = 4 supersymmetric Yang-Mills theories is highly suggestive. Here the
replacement of point like particles with partonic 2-surfaces means the replacement of conformal
symmetry of Minkowski space with infinite-dimensional super-conformal algebras. Yangian sym-
metry provides also a further refinement to the notion of conserved quantum numbers allowing
to define them for bound states using non-local energy conserved currents.

• A further attractive idea is that quantum TGD reduces to almost topological quantum field
theory. This is possible if the Kähler action for the preferred extremals defining WCW Kähler
function reduces to a 3-D boundary term. This takes place if the conserved currents are so called
Beltrami fields with the defining property that the coordinates associated with flow lines extend
to single global coordinate variable. This ansatz together with the weak form of electric-magnetic
duality reduces the Kähler action to Chern-Simons term with the condition that the 3-surfaces
are extremals of Chern-Simons action subject to the constraint force defined by the weak form
of electric magnetic duality. It is the latter constraint which prevents the trivialization of the
theory to a topological quantum field theory. Also the identification of the Kähler function of
WCW as Dirac determinant finds support as well as the description of the scattering amplitudes
in terms of braids with interpretation in terms of finite measurement resolution coded to the
basic structure of the solutions of field equations.

• In standard QFT Feynman diagrams provide the description of scattering amplitudes. The
beauty of Feynman diagrams is that they realize unitarity automatically via the so called
Cutkosky rules. In contrast to Feynman’s original beliefs, Feynman diagrams and virtual parti-
cles are taken only as a convenient mathematical tool in quantum field theories. QFT approach
is however plagued by UV and IR divergences and one must keep mind open for the possibility
that a genuine progress might mean opening of the black box of the virtual particle.

In TGD framework this generalization of Feynman diagrams indeed emerges unavoidably. Light-
like 3-surfaces replace the lines of Feynman diagrams and vertices are replaced by 2-D partonic
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2-surfaces. Zero energy ontology and the interpretation of parton orbits as light-like ”wormhole
throats” suggests that virtual particle do not differ from on mass shell particles only in that
the four- and three- momenta of wormhole throats fail to be parallel. The two throats of the
wormhole defining virtual particle would contact carry on mass shell quantum numbers but
for virtual particles the four-momenta need not be parallel and can also have opposite signs of
energy. Modified Dirac equation suggests a number theoretical quantization of the masses of the
virtual particles. The kinematic constraints on the virtual momenta are extremely restrictive
and reduce the dimension of the sub-space of virtual momenta and if massless particles are
not allowed (IR cutoff provided by zero energy ontology naturally), the number of Feynman
diagrams contributing to a particular kind of scattering amplitude is finite and manifestly UV
and IR finite and satisfies unitarity constraint in terms of Cutkosky rules. What is remarkable
that fermionic propagatos are massless propagators but for on mass shell four-momenta. This
gives a connection with the twistor approach and inspires the generalization of the Yangian
symmetry to infinite-dimensional super-conformal algebras.

What I have said above is strongly biased view about the recent situation in quantum TGD and
I have left all about applications to the introductions of the books whose purpose is to provide a
bird’s eye of view about TGD as it is now. This vision is single man’s view and doomed to contain
unrealistic elements as I know from experience. My dream is that young critical readers could take
this vision seriously enough to try to demonstrate that some of its basic premises are wrong or to
develop an alternative based on these or better premises. I must be however honest and tell that 32
years of TGD is a really vast bundle of thoughts and quite a challenge for anyone who is not able to
cheat himself by taking the attitude of a blind believer or a light-hearted debunker trusting on the
power of easy rhetoric tricks.

Matti Pitkänen

Hanko,
September 15, 2010
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Chapter 1

Introduction

1.1 Basic Ideas of TGD

The basic physical picture behind TGD was formed as a fusion of two rather disparate approaches:
namely TGD is as a Poincare invariant theory of gravitation and TGD as a generalization of the
old-fashioned string model.

1.1.1 Background

T(opological) G(eometro)D(ynamics) is one of the many attempts to find a unified description of basic
interactions. The development of the basic ideas of TGD to a relatively stable form took time of about
half decade [K1]. The great challenge is to construct a mathematical theory around these physically
very attractive ideas and I have devoted the last twenty-three years for the realization of this dream
and this has resulted in seven online books about TGD and eight online books about TGD inspired
theory of consciousness and of quantum biology.

Quantum T(opological) G(eometro)D(ynamics) as a classical spinor geometry for infinite-dimensional
configuration space, p-adic numbers and quantum TGD, and TGD inspired theory of consciousness
and of quantum biology have been for last decade of the second millenium the basic three strongly
interacting threads in the tapestry of quantum TGD.

For few years ago the discussions with Tony Smith initiated a fourth thread which deserves the
name ’TGD as a generalized number theory’. The basic observation was that classical number fields
might allow a deeper formulation of quantum TGD. The work with Riemann hypothesis made time
ripe for realization that the notion of infinite primes could provide, not only a reformulation, but a
deep generalization of quantum TGD. This led to a thorough and extremely fruitful revision of the
basic views about what the final form and physical content of quantum TGD might be. Together with
the vision about the fusion of p-adic and real physics to a larger coherent structure these sub-threads
fused to the ”physics as generalized number theory” th

A further thread emerged from the realization that by quantum classical correspondence TGD
predicts an infinite hierarchy of macroscopic quantum systems with increasing sizes, that it is not at
all clear whether standard quantum mechanics can accommodate this hierarchy, and that a dynam-
ical quantized Planck constant might be necessary and certainly possible in TGD framework. The
identification of hierarchy of Planck constants whose values TGD ”predicts” in terms of dark matter
hierarchy would be natural. This also led to a solution of a long standing puzzle: what is the proper
interpretation of the predicted fractal hierarchy of long ranged classical electro-weak and color gauge
fields. Quantum classical correspondences allows only single answer: there is infinite hierarchy of p-
adically scaled up variants of standard model physics and for each of them also dark hierarchy. Thus
TGD Universe would be fractal in very abstract and deep sense.

Every updating of the books makes me frustrated as I see how badly the structure of the repre-
sentation reflects my bird’s eye of view as it is at the moment of updating. At this time I realized
that the chronology based identification of the threads is quite natural but not logical and it is much
more logical to see p-adic physics, the ideas related to classical number fields, and infinite primes
as sub-threads of a thread which might be called ”physics as a generalized number theory”. In the

1
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following I adopt this view. This reduces the number of threads to four! I am not even sure about
the number of threads! Be patient!

TGD forces the generalization of physics to a quantum theory of consciousness, and represent
TGD as a generalized number theory vision leads naturally to the emergence of p-adic physics as
physics of cognitive representations. The seven online books [K82, K62, K56, K50, K63, K71, K69]
about TGD and eight online books about TGD inspired theory of consciousness and of quantum
biology [K75, K10, K60, K9, K35, K41, K44, K68] are warmly recommended to the interested reader.

1.1.2 TGD as a Poincare invariant theory of gravitation

The first approach was born as an attempt to construct a Poincare invariant theory of gravitation.
Space-time, rather than being an abstract manifold endowed with a pseudo-Riemannian structure, is
regarded as a surface in the 8-dimensional space H = M4

×CP2, where M4 denotes Minkowski space
and CP2 = SU(3)/U(2) is the complex projective space of two complex dimensions [A137, A100,
A121, A95].

The identification of the space-time as a submanifold [A87, A135] of M4 × CP2 leads to an ex-
act Poincare invariance and solves the conceptual difficulties related to the definition of the energy-
momentum in General Relativity.

It soon however turned out that submanifold geometry, being considerably richer in structure
than the abstract manifold geometry, leads to a geometrization of all basic interactions. First, the
geometrization of the elementary particle quantum numbers is achieved. The geometry of CP2 explains
electro-weak and color quantum numbers. The different H-chiralities of H-spinors correspond to the
conserved baryon and lepton numbers. Secondly, the geometrization of the field concept results. The
projections of the CP2 spinor connection, Killing vector fields of CP2 and of H-metric to four-surface
define classical electro-weak, color gauge fields and metric in X4.

1.1.3 TGD as a generalization of the hadronic string model

The second approach was based on the generalization of the mesonic string model describing mesons
as strings with quarks attached to the ends of the string. In the 3-dimensional generalization 3-
surfaces correspond to free particles and the boundaries of the 3- surface correspond to partons in
the sense that the quantum numbers of the elementary particles reside on the boundaries. Various
boundary topologies (number of handles) correspond to various fermion families so that one obtains
an explanation for the known elementary particle quantum numbers. This approach leads also to a
natural topological description of the particle reactions as topology changes: for instance, two-particle
decay corresponds to a decay of a 3-surface to two disjoint 3-surfaces.

This decay vertex does not however correspond to a direct generalization of trouser vertex of
string models. Indeed, the important difference between TGD and string models is that the analogs
of string world sheet diagrams do not describe particle decays but the propagation of particles via
different routes. Particle reactions are described by generalized Feynman diagrams for which 3-D
light-like surface describing particle propagating join along their ends at vertices. As 4-manifolds the
space-time surfaces are therefore singular like Feynman diagrams as 1-manifolds.

1.1.4 Fusion of the two approaches via a generalization of the space-time
concept

The problem is that the two approaches to TGD seem to be mutually exclusive since the orbit of a
particle like 3-surface defines 4-dimensional surface, which differs drastically from the topologically
trivial macroscopic space-time of General Relativity. The unification of these approaches forces a
considerable generalization of the conventional space-time concept. First, the topologically trivial 3-
space of General Relativity is replaced with a ”topological condensate” containing matter as particle
like 3-surfaces ”glued” to the topologically trivial background 3-space by connected sum operation.
Secondly, the assumption about connectedness of the 3-space is given up. Besides the ”topological
condensate” there could be ”vapor phase” that is a ”gas” of particle like 3-surfaces (counterpart of
the ”baby universies” of GRT) and the nonconservation of energy in GRT corresponds to the transfer
of energy between the topological condensate and vapor phase.
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What one obtains is what I have christened as many-sheeted space-time. One particular aspect
is topological field quantization meaning that various classical fields assignable to a physical system
correspond to space-time sheets representing the classical fields to that particular system. One can
speak of the field body of a particular physical system. Field body consists of topological light rays,
and electric and magnetic flux quanta. In Maxwell’s theory system does not possess this kind of
field identity. The notion of magnetic body is one of the key players in TGD inspired theory of
consciousness and quantum biology.

This picture became more detailed with the advent of zero energy ontology (ZEO). The basic notion
of ZEO is causal diamond (CD) identified as the Cartesian product of CP2 and of the intersection
of future and past directed light-cones and having scale coming as an integer multiple of CP2 size is
fundamental. CDs form a fractal hierarchy and zero energy states decompose to products of positive
and negative energy parts assignable to the opposite boundaries of CD defining the ends of the space-
time surface. The counterpart of zero energy state in positive energy ontology is in terms of initial
and final states of a physical event, say particle reaction.

General Coordinate Invariance allows to identify the basic dynamical objects as space-like 3-
surfaces at the ends of space-time surface at boundaries of CD: this means that space-time sur-
face is analogous to Bohr orbit. An alternative identification is as light-like 3-surfaces at which the
signature of the induced metric changes from Minkowskian to Euclidian and interpreted as lines of
generalized Feynman diagrams. Also the Euclidian 4-D regions would have similar interpretation. The
requirement that the two interpretations are equivalent, leads to a strong form of General Coordinate
Invariance. The outcome is effective 2-dimensionality stating that the partonic 2-surfaces identified
as intersections of the space-like ends of space-time surface and light-like wormhole throats are the
fundamental objects. That only effective 2-dimensionality is in question is due to the effects caused by
the failure of strict determinism of Kähler action. In finite length scale resolution these effects can be
neglected below UV cutoff and above IR cutoff. One can also speak about strong form of holography.

There is a further generalization of the space-time concept inspired by p-adic physics forcing a
generalization of the number concept through the fusion of real numbers and various p-adic number
fields. Also the hierarchy of Planck constants forces a generalization of the notion of space-time.

A very concise manner to express how TGD differs from Special and General Relativities could
be following. Relativity Principle (Poincare Invariance), General Coordinate Invariance, and Equiva-
lence Principle remain true. What is new is the notion of sub-manifold geometry: this allows to realize
Poincare Invariance and geometrize gravitation simultaneously. This notion also allows a geometriza-
tion of known fundamental interactions and is an essential element of all applications of TGD ranging
from Planck length to cosmological scales. Sub-manifold geometry is also crucial in the applications
of TGD to biology and consciousness theory.

The worst objection against TGD is the observation that all classical gauge fields are expressible in
terms of four imbedding space coordinates only- essentially CP2 coordinates. The linear superposition
of classical gauge fields taking place independently for all gauge fields is lost. This would be a
catastrophe without many-sheeted space-time. Instead of gauge fields, only the effects such as gauge
forces are superposed. Particle topologically condenses to several space-time sheets simultaneously
and experiences the sum of gauge forces. This transforms the weakness to extreme economy: in a
typical unified theory the number of primary field variables is countered in hundreds if not thousands,
now it is just four.

1.2 The threads in the development of quantum TGD

The development of TGD has involved several strongly interacting threads: physics as infinite-
dimensional geometry; TGD as a generalized number theory, the hierarchy of Planck constants inter-
preted in terms of dark matter hierarchy, and TGD inspired theory of consciousness. In the following
these threads are briefly described.

1.2.1 Quantum TGD as spinor geometry of World of Classical Worlds

A turning point in the attempts to formulate a mathematical theory was reached after seven years
from the birth of TGD. The great insight was ”Do not quantize”. The basic ingredients to the new



4 Chapter 1. Introduction

approach have served as the basic philosophy for the attempt to construct Quantum TGD since then
and have been the following ones:

1. Quantum theory for extended particles is free(!), classical(!) field theory for a generalized
Schrödinger amplitude in the configuration space CH consisting of all possible 3-surfaces in
H. ”All possible” means that surfaces with arbitrary many disjoint components and with
arbitrary internal topology and also singular surfaces topologically intermediate between two
different manifold topologies are included. Particle reactions are identified as topology changes
[A116, A141, A143]. For instance, the decay of a 3-surface to two 3-surfaces corresponds to the
decay A → B + C. Classically this corresponds to a path of configuration space leading from
1-particle sector to 2-particle sector. At quantum level this corresponds to the dispersion of the
generalized Schrödinger amplitude localized to 1-particle sector to two-particle sector. All cou-
pling constants should result as predictions of the theory since no nonlinearities are introduced.

2. During years this naive and very rough vision has of course developed a lot and is not anymore
quite equivalent with the original insight. In particular, the space-time correlates of Feynman
graphs have emerged from theory as Euclidian space-time regions and the strong form of General
Coordinate Invariance has led to a rather detailed and in many respects un-expected visions.
This picture forces to give up the idea about smooth space-time surfaces and replace space-
time surface with a generalization of Feynman diagram in which vertices represent the failure of
manifold property. I have also startd introduced the word ”world of classical worlds” (WCW)
instead of rather formal ”configuration space”. I hope that ”WCW” does not induce despair in
the reader having tendency to think about the technicalities involved!

3. WCW is endowed with metric and spinor structure so that one can define various metric related
differential operators, say Dirac operator, appearing in the field equations of the theory. The
most ambitious dream is that zero energy states correspond to a complete solution basis for the
Dirac operator of WCW so that this classical free field theory would dictate M-matrices which
form orthonormal rows of what I call U-matrix. Given M-matrix in turn would decompose to a
product of a hermitian density matrix and unitary S-matrix.

M-matrix would define time-like entanglement coefficients between positive and negative energy
parts of zero energy states (all net quantum numbers vanish for them) and can be regarded as a
hermitian quare root of density matrix multiplied by a unitary S-matrix. Quantum theory would
be in well-defined sense a square root of thermodynamics. The orthogonality and hermiticity
of the complex square roots of density matrices commuting with S-matrix means that they
span infinite-dimensional Lie algebra acting as symmetries of the S-matrix. Therefore quantum
TGD would reduce to group theory in well-defined sense: its own symmetries would define the
symmetries of the theory. In fact the Lie algebra of Hermitian M-matrices extends to Kac-
Moody type algebra obtained by multiplying hermitian square roots of density matrices with
powers of the S-matrix. Also the analog of Yangian algebra involving only non-negative powers
of S-matrix is possible.

4. By quantum classical correspondence the construction of WCW spinor structure reduces to the
second quantization of the induced spinor fields at space-time surface. The basic action is so
called modified Dirac action in which gamma matrices are replaced with the modified gamma
matrices defined as contractions of the canonical momentum currents with the imbedding space
gamma matrices. In this manner one achieves super-conformal symmetry and conservation of
fermionic currents among other things and consistent Dirac equation. This modified gamma
matrices define as anticommutators effective metric, which might provide geometrization for
some basic observables of condensed matter physics. The conjecture is that Dirac determinant
for the modified Dirac action gives the exponent of Kähler action for a preferred extremal
as vacuum functional so that one might talk about bosonic emergence in accordance with the
prediction that the gauge bosons and graviton are expressible in terms of bound states of fermion
and antifermion.

The evolution of these basic ideas has been rather slow but has gradually led to a rather beautiful
vision. One of the key problems has been the definition of Kähler function. Kähler function is Kähler
action for a preferred extremal assignable to a given 3-surface but what this preferred extremal is?
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The obvious first guess was as absolute minimum of Kähler action but could not be proven to be right
or wrong. One big step in the progress was boosted by the idea that TGD should reduce to almost
topological QFT in which braids wold replace 3-surfaces in finite measurement resolution, which could
be inherent property of the theory itself and imply discretization at partonic 2-surfaces with discrete
points carrying fermion number.

1. TGD as almost topological QFT vision suggests that Kähler action for preferred extremals
reduces to Chern-Simons term assigned with space-like 3-surfaces at the ends of space-time
(recall the notion of causal diamond (CD)) and with the light-like 3-surfaces at which the
signature of the induced metric changes from Minkowskian to Euclidian. Minkowskian and
Euclidian regions would give at wormhole throats the same contribution apart from coefficients
and in Minkowskian regions the

√
g4 factor would be imaginary so that one would obtain sum of

real term identifiable as Kähler function and imaginary term identifiable as the ordinary action
giving rise to interference effects and stationary phase approximation central in both classical
and quantum field theory. Imaginary contribution - the presence of which I realized only after
33 years of TGD - could also havetopological interpretation as a Morse function. On physical
side the emergence of Euclidian space-time regions is something completely new and leads to a
dramatic modification of the ideas about black hole interior.

2. The manner to achieve the reduction to Chern-Simons terms is simple. The vanishing of Coulom-
bic contribution to Kähler action is required and is true for all known extremals if one makes a
general ansatz about the form of classical conserved currents. The so called weak form of electric-
magnetic duality defines a boundary condition reducing the resulting 3-D terms to Chern-Simons
terms. In this manner almost topological QFT results. But only ”almost” since the Lagrange
multiplier term forcing electric-magnetic duality implies that Chern-Simons action for preferred
extremals depends on metric.

3. A further quite recent hypothesis inspired by effective 2-dimensionality is that Chern-Simons
terms reduce to a sum of two 2-dimensional terms. An imaginary term proportional to the total
area of Minkowskian string world sheets and a real tem proportional to the total area of partonic
2-surfaces or equivalently strings world sheets in Euclidian space-time regions. Also the equality
of the total areas of strings world sheets and partonic 2-surfaces is highly suggestive and would
realize a duality between these two kinds of objects. String world sheets indeed emerge naturally
for the proposed ansatz defining preferred extremals. Therefore Kähler action would have very
stringy character apart from effects due to the failure of the strict determinism meaning that
radiative corrections break the effective 2-dimensionality.

1.2.2 TGD as a generalized number theory

Quantum T(opological)D(ynamics) as a classical spinor geometry for infinite-dimensional configu-
ration space, p-adic numbers and quantum TGD, and TGD inspired theory of consciousness, have
been for last ten years the basic three strongly interacting threads in the tapestry of quantum TGD.
The fourth thread deserves the name ’TGD as a generalized number theory’. It involves three sep-
arate threads: the fusion of real and various p-adic physics to a single coherent whole by requiring
number theoretic universality discussed already, the formulation of quantum TGD in terms of hyper-
counterparts of classical number fields identified as sub-spaces of complexified classical number fields
with Minkowskian signature of the metric defined by the complexified inner product, and the notion
of infinite prime.

p-Adic TGD and fusion of real and p-adic physics to single coherent whole

The p-adic thread emerged for roughly ten years ago as a dim hunch that p-adic numbers might be
important for TGD. Experimentation with p-adic numbers led to the notion of canonical identification
mapping reals to p-adics and vice versa. The breakthrough came with the successful p-adic mass
calculations using p-adic thermodynamics for Super-Virasoro representations with the super-Kac-
Moody algebra associated with a Lie-group containing standard model gauge group. Although the
details of the calculations have varied from year to year, it was clear that p-adic physics reduces not
only the ratio of proton and Planck mass, the great mystery number of physics, but all elementary
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particle mass scales, to number theory if one assumes that primes near prime powers of two are in a
physically favored position. Why this is the case, became one of the key puzzless and led to a number
of arguments with a common gist: evolution is present already at the elementary particle level and
the primes allowed by the p-adic length scale hypothesis are the fittest ones.

It became very soon clear that p-adic topology is not something emerging in Planck length scale
as often believed, but that there is an infinite hierarchy of p-adic physics characterized by p-adic
length scales varying to even cosmological length scales. The idea about the connection of p-adics
with cognition motivated already the first attempts to understand the role of the p-adics and inspired
’Universe as Computer’ vision but time was not ripe to develop this idea to anything concrete (p-adic
numbers are however in a central role in TGD inspired theory of consciousness). It became however
obvious that the p-adic length scale hierarchy somehow corresponds to a hierarchy of intelligences and
that p-adic prime serves as a kind of intelligence quotient. Ironically, the almost obvious idea about
p-adic regions as cognitive regions of space-time providing cognitive representations for real regions
had to wait for almost a decade for the access into my consciousness.

There were many interpretational and technical questions crying for a definite answer.

1. What is the relationship of p-adic non-determinism to the classical non-determinism of the
basic field equations of TGD? Are the p-adic space-time region genuinely p-adic or does p-adic
topology only serve as an effective topology? If p-adic physics is direct image of real physics,
how the mapping relating them is constructed so that it respects various symmetries? Is the
basic physics p-adic or real (also real TGD seems to be free of divergences) or both? If it is both,
how should one glue the physics in different number field together to get The Physics? Should
one perform p-adicization also at the level of the configuration space of 3-surfaces? Certainly
the p-adicization at the level of super-conformal representation is necessary for the p-adic mass
calculations.

2. Perhaps the most basic and most irritating technical problem was how to precisely define p-adic
definite integral which is a crucial element of any variational principle based formulation of the
field equations. Here the frustration was not due to the lack of solution but due to the too large
number of solutions to the problem, a clear symptom for the sad fact that clever inventions
rather than real discoveries might be in question. Quite recently I however learned that the
problem of making sense about p-adic integration has been for decades central problem in the
frontier of mathematics and a lot of profound work has been done along same intuitive lines
as I have proceeded in TGD framework. The basic idea is certainly the notion of algebraic
continuation from the world of rationals belonging to the intersection of real world and various
p-adic worlds.

Despite these frustrating uncertainties, the number of the applications of the poorly defined p-adic
physics growed steadily and the applications turned out to be relatively stable so that it was clear
that the solution to these problems must exist. It became only gradually clear that the solution of
the problems might require going down to a deeper level than that represented by reals and p-adics.

The key challenge is to fuse various p-adic physics and real physics to single larger structures.
This has inspired a proposal for a generalization of the notion of number field by fusing real numbers
and various p-adic number fields and their extensions along rationals and possible common algebraic
numbers. This leads to a generalization of the notions of imbedding space and space-time concept and
one can speak about real and p-adic space-time sheets. The quantum dynamics should be such that
it allows quantum transitions transforming space-time sheets belonging to different number fields to
each other. The space-time sheets in the intersection of real and p-adic worlds are of special interest
and the hypothesis is that living matter resides in this intersection. This leads to surprisingly detailed
predictions and far reaching conjectures. For instance, the number theoretic generalization of entropy
concept allows negentropic entanglement central for the applications to living matter.

The basic principle is number theoretic universality stating roughly that the physics in various
number fields can be obtained as completion of rational number based physics to various number
fields. Rational number based physics would in turn describe physics in finite measurement resolution
and cognitive resolution. The notion of finite measurement resolution has become one of the basic
principles of quantum TGD and leads to the notions of braids as representatives of 3-surfaces and
inclusions of hyper-finite factors as a representation for finite measurement resolution.
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The role of classical number fields

The vision about the physical role of the classical number fields relies on the notion of number theoretic
compactifiction stating that space-time surfaces can be regarded as surfaces of either M8 or M4×CP2.
As surfaces of M8 identifiable as space of hyper-octonions they are hyper-quaternionic or co-hyper-
quaternionic- and thus maximally associative or co-associative. This means that their tangent space
is either hyper-quaternionic plane of M8 or an orthogonal complement of such a plane. These surface
can be mapped in natural manner to surfaces in M4×CP2 [K74] provided one can assign to each point
of tangent space a hyper-complex plane M2(x) ⊂M4. One can also speak about M8 −H duality.

This vision has very strong predictive power. It predicts that the extremals of Kähler action
correspond to either hyper-quaternionic or co-hyper-quaternionic surfaces such that one can assign
to tangent space at each point of space-time surface a hyper-complex plane M2(x) ⊂ M4. As a
consequence, the M4 projection of space-time surface at each point contains M2(x) and its orthogonal
complement. These distributions are integrable implying that space-time surface allows dual slicings
defined by string world sheets Y 2 and partonic 2-surfaces X2. The existence of this kind of slicing
was earlier deduced from the study of extremals of Kähler action and christened as Hamilton-Jacobi
structure. The physical interpretation of M2(x) is as the space of non-physical polarizations and the
plane of local 4-momentum.

One can fairly say, that number theoretical compactification is responsible for most of the under-
standing of quantum TGD that has emerged during last years. This includes the realization of Equiv-
alence Principle at space-time level, dual formulations of TGD as Minkowskian and Euclidian string
model type theories, the precise identification of preferred extremals of Kähler action as extremals
for which second variation vanishes (at least for deformations representing dynamical symmetries)
and thus providing space-time correlate for quantum criticality, the notion of number theoretic braid
implied by the basic dynamics of Kähler action and crucial for precise construction of quantum TGD
as almost-topological QFT, the construction of configuration space metric and spinor structure in
terms of second quantized induced spinor fields with modified Dirac action defined by Kähler action
realizing automatically the notion of finite measurement resolution and a connection with inclusions
of hyper-finite factors of type II1 about which Clifford algebra of configuration space represents an
example.

The two most important number theoretic conjectures relate to the preferred extremals of Kähler
action. The general idea is that classical dynamics for the preferred extremals of Kähler action should
reduce to number theory: space-time surfaces should be either associative or co-associative in some
sense.

1. The first meaning for associativity (co-associativity) would be that tangent (normal) spaces of
space-time surfaces are quaternionic in some sense and thus associative. This can be formu-
lated in terms of octonionic representation of the imbedding space gamma matrices possible in
dimension D = 8 and states that induced gamma matrices generate quaternionic sub-algebra at
each space-time point. It seems that induced rather than modified gamma matrices must be in
question.

2. Second meaning for associative (co-associativity) would be following. In the case of complex
numbers the vanishing of the real part of real-analytic function defines a 1-D curve. In oct-
nionic case one can decompose octonion to sum of quaternion and quaternion multiplied by an
octonionic imaginary unit. Quaternionicity could mean that space-time surfaces correspond to
the vanishing of the imaginary part of the octonion real-analytic function. Co-quaternionicity
would be defined in an obvious manner. Octonionic real analytic functions form a function field
closed also with respect to the composition of functions. Space-time surfaces would form the
analog of function field with the composition of functions with all operations realized as algebraic
operations for space-time surfaces. Co-associaty could be perhaps seen as an additional feature
making the algebra in question also co-algebra.

3. The third conjecture is that these conjectures are equivalent.

Infinite primes

The discovery of the hierarchy of infinite primes and their correspondence with a hierarchy defined by a
repeatedly second quantized arithmetic quantum field theory gave a further boost for the speculations
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about TGD as a generalized number theory. The work with Riemann hypothesis led to further ideas.

After the realization that infinite primes can be mapped to polynomials representable as surfaces
geometrically, it was clear how TGD might be formulated as a generalized number theory with infinite
primes forming the bridge between classical and quantum such that real numbers, p-adic numbers, and
various generalizations of p-adics emerge dynamically from algebraic physics as various completions of
the algebraic extensions of rational (hyper-)quaternions and (hyper-)octonions. Complete algebraic,
topological and dimensional democracy would characterize the theory.

What is especially satisfying is that p-adic and real regions of the space-time surface could emerge
automatically as solutions of the field equations. In the space-time regions where the solutions of
field equations give rise to in-admissible complex values of the imbedding space coordinates, p-adic
solution can exist for some values of the p-adic prime. The characteristic non-determinism of the p-
adic differential equations suggests strongly that p-adic regions correspond to ’mind stuff’, the regions
of space-time where cognitive representations reside. This interpretation implies that p-adic physics
is physics of cognition. Since Nature is probably an extremely brilliant simulator of Nature, the
natural idea is to study the p-adic physics of the cognitive representations to derive information about
the real physics. This view encouraged by TGD inspired theory of consciousness clarifies difficult
interpretational issues and provides a clear interpretation for the predictions of p-adic physics.

1.2.3 Hierarchy of Planck constants and dark matter hierarchy

By quantum classical correspondence space-time sheets can be identified as quantum coherence regions.
Hence the fact that they have all possible size scales more or less unavoidably implies that Planck
constant must be quantized and have arbitrarily large values. If one accepts this then also the idea
about dark matter as a macroscopic quantum phase characterized by an arbitrarily large value of
Planck constant emerges naturally as does also the interpretation for the long ranged classical electro-
weak and color fields predicted by TGD. Rather seldom the evolution of ideas follows simple linear
logic, and this was the case also now. In any case, this vision represents the fifth, relatively new thread
in the evolution of TGD and the ideas involved are still evolving.

Dark matter as large ~ phase

D. Da Rocha and Laurent Nottale [E10] have proposed that Schrödinger equation with Planck constant
~ replaced with what might be called gravitational Planck constant ~gr = GmM

v0
(~ = c = 1). v0 is

a velocity parameter having the value v0 = 144.7± .7 km/s giving v0/c = 4.6× 10−4. This is rather
near to the peak orbital velocity of stars in galactic halos. Also subharmonics and harmonics of v0

seem to appear. The support for the hypothesis coming from empirical data is impressive.

Nottale and Da Rocha believe that their Schrödinger equation results from a fractal hydrodynamics.
Many-sheeted space-time however suggests astrophysical systems are not only quantum systems at
larger space-time sheets but correspond to a gigantic value of gravitational Planck constant. The
gravitational (ordinary) Schrödinger equation would provide a solution of the black hole collapse (IR
catastrophe) problem encountered at the classical level. The resolution of the problem inspired by
TGD inspired theory of living matter is that it is the dark matter at larger space-time sheets which
is quantum coherent in the required time scale [K66] .

TGD predicts correctly the value of the parameter v0 assuming that cosmic strings and their decay
remnants are responsible for the dark matter. The harmonics of v0 can be understood as corresponding
to perturbations replacing cosmic strings with their n-branched coverings so that tension becomes
n2-fold: much like the replacement of a closed orbit with an orbit closing only after n turns. 1/n-
sub-harmonic would result when a magnetic flux tube split into n disjoint magnetic flux tubes. Also
a model for the formation of planetary system as a condensation of ordinary matter around quantum
coherent dark matter emerges [K66] .

The values of Planck constants postulated by Nottale are gigantic and it is natural to assign them
to the space-time sheets mediating gravitational interaction and identifiable as magnetic flux tubes
(quanta). The magnetic energy of these flux quanta would correspond to dark energy and magnetic
tension would give rise to negative ”pressure” forcing accelerate cosmological expansion. This leads
to a rather detailed vision about the evolution of stars and galaxies identified as bubbles of ordinary
and dark matter inside magnetic flux tubes identifiable as dark energy.
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Hierarchy of Planck constants from the anomalies of neuroscience biology

The quantal effects of ELF em fields on vertebrate brain have been known since seventies. ELF em
fields at frequencies identifiable as cyclotron frequencies in magnetic field whose intensity is about 2/5
times that of Earth for biologically important ions have physiological effects and affect also behavior.
What is intriguing that the effects are found only in vertebrates (to my best knowledge). The energies
for the photons of ELF em fields are extremely low - about 10−10 times lower than thermal energy
at physiological temperatures- so that quantal effects are impossible in the framework of standard
quantum theory. The values of Planck constant would be in these situations large but not gigantic.

This inspired the hypothesis that these photons correspond to so large value of Planck constant
that the energy of photons is above the thermal energy. The proposed interpretation was as dark
photons and the general hypothesis was that dark matter corresponds to ordinary matter with non-
standard value of Planck constant. If only particles with the same value of Planck constant can appear
in the same vertex of Feynman diagram, the phases with different value of Planck constant are dark
relative to each other. The phase transitions changing Planck constant can however make possible
interactions between phases with different Planck constant but these interactions do not manifest
themselves in particle physics. Also the interactions mediated by classical fields should be possible.
Dark matter would not be so dark as we have used to believe.

Also the anomalies of biology support the view that dark matter might be a key player in living
matter.

Does the hierarchy of Planck constants reduce to the vacuum degeneracy of Kähler
action?

This starting point led gradually to the recent picture in which the hierarchy of Planck constants
is postulated to come as integer multiples of the standard value of Planck constant. Given integer
multiple ~ = n~0 of the ordinary Planck constant ~0 is assigned with a multiple singular covering
of the imbedding space [K27]. One ends up to an identification of dark matter as phases with non-
standard value of Planck constant having geometric interpretation in terms of these coverings providing
generalized imbedding space with a book like structure with pages labelled by Planck constants or
integers characterizing Planck constant. The phase transitions changing the value of Planck constant
would correspond to leakage between different sectors of the extended imbedding space. The question
is whether these coverings must be postulated separately or whether they are only a convenient
auxiliary tool.

The simplest option is that the hierarchy of coverings of imbedding space is only effective. Many-
sheeted coverings of the imbedding space indeed emerge naturally in TGD framework. The huge
vacuum degeneracy of Kähler action implies that the relationship between gradients of the imbedding
space coordinates and canonical momentum currents is many-to-one: this was the very fact forcing to
give up all the standard quantization recipes and leading to the idea about physics as geometry of the
”world of classical worlds”. If one allows space-time surfaces for which all sheets corresponding to the
same values of the canonical momentum currents are present, one obtains effectively many-sheeted
covering of the imbedding space and the contributions from sheets to the Kähler action are identical.
If all sheets are treated effectively as one and the same sheet, the value of Planck constant is an integer
multiple of the ordinary one. A natural boundary condition would be that at the ends of space-time
at future and past boundaries of causal diamond containing the space-time surface, various branches
co-incide. This would raise the ends of space-time surface in special physical role.

Dark matter as a source of long ranged weak and color fields

Long ranged classical electro-weak and color gauge fields are unavoidable in TGD framework. The
smallness of the parity breaking effects in hadronic, nuclear, and atomic length scales does not however
seem to allow long ranged electro-weak gauge fields. The problem disappears if long range classical
electro-weak gauge fields are identified as space-time correlates for massless gauge fields created by
dark matter. Also scaled up variants of ordinary electro-weak particle spectra are possible. The
identification explains chiral selection in living matter and unbroken U(2)ew invariance and free color
in bio length scales become characteristics of living matter and of bio-chemistry and bio-nuclear
physics. A possible solution of the matter antimatter asymmetry is based on the identification of also
antimatter as dark matter.
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1.2.4 TGD as a generalization of physics to a theory consciousness

General coordinate invariance forces the identification of quantum jump as quantum jump between
entire deterministic quantum histories rather than time=constant snapshots of single history. The
new view about quantum jump forces a generalization of quantum measurement theory such that
observer becomes part of the physical system. Thus a general theory of consciousness is unavoidable
outcome. This theory is developed in detail in the books [K75, K10, K60, K9, K35, K41, K44, K68] .

Quantum jump as a moment of consciousness

The identification of quantum jump between deterministic quantum histories (configuration space
spinor fields) as a moment of consciousness defines microscopic theory of consciousness. Quantum
jump involves the steps

Ψi → UΨi → Ψf ,

where U is informational ”time development” operator, which is unitary like the S-matrix charac-
terizing the unitary time evolution of quantum mechanics. U is however only formally analogous to
Schrödinger time evolution of infinite duration although there is no real time evolution involved. It is
not however clear whether one should regard U-matrix and S-matrix as two different things or not: U -
matrix is a completely universal object characterizing the dynamics of evolution by self-organization
whereas S-matrix is a highly context dependent concept in wave mechanics and in quantum field
theories where it at least formally represents unitary time translation operator at the limit of an in-
finitely long interaction time. The S-matrix understood in the spirit of superstring models is however
something very different and could correspond to U-matrix.

The requirement that quantum jump corresponds to a measurement in the sense of quantum field
theories implies that each quantum jump involves localization in zero modes which parameterize also
the possible choices of the quantization axes. Thus the selection of the quantization axes performed
by the Cartesian outsider becomes now a part of quantum theory. Together these requirements imply
that the final states of quantum jump correspond to quantum superpositions of space-time surfaces
which are macroscopically equivalent. Hence the world of conscious experience looks classical. At
least formally quantum jump can be interpreted also as a quantum computation in which matrix U
represents unitary quantum computation which is however not identifiable as unitary translation in
time direction and cannot be ’engineered’.

Can one say anything about the unitary process? Zero energy states correspond in positive energy
ontology to physical events and break time reversal invariance. This because either the positive
or negative energy part of the state is prepared whereas the second end of CD corresponds to a
superposition of (negative/positive energy) states with varying particle numbers and single particle
quantum numbers just as in ordinary particle physics experiment. State function reduction must
change the roles of the ends of CDs. Therefore U -matrix should correspond to the unitary matrix
relating zero energy state basis prepared at different ends of CD and state function reduction would
be equivalent with state preparation.

The basic objection is that the arrow of geometric time alternates at imbedding space level but
we know that arrow of time is universal. What one can say about the arrow of time at space-time
level? Quantum classical correspondence requires that quantum mechanical irreversibility corresponds
to irreversibility at space-time level. If the observer is analogous to an inhabitant of Flatland gaining
information only about space-time surface, he or she is not able to discover that the arrow of time
alternates at the level of imbedding space. The inhabitant of a folded bath towel is not able to
observer the folding of the towel! Only by observing systems for which the imbedding space arrow of
time is opposite, observer can discover the alternation. Living systems indeed behave as if they would
contain space-time sheets with opposite arrow of geometric time (self-organization). Phase conjugate
light beam is second example of this.

The notion of self

The concept of self is absolutely essential for the understanding of the macroscopic and macro-temporal
aspects of consciousness. Self corresponds to a subsystem able to remain un-entangled under the
sequential informational ’time evolutions’ U . Exactly vanishing entanglement is practically impossible
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in ordinary quantum mechanics and it might be that ’vanishing entanglement’ in the condition for
self-property should be replaced with ’subcritical entanglement’. On the other hand, if space-time
decomposes into p-adic and real regions, and if entanglement between regions representing physics in
different number fields vanishes, space-time indeed decomposes into selves in a natural manner.

It is assumed that the experiences of the self after the last ’wake-up’ sum up to single average
experience. This means that subjective memory is identifiable as conscious, immediate short term
memory. Selves form an infinite hierarchy with the entire Universe at the top. Self can be also
interpreted as mental images: our mental images are selves having mental images and also we represent
mental images of a higher level self. A natural hypothesis is that self S experiences the experiences
of its subselves as kind of abstracted experience: the experiences of subselves Si are not experienced
as such but represent kind of averages 〈Sij〉 of sub-subselves Sij . Entanglement between selves, most
naturally realized by the formation of join along boundaries bonds between cognitive or material space-
time sheets, provides a possible a mechanism for the fusion of selves to larger selves (for instance, the
fusion of the mental images representing separate right and left visual fields to single visual field) and
forms wholes from parts at the level of mental images.

An attractive possibility suggested by zero energy ontology is that the notions of self and quantum
jump reduce to each other and that a fractal hierarchy of quantum jumps within quantum jumps
is enough. CDs would serve as imbedding space correlates of selves and quantum jumps would be
followed by cascades of state function reductions beginning from given CD and proceeding downwards
to the smaller scales (smaller CDs). State function reduction cascades could also take place in parallel
branches of the quantum state. One ends up with concrete ideas about how the arrow of geometric
time is induced from that of subjective time defined by the experiences induced by the sequences
of quantum jumps for sub-selves of self. One ends also ends up with concrete ideas about how the
localization of the contents of sensory experience and cognition to the upper boundaries of CD could
take place.

Relationship to quantum measurement theory

The third basic element relates TGD inspired theory of consciousness to quantum measurement theory.
The assumption that localization occurs in zero modes in each quantum jump implies that the world
of conscious experience looks classical. It also implies the state function reduction of the standard
quantum measurement theory as the following arguments demonstrate (it took incredibly long time
to realize this almost obvious fact!).

1. The standard quantum measurement theory a la von Neumann involves the interaction of brain
with the measurement apparatus. If this interaction corresponds to entanglement between mi-
croscopic degrees of freedom m with the macroscopic effectively classical degrees of freedom M
characterizing the reading of the measurement apparatus coded to brain state, then the reduc-
tion of this entanglement in quantum jump reproduces standard quantum measurement theory
provide the unitary time evolution operator U acts as flow in zero mode degrees of freedom and
correlates completely some orthonormal basis of configuration space spinor fields in non-zero
modes with the values of the zero modes. The flow property guarantees that the localization is
consistent with unitarity: it also means 1-1 mapping of quantum state basis to classical variables
(say, spin direction of the electron to its orbit in the external magnetic field).

2. Since zero modes represent classical information about the geometry of space-time surface
(shape, size, classical Kähler field,...), they have interpretation as effectively classical degrees
of freedom and are the TGD counterpart of the degrees of freedom M representing the reading
of the measurement apparatus. The entanglement between quantum fluctuating non-zero modes
and zero modes is the TGD counterpart for the m−M entanglement. Therefore the localization
in zero modes is equivalent with a quantum jump leading to a final state where the measurement
apparatus gives a definite reading.

This simple prediction is of utmost theoretical importance since the black box of the quantum
measurement theory is reduced to a fundamental quantum theory. This reduction is implied by the
replacement of the notion of a point like particle with particle as a 3-surface. Also the infinite-
dimensionality of the zero mode sector of the configuration space of 3-surfaces is absolutely essential.
Therefore the reduction is a triumph for quantum TGD and favors TGD against string models.
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Standard quantum measurement theory involves also the notion of state preparation which reduces
to the notion of self measurement. Each localization in zero modes is followed by a cascade of self
measurements leading to a product state. This process is obviously equivalent with the state prepa-
ration process. Self measurement is governed by the so called Negentropy Maximization Principle
(NMP) stating that the information content of conscious experience is maximized. In the self mea-
surement the density matrix of some subsystem of a given self localized in zero modes (after ordinary
quantum measurement) is measured. The self measurement takes place for that subsystem of self for
which the reduction of the entanglement entropy is maximal in the measurement. In p-adic context
NMP can be regarded as the variational principle defining the dynamics of cognition. In real context
self measurement could be seen as a repair mechanism allowing the system to fight against quantum
thermalization by reducing the entanglement for the subsystem for which it is largest (fill the largest
hole first in a leaking boat).

Selves self-organize

The fourth basic element is quantum theory of self-organization based on the identification of quantum
jump as the basic step of self-organization [K64] . Quantum entanglement gives rise to the generation
of long range order and the emergence of longer p-adic length scales corresponds to the emergence of
larger and larger coherent dynamical units and generation of a slaving hierarchy. Energy (and quantum
entanglement) feed implying entropy feed is a necessary prerequisite for quantum self-organization.
Zero modes represent fundamental order parameters and localization in zero modes implies that the
sequence of quantum jumps can be regarded as hopping in the zero modes so that Haken’s classical
theory of self organization applies almost as such. Spin glass analogy is a further important element:
self-organization of self leads to some characteristic pattern selected by dissipation as some valley of
the ”energy” landscape.

Dissipation can be regarded as the ultimate Darwinian selector of both memes and genes. The
mathematically ugly irreversible dissipative dynamics obtained by adding phenomenological dissipa-
tion terms to the reversible fundamental dynamical equations derivable from an action principle can be
understood as a phenomenological description replacing in a well defined sense the series of reversible
quantum histories with its envelope.

Classical non-determinism of Kähler action

The fifth basic element are the concepts of association sequence and cognitive space-time sheet. The
huge vacuum degeneracy of the Kähler action suggests strongly that the absolute minimum space-time
is not always unique. For instance, a sequence of bifurcations can occur so that a given space-time
branch can be fixed only by selecting a finite number of 3-surfaces with time like(!) separations on the
orbit of 3-surface. Quantum classical correspondence suggest an alternative formulation. Space-time
surface decomposes into maximal deterministic regions and their temporal sequences have interpre-
tation a space-time correlate for a sequence of quantum states defined by the initial (or final) states
of quantum jumps. This is consistent with the fact that the variational principle selects preferred
extremals of Kähler action as generalized Bohr orbits.

In the case that non-determinism is located to a finite time interval and is microscopic, this sequence
of 3-surfaces has interpretation as a simulation of a classical history, a geometric correlate for contents
of consciousness. When non-determinism has long lasting and macroscopic effect one can identify it as
volitional non-determinism associated with our choices. Association sequences relate closely with the
cognitive space-time sheets defined as space-time sheets having finite time duration and psychological
time can be identified as a temporal center of mass coordinate of the cognitive space-time sheet. The
gradual drift of the cognitive space-time sheets to the direction of future force by the geometry of the
future light cone explains the arrow of psychological time.

p-Adic physics as physics of cognition and intentionality

The sixth basic element adds a physical theory of cognition to this vision. TGD space-time decomposes
into regions obeying real and p-adic topologies labelled by primes p = 2, 3, 5, .... p-Adic regions obey
the same field equations as the real regions but are characterized by p-adic non-determinism since
the functions having vanishing p-adic derivative are pseudo constants which are piecewise constant
functions. Pseudo constants depend on a finite number of positive pinary digits of arguments just like
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numerical predictions of any theory always involve decimal cutoff. This means that p-adic space-time
regions are obtained by gluing together regions for which integration constants are genuine constants.
The natural interpretation of the p-adic regions is as cognitive representations of real physics. The
freedom of imagination is due to the p-adic non-determinism. p-Adic regions perform mimicry and
make possible for the Universe to form cognitive representations about itself. p-Adic physics space-
time sheets serve also as correlates for intentional action.

A more more precise formulation of this vision requires a generalization of the number concept
obtained by fusing reals and p-adic number fields along common rationals (in the case of algebraic
extensions among common algebraic numbers). This picture is discussed in [K73] . The application
this notion at the level of the imbedding space implies that imbedding space has a book like structure
with various variants of the imbedding space glued together along common rationals (algebraics). The
implication is that genuinely p-adic numbers (non-rationals) are strictly infinite as real numbers so
that most points of p-adic space-time sheets are at real infinity, outside the cosmos, and that the
projection to the real imbedding space is discrete set of rationals (algebraics). Hence cognition and
intentionality are almost completely outside the real cosmos and touch it at a discrete set of points
only.

This view implies also that purely local p-adic physics codes for the p-adic fractality characterizing
long range real physics and provides an explanation for p-adic length scale hypothesis stating that
the primes p ' 2k, k integer are especially interesting. It also explains the long range correlations
and short term chaos characterizing intentional behavior and explains why the physical realizations
of cognition are always discrete (say in the case of numerical computations). Furthermore, a concrete
quantum model for how intentions are transformed to actions emerges.

The discrete real projections of p-adic space-time sheets serve also space-time correlate for a logical
thought. It is very natural to assign to p-adic pinary digits a p-valued logic but as such this kind
of logic does not have any reasonable identification. p-Adic length scale hypothesis suggest that the
p = 2k−n pinary digits represent a Boolean logic Bk with k elementary statements (the points of the
k-element set in the set theoretic realization) with n taboos which are constrained to be identically
true.

p-Adic and dark matter hierarchies and hierarchy of moments of consciousness

Dark matter hierarchy assigned to a spectrum of Planck constant having arbitrarily large values brings
additional elements to the TGD inspired theory of consciousness.

1. Macroscopic quantum coherence can be understood since a particle with a given mass can in
principle appear as arbitrarily large scaled up copies (Compton length scales as ~). The phase
transition to this kind of phase implies that space-time sheets of particles overlap and this makes
possible macroscopic quantum coherence.

2. The space-time sheets with large Planck constant can be in thermal equilibrium with ordinary
ones without the loss of quantum coherence. For instance, the cyclotron energy scale associated
with EEG turns out to be above thermal energy at room temperature for the level of dark matter
hierarchy corresponding to magnetic flux quanta of the Earth’s magnetic field with the size scale
of Earth and a successful quantitative model for EEG results [K24] .

Dark matter hierarchy leads to detailed quantitative view about quantum biology with several
testable predictions [K24] . The general prediction is that Universe is a kind of inverted Mandel-
brot fractal for which each bird’s eye of view reveals new structures in long length and time scales
representing scaled down copies of standard physics and their dark variants. These structures would
correspond to higher levels in self hierarchy. This prediction is consistent with the belief that 75 per
cent of matter in the universe is dark.

1. Living matter and dark matter

Living matter as ordinary matter quantum controlled by the dark matter hierarchy has turned out
to be a particularly successful idea. The hypothesis has led to models for EEG predicting correctly the
band structure and even individual resonance bands and also generalizing the notion of EEG [K24]
. Also a generalization of the notion of genetic code emerges resolving the paradoxes related to the
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standard dogma [K42, K24] . A particularly fascinating implication is the possibility to identify great
leaps in evolution as phase transitions in which new higher level of dark matter emerges [K24] .

It seems safe to conclude that the dark matter hierarchy with levels labelled by the values of
Planck constants explains the macroscopic and macro-temporal quantum coherence naturally. That
this explanation is consistent with the explanation based on spin glass degeneracy is suggested by
following observations. First, the argument supporting spin glass degeneracy as an explanation of
the macro-temporal quantum coherence does not involve the value of ~ at all. Secondly, the failure
of the perturbation theory assumed to lead to the increase of Planck constant and formation of
macroscopic quantum phases could be precisely due to the emergence of a large number of new degrees
of freedom due to spin glass degeneracy. Thirdly, the phase transition increasing Planck constant has
concrete topological interpretation in terms of many-sheeted space-time consistent with the spin glass
degeneracy.

2. Dark matter hierarchy and the notion of self

The vision about dark matter hierarchy leads to a more refined view about self hierarchy and
hierarchy of moments of consciousness [K23, K24] . The larger the value of Planck constant, the
longer the subjectively experienced duration and the average geometric duration T (k) ∝ ~ of the
quantum jump.

Quantum jumps form also a hierarchy with respect to p-adic and dark hierarchies and the geometric
durations of quantum jumps scale like ~. Dark matter hierarchy suggests also a slight modification of
the notion of self. Each self involves a hierarchy of dark matter levels, and one is led to ask whether
the highest level in this hierarchy corresponds to single quantum jump rather than a sequence of
quantum jumps. The averaging of conscious experience over quantum jumps would occur only for
sub-selves at lower levels of dark matter hierarchy and these mental images would be ordered, and
single moment of consciousness would be experienced as a history of events. The quantum parallel
dissipation at the lower levels would give rise to the experience of flow of time. For instance, hadron
as a macro-temporal quantum system in the characteristic time scale of hadron is a dissipating system
at quark and gluon level corresponding to shorter p-adic time scales. One can ask whether even entire
life cycle could be regarded as a single quantum jump at the highest level so that consciousness would
not be completely lost even during deep sleep. This would allow to understand why we seem to know
directly that this biological body of mine existed yesterday.

The fact that we can remember phone numbers with 5 to 9 digits supports the view that self corre-
sponds at the highest dark matter level to single moment of consciousness. Self would experience the
average over the sequence of moments of consciousness associated with each sub-self but there would
be no averaging over the separate mental images of this kind, be their parallel or serial. These mental
images correspond to sub-selves having shorter wake-up periods than self and would be experienced as
being time ordered. Hence the digits in the phone number are experienced as separate mental images
and ordered with respect to experienced time.

3. The time span of long term memories as signature for the level of dark matter hierarchy

The basic question is what time scale can one assign to the geometric duration of quantum jump
measured naturally as the size scale of the space-time region about which quantum jump gives con-
scious information. This scale is naturally the size scale in which the non-determinism of quantum
jump is localized. During years I have made several guesses about this time scales but zero energy
ontology and the vision about fractal hierarchy of quantum jumps within quantum jumps leads to a
unique identification.

Causal diamond as an imbedding space correlate of self defines the time scale τ for the space-
time region about which the consciousness experience is about. The temporal distances between the
tips of CD as come as integer multiples of CP2 length scales and for prime multiples correspond to
what I have christened as secondary p-adic time scales. A reasonable guess is that secondary p-adic
time scales are selected during evolution and the primes near powers of two are especially favored.
For electron, which corresponds to Mersenne prime M127 = 2127 − 1 this scale corresponds to .1
seconds defining the fundamental time scale of living matter via 10 Hz biorhythm (alpha rhythm).
The unexpected prediction is that all elementary particles correspond to time scales possibly relevant
to living matter.

Dark matter hierarchy brings additional finesse. For the higher levels of dark matter hierarchy τ
is scaled up by ~/~0. One could understand evolutionary leaps as the emergence of higher levels at
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the level of individual organism making possible intentionality and memory in the time scale defined
τ .

Higher levels of dark matter hierarchy provide a neat quantitative view about self hierarchy and
its evolution. Various levels of dark matter hierarchy would naturally correspond to higher levels in
the hierarchy of consciousness and the typical duration of life cycle would give an idea about the level
in question. The level would determine also the time span of long term memories as discussed in [K24]
. The emergence of these levels must have meant evolutionary leap since long term memory is also
accompanied by ability to anticipate future in the same time scale. This picture would suggest that
the basic difference between us and our cousins is not at the level of genome as it is usually understood
but at the level of the hierarchy of magnetic bodies [K42, K24]. In fact, higher levels of dark matter
hierarchy motivate the introduction of the notions of super-genome and hyper-genome. The genomes
of entire organ can join to form super-genome expressing genes coherently. Hyper-genomes would
result from the fusion of genomes of different organisms and collective levels of consciousness would
express themselves via hyper-genome and make possible social rules and moral.

1.3 Bird’s eye of view about the topics of the book

This book is devoted to a detailed representation of what quantum TGD in its recent form. Quantum
TGD relies on two different views about physics: physics as an infinite-dimensional spinor geometry
and physics as a generalized number theory. The most important guiding principle is quantum classical
correspondence whose most profound implications follow almost trivially from the basic structure of
the classical theory forming an exact part of quantum theory. A further mathematical guideline is
the mathematics associated with hyper-finite factors of type II1 about which the spinors of the world
of classical worlds represent a canonical example.

1. Quantum classical correspondence

Quantum classical correspondence has turned out to be the most important guiding principle
concerning the interpretation of the theory.

1. Quantum classical correspondence and the properties of the simplest extremals of Kähler action
have served as the basic guideline in the attempts to understand the new physics predicted by
TGD. The most dramatic predictions follow without even considering field equations in detail
by using quantum classical correspondence and form the backbone of TGD and TGD inspired
theory of living matter in particular.

The notions of many-sheeted space-time, topological field quantization and the notion of field/magnetic
body, follow from simple topological considerations. The observation that space-time sheets can
have arbitrarily large sizes and their interpretation as quantum coherence regions forces to con-
clude that in TGD Universe macroscopic and macro-temporal quantum coherence are possible
in arbitrarily long scales.

2. Also long ranged classical color and electro-weak fields are an unavoidable prediction It however
took a considerable time to make the obvious conclusion: TGD Universe is fractal containing
fractal copies of standard model physics at various space-time sheets and labeled by the collection
of p-adic primes assignable to elementary particles and by the level of dark matter hierarchy
characterized partially by the value of Planck constant labeling the pages of the book like
structure formed by singular covering spaces of the imbedding space M4 × CP2 glued together
along a four-dimensional back. Particles at different pages are dark relative to each other
since purely local interactions defined in terms of the vertices of Feynman diagram involve only
particles at the same page.

3. The new view about energy and time finding a justification in the framework of zero energy
ontology means that the sign of the inertial energy depends on the time orientation of the space-
time sheet and that negative energy space-time sheets serve as correlates for communications to
the geometric future. This alone leads to profoundly new views about metabolism, long term
memory, and realization of intentional action.

4. The general properties of Kähler action, in particular its vacuum degeneracy and the failure of
the classical determinism in the conventional sense, have also strong implications. Space-time
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surface as a generalization of Bohr orbit provides not only a representation of quantum states
but also of sequences of quantum jumps and thus contents of consciousness. Vacuum degeneracy
implies spin glass degeneracy in 4-D sense reflecting quantum criticality which is the fundamental
characteristic of TGD Universe.

5. The detailed study of the simplest extremals of Kähler action interpreted as correlates for asymp-
totic self organization patterns provides additional insights. CP2 type extremals representing
elementary particles, cosmic strings, vacuum extremals, topological light rays (”massless ex-
tremal”, ME), flux quanta of magnetic and electric fields represent the basic extremals. Pairs of
wormhole throats identifiable as parton pairs define a completely new kind of particle carrying
only color quantum numbers in ideal case and I have proposed their interpretation as quantum
correlates for Boolean cognition. MEs and flux quanta of magnetic and electric fields are of
special importance in living matter.

Topological light rays have interpretation as space-time correlates of ”laser beams” of ordinary
or dark photons or their electro-weak and gluonic counterparts. Neutral MEs carrying em and
Z0 fields are ideal for communication purposes and charged W MEs ideal for quantum con-
trol. Magnetic flux quanta containing dark matter are identified as intentional agents quantum
controlling the behavior of the corresponding biological body parts utilizing negative energy W
MEs. Bio-system in turn is populated by electrets identifiable as electric flux quanta.

2. Physics as infinite-dimensional geometry in the ”world of classical worlds”

Physics as infinite-dimensional Kähler geometry of the ”world of classical worlds” with classical
spinor fields representing the quantum states of the universe and gamma matrix algebra geometrizing
fermionic statistics is the first vision.

The mere existence of infinite-dimensional non-flat Kähler geometry has impressive implications.
Configuration space must decompose to a union of infinite-dimensional symmetric spaces labelled
by zero modes having interpretation as classical dynamical degrees of freedom assumed in quantum
measurement theory. Infinite-dimensional symmetric space has maximal isometry group identifiable
as a generalization of Kac Moody group obtained by replacing finite-dimensional group with the group
of canonical transformations of δM4

+×CP2, where δM4
+ is the boundary of 4-dimensional future light-

cone. The infinite-dimensional Clifford algebra of configuration space gamma matrices in turn can be
expressed as direct sum of von Neumann algebras known as hyper-finite factors of type II1 having very
close connections with conformal field theories, quantum and braid groups, and topological quantum
field theories.

3. Physics as a generalized number theory

Second vision is physics as a generalized number theory. This vision forces to fuse real physics
and various p-adic physics to a single coherent whole having rational physics as their intersection and
poses extremely strong conditions on real physics.

A further aspect of this vision is the reduction of the classical dynamics of space-time sheets to
number theory with space-time sheets identified as what I have christened hyper-quaternionic sub-
manifolds of hyper-octonionic imbedding space. Field equations would state that space-time surfaces
are Kähler calibrations with Kähler action density reducing to a closed 4-form at space-time surfaces.
Hence TGD would define a generalized topological quantum field theory with conserved Noether
charges (in particular rest energy) serving as generalized topological invariants having extremum in
the set of topologically equivalent 3-surfaces.

Infinite primes, integers, and rationals define the third aspect of this vision. The construction of
infinite primes is structurally similar to a repeated second quantization of an arithmetic quantum field
theory and involves also bound states. Infinite rationals can be also represented as space-time surfaces
somewhat like finite numbers can be represented as space-time points.

4. The organization of the book

The first part of the book describes basic quantum TGD in its recent form.

1. The properties of the preferred extremals of Kähler action are crucial for the construction and
the discussion of known extremals is therefore included.
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2. General coordinate invariance and generalized super-conformal symmetries - the latter present
only for 4-dimensional space-time surfaces and for 4-D Minkowski space - define the basic sym-
metries of quantum TGD. A generalization of Equivalence Principle can be formulated as a
generalized coset construction.

3. In zero energy ontology S-matrix is replaced with M-matrix and identified as time-like entan-
glement coefficients between positive and negative energy parts of zero energy states assignable
to the past and future boundaries of 4-surfaces inside causal diamond defined as intersection
of future and past directed light-cones. M-matrix is a product of diagonal density matrix and
unitary S-matrix and there are reasons to believe that S-matrix is universal. Generalized Feyn-
man rules based on the generalization of Feynman diagrams obtained by replacing lines with
light-like 3-surfaces and vertices with 2-D surfaces at which the lines meet.

4. A category theoretical formulation of quantum TGD is considered. Finite measurement reso-
lution realized in terms of a fractal hierarchy of causal diamonds inside causal diamonds leads
to a stringy formulation of quantum TGD involving effective replacement of the 3-D light-like
surface with a collection of braid strands representing the ends of strings. A formulation in
terms of category theoretic concepts is proposed and leads to a hierarchy of algebras forming
what is known as operads.

5. Twistors emerge naturally in TGD framework and could allow the formulation of low energy
limit of the theory in the approximation that particles are massless. The replacement of massless
plane waves with states for which amplitudes are localized are light-rays is suggestive in twistor
theoretic framework. Twistors could allow also a dual representation of space-time surfaces
in terms of surfaces of X × CP2, where X is 8-D twistor space or its 6-D projective variant.
These surfaces would have dimension higher than four in non-perturbative phases meaning an
analogy with branes. In full theory a massive particles must be included but represent a problem
in approach based on standard twistors. The interpretation of massive particles in 4-D sense
as massless particles in 8-D sense would resolve the problem and requires a generalization of
twistor concept involving in essential manner the triality of vector and spinor representations of
SO(7, 1).

6. In TGD Universe bosons are in well-defined sense bound states of fermion and anti-fermion.
This leads to the notion of bosonic emergence meaning that the fundamental action is just Dirac
action coupled to gauge potentials and bosonic action emerges as part of effective action as
one functionally integrates over the spinor fields. This kind of approach predicts the evolution
of all coupling constants if one is able to fix the necessary UV cutoffs of mass and hyperbolic
angle in loop integrations. The guess for the hyperbolic cutoff motivated by the geometric view
about finite measurement resolution predicts coupling constant evolution which is consistent
with that predicted by standard model. The condition that all N-vertices defined by fermiomic
loops vanish for N > 3 when incoming particles are massless gives hopes of fixing completely
the hyperbolic cutoff from fundamental principles.

Second part of the book is devoted to hyper-finite factors and hierarchy of Planck constants.

1. Configuration space spinors indeed define a canonical example about hyper-finite factor of type
II1. The work with TGD inspired model for quantum computation led to the realization that von
Neumann algebras, in particular hyper-finite factors of type II1 could provide the mathematics
needed to develop a more explicit view about the construction of M-matrix. This has turned
out to be the case to the extent that a general master formula for M-matrix with interactions
described as a deformation of ordinary tensor product to Connes tensor products emerges.

2. The idea about hierarchy of Planck constants emerged from anomalies of biology and the strange
finding that planetary orbits could be regarded as Bohr orbits but with a gigantic value of Planck
constant. This lead to the vision that dark matter corresponds to ordinary particles but with
non-standard value of Planck constant and to a generalization of the 8-D imbedding space to a
book like structure with pages partially characterized by the value of Planck constant. Using the
intuition provided by the inclusions of hyper-finite factors of type II1 one ends up to a prediction
for the spectrum of Planck constants associated with M4 and CP2 degrees of freedom. This
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inspires the proposal that dark matter could be in quantum Hall like phase localized at light-like
3-surfaces with macroscopic size and behaving in many respects like black hole horizons.

The seven online books about TGD [K82, K62, K63, K71, K56, K50, K69] and eight online books
about TGD inspired theory of consciousness and quantum biology [K75, K10, K60, K9, K35, K41,
K44, K68] are warmly recommended for the reader willing to get overall view about what is involved.

1.4 The contents of the book

1.4.1 Part I: The recent view about field equations

Basic extremals of the Kähler action

The physical interpretation of the Kähler function and the TGD based space-time concept are the
basic themes of this book. The aim is to develop what might be called classical TGD at fundamental
level. The strategy is simple: try to guess the general physical consequences of the configuration space
geometry and of the TGD based gauge field concept and study the simplest extremals of Kähler action
and try to abstract general truths from their properties.

The fundamental underlying assumptions are the following:

1. The 4-surface associated with given 3-surface defined by Kähler function K as a preferred
extremal of the Kähler action is identifiable as a classical space-time. Number theoretically
preferred extremals would decompose to hyper-quaternionic and co-hyper-quaternionic regions.
The reduction of the classical theory to the level of the modified Dirac action implies that
the preferred extremals are critical in the sense of allowing infinite number of deformations for
which the second variation of Kähler action vanishes [?] It is not clear whether criticality and
hyper-quaternionicity are consistent with each other.

Due to the preferred extremal property classical space-time can be also regarded as a generalized
Bohr orbit so that the quantization of the various parameters associated with a typical extremal
of the Kähler action is expected to take place in general. In TGD quantum states corresponds to
quantum superpositions of these classical space-times so that this classical space-time is certainly
not some kind of effective quantum average space-time.

2. The bosonic vacuum functional of the theory is the exponent of the Kähler function ΩB =
exp(K). This assumption is the only assumption about the dynamics of the theory and is
necessitated by the requirement of divergence cancellation in perturbative approach.

3. Renormalization group invariance and spin glass analogy. The value of the Kähler coupling
strength is such that the vacuum functional exp(K) is analogous to the exponent exp(H/T )
defining the partition function of a statistical system at critical temperature. This allows Kähler
coupling strength to depend on zero modes of the configuration space metric and as already
found there is very attractive hypothesis determining completely the dependence of the Kähler
coupling strength on the zero modes based on p-adic considerations motivated by the spin glass
analogy.

4. In spin degrees of freedom the massless Dirac equation for the induced spinor fields with modified
Dirac action defines classical theory: this is in complete accordance with the proposed definition
of the configuration space spinor structure.

The geometrization of the classical gauge fields in terms of the induced gauge field concept is also
important concerning the physical interpretation. Electro-weak gauge potentials correspond to the
space-time projections of the spinor connection of CP2, gluonic gauge potentials to the projections
of the Killing vector fields of CP2 and gravitational field to the induced metric. The topics to be
discussed in this part of the book are summarized briefly in the following.

What the selection of preferred extremals of Kähler action might mean has remained a long stand-
ing problem and real progress occurred only quite recently (I am writing this towards the end of year
2003).
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1. The vanishing of Lorentz 4-force for the induced Kähler field means that the vacuum 4-currents
are in a mechanical equilibrium. Lorentz 4-force vanishes for all known solutions of field equations
which inspires the hypothesis that all preferred extremals of Kähler action satisfy the condition.
The vanishing of the Lorentz 4-force in turn implies local conservation of the ordinary energy
momentum tensor. The corresponding condition is implied by Einstein’s equations in General
Relativity. The hypothesis would mean that the solutions of field equations are what might
be called generalized Beltrami fields. The condition implies that vacuum currents can be non-
vanishing only provided the dimension DCP2 of the CP2 projection of the space-time surface is
less than four so that in the regions with DCP2 = 4, Maxwell’s vacuum equations are satisfied.

2. The hypothesis that Kähler current is proportional to a product of an arbitrary function ψ of
CP2 coordinates and of the instanton current generalizes Beltrami condition and reduces to it
when electric field vanishes. Instanton current has a vanishing divergence for DCP2

< 4, and
Lorentz 4-force indeed vanishes. Four 4-dimensional projection the scalar function multiplying
the instanton current can make it divergenceless. The remaining task would be the explicit
construction of the imbeddings of these fields and the demonstration that field equations can be
satisfied.

3. By quantum classical correspondence the non-deterministic space-time dynamics should mimic
the dissipative dynamics of the quantum jump sequence. Beltrami fields appear in physical appli-
cations as asymptotic self organization patterns for which Lorentz force and dissipation vanish.
This suggests that preferred extemals of Kähler action correspond to space-time sheets which at
least asymptotically satisfy the generalized Beltrami conditions so that one can indeed assign to
the final 3-surface a unique 4-surface apart from effects related to non-determinism. Preferred
extremal property abstracted to purely algebraic generalized Beltrami conditions makes sense
also in the p-adic context.

This chapter is mainly devoted to the study of the basic extremals of the Kähler action besides
the detailed arguments supporting the view that the preferred extrema satisfy generalized Beltrami
conditions at least asymptotically.

The newest results discussed in the last section about the weak form of electric-magnetic duality
suggest strongly that Beltrami property is general and together with the weak form of electric-magnetic
duality allows a reduction of quantum TGD to almost topological field theory with Kähler function
allowing expression as a Chern-Simons term.

The surprising implication of the duality is that Kähler form of CP2 must be replaced with that for
S2×CP2 in order to obtain a configuration space metric which is non-trivial in M4 degrees of freedom.
This modification implies much richer vacuum structure than the original Kähler action which is a
good news as far as the description of classical gravitational fields in terms of small deformations
of vacuum extremals with the four-momentum density of the topologically condensed matter given
by Einstein’s equations is considered. The breaking of Lorentz invariace from SO(3, 1) to SO(3) is
implied already by the geometry of CD but is extremely small for a given causal diamond (CD). Since
a wave function over the Lorentz boosts and translates of CD is allowed, there is no actual breaking
of Poincare invariance at the level of the basic theory. Beltrami property leads to a rather explicit
construction of the general solution of field equations based on the hydrodynamic picture implying
that single particle quantum numbers are conserved along flow lines defined by the instanton current.
The construction generalizes also to the fermionic sector.

The recent vision about preferred extremals and solutions of the modified Dirac equation

During years several approaches to what preferred extremals of Kähler action and solutions of the
modified Dirac equation could be have been proposed and the challenge is to see whether at least
some of these approaches are consistent with each other. It is good to list various approaches first.

1. For preferred extremals generalization of conformal invariance to 4-D situation is very attractive
approach and leads to concrete conditions formally similar to those encountered in string model.
The approach based on basic heuristics for massless equations, on effective 3-dimensionality, and
weak form of electric magnetic duality is also promising. An alternative approach is inspired
by number theoretical considerations and identifies space-time surfaces as associative or co-
associative sub-manifolds of octonionic imbedding space.
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2. There are also several approaches for solving the modified Dirac equation. The most promising
approach is assumes that the solutions are restricted on 2-D stringy world sheets and/or partonic
2-surfaces. This strange looking view is a rather natural consequence of number theoretic vision.
The conditions stating that electric charge is conserved for preferred extremals is an alternative
very promising approach.

In this chapter the question whether these various approaches are mutually consistent is discussed.
It indeed turns out that the approach based on the conservation of electric charge leads under rather
general assumptions to the proposal that solutions of the modified Dirac equation are localized on
2-dimensional string world sheets and/or partonic 2-surfaces. Einstein’s equations are satisfied for
the preferred extremals and this implies that the earlier proposal for the realization of Equivalence
Principle is not needed. This leads to a considerable progress in the understanding of super Virasoro
representations for super-symplectic and super-Kac-Moody algebra. In particular, the proposal is that
super-Kac-Moody currents assignable to string world sheets define duals of gauge potentials and their
generalization for gravitons: in the approximation that gauge group is Abelian - motivated by the
notion of finite measurement resolution - the exponents for the sum of KM charges would define non-
integrable phase factors. One can also identify Yangian as the algebra generated by these charges. The
approach allows also to understand the special role of the right handed neutrino in SUSY according
to TGD.

1.4.2 Part II: General Theory

Construction of Quantum Theory: Symmetries

This chapter provides a summary about the role of symmetries in the construction of quantum TGD.
The discussions are based on the general vision that quantum states of the Universe correspond to
the modes of classical spinor fields in the ”world of the classical worlds” identified as the infinite-
dimensional configuration space of light-like 3-surfaces of H = M4 × CP2 (more or less-equivalently,
the corresponding 4-surfaces defining generalized Bohr orbits). The following topics are discussed on
basis of this vision.

TGD relies heavily on geometric ideas, which have gradually generalized during the years. Sym-
metries play a key role as one might expect on basis of general definition of geometry as a structure
characterized by a given symmetry.

1. Physics as infinite-dimensional Kähler geometry

1. The basic idea is that it is possible to reduce quantum theory to configuration space geometry
and spinor structure. The geometrization of loop spaces inspires the idea that the mere exis-
tence of Riemann connection fixes configuration space Kähler geometry uniquely. Accordingly,
configuration space can be regarded as a union of infinite-dimensional symmetric spaces labeled
by zero modes labeling classical non-quantum fluctuating degrees of freedom.

The huge symmetries of the configuration space geometry deriving from the light-likeness of
3-surfaces and from the special conformal properties of the boundary of 4-D light-cone would
guarantee the maximal isometry group necessary for the symmetric space property. Quantum
criticality is the fundamental hypothesis allowing to fix the Kähler function and thus dynamics of
TGD uniquely. Quantum criticality leads to surprisingly strong predictions about the evolution
of coupling constants.

2. Configuration space spinors correspond to Fock states and anti-commutation relations for fermionic
oscillator operators correspond to anti-commutation relations for the gamma matrices of the con-
figuration space. Configuration space gamma matrices contracted with Killing vector fields give
rise to a super-symplectic algebra which together with Hamiltonians of the configuration space
forms what I have used to call super-symplectic algebra.

Super-symplectic degrees of freedom represent completely new degrees of freedom and have no
electroweak couplings. In the case of hadrons super-symplectic quanta correspond to what has
been identified as non-perturbative sector of QCD: they define TGD correlate for the degrees of
freedom assignable to hadronic strings. They are responsible for the most of the mass of hadron
and resolve spin puzzle of proton.
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3. Besides super-symplectic symmetries there are Super-Kac Moody symmetries assignable to light-
like 3-surfaces and together these algebras extend the conformal symmetries of string models
to dynamical conformal symmetries instead of mere gauge symmetries. The construction of the
representations of these symmetries is one of the main challenges of quantum TGD. Modular
invariance is one aspect of conformal symmetries and plays a key role in the understanding of
elementary particle vacuum functionals and the description of family replication phenomenon
in terms of the topology of partonic 2-surfaces.

4. Modified Dirac equation gives also rise to a hierarchy super-conformal algebras assignable to
zero modes. These algebras follow from the existence of conserved fermionic currents. The
corresponding deformations of the space-time surface correspond to vanishing second variations
of Kähler action and provide a realization of quantum criticality. This led to a breakthrough in
the understanding of the modified Dirac action via the addition of a measurement interaction
term to the action allowing to obtain among other things stringy propagator and the coding
of quantum numbers of super-conformal representations to the geometry of space-time surfaces
required by quantum classical correspondence.

2. p-adic physics and p-adic variants of basic symmetries

p-Adic mass calculations relying on p-adic length scale hypothesis led to an understanding of
elementary particle masses using only super-conformal symmetries and p-adic thermodynamics. The
need to fuse real physics and various p-adic physics to single coherent whole led to a generalization of
the notion of number obtained by gluing together reals and p-adics together along common rationals
and algebraics. The interpretation of p-adic space-time sheets is as correlates for cognition and
intentionality. p-Adic and real space-time sheets intersect along common rationals and algebraics
and the subset of these points defines what I call number theoretic braid in terms of which both
configuration space geometry and S-matrix elements should be expressible. Thus one would obtain
number theoretical discretization which involves no adhoc elements and is inherent to the physics of
TGD.

3. Hierarchy of Planck constants and dark matter hierarchy

The realization for the hierarchy of Planck constants proposed as a solution to the dark matter
puzzles leads to a profound generalization of quantum TGD through a generalization of the notion of
imbedding space to characterize quantum criticality. The resulting space has a book like structure with
various almost-copies of the imbedding space representing the pages of the book meeting at quantum
critical sub-manifolds. A particular page of the book can be seen as an n-fold singular covering or
factor space of CP2 or of a causal diamond (CD ) of M4 defined as an intersection of the future and
past directed light-cones. Therefore the cyclic groups Zn appear as discrete symmetry groups.

4. Number theoretical symmetries

TGD as a generalized number theory vision leads to the idea that also number theoretical sym-
metries are important for physics.

1. There are good reasons to believe that the strands of number theoretical braids can be assigned
with the roots of a polynomial with suggests the interpretation corresponding Galois groups
as purely number theoretical symmetries of quantum TGD. Galois groups are subgroups of
the permutation group S∞ of infinitely manner objects acting as the Galois group of algebraic
numbers. The group algebra of S∞ is HFF which can be mapped to the HFF defined by
configuration space spinors. This picture suggest a number theoretical gauge invariance stating
that S∞ acts as a gauge group of the theory and that global gauge transformations in its
completion correspond to the elements of finite Galois groups represented as diagonal groups of
G×G× .... of the completion of S∞.

2. HFFs inspire also an idea about how entire TGD emerges from classical number fields, actually
their complexifications. In particular, SU(3) acts as subgroup of octonion automorphisms leaving
invariant preferred imaginary unit. If space-time surfaces are hyper-quaternionic (meaning that
the octonionic counterparts of the modified gamma matrices span complex quaternionic sub-
algebra of octonions) and contain at each point a preferred plane M2 of M4, one ends up with
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M8−H duality stating that space-time surfaces can be equivalently regarded as surfaces in M8

or M4×CP2. One can actually generalize M2 to a two-dimensional Minkowskian sub-manifold
of M4. One ends up with quantum TGD by considering associative sub-algebras of the local
octonionic Clifford algebra of M8 or H. so that TGD could be seen as a generalized number
theory.

Construction of Quantum Theory: M-matrix

The construction of M -matrix has remained the key challenge of quantum TGD from the very begin-
ning when it had become clear that path integral approach and canonical quantization make no sense
in TGD framework. My intuitive feeling that the problems are not merely technical has turned out
to be correct.

The rapid evolution of a bundle of new ideas has taken place during last five years (zero energy
ontology, the notion of finite measurement resolution, the role of hyper-finite factors of type II1, the
hierarchy of Planck constants, the construction of configuration space geometry in terms of second
quantized induced spinor fields, number theoretic compactification,...). These ideas are now converging
to an overall view in which various approaches to quantum TGD (physics as infinite dimensional
geometry, physics as generalized number theory, physics from number theoretical universality, physics
from finite measurement resolution implying effective discretization, TGD as almost topological QFT)
neatly fuse together to single coherent overall view. Many ideas have been of course thrown away
because they have not produced anything useful.

In this chapter the overall view about the construction of the TGD counterpart of S-matrix -
M -matrix -is discussed. It is perhaps wise to summarize briefly the vision about M -matrix.

1. Zero energy ontology and interpretation of light-like 3-surfaces as generalized Feynman diagrams

1. Zero energy ontology is the cornerstone of the construction. Zero energy states have vanishing
net quantum numbers and consist of positive and negative energy parts, which can be thought of
as being localized at the boundaries of light-like 3-surface X3

l connecting the light-like boundaries
of a causal diamond CD identified as intersection of future and past directed light-cones. There
is entire hierarchy of CDs, whose scales are suggested to come as powers of 2. A more general
proposal is that prime powers of fundamental size scale are possible and would conform with the
most general form of p-adic length scale hypothesis. The hierarchy of size scales assignable to
CDs corresponds to a hierarchy of length scales and code for a hierarchy of radiative corrections
to generalized Feynman diagrams.

2. Light-like 3-surfaces are the basic dynamical objects of quantum TGD and have interpretation
as generalized Feynman diagrams having light-like 3-surfaces as lines glued together along their
ends defining vertices as 2-surfaces. By effective 2-dimensionality (holography) of light-like 3-
surfaces the interiors of light-like 3-surfaces are analogous to gauge degrees of freedom and
partially parameterized by Kac-Moody group respecting the light-likeness of 3-surfaces. This
picture differs dramatically from that of string models since light-like 3-surfaces replacing stringy
diagrams are singular as manifolds whereas 2-surfaces representing vertices are not.

2. Identification of the counterpart of S-matrix as time-like entanglement coefficients

1. The TGD counterpart of S-matrix -call it M -matrix- defines time-like entanglement coefficients
between positive and negative energy parts of zero energy state located at the light-like bound-
aries of CD. One can also assign to quantum jump between zero energy states a matrix- call it
U -matrix - which is unitary and assumed to be expressible in terms of M -matrices. M -matrix
need not be unitary unlike the U -matrix characterizing the unitary process forming part of quan-
tum jump. There are several good arguments suggesting that that M -matrix cannot be unitary
but can be regarded as thermal S-matrix so that thermodynamics would become an essential
part of quantum theory. In fact, M -matrix can be decomposed to a product of positive diagonal
matrix identifiable as square root of density matrix and unitary matrix so that quantum theory
would be kind of square root of thermodynamics. Path integral formalism is given up although
functional integral over the 3-surfaces is present.
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2. In the general case only thermal M -matrix defines a normalizable zero energy state so that
thermodynamics becomes part of quantum theory. One can assign to M -matrix a complex
parameter whose real part has interpretation as interaction time and imaginary part as the
inverse temperature.

3. Hyper-finite factors and M-matrix

HFFs of type III1 provide a general vision about M-matrix.

1. The factors of type III allow unique modular automorphism ∆it (fixed apart from unitary inner
automorphism). This raises the question whether the modular automorphism could be used to
define the M-matrix of quantum TGD. This is not the case as is obvious already from the fact
that unitary time evolution is not a sensible concept in zero energy ontology.

2. Concerning the identification of M-matrix the notion of state as it is used in theory of factors is a
more appropriate starting point than the notion modular automorphism but as a generalization
of thermodynamical state is certainly not enough for the purposes of quantum TGD and quantum
field theories (algebraic quantum field theorists might disagree!). Zero energy ontology requires
that the notion of thermodynamical state should be replaced with its ”complex square root”
abstracting the idea about M-matrix as a product of positive square root of a diagonal density
matrix and a unitary S-matrix. This generalization of thermodynamical state -if it exists- would
provide a firm mathematical basis for the notion of M-matrix and for the fuzzy notion of path
integral.

3. The existence of the modular automorphisms relies on Tomita-Takesaki theorem, which assumes
that the Hilbert space in which HFF acts allows cyclic and separable vector serving as ground
state for both HFF and its commutant. The translation to the language of physicists states that
the vacuum is a tensor product of two vacua annihilated by annihilation oscillator type algebra
elements of HFF and creation operator type algebra elements of its commutant isomorphic to it.
Note however that these algebras commute so that the two algebras are not hermitian conjugates
of each other. This kind of situation is exactly what emerges in zero energy ontology: the two
vacua can be assigned with the positive and negative energy parts of the zero energy states
entangled by M-matrix.

4. There exists infinite number of thermodynamical states related by modular automorphisms.
This must be true also for their possibly existing ”complex square roots”. Physically they
would correspond to different measurement interactions giving rise to Kähler functions of WCW
differing only by a real part of holomorphic function of complex coordinates of WCW and
arbitrary function of zero mode coordinates and giving rise to the same Kähler metric of WCW.

4. Connes tensor product as a realization of finite measurement resolution

The inclusions N ⊂ M of factors allow an attractive mathematical description of finite mea-
surement resolution in terms of Connes tensor product but do not fix M-matrix as was the original
optimistic belief.

1. In zero energy ontology N would create states experimentally indistinguishable from the origi-
nal one. Therefore N takes the role of complex numbers in non-commutative quantum theory.
The space M/N would correspond to the operators creating physical states modulo measure-
ment resolution and has typically fractal dimension given as the index of the inclusion. The
corresponding spinor spaces have an identification as quantum spaces with non-commutative
N -valued coordinates.

2. This leads to an elegant description of finite measurement resolution. Suppose that a universal
M-matrix describing the situation for an ideal measurement resolution exists as the idea about
square root of state encourages to think. Finite measurement resolution forces to replace the
probabilities defined by the M-matrix with their N ”averaged” counterparts. The ”averaging”
would be in terms of the complex square root of N -state and a direct analog of functionally or
path integral over the degrees of freedom below measurement resolution defined by (say) length
scale cutoff.
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3. One can construct also directly M-matrices satisfying the measurement resolution constraint.
The condition that N acts like complex numbers on M-matrix elements as far as N -”averaged”
probabilities are considered is satisfied if M-matrix is a tensor product of M-matrix in M(N
interpreted as finite-dimensional space with a projection operator to N . The condition that
N averaging in terms of a complex square root of N state produces this kind of M-matrix
poses a very strong constraint on M-matrix if it is assumed to be universal (apart from variants
corresponding to different measurement interactions).

5. Input from the construction of configuration space spinor structure

The construction of configuration space spinor structure in terms of second quantized induced
spinor fields is certainly the most important step made hitherto towards explicit formulas for M -
matrix elements.

1. Number theoretical compactification (M8 − H duality) states that space-time surfaces can be
equivalently regarded as 4-dimensional surfaces of either H = M4 × CP2 or of 8-D Minkowski
space M8, and consisting of hyper-quaternionic and co-hyper-quaternionic regions identified as
regions with Minkowskian and Euclidian signatures of induced metric. Duality preserves induced
metric and Kähler form. This duality poses very strong constraints on the geometry of the
preferred extremals of Kähler action implying dual slicings of the space-time surface by string
worlds sheets and partonic 2-surfaces as also by light-like 1-surfaces and light-like 3-surfaces.
These predictions are consistent what is known about the extremals of Kähler action. The
predictions of number theoretical compactification lead to dramatic progress in the construction
of configurations space spinor structure and geometry. One consequence is dimensional reduction
of space-time surface to string world sheet allowing to understand how the space-time correlate
for Equivalence Principle is realized in TGD framework (its quantum counterpart emerges from
coset construction for super-symplectic and super Kac-Moody algebras).

2. The construction of configuration space geometry and spinor structure in terms of induced
spinor fields leads to the conclusion that finite measurement resolution is an intrinsic property
of quantum states basically due to the vacuum degeneracy of Kähler action. This gives a
justification for the notion of number theoretic braid effectively replacing light-like 3-surfaces.
Hence the infinite-dimensional configuration space is replaced with a finite-dimensional space
(δM4

± × CP2)n/Sn. A possible interpretation is that the finite fermionic oscillator algebra for
given partonic 2-surface X2 represents the factor space M/N identifiable as quantum variant
of Clifford algebra. (δM4

± × CP2)n/Sn would represent its bosonic analog.

3. The isometries of the configuration space corresponds to X2 local symplectic transformations
δM4
± × CP2 depending only on the value of the invariant εµνJµν , where Jµν can correspond

to the Kähler form induced from δM4
± or CP2. This group parameterizes quantum fluctuating

degrees of freedom. Zero modes correspond to coordinates which cannot be made complex, in
particular to the values of the induced symplectic form which thus behaves as a classical field so
that configuration space allows a slicing by the classical field patterns Jµν(x) representing zero
modes.

4. By the effective 2-dimensionality of light-like 3-surfaces X3
l (holography) the interiors of light-like

3-surfaces are analogous to gauge degrees of freedom and partially parameterized by Kac-Moody
group respecting the light-likeness of 3-surfaces. Quantum classical correspondence suggests that
gauge fixing in Kac-Moody degrees of freedom takes place and implies correlation between the
quantum numbers of the physical state and X3

l . There would be no path integral over X3
l and

only functional integral defined by configuration space geometry over partonic 2-surfaces.

5. The condition that the Noether currents assignable to the modified Dirac equation are conserved
requires that space-time surfaces correspond to extremals for which second variation of Kähler
action vanishes. A milder condition is that the rank of the matrix defined by the second variation
of Kähler action is less than maximal. Preferred extremals of Kähler action can be identified as
this kind of 4-surface and the interpretation is in terms of quantum criticality.

6. Conformal symmetries and stringy diagrammatics
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The modified Dirac equation has rich super-conformal symmetries helping to achieve concrete
vision about the structure of M -matrix in terms of generalized Feynman diagrammatics

1. Both super-conformal symmetries, the slicing of space-time surface by string worlds sheets, and
the reduction of space-time sheet to string world sheet as a consequence of finite measurement
resolution suggest that the generalized Feynman diagrams have as vertices N -point functions
of a conformal field theory assignable to the partonic 2-surfaces at which the lines of Feynman
diagram meet. Finite measurement resolution means that this conformal theory is defined in
the discrete set defined by the number theoretic braid. The presence of symplectic invariants in
turn suggest a symplectic variant of conformal field theory leading to a concrete construction of
symplectic fusion rules relying in crucial manner to discretization.

2. The effective 3-dimensionality implied by the modified Dirac operator associated with Kähler ac-
tion plays crucial role in the construction of both configuration space geometry (Kähler function
is identified as Dirac determinant assignable to the modified Dirac operator) and of M -matrix.
By effective 3-dimensionality the propagators reduce to the propagators assignable the light-like
3-surfaces. This does not give stringy propagators and massive stringy excitations would not
appear at all in propagators. This does not conform with what p-adic mass calculations and
conformal symmetries suggest.

3. The solution of the problem is provided by the addition of measurement interaction term to the
modified Dirac action and assignable to wormhole throats or equivalently any light-like 3-surface
parallel to them int the slicing of space-time sheet: this condition defines additional symmetry.
Measurement interaction term implies that the preferred extremals of Kähler action depend on
quantum numbers of the states of super-conformal representations as quantum classical corre-
spondence requires. The coupling constants appearing in the measurement interaction term are
fixed by the condition that Kähler function transforms only by a real part of a holomorphic
function of complex coordinates of WCW depending also on zero modes so that Kähler met-
ric of WCW remains unchanged. This realizes also the effective 2-dimensionality of space-like
3-surfaces but only in finite regions where the slicing by light-like 3-surfaces makes sense.

7. TGD as almost topological QFT

The idea that TGD could be regarded as almost topological QFT has been very fruitful although
the hypothesis that Chern-Simons term for induced Kähler gauge potential assignable to light-like 3-
surfaces identified as regions of space-time where the Euclidian signature of induced metric assignable
to the interior or generalized Feynman diagram changes to Minkowskian one turned out to be too
strong. The reduction of configuration space and its Clifford algebra to finite dimensional structures
due to finite measurement resolution however realizes this idea but in different manner.

1. There is functional integral over the small deformations of Feynman cobordisms corresponding
to the maxima of Kähler function which is finite-dimensional if finite measurement resolution
is taken into account. Almost topological QFT property of quantum suggests the identification
of M -matrix as a functor from the category of generalized Feynman cobordisms (generalized
Feynman diagrams) to the category of operators mapping the Hilbert space of positive energy
states to that for negative energy states: these Hilbert spaces are assignable to partonic 2-
surfaces.

2. The limit at which momenta vanish is well-defined for M-matrix since the modified Dirac action
contains measurement interaction term and at this limit one indeed obtains topological QFT.

3. Almost TQFT property suggests that braiding S-matrices should have important role in the
construction. It is indeed possible to assign the with the lines of the generalized Feynman dia-
gram. The reduction of quantum TGD to topological QFT should occur at quantum criticality
with respect to the change of Planck constant since in this situation the M -matrix should not
depend at all on Planck constant. Factoring QFTs in 1+1 dimensions give examples of this kind
of theories.

8. Bosonic emergence
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The construction of QFT limit of quantum TGD based on the notion of bosonic emergence led to
the most concrete picture about M-matrix achieved hitherto.

1. An ”almost stringy” fermion propagator arises as one adds to the modified Dirac action a term
coupling the charges in a Cartan algebra of the isometry group of H = M4 ×CP2 to conserved
fermionic currents (there are several of them). Also more general observables allow this kind
of coupling and the interpretation in terms of measurement interaction. This term also realizes
quantum classical correspondence by feeding information about quantum numbers of partons
to the geometry of space-time sheet so that quantum numbers entangle with the geometry of
space-time sheet as holography requires. This measurement interaction was the last piece in the
puzzle ”What are the basic equations of quantum TGD” and unified several visions about the
physics predicted by quantum TGD. ”Almost stringy” means that the on mass shell fermions
obey stringy mass formulas dictated by super-conformal symmetry but that propagator itself
-although it depends on four-momentum- is not the inverse of super-Virasoro generator G0 as it
would be in string models.

2. The identification of bosons as wormhole contacts means that bosonic propagation reduces to
a propagation of fermion and antifermion at opposite throats of the wormhole throat. In this
framework bosonic n-vertex would correspond to the decay of bosons to fermion-antifermion pairs
in the loop. Purely bosonic gauge boson couplings would be generated radiatively from triangle
and box diagrams involving only fermion-boson couplings. In particular, bosonic propagator
would be generated as a self-energy loop: bosons would propagate by decaying to fermion-
antifermion pair and then fusing back to the boson. TGD counterpart for gauge theory dynamics
would be emergent and bosonic couplings would have form factors with IR and UV behaviors
allowing finiteness of the loops constructed from them since the constraint that virtual fermion
pair corresponds to wormhole contact poses strong constraint on virtual momenta of fermion
and antifermion.

This picture leads to generalized Feynman rules for M-matrix. The QFT limit based on this picture
is able to reproduce the p-adic length scale evolution of various gauge coupling strengths with simple
cutoffs on mass squared and hyperbolic angle characterizing the state of fermion in the rest system
of virtual boson. The presence of these cutoffs is dictated by geometric picture about loops provided
by zero energy ontology. The condition that the bosonic N > 3-vertices vanish when incoming states
are on mass shell gives an infinite number of conditions which could fix the cutoffs uniquely.

More about Matrices

This chapter is a second part of chapter representing material related to the construction of U-, M,
and S-matrices. The general philosophy is discussed in the first part of the chapter and I will not
repeat the discussion.

The views about M -matrix as a characterizer of time-like entanglement and M -matrix as a functor
are analyzed. The role of hyper-finite factors in the construction of M -matrix is considered. One
section is devoted to the possibility that Connes tensor product could define fundamental vertices.
The last section is devoted to the construction of unitary U -matrix characterizing the unitary process
forming part of quantum jump.

The last section is about the anatomy of quantum jump. The first part of the chapter began with
a similar piece of text. This reflects the fact that the ideas are developing all the time so that the
vision about the matrices is by no means top-down view beginning from precisely state assumption
and proceeding to conclusions.

Category Theory and Quantum TGD

Possible applications of category theory to quantum TGD are discussed. The so called 2-plectic
structure generalizing the ordinary symplectic structure by replacing symplectic 2-form with 3-form
and Hamiltonians with Hamiltonian 1-forms has a natural place in TGD since the dynamics of the
light-like 3-surfaces is characterized by Chern-Simons type action. The notion of planar operad was
developed for the classification of hyper-finite factors of type II1 and its mild generalization allows to
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understand the combinatorics of the generalized Feynman diagrams obtained by gluing 3-D light-like
surfaces representing the lines of Feynman diagrams along their 2-D ends representing the vertices.

The fusion rules for the symplectic variant of conformal field theory, whose existence is strongly
suggested by quantum TGD, allow rather precise description using the basic notions of category theory
and one can identify a series of finite-dimensional nilpotent algebras as discretized versions of field
algebras defined by the fusion rules. These primitive fusion algebras can be used to construct more
complex algebras by replacing any algebra element by a primitive fusion algebra. Trees with arbitrary
numbers of branches in any node characterize the resulting collection of fusion algebras forming an
operad. One can say that an exact solution of symplectic scalar field theory is obtained.

Conformal fields and symplectic scalar field can be combined to form symplecto-formal fields. The
combination of symplectic operad and Feynman graph operad leads to a construction of Feynman
diagrams in terms of n-point functions of conformal field theory. M-matrix elements with a finite
measurement resolution are expressed in terms of a hierarchy of symplecto-conformal n-point functions
such that the improvement of measurement resolution corresponds to an algebra homomorphism
mapping conformal fields in given resolution to composite conformal fields in improved resolution. This
expresses the idea that composites behave as independent conformal fields. Also other applications
are briefly discussed.

1.4.3 Part III: Twistors, Bosonic Emergence, Space-time Supersymmetry

Twistors, N = 4 Super-Conformal Symmetry, and Quantum TGD

Twistors - a notion discovered by Penrose - have provided a fresh approach to the construction of
perturbative scattering amplitudes in Yang-Mills theories and in N = 4 supersymmetric Yang-Mills
theory. This approach was pioneered by Witten. The latest step in the progress was the proposal by
Nima Arkani-Hamed and collaborators that super Yang Mills and super gravity amplitudes might be
formulated in 8-D twistor space possessing real metric signature (4, 4). The questions considered in
this chapter are following.

1. Could twistor space could provide a natural realization of N = 4 super-conformal theory re-
quiring critical dimension D = 8 and signature metric (4, 4)? Could string like objects in TGD
sense be understood as strings in twistor space? More concretely, could one in some sense lift
quantum TGD from M4 ×CP2 to 8-D twistor space T so that one would have three equivalent
descriptions of quantum TGD.

2. Could one construct the preferred extremals of Kähler action in terms of twistors -may be by
mimicking the construction of hyper-quaternionic resp. co-hyper-quaternionic surfaces in M8

as surfaces having hyper-quaternionic tangent space resp. normal space at each point with the
additional property that one can assign to each point x a plane M2(x) ⊂ M4 as sub-space or
as sub-space defined by light-like tangent vector in M4. Could one mimic this construction by
assigning to each point of X4 regarded as a 4-surface in T a 4-D plane of twistor space satisfying
some conditions making possible the interpretation as a tangent plane and guaranteing the
existence of a map of X4 to a surface in M4×CP2. Could twistor formalism help to resolve the
integrability conditions involved?

3. Could one define 8-D counterpart of twistors in order to avoid the problems posed by the descrip-
tion of massive states by regarding them as massless states in 8-D context. Could the octonionic
realization of 8-D gamma matrices allow to define twistors in 8-D framework? Could associa-
tivity constraint reducing twistors to quaternionic twistors locally imply effective reduction to
four-dimensional twistors.

The arguments of this chapter suggest that some these questions might have affirmative answers.

Yangian Symmetry,Twistors, and TGD

There has been impressive steps in the understanding of N = 4 maximally sypersymmetric YM
theory possessing 4-D super-conformal symmetry. This theory is related by AdS/CFT duality to
certain string theory in AdS5 × S5 background. Second stringy representation was discovered by
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Witten and is based on 6-D Calabi-Yau manifold defined by twistors. The unifying proposal is that
so called Yangian symmetry is behind the mathematical miracles involved.

In the following I will discuss briefly the notion of Yangian symmetry and suggest its generalization
in TGD framework by replacing conformal algebra with appropriate super-conformal algebras. Also
a possible realization of twistor approach and the construction of scattering amplitudes in terms of
Yangian invariants defined by Grassmannian integrals is considered in TGD framework and based on
the idea that in zero energy ontology one can represent massive states as bound states of massless
particles. There is also a proposal for a physical interpretation of the Cartan algebra of Yangian
algebra allowing to understand at the fundamental level how the mass spectrum of n-particle bound
states could be understood in terms of the n-local charges of the Yangian algebra.

Twistors were originally introduced by Penrose to characterize the solutions of Maxwell’s equa-
tions. Kähler action is Maxwell action for the induced Kähler form of CP2. The preferred extremals
allow a very concrete interpretation in terms of modes of massless non-linear field. Both conformally
compactified Minkowski space identifiable as so called causal diamond and CP2 allow a description in
terms of twistors. These observations inspire the proposal that a generalization of Witten’s twistor
string theory relying on the identification of twistor string world sheets with certain holomorphic
surfaces assigned with Feynman diagrams could allow a formulation of quantum TGD in terms of
3-dimensional holomorphic surfaces of CP3 × CP3 mapped to 6-surfaces dual CP3 × CP3, which are
sphere bundles so that they are projected in a natural manner to 4-D space-time surfaces. Very general
physical and mathematical arguments lead to a highly unique proposal for the holomorphic differen-
tial equations defining the complex 3-surfaces conjectured to correspond to the preferred extremals of
Kähler action.

Some Fresh Ideas about Twistorialization of TGD

I found from web an article by Tim Adamo titled ”Twistor actions for gauge theory and gravity” [B22].
The work considers the formulation of N = 4 SUSY gauge theory directly in twistor space instead of
Minkowski space. The author is able to deduce MHV formalism, tree level amplitudes, and planar
loop amplitudes from action in twistor space. Also local operators and null polygonal Wilson loops
can be expressed twistorially. This approach is applied also to general relativity: one of the challenges
is to deduce MHV amplitudes for Einstein gravity. The reading of the article inspired a fresh look on
twistors and a possible answer to several questions (I have written two chapters about twistors and
TGD [K85, K87] giving a view about development of ideas).

Both M4 and CP2 are highly unique in that they allow twistor structure and in TGD one can over-
come the fundamental ”googly” problem of the standard twistor program preventing twistorialization
in general space-time metric by lifting twistorialization to the level of the imbedding space containg M4

as a Cartesian factor. Also CP2 allows twistor space identifiable as flag manifold SU(3)/U(1)×U(1)
as the self-duality of Weyl tensor indeed suggests. This provides an additional ”must” in favor of
sub-manifold gravity in M4 × CP2. Both octonionic interpretation of M8 and triality possible in
dimension 8 play a crucial role in the proposed twistorialization of H = M4 × CP2. It also turns
out that M4 × CP2 allows a natural twistorialization respecting Cartesian product: this is far from
obvious since it means that one considers space-like geodesics of H with light-like M4 projection as
basic objects. p-Adic mass calculations however require tachyonic ground states and in generalized
Feynman diagrams fermions propagate as massless particles in M4 sense. Furthermore, light-like H-
geodesics lead to non-compact candidates for the twistor space of H. Hence the twistor space would
be 12-dimensional manifold CP3 × SU(3)/U(1)× U(1).

Generalisation of 2-D conformal invariance extending to infinite-D variant of Yangian symmetry;
light-like 3-surfaces as basic objects of TGD Universe and as generalised light-like geodesics; light-
likeness condition for momentum generalized to the infinite-dimensional context via super-conformal
algebras. These are the facts inspiring the question whether also the ”world of classical worlds”
(WCW) could allow twistorialization. It turns out that center of mass degrees of freedom (imbedding
space) allow natural twistorialization: twistor space for M4 × CP2 serves as moduli space for choice
of quantization axes in Super Virasoro conditions. Contrary to the original optimistic expectations it
turns out that although the analog of incidence relations holds true for Kac-Moody algebra, twisto-
rialization in vibrational degrees of freedom does not look like a good idea since incidence relations
force an effective reduction of vibrational degrees of freedom to four. The Grassmannian formal-
ism for scattering amplitudes generalizes practically as such for generalized Feynman diagrams. The

http://arxiv.org/pdf/1308.2820.pdf
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Grassmannian formalism for scattering amplitudes generalizes for generalized Feynman diagrams: the
basic modification is due to the presence of CP2 twistorialization required by color invariance and
the fact that 4-fermion vertex -rather than 3-boson vertex- and its super counterparts define now the
fundamental vertices.

Quantum Field Theory Limit of TGD from Bosonic Emergence

This chapter summarizes the basic mathematical realization of the modified Feynman rules hoped to
give rise to a unitary M-matrix (recall that M-matrix is product of a positive square root of density
matrix and unitary S-matrix in TGD framework and need not be unitary in the general case). The
basic idea is that bosonic propagators emerge as fermionic loops. The approach is bottom up and
leads to a precise general formulation for how the counterpart of YM action emerges from Dirac action
coupled to gauge bosons and to modified Feynman rules. An essential element of the approach is a
physical formulation for UV cutoff. Actually cutoff in both mass squared and hyperbolic angle is
needed since Wick rotation does not make sense in TGD framework. This approach predicts all gauge
couplings and assuming a geometrically very natural hyperbolic UV cutoff motivated by zero energy
ontology one can understand the evolution of standard model gauge couplings and reproduce correctly
the values of fine structure constant at electron and intermediate boson length scales. Also asymptotic
freedom follows as a basic prediction. The UV cutoff for the hyperbolic angle as a function of p-adic
length scale is somewhat ad hoc element of the model and a quantitative model for how this function
could follow from the requirement of quantum criticality is formulated and discussed.

These considerations and numerical calculations lead to a general vision about how real and p-
adic variants of TGD relate to each other and how p-adic fractalization takes place. As in case
of twistorialization Cutkosky rules allowing unitarization of the tree amplitudes in terms of TT †

contribution involving only light-like momenta seems to be the only working option and requires that
TT † makes sense p-adically. The vanishing of the fermionic loops defining bosonic vertices for the
incoming massless momenta emerges as a consistency condition suggested also by quantum criticality
and by the fact that only BFF vertex is fundamental vertex if bosonic emergence is accepted. The
vanishing of on mass shell N-vertices gives an infinite number of conditions on the hyperbolic cutoff
as function of the integer k labeling p-adic length scale at the limit when bosons are massless and IR
cutoff for the loop mass scale is taken to zero. It is not yet clear whether dynamical symmetries, in
particular super-conformal symmetries, are involved with the realization of the vanishing conditions
or whether hyperbolic cutoff is all that is needed.

Does the QFT Limit of TGD Have Space-Time Super-Symmetry?

Contrary to the original expectations, TGD seems to allow a generalization of the space-time super-
symmetry. This became clear with the increased understanding of the modified Dirac action. The
introduction of a measurement interaction term to the action allows to understand how stringy prop-
agator results and provides profound insights about physics predicted by TGD.

The appearance of the momentum and color quantum numbers in the measurement interaction
couples space-time degrees of freedom to quantum numbers and allows also to define SUSY algebra at
fundamental level as anti-commutation relations of fermionic oscillator operators. Depending on the
situation a finite-dimensional SUSY algebra or the fermionic part of super-conformal algebra with an
infinite number of oscillator operators results. The addition of a fermion in particular mode would
define particular super-symmetry. Zero energy ontology implies that fermions as wormhole throats
correspond to chiral super-fields assignable to positive or negative energy SUSY algebra whereas
bosons as wormhole contacts with two throats correspond to the direct sum of positive and negative
energy algebra and fields which are chiral or antichiral with respect to both positive and negative
energy theta parameters. This super-symmetry is badly broken due to the dynamics of the modified
Dirac operator which also mixes M4 chiralities inducing massivation. Since righthanded neutrino has
no electro-weak couplings the breaking of the corresponding super-symmetry should be weakest.

The question is whether this SUSY has a realization as a SUSY algebra at space-time level and
whether the QFT limit of TGD could be formulated as a generalization of SUSY QFT. There are
several problems involved.

1. In TGD framework super-symmetry means addition of fermion to the state and since the number
of spinor modes is larger states with large spin and fermion numbers are obtained. This picture
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does not fit to the standard view about super-symmetry. In particular, the identification of
theta parameters as Majorana spinors and super-charges as Hermitian operators is not possible.

2. The belief that Majorana spinors are somehow an intrinsic aspect of super-symmetry is however
only a belief. Weyl spinors meaning complex theta parameters are also possible. Theta parame-
ters can also carry fermion number meaning only the supercharges carry fermion number and are
non-hermitian. The the general classification of super-symmetric theories indeed demonstrates
that for D = 8 Weyl spinors and complex and non-hermitian super-charges are possible. The
original motivation for Majorana spinors might come from MSSM assuming that right handed
neutrino does not exist. This belief might have also led to string theories in D=10 and D=11 as
the only possible candidates for TOE after it turned out that chiral anomalies cancel.

3. The massivation of particles is basic problem of both SUSYs and twistor approach. The fact that
particles which are massive in M4 sense can be interpreted as massless particles in M4 × CP2

suggests a manner to understand super-symmetry breaking and massivation in TGD framework.
The octonionic realization of twistors is a very attractive possibility in this framework and
quaternionicity condition guaranteing associativity leads to twistors which are almost equivalent
with ordinary 4-D twistors.

4. The first approach is based on an approximation assuming only the super-multiplets generated
by right-handed neutrino or both right-handed neutrino and its antineutrino. The assumption
that right-handed neutrino has fermion number opposite to that of the fermion associated with
the wormhole throat implies that bosons correspond to N = (1, 1) SUSY and fermions to N = 1
SUSY identifiable also as a short representation of N = (1, 1) SUSY algebra trivial with respect
to positive or negative energy algebra. This means a deviation from the standard view but the
standard SUSY gauge theory formalism seems to apply in this case.

5. A more ambitious approach would put the modes of induced spinor fields up to some cutoff into
super-multiplets. At the level next to the one described above the lowest modes of the induced
spinor fields would be included. The very large value of N means that N ≤ 3∈ SUSY cannot
define the QFT limit of TGD for higher cutoffs. One must generalize SUSYs gauge theories to
arbitrary value of N but there are reasons to expect that the formalism becomes rather complex.
More ambitious approach working at TGD however suggest a more general manner to avoid this
problem.

(a) One of the key predictions of TGD is that gauge bosons and Higgs can be regarded as bound
states of fermion and antifermion located at opposite throats of a wormhole contact. This
implies bosonic emergence meaning that it QFT limit can be defined in terms of Dirac
action. The resulting theory was discussed in detail in [?]nd it was shown that bosonic
propagators and vertices can be constructed as fermionic loops so that all coupling constant
follow as predictions. One must however pose cutoffs in mass squared and hyperbolic angle
assignable to the momenta of fermions appearing in the loops in order to obtain finite
theory and to avoid massivation of bosons. The resulting coupling constant evolution is
consistent with low energy phenomenology if the cutoffs in hyperbolic angle as a function
of p-adic length scale is chosen suitably.

(b) The generalization of bosonic emergence that the TGD counterpart of SUSY is obtained
by the replacement of Dirac action with action for chiral super-field coupled to vector field
as the action defining the theory so that the propagators of bosons and all their super-
counterparts would emerge as fermionic loops.

(c) The huge super-symmetries give excellent hopes about the cancelation of infinities so that
this approach would work even without the cutoffs in mass squared and hyperbolic angle
assignable to the momenta of fermions appearing in the loops. Cutoffs have a physical
motivation in zero energy ontology but it could be an excellent approximation to take
them to infinity. Alternatively, super-symmetric dynamics provides cutoffs dynamically.

6. The condition that N = ∞ variants for chiral and vector superfields exist fixes completely the
identification of these fields in zero energy ontology.
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(a) In this framework chiral fields are generalizations of induced spinor fields and vector fields
those of gauge potentials obtained by replacing them with their super-space counterparts.
Chiral condition reduces to analyticity in theta parameters thanks to the different definition
of hermitian conjugation in zero energy ontology (θ is mapped to a derivative with respect
to theta rather than to θ) and conjugated super-field acts on the product of all theta
parameters.

(b) Chiral action is a straightforward generalization of the Dirac action coupled to gauge po-
tentials. The counterpart of YM action can emerge only radiatively as an effective action
so that the notion emergence is now unavoidable and indeed basic prediction of TGD.

(c) The propagators associated with the monomials of n theta parameters behave as 1/pn

so that only J = 0, 1/2, 1 states propagate in normal manner and correspond to normal
particles. The presence of monomials with number of thetas higher than 2 is necessary for
the propagation of bosons since by the standard argument fermion and scalar loops cancel
each other by super-symmetry. This picture conforms with the identification of graviton
as a bound state of wormhole throats at opposite ends of string like object.

(d) This formulation allows also to use modified gamma matrices in the measurement inter-
action defining the counterpart of super variant of Dirac operator. Poincare invariance is
not lost since momenta and color charges act on the tip of CD rather than the coordi-
nates of the space-time sheet. Hence what is usually regarded as a quantum theory in the
background defined by classical fields follows as exact theory. This feeds all data about
space-time sheet associated with the maximum of Kähler function. In this approach WCW
as a Kähler manifold is replaced by a cartesian power of CP2, which is indeed quaternionic
Kähler manifold. The replacement of light-like 3-surfaces with number theoretic braids
when finite measurement resolution is introduced, leads to a similar replacement.

(e) Quantum TGD as a ”complex square root” of thermodynamics approach suggests that one
should take a superposition of the amplitudes defined by the points of a coherence region
(identified in terms of the slicing associated with a given wormhole throat) by weighting
the points with the Kähler action density. The situation would be highly analogous to a
spin glass system since the modified gamma matrices defining the propagators would be
analogous to the parameters of spin glass Hamiltonian allowed to have a spatial dependence.
This would predict the proportionality of the coupling strengths to Kähler coupling strength
and bring in the dependence on the size of CD coming as a power of 2 and give rise to
p-adic coupling constant evolution. Since TGD Universe is analogous to 4-D spin glass,
also a sum over different preferred extremals assignable to a given coherence regions and
weighted by exp(K) is probably needed.

(f) In TGD Universe graviton is necessarily a bi-local object and the emission and absorption
of graviton are bi-local processes involving two wormhole contacts: a pair of particles
rather than single particle emits graviton. This is definitely something new and defies a
description in terms of QFT limit using point like particles. Graviton like states would be
entangled states of vector bosons at both ends of stringy curve so that gravitation could be
regarded as a square of YM interactions in rather concrete sense. The notion of emergence
would suggest that graviton propagator is defined by a bosonic loop. Since bosonic loop is
dimensionless, IR cutoff defined by the largest CD present must be actively involved. At
QFT limit one can hope a description as a bi-local process using a bi-local generalization
of the QFT limit. It turns out that surprisingly simple candidate for the bi-local action
exists.

Generalized Feynman Graphs as Generalized Braids

The basic challenge of quantum TGD is to give a precise content to the notion of generalization
Feynman diagram and the reduction to braids of some kind is very attractive possibility inspired by
zero energy ontology. The point is that no n > 2-vertices at the level of braid strands are needed if
bosonic emergence holds true.

1. For this purpose the notion of algebraic knot is introduced and the possibility that it could be
applied to generalized Feynman diagrams is discussed. The algebraic structrures kei, quandle,
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rack, and biquandle and their algebraic modifications as such are not enough. The lines of
Feynman graphs are replaced by braids and in vertices braid strands redistribute. This poses
several challenges: the crossing associated with braiding and crossing occurring in non-planar
Feynman diagrams should be integrated to a more general notion; braids are replaced with sub-
manifold braids; braids of braids ....of braids are possible; the redistribution of braid strands
in vertices should be algebraized. In the following I try to abstract the basic operations which
should be algebraized in the case of generalized Feynman diagrams.

2. One should be also able to concretely identify braids and 2-braids (string world sheets) as well
as partonic 2-surfaces and I have discussed several identifications during last years. Legendrian
braids turn out to be very natural candidates for braids and their duals for the partonic 2-
surfaces. String world sheets in turn could correspond to the analogs of Lagrangian sub-manifolds
or two minimal surfaces of space-time surface satisfying the weak form of electric-magnetic
duality. The latter opion turns out to be more plausible. Finite measurement resolution would
be realized as symplectic invariance with respect to the subgroup of the symplectic group leaving
the end points of braid strands invariant. In accordance with the general vision TGD as almost
topological QFT would mean symplectic QFT. The identification of braids, partonic 2-surfaces
and string world sheets - if correct - would solve quantum TGD explicitly at string world sheet
level in other words in finite measurement resolution.

3. A brief summary of generalized Feynman rules in zero energy ontology is proposed. This requires
the identification of vertices, propagators, and prescription for integrating over al 3-surfaces. It
turns out that the basic building blocks of generalized Feynman diagrams are well-defined.

4. The notion of generalized Feynman diagram leads to a beautiful duality between the descriptions
of hadronic reactions in terms of hadrons and partons analogous to gauge-gravity duality and
AdS/CFT duality but requiring no additional assumptions. The model of quark gluon plasma
as s strongly interacting phase is proposed. Color magnetic flux tubes are responsible for the
long range correlations making the plasma phase more like a very large hadron rather than a
gas of partons. One also ends up with a simple estimate for the viscosity/entropy ratio using
black-hole analogy.

1.4.4 Part IV: Hyper-Finite Factors of Type II and Hierarchy of Planck
Constants

What von Neumann Right After All?

The work with TGD inspired model for quantum computation led to the realization that von Neumann
algebras, in particular hyper-finite factors, could provide the mathematics needed to develop a more
explicit view about the construction of M-matrix generalizing the notion of S-matrix in zero energy
ontology. In this chapter I will discuss various aspects of hyper-finite factors and their possible
physical interpretation in TGD framework. The original discussion has transformed during years
from free speculation reflecting in many aspects my ignorance about the mathematics involved to a
more realistic view about the role of these algebras in quantum TGD.

1. Hyper-finite factors in quantum TGD

The following argument suggests that von Neumann algebras known as hyper-finite factors (HFFs)
of type III1 appearing in relativistic quantum field theories provide also the proper mathematical
framework for quantum TGD.

1. The Clifford algebra of the infinite-dimensional Hilbert space is a von Neumann algebra known
as HFF of type II1. There also the Clifford algebra at a given point (light-like 3-surface) of world
of classical worlds (WCW) is therefore HFF of type II1. If the fermionic Fock algebra defined
by the fermionic oscillator operators assignable to the induced spinor fields (this is actually not
obvious!) is infinite-dimensional it defines a representation for HFF of type II1. Super-conformal
symmetry suggests that the extension of the Clifford algebra defining the fermionic part of a
super-conformal algebra by adding bosonic super-generators representing symmetries of WCW
respects the HFF property. It could however occur that HFF of type II∞ results.
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2. WCW is a union of sub-WCWs associated with causal diamonds (CD) defined as intersections
of future and past directed light-cones. One can allow also unions of CDs and the proposal is
that CDs within CDs are possible. Whether CDs can intersect is not clear.

3. The assumption that the M4 proper distance a between the tips of CD is quantized in powers
of 2 reproduces p-adic length scale hypothesis but one must also consider the possibility that
a can have all possible values. Since SO(3) is the isotropy group of CD, the CDs associated
with a given value of a and with fixed lower tip are parameterized by the Lobatchevski space
L(a) = SO(3, 1)/SO(3). Therefore the CDs with a free position of lower tip are parameterized
by M4 × L(a). A possible interpretation is in terms of quantum cosmology with a identified as
cosmic time [?] Since Lorentz boosts define a non-compact group, the generalization of so called
crossed product construction strongly suggests that the local Clifford algebra of WCW is HFF
of type III1. If one allows all values of a, one ends up with M4 ×M4

+ as the space of moduli for
WCW.

4. An interesting special aspect of 8-dimensional Clifford algebra with Minkowski signature is that it
allows an octonionic representation of gamma matrices obtained as tensor products of unit matrix
1 and 7-D gamma matrices γk and Pauli sigma matrices by replacing 1 and γk by octonions.
This inspires the idea that it might be possible to end up with quantum TGD from purely
number theoretical arguments. This seems to be the case. One can start from a local octonionic
Clifford algebra in M8. Associativity condition is satisfied if one restricts the octonionic algebra
to a subalgebra associated with any hyper-quaternionic and thus 4-D sub-manifold of M8. This
means that the modified gamma matrices associated with the Kähler action span a complex
quaternionic sub-space at each point of the sub-manifold. This associative sub-algebra can be
mapped a matrix algebra. Together with M8−H duality [?]his leads automatically to quantum
TGD and therefore also to the notion of WCW and its Clifford algebra which is however only
mappable to an associative algebra and thus to HFF of type II1.

4. Hyper-finite factors and M-matrix

HFFs of type III1 provide a general vision about M-matrix.

1. The factors of type III allow unique modular automorphism ∆it (fixed apart from unitary inner
automorphism). This raises the question whether the modular automorphism could be used to
define the M-matrix of quantum TGD. This is not the case as is obvious already from the fact
that unitary time evolution is not a sensible concept in zero energy ontology.

2. Concerning the identification of M-matrix the notion of state as it is used in theory of factors is a
more appropriate starting point than the notion modular automorphism but as a generalization
of thermodynamical state is certainly not enough for the purposes of quantum TGD and quantum
field theories (algebraic quantum field theorists might disagree!). Zero energy ontology requires
that the notion of thermodynamical state should be replaced with its ”complex square root”
abstracting the idea about M-matrix as a product of positive square root of a diagonal density
matrix and a unitary S-matrix. This generalization of thermodynamical state -if it exists- would
provide a firm mathematical basis for the notion of M-matrix and for the fuzzy notion of path
integral.

3. The existence of the modular automorphisms relies on Tomita-Takesaki theorem, which assumes
that the Hilbert space in which HFF acts allows cyclic and separable vector serving as ground
state for both HFF and its commutant. The translation to the language of physicists states that
the vacuum is a tensor product of two vacua annihilated by annihilation oscillator type algebra
elements of HFF and creation operator type algebra elements of its commutant isomorphic to it.
Note however that these algebras commute so that the two algebras are not hermitian conjugates
of each other. This kind of situation is exactly what emerges in zero energy ontology: the two
vacua can be assigned with the positive and negative energy parts of the zero energy states
entangled by M-matrix.

4. There exists infinite number of thermodynamical states related by modular automorphisms.
This must be true also for their possibly existing ”complex square roots”. Physically they
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would correspond to different measurement interactions giving rise to Kähler functions of WCW
differing only by a real part of holomorphic function of complex coordinates of WCW and
arbitrary function of zero mode coordinates and giving rise to the same Kähler metric of WCW.

The concrete construction of M-matrix utilizing the idea of bosonic emergence (bosons as fermion
anti-fermion pairs at opposite throats of wormhole contact) meaning that bosonic propagators reduce
to fermionic loops identifiable as wormhole contacts leads to generalized Feynman rules for M-matrix
in which modified Dirac action containing measurement interaction term defines stringy propagators.
This M-matrix should be consistent with the above proposal.

5. Connes tensor product as a realization of finite measurement resolution

The inclusions N ⊂ M of factors allow an attractive mathematical description of finite mea-
surement resolution in terms of Connes tensor product but do not fix M-matrix as was the original
optimistic belief.

1. In zero energy ontology N would create states experimentally indistinguishable from the origi-
nal one. Therefore N takes the role of complex numbers in non-commutative quantum theory.
The space M/N would correspond to the operators creating physical states modulo measure-
ment resolution and has typically fractal dimension given as the index of the inclusion. The
corresponding spinor spaces have an identification as quantum spaces with non-commutative
N -valued coordinates.

2. This leads to an elegant description of finite measurement resolution. Suppose that a universal
M-matrix describing the situation for an ideal measurement resolution exists as the idea about
square root of state encourages to think. Finite measurement resolution forces to replace the
probabilities defined by the M-matrix with their N ”averaged” counterparts. The ”averaging”
would be in terms of the complex square root of N -state and a direct analog of functionally or
path integral over the degrees of freedom below measurement resolution defined by (say) length
scale cutoff.

3. One can construct also directly M-matrices satisfying the measurement resolution constraint.
The condition that N acts like complex numbers on M-matrix elements as far as N -”averaged”
probabilities are considered is satisfied if M-matrix is a tensor product of M-matrix in M(N
interpreted as finite-dimensional space with a projection operator to N . The condition that
N averaging in terms of a complex square root of N state produces this kind of M-matrix
poses a very strong constraint on M-matrix if it is assumed to be universal (apart from variants
corresponding to different measurement interactions).

6. Quantum spinors and fuzzy quantum mechanics

The notion of quantum spinor leads to a quantum mechanical description of fuzzy probabilities. For
quantum spinors state function reduction cannot be performed unless quantum deformation parameter
equals to q = 1. The reason is that the components of quantum spinor do not commute: it is however
possible to measure the commuting operators representing moduli squared of the components giving
the probabilities associated with ’true’ and ’false’. The universal eigenvalue spectrum for probabilities
does not in general contain (1,0) so that quantum qbits are inherently fuzzy. State function reduction
would occur only after a transition to q=1 phase and decoherence is not a problem as long as it does
not induce this transition.

Does TGD predict spectrum of Planck constants?

The quantization of Planck constant has been the basic them of TGD since 2005. The basic idea
was stimulated by the finding of Nottale that planetary orbits could be seen as Bohr orbits with
enormous value of Planck constant given by ~gr = GM1M2/v0, where the velocity parameter v0 has
the approximate value v0 ' 2−11 for the inner planets. This inspired the ideas that quantization is
due to a condensation of ordinary matter around dark matter concentrated near Bohr orbits and that
dark matter is in macroscopic quantum phase in astrophysical scales. The second crucial empirical
input were the anomalies associated with living matter. The recent version of the chapter represents
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the evolution of ideas about quantization of Planck constants from a perspective given by seven years’s
work with the idea. A very concise summary about the situation is as follows.

Basic physical ideas

The basic phenomenological rules are simple and there is no need to modify them.

1. The phases with non-standard values of effective Planck constant are identified as dark matter.
The motivation comes from the natural assumption that only the particles with the same value
of effective Planck can appear in the same vertex. One can illustrate the situation in terms
of the book metaphor. Imbedding spaces with different values of Planck constant form a book
like structure and matter can be transferred between different pages only through the back of
the book where the pages are glued together. One important implication is that light exotic
charged particles lighter than weak bosons are possible if they have non-standard value of Planck
constant. The standard argument excluding them is based on decay widths of weak bosons and
has led to a neglect of large number of particle physics anomalies.

2. Large effective or real value of Planck constant scales up Compton length - or at least de Broglie
wave length - and its geometric correlate at space-time level identified as size scale of the space-
time sheet assignable to the particle. This could correspond to the Kähler magnetic flux tube
for the particle forming consisting of two flux tubes at parallel space-time sheets and short flux
tubes at ends with length of order CP2 size.

This rule has far reaching implications in quantum biology and neuroscience since macroscopic
quantum phases become possible as the basic criterion stating that macroscopic quantum phase
becomes possible if the density of particles is so high that particles as Compton length sized
objects overlap. Dark matter therefore forms macroscopic quantum phases. One implication is
the explanation of mysterious looking quantal effects of ELF radiation in EEG frequency range
on vertebrate brain: E = hf implies that the energies for the ordinary value of Planck constant
are much below the thermal threshold but large value of Planck constant changes the situation.
Also the phase transitions modifying the value of Planck constant and changing the lengths of
flux tubes (by quantum classical correspondence) are crucial as also reconnections of the flux
tubes.

The hierarchy of Planck constants suggests also a new interpretation for FQHE (fractional
quantum Hall effect) in terms of anyonic phases with non-standard value of effective Planck
constant realized in terms of the effective multi-sheeted covering of imbedding space: multi-
sheeted space-time is to be distinguished from many-sheeted space-time.

In astrophysics and cosmology the implications are even more dramatic. It was who first intro-
duced the notion of gravitational Planck constant as ~gr = GMm/v0, v0 < 1 has interpretation
as velocity light parameter in units c = 1. This would be true for GMm/v0 ≥ 1. The interpre-
tation of ~gr in TGD framework is as an effective Planck constant associated with space-time
sheets mediating gravitational interaction between masses M and m. The huge value of ~gr
means that the integer ~gr/~0 interpreted as the number of sheets of covering is gigantic and
that Universe possesses gravitational quantum coherence in super-astronomical scales for masses
which are large. This changes the view about gravitons and suggests that gravitational radiation
is emitted as dark gravitons which decay to pulses of ordinary gravitons replacing continuous
flow of gravitational radiation.

3. Why Nature would like to have large effective value of Planck constant? A possible answer
relies on the observation that in perturbation theory the expansion takes in powers of gauge
couplings strengths α = g2/4π~. If the effective value of ~ replaces its real value as one might
expect to happen for multi-sheeted particles behaving like single particle, α is scaled down and
perturbative expansion converges for the new particles. One could say that Mother Nature
loves theoreticians and comes in rescue in their attempts to calculate. In quantum gravitation
the problem is especially acute since the dimensionless parameter GMm/~ has gigantic value.
Replacing ~ with ~gr = GMm/v0 the coupling strength becomes v0 < 1.

Space-time correlates for the hierarchy of Planck constants

http://tgdtheory.com/public_html/paddark/paddark.html#anyontgd
http://arxiv.org/abs/astro-ph/0310036
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The hierarchy of Planck constants was introduced to TGD originally as an additional postulate
and formulated as the existence of a hierarchy of imbedding spaces defined as Cartesian products of
singular coverings of M4 and CP2 with numbers of sheets given by integers na and nb and ~ = n~0.
n = nanb.

With the advent of zero energy ontology, it became clear that the notion of singular covering space
of the imbedding space could be only a convenient auxiliary notion. Singular means that the sheets
fuse together at the boundary of multi-sheeted region. The effective covering space emerges naturally
from the vacuum degeneracy of Kähler action meaning that all deformations of canonically imbedded
M4 in M4×CP2 have vanishing action up to fourth order in small perturbation. This is clear from the
fact that the induced Kähler form is quadratic in the gradients of CP2 coordinates and Kähler action
is essentially Maxwell action for the induced Kähler form. The vacuum degeneracy implies that the
correspondence between canonical momentum currents ∂LK/∂(∂αh

k) defining the modified gamma
matrices and gradients ∂αh

k is not one-to-one. Same canonical momentum current corresponds to
several values of gradients of imbedding space coordinates. At the partonic 2-surfaces at the light-like
boundaries of CD carrying the elementary particle quantum numbers this implies that the two normal
derivatives of hk are many-valued functions of canonical momentum currents in normal directions.

Multi-furcation is in question and multi-furcations are indeed generic in highly non-linear systems
and Kähler action is an extreme example about non-linear system. What multi-furcation means in
quantum theory? The branches of multi-furcation are obviously analogous to single particle states.
In quantum theory second quantization means that one constructs not only single particle states but
also the many particle states formed from them. At space-time level single particle states would
correspond to N branches bi of multi-furcation carrying fermion number. Two-particle states would
correspond to 2-fold covering consisting of 2 branches bi and bj of multi-furcation. N−particle state
would correspond to N -sheeted covering with all branches present and carrying elementary particle
quantum numbers. The branches co-incide at the partonic 2-surface but since their normal space
data are different they correspond to different tensor product factors of state space. Also now the
factorization N = nanb occurs but now na and nb would relate to branching in the direction of
space-like 3-surface and light-like 3-surface rather than M4 and CP2 as in the original hypothesis.

Multi-furcations relate closely to the quantum criticality of Kähler action. Feigenbaum bifurcations
represent a toy example of a system which via successive bifurcations approaches chaos. Now more
general multi-furcations in which each branch of given multi-furcation can multi-furcate further, are
possible unless on poses any additional conditions. This allows to identify additional aspect of the
geometric arrow of time. Either the positive or negative energy part of the zero energy state is
”prepared” meaning that single n-sub-furcations of N -furcation is selected. The most general state of
this kind involves superposition of various n-sub-furcations.

Mathematical speculations inspired by the hierarchy of Planck constants

This chapter contains the purely mathematical speculations about the hierarchy of Planck constants
(actually only effective hierarchy if the recent interpretation is correct) as separate from the material
describing the physical ideas, key mathematical concepts, and the basic applications. These mathe-
matical speculations emerged during the first stormy years in the evolution of the ideas about Planck
constant and must be taken with a big grain of salt. I feel myself rather conservative as compared to
the fellow who produced this stuff for 7 years ago. This all is of course very relative. Many readers
might experience this recent me as a reckless speculator.

The first speculative question is about possible relationship between Jones inclusions of hyperfi-
nite factors of type II1 (hyper-finite factors are von Neuman algebras emerging naturally in TGD
framework). The basic idea is that the discrete groups assignable to inclusions could correspond to
discrete groups acting in the effective covering spaces of imbedding space assignable to the hierarchy
of Planck constants.

There are also speculations relating to the hierarchy of Planck constants, Mc-Kay correspondence,
and Jones inclusions. Even Farey sequences, Riemann hypothesis and and N-tangles are discussed.
Depending on reader these speculations might be experienced as irritating or entertaining. It would
be interesting to go this stuff through in the light of recent understanding of the effective hierarchy
of Planck constants to see what portion of its survives.

http://en.wikipedia.org/wiki/Logistic_map
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Chapter 2

Basic Extremals of the Kähler
Action

2.1 Introduction

In this chapter the classical field equations associated with the Kähler action are studied. The study of
the extremals of the Kähler action has turned out to be extremely useful for the development of TGD.
Towards the end of year 2003 quite dramatic progress occurred in the understanding of field equations
and it seems that field equations might be in well-defined sense exactly solvable. The progress made
during next five years led to a detailed understanding of quantum TGD at the fundamental parton
level and this provides considerable additional insights concerning the interpretation of field equations.

2.1.1 General considerations

The vanishing of Lorentz 4-force for the induced Kähler field means that the vacuum 4-currents are
in a mechanical equilibrium. Lorentz 4-force vanishes for all known solutions of field equations which
inspires the hypothesis that preferred extremals satisfy the condition. The vanishing of the Lorentz 4-
force in turn implies a local conservation of the ordinary energy momentum tensor. The corresponding
condition is implied by Einstein’s equations in General Relativity. The hypothesis would mean that
the solutions of field equations are what might be called generalized Beltrami fields. If Kähler action
is defined by CP2 Kähler form alone, the condition implies that vacuum currents can be non-vanishing
only provided the dimension DCP2 of the CP2 projection of the space-time surface is less than four
so that in the regions with DCP2 = 4, Maxwell’s vacuum equations are satisfied.

The hypothesis that Kähler current is proportional to a product of an arbitrary function ψ of CP2

coordinates and of the instanton current generalizes Beltrami condition and reduces to it when electric
field vanishes. Instanton current has vanishing divergence for DCP2

< 4, and Lorentz 4-force indeed
vanishes. The remaining task would be the explicit construction of the imbeddings of these fields and
the demonstration that field equations can be satisfied.

Under additional conditions magnetic field reduces to what is known as Beltrami field. Beltrami
fields are known to be extremely complex but highly organized structures. The natural conjecture
is that topologically quantized many-sheeted magnetic and Z0 magnetic Beltrami fields and their
generalizations serve as templates for the helical molecules populating living matter, and explain both
chirality selection, the complex linking and knotting of DNA and protein molecules, and even the
extremely complex and self-organized dynamics of biological systems at the molecular level.

Field equations can be reduced to algebraic conditions stating that energy momentum tensor and
second fundamental form have no common components (this occurs also for minimal surfaces in string
models) and only the conditions stating that Kähler current vanishes, is light-like, or proportional
to instanton current, remain and define the remaining field equations. The conditions guaranteing
topologization to instanton current can be solved explicitly. Solutions can be found also in the more
general case when Kähler current is not proportional to instanton current. On basis of these findings
there are strong reasons to believe that classical TGD is exactly solvable.

An important outcome is the notion of Hamilton-Jacobi structure meaning dual slicings of M4

39
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projection of preferred extremals to string world sheets and partonic 2-surfaces. The necessity of this
slicing was discovered years later from number theoretic compactification and is now a key element of
quantum TGD allowing to deduce Equivalence Principle in its stringy form from quantum TGD and
formulate and understand quantum TGD in terms of modified Dirac action assignable to Kähler action.
The conservation of Noether charges associated with modified Dirac action requires the vanishing of
the second second variation of Kähler action for preferred extremals - at least for the deformations
generating dynamical symmetries. Preferred extremals would thus define space-time representation
for quantum criticality. Infinite-dimensional variant for the hierarchy of criticalities analogous to the
hierarchy assigned to the extrema of potential function with levels labeled by the rank of the matrix
defined by the second derivatives of the potential function in catastrophe theory would suggest itself.

2.1.2 In what sense field equations mimic dissipative dynamics?

By quantum classical correspondence the non-deterministic space-time dynamics should mimic the
dissipative dynamics of the quantum jump sequence. The nontrivial question is what this means in
TGD framework.

1. Beltrami fields appear in physical applications as asymptotic self organization patterns for which
Lorentz force and dissipation vanish. This suggests that preferred extremals of Kähler action
correspond to space-time sheets which at least asymptotically satisfy generalized Beltrami condi-
tions so that one can indeed assign to the final (rather than initial!) 3-surface a unique 4-surface
apart from effects related to non-determinism. Preferred extremal property of Kähler action ab-
stracted to purely algebraic generalized Beltrami conditions would make sense also in the p-adic
context. The general solution ansatz discussed in the last section of the chapter assumes that
all conserved isometry currents are proportional to instanton current so that various charges are
conserved separately for all flow lines: this means esssentially the integrability of the theory.
This ansatz is forced by the hypothesis that TGD reduces to almost topological QFT and this
idea. The basic consequence is that dissipation is impossible classically.

2. A more radical view inspired by zero energy ontology is that the light-like 3-surfaces and cor-
responding space-time regions with Euclidian signature defining generalized Feynman diagrams
provide a space-time representation of dissipative dynamics just as they provide this represen-
tation in quantum field theory. Minkowskian regions would represent empty space so that the
vanishing of Lorentz 4-force and absence of dissipation would be natural. This would mean
very precise particle field duality and the topological pattern associated with the generalized
Feynman diagram would represent dissipation. One could also interprete dissipation as transfer
of energy between sheets of the many-sheeted space time and thus as an essentially topological
phenomenon. This option seems to be the only viable one.

2.1.3 The dimension of CP2 projection as classifier for the fundamental
phases of matter

The dimension DCP2 of CP2 projection of the space-time sheet encountered already in p-adic mass
calculations classifies the fundamental phases of matter. For DCP2 = 4 empty space Maxwell equa-
tions hold true. The natural guess would be that this phase is chaotic and analogous to de-magnetized
phase. DCP2

= 2 phase is analogous to ferromagnetic phase: highly ordered and relatively simple. It
seems however that preferred extremals can correspond only to small perturbations of these extremals
resulting by topological condensation of CP2 type vacuum extremals and through topological conden-
sation to larger space-time sheets. DCP2 = 3 is the analog of spin glass and liquid crystal phases,
extremely complex but highly organized by the properties of the generalized Beltrami fields. This
phase could be seen as the boundary between chaos and order and corresponds to life emerging in
the interaction of magnetic bodies with bio-matter. It is possible only in a finite temperature interval
(note however the p-adic hierarchy of critical temperatures) and characterized by chirality just like
life.

The original proposal was that D(CP2) = 4 phase is completely chaotic. This is not true if the
reduction to almost topological QFT takes place. This phase must correspond to Maxwellian phase
with a vanishing Kähler current as concluded already earlier. Various isometry currents are however
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proportional to the instanton current and conserved along the flow lines of the instanton current whose
flow parameter extends to a global coordinate. Hence a completely chaotic phase is not in question
even in this case.

2.1.4 Specific extremals of Kähler action

The study of extremals of Kähler action represents more than decade old layer in the development of
TGD.

1. The huge vacuum degeneracy is the most characteristic feature of Kähler action (any 4-surface
having CP2 projection which is Legendre sub-manifold is vacuum extremal, Legendre sub-
manifolds of CP2 are in general 2-dimensional). This vacuum degeneracy is behind the spin
glass analogy and leads to the p-adic TGD. As found in the second part of the book, various
particle like vacuum extremals also play an important role in the understanding of the quantum
TGD.

2. The so called CP2 type vacuum extremals have finite, negative action and are therefore an
excellent candidate for real particles whereas vacuum extremals with vanishing Kähler action
are candidates for the virtual particles. These extremals have one dimensional M4 projection,
which is light like curve but not necessarily geodesic and locally the metric of the extremal is that
of CP2: the quantization of this motion leads to Virasoro algebra. Space-times with topology
CP2#CP2#...CP2 are identified as the generalized Feynmann diagrams with lines thickened
to 4-manifolds of ”thickness” of the order of CP2 radius. The quantization of the random
motion with light velocity associated with the CP2 type extremals in fact led to the discovery of
Super Virasoro invariance, which through the construction of the configuration space geometry,
becomes a basic symmetry of quantum TGD.

3. There are also various non-vacuum extremals.

(a) String like objects, with string tension of same order of magnitude as possessed by the cos-
mic strings of GUTs, have a crucial role in TGD inspired model for the galaxy formation
and in the TGD based cosmology.

(b) The so called massless extremals describe non-linear plane waves propagating with the
velocity of light such that the polarization is fixed in given point of the space-time surface.
The purely TGD:eish feature is the light like Kähler current: in the ordinary Maxwell
theory vacuum gauge currents are not possible. This current serves as a source of coherent
photons, which might play an important role in the quantum model of bio-system as a
macroscopic quantum system.

(c) In the so called Maxwell’s phase, ordinary Maxwell equations for the induced Kähler field
are satisfied in an excellent approximation. A special case is provided by a radially symmet-
ric extremal having an interpretation as the space-time exterior to a topologically condensed
particle. The sign of the gravitational mass correlates with that of the Kähler charge and
one can understand the generation of the matter antimatter asymmetry from the basic
properties of this extremal. The possibility to understand the generation of the matter
antimatter asymmetry directly from the basic equations of the theory gives strong support
in favor of TGD in comparison to the ordinary EYM theories, where the generation of the
matter antimatter asymmetry is still poorly understood.

2.1.5 The weak form of electric-magnetic duality and modification of Kähler
action

The newest results discussed in the last section about the weak form of electric-magnetic duality
suggest strongly that Beltrami property is general and together with the weak form of electric-magnetic
duality allows a reduction of quantum TGD to almost topological field theory with Kähler function
allowing expression as a Chern-Simons term.

Generalized Beltrami property leads to a rather explicit construction of the general solution of
field equations based on the hydrodynamic picture implying that single particle quantum numbers are
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conserved along flow lines defined by the instanton current. The construction generalizes also to the
fermionic sector and there are reasons to hope that TGD is completely integrable theory.

2.2 General considerations

The solution families of field equations studied in this chapter were found already during eighties.
The physical interpretation turned out to be the the really tough problem. What is the principle
selecting preferred extremals of Kähler action as analogs of Bohr orbits assigning to 3-surface X3 a
unique space-time surface X4(X3)? Does Equivalence Principle hold true and if so, in what sense?
These have been the key questions. The realization that light-like 3-surfaces X3

l associated with the
light-like wormhole throats at which the signature of the induced metric changes from Minkowskian
to Euclidian led to the formulation of quantum TGD in terms of second quantized induced spinor
fields at these surfaces. Together with the notion of number theoretical compactification this approach
allowed to identify the conditions characterizing the preferred extremals. What is remarkable that
these conditions are consistent with what is known about extremals. Also a connection with string
models and understanding of the space-time realization of Equivalence Principle emerged. In this
section the theoretical background behind field equations is briefly summarized. I will not repeat the
discussion of previous two chapters [K32, K33] summarizing the general vision about many-sheeted
space-time, and consideration will be restricted to those aspects of vision leading to direct predictions
about the properties of preferred extremals of Kähler action.

2.2.1 Number theoretical compactification and M8 −H duality

The notion of hyper-quaternionic and octonionic manifold makes sense but it not plausible that
H = M4 × CP2 could be endowed with a hyper-octonionic manifold structure. Situation changes
if H is replaced with hyper-octonionic M8. Suppose that X4 ⊂ M8 consists of hyper-quaternionic
and co-hyper-quaternionic regions. The basic observation is that the hyper-quaternionic sub-spaces
of M8 with a fixed hyper-complex structure (containing in their tangent space a fixed hyper-complex
subspace M2 or at least one of the light-like lines of M2) are labeled by points of CP2. Hence each
hyper-quaternionic and co-hyper-quaternionic four-surface of M8 defines a 4-surface of M4 × CP2.
One can loosely say that the number-theoretic analog of spontaneous compactification occurs: this of
course has nothing to do with dynamics.

This picture was still too naive and it became clear that not all known extremals of Kähler action
contain fixed M2 ⊂M4 or light-like line of M2 in their tangent space.

1. The first option represents the minimal form of number theoretical compactification. M8 is
interpreted as the tangent space of H. Only the 4-D tangent spaces of light-like 3-surfaces X3

l

(wormhole throats or boundaries) are assumed to be hyper-quaternionic or co-hyper-quaternionic
and contain fixed M2 or its light-like line in their tangent space. Hyper-quaternionic regions
would naturally correspond to space-time regions with Minkowskian signature of the induced
metric and their co-counterparts to the regions for which the signature is Euclidian. What is
of special importance is that this assumption solves the problem of identifying the boundary
conditions fixing the preferred extremals of Kähler action since in the generic case the intersection
of M2 with the 3-D tangent space of X3

l is 1-dimensional. The surfaces X4(X3
l ) ⊂ M8 would

be hyper-quaternionic or co-hyper-quaternionic but would not allow a local mapping between
the 4-surfaces of M8 and H.

2. One can also consider a more local map of X4(X3
l ) ⊂ H to X4(X3

l ) ⊂ M8. The idea is to
allow M2 ⊂M4 ⊂M8 to vary from point to point so that S2 = SO(3)/SO(2) characterizes the
local choice of M2 in the interior of X4. This leads to a quite nice view about strong geometric
form of M8 −H duality in which M8 is interpreted as tangent space of H and X4(X3

l ) ⊂ M8

has interpretation as tangent for a curve defined by light-like 3-surfaces at X3
l and represented

by X4(X3
l ) ⊂ H. Space-time surfaces X4(X3

l ) ⊂ M8 consisting of hyper-quaternionic and co-
hyper-quaternionic regions would naturally represent a preferred extremal of E4 Kähler action.
The value of the action would be same as CP2 Kähler action. M8 − H duality would apply
also at the induced spinor field and at the level of configuration space. The possibility to assign
M2(x) ⊂ M4 to each point of M4 projection PM4(X4(X3

l )) is consistent with what is known



2.2. General considerations 43

about extremals of Kähler action with only one exception: CP2 type vacuum extremals. In this
case M2 can be assigned to the normal space.

3. Strong form of M8−H duality satisfies all the needed constraints if it represents Kähler isometry
between X4(X3

l ) ⊂ M8 and X4(X3
l ) ⊂ H. This implies that light-like 3-surface is mapped to

light-like 3-surface and induced metrics and Kähler forms are identical so that also Kähler action
and field equations are identical. The only differences appear at the level of induced spinor fields
at the light-like boundaries since due to the fact that gauge potentials are not identical.

4. The map of X3
l ⊂ H → X3

l ⊂M8 would be crucial for the realization of the number theoretical
universality. M8 = M4 × E4 allows linear coordinates as those preferred coordinates in which
the points of imbedding space are rational/algebraic. Thus the point of X4 ⊂ H is algebraic
if it is mapped to algebraic point of M8 in number theoretic compactification. This of course
restricts the symmetry groups to their rational/algebraic variants but this does not have practical
meaning. Number theoretical compactication could thus be motivated by the number theoretical
universality.

5. The possibility to use either M8 or H picture might be extremely useful for calculational pur-
poses. In particular, M8 picture based on SO(4) gluons rather than SU(3) gluons could per-
turbative description of low energy hadron physics. The strong SO(4) symmetry of low energy
hadron physics can be indeed seen direct experimental support for the M8 −H duality.

Number theoretical compactification has quite deep implications for quantum TGD and is actually
responsible for most of the progress in the understanding of the mathematical structure of quantum
TGD. A very powerful prediction is that preferred extremals should allow slicings to either stringy
world sheets or dual partonic 2-surfaces as well as slicing by light-like 3-surfaces. Both predictions are
consistent with what is known about extremals.

1. If the distribution of planes M2(x) is integrable, it is possible to slice X4(X3) to a union of 2-
dimensional surfaces having interpretation as string world sheets and dual 2-dimensional copies
of partonic surfaces X2. This decomposition defining 2+2 Kaluza-Klein type structure realizes
quantum gravitational holography and allows to understand Equivalence Principle at space-time
level in the sense that dimensional reduction defined by the integral of Kähler action over the
2-dimensional space labeling stringy world sheets gives rise to the analog of stringy action and
one obtains string model like description of quantum TGD as dual for a description based on
light-like partonic 3-surfaces. String tension is not however equal to the inverse of gravitational
constant as one might naively expect but the connection is more delicate.

2. Second implication is the slicing of X4(X3
l ) to light-like 3-surfaces Y 3

l ”parallel” to X3
l . Also this

slicing realizes quantum gravitational holography if one requires General Coordinate Invariance
in the sense that the Dirac determinant defined by the generalized eigenvalues of the transverse
part DK(X2) of DK is differs for two 3-surfaces Y 3

l in the slicing only by an exponent of a real
part of a holomorphic function of configuration space complex coordinates giving no contribution
to the Kähler metric. The requirement that the zero modes of the 4-D modified Dirac operators
DK reduce to the analogs of 3-D shock waves for all 3-surfaces Y 3

l in the slicing requires that
Noether currents are parallel to Y 3

l . Clearly, 3+1 type Kaluza-Klein structure is in question.
This slicing allows to realize RG flow at space-time level using the light-like coordinate associated
with the slicing as RG parameter [K33] . The prediction is RG invariance of couplings for a
causal diamond (CD) in given p-adic length scale meaning a justification of the hypothesis that
coupling constant evolution reduces to a discrete p-adic coupling constant evolution with p-adic
length scales coming as half octaves. This prediction follows if the known properties of extremals
of Kähler action hold true quite generally.

3. The assumption that Kähler current and other gauge currents flow along the slices Y 3
l of the

slicing of X4(X3
l ) is enough for the renormalization group invariance of gauge couplings inside

CD guaranteing p-adic coupling constant evolution [K33] . The current could thus have also
a component parallel to the transverse cross section in which case the current would be space-
like. Space-likeness brings in mind the Euclidian signature of the effective metric defined by the
modified gamma matrices Γ̂α = (∂LK/∂h

k
α)γk necessary for the Higgs mechanism. Dissipation
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would be absent but Lorentz force would be non-vanishing. The general solution ansatz for the
field equations allows besides light-like Kähler currents also space-like gauge currents, which can
be regarded as topological currents. The gluing of CP2 type vacuum extremals to the known
extremals with light-like gauge currents could generate the transversal part of the currents and
increase the dimension DCP2

of the CP2 projection to at least DCP2
= 3.

2.2.2 The exponent of Kähler function as Dirac determinant for the mod-
ified Dirac action

Although quantum criticality in principle predicts the possible values of Kähler coupling strength, one
might hope that there exists even more fundamental approach involving no coupling constants and
predicting even quantum criticality and realizing quantum gravitational holography.

The identification of the light-like partonic 3-surfaces as carriers of elementary particle quantum
numbers inspired by the TGD based quantum measurement theory suggests the identification of
the modified Dirac action as that associated with the Chern-Simons action for the induced Kähler
gauge potential. It however turned out that it is 4-D modified Dirac action associated with Kähler
action, which is the correct choice. The point is that only the solutions of DK which are effectively 3-
dimensional by generalized super-conformal gauge invariance are physical. The effective metric defined
by the modified gamma matrices is non-singular even for light-like 3-surfaces Y 3

l , and this allows to
develop a well-defined theory involving also metric degrees of freedom. In this framework C−S action
emerges as a phase factor of quantum states for phases with non-standard value of Planck constant
and is related to anyons and charge fractionization.

Absolutely essential role is played by number theoretical compactification predicted that space-
time sheets have dual slicings to string world sheets and partonic 2-surfaces. This prediction is
supported by the properties of known extremals of Kähler action. This allows the decompositions
DK = DK(Y 2) +DK(X2) generalized eigenvalues can be associated associated with DK(X2) for zero
modes of DK .

1. The Dirac determinant defined by the product of Dirac determinants associated with the light-
like partonic 3-surfaces X3

l associated with a given space-time sheet X4 is the simplest candidate
for vacuum functional identifiable as the exponent of the Kähler function. One can of course
worry about the finiteness of the Dirac determinant. p-Adicization requires that the eigenvalues
belong to a given algebraic extension of rationals. This restriction would imply a hierarchy of
physics corresponding to different extensions and could automatically imply the finiteness and
algebraic number property of the Dirac determinants if only finite number of eigenvalues would
contribute. The regularization would be performed by physics itself if this were the case.

2.

3. The basic problem has been how to feed in the information about the preferred extremal of
Kähler action to the eigenvalue spectrum DK(X2) at light-like 3-surface X3

l . The identification
of the preferred extremal came possible via boundary conditions at X3

l dictated by number
theoretical compactification. The basic observation is that the Dirac equation associated with
the 4-D Dirac operator DK defined by Kähler action can be seen as a conservation law for a
super current. By restricting the super current to flow along X3

l by requiring that its normal
component vanishes, one obtains a singular solution of 4-D modified Dirac equation restricted
to X3

l . The ”energy” spectrum to the spectrum of eigenvalues for DK(X2) and the product of
the eigenvalues defines the Dirac determinant in standard manner. Since the eigenmodes are
restricted to those localized to regions of non-vanishing induced Kähler form, the number of
eigen modes is finite and therefore also Dirac determinant is finite. The eigenvalues can be also
algebraic numbers.

4. It remains to be proven that the product of eigenvalues gives rise to the exponent of Kähler
action for the preferred extremal of Kähler action. At this moment the only justification for the
conjecture is that this the only thing that one can imagine.

5. An additional bonus is precise definition of quantum criticality. The Noether currents associated
with the modified Dirac action are conserved if its variation with respect to H-coordinates
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vanishes. This means that the second variation of Kähler action varies. One can consider
also a weaker form of quantum criticality in which case only the variations with respect to
deformations defining the conserved currents are vanishing. This would give to a hierarchy of
criticalities defined by the second variations of Kähler action. The vacuum degeneracy of Kähler
action would be essential for the realization of quantum criticality and could correspond to a
hierarchy of dynamical gauge symmetries characterizing finite measurement resolution suggested
by the hierarchy of Jones inclusions [K27] .

6. A long-standing conjecture has been that the zeros of Riemann Zeta are somehow relevant for
quantum TGD. Rieman zeta is however naturally replaced Dirac zeta defined by the eigenvalues
of DK(X2) and closely related to Riemann Zeta since the spectrum consists essentially for the
cyclotron energy spectra for localized solutions region of non-vanishing induced Kähler magnetic
field and hence is in good approximation integer valued up to some cutoff integer. In zero
energy ontology the Dirac zeta function associated with these eigenvalues defines ”square root”
of thermodynamics assuming that the energy levels of the system in question are expressible
as logarithms of the eigenvalues of the modified Dirac operator defining kind of fundamental
constants. Critical points correspond to approximate zeros of Dirac zeta and if Kähler function
vanishes at criticality as it ineed should, the thermal energies at critical points are in first order
approximation proportional to zeros themselves so that a connection between quantum criticality
and approximate zeros of Dirac zeta emerges.

7. The discretization induced by the number theoretic braids reduces the world of classical worlds
to effectively finite-dimensional space and configuration space Clifford algebra reduces to a finite-
dimensional algebra. The interpretation is in terms of finite measurement resolution represented
in terms of Jones inclusion M ⊂ N of HFFs with M taking the role of complex numbers.
The finite-D quantum Clifford algebra spanned by fermionic oscillator operators is identified
as a representation for the coset space N/M describing physical states modulo measurement
resolution. In the sectors of generalized imbedding space corresponding to non-standard values
of Planck constant quantum version of Clifford algebra is in question.

Concerning the understanding of preferred extremals, the basic prediction (assuming that Kähler
gauge potential has no gauge part in M4) is that the CP2 projection of the light-like 3-surfaces is
3-dimensional for non-vacuum partons. One implication is that a very general family of cosmic string
type solutions with 2-D CP2 projection cannot correspond to preferred extremals. If ideal cosmic
strings were preferred extremals, the most general realization for the hierarchy of Planck constants
in terms of a book like structure of the imbedding space would not be possible [K27] . Also massless
extremals have 2-D CP2 projection and are excluded as preferred extremals. The interpretation is that
the preferred extremals must be deformations of these extremals containing topologically condensed
CP2 type vacuum extremals representing elementary particles and that these extremals provide only
smoothed out representation of the actual physics. The general principle would be that matter is
present only if light-like 3-surfaces at which the signature of the induced metric changes (light-like
boundary components cannot be excluded but in this case gauge charges would vanish). That the
interaction with a larger Minkowskian space-time sheet creates matter could be seen as a variant of
Mach Principle.

2.2.3 Preferred extremal property as classical correlate for quantum crit-
icality, holography, and quantum classical correspondence

The Noether currents assignable to the modified Dirac equation are conserved only if the first variation
of the modified Dirac operator DK defined by Kähler action vanishes. This is equivalent with the van-
ishing of the second variation of Kähler action -at least for the variations corresponding to dynamical
symmetries having interpretation as dynamical degrees of freedom which are below measurement res-
olution and therefore effectively gauge symmetries. The weaker condition would mean that the inner
product defined by the integral of Dα∂LK/∂h

k
αδh

k over the space-time surface vanishes for the defor-
mations defining dynamical symmetries but the field equations are not satisfied completely generally.
The weaker condition would mean that the inner product defined by the integral of Dα∂LK/∂h

k
αδh

k

over the space-time surface vanishes for the deformations defining dynamical symmetries but the field
equations are not satisfied completely generally.
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The vanishing of the second variation in interior of X4(X3
l ) is what corresponds exactly to quantum

criticality so that the basic vision about quantum dynamics of quantum TGD would lead directly to a
precise identification of the preferred extremals. Something which I should have noticed for more than
decade ago! The question whether these extremals correspond to absolute minima remains however
open.

The vanishing of second variations of preferred extremals -at least for deformations representing
dynamical symmetries, suggests a generalization of catastrophe theory of Thom, where the rank of
the matrix defined by the second derivatives of potential function defines a hierarchy of criticalities
with the tip of bifurcation set of the catastrophe representing the complete vanishing of this matrix.
In the recent case this theory would be generalized to infinite-dimensional context. There are three
kind of variables now but quantum classical correspondence (holography) allows to reduce the types
of variables to two.

1. The variations of X4(X3
l ) vanishing at the intersections of X4(X3

l ) with the light-like boundaries
of causal diamonds CD would represent behavior variables. At least the vacuum extremals of
Kähler action would represent extremals for which the second variation vanishes identically (the
”tip” of the multi-furcation set).

2. The zero modes of Kähler function would define the control variables interpreted as classical
degrees of freedom necessary in quantum measurement theory. By effective 2-dimensionality (or
holography or quantum classical correspondence) meaning that the configuration space metric
is determined by the data coming from partonic 2-surfaces X2 at intersections of X3

l with
boundaries of CD, the interiors of 3-surfaces X3 at the boundaries of CDs in rough sense
correspond to zero modes so that there is indeed huge number of them. Also the variables
characterizing 2-surface, which cannot be complexified and thus cannot contribute to the Kähler
metric of configuration space represent zero modes. Fixing the interior of the 3-surface would
mean fixing of control variables. Extremum property would fix the 4-surface and behavior
variables if boundary conditions are fixed to sufficient degree.

3. The complex variables characterizing X2 would represent third kind of variables identified as
quantum fluctuating degrees of freedom contributing to the configuration space metric. Quantum
classical correspondence requires 1-1 correspondence between zero modes and these variables.
This would be essentially holography stating that the 2-D ”causal boundary” X2 of X3(X2)
codes for the interior. Preferred extremal property identified as criticality condition would
realize the holography by fixing the values of zero modes once X2 is known and give rise to
the holographic correspondence X2 → X3(X2). The values of behavior variables determined by
extremization would fix then the space-time surface X4(X3

l ) as a preferred extremal.

4. Clearly, the presence of zero modes would be absolutely essential element of the picture. Quan-
tum criticality, quantum classical correspondence, holography, and preferred extremal property
would all represent more or less the same thing. One must of course be very cautious since the
boundary conditions at X3

l involve normal derivative and might bring in delicacies forcing to
modify the simplest heuristic picture.

The basic question is whether number theoretic view about preferred extremals imply absolute
minimization or something analogous to it.

1. The number theoretic conditions defining preferred extremals are purely algebraic and make
sense also p-adically and this is enough since p-adic variants of field equations make sense al-
though the notion of Kähler action does not make sense as integral. Despite this the identification
of the vacuum functional as exponent of Kähler function as Dirac determinant allows to define
the exponent of Kähler function as a p-adic number [K15] .

2. The general objection against all extremization principles is that they do not make sense p-
adically since p-adic numbers are not well-ordered.

3. These observations do not encourage the idea about equivalence of the two approaches. On the
other hand, real and p-adic sectors are related by algebraic continuation and it could be quite
enough if the equivalence were true in real context alone.
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The finite-dimensional analogy allows to compare absolute minimization and criticality with each
other.

1. Absolute minimization would select the branch of Thom’s catastrophe surface with the smallest
value of potential function for given values of control variables. In general this value would not
correspond to criticality since absolute minimization says nothing about the values of control
variables (zero modes).

2. Criticality forces the space-time surface to belong to the bifurcation set and thus fixes the values
of control variables, that is the interior of 3-surface assignable to the partonic 2-surface, and
realized holography. If the catastrophe has more than N = 3 sheets, several preferred extremals
are possible for given values of control variables fixing X3(X2) unless one assumes that absolute
minimization or some other criterion is applied in the bifurcation set. In this sense absolute
minimization might make sense in the real context and if the selection is between finite number
of alternatives is in question, it should be possible carry out the selection in number theoretically
universal manner.

2.2.4 Can one determine experimentally the shape of the space-time sur-
face?

The question ’Can one determine experimentally the shape of the space-time surface?’ does not relate
directly to the topic of this chapter in technical sense, and the only excuse for its inclusion is the title
of this section plus the fact that the general conceptual framework behind quantum TGD assumes
an affirmative answer to this question. If physics were purely classical physics, operationalism in
the strong sense of the word would require that one can experimentally determine the shape of the
space-time as a surface of the imbedding space with arbitrary accuracy by measuring suitable classical
observables. In quantum physics situation is considerably more complex and quantum effects are both
a blessing and a curse.

Measuring classically the shape of the space-time surface

Consider first the purely classical situation to see what is involved.

1. All classical gauge fields are expressible in terms of CP2 coordinates and their space-time gradi-
ents so that the measurement of four field quantities with some finite resolution in some space-
time volume could in principle give enough information to deduce the remaining field quantities.
The requirement that space-time surface corresponds to an extremal of Kähler action gives a
further strong consistency constraint and one can in principle test whether this constraint is
satisfied. A highly over-determined system is in question.

2. The freedom to choose the space-time coordinates freely causes complications and it seems that
one must be able to determine also the distances between the points at which the field quantities
are determined. At purely classical Riemannian level this boils down to the measurement of the
induced metric defining classical gravitational field. In macroscopic length scales one could base
the approach to iterative procedure in which one starts from the assumption that the coordinates
used are Minkowski coordinates and gravitational corrections are very weak.

3. The measurement of induced Kähler form in some space-time volume determines space-time
surface only modulo canonical transformations of CP2 and isometries of the imbedding space.
If one measures classical electromagnetic field, which is not canonical invariant in general case,
with some precision, one can determine to what kind of surface space-time region corresponds
apart from the action of the isometries of H.

Quantum measurement of the shape of the space-time surface

In practice the measurement of the shape of the space-time surface is necessarily a bootstrap procedure
based on the model for space-time region and on the requirement of internal consistency. Many-sheeted
space-time and quantum phenomena produce considerable complications but also provide universal
measurement standards.

Consider first how quantum effects could help to measure classical fields and distances.
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1. The measurement of distances by measuring first induced metric at each point of space-time
sheet is rather unpractical procedure. Many-sheeted space-time however comes in rescue here.
p-Adic length scale hypothesis provides a hierarchy of natural length scales and one can use p-
adic length and time scales as natural units of length and time: space-time sheets serve as meter
sticks. For instance, length measurement reduces in principle to a finite number of operations
using various space-time sheets with standardized lengths given by p-adic length scales. Also
various transition frequencies and corresponding wavelengths provide universal time and length
units. Atomic clock provides a standard example of this kind of time unit. A highly nontrivial
implication is the possibility to deduce the composition of distant star from its spectral lines.
Without p-adic length scale hypothesis the scales for the mass spectra of the elementary particles
would be variable and atomic spectra would vary from point to point in TGD universe.

Do the p-adic length scales correspond to the length units of the induced metric or of M4
+ metric?

If the topological condensation a meter stick space-time sheet at a larger space-time sheet does
not stretch the meter stick but only bends it, the length topologically condensed meter stick in
the induced metric equals to its original length measured using M4

+ metric.

2. If superconducting order parameters are expressible in terms of the CP2 coordinates (there
is evidence for this, see the chapter ”Macroscopic quantum phenomena and CP2 geometry”),
one might determine directly the CP2 coordinates as functions of Minkowski coordinates and
this would allow to estimate all classical fields directly and thus to deduce strong consistency
constraints.

3. At quantum level only the fluxes of the classical fields through surface areas with some min-
imum size determined by the length scale resolution can be measured. In case of magnetic
fields the quantization of the magnetic flux simplifies the situation dramatically. Topological
field quantization quite generally modifies the measurement of continuous field variables to the
measurement of fluxes. Interestingly, the construction of the configuration space geometry uses
as configuration space coordinates various electric and magnetic fluxes over 2-dimensional cross
sections of 3-surface.

Quantum effects introduce also difficulties and restrictions.

1. Canonical transformations localized with respect to the boundary of the light cone or more
general light like surfaces act as isometries of the configuration space and one can determine
the space-time surface only modulo these isometries. Even more, only the values of the non-
quantum fluctuating zero modes characterizing the shape and size of the space-time surface
are measurable with arbitrary precision in quantum theory. At the level of conscious experience
quantum fluctuating degrees of freedom correspond to sensory qualia like color having no classical
geometric content.

2. Space-time surface is replaced by a new one in each quantum jump (or rather the superposition
of perceptively equivalent space-time surfaces). Only in the approximation that the change of
the space-time region in single quantum jump is negligible, the measurement of the shape of
space-time surface makes sense. The physical criterion for this is that dissipation is negligible.
The change of the space-time region in single quantum jump can indeed be negligible if the
measurement is performed with a finite resolution.

3. Conscious experience of self is an average over quantum jumps defining moments of conscious-
ness. In particular, only the average increment of the zero modes is experienced and this means
that one cannot fix the space-time surface apart from canonical transformation affecting the
zero modes. Again the notion of measurement resolution comes in rescue.

4. The possibility of coherent states of photons and gravitons brings in a further quantum com-
plication since the effective classical em and gravitational fields are superpositions of classical
field and the order parameter describing the coherent state. In principle the extremely strong
constraints between the classical field quantities allow to measure both the order parameters of
the coherent phases and classical fields.
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Quantum holography and the shape of the space-time surface

If the Dirac determinant associated with the generalized eigenvalue spectrum of the modified Dirac
operator DK(X2) indeed codes for Kähler action of a preferred extremal, it is fair to say that a
lot of information about the shape of the space-time surface is coded to physical observables, which
eigenvalues indeed represent. Quantum gravitational holography due to the Bohr orbit like character
of space-time surface reduces the amount of information needed. Only a finite number of eigenvalues is
involved and the eigen modes are associated with the 3-D light-like wormhole throats rather than with
the space-time surface itself. If the eigenvalues were known or could be measured with infinite accuracy,
one could in principle fix the boundary conditions at X3

l and solve field equations determining the
preferred extremal of Kähler action.

What is of course needed is the complete knowledge of the light-like 3-surfaces X3
l . Needless to

say, in practice a complete knowledge of X3
l is impossible since measurement resolution is finite. The

notion number theoretic braid provides a precise realization for the finite measurement accuracy at
space-time level. At the level of configuration space spinors fields (world of classical worlds) just
the fact that the number of eigenvalues is finite is correlate for the finite measurement accuracy.
Furthermore, quantum states are actually quantum superpositions of 3-surfaces, which means that
one can only speak about quantum average space-time surface for which the phase factors coding for
the quantum numbers of elementary particles assigned to the strands of number theoretic braids are
stationary so that correlation of classical gauge charges with quantum gauge charges is obtained.

2.3 General view about field equations

In this section field equations are deduced and discussed in general level. The fact that the divergence
of the energy momentum tensor, Lorentz 4-force, does not vanish in general, in principle makes possible
the mimicry of even dissipation and of the second law. For asymptotic self organization patterns for
which dissipation is absent the Lorentz 4-force must vanish. This condition is guaranteed if Kähler
current is proportional to the instanton current in the case that CP2 projection of the space-time
sheet is smaller than four and vanishes otherwise. An attractive identification for the vanishing of
Lorentz 4-force is as a condition equivalent with the selection of preferred extremal of Kähler action.
If preferred extremals correspond to absolute minima this principle would be essentially equivalent
with the second law of thermodynamics.

2.3.1 Field equations

The requirement that Kähler action is stationary leads to the following field equations in the interior
of the four-surface

Dβ(Tαβhkα) − jαJkl∂αh
l = 0 ,

Tαβ = JναJ β
ν −

1

4
gαβJµνJµν . (2.3.1)

Here Tαβ denotes the traceless canonical energy momentum tensor associated with the Kähler action.
An equivalent form for the first equation is

TαβHk
αβ − jα(J β

α hkβ + Jkl∂αh
l) = 0 .

Hk
αβ = Dβ∂αh

k . (2.3.2)

Hk
αβ denotes the components of the second fundamental form and jα = DβJ

αβ is the gauge current
associated with the Kähler field.

On the boundaries of X4 and at wormhole throats the field equations are given by the expression

∂LK
∂nhk

= Tnβ∂βh
k − Jnα(J β

α ∂βh
k + Jkl)∂αh

k) = 0 . (2.3.3)
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At wormhole throats problems are caused by the vanishing of metric determinant implying that
contravariant metric is singular.

For M4 coordinates boundary conditions are satisfied if one assumes

Tnβ = 0 (2.3.4)

stating that there is no flow of four-momentum through the boundary component or wormhole throat.
This means that there is no energy exchange between Euclidian and Minkowskian regions so that
Euclidian regions provide representations for particles as autonomous units. This is in accordance
with the general picture [K33] . Note that momentum transfer with external world necessarily involves
generalized Feynman diagrams also at classical level.

For CP2 coordinates the boundary conditions are more delicate. The construction of configuration
space spinor structure [K15] led to the conditions

gni = 0 , Jni = 0 . (2.3.5)

Jni = 0 does not and should not follow from this condition since contravariant metric is singular. It
seems that limiting procedure is necessary in order to see what comes out.

The condition that Kähler electric charge defined as a gauge flux is non-vanishing would require
that the quantity Jnr

√
g is finite (here r refers to the light-like coordinate of X3

l ). Also gnr
√
g4 which

is analogous to gravitational flux if n is interpreted as time coordinate could be non-vanishing. These
conditions are consistent with the above condition if one has

Jni = 0 , gni = 0 , Jir = 0 , gir = 0 ,

Jnk = 0 k 6= r , gnk = 0 k 6= r , Jnr
√
g4 6= 0 , gnr

√
g4 6= 0 .

(2.3.6)

The interpretation of this conditions is rather transparent.

1. The first two conditions state that covariant form of the induced Kähler electric field is in direc-
tion normal to X3

l and metric separate into direct sum of normal and tangential contributions.
Fifth and sixth condition state the same in contravariant form for k 6= n.

2. Third and fourth condition state that the induced Kähler field at X3
l is purely magnetic and

that the metric of x3
l reduces to a block diagonal form. The reduction to purely magnetic field is

of obvious importance as far as the understanding of the generalized eigen modes of the modified
Dirac operator is considered [K15] .

3. The last two conditions must be understood as a limit and 6= means only the possibility of
non-vanishing Kähler gauge flux or analog of gravitational flux through X3

l .

4. The vision inspired by number theoretical compactification allows to identify r and n in terms
of the light-like coordinates assignable to an integrable distribution of planes M2(x) assumed
to be assignable to M4 projection of X4(X3

l ). Later it will be found that Hamilton-Jacobi
structure assignable to the extremals indeed means the existence of this kind of distribution
meaning slicing of X4(X3

l ) both by string world sheets and dual partonic 2-surfaces as well as
by light-like 3-surfaces Y 3

l .

5. The physical analogy for the situation is the surface of an ideal conductor. It would not be
surprising that these conditions are satisfied by all induced gauge fields.

2.3.2 Topologization and light-likeness of the Kähler current as alternative
manners to guarantee vanishing of Lorentz 4-force

The general solution of 4-dimensional Einstein-Yang Mills equations in Euclidian 4-metric relies on
self-duality of the gauge field, which topologizes gauge charge. This topologization can be achieved by
a weaker condition, which can be regarded as a dynamical generalization of the Beltrami condition. An
alternative manner to achieve vanishing of the Lorentz 4-force is light-likeness of the Kähler 4-current.
This does not require topologization.
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Topologization of the Kähler current for DCP2
= 3: covariant formulation

The condition states that Kähler 4-current is proportional to the instanton current whose divergence is
instanton density and vanishes when the dimension of CP2 projection is smaller than four: DCP2

< 4.
For DCP2

= 2 the instanton 4-current vanishes identically and topologization is equivalent with the
vanishing of the Kähler current.

If the simplest vision about light-like 3-surfaces as basic dynamical objects is accepted DCP2
= 2,

corresponds to a non-physical situation and only the deformations of these surfaces - most naturally
resulting by gluing of CP2 type vacuum extremals on them - can represent preferred extremals of
Kähler action. One can however speak about DCP2

= 2 phase if 4-surfaces are obtained are obtained
in this manner.

jα ≡ DβJ
αβ = ψ × jαI = ψ × εαβγδJβγAδ . (2.3.7)

Here the function ψ is an arbitrary function ψ(sk) of CP2 coordinates sk regarded as functions of
space-time coordinates. It is essential that ψ depends on the space-time coordinates through the
CP2 coordinates only. Hence the representation as an imbedded gauge field is crucial element of the
solution ansatz.

The field equations state the vanishing of the divergence of the 4-current. This is trivially true for
instanton current for DCP2 < 4. Also the contraction of ∇ψ (depending on space-time coordinates
through CP2 coordinates only) with the instanton current is proportional to the winding number
density and therefore vanishes for DCP2

< 4.
The topologization of the Kähler current guarantees the vanishing of the Lorentz 4-force. Indeed,

using the self-duality condition for the current, the expression for the Lorentz 4-force reduces to a
term proportional to the instanton density:

jαJαβ = ψ × jαI Jαβ
= ψ × εαµνδJµνAδJαβ . (2.3.8)

Since all vector quantities appearing in the contraction with the four-dimensional permutation tensor
are proportional to the gradients of CP2 coordinates, the expression is proportional to the instanton
density, and thus winding number density, and vanishes for DCP2

< 4.
Remarkably, the topologization of the Kähler current guarantees also the vanishing of the term

jαJkl∂αs
k in the field equations for CP2 coordinates. This means that field equations reduce in both

M4
+ and CP2 degrees of freedom to

TαβHk
αβ = 0 . (2.3.9)

These equations differ from the equations of minimal surface only by the replacement of the metric
tensor with energy momentum tensor. The earlier proposal that quaternion conformal invariance in a
suitable sense might provide a general solution of the field equations could be seen as a generalization
of the ordinary conformal invariance of string models. If the topologization of the Kähler current
implying effective dimensional reduction in CP2 degrees of freedom is consistent with quaternion
conformal invariance, the quaternion conformal structures must differ for the different dimensions of
CP2 projection.

Topologization of the Kähler current for DCP2 = 3: non-covariant formulation

In order to gain a concrete understanding about what is involved it is useful to repeat these arguments
using the 3-dimensional notation. The components of the instanton 4-current read in three-dimensional
notation as

jI = E ×A+ φB , ρI = B ·A . (2.3.10)

The self duality conditions for the current can be written explicitly using 3-dimensional notation and
read
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∇×B − ∂tE = j = ψjI = ψ
(
φB + E ×A

)
,

∇ · E = ρ = ψρI . (2.3.11)

For a vanishing electric field the self-duality condition for Kähler current reduces to the Beltrami
condition

∇×B = αB , α = ψφ . (2.3.12)

The vanishing of the divergence of the magnetic field implies that α is constant along the field lines
of the flow. When φ is constant and A is time independent, the condition reduces to the Beltrami
condition with α = φ = constant, which allows an explicit solution [B52] .

One can check also the vanishing of the Lorentz 4-force by using 3-dimensional notation. Lorentz
3-force can be written as

ρIE + j ×B = ψB ·AE + ψ
(
E ×A+ φB

)
×B = 0 . (2.3.13)

The fourth component of the Lorentz force reads as

j · E = ψB · E + ψ
(
E ×A+ φB

)
· E = 0 . (2.3.14)

The remaining conditions come from the induction law of Faraday and could be guaranteed by ex-
pressing E and B in terms of scalar and vector potentials.

The density of the Kähler electric charge of the vacuum is proportional to the the helicity density
of the so called helicity charge ρ = ψρI = ψB ·A. This charge is topological charge in the sense that
it does not depend on the induced metric at all. Note the presence of arbitrary function ψ of CP2

coordinates.
Further conditions on the functions appearing in the solution ansatz come from the 3 independent

field equations for CP2 coordinates. What is remarkable that the generalized self-duality condition for
the Kähler current allows to understand the general features of the solution ansatz to very high degree
without any detailed knowledge about the detailed solution. The question whether field equations
allow solutions consistent with the self duality conditions of the current will be dealt later. The
optimistic guess is that the field equations and topologization of the Kähler current relate to each
other very intimately.

Vanishing or light likeness of the Kähler current guarantees vanishing of the Lorentz
4-force for DCP2 = 2

For DCP2
= 2 one can always take two CP2 coordinates as space-time coordinates and from this

it is clear that instanton current vanishes so that topologization gives a vanishing Kähler current.
In particular, the Beltrami condition ∇ × B = αB is not consistent with the topologization of the
instanton current for DCP2

= 2.
DCP2 = 2 case can be treated in a coordinate invariant manner by using the two coordinates of

CP2 projection as space-time coordinates so that only a magnetic or electric field is present depending
on whether the gauge current is time-like or space-like. Light-likeness of the gauge current provides
a second manner to achieve the vanishing of the Lorentz force and is realized in case of massless
extremals having DCP2

= 2: this current is in the direction of propagation whereas magnetic and
electric fields are orthogonal to it so that Beltrami conditions is certainly not satisfied.

Under what conditions topologization of Kähler current yields Beltrami conditions?

Topologization of the Kähler 4-current gives rise to magnetic Beltrami fields if either of the following
conditions is satisfied.
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1. The E×A term contributing besides φB term to the topological current vanishes. This requires
that E and A are parallel to each other

E = ∇Φ− ∂tA = βA (2.3.15)

This condition is analogous to the Beltrami condition. Now only the 3-space has as its coordi-
nates time coordinate and two spatial coordinates and and B is replaced with A. Since E and
B are orthogonal, this condition implies B ·A = 0 so that Kähler charge density is vanishing.

2. The vector E ×A is parallel to B.

E ×A = βB (2.3.16)

The condition is consistent with the orthogonality of E and B but implies the orthogonality of
A and B so that electric charge density vanishes

In both cases vector potential fails to define a contact structure since B ·A vanishes (contact structures
are discussed briefly below), and there exists a global coordinate along the field lines of A and the full
contact structure is lost again. Note however that the Beltrami condition for magnetic field means
that magnetic field defines a contact structure irrespective of whether B · A vanishes or not. The
transition from the general case to Beltrami field would thus involve the replacement

(A,B)→∇× (B, j)

induced by the rotor.
One must of course take these considerations somewhat cautiously since the inner product depends

on the induced 4-metric and it might be that induced metric could allow small vacuum charge density
and make possible genuine contact structure.

Hydrodynamic analogy

The field equations of TGD are basically hydrodynamic equations stating the local conservation of the
currents associated with the isometries of the imbedding space. Therefore it is intriguing that Beltrami
fields appear also as solutions of ideal magnetohydrodynamics equations and as steady solutions of
non-viscous incompressible flow described by Euler equations [B30] .

In hydrodynamics the role of the magnetic field is taken by the velocity field. This raises the
idea that the incompressible flow could occur along the field lines of some natural vector field. The
considerations of the last section show that the instanton current defines a universal candidate as
far as the general solution of the field equations is considered. All conserved currents defined by the
isometry charges would be parallel to the instanton current: one can say each flow line of instanton
current is a carrier of conserved quantum numbers. Perhaps even the flow lines of an incompressible
hydrodynamic flow could in reasonable approximation correspond to those of instanton current.

The conservation laws are satisfied for each flow line separately and therefore it seems that one
cannot have the analog of viscous hydrodynamic flow in this framework. One the other hand, quan-
tum classical correspondence requires that also dissipative effects have space-time correlates. Does
something go badly wrong?

One must however take this argument with a grain of salt. Dissipation, that is the transfer
of conserved quantities to degrees of freedom corresponding to shorter scales, could correspond to
a transfer of these quantities between different space-time sheets of the many-sheeted space-time.
Here the opponent could however argue that larger space-time sheets mimic the dissipative dynamics
in shorter scales and that classical currents represent ”symbolically” averaged currents in shorter
length scales, and that the local non-conservation of energy momentum tensor consistent with local
conservation of isometry currents provides a unique manner to mimic the dissipative dynamics.

An argument allowing to circumvent the objection in a more convincing manner emerged more
than decade after the emergence of the interpretation in terms of asymptotic self-organization patterns
[K15, K28] .
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1. The construction of quantum TGD through second quantization of the modified Dirac equation
led through several twists to the realization that the addition of a 3-dimensional measurement
interaction term to the modified Dirac action is necessary in order to have quantum classical
correspondence in the sense that the preferred extremals depend on the quantum numbers la-
beling states of super-conformal representations. Among many other things this also guarantees
that the fermionic propagator has stringy character.

2. This term characterizes measurement interaction inducing state function reductions and hence
also dissipation. It induces to a Kähler function a term which is real part of a holomorphic
function of complex coordinates of the configuration space (”world of classical worlds”) and a
priori arbitrary function of zero modes and does not therefore contribute to the Kähler metric of
configuration space. Kähler action is however affected by a term describing at space-time level
the measurement interaction so that extremals do not remain the same.

3. Dissipation is absent in space-time regions where the measurement interaction term vanishes and
there are good reasons to expect that also Kähler action reduces to Kähler action. Therefore
preferred extremals can be interpreted as space-time correlates for asymptotic self-organization
patterns.

The stability of generalized Beltrami fields

The stability of generalized Beltrami fields is of high interest since unstable points of space-time sheets
are those around which macroscopic changes induced by quantum jumps are expected to be localized.

1. Contact forms and contact structures

The stability of Beltrami flows has been studied using the theory of contact forms in three-
dimensional Riemann manifolds [B39] . Contact form is a one-form A (that is covariant vector field
Aα) with the property A ∧ dA 6= 0. In the recent case the induced Kähler gauge potential Aα and
corresponding induced Kähler form Jαβ for any 3-sub-manifold of space-time surface define a contact
form so that the vector field Aα = gαβAβ is not orthogonal with the magnetic field Bα = εαβδJβγ .
This requires that magnetic field has a helical structure. Induced metric in turn defines the Riemann
structure.

If the vector potential defines a contact form, the charge density associated with the topologized
Kähler current must be non-vanishing. This can be seen as follows.

1. The requirement that the flow lines of a one-form Xµ defined by the vector field Xµ as its
dual allows to define a global coordinate x varying along the flow lines implies that there is an
integrating factor φ such that φX = dx and therefore d(φX) = 0. This implies dlog(φ) ∧X =
−dX. From this the necessary condition for the existence of the coordinate x is X ∧ dX = 0.
In the three-dimensional case this gives X · (∇×X) = 0.

2. This condition is by definition not satisfied by the vector potential defining a contact form so
that one cannot identify a global coordinate varying along the flow lines of the vector potential.
The condition B · A 6= 0 states that the charge density for the topologized Kähler current is
non-vanishing. The condition that the field lines of the magnetic field allow a global coordinate
requires B · ∇ ×B = 0. The condition is not satisfied by Beltrami fields with α 6= 0. Note that
in this case magnetic field defines a contact structure.

Contact structure requires the existence of a vector ξ satisfying the condition A(ξ) = 0. The vector
field ξ defines a plane field, which is orthogonal to the vector field Aα. Reeb field in turn is a vector
field for which A(X) = 1 and dA(X; ) = 0 hold true. The latter condition states the vanishing of the
cross product X × B so that X is parallel to the Kähler magnetic field Bα and has unit projection
in the direction of the vector field Aα. Any Beltrami field defines a Reeb field irrespective of the
Riemannian structure.

2. Stability of the Beltrami flow and contact structures

Contact structures are used in the study of the topology and stability of the hydrodynamical
flows [B39] , and one might expect that the notion of contact structure and its proper generalization
to the four-dimensional context could be useful in TGD framework also. An example giving some
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idea about the complexity of the flows defined by Beltrami fields is the Beltrami field in R3 possessing
closed orbits with all possible knot and link types simultaneously [B39] !

Beltrami flows associated with Euler equations are known to be unstable [B39] . Since the flow is
volume preserving, the stationary points of the Beltrami flow are saddle points at which also vorticity
vanishes and linear instabilities of Navier-Stokes equations can develop. From the point of view of
biology it is interesting that the flow is stabilized by vorticity which implies also helical structures.
The stationary points of the Beltrami flow correspond in TGD framework to points at which the
induced Kähler magnetic field vanishes. They can be unstable by the vacuum degeneracy of Kähler
action implying classical non-determinism. For generalized Beltrami fields velocity and vorticity (both
divergence free) are replaced by Kähler current and instanton current.

More generally, the points at which the Kähler 4-current vanishes are expected to represent poten-
tial instabilities. The instanton current is linear in Kähler field and can vanish in a gauge invariant
manner only if the induced Kähler field vanishes so that the instability would be due to the vacuum
degeneracy also now. Note that the vanishing of the Kähler current allows also the generation of
region with DCP2

= 4. The instability of the points at which induce Kähler field vanish is manifested
in quantum jumps replacing the generalized Beltrami field with a new one such that something new
is generated around unstable points. Thus the regions in which induced Kähler field becomes weak
are the most interesting ones. For example, unwinding of DNA could be initiated by an instability of
this kind.

2.3.3 How to satisfy field equations?

The topologization of the Kähler current guarantees also the vanishing of the term jαJkl∂αs
k in the

field equations for CP2 coordinates. This means that field equations reduce in both M4
+ and CP2

degrees of freedom to

TαβHk
αβ = 0 . (2.3.17)

These equations differ from the equations of minimal surface only by the replacement of the metric
tensor with energy momentum tensor. The following approach utilizes the properties of Hamilton
Jacobi structures of M4

+ introduced in the study of massless extremals and contact structures of CP2

emerging naturally in the case of generalized Beltrami fields.

String model as a starting point

String model serves as a starting point.

1. In the case of Minkowskian minimal surfaces representing string orbit the field equations reduce
to purely algebraic conditions in light cone coordinates (u, v) since the induced metric has only
the component guv, whereas the second fundamental form has only diagonal components Hk

uu

and Hk
vv.

2. For Euclidian minimal surfaces (u, v) is replaced by complex coordinates (w,w) and field equa-
tions are satisfied because the metric has only the component gww and second fundamental form

has only components of type Hk
ww and Hk

ww. The mechanism should generalize to the recent
case.

The general form of energy momentum tensor as a guideline for the choice of coordinates

Any 3-dimensional Riemann manifold allows always a orthogonal coordinate system for which the
metric is diagonal. Any 4-dimensional Riemann manifold in turn allows a coordinate system for
which 3-metric is diagonal and the only non-diagonal components of the metric are of form gti. This
kind of coordinates might be natural also now. When E and B are orthogonal, energy momentum
tensor has the form
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T =


E2+B2

2 0 0 EB

0 E2+B2

2 0 0

0 0 −E2+B2

2 0

EB 0 0 E2−B2

2

 (2.3.18)

in the tangent space basis defined by time direction and longitudinal direction E×B, and transversal
directions E and B. Note that T is traceless.

The optimistic guess would be that the directions defined by these vectors integrate to three
orthogonal coordinates of X4 and together with time coordinate define a coordinate system containing
only gti as non-diagonal components of the metric. This however requires that the fields in question
allow an integrating factor and, as already found, this requires ∇×X ·X = 0 and this is not the case
in general.

Physical intuition suggests however that X4 coordinates allow a decomposition into longitudinal
and transversal degrees freedom. This would mean the existence of a time coordinate t and longitudinal
coordinate z the plane defined by time coordinate and vector E×B such that the coordinates u = t−z
and v = t + z are light like coordinates so that the induced metric would have only the component
guv whereas gvv and guu would vanish in these coordinates. In the transversal space-time directions
complex space-time coordinate coordinate w could be introduced. Metric could have also non-diagonal
components besides the components gww and guv.

Hamilton Jacobi structures in M4
+

Hamilton Jacobi structure in M4
+ can understood as a generalized complex structure combing transver-

sal complex structure and longitudinal hyper-complex structure so that notion of holomorphy and
Kähler structure generalize.

1. Denote by mi the linear Minkowski coordinates of M4. Let (S+, S−, E1, E2) denote local co-
ordinates of M4

+ defining a local decomposition of the tangent space M4 of M4
+ into a di-

rect, not necessarily orthogonal, sum M4 = M2 ⊕ E2 of spaces M2 and E2. This decom-
position has an interpretation in terms of the longitudinal and transversal degrees of free-
dom defined by local light-like four-velocities v± = ∇S± and polarization vectors εi = ∇Ei
assignable to light ray. Assume that E2 allows complex coordinates w = E1 + iE2 and
w = E1 − iE2. The simplest decomposition of this kind corresponds to the decomposition
(S+ ≡ u = t+ z, S− ≡ v = t− z, w = x+ iy, w = x− iy).

2. In accordance with this physical picture, S+ and S− define light-like curves which are normals
to light-like surfaces and thus satisfy the equation:

(∇S±)2 = 0 .

The gradients of S± are obviously analogous to local light like velocity vectors v = (1, v) and
ṽ = (1,−v). These equations are also obtained in geometric optics from Hamilton Jacobi
equation by replacing photon’s four-velocity with the gradient ∇S: this is consistent with the
interpretation of massless extremals as Bohr orbits of em field. S± = constant surfaces can be
interpreted as expanding light fronts. The interpretation of S± as Hamilton Jacobi functions
justifies the term Hamilton Jacobi structure.

The simplest surfaces of this kind correspond to t = z and t = −z light fronts which are planes.
They are dual to each other by hyper complex conjugation u = t− z → v = t+ z. One should
somehow generalize this conjugation operation. The simplest candidate for the conjugation
S+ → S− is as a conjugation induced by the conjugation for the arguments: S+(t − z, t +
z, x, y)→ S−(t− z, t+ z, x, y) = S+(t+ z, t− z, x,−y) so that a dual pair is mapped to a dual
pair. In transversal degrees of freedom complex conjugation would be involved.

3. The coordinates (S±, w, w) define local light cone coordinates with the line element having the
form
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ds2 = g+−dS
+dS− + gwwdwdw

+ g+wdS
+dw + g+wdS

+dw

+ g−wdS
−dw + g−wdS

−dw . (2.3.19)

Conformal transformations of M4
+ leave the general form of this decomposition invariant. Also

the transformations which reduces to analytic transformations w → f(w) in transversal de-
grees of freedom and hyper-analytic transformations S+ → f(S+), S− → f(S−) in longitudinal
degrees of freedom preserve this structure.

4. The basic idea is that of generalized Kähler structure meaning that the notion of Kähler function
generalizes so that the non-vanishing components of metric are expressible as

gww = ∂w∂wK , g+− = ∂S+∂S−K ,

gw± = ∂w∂S±K , gw± = ∂w∂S±K .
(2.3.20)

for the components of the metric. The expression in terms of Kähler function is coordinate
invariant for the same reason as in case of ordinary Kähler metric. In the standard lightcone
coordinates the Kähler function is given by

K = w0w0 + uv , w0 = x+ iy , u = t− z , v = t+ z . (2.3.21)

The Christoffel symbols satisfy the conditions

{ kw w} = 0 , { k+−} = 0 . (2.3.22)

If energy momentum tensor has only the components Tww and T+−, field equations are satisfied
in M4

+ degrees of freedom.

5. The Hamilton Jacobi structures related by these transformations can be regarded as being equiv-
alent. Since light-like 3- surface is, as the dynamical evolution defined by the light front, fixed
by the 2-surface serving as the light source, these structures should be in one-one correspon-
dence with 2-dimensional surfaces with two surfaces regarded as equivalent if they correspond
to different time=constant snapshots of the same light front, or are related by a conformal
transformation of M4

+. Obviously there should be quite large number of them. Note that the
generating two-dimensional surfaces relate also naturally to quaternion conformal invariance and
corresponding Kac Moody invariance for which deformations defined by the M4 coordinates as
functions of the light-cone coordinates of the light front evolution define Kac Moody algebra,
which thus seems to appear naturally also at the level of solutions of field equations.

The task is to find all possible local light cone coordinates defining one-parameter families 2-surfaces
defined by the condition Si = constant, i = + or = −, dual to each other and expanding with
light velocity. The basic open questions are whether the generalized Kähler function indeed makes
sense and whether the physical intuition about 2-surfaces as light sources parameterizing the set of
all possible Hamilton Jacobi structures makes sense.

Hamilton Jacobi structure means the existence of foliations of the M4 projection of X4 by 2-D
surfaces analogous to string word sheets labeled by w and the dual of this foliation defined by partonic
2-surfaces labeled by the values of Si. Also the foliation by light-like 3-surfaces Y 3

l labeled by S± with
S∓ serving as light-like coordinate for Y 3

l is implied. This is what number theoretic compactification
and M8 − H duality predict when space-time surface corresponds to hyper-quaternionic surface of
M8 [K33, K74] .
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Contact structure and generalized Kähler structure of CP2 projection

In the case of 3-dimensional CP2 projection it is assumed that one can introduce complex coordi-
nates (ξ, ξ) and the third coordinate s. These coordinates would correspond to a contact structure in
3-dimensional CP2 projection defining transversal symplectic and Kähler structures. In these coordi-
nates the transversal parts of the induced CP2 Kähler form and metric would contain only components
of type gww and Jww. The transversal Kähler field Jww would induce the Kähler magnetic field and
the components Jsw and Jsw the Kähler electric field.

It must be emphasized that the non-integrability of the contact structure implies that J cannot be
parallel to the tangent planes of s = constant surfaces, s cannot be parallel to neither A nor the dual
of J , and ξ cannot vary in the tangent plane defined by J . A further important conclusion is that
for the solutions with 3-dimensional CP2 projection topologized Kähler charge density is necessarily
non-vanishing by A ∧ J 6= 0 whereas for the solutions with DCP2 = 2 topologized Kähler current
vanishes.

Also the CP2 projection is assumed to possess a generalized Kähler structure in the sense that all
components of the metric except sss are derivable from a Kähler function by formulas similar to M4

+

case.

sww = ∂w∂wK , sws = ∂w∂sK , sws = ∂w∂sK . (2.3.23)

Generalized Kähler property guarantees that the vanishing of the Christoffel symbols of CP2 (rather
than those of 3-dimensional projection), which are of type { k

ξ ξ
}.

{ k
ξ ξ
} = 0 . (2.3.24)

Here the coordinates of CP2 have been chosen in such a manner that three of them correspond to the
coordinates of the projection and fourth coordinate is constant at the projection. The upper index
k refers also to the CP2 coordinate, which is constant for the CP2 projection. If energy momentum
tensor has only components of type T+− and Tww, field equations are satisfied even when if non-
diagonal Christoffel symbols of CP2 are present. The challenge is to discover solution ansatz, which
guarantees this property of the energy momentum tensor.

A stronger variant of Kähler property would be that also sss vanishes so that the coordinate
lines defined by s would define light like curves in CP2. The topologization of the Kähler current
however implies that CP2 projection is a projection of a 3-surface with strong Kähler property. Using
(s, ξ, ξ, S−) as coordinates for the space-time surface defined by the ansatz (w = w(ξ, s), S+ = S+(s))
one finds that gss must be vanishing so that stronger variant of the Kähler property holds true for
S− = constant 3-surfaces.

The topologization condition for the Kähler current can be solved completely generally in terms
of the induced metric using (ξ, ξ, s) and some coordinate of M4

+, call it x4, as space-time coordinates.
Topologization boils down to the conditions

∂β(Jαβ
√
g) = 0 for α ∈ {ξ, ξ, s} ,

g4i 6= 0 . (2.3.25)

Thus 3-dimensional empty space Maxwell equations and the non-orthogonality of X4 coordinate lines
and the 3-surfaces defined by the lift of the CP2 projection.

A solution ansatz yielding light-like current in DCP2
= 3 case

The basic idea is that of generalized Kähler structure and solutions of field equations as maps or
deformations of canonically imbedded M4

+ respecting this structure and guaranteing that the only non-

vanishing components of the energy momentum tensor are T ξξ and T s− in the coordinates (ξ, ξ, s, S−).

1. The coordinates (w, S+) are assumed to holomorphic functions of the CP2 coordinates (s, ξ)
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S+ = S+(s) , w = w(ξ, s) . (2.3.26)

Obviously S+ could be replaced with S−. The ansatz is completely symmetric with respect to
the exchange of the roles of (s, w) and (S+, ξ) since it maps longitudinal degrees of freedom to
longitudinal ones and transverse degrees of freedom to transverse ones.

2. Field equations are satisfied if the only non-vanishing components of the energy momentum

tensor are of type T ξξ and T s−. The reason is that the CP2 Christoffel symbols for projection
and projections of M4

+ Christoffel symbols are vanishing for these lower index pairs.

3. By a straightforward calculation one can verify that the only manner to achieve the required
structure of energy momentum tensor is to assume that the induced metric in the coordinates
(ξ, ξ, s, S−) has as non-vanishing components only gξξ and gs−

gss = 0 , gξs = 0 , gξs = 0 . (2.3.27)

Obviously the space-time surface must factorize into an orthogonal product of longitudinal and
transversal spaces.

4. The condition guaranteing the product structure of the metric is

sss = m+w∂sw(ξ, s)∂sS
+(s) +m+w∂sw(ξ, s)∂sS

+(s) ,
ssξ = m+w∂ξw(ξ)∂sS

+(s) ,

ssξ = m+w∂ξw(ξ)∂sS
+(s) .

(2.3.28)

Thus the function of dynamics is to diagonalize the metric and provide it with strong Kähler
property. Obviously the CP2 projection corresponds to a light-like surface for all values of S− so
that space-time surface is foliated by light-like surfaces and the notion of generalized conformal
invariance makes sense for the entire space-time surface rather than only for its boundary or
elementary particle horizons.

5. The requirement that the Kähler current is proportional to the instanton current means that
only the j− component of the current is non-vanishing. This gives the following conditions

jξ
√
g = ∂β(Jξβ

√
g) = 0 , jξ

√
g = ∂β(Jξβ

√
g) = 0 ,

j+√g = ∂β(J+β√g) = 0 .

(2.3.29)

Since J+β vanishes, the condition

√
gj+ = ∂β(J+β√g) = 0 (2.3.30)

is identically satisfied. Therefore the number of field equations reduces to three.

The physical interpretation of the solution ansatz deserves some comments.
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1. The light-like character of the Kähler current brings in mind CP2 extremals for which CP2

projection is light like. This suggests that the topological condensation of CP2 type extremal
occurs on DCP2 = 3 helical space-time sheet representing zitterbewegung. In the case of many-
body system light-likeness of the current does not require that particles are massless if particles

of opposite charges can be present. Field tensor has the form (Jξξ, Jξ−, Jξ−). Both helical
magnetic field and electric field present as is clear when one replaces the coordinates (S+, S−)
with time-like and space-like coordinate. Magnetic field dominates but the presence of electric
field means that genuine Beltrami field is not in question.

2. Since the induced metric is product metric, 3-surface is metrically product of 2-dimensional
surface X2 and line or circle and obeys product topology. If absolute minima correspond to
asymptotic self-organization patterns, the appearance of the product topology and even metric
is not so surprising. Thus the solutions can be classified by the genus of X2. An interesting
question is how closely the explanation of family replication phenomenon in terms of the topology
of the boundary component of elementary particle like 3-surface relates to this. The heaviness
and instability of particles which correspond to genera g > 2 (sphere with more than two handles)
might have simple explanation as absence of (stable) DCP2 = 3 solutions of field equations with
genus g > 2.

3. The solution ansatz need not be the most general. Kähler current is light-like and already this
is enough to reduce the field equations to the form involving only energy momentum tensor.
One might hope of finding also solution ansätze for which Kähler current is time-like or space-
like. Space-likeness of the Kähler current might be achieved if the complex coordinates (ξ, ξ)
and hyper-complex coordinates (S+, S−) change the role. For this solution ansatz electric field
would dominate. Note that the possibility that Kähler current is always light-like cannot be
excluded.

4. Suppose that CP2 projection quite generally defines a foliation of the space-time surface by
light-like 3-surfaces, as is suggested by the conformal invariance. If the induced metric has
Minkowskian signature, the fourth coordinate x4 and thus also Kähler current must be time-like
or light-like so that magnetic field dominates. Already the requirement that the metric is non-
degenerate implies gs4 6= 0 so that the metric for the ξ = constant 2-surfaces has a Minkowskian
signature. Thus space-like Kähler current does not allow the lift of the CP2 projection to be
light-like.

Are solutions with time-like or space-like Kähler current possible in DCP2 = 3 case?

As noticed in the section about number theoretical compactification, the flow of gauge currents along
slices Y 3

l of X4(X3
l ) ”parallel” to X3

l requires only that gauge currents are parallel to Y 3
l and can thus

space-like. The following ansatz gives good hopes for obtaining solutions with space-like and perhaps
also time-like Kähler currents.

1. Assign to light-like coordinates coordinates (T,Z) by the formula T = S++S− and Z = S+−S−.
Space-time coordinates are taken to be (ξ, ξ, s) and coordinate Z. The solution ansatz with time-
like Kähler current results when the roles of T and Z are changed. It will however found that
same solution ansatz can give rise to both space-like and time-like Kähler current.

2. The solution ansatz giving rise to a space-like Kähler current is defined by the equations

T = T (Z, s) , w = w(ξ, s) . (2.3.31)

If T depends strongly on Z, the gZZ component of the induced metric becomes positive and
Kähler current time-like.

3. The components of the induced metric are
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gZZ = mZZ +mTT∂ZT∂sT , gZs = mTT∂ZT∂sT ,

gss = sss +mTT∂sT∂sT , gww = sww +mww∂ξw∂ξw ,

gsξ = ssξ , gsξ = ssξ .

(2.3.32)

Topologized Kähler current has only Z-component and 3-dimensional empty space Maxwell’s
equations guarantee the topologization.

In CP2 degrees of freedom the contractions of the energy momentum tensor with Christoffel sym-
bols vanish if T ss, T ξs and T ξξ vanish as required by internal consistency. This is guaranteed if the
condition

Jξs = 0 (2.3.33)

holds true. Note however that JξZ is non-vanishing. Therefore only the components T ξξ and TZξ,

TZξ of energy momentum tensor are non-vanishing, and field equations reduce to the conditions

∂ξ(J
ξξ√g) + ∂Z(JξZ

√
g) = 0 ,

∂ξ(J
ξξ√g) + ∂Z(JξZ

√
g) = 0 . (2.3.34)

In the special case that the induced metric does not depend on z-coordinate equations reduce to
holomorphicity conditions. This is achieve if T depends linearly on Z: T = aZ.

The contractions with M4
+ Christoffel symbols come from the non-vanishing of TZξ and vanish if

the Hamilton Jacobi structure satisfies the conditions

{ kT w} = 0 , { kT w} = 0 ,

{ kZ w} = 0 , { kZ w} = 0
(2.3.35)

hold true. The conditions are equivalent with the conditions

{ k± w} = 0 , { k± w} = 0 . (2.3.36)

These conditions possess solutions (standard light cone coordinates are the simplest example). Also
the second derivatives of T (s, Z) contribute to the second fundamental form but they do not give rise
to non-vanishing contractions with the energy momentum tensor. The cautious conclusion is that also
solutions with time-like or space-like Kähler current are possible.

DCP2 = 4 case

The preceding discussion was for DCP2
= 3 and one should generalize the discussion to DCP2

= 4
case.

1. Hamilton Jacobi structure for M4
+ is expected to be crucial also now.

2. One might hope that for DCP2 = 4 the Kähler structure of CP2 defines a foliation of CP2 by
3-dimensional contact structures. This requires that there is a coordinate varying along the
field lines of the normal vector field X defined as the dual of the three-form A ∧ dA = A ∧ J .
By the previous considerations the condition for this reads as dX = d(logφ) ∧ X and implies
X ∧ dX = 0. Using the self duality of the Kähler form one can express X as Xk = JklAl. By
a brief calculation one finds that X ∧ dX ∝ X holds true so that (somewhat disappointingly) a
foliation of CP2 by contact structures does not exist.
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For DCP2
= 4 case Kähler current vanishes and this case corresponds to what I have called earlier

Maxwellian phase since empty space Maxwell’s equations are indeed satisfied.

1. Solution ansatz with a 3-dimensional M4
+ projection

The basic idea is that the complex structure of CP2 is preserved so that one can use complex
coordinates (ξ1, ξ2) for CP2 in which CP2 Christoffel symbols and energy momentum tensor have
automatically the desired properties. This is achieved the second light like coordinate, say v, is non-
dynamical so that the induced metric does not receive any contribution from the longitudinal degrees
of freedom. In this case one has

S+ = S+(ξ1, ξ2) , w = w(ξ1, ξ2) , S− = constant . (2.3.37)

The induced metric does possesses only components of type gij if the conditions

g+w = 0 , g+w = 0 . (2.3.38)

This guarantees that energy momentum tensor has only components of type T ij in coordinates
(ξ1, ξ2) and their contractions with the Christoffel symbols of CP2 vanish identically. In M4

+ degrees
of freedom one must pose the conditions

{ kw+} = 0 , { kw+} = 0 , { k++} = 0 . (2.3.39)

on Christoffel symbols. These conditions are satisfied if the the M4
+ metric does not depend on S+:

∂+mkl = 0 . (2.3.40)

This means that m−w and m−w can be non-vanishing but like m+− they cannot depend on S+.
The second derivatives of S+ appearing in the second fundamental form are also a source of trouble

unless they vanish. Hence S+ must be a linear function of the coordinates ξk:

S+ = akξ
k + akξ

k
. (2.3.41)

Field equations are the counterparts of empty space Maxwell equations jα = 0 but with M4
+

coordinates (u,w) appearing as dynamical variables and entering only through the induced metric.
By holomorphy the field equations can be written as

∂j(J
ji√g) = 0 , ∂j(J

ji√g) = 0 , (2.3.42)

and can be interpreted as conditions stating the holomorphy of the contravariant Kähler form.
What is remarkable is that the M4

+ projection of the solution is 3-dimensional light like surface
and that the induced metric has Euclidian signature. Light front would become a concrete geometric
object with one compactified dimension rather than being a mere conceptualization. One could see
this as topological quantization for the notion of light front or of electromagnetic shock wave, or
perhaps even as the realization of the particle aspect of gauge fields at classical level.

If the latter interpretation is correct, quantum classical correspondence would be realized very
concretely. Wave and particle aspects would both be present. One could understand the interactions
of charged particles with electromagnetic fields both in terms of absorption and emission of topological
field quanta and in terms of the interaction with a classical field as particle topologically condenses
at the photonic light front.

For CP2 type extremals for which M4
+ projection is a light like curve correspond to a special case

of this solution ansatz: transversal M4
+ coordinates are constant and S+ is now arbitrary function of

CP2 coordinates. This is possible since M4
+ projection is 1-dimensional.

2. Are solutions with a 4-dimensional M4
+ projection possible?
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The most natural solution ansatz is the one for which CP2 complex structure is preserved so that
energy momentum tensor has desired properties. For four-dimensional M4

+ projection this ansatz does
not seem to make promising since the contribution of the longitudinal degrees of freedom implies that
the induced metric is not anymore of desired form since the components gij = m+−(∂ξiS

+∂ξjS
− +

m+−∂ξiS
−∂ξjS

+) are non-vanishing.

1. The natural dynamical variables are still Minkowski coordinates (w,w, S+, S−) for some Hamil-
ton Jacobi structure. Since the complex structure of CP2 must be given up, CP2 coordinates
can be written as (ξ, s, r) to stress the fact that only ”one half” of the Kähler structure of CP2

is respected by the solution ansatz.

2. The solution ansatz has the same general form as in DCP2 = 3 case and must be symmetric
with respect to the exchange of M4

+ and CP2 coordinates. Transverse coordinates are mapped
to transverse ones and longitudinal coordinates to longitudinal ones:

(S+, S−) = (S+(s, r), S−(s, r)) , w = w(ξ) . (2.3.43)

This ansatz would describe ordinary Maxwell field in M4
+ since the roles of M4

+ coordinates and
CP2 coordinates are interchangeable.

It is however far from obvious whether there are any solutions with a 4-dimensional M4
+ projection.

That empty space Maxwell’s equations would allow only the topologically quantized light fronts as its
solutions would realize quantum classical correspondence very concretely.

DCP2
= 2 case

Hamilton Jacobi structure for M4
+ is assumed also for DCP2

= 2, whereas the contact structure for
CP2 is in DCP2

= 2 case replaced by the induced Kähler structure. Topologization yields vanishing
Kähler current. Light-likeness provides a second manner to achieve vanishing Lorentz force but one
cannot exclude the possibility of time- and space-like Kähler current.

1. Solutions with vanishing Kähler current

1. String like objects, which are products X2×Y 2 ⊂M4
+×CP2 of minimal surfaces Y 2 of M4

+ with
geodesic spheres S2 of CP2 and carry vanishing gauge current. String like objects allow consid-
erable generalization from simple Cartesian products of X2×Y 2 ⊂M4×S2. Let (w,w, S+, S−)
define the Hamilton Jacobi structure for M4

+. w = constant surfaces define minimal surfaces
X2 of M4

+. Let ξ denote complex coordinate for a sub-manifold of CP2 such that the imbed-
ding to CP2 is holomorphic: (ξ1, ξ2) = (f1(ξ), f2(ξ)). The resulting surface Y 2 ⊂ CP2 is a
minimal surface and field equations reduce to the requirement that the Kähler current vanishes:

∂ξ(J
ξξ√g2) = 0. One-dimensional strings are deformed to 3-dimensional cylinders representing

magnetic flux tubes. The oscillations of string correspond to waves moving along string with
light velocity, and for more general solutions they become TGD counterparts of Alfwen waves
associated with magnetic flux tubes regarded as oscillations of magnetic flux lines behaving ef-
fectively like strings. It must be emphasized that Alfwen waves are a phenomenological notion
not really justified by the properties of Maxwell’s equations.

2. Also electret type solutions with the role of the magnetic field taken by the electric field are
possible. (ξ, ξ, u, v) would provide the natural coordinates and the solution ansatz would be of
the form

(s, r) = (s(u, v), r(u, v)) , ξ = constant , (2.3.44)

and corresponds to a vanishing Kähler current.
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3. Both magnetic and electric fields are necessarily present only for the solutions carrying non-
vanishing electric charge density (proportional to B · A). Thus one can ask whether more
general solutions carrying both magnetic and electric field are possible. As a matter fact, one
must first answer the question what one really means with the magnetic field. By choosing the
coordinates of 2-dimensional CP2 projection as space-time coordinates one can define what one
means with magnetic and electric field in a coordinate invariant manner. Since the CP2 Kähler
form for the CP2 projection with DCP2

= 2 can be regarded as a pure Kähler magnetic field,
the induced Kähler field is either magnetic field or electric field.

The form of the ansatz would be

(s, r) = (s, r) (u, v, w,w) , ξ = constant . (2.3.45)

As a matter fact, CP2 coordinates depend on two properly chosen M4 coordinates only.

1. Solutions with light-like Kähler current

There are large classes of solutions of field equations with a light-like Kähler current and 2-
dimensional CP2 projection.

1. Massless extremals for which CP2 coordinates are arbitrary functions of one transversal coor-
dinate e = f(w,w) defining local polarization direction and light like coordinate u of M4

+ and
carrying in the general case a light like current. In this case the holomorphy does not play any
role.

2. The string like solutions thickened to magnetic flux tubes carrying TGD counterparts of Alfwen
waves generalize to solutions allowing also light-like Kähler current. Also now Kähler metric is
allowed to develop a component between longitudinal and transversal degrees of freedom so that
Kähler current develops a light-like component. The ansatz is of the form

ξi = f i(ξ) , w = w(ξ) , S− = s− , S+ = s+ + f(ξ, ξ) .

Only the components g+ξ and g+ξ of the induced metric receive contributions from the modi-

fication of the solution ansatz. The contravariant metric receives contributions to g−ξ and g−ξ

whereas g+ξ and g+ξ remain zero. Since the partial derivatives ∂ξ∂+h
k and ∂ξ∂+h

k and corre-
sponding projections of Christoffel symbols vanish, field equations are satisfied. Kähler current
develops a non-vanishing component j−. Apart from the presence of the electric field, these
solutions are highly analogous to Beltrami fields.

Could DCP2 = 2→ 3 transition occur in rotating magnetic systems?

I have studied the imbeddings of simple cylindrical and helical magnetic fields in various applications
of TGD to condensed matter systems, in particular in attempts to understand the strange findings
about rotating magnetic systems [K76] .

Let S2 be the homologically non-trivial geodesic sphere of CP2 with standard spherical coordinates
(U ≡ cos(θ),Φ) and let (t, ρ, φ, z) denote cylindrical coordinates for a cylindrical space-time sheet. The
simplest possible space-time surfaces X4 ⊂M4

+×S2 carrying helical Kähler magnetic field depending
on the radial cylindrical coordinate ρ, are given by:

U = U(ρ) , Φ = nφ+ kz ,
Jρφ = n∂ρU , Jρz = k∂ρU .

(2.3.46)

This helical field is not Beltrami field as one can easily find. A more general ansatz corresponding
defined by

Φ = ωt+ kz + nφ

would in cylindrical coordinates give rise to both helical magnetic field and radial electric field de-
pending on ρ only. This field can be obtained by simply replacing the vector potential with its rotated
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version and provides the natural first approximation for the fields associated with rotating magnetic
systems.

A non-vanishing vacuum charge density is however generated when a constant magnetic field is put
into rotation and is implied by the condition E = v × B stating vanishing of the Lorentz force. This
condition does not follow from the induction law of Faraday although Faraday observed this effect
first. This is also clear from the fact that the sign of the charge density depends on the direction of
rotation.

The non-vanishing charge density is not consistent with the vanishing of the Kähler 4-current
and requires a 3-dimensional CP2 projection and topologization of the Kähler current. Beltrami
condition cannot hold true exactly for the rotating system. The conclusion is that rotation induces
a phase transition DCP2

= 2 → 3. This could help to understand various strange effects related to
the rotating magnetic systems [K76] . For instance, the increase of the dimension of CP2 projection
could generate join along boundaries contacts and wormhole contacts leading to the transfer of charge
between different space-time sheets. The possibly resulting flow of gravitational flux to larger space-
time sheets might help to explain the claimed antigravity effects.

2.3.4 DCP2 = 3 phase allows infinite number of topological charges charac-
terizing the linking of magnetic field lines

When space-time sheet possesses a D = 3-dimensional CP2 projection, one can assign to it a non-
vanishing and conserved topological charge characterizing the linking of the magnetic field lines defined
by Chern-Simons action density A ∧ dA/4π for induced Kähler form. This charge can be seen as
classical topological invariant of the linked structure formed by magnetic field lines.

The topological charge can also vanish for DCP2
= 3 space-time sheets. In Darboux coordinates

for which Kähler gauge potential reads as A = PkdQ
k, the surfaces of this kind result if one has

Q2 = f(Q1) implying A = fdQ1 , f = P1 + P2∂Q1Q
2 , which implies the condition A ∧ dA = 0.

For these space-time sheets one can introduce Q1 as a global coordinate along field lines of A and
define the phase factor exp(i

∫
Aµdx

µ) as a wave function defined for the entire space-time sheet. This
function could be interpreted as a phase of an order order parameter of super-conductor like state and
there is a high temptation to assume that quantum coherence in this sense is lost for more general
DCP2 = 3 solutions.

Chern-Simons action is known as helicity in electrodynamics [B56] . Helicity indeed describes
the linking of magnetic flux lines as is easy to see by interpreting magnetic field as incompressible
fluid flow having A as vector potential: B = ∇ × A. One can write A using the inverse of ∇× as
A = (1/∇×)B. The inverse is non-local operator expressible as

1

∇×
B(r) =

∫
dV ′

(r − r′)
|r − r′|3

×B(r′) ,

as a little calculation shows. This allows to write
∫
A ·B as∫

dV A ·B =

∫
dV dV ′B(r) ·

(
(r − r′)
|r − r′|3

×B(r′)

)
,

which is completely analogous to the Gauss formula for linking number when linked curves are replaced
by a distribution of linked curves and an average is taken.

For DCP2 = 3 field equations imply that Kähler current is proportional to the helicity current by a
factor which depends on CP2 coordinates, which implies that the current is automatically divergence
free and defines a conserved charge for D = 3-dimensional CP2 projection for which the instanton
density vanishes identically. Kähler charge is not equal to the helicity defined by the inner product of
magnetic field and vector potential but to a more general topological charge.

The number of conserved topological charges is infinite since the product of any function of CP2

coordinates with the helicity current has vanishing divergence and defines a topological charge. A very
natural function basis is provided by the scalar spherical harmonics of SU(3) defining Hamiltonians of
CP2 canonical transformations and possessing well defined color quantum numbers. These functions
define and infinite number of conserved charges which are also classical knot invariants in the sense
that they are not affected at all when the 3-surface interpreted as a map from CP2 projection to M4

+

is deformed in M4
+ degrees of freedom. Also canonical transformations induced by Hamiltonians in
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irreducible representations of color group affect these invariants via Poisson bracket action when the
U(1) gauge transformation induced by the canonical transformation corresponds to a single valued
scalar function. These link invariants are additive in union whereas the quantum invariants defined
by topological quantum field theories are multiplicative.

Also non-Abelian topological charges are well-defined. One can generalize the topological current
associated with the Kähler form to a corresponding current associated with the induced electro-weak
gauge fields whereas for classical color gauge fields the Chern-Simons form vanishes identically. Also in
this case one can multiply the current by CP2 color harmonics to obtain an infinite number of invariants
in DCP2 = 3 case. The only difference is that A ∧ dA is replaced by Tr(A ∧ (dA+ 2A ∧A/3)).

There is a strong temptation to assume that these conserved charges characterize colored quantum
states of the conformally invariant quantum theory as a functional of the light-like 3-surface defining
boundary of space-time sheet or elementary particle horizon surrounding wormhole contacts. They
would be TGD analogs of the states of the topological quantum field theory defined by Chern-Simons
action as highest weight states associated with corresponding Wess-Zumino-Witten theory. These
charges could be interpreted as topological counterparts of the isometry charges of configuration
space of 3-surfaces defined by the algebra of canonical transformations of CP2.

The interpretation of these charges as contributions of light-like boundaries to configuration space
Hamiltonians would be natural. The dynamics of the induced second quantized spinor fields relates
to that of Kähler action by a super-symmetry, so that it should define super-symmetric counterparts
of these knot invariants. The anti-commutators of these super charges cannot however contribute to
configuration space Kähler metric so that topological zero modes are in question. These Hamiltonians
and their super-charge counterparts would be responsible for the topological sector of quantum TGD.

2.3.5 Preferred extremal property and the topologization/light-likeness of
Kähler current?

The basic question is under what conditions the Kähler current is either topologized or light-like so
that the Lorentz force vanishes. Does this hold for all preferred extremals of Kähler action? Or
only asymptotically as suggested by the fact that generalized Beltrami fields can be interpreted as
asymptotic self-organization patterns, when dissipation has become insignificant. Or does topologiza-
tion take place in regions of space-time surface having Minkowskian signature of the induced metric?
And what asymptotia actually means? Do absolute minima of Kähler action correspond to preferred
extremals?

One can challenge the interpretation in terms of asymptotic self organization patterns assigned to
the Minkowskian regions of space-time surface.

1. Zero energy ontology challenges the notion of approach to asymptotia in Minkowskian sense
since the dynamics of light-like 3-surfaces is restricted inside finite volume CD ⊂ M4 since the
partonic 2-surfaces representing their ends are at the light-like boundaries of causal diamond in
a given p-adic time scale.

2. One can argue that generic non-asymptotic field configurations have DCP2 = 4, and would thus
carry a vanishing Kähler four-current if Beltrami conditions were satisfied universally rather than
only asymptotically. jα = 0 would obviously hold true also for the asymptotic configurations,
in particular those with DCP2

< 4 so that empty space Maxwell’s field equations would be
universally satisfied for asymptotic field configurations with DCP2

< 4. The weak point of this
argument is that it is 3-D light-like 3-surfaces rather than space-time surfaces which are the
basic dynamical objects so that the generic and only possible case corresponds to DCP2 = 3 for
X3
l . It is quite possible that preferred extremal property implies that DCP2 = 3 holds true in

the Minkowskian regions since these regions indeed represent empty space. Geometrically this
would mean that the CP2 projection does not change as the light-like coordinate labeling Y 3

l

varies. This conforms nicely with the notion of quantum gravitational holography.

3. The failure of the generalized Beltrami conditions would mean that Kähler field is completely
analogous to a dissipative Maxwell field for which also Lorentz force vanishes since j · E is
non-vanishing (note that isometry currents are conserved although energy momentum tensor
is not). Quantum classical correspondence states that classical space-time dynamics is by its
classical non-determinism able to mimic the non-deterministic sequence of quantum jumps at
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space-time level, in particular dissipation in various length scales defined by the hierarchy of
space-time sheets. Classical fields would represent ”symbolically” the average dynamics, in
particular dissipation, in shorter length scales. For instance, vacuum 4-current would be a
symbolic representation for the average of the currents consisting of elementary particles. This
would seem to support the view that DCP2

= 4 Minkowskian regions are present. The weak point
of this argument is that there is fractal hierarchy of length scales represented by the hierarchy of
causal diamonds (CDs) and that the resulting hierarchy of generalized Feynman graphs might
be enough to represent dissipation classically.

4. One objection to the idea is that second law realized as an asymptotic vanishing of Lorentz-
Kähler force implies that all space-like 3-surfaces approaching same asymptotic state have the
same value of Kähler function assuming that the Kähler function assignable to space-like 3-
surface is same for all space-like sections of X4(X3

l ) (assuming that one can realize general
coordinate invariance also in this sense). This need not be the case. In any case, this need not be
a problem since it would mean an additional symmetry extending general coordinate invariance.
The exponent of Kähler function would be highly analogous to a partition function defined as
an exponent of Hamiltonian with Kähler coupling strength playing the role of temperature.

It seems that asymptotic self-organization pattern need not be correct interpretation for non-
dissipating regions, and the identification of light-like 3-surfaces as generalized Feynman diagrams
encourages an alternative interpretation.

1. M8 −H duality states that also the H counterparts of co-hyper-hyperquaternionic surfaces of
M8 are preferred extremals of Kähler action. CP2 type vacuum extremals represent the basic
example of these and a plausible conjecture is that the regions of space-time with Euclidian
signature of the induced metric represent this kind of regions. If this conjecture is correct,
dissipation could be assigned with regions having Euclidian signature of the induced metric.
This makes sense since dissipation has quantum description in terms of Feynman graphs and
regions of Euclidian signature indeed correspond to generalized Feynman graphs. This argument
would suggest that generalized Beltrami conditions or light-likeness hold true inside Minkowskian
regions rather than only asymptotically.

2. One could of course play language games and argue that asymptotia is with respect to the
Euclidian time coordinate inside generalized Feynman graps and is achieved exactly when the
signature of the induced metric becomes Minkowskian. This is somewhat artificial attempt
to save the notion of asymptotic self-organization pattern since the regions outside Feynman
diagrams represent empty space providing a holographic representations for the matter at X3

l

so that the vanishing of jαFαβ is very natural.

3. What is then the correct identification of asymptotic self-organization pattern. Could correspond
to the negative energy part of the zero energy state at the upper light-like boundary δM4

− of
CD? Or in the case of phase conjugate state to the positive energy part of the state at δM4

+?
An identification consistent with the fractal structure of zero energy ontology and TGD inspired
theory of consciousness is that the entire zero energy state reached by a sequence of quantum
jumps represents asymptotic self-organization pattern represented by the asymptotic generalized
Feynman diagram or their superposition. Biological systems represent basic examples about self-
organization, and one cannot avoid the questions relating to the relationship between experience
and geometric time. A detailed discussion of these points can be found in [K4] .

Absolute minimization of Kähler action was the first guess for the criterion selecting preferred
extremals. Absolute minimization in a strict sense of the word does not make sense in the p-adic
context since p-adic numbers are not well-ordered, and one cannot even define the action integral
as a p-adic number. The generalized Beltrami conditions and the boundary conditions defining the
preferred extremals are however local and purely algebraic and make sense also p-adically. If absolute
minimization reduces to these algebraic conditions, it would make sense.

2.3.6 Generalized Beltrami fields and biological systems

The following arguments support the view that generalized Beltrami fields play a key role in living
systems, and that DCP2

= 2 corresponds to ordered phase, DCP2
= 3 to spin glass phase and DCP2

= 4
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to chaos, with DCP2
= 3 defining life as a phenomenon at the boundary between order and chaos. If

the criteria suggested by the number theoretic compactification are accepted, it is not clear whether
DCP2 extremals can define preferred extremals of Kähler action. For instance, cosmic strings are not
preferred extremals and the Y 3

l associated with MEs allow only covariantly constant right handed
neutrino eigenmode of DK(X2). The topological condensation of CP2 type vacuum extremals around
DCP2

= 2 type extremals is however expected to give preferred extremals and if the density of the
condensate is low enough one can still speak about DCP2

= 2 phase. A natural guess is also that
the deformation of DCP2 = 2 extremals transforms light-like gauge currents to space-like topological
currents allowed by DCP2 = 3 phase.

Why generalized Beltrami fields are important for living systems?

Chirality, complexity, and high level of organization make DCP2
= 3 generalized Beltrami fields

excellent candidates for the magnetic bodies of living systems.

1. Chirality selection is one of the basic signatures of living systems. Beltrami field is character-
ized by a chirality defined by the relative sign of the current and magnetic field, which means
parity breaking. Chirality reduces to the sign of the function ψ appearing in the topologization
condition and makes sense also for the generalized Beltrami fields.

2. Although Beltrami fields can be extremely complex, they are also extremely organized. The
reason is that the function α is constant along flux lines so that flux lines must in the case
of compact Riemann 3-manifold belong to 2-dimensional α = constant closed surfaces, in fact
two-dimensional invariant tori [B30] .

For generalized Beltrami fields the function ψ is constant along the flow lines of the Kähler current.
Space-time sheets with 3-dimensional CP2 projection serve as an illustrative example. One can use
the coordinates for the CP2 projection as space-time coordinates so that one space-time coordinate
disappears totally from consideration. Hence the situation reduces to a flow in a 3-dimensional sub-
manifold of CP2. One can distinguish between three types of flow lines corresponding to space-like,
light-like and time-like topological current. The 2-dimensional ψ = constant invariant manifolds are
sub-manifolds of CP2. Ordinary Beltrami fields are a special case of space-like flow with flow lines
belonging to the 2-dimensional invariant tori of CP2. Time-like and light-like situations are more
complex since the flow lines need not be closed so that the 2-dimensional ψ = constant surfaces can
have boundaries.

For periodic self-organization patterns flow lines are closed and ψ = constant surfaces of CP2

must be invariant tori. The dynamics of the periodic flow is obtained from that of a steady flow
by replacing one spatial coordinate with effectively periodic time coordinate. Therefore topological
notions like helix structure, linking, and knotting have a dynamical meaning at the level of CP2

projection. The periodic generalized Beltrami fields are highly organized also in the temporal domain
despite the potentiality for extreme topological complexity.

For these reasons topologically quantized generalized Beltrami fields provide an excellent candidate
for a generic model for the dynamics of biological self-organization patterns. A natural guess is that
many-sheeted magnetic and Z0 magnetic fields and their generalizations serve as templates for the
helical molecules populating living matter, and explain both chiral selection, the complex linking and
knotting of DNA and protein molecules, and even the extremely complex and self-organized dynamics
of biological systems at the molecular level.

The intricate topological structures of DNA, RNA, and protein molecules are known to have a deep
significance besides their chemical structure, and they could even define something analogous to the
genetic code. Usually the topology and geometry of bio-molecules is believed to reduce to chemistry.
TGD suggests that space-like generalized Beltrami fields serve as templates for the formation of bio-
molecules and bio-structures in general. The dynamics of bio-systems would in turn utilize the time-
like Beltrami fields as templates. There could even exist a mapping from the topology of magnetic flux
tube structures serving as templates for bio-molecules to the templates of self-organized dynamics. The
helical structures, knotting, and linking of bio-molecules would thus define a symbolic representation,
and even coding for the dynamics of the bio-system analogous to written language.
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DCP2
= 3 systems as boundary between DCP2

= 2 order and DCP2
= 4 chaos

The dimension of CP2 projection is basic classifier for the asymptotic self-organization patterns.

1. DCP2 = 4 phase, dead matter, and chaos

DCP2 = 4 corresponds to the ordinary Maxwellian phase in which Kähler current and charge
density vanish and there is no topologization of Kähler current. By its maximal dimension this phase
would naturally correspond to disordered phase, ordinary ”dead matter”. If one assumes that Kähler
charge corresponds to either em charge or Z0 charge then the signature of this state of matter would
be em neutrality or Z0 neutrality.

2. DCP2
= 2 phase as ordered phase

By the low dimension of CP2 projection DCP2
= 2 phase is the least stable phase possible only

at cold space-time sheets. Kähler current is either vanishing or light-like, and Beltrami fields are not
possible. This phase is highly ordered and much like a topological quantized version of ferro-magnet.
In particular, it is possible to have a global coordinate varying along the field lines of the vector
potential also now. The magnetic and Z0 magnetic body of any system is a candidate for this kind of
system. Z0 field is indeed always present for vacuum extremals having DCP2

= 2 and the vanishing
of em field requires that that sin2(θW ) (θW is Weinberg angle) vanishes.

3. DCP2
= 3 corresponds to living matter

DCP2
= 3 corresponds to highly organized phase characterized in the case of space-like Kähler

current by complex helical structures necessarily accompanied by topologized Kähler charge density
∝ A ·B 6= 0 and Kähler current E ×A+ φB. For time like Kähler currents the helical structures are
replaced by periodic oscillation patterns for the state of the system. By the non-maximal dimension
of CP2 projection this phase must be unstable against too strong external perturbations and cannot
survive at too high temperatures. Living matter is thus excellent candidate for this phase and it might
be that the interaction of the magnetic body with living matter makes possible the transition from
DCP2 = 2 phase to the self-organizing DCP2 = 3 phase.

Living matter which is indeed populated by helical structures providing examples of space-like
Kähler current. Strongly charged lipid layers of cell membrane might provide example of time-like
Kähler current. Cell membrane, micro-tubuli, DNA, and proteins are known to be electrically charged
and Z0 charge plays key role in TGD based model of catalysis discussed in [K30] . For instance, de-
naturing of DNA destroying its helical structure could be interpreted as a transition leading from
DCP2

= 3 phase to DCP2
= 4 phase. The prediction is that the denatured phase should be electro-

magnetically (or Z0) neutral.

Beltrami fields result when Kähler charge density vanishes. For these configurations magnetic
field and current density take the role of the vector potential and magnetic field as far as the contact
structure is considered. For Beltrami fields there exist a global coordinate along the field lines of the
vector potential but not along those of the magnetic field. As a consequence, the covariant consistency
condition (∂s − qeAs)Ψ = 0 frequently appearing in the physics of super conducting systems would
make sense along the flow lines of the vector potential for the order parameter of Bose-Einstein
condensate. If Beltrami phase is super-conducting, then the state of the system must change in the
transition to a more general phase. It is impossible to assign slicing of 4-surface by 3-D surfaces labeled
by a coordinate t varying along the flow lines. This means that one cannot speak about a continuous
evolution of Schrödinger amplitude with t playing the role of time coordinate. One could perhaps
say that the entire space-time sheet represents single quantum event which cannot be decomposed
to evolution. This would conform with the assignment of macroscopic and macro-temporal quantum
coherence with living matter.

The existence of these three phases brings in mind systems allowing chaotic de-magnetized phase
above critical temperature Tc, spin glass phase at the critical point, and ferromagnetic phase below
Tc. Similar analogy is provided by liquid phase, liquid crystal phase possible in the vicinity of the
critical point for liquid to solid transition, and solid phase. Perhaps one could regard DCP2 = 3 phase
and life as a boundary region between DCP2 = 2 order and DCP2 = 4 chaos. This would naturally
explain why life as it is known is possible in relatively narrow temperature interval.
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Can one assign a continuous Schrödinger time evolution to light-like 3-surfaces?

Alain Connes wrote [A80] about factors of various types using as an example Schrödinger equation for
various kinds of foliations of space-time to time=constant slices. If this kind of foliation does not exist,
one cannot speak about time evolution of Schrödinger equation at all. Depending on the character of
the foliation one can have factor of type I, II, or III. For instance, torus with slicing dx = ady in flat
coordinates, gives a factor of type I for rational values of a and factor of type II for irrational values
of a.

1. 3-D foliations and type III factors

Connes mentioned 3-D foliations V which give rise to type III factors. Foliation property requires
a slicing of V by a one-form v to which slices are orthogonal (this requires metric).

1. The foliation property requires that v multiplied by suitable scalar is gradient. This gives the
integrability conditions dv = w∧ v, w = −dψ/ψ = −dlog(ψ). Something proportional to log(ψ)
can be taken as a third coordinate varying along flow lines of v: the flow defines a continuous
sequence of maps of 2-dimensional slice to itself.

2. If the so called Godbillon-Vey invariant defined as the integral of dw∧w over V is non-vanishing,
factor of type III is obtained using Schrödinger amplitudes for which the flow lines of foliation
define the time evolution. The operators of the algebra in question are transversal operators
acting on Schrödinger amplitudes at each slice. Essentially Schrödinger equation in 3-D space-
time would be in question with factor of type III resulting from the exotic choice of the time
coordinate defining the slicing.

2. What happens in case of light-like 3-surfaces?

In TGD light-like 3-surfaces are natural candidates for V and it is interesting to look what happens
in this case. Light-likeness is of course a disturbing complication since orthogonality condition and
thus contravariant metric is involved with the definition of the slicing. Light-likeness is not however
involved with the basic conditions.

1. The one-form v defined by the induced Kähler gauge potential A defining also a braiding is a
unique identification for v. If foliation exists, the braiding flow defines a continuous sequence of
maps of partonic 2-surface to itself.

2. Physically this means the possibility of a super-conducting phase with order parameter satisfying
covariant constancy equation Dψ = (d/dt − ieA)ψ = 0. This would describe a supra current
flowing along flow lines of A.

3. If the integrability fails to be true, one cannot assign Schrödinger time evolution with the flow
lines of v. One might perhaps say that 3-surface behaves like single quantum event not allowing
slicing into a continuous Schrödinger time evolution.

4. In TGD Schrödinger amplitudes are replaced by second quantized induced spinor fields. Hence
one does not face the problem whether it makes sense to speak about Schrödinger time evolution
of complex order parameter along the flow lines of a foliation or not. Also the fact that the ”time
evolution” for the modified Dirac operator corresponds to single position dependent generalized
eigenvalue identified as Higgs expectation same for all transversal modes (essentially zn labeled
by conformal weight) is crucial since it saves from the problems caused by the possible non-
existence of Schrödinger evolution.

4. Extremals of Kähler action

Some comments relating to the interpretation of the classification of the extremals of Kähler action
by the dimension of their CP2 projection are in order. It has been already found that the extremals
can be classified according to the dimension D of the CP2 projection of space-time sheet in the case
that Aa = 0 holds true.
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1. For DCP2
= 2 integrability conditions for the vector potential can be satisfied for Aa = 0 so that

one has generalized Beltrami flow and one can speak about Schrödinger time evolution associated
with the flow lines of vector potential defined by covariant constancy condition Dψ = 0 makes
sense. Kähler current is vanishing or light-like. This phase is analogous to a super-conductor or
a ferromagnetic phase. For non-vanishing Aa the Beltrami flow property is lost but the analogy
with ferromagnetism makes sense still.

2. For DCP2
= 3 foliations are lost. The phase is dominated by helical structures. This phase

is analogous to spin glass phase around phase transition point from ferromagnetic to non-
magnetized phase and expected to be important in living matter systems.

3. DCP2 = 4 is analogous to a chaotic phase with vanishing Kähler current and to a phase without
magnetization. The interpretation in terms of non-quantum coherent ”dead” matter is sugges-
tive.

An interesting question is whether the ordinary 8-D imbedding space which defines one sector of
the generalized imbedding space could correspond to Aa = 0 phase. If so, then all states for this
sector would be vacua with respect to M4 quantum numbers. M4-trivial zero energy states in this
sector could be transformed to non-trivial zero energy states by a leakage to other sectors.

2.3.7 About small perturbations of field equations

The study of small perturbations of the known solutions of field equations is a standard manner to
get information about the properties of the solutions, their stability in particular. Fourier expansion
is the standard manner to do the perturbation theory. In the recent case an appropriate modification
of this ansatz might make sense if the solution in question is representable as a map M4

+ → CP2, and
the perturbations are rapidly varying when compared to the components of the induced metric and
Kähler form so that one can make adiabatic approximation and approximate them as being effectively
constant. Presumably also restrictions on directions of wave 4-vectors kµ = (ω, k)) are necessary so
that the direction of wave vector adapts to the slowly varying background as in ray optics. Also
Hamilton Jacobi structure is expected to modify the most straightforward approach. The four CP2

coordinates are the dynamical variables so that the situation is relatively simple.
A completely different approach is inspired by the physical picture. In this approach one glues

CP2 type vacuum extremal to a known extremal and tries to deduce the behavior of the deformed
extremal in the vicinity of wormhole throat by posing the general conditions on the slicing by light-like
3-surfaces Y 3

l . This approach is not followed now.

Generalized plane waves

Individual plane waves are geometrically very special since they represent a deformation of the space-
time surface depending on single coordinate only. Despite this one might hope that plane waves or
their appropriate modifications allowing to algebraize the treatment of small perturbations could give
useful information also now.

1. Lorentz invariance plus the translational invariance due to the assumption that the induced
metric and Kähler form are approximately constant encourage to think that the coordinates
reduce Minkowski coordinates locally with the orientation of the local Minkowski frame depend-
ing slowly on space-time position. Hamilton Jacobi (S+, S−, w, w) are a good candidate for this
kind of coordinates. The properties of the Hamilton Jacobi structure and of the solution ansatz
suggest that excitations are generalized plane waves in longitudinal degrees of freedom only so
that four-momentum would be replaced by the longitudinal momentum. In transverse degrees
of freedom one might expect that holomorphic plane-waves exp(ikTw), where kT is transverse
momentum, make algebraization possible.

For time-like longitudinal momenta one can choose the local M4 coordinates in such a manner
that longitudinal momentum reduces to (ω0, 0), where ω0 plays the role of rest mass and is
analogous to the plasma frequency serving as an infrared cutoff for plasma waves. In these
coordinates the simplest candidates for excitations with time-like momentum would be of form
∆sk = εakexp(iω0u), where sk are some real coordinates for CP2, ak are Fourier coefficients,
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and time-like coordinate is defined as u = S+ + S−. The excitations moving with light velocity
correspond to ω0 = 0, and one must treat this case separately using plane wave exp(iωS±),
where ω has continuum of values.

2. It is possible that only some preferred CP2 coordinates are excited in longitudinal degrees of
freedom. For DCP2

= 3 ansatz the simplest option is that the complex CP2 coordinate ξ
depends analytically on w and the longitudinal CP2 coordinate s obeys the plane wave ansatz.
ξ(w) = a × exp(ikTw), where kT is transverse momentum allows the algebraization of the
solution ansatz also in the transversal degrees of freedom so that a dispersion relation results.
For imaginary values of kT and ω the equations are real.

2. General form for the second variation of the field equations

For time-like four-momentum the second variation of field equations contains three kinds of terms.
There are terms quadratic in ω0 and coming from the second derivatives of the deformation, terms
proportional to iω0 coming from the variation with respect to the derivatives of CP2 coordinates,
and terms which do not depend on ω0 and come from the variations of metric and Kähler form with
respect to the CP2 coordinates.

In standard perturbation theory the terms proportional to iω0 would have interpretation as analogs
of dissipative terms. This forces to assume that ω0 is complex: note that in purely imaginary ω0 the
equations are real. The basic assumption is that Kähler action is able to mimic dissipation despite
the fact that energy and momentum are conserved quantities. The vanishing of the Lorentz force
has an interpretation as the vanishing of the dissipative effects. This would suggest that the terms
proportional to iω0 vanish for the perturbations of the solution preserving the non-dissipative character
of the asymptotic solutions. This might quite well result from the vanishing of the contractions with
the deformation of the energy momentum tensor with the second fundamental form and of energy
momentum tensor with the deformation of the second fundamental form coming from first derivatives.

Physical intuition would suggest that dissipation-less propagation is possible only along special
directions. Thus the vanishing of the linear terms should occur only for special directions of the
longitudinal momentum vector, say for light-like four-momenta in the direction of coordinate lines of
S+ or S−. Quite generally, the sub-space of allowed four-momenta is expected to depend on position
since the components of metric and Kähler form are slowly varying. This dependence is completely
analogous with that appearing in the Hamilton Jacobi (ray-optics) approach to the approximate
treatment of wave equations and makes sense if the phase of the plane wave varies rapidly as compared
to the variation of CP2 coordinates for the unperturbed solution.

Complex values of ω0 are also possible, and would allow to deduce important information about the
rate at which small deviations from asymptotia vanish as well as about instabilities of the asymptotic
solutions. In particular, for imaginary values of ω0 one obtains completely well-defined solution ansatz
representing exponentially decaying or increasing perturbation.

High energy limit

One can gain valuable information by studying the perturbations at the limit of very large four-
momentum. At this limit the terms which are quadratic in the components of momentum dominate
and come from the second derivatives of the CP2 coordinates appearing in the second fundamental
form. The resulting equations reduce for all CP2 coordinates to the same condition

Tαβkαkβ = 0 .

This condition is generalization of masslessness condition with metric replaced by the energy mo-
mentum tensor, which means that light velocity is replaced by an effective light velocity. In fact,
energy momentum tensor effectively replaces metric also in the modified Dirac equation whose form is
dictated by super symmetry. Light-like four momentum is a rather general solution to the condition
and corresponds to ω0 = 0 case.

Reduction of the dispersion relation to the graph of swallowtail catastrophe

Also the general structure of the equations for small perturbations allows to deduce highly non-trivial
conclusions about the character of perturbations.
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1. The equations for four CP2 coordinates are simultaneously satisfied if the determinant associated
with the equations vanishes. This condition defines a 3-dimensional surface in the 4-dimensional
space defined by ω0 and coordinates of 3-space playing the role of slowly varying control pa-
rameters. 4 × 4 determinant results and corresponds to a polynomial which is of order d = 8
in ω0. If the determinant is real, the polynomial can depend on ω2

0 only so that a fourth order
polynomial in w = ω2

0 results.

2. Only complex roots are possible in the case that the terms linear in iω0 are non-vanishing.
One might hope that the linear term vanishes for certain choices of the direction of slowly
varying four-momentum vector kµ(x) at least. For purely imaginary values of ω0 the equations
determinant are real always. Hence catastrophe theoretic description applies in this case at least,
and the so called swallow tail [A149] with three control parameters applies to the situation.

3. The general form of the vanishing determinant is

D(w, a, b, c) = w4 − ew3 − cw2 − bw − a .

The transition from the oscillatory to purely dissipative case changes only the sign of w. By the
shift w = ŵ + e/4 the determinant reduces to the canonical form

D(ŵ, a, b, c) = ŵ4 − cŵ2 − bŵ − a

of the swallowtail catastrophe. This catastrophe has three control variables, which basically
correspond to the spatial 3-coordinates on which the induced metric and Kähler form depend.
The variation of these coefficients at the space-time sheet of course covers only a finite region
of the parameter space of the swallowtail catastrophe. The number of real roots for w = ω2

0 is
four, two, or none since complex roots appear in complex conjugate pairs for a real polynomial.
The general shape of the region of 3-space is that for a portion of swallow tail catastrophe.

4. The dispersion relation for the ”rest mass” ω0 (decay rate for the imaginary value of ω0) has at
most four real branches, which conforms with the fact that there are four dynamical variables.
In real case ω0 is analogous to plasma frequency acting as an infrared cutoff for the frequencies
of plasma excitations. To get some grasp on the situation notice that for a = 0 the swallowtail
reduces to ŵ = 0 and

ŵ3 − cŵ − b = 0 ,

which represents the cusp catastrophe easy to illustrate in 3-dimensional space. Cusp in turn
reduces for b = 0 to ŵ = 0 and fold catastrophe ŵ = ±

√
c. Thus the catastrophe surface becomes

4-sheeted for c ≥ 0 for sufficiently small values of the parameters a and b. The possibility of
negative values of ŵ in principle allows ω2 = ŵ+ e/4 < 0 solutions identifiable as exponentially
decaying or amplified perturbations. At the high frequency limit the 4 branches degenerate to a
single branch Tαβkαkβ = 0, which as a special case gives light-like four-momenta corresponding
to ω0 = 0 and the origin of the swallowtail catastrophe.

5. It is quite possible that the imaginary terms proportional to iω0 cannot be neglected in the time-
like case. The interpretation would be as dissipative effects. If these effects are not too large,
an approximate description in terms of butterfly catastrophe makes still sense. Note however
that the second variation contains besides gravitational terms potentially large dissipative terms
coming from the variation of the induced Kähler form and from the variation of CP2 Christoffel
symbols.

6. Additional complications are encountered at the points, where the induced Kähler field vanishes
since the second variation vanishes identically at these points. By the arguments represented
earlier, these points quite generally represent instabilities.
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Figure 2.1: The projection of the bifurcation set of the swallowtail catastrophe to the 3-dimensional
space of control variables. The potential function has four extrema in the interior of the swallowtail
bounded by the triangles, no extrema in the valley above the swallowtail, and 2 extrema elsewhere.

2.4 Vacuum extremals

Vacuum extremals come as two basic types: CP2 type vacuum extremals for which the induced
Kähler field and Kähler action are non-vanishing and the extremals for which the induced Kähler field
vanishes. The deformations of both extremals are expected to be of fundamental importance in TGD
universe. Vacuum extremals are not gravitational vacua and they are indeed fundamental in TGD
inspired cosmology.

2.4.1 CP2 type extremals

CP2 type vacuum extremals

These extremals correspond to various isometric imbeddings of CP2 to M4
+×CP2. One can also drill

holes to CP2. Using the coordinates of CP2 as coordinates for X4 the imbedding is given by the
formula

mk = mk(u) ,

mklṁ
kṁl = 0 , (2.4.1)

where u(sk) is an arbitrary function of CP2 coordinates. The latter condition tells that the curve
representing the projection of X4 to M4 is light like curve. One can choose the functions mi, i = 1, 2, 3
freely and solve m0 from the condition expressing light likeness so that the number of this kind of
extremals is very large.

The induced metric and Kähler field are just those of CP2 and energy momentum tensor Tαβ

vanishes identically by the self duality of the Kähler form of CP2. Also the canonical current jα =
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Figure 2.2: Cusp catastrophe. Vertical direction corresponds to the behavior variable and orthogonal
directions to control variables.

DβJ
αβ associated with the Kähler form vanishes identically. Therefore the field equations in the

interior of X4 are satisfied. The field equations are also satisfied on the boundary components of CP2

type extremal because the non-vanishing boundary term is, besides the normal component of Kähler
electric field, also proportional to the projection operator to the normal space and vanishes identically
since the induced metric and Kähler form are identical with the metric and Kähler form of CP2.

As a special case one obtains solutions for which M4 projection is light like geodesic. The projection
ofm0 = constant surfaces to CP2 is u = constant 3-submanifold of CP2. Geometrically these solutions
correspond to a propagation of a massless particle. In a more general case the interpretation as an
orbit of a massless particle is not the only possibility. For example, one can imagine a situation, where
the center of mass of the particle is at rest and motion occurs along a circle at say (m1,m2) plane.
The interpretation as a massive particle is natural. Amusingly, there is nice analogy with the classical
theory of Dirac electron: massive Dirac fermion moves also with the velocity of light (zitterbewegung).
The quantization of this random motion with light velocity leads to Virasoro conditions and this led
to a breakthrough in the understanding of the p-adic QFT limit of TGD. Furthermore, it has turned
out that Super Virasoro invariance is a general symmetry of the configuration space geometry and
quantum TGD and appears both at the level of imbedding space and space-time surfaces.

The action for all extremals is same and given by the Kähler action for the imbedding of CP2.
The value of the action is given by

S = − π

8αK
. (2.4.2)

To derive this expression we have used the result that the value of Lagrangian is constant: L =
4/R4, the volume of CP2 is V (CP2) = π2R4/2 and the definition of the Kähler coupling strength
k1 = 1/16παK (by definition, πR is the length of CP2 geodesics). Four-momentum vanishes for these
extremals so that they can be regarded as vacuum extremals. The value of the action is negative
so that these vacuum extremals are indeed favored by the minimization of the Kähler action. The
absolute minimization of Kähler action suggests that ordinary vacuums with vanishing Kähler action
density are unstable against the generation of CP2 type extremals. There are even reasons to expect
that CP2 type extremals are for TGD what black holes are for GRT. Indeed, the nice generalization
of the area law for the entropy of black hole [K31] supports this view.
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In accordance with the basic ideas of TGD topologically condensed vacuum extremals should
somehow correspond to massive particles. The properties of the CP2 type vacuum extremals are in
accordance with this interpretation. Although these objects move with a velocity of light, the motion
can be transformed to a mere zitterbewegung so that the center of mass motion is trivial. Even the
generation of the rest mass could might be understood classically as a consequence of the minimization
of action. Long range Kähler fields generate negative action for the topologically condensed vacuum
extremal (momentum zero massless particle) and Kähler field energy in turn is identifiable as the rest
mass of the topologically condensed particle.

An interesting feature of these objects is that they can be regarded as gravitational instantons [A95]
. A further interesting feature of CP2 type extremals is that they carry nontrivial classical color
charges. The possible relationship of this feature to color confinement raises interesting questions.
Could one model classically the formation of the color singlets to take place through the emission of
”colorons”: states with zero momentum but non-vanishing color? Could these peculiar states reflect
the infrared properties of the color interactions?

Are CP2 type non-vacuum extremals possible?

The isometric imbeddings of CP2 are all vacuum extremals so that these extremals as such cannot
correspond to physical particles. One obtains however nonvacuum extremals as deformations of these
solutions. There are several types of deformations leading to nonvacuum solutions. In order to
describe some of them, recall the expressions of metric and Kähler form of CP2 in the coordinates
(r,Θ,Ψ,Φ) [A137] are given by

ds2

R2
=

dr2

(1 + r2)2
+

r

2(1 + r2))2
(dΨ + cos(Θ)dΦ)2

+
r2

(4(1 + r2)
(dΘ2 + sin2ΘdΦ2) ,

J =
r

(1 + r2)
dr ∧ (dΨ + cos(Θ)dΦ)

− r2

(2(1 + r2)
sin(Θ)dΘ ∧ dΦ . (2.4.3)

The scaling of the line element is defined so that πR is the length of the CP2 geodesic line. Note that
Φ and Ψ appear as ”cyclic” coordinates in metric and Kähler form: this feature plays important role
in the solution ansatze to be described.

Let M4 = M2×E2 denote the decomposition of M4 to a product of 2-dimensional Minkowski space
and 2-dimensional Euclidian plane. This decomposition corresponds physically to the decomposition
of momentum degrees of freedom for massless particle: E2 corresponds to polarization degrees of
freedom.

There are several types of nonvacuum extremals.

1. ”Virtual particle” extremals: the mass spectrum is continuous (also Euclidian momenta are
allowed) but these extremals reduce to vacuum extremals in the massless limit.

2. Massless extremals.

Consider first an example of virtual particle extremal. The simplest extremal of this type is
obtained in the following form

mk = akΨ + bkΦ . (2.4.4)

Here ak and bk are some constant quantities. Field equations are equivalent to the conditions express-
ing four-momentum conservation and are identically satisfied the reason being that induced metric
and Kähler form do not depend on the coordinates Ψ and Φ.

Extremal describes 3-surface, which moves with constant velocity in M4. Four-momentum of the
solution can be both space and time like. In the massless limit solution however reduces to a vacuum
extremal. Therefore the interpretation as an off mass shell massless particle seems appropriate.
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Massless extremals are obtained from the following solution ansatz.

m0 = m3 = aΨ + bΦ ,

(m1,m2) = (m1(r,Θ),m2(r,Θ)) . (2.4.5)

Only E2 degrees of freedom contribute to the induced metric and the line element is obtained from

ds2 = ds2
CP2
− (dm1)2 − (dm2)2 . (2.4.6)

Field equations reduce to conservation condition for the componenents of four-momentum in E2

plane. By their cyclicity the coordinates Ψ and Φ disappear from field equations and one obtains
essentially current conservation condition for two-dimensional field theory defined in space spanned
by the coordinates r and Θ.

(J ia),i = 0 ,

J ia = T ijfa,j
√
g . (2.4.7)

Here the index i and a refer to r and Θ and to E2 coordinates m1 and m2 respectively. T ij denotes the
canonical energy momentum tensor associated with Kähler action. One can express the components
of T ij in terms of induced metric and CP2 metric in the following form

T ij = (−gikgjl + gijgkl/2)skl . (2.4.8)

This expression holds true for all components of the energy momentum tensor.

Since field equations are essentially two-dimensional conservation conditions they imply that com-
ponents of momentum currents can be regarded as vector fields of some canonical transformations

J ia = εijHa
,j , (2.4.9)

where εij denotes two-dimensional constant symplectic form. An open problem is whether one could
solve field equations exactly and whether there exists some nonlinear superposition principle for the
solutions of these equations. Solutions are massless since transversal momentum densities vanish
identically.

Consider as a special case the solution obtained by assuming that one E2 coordinate is constant
and second coordinate is function f(r) of the variable r only. Field equations reduce to the following
form

f,r = ± k

(1 + r2)1/3

√
r2 − k2(1 + r2)4/3 . (2.4.10)

The solution is well defined only for sufficiently small values of the parameter k appearing as integration
constant and becomes ill defined at two singular values of the variable r. Boundary conditions are
identically satisfied at the singular values of r since the radial component of induced metric diverges at
these values of r. The result leads to suspect that the generation of boundary components dynamically
is a general phenomenon so that all nonvacuum solutions have boundary components in accordance
with basic ideas of TGD.
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Figure 2.3: Topological sum of CP2:s as Feynman graph with lines thickened to four-manifolds

CP2#CP2#...#CP2:s as generalized Feynman graphs

There are reasons to believe that point like particles might be identified as CP2 type extremals in
TGD approach. Also the geometric counterparts of the massless on mass shell particles and virtual
particles have been identified. It is natural to extend this idea to the level of particle interactions: the
lines of Feynman diagrams of quantum field theory are thickened to four-manifolds, which are in a
good approximation CP2 type vacuum extremals. This would mean that generalized Feynman graphs
are essentially connected sums of CP2:s (see Fig. 2.4.1): X4 = CP2#CP2....#CP2).

Unfortunately, this picture seems to be oversimplified. First, it is questionable whether the cross
sections for the scattering of CP2 type extremals have anything to do with the cross sections associated
with the standard gauge interactions. A naive geometric argument suggests that the cross section
should reflect the geometric size of the scattered objects and therefore be of the order of CP2 radius
for topologically non-condensed CP2 type extremals. The observed cross sections would result at
the first level of condensation, where particles are effectively replaced by surfaces with size of order
Compton length. Secondly, the hvac = −D rule, considered in the previous chapter, suggests that only
real particles correspond to the CP2 type extremals whereas virtual particles in general correspond
to the vacuum extremals with a vanishing Kähler action. The reason is that the negative exponent of
the Kähler action reduces the contribution of the CP2 type extremals to the functional integral very
effectively. Therefore the exchanges of CP2 type extremals are suppressed by the negative exponent
of the Kähler action very effectively so that geometric scattering cross section is obtained.

2.4.2 Vacuum extremals with vanishing Kähler field

Vacuum extremals correspond to 4-surfaces with vanishing Kähler field and therefore to gauge field
zero configurations of gauge field theory. These surfaces have CP2 projection, which is Legendre
manifold. The condition expressing Legendre manifold property is obtained in the following manner.
Kähler potential of CP2 can be expressed in terms of the canonical coordinates (Pi, Qi) for CP2 as

A =
∑
k

PkdQ
k . (2.4.11)

The conditions

Pk = ∂Qkf(Qi) , (2.4.12)

where f(Qi) is arbitrary function of its arguments, guarantee that Kähler potential is pure gauge.
It is clear that canonical transformations, which act as local U(1) gauge transformations, transform
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different vacuum configurations to each other so that vacuum degeneracy is enormous. Also M4
+

diffeomorphisms act as the dynamical symmetries of the vacuum extremals. Some sub-group of these
symmetries extends to the isometry group of the configuration space in the proposed construction of
the configuration space metric. The vacuum degeneracy is still enhanced by the fact that the topology
of the four-surface is practically free.

Vacuum extremals are certainly not absolute minima of the action. For the induced metric having
Minkowski signature the generation of Kähler electric fields lowers the action. For Euclidian signature
both electric and magnetic fields tend to reduce the action. Therefore the generation of Euclidian
regions of space-time is expected to occur. CP2 type extremals, identifiable as real (as contrast to
virtual) elementary particles, can be indeed regarded as these Euclidian regions.

Particle like vacuum extremals can be classified roughly by the number of the compactified di-
mensions D having size given by CP2 length. Thus one has DCP2

= 3 for CP2 type extremals,
DCP2

= 2 for string like objects, DCP2
= 1 for membranes and DCP2

= 0 for pieces of M4. As already
mentioned, the rule hvac = −D relating the vacuum weight of the Super Virasoro representation to
the number of compactified dimensions of the vacuum extremal is very suggestive. D < 3 vacuum
extremals would correspond in this picture to virtual particles, whose contribution to the generalized
Feynman diagram is not suppressed by the exponential of Kähler action unlike that associated with
the virtual CP2 type lines.

M4 type vacuum extremals (representable as maps M4
+ → CP2 by definition) are also expected to

be natural idealizations of the space-time at long length scales obtained by smoothing out small scale
topological inhomogenities (particles) and therefore they should correspond to space-time of GRT in
a reasonable approximation.

The reason would be ”Yin-Yang principle”.

1. Consider first the option for which Kähler function corresponds to an absolute minimum of
Kähler action. Vacuum functional as an exponent of Kähler function is expected to concen-
trate on those 3-surfaces for which the Kähler action is non-negative. On the other hand, the
requirement that Kähler action is absolute minimum for the space-time associated with a given
3-surface, tends to make the action negative. Therefore the vacuum functional is expected to
differ considerably from zero only for 3-surfaces with a vanishing Kähler action per volume. It
could also occur that the degeneracy of 3-surfaces with same large negative action compensates
the exponent of Kähler function.

2. If preferred extrema correspond to Kähler calibrations or their duals [K74] , Yin-Yang principle
is modified to a more local principle. For Kähler calibrations (their duals) the absolute value of
action in given region is minimized (maximized). A given region with positive (negative sign) of
action density favors Kähler electric (magnetic) fields. In long length scales the average density
of Kähler action per four-volume tends to vanish so that Kähler function of the entire universe
is expected to be very nearly zero. This regularizes the theory automatically and implies that
average Kähler action per volume vanishes. Positive and finite values of Kähler function are of
course favored.

In both cases the vanishing of Kähler action per volume in long length scales makes vacuum ex-
tremals excellent idealizations for the smoothed out space-time surface. Robertson-Walker cosmologies
provide a good example in this respect. As a matter fact the smoothed out space-time is not a mere
fictive concept since larger space-time sheets realize it as a essential part of the Universe.

Several absolute minima could be possible and the non-determinism of the vacuum extremals is not
expected to be reduced completely. The remaining degeneracy could be even infinite. A good example
is provided by the vacuum extremals representable as maps M4

+ → D1, where D1 is one-dimensional
curve of CP2. This degeneracy could be interpreted as a space-time correlate for the non-determinism
of quantum jumps with maximal deterministic regions representing quantum states in a sequence of
quantum jumps.
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2.5 Non-vacuum extremals

2.5.1 Cosmic strings

Cosmic strings are extremals of type X2 × S2, where X2 is minimal surface in M4
+ (analogous to

the orbit of a bosonic string) and S2 is the homologically non-trivial geodesic sphere of CP2. The
action of these extremals is positive and thus absolute minima are certainly not in question. One can
however consider the possibility that these extremals are building blocks of the absolute minimum
space-time surfaces since the absolute minimization of the Kähler action is global rather than a local
principle. Cosmic strings can contain also Kähler charged matter in the form of small holes containing
elementary particle quantum numbers on their boundaries and the negative Kähler electric action for
a topologically condensed cosmic string could cancel the Kähler magnetic action.

The string tension of the cosmic strings is given by

T =
1

8αKR2
' .2210−6 1

G
, (2.5.1)

where αK ' αem has been used to get the numerical estimate. The string tension is of the same
order of magnitude as the string tension of the cosmic strings of GUTs and this leads to the model
of the galaxy formation providing a solution to the dark matter puzzle as well as to a model for large
voids as caused by the presence of a strongly Kähler charged cosmic string. Cosmic strings play also
fundamental role in the TGD inspired very early cosmology.

2.5.2 Massless extremals

Massless extremals (or topological light rays) are characterized by massless wave vector p and polar-
ization vector ε orthogonal to this wave vector. Using the coordinates of M4 as coordinates for X4

the solution is given as

sk = fk(u, v) ,
u = p ·m , v = ε ·m ,
p · ε = 0 , p2 = 0 .

CP2 coordinates are arbitrary functions of p ·m and ε ·m. Clearly these solutions correspond to plane
wave solutions of gauge field theories. It is important to notice however that linear super position
doesn’t hold as it holds in Maxwell phase. Gauge current is proportional to wave vector and its
divergence vanishes as a consequence. Also cylindrically symmetric solutions for which the transverse
coordinate is replaced with the radial coordinate ρ =

√
m2

1 +m2
2 are possible. In fact, v can be any

function of the coordinates m1,m2 transversal to the light like vector p.
Boundary conditions on the boundaries of the massless extremal are satisfied provided the normal

component of the energy momentum tensor vanishes. Since energy momentum tensor is of the form
Tαβ ∝ pαpβ the conditions Tnβ = 0 are satisfied if the M4 projection of the boundary is given by the
equations of form

H(p ·m, ε ·m, ε1 ·m) = 0 ,
ε · p = 0 , ε1 · p = 0 , ε · ε1 = 0 .

(2.5.2)

where H is arbitrary function of its arguments. Recall that for M4 type extremals the boundary
conditions are also satisfied if Kähler field vanishes identically on the boundary.

The following argument suggests that there are not very many manners to satisfy boundary con-
ditions in case of M4 type extremals. The boundary conditions, when applied to M4 coordinates
imply the vanishing of the normal component of energy momentum tensor. Using coordinates, where
energy momentum tensor is diagonal, the requirement boils down to the condition that at least one
of the eigen values of Tαβ vanishes so that the determinant det(Tαβ) must vanish on the boundary:
this condition defines 3-dimensional surface in X4. In addition, the normal of this surface must have
same direction as the eigen vector associated with the vanishing eigen value: this means that three
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additional conditions must be satisfied and this is in general true in single point only. The boundary
conditions in CP2 coordinates are satisfied provided that the conditions

JnβJkl∂βs
l = 0

are satisfied. The identical vanishing of the normal components of Kähler electric and magnetic fields
on the boundary of massless extremal property provides a manner to satisfy all boundary conditions
but it is not clear whether there are any other manners to satisfy them.

The characteristic feature of the massless extremals is that in general the Kähler gauge current
is non-vanishing. In ordinary Maxwell electrodynamcis this is not possible. This means that these
extremals are accompanied by vacuum current, which contains in general case both weak and electro-
magnetic terms as well as color part.

A possible interpretation of the solution is as the exterior space-time to a topologically condensed
particle with vanishing mass described by massless CP2 type extremal, say photon or neutrino. In
general the surfaces in question have boundaries since the coordinates sk are are boundedthis is in
accordance with the general ideas about topological condensation. The fact that massless plane wave
is associated with CP2 type extremal combines neatly the wave and particle aspects at geometrical
level.

The fractal hierarchy of space-time sheets implies that massless extremals should interesting also in
long length scales. The presence of a light like electromagnetic vacuum current implies the generation
of coherent photons and also coherent gravitons are generated since the Einstein tensor is also non-
vanishing and light like (proportional to kαkβ). Massless extremals play an important role in the TGD
based model of bio-system as a macroscopic quantum system. The possibility of vacuum currents is
what makes possible the generation of the highly desired coherent photon states.

2.5.3 Generalization of the solution ansatz defining massless extremals
(MEs)

The solution ansatz for MEs has developed gradually to an increasingly general form and the following
formulation is the most general one achieved hitherto. Rather remarkably, it rather closely resembles
the solution ansatz for the CP2 type extremals and has direct interpretation in terms of geometric
optics. Equally remarkable is that the latest generalization based on the introduction of the local light
cone coordinates was inspired by quantum holography principle.

The solution ansatz for MEs has developed gradually to an increasingly general form and the
following formulation is the most general one achieved hitherto. Rather remarkably, it rather closely
resembles the solution ansatz for the CP2 type extremals and has direct interpretation in terms of
geometric optics. Equally remarkable is that the latest generalization based on the introduction of
the local light cone coordinates was inspired by quantum holography principle.

Local light cone coordinates

The solution involves a decomposition of M4
+ tangent space localizing the decomposition of Minkowski

space to an orthogonal direct sum M2 ⊕E2 defined by light-like wave vector and polarization vector
orthogonal to it. This decomposition defines what might be called local light cone coordinates.

1. Denote by mi the linear Minkowski coordinates of M4. Let (S+, S−, E1, E2) denote local co-
ordinates of M4

+ defining a local decomposition of the tangent space M4 of M4
+ into a direct

orthogonal sum M4 = M2 ⊕ E2 of spaces M2 and E2. This decomposition has interpreta-
tion in terms of the longitudinal and transversal degrees of freedom defined by local light-like
four-velocities v± = ∇S± and polarization vectors εi = ∇Ei assignable to light ray.

2. With these assumptions the coordinates (S±, E
i) define local light cone coordinates with the

metric element having the form

ds2 = 2g+−dS
+dS− + g11(dE1)2 + g22(dE2)2 . (2.5.3)

If complex coordinates are used in transversal degrees of freedom one has g11 = g22.



82 Chapter 2. Basic Extremals of the Kähler Action

3. This family of light cone coordinates is not the most general family since longitudinal and
transversal spaces are orthogonal. One can also consider light-cone coordinates for which one
non-diagonal component, say m1+, is non-vanishing if the solution ansatz is such that longitu-
dinal and transversal spaces are orthogonal for the induced metric.

A conformally invariant family of local light cone coordinates

The simplest solutions to the equations defining local light cone coordinates are of form S± = k ·m
giving as a special case S± = m0 ±m3. For more general solutions of from

S± = m0 ± f(m1,m2,m3) , (∇3f)2 = 1 ,

where f is an otherwise arbitrary function, this relationship reads as

S+ + S− = 2m0 .

This condition defines a natural rest frame. One can integrate f from its initial data at some two-
dimensional f = constant surface and solution describes curvilinear light rays emanating from this
surface and orthogonal to it. The flow velocity field v = ∇f is irrotational so that closed flow lines
are not possible in a connected region of space and the condition v2 = 1 excludes also closed flow line
configuration with singularity at origin such as v = 1/ρ rotational flow around axis.

One can identify E2 as a local tangent space spanned by polarization vectors and orthogonal to
the flow lines of the velocity field v = ∇f(m1,m2,m3). Since the metric tensor of any 3-dimensional
space allows always diagonalization in suitable coordinates, one can always find coordinates (E1, E2)
such that (f,E1, E2) form orthogonal coordinates for m0 = constant hyperplane. Obviously one can
select the coordinates E1 and E2 in infinitely many manners.

Closer inspection of the conditions defining local light cone coordinates

Whether the conformal transforms of the local light cone coordinates {S± = m0± f(m1,m2,m3), Ei}
define the only possible compositions M2⊕E2 with the required properties, remains an open question.
The best that one might hope is that any function S+ defining a family of light-like curves defines a
local decomposition M4 = M2 ⊕ E2 with required properties.

1. Suppose that S+ and S− define light-like vector fields which are not orthogonal (proportional to
each other). Suppose that the polarization vector fields εi = ∇Ei tangential to local E2 satisfy
the conditions εi · ∇S+ = 0. One can formally integrate the functions Ei from these condition
since the initial values of Ei are given at m0 = constant slice.

2. The solution to the condition ∇S+ · εi = 0 is determined only modulo the replacement

εi → ε̂i = εi + k∇S+ ,

where k is any function. With the choice

k = −∇E
i · ∇S−

∇S+ · ∇S−

one can satisfy also the condition ε̂i · ∇S− = 0.

3. The requirement that also ε̂i is gradient is satisfied if the integrability condition

k = k(S+)

is satisfiedin this case ε̂i is obtained by a gauge transformation from εi. The integrability
condition can be regarded as an additional, and obviously very strong, condition for S− once
S+ and Ei are known.
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4. The problem boils down to that of finding local momentum and polarization directions defined
by the functions S+, S− and E1 and E2 satisfying the orthogonality and integrability conditions

(∇S+)2 = (∇S−)2 = 0 , ∇S+ · ∇S− 6= 0 ,

∇S+ · ∇Ei = 0 , ∇Ei·∇S−
∇S+·∇S− = ki(S

+) .

The number of integrability conditions is 3+3 (all derivatives of ki except the one with respect
to S+ vanish): thus it seems that there are not much hopes of finding a solution unless some
discrete symmetry relating S+ and S− eliminates the integrability conditions altogether.

A generalization of the spatial reflection f → −f working for the separable Hamilton Jacobi
function S± = m0 ± f ansatz could relate S+ and S− to each other and trivialize the integrability
conditions. The symmetry transformation of M4

+ must perform the permutation S+ ↔ S−, preserve
the light-likeness property, map E2 to E2, and multiply the inner products between M2 and E2

vectors by a mere conformal factor. This encourages the conjecture that all solutions are obtained by
conformal transformations from the solutions S± = m0 ± f .

General solution ansatz for MEs for given choice of local light cone coordinates

Consider now the general solution ansatz assuming that a local wave-vector-polarization decomposition
of M4

+ tangent space has been found.

1. Let E(S+, E1, E2) be an arbitrary function of its arguments: the gradient ∇E defines at each
point of E2 an S+-dependent (and thus time dependent) polarization direction orthogonal to
the direction of local wave vector defined by ∇S+. Polarization vector depends on E2 position
only.

2. Quite a general family of MEs corresponds to the solution family of the field equations having
the general form

sk = fk(S+, E) ,

where sk denotes CP2 coordinates and fk is an arbitrary function of S+ and E. The solution
represents a wave propagating with light velocity and having definite S+ dependent polarization
in the direction of ∇E. By replacing S+ with S− one obtains a dual solution. Field equations
are satisfied because energy momentum tensor and Kähler current are light-like so that all tensor
contractions involved with the field equations vanish: the orthogonality of M2 and E2 is essential
for the light-likeness of energy momentum tensor and Kähler current.

3. The simplest solutions of the form S± = m0 ±m3, (E1, E2) = (m1,m2) and correspond to a
cylindrical MEs representing waves propagating in the direction of the cylinder axis with light
velocity and having polarization which depends on point (E1, E2) and S+ (and thus time). For
these solutions four-momentum is light-like: for more general solutions this cannot be the case.
Polarization is in general case time dependent so that both linearly and circularly polarized
waves are possible. If m3 varies in a finite range of length L, then ’free’ solution represents
geometrically a cylinder of length L moving with a light velocity. Of course, ends could be also
anchored to the emitting or absorbing space-time surfaces.

4. For the general solution the cylinder is replaced by a three-dimensional family of light like
curves and in this case the rectilinear motion of the ends of the cylinder is replaced with a
curvilinear motion with light velocity unless the ends are anchored to emitting/absorbing space-
time surfaces. The non-rotational character of the velocity flow suggests that the freely moving
particle like 3-surface defined by ME cannot remain in a infinite spatial volume. The most
general ansatz for MEs should be useful in the intermediate and nearby regions of a radiating
object whereas in the far away region radiation solution is excepted to decompose to cylindrical
ray like MEs for which the function f(m1,m2,m2) is a linear function of mi.
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5. One can try to generalize the solution ansatz further by allowing the metric of M4
+ to have

components of type gi+ or gi− in the light cone coordinates used. The vanishing of T 11, T+1,
and T−− is achieved if gi± = 0 holds true for the induced metric. For sk = sk(S+, E1) ansatz
neither g2± nor g1− is affected by the imbedding so that these components of the metric must
vanish for the Hamilton Jacobi structure:

ds2 = 2g+−dS
+dS− + 2g1+dE

1dS+ + g11(dE1)2 + g22(dE2)2 . (2.5.4)

g1+ = 0 can be achieved by an additional condition

m1+ = skl∂1s
k∂+s

k . (2.5.5)

The diagonalization of the metric seems to be a general aspect of absolute minima. The absence
of metric correlations between space-time degrees of freedom for asymptotic self-organization
patterns is somewhat analogous to the minimization of non-bound entanglement in the final
state of the quantum jump.

Are the boundaries of space-time sheets quite generally light like surfaces with Hamilton
Jacobi structure?

Quantum holography principle naturally generalizes to an approximate principle expected to hold true
also in non-cosmological length and time scales.

1. The most general ansatz for topological light rays or massless extremals (MEs) inspired by
the quantum holographic thinking relies on the introduction of the notion of local light cone
coordinates S+, S−, E1, E2. The gradients ∇S+ and ∇S− define two light like directions just
like Hamilton Jacobi functions define the direction of propagation of wave in geometric optics.
The two polarization vector fields ∇E1 and ∇E2 are orthogonal to the direction of propagation
defined by either S+ or S−. Since also E1 and E2 can be chosen to be orthogonal, the metric
of M4

+ can be written locally as ds2 = g+−dS+dS− + g11dE
2
1 + g22dE

2
2 . In the earlier ansatz

S+ and S− where restricted to the variables k · m and k̃ · m, where k and k̃ correspond to
light like momentum and its mirror image and m denotes linear M4 coordinates: these MEs
describe cylindrical structures with constant direction of wave propagation expected to be most
important in regions faraway from the source of radiation.

2. Boundary conditions are satisfied if the 3-dimensional boundaries of MEs have one light like
direction (S+ or S− is constant). This means that the boundary of ME has metric dimension
d = 2 and is characterized by an infinite-dimensional super-symplectic and super-conformal
symmetries just like the boundary of the imbedding space M4

+ × CP2: The boundaries are like
moments for mini big bangs (in TGD based fractal cosmology big bang is replaced with a silent
whisper amplified to not necessarily so big bang).

3. These observations inspire the conjecture that boundary conditions for M4 like space-time sheets
fixed by the absolute minimization of Kähler action quite generally require that space-time
boundaries correspond to light like 3-surfaces with metric dimension equal to d = 2. This does
not yet imply that light like surfaces of imbedding space would take the role of the light cone
boundary: these light like surface could be seen only as a special case of causal determinants
analogous to event horizons.

2.5.4 Maxwell phase

”Maxwell phase” corresponds to small deformations of the M4 type vacuum extremals. Since energy
momentum tensor is quadratic in Kähler field the term proportional to the contraction of the energy
momentum tensor with second fundamental form drops from field equations and one obtains in lowest
order the following field equations



2.5. Non-vacuum extremals 85

jαJkls
l
,α = 0 . (2.5.6)

These equations are satisfied if Maxwell’s equations

jα = 0 (2.5.7)

hold true. Massless extremals and Maxwell phase clearly exclude each other and it seems that they
must corresponds to different space-time sheets.

The explicit construction of these extremals reduces to the task of finding an imbedding for an
arbitrary free Maxwell field to H. One can also allow source terms corresponding to the presence
of the point like charges: these should correspond to the regions of the space-time, where the flat
space-time approximation of the space-time fails. The regions where the approximation defining the
Maxwell phase fails might correspond to a topologically condensed CP2 type extremals, for example.
As a consequence, Kähler field is superposition of radiation type Kähler field and of Coulombic term.
A second possibility is the generation of ”hole” with similar Coulombic Kähler field.

An important property of the Maxwell phase (also of massless extremals) is its approximate canon-
ical invariance. Canonical transformations do not spoil the extremal property of the four-surface in
the approximation used, since it corresponds to a mere U(1) gauge transformation. This implies the
counter part of the vacuum degeneracy, that is, the existence of an enormous number of four-surfaces
with very nearly the same action. Also there is an approximate Diff(M4

+) invariance.
The canonical degeneracy has some very interesting consequences concerning the understanding

of the electro-weak symmetry breaking and color confinement. Kähler field is canonical invariant and
satisfies Maxwells equations. This is in accordance with the identification of Kähler field as U(1) part
of the electro-weak gauge field. Electromagnetic gauge field is a superposition of Kähler field and Z0

fieldγ = 3J − sin2(θW )Z0/2 so that also electromagnetic gauge field is long ranged assuming that Z0

and W+ fields are short ranged. These fields are not canonical invariants and their behavior seems to
be essentially random, which implies short range correlations and the consequent massivation.

There is an objection against this argument. For the known D < 4 solutions of field equations weak
fields are not random at all. These situations could represent asymptotic configurations assignable
to space-time sheets. This conforms with the interpretation that weak gauge fields are essentially
massless within the asymptotic space-time sheets representing weak bosons. Gauge fields are however
transferred between space-time sheets through # contacts modelable as pieces of CP2 type extremals
having DCP2

= 4. In contrast to Kähler and color gauge fluxes, weak gauge fluxes are not conserved in
the Euclidian time evolution between the 3-D causal horizons separating the Euclidian # contact from
space-time sheets with Minkowskian signature. This non-conservation implying the loss of coherence
in the transfer of fields between space-time sheets is a plausible mechanism for the loss of correlations
and massivation of the weak gauge fields.

Classical gluon fields are proportional to Kähler field and to the Hamiltonians associated with the
color isometry generators.

gAαβ = kHAJαβ . (2.5.8)

This implies that the direction of gluon fields in color algebra is random. One can always perform a
canonical transformation, which reduces to a global color rotation in some arbitrary small region of
space-time and reduces to identity outside this region. The proportionality of a gluon field to Kähler
form implies that there is a classical long range correlation in X4 degrees of freedom: in this sense
classical gluon fields differ from massive electro-weak fields in Maxwell phase.

2.5.5 Stationary, spherically symmetric extremals

The stationary, spherically symmetric extremals of the Kähler action imbeddable in M4 × S2, where
S2 is geodesic sphere, are the simplest extremals, which one can study as models for the space-time
surrounding a topologically condensed particle, say CP2 type vacuum extremal. In the region near the
particle the spherical symmetry is an unrealistic assumption since it excludes the presence of magnetic
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fields needed to cancel the total Kähler action. The stationarity is also unrealistic assumption since
zitterbewegung seems to provide a necessary mechanism for generating Kähler magnetic field and for
satisfying boundary conditions. Also the imbeddability to M4 × S2 implies unrealistic relationship
between Z0 and photon charges.

According to the general wisdom, the generation of a Kähler electric field must take place in order
to minimize the action and it indeed turns out that the extremal is characterized by essentially 1/r2

Kähler electric field. The necessary presence of a hole or of a topologically condensed object is also
demonstratedit is impossible to find extremals well defined in the region surrounding the origin. It is
impossible to satisfy boundary conditions at a hole: this is in accordance with the idea that Euclidian
region corresponding to a CP2 type extremal performing zitterbewegung is generated. In case of CP2

extremal radius is of the order of the Compton length of the particle and in case of a ”hole” of the
order of Planck length. The value of the vacuum frequency ω is of order of particle mass whereas for
macroscopic vacuum extremals it must be of the order of 1/R. This does not lead to a contradiction
if the concept of a many-sheeted space-time is accepted.

The Poincare energy of the exterior region is considerably smaller than the gravitational mass;
this conforms with the interpretation that gravitational mass is sum of absolute values of positive and
negative inertial masses associated with matter and negative energy antimatter. It is quite possible
that classical considerations cannot provide much understanding concerning the inertial masses of
topologically condensed particles. Electro-weak gauge forces are considerably weaker than the gravi-
tational force at large distances, when the value of the frequency parameter ω is of order 1/R . Both
these desirable properties fail to be true if CP2 radius is of order Planck length as believed earlier.

In light of the general ideas about topological condensation it is clear that in planetary length scales
these kind of extremals cannot provide a realistic description of space-time. Indeed, spherically sym-
metric extremals predict a wrong rate for the precession of the perihelion of Mercury. Scwhartschild
and Reissner-Nordström metric do this and indeed allow imbedding as vacuum extremals for which
the inertial masses of positive energy matter and negative energy antimatter sum up to zero.

This does not yet resolve the interpretational challenge due to the unavoidable long range color and
weak gauge fields. A dark matter hierarchy giving rise to a hierarchy of color and electro-weak physics
characterized by increasing values of weak and confinement scales explains these fields. # contacts
involve a pair of causal horizons at which the Euclidian metric signature of # contact transforms
to Minkowskian one. These causal horizons have interpretation as partons so that # contact can be
regarded as a bound state of partons bound together by a gravitational instanton (CP2 type extremal).
# contacts provide basic example of dark matter creating long ranged weak fields.

An important result is the correlation between the sign of the vacuum frequency ω and that
of the Kähler charge, which is of opposite sign for fermions and anti-fermions. This suggests an
explanation for matter-antimatter asymmetry. Matter and antimatter condense stably on disjoint
regions of the space-time surface at different space-time sheets. Stable antimatter could correspond
to negative time orientation and negative energy. This leads to a model for the primordial generation
of matter as spontaneous generation of zero energy # contacts between space-time sheets of opposite
time orientations. If CP conjugation is not exact symmetry, # contacts and their CP conjugates are
created with slightly different rates and this gives rise to CP asymmetry at each of the two space-
time sheets involved. After the splitting of # contacts and subsequent annihilation of particles and
antiparticles at each space-time sheet, the two space-time sheets contain only positive energy matter
and negative energy antimatter.

General solution ansatz

The general form of the solution ansatz is obtained by assuming that the space-time surface in question
is a sub-manifold of M4 × S2, where S2 is the homologically non-trivial geodesic sphere of CP2. S2

is most conveniently realized as r = ∞ surface of CP2, for which all values of the coordinate Ψ
correspond to same point of CP2 so that one can use Θ and Φ as the coordinates of S2.

The solution ansatz is given by the expression
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cos(Θ) = u(r) ,

Φ = ωt ,

m0 = λt ,

rM = r , θM = θ , φM = φ . (2.5.9)

The induced metric is given by the expression

ds2 =

[
λ2 − R2

4
ω2(1− u2)

]
dt2 − (1 +

R2

4
θ2
,r)dr

2 − r2dΩ2 .

(2.5.10)

The value of the parameter λ is fixed by the condition gtt(∞) = 1:

λ2 − R2

4
ω2(1− u(∞)2) = 1 . (2.5.11)

From the condition e0 ∧ e3 = 0 the non-vanishing components of the induced Kähler field are given
by the expression

Jtr =
ω

4
u,r . (2.5.12)

Geodesic sphere property implies that Z0 and photon fields are proportional to Kähler field:

γ = (3− p/2)J ,

Z0 = J . (2.5.13)

From this formula one obtains the expressions

Qem =
(3− p/2)

4παem
QK , QZ =

1

4παZ
Q ,

Q ≡ Jtr4πr
2

√
−grrgtt

. (2.5.14)

for the electromagnetic and Z0 charges of the solution using e and gZ as unit.
Field equations can be written as conditions for energy momentum conservation (two equations is

in principle all what is needed in the case of geodesic sphere). Energy conservation holds identically
true and conservation of momentum, say, in z-direction gives the equation

(T rrz,r),r + (T θθz,θ),θ = 0 . (2.5.15)

Using the explicit expressions for the components of the energy momentum tensor

T rr = grrL/2 ,

T θθ = −gθθL/2 ,

L = gttgrr(Jtr)
2√g/2 , (2.5.16)

and the following notations

A = gttgrrr2√−gttgrr ,

X ≡ (Jtr)
2 , (2.5.17)
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the field equations reduce to the following form

(grrAX),r −
2AX

r
= 0 . (2.5.18)

In the approximation grr = 1 this equation can be readily integrated to give AX = C/r2. Integrating
Eq. (2.6.7), one obtains integral equation for X

Jtr =
q

rc
(|grr|3gtt)1/4exp(

∫ r

rc

dr
grr
r

)
1

r
, (2.5.19)

where q is integration constant, which is related to the charge parameter of the long range Kähler
electric field associated with the solution. rc denotes the critical radius at which the solution ceases
to be well defined.

The inspection of this formula shows that Jtr behaves essentially as 1/r2 Coulomb field. This be-
havior doesn’t depend on the detailed properties of the solution ansatz (for example the imbeddability
to M4 × S2): stationarity and spherical symmetry is what matters only. The compactness of CP2

means that stationary, spherically symmetric solution is not possible in the region containing origin.
This is in concordance with the idea that either a hole surrounds the origin or there is a topolog-
ically condensed CP2 extremal performing zitterbewegung near the origin and making the solution
non-stationary and breaking spherical symmetry.

Second integration gives the following integral equation for CP2 coordinate u = cos(Θ)

u(r) = u0 +
4q

ω

∫ r

rc

(−g3
rrgtt)

1/4 1

r
exp(

∫ r

rc

dr
grr
r

) . (2.5.20)

Here u0 denotes the value of the coordinate u at r = r0.
The form of the field equation suggests a natural iterative procedure for the numerical construction

of the solution for large values of r.

un(r) = Tn−1 , (2.5.21)

where Tn−1 is evaluated using the induced metric associated with un−1. The physical content of the
approximation procedure is clear: estimate the gravitational effects using lower order solution since
these are expected to be small.

A more convenient manner to solve u is based on Taylor expansion around the point V ≡ 1/r = 0.
The coefficients appearing in the power series expansion u =

∑
n unA

nV n : A = q/ω can be solved
by calculating successive derivatives of the integral equation for u.

The lowest order solution is simply

u0 = u∞ , (2.5.22)

and the corresponding metric is flat metric. In the first order one obtains for u(r) the expression

u = u∞ −
4q

ωr
, (2.5.23)

which expresses the fact that Kähler field behaves essentially as 1/r2 Coulomb field. The behavior
of u as a function of r is identical with that obtained for the imbedding of the Reissner-Nordström
solution.

To study the properties of the solution we fix the signs of the parameters in the following manner:

u∞ < 0 , q < 0 , ω > 0 (2.5.24)
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(reasons become clear later).
Concerning the behavior of the solution one can consider two different cases.
1) The condition gtt > 0 hold true for all values of Θ. In this case u decreases and the rate of

decrease gets faster for small values of r. This means that in the lowest order the solution becomes
certainly ill defined at a critical radius r = rc given by the the condition u = 1: the reason is that u
cannot get values large than one. The expression of the critical radius is given by

rc ≥ 4q

(|u∞|+ 1)ω

=
4αQem

(3− p/2)

1

(|u∞|+ 1)ω
. (2.5.25)

The presence of the critical radius for the actual solution is also a necessity as the inspection of the
expression for Jtr shows: ∂rθ grows near the origin without bound and u = 1 is reached at some finite
value of r. Boundary conditions require that the quantity X = T rr

√
g vanishes at critical radius (no

momentum flows through the boundary). Substituting the expression of Jtr from the field equation to
T rr the expression for X reduces to a form, from which it is clear that X cannot vanish. The cautious
conclusion is that boundary conditions cannot be satisfied and the underlying reason is probably the
stationarity and spherical symmetry of the solution. Physical intuition suggests that that CP2 type
extremal performing zitterbewegung is needed to satisfy the boundary conditions.

2) gtt vanishes for some value of Θ. In this case the radial derivative of u together with gtt can
become zero for some value of r = rc. Boundary conditions can be satisfied only provided rc = 0.

Thus it seems that for the values of ω satisfying the condition ω2 = 4λ2

R2sin2(Θ0) it might be possible

to find a globally defined solution. The study of differential equation for u however shows that the
ansatz doesn’t work. The conclusion is that although the boundary is generated it is not possible to
satisfy boundary conditions.

A direct calculation of the coefficients un from power series expansion gives the following third
order polynomial approximation for u (V = 1/r)

u =
∑
n

unA
nV n ,

u0 = u∞(< 0) , u1 = 1 ,

u2 = K|u∞| , u3 = K(1 + 4K|u∞|) ,

A ≡ 4q

ω
, K ≡ ω2R

2

4
.

(2.5.26)

The coefficients u2 and u3 are indeed positive which means that the value of the critical radius gets
larger at least in these orders.

Solution contains three parameters: Kähler electric flux Q = 4πq, parameter ωR and parameter
u∞. The latter parameters can be regarded as parameters describing the properties of a flat vacuum
extremal (lowest order solution) to which particle like solution is glued and are analogous to the
parameters describing symmetry broken vacuum in gauge theories.

Solution is not a realistic model for topological condensation

The solution does not provide realistic model for topological condensation although it gives indirect
support for some essential assumptions of TGD based description of Higgs mechanism.

1. When the value of ω is of the order of CP2 mass the solution could be interpreted as the ”exterior
metric” of a ”hole”.
i) The radius of the hole is of the order of CP2 length and its mass is of the order of CP2 mass.
ii) Kähler electric field is generated and charge renormalization takes place classically at CP2

length scales as is clear from the expression of Q(r): Q(r) ∝ (−grrgtt
)1/4 and charge increases at

short distances.
iii) The existence of the critical radius is unavoidable but boundary conditions cannot be satisfied.
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The failure to satisfy boundary conditions might be related to stationarity or to the absence of
magnetic field. The motion of the boundary component with velocity of light might be the only
manner to satisfy boundary conditions. Second possibility is the breaking of spherical symmetry
by the generation of a static magnetic field.
iv) The absence of the Kähler magnetic field implies that the Kähler action has an infinite
magnitude and the probability of the configuration is zero. A more realistic solution ansatz
would break spherical symmetry containing dipole type magnetic field in the nearby region of
the hole. The motion of the boundary with a velocity of light could serves as an alternative
mechanism for the generation of magnetic field. The third possibility, supported by physical
intuition, is that one must give up “hole” type extremal totally.

2. For sufficiently large values of r and for small values of ω (of the order of elementary particle
mass scale), the solution might provide an approximate description for the region surrounding
elementary particle. Although it is not possible to satisfy boundary conditions the order of
magnitude estimate for the size of critical radius (rc ' α/ω) should hold true for more realistic
solutions, too. The order of magnitude for the critical radius is smaller than Compton length or
larger if the vacuum parameter ω is larger than the mass of the particle. In macroscopic length
scales the value of ω is of order 1/R. This does not lead to a contradiction if the many-sheeted
space-time concept is accepted so that ω < m corresponds to elementary particle space-time
sheet. An unrealistic feature of the solution is that the relationship between Z0 and em charges
is not correct: Z0 charge should be very small in these length scales.

Exterior solution cannot be identified as a counter part of Schwartshild solution

The first thing, which comes into mind is to ask whether one might identify exterior solution as the
TGD counterpart of the Schwartshild solution. The identification of gravitational mass as absolute
value of inertial mass which is negative for antimatter implies that vacuum extremals are vacua only
with respect to the inertial four-momentum and have a non-vanishing gravitational four-momentum.
Hence, in the approximation that the net density of inertial mass vanishes, vacuum extremals provide
the proper manner to model matter, and the identification of spherically symmetric extremal as the
counterpart of Scwhartschild metric is certainly not possible. It is however useful to show explicitly
that the identification is indeed unrealistic. The solution is consistent with Equivalence Principle but
the electro-weak gauge forces are considerably weaker than gravitational forces. A wrong perihelion
shift is also predicted so that the identification as an exterior metric of macroscopic objects is out of
question.

1. Is Equivalence Principle respected?

TGD predicts the possibility of negative classical energy for space-time sheets with negative time
orientation, and the only manner to second quantize induced spinor fields without diverging vacuum
energy is by assuming that fermions have positive energies and anti-fermions negative energies (vice
versa for phase conjugate fermions). This modifies the original form of Equivalence Principle: gravi-
tational mass can be interpreted as absolute value of inertial mass so that the density of gravitational
mass becomes the difference of densities of inertial mass for matter and antimatter (or vice versa).
This interpretation leads to an elegant solution of the basic interpretational difficulties created by the
conservation of inertial four-momentum and non-conservation of gravitational four-momentum.

The gravitational mass of the solution is determined from the asymptotic behavior of gtt and is
given by

Mgr =
R2

G
ωqu∞ , (2.5.27)

and is proportional to the Kähler charge q of the solution.
One can estimate the gravitational mass density also by applying Newtonian approximation to

the time component of the metric gtt = 1 − 2Φgr. One obtains Φgr corresponds in the lowest order
approximation to a solution of Einstein’s equations with the source consisting of a mass point at origin
and the energy density of the Kähler electric field. The effective value of gravitational constant is
however Geg = 8R2αK . Thus the only sensible interpretation is that the density of Kähler (inertial)
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energy is only a fraction G/Geq ≡ ε ' .22 × 10−6 of the density of gravitational mass. Hence
the densities of positive energy matter and negative energy antimatter cancel each other in a good
approximation.

The work with cosmic strings lead to a possible interpretation of the solution as a space-time sheet
containing topologically condensed magnetic flux tube idealizable as a point. The negative Kähler
electric action must cancel the positive Kähler magnetic action. The resulting structure in turn can
condense to a vacuum extremal and Schwartshild metric is a good approximation for the metric.

One can estimate the contribution of the exterior region (r > rc) to the inertial mass of the
system and Equivalence principle requires this to be a fraction of order ε about the gravitational mass
unless the region r < rc contains negative inertial mass density, which is of course quite possible.
Approximating the metric with a flat metric and using first order approximation for u(r) the energy
reduces just to the standard Coulomb energy of charged sphere with radius rc

MI(ext) =
1

32παK

∫
r>rc

E2√gd3x

' λq2

2αKrc
,

λ =

√
1 +

R2

4
ω2(1− u2

∞) (> 1) . (2.5.28)

Approximating the metric with flat metric the contribution of the region r > rc to the energy of the
solution is given by

MI(ext) =
1

8αK
λqω(1 + |u∞|) . (2.5.29)

The contribution is proportional to Kähler charge as expected. The ratio of external inertial and
gravitational masses is given by the expression

MI(ext)

Mgr
=

G

4R2αK
x ,

x =
(1 + |u∞|)
|u∞|

> 1 . (2.5.30)

In the approximation used the the ratio of external inertial and gravitational masses is of order 10−6

for R ∼ 104
√
G implied by the p-adic length scale hypothesis and for x ∼ 1. The result conforms with

the above discussed interpretation.

2. Z0 and electromagnetic forces are much weaker than gravitational force

The extremal in question carries Kähler charge and therefore also Z0 and electromagnetic charge.
This implies long range gauge interactions, which ought to be weaker than gravitational interaction
in the astrophysical scales. This is indeed the case as the following argument shows.

Expressing the Kähler charge using Planck mass as unit and using the relationships between gauge
fields one obtains a direct measure for the strength of the Z0 force as compared with the strength of
gravitational force.

QZ ≡ εZMgr

√
G .

(2.5.31)

The value of the parameter εZ should be smaller than one. A transparent form for this condition is
obtained, when one writes Φ = ωt = Ωm0 : Ω = λω:

εZ =
αK
αZ

1

π(1 + |u∞|)ΩR

√
G

R
. (2.5.32)
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The order of magnitude is determined by the values of the parameters
√

G
R2 ∼ 10−4 and ΩR. Global

Minkowskian signature of the induced metric implies the condition ΩR < 2 for the allowed values of
the parameter ΩR. In macroscopic length scales one has ΩR ∼ 1 so that Z0 force is by a factor of
order 10−4 weaker than gravitational force. In elementary particle length scales with ω ∼ m situation
is completely different as expected.

3. The shift of the perihelion is predicted incorrectly

The grr component of Reissner-Nordström and TGD metrics are given by the expressions

grr = − 1

(1− 2GM
r )

, (2.5.33)

and

grr ' 1−
Rq
ω2[

1− (u∞ − 4q
ωr )2

]
r4

, (2.5.34)

respectively. For reasonable values of q, ω and u∞ the this terms is extremely small as compared with
1/r term so that these expressions differ by 1/r term.

The absence of the 1/r term from grr-component of the metric predicts that the shift of the
perihelion for elliptic plane orbits is about 2/3 times that predicted by GRT so that the identification as
a metric associated with objects of a planetary scale leads to an experimental contradiction. Reissner-
Nordström solutions are obtained as vacuum extremals so that standard predictions of GRT are
obtained for the planetary motion.

One might hope that the generalization of the form of the spherically symmetric ansatz by intro-
ducing the same modification as needed for the imbedding of Reissner-Nordstrm̈ metric might help.
The modification would read as

cos(Θ) = u(r) ,

Φ = ωt+ f(r) ,

m0 = λt+ h(r) ,

rM = r , θM = θ , φM = φ . (2.5.35)

The vanishing of the gtr component of the metric gives the condition

λ∂rh−
R2

4
sin2(Θ)ω∂rf = 0 . (2.5.36)

The expression for the radial component of the metric transforms to

grr ' ∂rh
2 − 1− R2

4
(∂rΘ)2 − R2

4
sin2(Θ)∂rf

2 , (2.5.37)

Essentially the same perihelion shift as for Schwartschild metric is obtained if grr approaches asymp-
totically to its expression for Schwartschild metric. This is guaranteed if the following conditions hold
true:

f(r)r→∞ → ωr , Λ2 − 1 =
R2ω2

4
sin2(Θ∞)� 2GM

〈r〉
. (2.5.38)

In the second equation 〈r〉 corresponds to the average radius of the planetary orbit.
The field equations for this ansatz can be written as conditions for energy momentum and color

charge conservation. Two equations are enough to determine the functions Θ(r) and f(r). The
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equation for momentum conservation is same as before. Second field equation corresponds to the
conserved isometry current associated with the color isometry Φ→ Φ + ε and gives equation for f .

[T rrf,rsΦΦ
√
g],r = 0 . (2.5.39)

The conservation laws associated with other infinitesimal SU(2) rotations of S2
I should be satisfied

identically. This equation can be readily integrated to give

T rrf,rsΦΦ
√
gttgrr =

C

r2
. (2.5.40)

Unfortunately, the result is inconsistent with the 1/r4 behavior of T rr and f → ωr implies by correct
red shift.

It seems that the only possible way out of the difficulty is to replace spherical symmetry with
a symmetry with respect to the rotations around z-axis. The simplest modification of the solution
ansatz is as follows:

m0 = λt+ h(ρ) , Φ = ωt+ kρ .

Thanks to the linear dependence of Φ on ρ, the conservation laws for momentum and color isospin
reduce to the same condition. The ansatz induces a small breaking of spherical symmetry by adding
to gρρ the term

(∂ρh)2 − R2

4
sin2(Θ)k2 .

One might hope that in the plane θ = π/2, where r = ρ holds true, the ansatz could behave like
Schwartschild metric if the conditions discussed above are posed (including the condition k = ω). The
breaking of the spherical symmetry in the planetary system would be coded already to the gravitational
field of Sun.

Also the study of the imbeddings of Reissner-Nordström metric as vacuum extremals and the inves-
tigation of spherically symmetric (inertial) vacuum extremals for which gravitational four-momentum
is conserved [K79] leads to the conclusion that the loss of spherical symmetry due to rotation is
inevitable characteristic of realistic solutions.

2.5.6 Maxwell hydrodynamics as a toy model for TGD

The field equations of TGD are extremely non-linear and all known solutions have been discovered by
symmetry arguments. Chern-Simons term plays essential role also in the construction of solutions of
field equations and at partonic level defines braiding for light-like partonic 3-surfaces expected to play
key role in the construction of S-matrix. The inspiration for this section came from Terence Tao’s
blog posting 2006 ICM: Etienne Ghys, Knots and dynamics [A139] giving an elegant summary about
amazing mathematical results related to knots, links, braids and hydrodynamical flows in dimension
D = 3. Posting tells about really amazing mathematical results related to knots.

Chern-Simons term as helicity invariant

Tao mentions helicity as an invariant of fluid flow. Chern-Simons action defined by the induced Kähler
gauge potential for light-like 3-surfaces has interpretation as helicity when Kähler gauge potential is
identified as fluid velocity. This flow can be continued to the interior of space-time sheet. Also the dual
of the induced Kähler form defines a flow at the light-like partonic surfaces but not in the interior
of space-time sheet. The lines of this flow can be interpreted as magnetic field lines. This flow is
incompressible and represents a conserved charge (Kähler magnetic flux).

The question is which of these flows should define number theoretical braids. Perhaps both of
them can appear in the definition of S-matrix and correspond to different kinds of partonic matter
(electric/magnetic charges, quarks/leptons?,...). Second kind of matter could not flow in the interior
of space-time sheet. Or could interpretation in terms of electric magnetic duality make sense?



94 Chapter 2. Basic Extremals of the Kähler Action

Helicity is not gauge invariant and this is as it must be in TGD framework since CP2 symplectic
transformations induce U(1) gauge transformation, which deforms space-time surface an modifies
induced metric as well as classical electroweak fields defined by induced spinor connection. Gauge
degeneracy is transformed to spin glass degeneracy.

Maxwell hydrodynamics

In TGD Maxwell’s equations are replaced with field equations which express conservation laws and
are thus hydrodynamical in character. With this background the idea that the analogy between gauge
theory and hydrodynamics might be applied also in the reverse direction is natural. Hence one might
ask what kind of relativistic hydrodynamics results if assumes that the action principle is Maxwell
action for the four-velocity uα with the constraint term saying that light velocity is maximal signal
velocity.

1. For massive particles the length of four-velocity equals to 1: uαuα = 1. In massless case one has
uαuα = 0. Geometrically this means that one has sigma model with target space which is 3-D
Lobatschevski space or at light-cone boundary. This condition means the addition of constraint
term

λ(uαuα − ε) (2.5.41)

to the Maxwell action. ε = 1/0 holds for massive/massless flow. In the following the notation
of electrodynamics is used to make easier the comparison with electrodynamics.

2. The constraint term destroys gauge invariance by allowing to express A0 in terms of Ai but
in general the constraint is not equivalent to a choice of gauge in electrodynamics since the
solutions to the field equations with constraint term are not solutions of field equations without
it. One obtains field equations for an effectively massive em field with Lagrange multiplier λ
having interpretation as photon mass depending on space-time point:

jα = ∂βF
αβ = λAα ,

Aα ≡ uα , Fαβ = ∂βAα − ∂αAβ . (2.5.42)

3. In electrodynamic context the natural interpretation would be in terms of spontaneous massi-
vation of photon and seems to occur for both values of ε. The analog of em current given by
λAα is in general non-vanishing and conserved. This conservation law is quite strong additional
constraint on the hydrodynamics. What is interesting is that breaking of gauge invariance does
not lead to a loss of charge conservation.

4. One can solve λ by contracting the equations with Aα to obtain

λ = jαAα

for ε = 1. For ε = 0 one obtains

jαAα = 0

stating that the field does not dissipate energy: λ can be however non-vanishing unless field
equations imply jα = 0. One can say that for ε = 0 spontaneous massivation can occur. For
ε = 1 massivation is present from the beginning and dissipation rate determines photon mass:
a natural interpretation for ε = 1 would be in terms of thermal massivation of photon. Non-
tachyonicity fixes the sign of the dissipation term so that the thermodynamical arrow of time is
fixed by causality.
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5. For ε = 0 massless plane wave solutions are possible and one has

∂α∂βA
β = λAα .

λ = 0 is obtained in Lorentz gauge which is consistent with the condition ε = 0. Also superpo-
sitions of plane waves with same polarization and direction of propagation are solutions of field
equations: these solutions represent dispersionless precisely targeted pulses. For superpositions
of plane waves λ with 4-momenta, which are not all parallel λ is non-vanishing so that non-linear
self interactions due to the constraint can be said to induce massivation. In asymptotic states
for which gauge symmetry is not broken one expects a decomposition of solutions to regions of
space-time carrying this kind of pulses, which brings in mind final states of particle reactions
containing free photons with fixed polarizations.

6. Gradient flows satisfying the conditions

Aα = ∂αΦ , AαAα = ε (2.5.43)

give rise to identically vanishing hydrodynamical gauge fields and λ = 0 holds true. These
solutions are vacua since energy momentum tensor vanishes identically. There is huge number
of this kind of solutions and spin glass degeneracy suggests itself. Small deformations of these
vacuum flows are expected to give rise to non-vacuum flows.

7. The counterparts of charged solutions are of special interest. For ε = 0 the solution (u0, ur) =
(Q/r)(1, 1) is a solution of field equations outside origin and corresponds to electric field of a
point charge Q. In fact, for ε = 0 any ansatz (u0, ur) = f(r)(1, 1) satisfies field equations for
a suitable choice of λ(r) since the ratio of equations associate with j0 and jr gives an equation
which is trivially satisfied. For ε = 1 the ansatz (u0, ur) = (cosh(u), sinh(u)) expressing solution
in terms of hyperbolic angle linearizes the field equation obtained by dividing the equations for
j0 and jr to eliminate λ. The resulting equation is

∂2
ru+

2∂ru

r
= 0

for ordinary Coulomb potential and one obtains (u0, ur) = (cosh(u0 +k/r), sinh(u0 +k/r)). The
charge of the solution at the limit r →∞ approaches to the value Q = sinh(u0)k and diverges
at the limit r → 0. The charge increases exponentially as a function of 1/r near origin rather
than logarithmically as in QED and the interpretation in terms of thermal screening suggests
itself. Hyperbolic ansatz might simplify considerably the field equations also in the general case.

Similarities with TGD

There are strong similarities with TGD which suggests that the proposed model might provide a toy
model for the dynamics defined by Kähler action.

1. Also in TGD field equations are essentially hydrodynamical equations stating the conservation
of various isometry charges. Gauge invariance is broken for the induced Kähler field although
Kähler charge is conserved. There is huge vacuum degeneracy corresponding to vanishing of
induced Kähler field and the interpretation is in terms of spin glass degeneracy.

2. Also in TGD dissipation rate vanishes for the known solutions of field equations and a possible
interpretation is as space-time correlates for asympotic non-dissipating self organization patterns.

3. In TGD framework massless extremals represent the analogs for superpositions of plane waves
with fixed polarization and propagation direction and representing targeted and dispersionless
propagation of signal. Gauge currents are light-like and non-vanishing for these solutions. The
decomposition of space-time surface to space-time sheets representing particles is much more
general counterpart for the asymptotic solutions of Maxwell hydrodynamics with vanishing λ.



96 Chapter 2. Basic Extremals of the Kähler Action

4. In TGD framework one can consider the possibility that the four-velocity assignable to a macro-
scopic quantum phase is proportional to the induced Kähler gauge potential. In this kind of
situation one could speak of a quantal variant of Maxwell hydrodynamics, at least for light-like
partonic 3-surfaces. For instance, the condition

DαDαΨ = 0 , DαΨ = (∂α − iqKAα)Ψ

for the order parameter of the quantum phase corresponds at classical level to the condition
pα = qKQ

α+ lα, where qK is Kähler charge of fermion and lα is a light-like vector field naturally
assignable to the partonic boundary component. This gives uα = (qKQ

α + lα)/m, m2 = pαpα,
which is somewhat more general condition. The expressibility of uα in terms of the vector fields
provided by the induced geometry is very natural.

The value ε depends on space-time region and it would seem that also ε = −1 is possible meaning
tachyonicity and breaking of causality. Kähler gauge potential could however have a time-like
pure gauge component in M4 possibly saving the situation. The construction of quantum TGD
at parton level indeed forces to assume that Kähler gauge potential has Lorentz invariant M4

component Aa = constant in the direction of the light-cone proper time coordinate axis a. Note
that the decomposition of configuration space to sectors consisting of space-time sheets inside
future or past light-cone of M4 is an essential element of the construction of configuration space
geometry and does not imply breaking of Poincare invariance. Without this component uαu

α

could certainly be negative. The contribution of M4 component could prevent this for preferred
extremals.

If TGD is taken seriously, these similarities force to ask whether Maxwell hydrodynamics might be
interpreted as a nonlinear variant of electrodynamics. Probably not: in TGD em field is proportional
to the induced Kähler form only in special cases and is in general non-vanishing also for vacuum
extremals.

2.6 Weak form electric-magnetic duality and its implications

The notion of electric-magnetic duality [B11] was proposed first by Olive and Montonen and is central
in N = 4 supersymmetric gauge theories. It states that magnetic monopoles and ordinary particles
are two different phases of theory and that the description in terms of monopoles can be applied
at the limit when the running gauge coupling constant becomes very large and perturbation theory
fails to converge. The notion of electric-magnetic self-duality is more natural since for CP2 geometry
Kähler form is self-dual and Kähler magnetic monopoles are also Kähler electric monopoles and
Kähler coupling strength is by quantum criticality renormalization group invariant rather than running
coupling constant. The notion of electric-magnetic (self-)duality emerged already two decades ago
in the attempts to formulate the Kähler geometric of world of classical worlds. Quite recently a
considerable step of progress took place in the understanding of this notion [K17] . What seems to be
essential is that one adopts a weaker form of the self-duality applying at partonic 2-surfaces. What
this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that this concept
leads to precise predictions. The point is that elementary particles do not generate monopole fields in
macroscopic length scales: at least when one considers visible matter. The first question is whether
elementary particles could have vanishing magnetic charges: this turns out to be impossible. The next
question is how the screening of the magnetic charges could take place and leads to an identification
of the physical particles as string like objects identified as pairs magnetic charged wormhole throats
connected by magnetic flux tubes.

1. The first implication is a new view about electro-weak massivation reducing it to weak confine-
ment in TGD framework. The second end of the string contains particle having electroweak
isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak
scale would be in question. Hence the screening of electro-weak force takes place via weak
confinement realized in terms of magnetic confinement.



2.6. Weak form electric-magnetic duality and its implications 97

2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of
magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be
connected by flux tubes of length of order hadron size such that magnetic charges sum up to
zero. For instance, for baryonic valence quarks these charges could be (2,−1,−1) and could be
proportional to color hyper charge.

3. The highly non-trivial prediction making more precise the earlier stringy vision is that elementary
particles are string like objects in electro-weak scale: this should become manifest at LHC
energies.

4. The weak form electric-magnetic duality together with Beltrami flow property of Kähler leads to
the reduction of Kähler action to Chern-Simons action so that TGD reduces to almost topological
QFT and that Kähler function is explicitly calculable. This has enormous impact concerning
practical calculability of the theory.

5. One ends up also to a general solution ansatz for field equations from the condition that the
theory reduces to almost topological QFT. The solution ansatz is inspired by the idea that all
isometry currents are proportional to Kähler current which is integrable in the sense that the flow
parameter associated with its flow lines defines a global coordinate. The proposed solution ansatz
would describe a hydrodynamical flow with the property that isometry charges are conserved
along the flow lines (Beltrami flow). A general ansatz satisfying the integrability conditions
is found. The solution ansatz applies also to the extremals of Chern-Simons action and and
to the conserved currents associated with the modified Dirac equation defined as contractions
of the modified gamma matrices between the solutions of the modified Dirac equation. The
strongest form of the solution ansatz states that various classical and quantum currents flow
along flow lines of the Beltrami flow defined by Kähler current (Kähler magnetic field associated
with Chern-Simons action). Intuitively this picture is attractive. A more general ansatz would
allow several Beltrami flows meaning multi-hydrodynamics. The integrability conditions boil
down to two scalar functions: the first one satisfies massless d’Alembert equation in the induced
metric and the the gradients of the scalar functions are orthogonal. The interpretation in terms
of momentum and polarization directions is natural.

6. The general solution ansatz works for induced Kähler Dirac equation and Chern-Simons Dirac
equation and reduces them to ordinary differential equations along flow lines. The induced spinor
fields are simply constant along flow lines of indued spinor field for Dirac equation in suitable
gauge. Also the generalized eigen modes of the modified Chern-Simons Dirac operator can be
deduced explicitly if the throats and the ends of space-time surface at the boundaries of CD are
extremals of Chern-Simons action. Chern-Simons Dirac equation reduces to ordinary differential
equations along flow lines and one can deduce the general form of the spectrum and the explicit
representation of the Dirac determinant in terms of geometric quantities characterizing the 3-
surface (eigenvalues are inversely proportional to the lengths of strands of the flow lines in the
effective metric defined by the modified gamma matrices).

2.6.1 Could a weak form of electric-magnetic duality hold true?

Holography means that the initial data at the partonic 2-surfaces should fix the configuration space
metric. A weak form of this condition allows only the partonic 2-surfaces defined by the wormhole
throats at which the signature of the induced metric changes. A stronger condition allows all partonic
2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and string world sheets. Number
theoretical vision suggests that hyper-quaternionicity resp. co-hyperquaternionicity constraint could
be enough to fix the initial values of time derivatives of the imbedding space coordinates in the space-
time regions with Minkowskian resp. Euclidian signature of the induced metric. This is a condition
on modified gamma matrices and hyper-quaternionicity states that they span a hyper-quaternionic
sub-space.

Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The argument
goes as follows.
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1. The expression of the matrix elements of the metric and Kähler form of WCW in terms of
the Kähler fluxes weighted by Hamiltonians of δM4

± at the partonic 2-surface X2 looks very
attractive. These expressions however carry no information about the 4-D tangent space of the
partonic 2-surfaces so that the theory would reduce to a genuinely 2-dimensional theory, which
cannot hold true. One would like to code to the WCW metric also information about the electric
part of the induced Kähler form assignable to the complement of the tangent space of X2 ⊂ X4.

2. Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial manner
to get electric magnetic duality at the level of the full theory would be via the identification of
the flux Hamiltonians as sums of of the magnetic and electric fluxes. The presence of the induced
metric is however troublesome since the presence of the induced metric means that the simple
transformation properties of flux Hamiltonians under symplectic transformations -in particular
color rotations- are lost.

3. A less trivial formulation of electric-magnetic duality would be as an initial condition which
eliminates the induced metric from the electric flux. In the Euclidian version of 4-D YM theory
this duality allows to solve field equations exactly in terms of instantons. This approach involves
also quaternions. These arguments suggest that the duality in some form might work. The full
electric magnetic duality is certainly too strong and implies that space-time surface at the
partonic 2-surface corresponds to piece of CP2 type vacuum extremal and can hold only in the
deep interior of the region with Euclidian signature. In the region surrounding wormhole throat
at both sides the condition must be replaced with a weaker condition.

4. To formulate a weaker form of the condition let us introduce coordinates (x0, x3, x1, x2) such
(x1, x2) define coordinates for the partonic 2-surface and (x0, x3) define coordinates labeling
partonic 2-surfaces in the slicing of the space-time surface by partonic 2-surfaces and string
world sheets making sense in the regions of space-time sheet with Minkowskian signature. The
assumption about the slicing allows to preserve general coordinate invariance. The weakest
condition is that the generalized Kähler electric fluxes are apart from constant proportional to
Kähler magnetic fluxes. This requires the condition

J03√g4 = KJ12 . (2.6.1)

A more general form of this duality is suggested by the considerations of [K36] reducing the
hierarchy of Planck constants to basic quantum TGD and also reducing Kähler function for
preferred extremals to Chern-Simons terms [B2] at the boundaries of CD and at light-like
wormhole throats. This form is following

Jnβ
√
g4 = Kε× εnβγδJγδ

√
g4 . (2.6.2)

Here the index n refers to a normal coordinate for the space-like 3-surface at either boundary of
CD or for light-like wormhole throat. ε is a sign factor which is opposite for the two ends of CD.
It could be also opposite of opposite at the opposite sides of the wormhole throat. Note that the
dependence on induced metric disappears at the right hand side and this condition eliminates
the potentials singularity due to the reduction of the rank of the induced metric at wormhole
throat.

5. Information about the tangent space of the space-time surface can be coded to the configuration
space metric with loosing the nice transformation properties of the magnetic flux Hamiltonians
if Kähler electric fluxes or sum of magnetic flux and electric flux satisfying this condition are
used and K is symplectic invariant. Using the sum

Je + Jm = (1 +K)J12 , (2.6.3)
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where J denotes the Kähler magnetic flux, , makes it possible to have a non-trivial configuration
space metric even for K = 0, which could correspond to the ends of a cosmic string like solution
carrying only Kähler magnetic fields. This condition suggests that it can depend only on Kähler
magnetic flux and other symplectic invariants. Whether local symplectic coordinate invariants
are possible at all is far from obvious, If the slicing itself is symplectic invariant then K could be
a non-constant function of X2 depending on string world sheet coordinates. The light-like radial
coordinate of the light-cone boundary indeed defines a symplectically invariant slicing and this
slicing could be shifted along the time axis defined by the tips of CD.

Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints are obtained
if one assumes that the quantization of electro-weak charges reduces to this condition at classical
level?

1. The first thing to notice is that the flux of J over the partonic 2-surface is analogous to magnetic
flux

Qm =
e

~

∮
BdS = n .

n is non-vanishing only if the surface is homologically non-trivial and gives the homology charge
of the partonic 2-surface.

2. The expressions of classical electromagnetic and Z0 fields in terms of Kähler form [L1] , [L1]
read as

γ =
eFem
~

= 3J − sin2(θW )R03 ,

Z0 =
gZFZ
~

= 2R03 . (2.6.4)

Here R03 is one of the components of the curvature tensor in vielbein representation and Fem
and FZ correspond to the standard field tensors. From this expression one can deduce

J =
e

3~
Fem + sin2(θW )

gZ
6~
FZ . (2.6.5)

3. The weak duality condition when integrated over X2 implies

e2

3~
Qem +

g2
Zp

6
QZ,V = K

∮
J = Kn ,

QZ,V =
I3
V

2
−Qem , p = sin2(θW ) . (2.6.6)

Here the vectorial part of the Z0 charge rather than as full Z0 charge QZ = I3
L + sin2(θW )Qem

appears. The reason is that only the vectorial isospin is same for left and right handed compo-
nents of fermion which are in general mixed for the massive states.

The coefficients are dimensionless and expressible in terms of the gauge coupling strengths and
using ~ = r~0 one can write

αemQem + p
αZ
2
QZ,V =

3

4π
× rnK ,

αem =
e2

4π~0
, αZ =

g2
Z

4π~0
=

αem
p(1− p)

. (2.6.7)
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4. There is a great temptation to assume that the values of Qem and QZ correspond to their
quantized values and therefore depend on the quantum state assigned to the partonic 2-surface.
The linear coupling of the modified Dirac operator to conserved charges implies correlation
between the geometry of space-time sheet and quantum numbers assigned to the partonic 2-
surface. The assumption of standard quantized values for Qem and QZ would be also seen as
the identification of the fine structure constants αem and αZ . This however requires weak isospin
invariance.

The value of K from classical quantization of Kähler electric charge

The value of K can be deduced by requiring classical quantization of Kähler electric charge.

1. The condition that the flux of F 03 = (~/gK)J03 defining the counterpart of Kähler electric field
equals to the Kähler charge gK would give the condition K = g2

K/~, where gK is Kähler cou-
pling constant which should invariant under coupling constant evolution by quantum criticality.
Within experimental uncertainties one has αK = g2

K/4π~0 = αem ' 1/137, where αem is finite
structure constant in electron length scale and ~0 is the standard value of Planck constant.

2. The quantization of Planck constants makes the condition highly non-trivial. The most general
quantization of r is as rationals but there are good arguments favoring the quantization as
integers corresponding to the allowance of only singular coverings of CD andn CP2. The point
is that in this case a given value of Planck constant corresponds to a finite number pages of
the ”Big Book”. The quantization of the Planck constant implies a further quantization of K
and would suggest that K scales as 1/r unless the spectrum of values of Qem and QZ allowed
by the quantization condition scales as r. This is quite possible and the interpretation would
be that each of the r sheets of the covering carries (possibly same) elementary charge. Kind
of discrete variant of a full Fermi sphere would be in question. The interpretation in terms of
anyonic phases [K59] supports this interpretation.

3. The identification of J as a counterpart of eB/~ means that Kähler action and thus also Kähler
function is proportional to 1/αK and therefore to ~. This implies that for large values of ~
Kähler coupling strength g2

K/4π becomes very small and large fluctuations are suppressed in
the functional integral. The basic motivation for introducing the hierarchy of Planck constants
was indeed that the scaling α→ α/r allows to achieve the convergence of perturbation theory:
Nature itself would solve the problems of the theoretician. This of course does not mean that
the physical states would remain as such and the replacement of single particles with anyonic
states in order to satisfy the condition for K would realize this concretely.

4. The condition K = g2
K/~ implies that the Kähler magnetic charge is always accompanied by

Kähler electric charge. A more general condition would read as

K = n× g2
K

~
, n ∈ Z . (2.6.8)

This would apply in the case of cosmic strings and would allow vanishing Kähler charge possible
when the partonic 2-surface has opposite fermion and antifermion numbers (for both leptons and
quarks) so that Kähler electric charge should vanish. For instance, for neutrinos the vanishing
of electric charge strongly suggests n = 0 besides the condition that abelian Z0 flux contributing
to em charge vanishes.

It took a year to realize that this value of K is natural at the Minkowskian side of the wormhole
throat. At the Euclidian side much more natural condition is

K =
1

hbar
. (2.6.9)

In fact, the self-duality of CP2 Kähler form favours this boundary condition at the Euclidian side of
the wormhole throat. Also the fact that one cannot distinguish between electric and magnetic charges
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in Euclidian region since all charges are magnetic can be used to argue in favor of this form. The
same constraint arises from the condition that the action for CP2 type vacuum extremal has the value
required by the argument leading to a prediction for gravitational constant in terms of the square of
CP2 radius and αK the effective replacement g2

K → 1 would spoil the argument.
The boundary condition JE = JB for the electric and magnetic parts of Kählwer form at the

Euclidian side of the wormhole throat inspires the question whether all Euclidian regions could be
self-dual so that the density of Kähler action would be just the instanton density. Self-duality follows if
the deformation of the metric induced by the deformation of the canonically imbedded CP2 is such that
in CP2 coordinates for the Euclidian region the tensor (gαβgµν −gανgµβ)/

√
g remains invariant. This

is certainly the case for CP2 type vacuum extremals since by the light-likeness of M4 projection the
metric remains invariant. Also conformal scalings of the induced metric would satisfy this condition.
Conformal scaling is not consistent with the degeneracy of the 4-metric at the wormhole

Reduction of the quantization of Kähler electric charge to that of electromagnetic charge

The best manner to learn more is to challenge the form of the weak electric-magnetic duality based
on the induced Kähler form.

1. Physically it would seem more sensible to pose the duality on electromagnetic charge rather
than Kähler charge. This would replace induced Kähler form with electromagnetic field, which
is a linear combination of induced K”ahler field and classical Z0 field

γ = 3J − sin2θWR03 ,

Z0 = 2R03 . (2.6.10)

Here Z0 = 2R03 is the appropriate component of CP2 curvature form [L1]. For a vanishing
Weinberg angle the condition reduces to that for Kähler form.

2. For the Euclidian space-time regions having interpretation as lines of generalized Feynman dia-
grams Weinberg angle should be non-vanishing. In Minkowskian regions Weinberg angle could
however vanish. If so, the condition guaranteing that electromagnetic charge of the partonic
2-surfaces equals to the above condition stating that the em charge assignable to the fermion
content of the partonic 2-surfaces reduces to the classical Kähler electric flux at the Minkowskian
side of the wormhole throat. One can argue that Weinberg angle must increase smoothly from a
vanishing value at both sides of wormhole throat to its value in the deep interior of the Euclidian
region.

3. The vanishing of the Weinberg angle in Minkowskian regions conforms with the physical intu-
ition. Above elementary particle length scales one sees only the classical electric field reducing
to the induced Kähler form and classical Z0 fields and color gauge fields are effectively ab-
sent. Only in phases with a large value of Planck constant classical Z0 field and other classical
weak fields and color gauge field could make themselves visible. Cell membrane could be one
such system [K61]. This conforms with the general picture about color confinement and weak
massivation.

The GRT limit of TGD suggests a further reason for why Weinberg angle should vanish in
Minkowskian regions.

1. The value of the Kähler coupling strength mut be very near to the value of the fine structure
constant in electron length scale and these constants can be assumed to be equal.

2. GRT limit of TGD with space-time surfaces replaced with abstract 4-geometries would naturally
correspond to Einstein-Maxwell theory with cosmological constant which is non-vanishing only
in Euclidian regions of space-time so that both Reissner-Nordström metric and CP2 are allowed
as simplest possible solutions of field equations [K79]. The extremely small value of the observed
cosmological constant needed in GRT type cosmology could be equal to the large cosmological
constant associated with CP2 metric multiplied with the 3-volume fraction of Euclidian regions.
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3. Also at GRT limit quantum theory would reduce to almost topological QFT since Einstein-
Maxwell action reduces to 3-D term by field equations implying the vanishing of the Maxwell
current and of the curvature scalar in Minkowskian regions and curvature scalar + cosmological
constant term in Euclidian regions. The weak form of electric-magnetic duality would guarantee
also now the preferred extremal property and prevent the reduction to a mere topological QFT.

4. GRT limit would make sense only for a vanishing Weinberg angle in Minkowskian regions. A
non-vanishing Weinberg angle would make sense in the deep interior of the Euclidian regions
where the approximation as a small deformation of CP2 makes sense.

The weak form of electric-magnetic duality has surprisingly strong implications for the basic view
about quantum TGD as following considerations show.

2.6.2 Magnetic confinement, the short range of weak forces, and color
confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one combines it with
some very general empirical facts such as the non-existence of magnetic monopole fields in macroscopic
length scales.

How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length scale and one
should have a mechanism neutralizing the monopole charge. How electroweak interactions become
short ranged in TGD framework is still a poorly understood problem. What suggests itself is the
neutralization of the weak isospin above the intermediate gauge boson Compton length by neutral
Higgs bosons. Could the two neutralization mechanisms be combined to single one?

1. In the case of fermions and their super partners the opposite magnetic monopole would be a
wormhole throat. If the magnetically charged wormhole contact is electromagnetically neutral
but has vectorial weak isospin neutralizing the weak vectorial isospin of the fermion only the
electromagnetic charge of the fermion is visible on longer length scales. The distance of this
wormhole throat from the fermionic one should be of the order weak boson Compton length.
An interpretation as a bound state of fermion and a wormhole throat state with the quantum
numbers of a neutral Higgs boson would therefore make sense. The neutralizing throat would
have quantum numbers of X−1/2 = νLνR or X1/2 = νLνR. νLνR would not be neutral Higgs
boson (which should correspond to a wormhole contact) but a super-partner of left-handed
neutrino obtained by adding a right handed neutrino. This mechanism would apply separately
to the fermionic and anti-fermionic throats of the gauge bosons and corresponding space-time
sheets and leave only electromagnetic interaction as a long ranged interaction.

2. One can of course wonder what is the situation situation for the bosonic wormhole throats feeding
gauge fluxes between space-time sheets. It would seem that these wormhole throats must always
appear as pairs such that for the second member of the pair monopole charges and I3

V cancel
each other at both space-time sheets involved so that one obtains at both space-time sheets
magnetic dipoles of size of weak boson Compton length. The proposed magnetic character of
fundamental particles should become visible at TeV energies so that LHC might have surprises
in store!

Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider also the
situation in which the magnetic charges of quarks (more generally, of color excited leptons and quarks)
do not vanish and they form color and magnetic singles in the hadronic length scale. This would mean
that magnetic charges of the state q±1/2−X∓1/2 representing the physical quark would not vanish and
magnetic confinement would accompany also color confinement. This would explain why free quarks
are not observed. To how degree then quark confinement corresponds to magnetic confinement is an
interesting question.
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For quark and antiquark of meson the magnetic charges of quark and antiquark would be opposite
and meson would correspond to a Kähler magnetic flux so that a stringy view about meson emerges.
For valence quarks of baryon the vanishing of the net magnetic charge takes place provided that the
magnetic net charges are (±2,∓1,∓1). This brings in mind the spectrum of color hyper charges
coming as (±2,∓1,∓1)/3 and one can indeed ask whether color hyper-charge correlates with the
Kähler magnetic charge. The geometric picture would be three strings connected to single vertex.
Amusingly, the idea that color hypercharge could be proportional to color hyper charge popped up
during the first year of TGD when I had not yet discovered CP2 and believed on M4 × S2.

p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark
variants of particles suggest the existence of scaled up copies of QCD type physics and weak physics.
For p-adically scaled up variants the mass scales would be scaled by a power of

√
2 in the most general

case. The dark variants of the particle would have the same mass as the original one. In particular,
Mersenne primes Mk = 2k − 1 and Gaussian Mersennes MG,k = (1 + i)k − 1 has been proposed to
define zoomed copies of these physics. At the level of magnetic confinement this would mean hierarchy
of length scales for the magnetic confinement.

One particular proposal is that the Mersenne prime M89 should define a scaled up variant of the
ordinary hadron physics with mass scaled up roughly by a factor 2(107−89)/2 = 512. The size scale
of color confinement for this physics would be same as the weal length scale. It would look more
natural that the weak confinement for the quarks of M89 physics takes place in some shorter scale
and M61 is the first Mersenne prime to be considered. The mass scale of M61 weak bosons would
be by a factor 2(89−61)/2 = 214 higher and about 1.6× 104 TeV. M89 quarks would have virtually no
weak interactions but would possess color interactions with weak confinement length scale reflecting
themselves as new kind of jets at collisions above TeV energies.

In the biologically especially important length scale range 10 nm -2500 nm there are as many as
four Gaussian Mersennes corresponding to MG,k, k = 151, 157, 163, 167. This would suggest that the
existence of scaled up scales of magnetic-, weak- and color confinement. An especially interesting
possibly testable prediction is the existence of magnetic monopole pairs with the size scale in this
range. There are recent claims about experimental evidence for magnetic monopole pairs [D10] .

Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one recalls
that electric-magnetic duality in super-symmetric quantum field theories means that the descriptions
in terms of particles and monopoles are in some sense dual descriptions. Fermions would be replaced
by string like objects defined by the magnetic flux tubes and bosons as pairs of wormhole contacts
would correspond to pairs of the flux tubes. Therefore the sharp distinction between gravitons and
physical particles would disappear.

The reason why gravitons are necessarily stringy objects formed by a pair of wormhole contacts
is that one cannot construct spin two objects using only single fermion states at wormhole throats.
Of course, also super partners of these states with higher spin obtained by adding fermions and anti-
fermions at the wormhole throat but these do not give rise to graviton like states [K29] . The upper
and lower wormhole throat pairs would be quantum superpositions of fermion anti-fermion pairs with
sum over all fermions. The reason is that otherwise one cannot realize graviton emission in terms of
joining of the ends of light-like 3-surfaces together. Also now magnetic monopole charges are necessary
but now there is no need to assign the entities X± with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below this
length scale the charges of the fermions become visible. Mersenne hypothesis suggests that some
Mersenne prime is in question. One proposal is that gravitonic size scale is given by electronic
Mersenne prime M127. It is however difficult to test whether graviton has a structure visible below
this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at all
clear how closely they relate to ordinary Feynman diagrams. All depends on what one is ready to
assume about what happens in the vertices. One could of course hope that zero energy ontology could
allow some very simple description allowing perhaps to get rid of the problematic aspects of Feynman
diagrams.

1. Consider first the recent view about generalized Feynman diagrams which relies zero energy
ontology. A highly attractive assumption is that the particles appearing at wormhole throats
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are on mass shell particles. For incoming and outgoing elementary bosons and their super
partners they would be positive it resp. negative energy states with parallel on mass shell
momenta. For virtual bosons they the wormhole throats would have opposite sign of energy
and the sum of on mass shell states would give virtual net momenta. This would make possible
twistor description of virtual particles allowing only massless particles (in 4-D sense usually and
in 8-D sense in TGD framework). The notion of virtual fermion makes sense only if one assumes
in the interaction region a topological condensation creating another wormhole throat having
no fermionic quantum numbers.

2. The addition of the particles X± replaces generalized Feynman diagrams with the analogs of
stringy diagrams with lines replaced by pairs of lines corresponding to fermion and X±1/2. The
members of these pairs would correspond to 3-D light-like surfaces glued together at the vertices
of generalized Feynman diagrams. The analog of 3-vertex would not be splitting of the string to
form shorter strings but the replication of the entire string to form two strings with same length
or fusion of two strings to single string along all their points rather than along ends to form a
longer string. It is not clear whether the duality symmetry of stringy diagrams can hold true
for the TGD variants of stringy diagrams.

3. How should one describe the bound state formed by the fermion and X±? Should one describe
the state as superposition of non-parallel on mass shell states so that the composite state would
be automatically massive? The description as superposition of on mass shell states does not
conform with the idea that bound state formation requires binding energy. In TGD framework
the notion of negentropic entanglement has been suggested to make possible the analogs of
bound states consisting of on mass shell states so that the binding energy is zero [K46] . If this
kind of states are in question the description of virtual states in terms of on mass shell states is
not lost. Of course, one cannot exclude the possibility that there is infinite number of this kind
of states serving as analogs for the excitations of string like object.

4. What happens to the states formed by fermions and X±1/2 in the internal lines of the Feynman
diagram? Twistor philosophy suggests that only the higher on mass shell excitations are possible.
If this picture is correct, the situation would not change in an essential manner from the earlier
one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles should
have stringy character in electro-weak length scales and could behaving to become manifest at LHC
energies. This adds one further item to the list of non-trivial predictions of TGD about physics at
LHC energies [K47] .

2.6.3 Could Quantum TGD reduce to almost topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD reduces to
almost topological quantum theory in the sense that the counterpart of Chern-Simons action assigned
with the wormhole throats somehow dictates the dynamics. This proposal can be formulated also
for the modified Dirac action action. I gave up this proposal but the following argument shows that
Kähler action with weak form of electric-magnetic duality effectively reduces to Chern-Simons action
plus Coulomb term.

1. Kähler action density can be written as a 4-dimensional integral of the Coulomb term jαKAα plus
and integral of the boundary term JnβAβ

√
g4 over the wormhole throats and of the quantity

J0βAβ
√
g4 over the ends of the 3-surface.

2. If the self-duality conditions generalize to Jnβ = 4παKε
nβγδJγδ at throats and to J0β =

4παKε
0βγδJγδ at the ends, the Kähler function reduces to the counterpart of Chern-Simons

action evaluated at the ends and throats. It would have same value for each branch and the
replacement ~0 → r~0 would effectively describe this. Boundary conditions would however give
1/r factor so that ~ would disappear from the Kähler function! The original attempt to real-
ize quantum TGD as an almost topological QFT was in terms of Chern-Simons action but was
given up. It is somewhat surprising that Kähler action gives Chern-Simons action in the vacuum
sector defined as sector for which Kähler current is light-like or vanishes.
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Holography encourages to ask whether also the Coulomb interaction terms could vanish. This
kind of dimensional reduction would mean an enormous simplification since TGD would reduce to an
almost topological QFT. The attribute ”almost” would come from the fact that one has non-vanishing
classical Noether charges defined by Kähler action and non-trivial quantum dynamics in M4 degrees
of freedom. One could also assign to space-time surfaces conserved four-momenta which is not possible
in topological QFTs. For this reason the conditions guaranteeing the vanishing of Coulomb interaction
term deserve a detailed analysis.

1. For the known extremals jαK either vanishes or is light-like (”massless extremals” for which
weak self-duality condition does not make sense [K8] ) so that the Coulombic term vanishes
identically in the gauge used. The addition of a gradient to A induces terms located at the ends
and wormhole throats of the space-time surface but this term must be cancelled by the other
boundary terms by gauge invariance of Kähler action. This implies that the M4 part of WCW
metric vanishes in this case. Therefore massless extremals as such are not physically realistic:
wormhole throats representing particles are needed.

2. The original naive conclusion was that since Chern-Simons action depends on CP2 coordinates
only, its variation with respect to Minkowski coordinates must vanish so that the WCW met-
ric would be trivial in M4 degrees of freedom. This conclusion is in conflict with quantum
classical correspondence and was indeed too hasty. The point is that the allowed variations of
Kähler function must respect the weak electro-magnetic duality which relates Kähler electric
field depending on the induced 4-metric at 3-surface to the Kähler magnetic field. Therefore the
dependence on M4 coordinates creeps via a Lagrange multiplier term

∫
Λα(Jnα −KεnαβγJβγ)

√
g4d

3x . (2.6.11)

The (1,1) part of second variation contributing to M4 metric comes from this term.

3. This erratic conclusion about the vanishing of M4 part WCW metric raised the question about
how to achieve a non-trivial metric in M4 degrees of freedom. The proposal was a modification of
the weak form of electric-magnetic duality. Besides CP2 Kähler form there would be the Kähler
form assignable to the light-cone boundary reducing to that for rM = constant sphere - call it
J1. The generalization of the weak form of self-duality would be Jnβ = εnβγδK(Jγδ + εJ1

γδ).

This form implies that the boundary term gives a non-trivial contribution to the M4 part of
the WCW metric even without the constraint from electric-magnetic duality. Kähler charge is
not affected unless the partonic 2-surface contains the tip of CD in its interior. In this case the
value of Kähler charge is shifted by a topological contribution. Whether this term can survive
depends on whether the resulting vacuum extremals are consistent with the basic facts about
classical gravitation.

4. The Coulombic interaction term is not invariant under gauge transformations. The good news
is that this might allow to find a gauge in which the Coulomb term vanishes. The vanishing
condition fixing the gauge transformation φ is

jαK∂αφ = −jαAα . (2.6.12)

This differential equation can be reduced to an ordinary differential equation along the flow
lines jK by using dxα/dt = jαK . Global solution is obtained only if one can combine the flow
parameter t with three other coordinates- say those at the either end of CD to form space-
time coordinates. The condition is that the parameter defining the coordinate differential is
proportional to the covariant form of Kähler current: dt = φjK . This condition in turn implies
d2t = d(φjK) = d(φjK) = dφ ∧ jK + φdjK = 0 implying jK ∧ djK = 0 or more concretely,
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εαβγδjKβ ∂γj
K
δ = 0 . (2.6.13)

jK is a four-dimensional counterpart of Beltrami field [B52] and could be called generalized
Beltrami field.

The integrability conditions follow also from the construction of the extremals of Kähler action
[K8] . The conjecture was that for the extremals the 4-dimensional Lorentz force vanishes (no
dissipation): this requires jK ∧ J = 0. One manner to guarantee this is the topologization of
the Kähler current meaning that it is proportional to the instanton current: jK = φjI , where
jI = ∗(J ∧ A) is the instanton current, which is not conserved for 4-D CP2 projection. The
conservation of jK implies the condition jαI ∂αφ = ∂αj

αφ and from this φ can be integrated if the
integrability condition jI∧djI = 0 holds true implying the same condition for jK . By introducing
at least 3 or CP2 coordinates as space-time coordinates, one finds that the contravariant form of
jI is purely topological so that the integrability condition fixes the dependence onM4 coordinates
and this selection is coded into the scalar function φ. These functions define families of conserved
currents jαKφ and jαI φ and could be also interpreted as conserved currents associated with the
critical deformations of the space-time surface.

5. There are gauge transformations respecting the vanishing of the Coulomb term. The vanishing
condition for the Coulomb term is gauge invariant only under the gauge transformations A →
A+∇φ for which the scalar function the integral

∫
jαK∂αφ reduces to a total divergence a giving

an integral over various 3-surfaces at the ends of CD and at throats vanishes. This is satisfied
if the allowed gauge transformations define conserved currents

Dα(jαφ) = 0 . (2.6.14)

As a consequence Coulomb term reduces to a difference of the conserved chargesQeφ =
∫
j0φ
√
g4d

3x
at the ends of the CD vanishing identically. The change of the imons type term is trivial if the
total weighted Kähler magnetic flux Qmφ =

∑∫
JφdA over wormhole throats is conserved. The

existence of an infinite number of conserved weighted magnetic fluxes is in accordance with the
electric-magnetic duality. How these fluxes relate to the flux Hamiltonians central for WCW
geometry is not quite clear.

6. The gauge transformations respecting the reduction to almost topological QFT should have some
special physical meaning. The measurement interaction term in the modified Dirac interaction
corresponds to a critical deformation of the space-time sheet and is realized as an addition
of a gauge part to the Kähler gauge potential of CP2. It would be natural to identify this
gauge transformation giving rise to a conserved charge so that the conserved charges would
provide a representation for the charges associated with the infinitesimal critical deformations
not affecting Kähler action. The gauge transformed Kähler potential couples to the modified
Dirac equation and its effect could be visible in the value of Kähler function and therefore also
in the properties of the preferred extremal. The effect on WCW metric would however vanish
since K would transform only by an addition of a real part of a holomorphic function. Kähler
function is identified as a Dirac determinant for Chern-Simons Dirac action and the spectrum
of this operator should not be invariant under these gauge transformations if this picture is
correct. This is is achieved if the gauge transformation is carried only in the Dirac action
corresponding to the Chern-Simons term: this assumption is motivated by the breaking of time
reversal invariance induced by quantum measurements. The modification of Kähler action can
be guessed to correspond just to the Chern-Simons contribution from the instanton term.

7. A reasonable looking guess for the explicit realization of the quantum classical correspondence
between quantum numbers and space-time geometry is that the deformation of the preferred
extremal due to the addition of the measurement interaction term is induced by a U(1) gauge
transformation induced by a transformation of δCD×CP2 generating the gauge transformation
represented by φ. This interpretation makes sense if the fluxes defined by Qmφ and corresponding
Hamiltonians affect only zero modes rather than quantum fluctuating degrees of freedom.
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To sum up, one could understand the basic properties of WCW metric in this framework. Effec-
tive 2-dimensionality would result from the existence of an infinite number of conserved charges in
two different time directions (genuine conservation laws plus gauge fixing). The infinite-dimensional
symmetric space for given values of zero modes corresponds to the Cartesian product of the WCWs
associated with the partonic 2-surfaces at both ends of CD and the generalized Chern-Simons term
decomposes into a sum of terms from the ends giving single particle Kähler functions and to the terms
from light-like wormhole throats giving interaction term between positive and negative energy parts of
the state. Hence Kähler function could be calculated without any knowledge about the interior of the
space-time sheets and TGD would reduce to almost topological QFT as speculated earlier. Needless
to say this would have immense boost to the program of constructing WCW Kähler geometry.

2.6.4 Kähler action for Euclidian regions as Kähler function and Kähler
action for Minkowskian regions as Morse function?

One of the nasty questions about the interpretation of Kähler action relates to the square root of
the metric determinant. If one proceeds completely straightforwardly, the only reason conclusion is
that the square root is imaginary in Minkowskian space-time regions so that Kähler action would be
complex. The Euclidian contribution would have a natural interpretation as positive definite Kähler
function but how should one interpret the imaginary Minkowskian contribution? Certainly the path
integral approach to quantum field theories supports its presence. For some mysterious reason I
was able to forget this nasty question and serious consideration of the obvious answer to it. Only
when I worked betweeen possibile connections between TGD and Floer homology [K88] I realized
that the Minkowskian contribution is an excellent candidate for Morse function whose critical points
give information about WCW homology. This would fit nicely with the vision about TGD as almost
topological QFT.

Euclidian regions would guarantee the convergence of the functional integral and one would have
a mathematically well-defined theory. Minkowskian contribution would give the quantal interference
effects and stationary phase approximation. The analog of Floer homology would represent quantum
superpositions of critical points identifiable as ground states defined by the extrema of Kähler action
for Minkowskian regions. Perturbative approach to quantum TGD would rely on functional integrals
around the extrema of Kähler function. One would have maxima also for the Kähler function but
only in the zero modes not contributing to the WCW metric.

There is a further question related to almost topological QFT character of TGD. Should one assume
that the reduction to Chern-Simons terms occurs for the preferred extremals in both Minkowskian and
Euclidian regions or only in Minkowskian regions?

1. All arguments for this have been represented for Minkowskian regions [K28] involve local light-
like momentum direction which does not make sense in the Euclidian regions. This does not
however kill the argument: one can have non-trivial solutions of Laplacian equation in the
region of CP2 bounded by wormhole throats: for CP2 itself only covariantly constant right-
handed neutrino represents this kind of solution and at the same time supersymmetry. In the
general case solutions of Laplacian represent broken super-symmetries and should be in one-one
correspondences with the solutions of the modified Dirac equation. The interpretation for the
counterparts of momentum and polarization would be in terms of classical representation of
color quantum numbers.

2. If the reduction occurs in Euclidian regions, it gives in the case of CP2 two 3-D terms corre-
sponding to two 3-D gluing regions for three coordinate patches needed to define coordinates
and spinor connection for CP2 so that one would have two Chern-Simons terms. I have ear-
lier claimed that without any other contributions the first term would be identical with that
from Minkowskian region apart from imaginary unit and different coefficient. This statement is
wrong since the space-like parts of the corresponding 3-surfaces are discjoint for Euclidian and
Minkowskian regions.

3. There is also another very delicate issue involved. Quantum classical correspondence requires
that the quantum numbers of partonic states must be coded to the space-time geometry, and
this is achieved by adding to the action a measurement interaction term which reduces to what
is almost a gauge term present only in Chern-Simons-Dirac equation but not at space-time
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interior [K28]. This term would represent a coupling to Poincare quantum numbers at the
Minkowskian side and to color and electro-weak quantum numbers at CP2 side. Therefore the
net Chern-Simons contributions would be different.

4. There is also a very beautiful argument stating that Dirac determinant for Chern-Simons-Dirac
action equals to Kähler function, which would be lost if Euclidian regions would not obey
holography. The argument obviously generalizes and applies to both Morse and Kähler function
which are definitely not proportional to each other.

The Minkowskian contribution of Kähler action is imaginary due to the negative of the metric
determinant and gives a phase factor to vacuum functional reducing to Chern-Simons terms at worm-
hole throats. Ground state degeneracy due to the possibility of having both signs for Minkowskian
contribution to the exponent of vacuum functional provides a general view about the description of
CP breaking in TGD framework.

1. In TGD framework path integral is replaced by inner product involving integral over WCV. The
vacuum functional and its conjugate are associated with the states in the inner product so that
the phases of vacuum functionals cancel if only one sign for the phase is allowed. Minkowskian
contribution would have no physical significance. This of course cannot be the case. The ground
state is actually degenerate corresponding to the phase factor and its complex conjugate since√
g can have two signs in Minkowskian regions. Therefore the inner products between states

associated with the two ground states define 2 × 2 matrix and non-diagonal elements contain
interference terms due to the presence of the phase factor. At the limit of full CP2 type vacuum
extremal the two ground states would reduce to each other and the determinant of the matrix
would vanish.

2. A small mixing of the two ground states would give rise to CP breaking and the first principle
description of CP breaking in systems like K − K and of CKM matrix should reduce to this
mixing. K0 mesons would be CP even and odd states in the first approximation and correspond
to the sum and difference of the ground states. Small mixing would be present having exponential
sensitivity to the actions of CP2 type extremals representing wormhole throats. This might allow
to understand qualitatively why the mixing is about 50 times larger than expected for B0 mesons.

3. There is a strong temptation to assign the two ground states with two possible arrows of geo-
metric time. At the level of M-matrix the two arrows would correspond to state preparation at
either upper or lower boundary of CD. Do long- and shortlived neutral K mesons correspond
to almost fifty-fifty orthogonal superpositions for the two arrow of geometric time or almost
completely to a fixed arrow of time induced by environment? Is the dominant part of the arrow
same for both or is it opposite for long and short-lived neutral measons? Different lifetimes
would suggest that the arrow must be the same and apart from small leakage that induced by
environment. CP breaking would be induced by the fact that CP is performed only K0 but not
for the environment in the construction of states. One can probably imagine also alternative
interpretations.

2.6.5 A general solution ansatz based on almost topological QFT property

The basic vision behind the ansatz is the reduction of quantum TGD to almost topological field
theory. This requires that the flow parameters associated with the flow lines of isometry currents
and Kähler current extend to global coordinates. This leads to integrability conditions implying
generalized Beltrami flow and Kähler action for the preferred extremals reduces to Chern-Simons
action when weak electro-weak duality is applied as boundary conditions. The strongest form of the
hydrodynamical interpretation requires that all conserved currents are parallel to Kähler current. In
the more general case one would have several hydrodynamic flows. Also the braidings (several of them
for the most general ansatz) assigned with the light-like 3-surfaces are naturally defined by the flow
lines of conserved currents. The independent behavior of particles at different flow lines can be seen
as a realization of the complete integrability of the theory. In free quantum field theories on mass
shell Fourier components are in a similar role but the geometric interpretation in terms of flow is of
course lacking. This picture should generalize also to the solution of the modified Dirac equation.
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Basic field equations

Consider first the equations at general level.

1. The breaking of the Poincare symmetry due to the presence of monopole field occurs and leads
to the isometry group T×SO(3)×SU(3) corresponding to time translations, rotations, and color
group. The Cartan algebra is four-dimensional and field equations reduce to the conservation
laws of energy E, angular momentum J , color isospin I3, and color hypercharge Y .

2. Quite generally, one can write the field equations as conservation laws for I, J, I3, and Y .

Dα

[
Dβ(JαβHA)− jαKHA + TαβjlAhkl∂βh

l
]

= 0 . (2.6.15)

The first term gives a contraction of the symmetric Ricci tensor with antisymmetric Kähler form
and vanishes so that one has

Dα

[
jαKH

A − TαβjkAhkl∂βhl
]

= 0 . (2.6.16)

For energy one has HA = 1 and energy current associated with the flow lines is proportional to
the Kähler current. Its divergence vanishes identically.

3. One can express the divergence of the term involving energy momentum tensor as as sum of
terms involving jαKJαβ and contraction of second fundamental form with energy momentum
tensor so that one obtains

jαKDαH
A = jαKJ

β
α jAβ + TαβHk

αβj
A
k . (2.6.17)

Hydrodynamical solution ansatz

The characteristic feature of the solution ansatz would be the reduction of the dynamics to hydrody-
namics analogous to that for a continuous distribution of particles initially at the end of X3 of the
light-like 3-surface moving along flow lines defined by currents jA satisfying the integrability condi-
tion jA ∧ djA = 0. Field theory would reduce effectively to particle mechanics along flow lines with
conserved charges defined by various isometry currents. The strongest condition is that all isometry
currents jA and also Kähler current jK are proportional to the same current j. The more general
option corresponds to multi-hydrodynamics.

Conserved currents are analogous to hydrodynamical currents in the sense that the flow parameter
along flow lines extends to a global space-time coordinate. The conserved current is proportional to
the gradient ∇Φ of the coordinate varying along the flow lines: J = Ψ∇Φ and by a proper choice of
Ψ one can allow to have conservation. The initial values of Ψ and Φ can be selected freely along the
flow lines beginning from either the end of the space-time surface or from wormhole throats.

If one requires hydrodynamics also for Chern-Simons action (effective 2-dimensionality is required
for preferred extremals), the initial values of scalar functions can be chosen freely only at the partonic
2-surfaces. The freedom to chose the initial values of the charges conserved along flow lines at the
partonic 2-surfaces means the existence of an infinite number of conserved charges so that the theory
would be integrable and even in two different coordinate directions. The basic difference as compared
to ordinary conservation laws is that the conserved currents are parallel and their flow parameter
extends to a global coordinate.

1. The most general assumption is that the conserved isometry currents

JαA = jαKH
A − TαβjkAhkl∂βhl (2.6.18)

and Kähler current are integrable in the sense that JA∧JA = 0 and jK ∧ jK = 0 hold true. One
could imagine the possibility that the currents are not parallel.
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2. The integrability condition dJA ∧ JA = 0 is satisfied if one one has

JA = ΨAdΦA . (2.6.19)

The conservation of JA gives

d ∗ (ΨAdΦA) = 0 . (2.6.20)

This would mean separate hydrodynamics for each of the currents involved. In principle there is
not need to assume any further conditions and one can imagine infinite basis of scalar function
pairs (ΨA,ΦA) since criticality implies infinite number deformations implying conserved Noether
currents.

3. The conservation condition reduces to d’Alembert equation in the induced metric if one assumes
that ∇ΨA is orthogonal with every dΦA.

d ∗ dΦA = 0 , dΨA · dΦA = 0 . (2.6.21)

Taking x = ΦA as a coordinate the orthogonality condition states gxj∂jΨA = 0 and in the gen-
eral case one cannot solve the condition by simply assuming that ΨA depends on the coordinates
transversal to ΦA only. These conditions bring in mind p · p = 0 and p · e condition for massless
modes of Maxwell field having fixed momentum and polarization. dΦA would correspond to p
and dΨA to polarization. The condition that each isometry current corresponds its own pair
(ΨA,ΦA) would mean that each isometry current corresponds to independent light-like momen-
tum and polarization. Ordinary free quantum field theory would support this view whereas
hydrodynamics and QFT limit of TGD would support single flow.

These are the most general hydrodynamical conditions that one can assume. One can consider
also more restricted scenarios.

1. The strongest ansatz is inspired by the hydrodynamical picture in which all conserved isometry
charges flow along same flow lines so that one would have

JA = ΨAdΦ . (2.6.22)

In this case same Φ would satisfy simultaneously the d’Alembert type equations.

d ∗ dΦ = 0 , dΨA · dΦ = 0. (2.6.23)

This would mean that the massless modes associated with isometry currents move in parallel
manner but can have different polarizations. The spinor modes associated with light-light like
3-surfaces carry parallel four-momenta, which suggest that this option is correct. This allows a
very general family of solutions and one can have a complete 3-dimensional basis of functions
ΨA with gradient orthogonal to dΦ.
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2. Isometry invariance under T × SO(3)× SU(3) allows to consider the possibility that one has

JA = kAΨAdΦG(A) , d ∗ (dΦG(A)) = 0 , dΨA · dΦG(A)) = 0 . (2.6.24)

where G(A) is T for energy current, SO(3) for angular momentum currents and SU(3) for color
currents. Energy would thus flow along its own flux lines, angular momentum along its own flow
lines, and color quantum numbers along their own flow lines. For instance, color currents would
differ from each other only by a numerical constant. The replacement of ΨA with ΨG(A) would
be too strong a condition since Killing vector fields are not related by a constant factor.

To sum up, the most general option is that each conserved current JA defines its own integrable
flow lines defined by the scalar function pair (ΨA,ΦA). A complete basis of scalar functions satisfying
the d’Alembert type equation guaranteeing current conservation could be imagined with restrictions
coming from the effective 2-dimensionality reducing the scalar function basis effectively to the partonic
2-surface. The diametrically opposite option corresponds to the basis obtained by assuming that only
single Φ is involved.

The proposed solution ansatz can be compared to the earlier ansatz [K36] stating that Kähler
current is topologized in the sense that for D(CP2) = 3 it is proportional to the identically conserved
instanton current (so that 4-D Lorentz force vanishes) and vanishes for D(CP2) = 4 (Maxwell phase).
This hypothesis requires that instanton current is Beltrami field for D(CP2) = 3. In the recent
case the assumption that also instanton current satisfies the Beltrami hypothesis in strong sense
(single function Φ) generalizes the topologization hypothesis for D(CP2) = 3. As a matter fact, the
topologization hypothesis applies to isometry currents also for D(CP2) = 4 although instanton current
is not conserved anymore.

Can one require the extremal property in the case of Chern-Simons action?

Effective 2-dimensionality is achieved if the ends and wormhole throats are extremals of Chern-Simons
action. The strongest condition would be that space-time surfaces allow orthogonal slicings by 3-
surfaces which are extremals of Chern-Simons action.

Also in this case one can require that the flow parameter associated with the flow lines of the
isometry currents extends to a global coordinate. Kähler magnetic field B = ∗J defines a conserved
current so that all conserved currents would flow along the field lines of B and one would have 3-D
Beltrami flow. Note that in magnetohydrodynamics the standard assumption is that currents flow
along the field lines of the magnetic field.

For wormhole throats light-likeness causes some complications since the induced metric is degener-
ate and the contravariant metric must be restricted to the complement of the light-like direction. This
means that d’Alembert equation reduces to 2-dimensional Laplace equation. For space-like 3-surfaces
one obtains the counterpart of Laplace equation with partonic 2-surfaces serving as sources. The
interpretation in terms of analogs of Coulomb potentials created by 2-D charge distributions would
be natural.

2.6.6 Hydrodynamic picture in fermionic sector

Super-symmetry inspires the conjecture that the hydrodynamical picture applies also to the solutions
of the modified Dirac equation.

4-dimensional modified Dirac equation and hydrodynamical picture

Consider first the solutions of of the induced spinor field in the interior of space-time surface.

1. The local inner products of the modes of the induced spinor fields define conserved currents

DαJ
α
mn = 0 ,

Jαmn = umΓ̂αun ,

Γ̂α =
∂LK

∂(∂αhk)
Γk . (2.6.25)
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The conjecture is that the flow parameters of also these currents extend to a global coordinate
so that one would have in the completely general case the condition

Jαmn = ΦmndΨmn ,

d ∗ (dΦmn) = 0 , ∇Ψmn · Φmn = 0 . (2.6.26)

The condition Φmn = Φ would mean that the massless modes propagate in parallel manner and
along the flow lines of Kähler current. The conservation condition along the flow line implies
tht the current component Jmn is constant along it. Everything would reduce to initial values
at the ends of the space-time sheet boundaries of CD and 3-D modified Dirac equation would
reduce everything to initial values at partonic 2-surfaces.

2. One might hope that the conservation of these super currents for all modes is equivalent with
the modified Dirac equation. The modes un appearing in Ψ in quantized theory would be kind
of ”square roots” of the basis Φmn and the challenge would be to deduce the modes from the
conservation laws.

3. The quantization of the induced spinor field in 4-D sense would be fixed by those at 3-D space-
like ends by the fact that the oscillator operators are carried along the flow lines as such so
that the anti-commutator of the induced spinor field at the opposite ends of the flow lines at
the light-like boundaries of CD is in principle fixed by the anti-commutations at the either end.
The anti-commutations at 3-D surfaces cannot be fixed freely since one has 3-D Chern-Simons
flow reducing the anti-commutations to those at partonic 2-surfaces.

The following argument suggests that induced spinor fields are in a suitable gauge simply constant
along the flow lines of the Kähler current just as massless spinor modes are constant along the geodesic
in the direction of momentum.

1. The modified gamma matrices are of form Tαk Γk, Tαk = ∂LK/∂(∂αh
k). The H-vectors Tαk can

be expressed as linear combinations of a subset of Killing vector fields jkA spanning the tangent
space of H. For CP2 the natural choice are the 4 Lie-algebra generators in the complement
of U(2) sub-algebra. For CD one can used generator time translation and three generators of
rotation group SO(3). The completeness of the basis defined by the subset of Killing vector
fields gives completeness relation hkl = jAkjAk. This implies Tαk = TαkjAk j

k
A = TαAjkA. One

can defined gamma matrices ΓA as Γkj
k
A to get Tαk Γk = TαAΓA.

2. This together with the condition that all isometry currents are proportional to the Kähler
current (or if this vanishes to same conserved current- say energy current) satisfying Beltrami
flow property implies that one can reduce the modified Dirac equation to an ordinary differential
equation along flow lines. The quantities T tA are constant along the flow lines and one obtains

T tAjADtΨ = 0 . (2.6.27)

By choosing the gauge suitably the spinors are just constant along flow lines so that the spinor
basis reduces by effective 2-dimensionality to a complete spinor basis at partonic 2-surfaces.

Generalized eigen modes for the modified Chern-Simons Dirac equation and hydrody-
namical picture

Hydrodynamical picture helps to understand also the construction of generalized eigen modes of 3-D
Chern-Simons Dirac equation.

The general form of generalized eigenvalue equation for Chern-Simons Dirac action

Consider first the the general form and interpretation of the generalized eigenvalue equation as-
signed with the modified Dirac equation for Chern-Simons action [K15] . This is of course only an
approximation since an additional contribution to the modified gamma matrices from the Lagrangian
multiplier term guaranteing the weak form of electric-magnetic duality must be included.
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1. The modified Dirac equation for Ψ is consistent with that for its conjugate if the coefficient of
the instanton term is real and one uses the Dirac action Ψ(D→ −D←)Ψ giving modified Dirac
equation as

DC−SΨ +
1

2
(DαΓ̂αC−S)Ψ = 0 . (2.6.28)

As noticed, the divergence DαΓ̂αC−S does not contain second derivatives in the case of Chern-
Simons action. In the case of Kähler action they occur unless field equations equivalent with the
vanishing of the divergence term are satisfied. The extremals of Chern-Simons action provide a
natural manner to define effective 2-dimensionality.

Also the fermionic current is conserved in this case, which conforms with the idea that fermions
flow along the light-like 3-surfaces. If one uses the action ΨD→Ψ, Ψ does not satisfy the Dirac
equation following from the variational principle and fermion current is not conserved.

2. The generalized eigen modes of DC−S should be such that one obtains the counterpart of Dirac
propagator which is purely algebraic and does not therefore depend on the coordinates of the
throat. This is satisfied if the generalized eigenvalues are expressible in terms of covariantly
constant combinations of gamma matrices and here only M4 gamma matrices are possible.
Therefore the eigenvalue equation would read as

DΨ = λkγkΨ , D = DC−S +
1

2
DαΓ̂αC−S , DC−S = Γ̂αC−SDα .

(2.6.29)

Here the covariant derivatives Dα contain the measurement interaction term as an apparent
gauge term. For extremals one has

D = DC−S . (2.6.30)

Covariant constancy allows to take the square of this equation and one has

(D2 +
[
D,λkγk

]
)Ψ = λkλkΨ . (2.6.31)

The commutator term is analogous to magnetic moment interaction.

3. The generalized eigenvalues correspond to λ =
√
λkλk and Dirac determinant is defined as a

product of the eigenvalues and conjecture to give the exponent of Kähler action reducing to
Chern-Simons term. λ is completely analogous to mass. λk cannot be however interpreted as
ordinary four-momentum: for instance, number theoretic arguments suggest that λk must be
restricted to the preferred plane M2 ⊂ M4 interpreted as a commuting hyper-complex plane
of complexified quaternions. For incoming lines this mass would vanish so that all incoming
particles irrespective their actual quantum numbers would be massless in this sense and the
propagator is indeed that for a massless particle. Note that the eigen-modes define the boundary
values for the solutions of DKΨ = 0 so that the values of λ indeed define the counterpart of the
momentum space.

This transmutation of massive particles to effectively massless ones might make possible the
application of the twistor formalism as such in TGD framework [K85] . N = 4 SUSY is one
of the very few gauge theory which might be UV finite but it is definitely unphysical due to
the masslessness of the basic quanta. Could the resolution of the interpretational problems
be that the four-momenta appearing in this theory do not directly correspond to the observed
four-momenta?
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2. Inclusion of the constraint term

As already noticed one must include also the constraint term due to the weak form of electric-
magnetic duality and this changes somewhat the above simple picture.

1. At the 3-dimensional ends of the space-time sheet and at wormhole throats the 3-dimensionality
allows to introduce a coordinate varying along the flow lines of Kähler magnetic field B = ∗J .
In this case the integrability conditions state that the flow is Beltrami flow. Note that the
value of Bα along the flow line defining magnetic flux appearing in anti-commutation relations
is constant. This suggests that the generalized eigenvalue equation for the Chern-Simons ac-
tion reduces to a collection of ordinary apparently independent differential equations associated
with the flow lines beginning from the partonic 2-surface. This indeed happens when the CP2

projection is 2-dimensional. In this case it however seems that the basis un is not of much help.

2. The conclusion is wrong: the variations of Chern-Simons action are subject to the constraint
that electric-magnetic duality holds true expressible in terms of Lagrange multiplier term

∫
Λα(Jnα −KεnαβγJβγ)

√
g4d

3x . (2.6.32)

This gives a constraint force to the field equations and also a dependence on the induced 4-
metric so that one has only almost topological QFT. This term also guarantees the M4 part
of WCW Kähler metric is non-trivial. The condition that the ends of space-time sheet and
wormhole throats are extrema of Chern-Simons action subject to the electric-magnetic duality
constraint is strongly suggested by the effective 2-dimensionality. Without the constraint term
Chern-Simons action would vanish for its extremals so that Kähler function would be identically
zero.

This term implies also an additional contribution to the modified gamma matrices besides the
contribution coming from Chern-Simons action so tht the first guess for the modified Dirac
operator would not be quite correct. This contribution is of exactly of the same general form
as the contribution for any general general coordinate invariant action. The dependence of the
induced metric on M4 degrees of freedom guarantees that also M4 gamma matrices are present.
In the following this term will not be considered.

3. When the contribution of the constraint term to the modifield gamma matrices is neglected,
the explicit expression of the modified Dirac operator DC−S associated with the Chern-Simons
term is given by

D = Γ̂µDµ +
1

2
DµΓ̂µ ,

Γ̂µ =
∂LC−S
∂µhk

Γk = εµαβ
[
2Jkl∂αh

lAβ + JαβAk
]

ΓkDµ ,

DµΓ̂µ = BαK(Jkα + ∂αAk) ,

BαK = εαβγJβγ , Jkα = Jkl∂αs
l , ε̂αβγ = εαβγ

√
g3 . (2.6.33)

For the extremals of Chern-Simons action one has DαΓ̂α = 0. Analogous condition holds true
when the constraing contriabution to the modified gamma matrices is added.

3. Generalized eigenvalue equation for Chern-Simons Dirac action

Consider now the Chern-Simons Dirac equation in more detail assuming that the inclusion of the
constraint contribution to the modified gamma matrices does not induce any complications. Assume
also extremal property for Chern-Simons action with constraint term and Beltrami flow property.
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1. For the extremals the Chern-Simons Dirac operator (constraint term not included) reduces to a
one-dimensional Dirac operator

DC−S = ε̂rαβ [2JkαAβ + JαβAk] ΓkDr . (2.6.34)

Constraint term implies only a modification of the modified gamma matrices but the form of
the operator remains otherwise same when extrema are in question so that one has DαΓ̂α = 0.

2. For the extremals of Chern-Simons action the general solution of the modified Chern-Simons
Dirac equation (λk = 0) is covariantly constant with respect to the coordinate r:

DrΨ = 0 . (2.6.35)

The solution to this condition can be written immediately in terms of a non-integrable phase
factor Pexp(i

∫
Ardr), where integration is along curve with constant transversal coordinates. If

Γ̂v is light-like vector field also Γ̂vΨ0 defines a solution of DC−S . This solution corresponds to a
zero mode for DC−S and does not contribute to the Dirac determinant (suggested to give rise to
the exponent of Kähler function identified as Kähler action). Note that the dependence of these
solutions on transversal coordinates of X3

l is arbitrary which conforms with the hydrodynamic
picture. The solutions of Chern-Simons-Dirac are obtained by similar integration procedure also
when extremals are not in question.

The formal solution associated with a general eigenvalue λ can be constructed by integrating the
eigenvalue equation separately along all coordinate curves. This makes sense if r indeed assigned to
possibly light-like flow lines of Bα or more general Beltrami field possible induced by the constraint
term. There are very strong consistency conditions coming from the conditions that Ψ in the interior
is constant along the flow lines of Kähler current and continuous at the ends and throats (call them
collectively boundaries), where Ψ has a non-trivial variation along the flow lines of Bα.

1. This makes sense only if the flow lines of the Kähler current are transversal to the boundaries
so that the spinor modes at boundaries dictate the modes of the spinor field in the interior.
Effective 2-dimensionality means that the spinor modes in the interior can be calculated either
by starting from the throats or from the ends so that the data at either upper of lower partonic
2-surfaces dictates everything in accordance with zero energy ontology.

2. This gives an infinite number of commuting diagrams stating that the flow-line time evolution
along flow lines along wormhole throats from lower partonic 2-surface to the upper one is equiv-
alent with the flow-line time evolution along the lower end of space-time surface to interior, then
along interior to the upper end of the space-time surface and then back to the upper partonic
2-surface. If the space-time surface allows a slicing by partonic 2-surfaces these conditions can
be assumed for any pair of partonic 2-surfaces connected by Chern-Simons flow evolution.

3. Since the time evolution along interior keeps the spinor field as constant in the proper gauge
and since the flow evolutions at the lower and upper ends are in a reverse direction, there is a
strong atemptation to assume that the spinor field at the ends of the of the flow lines of Kähler
magnetic field are identical apart from a gauge transformation. This leads to a particle-in-box
quantizaton of the values of the pseudo-mass (periodic boundary conditions). These conditions
will be assumed in the sequel.

These assumptions lead to the following picture about the generalized eigen modes.

1. By choosing the gauge so that covariant derivative reduces to ordinary derivative and using the
constancy of Γ̂r, the solution of the generalized eigenvalue equation can be written as
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Ψ = exp(iL(r)Γ̂rλkΓk)Ψ0 ,

L(r) =

∫ r

0

1√
ĝrr

dr . (2.6.36)

L(r) can be regarded as the along flux line as defined by the effective metric defined by modified
gamma matrices. If λk is linear combination of Γ0 and ΓrM it anti-commutes with Γr which
contains only CP2 gamma matrices so that the pseudo-momentum is a priori arbitrary.

2. When the constraint term taking care of the electric-magnetric duality is included, also M4

gamma matrices are present. If they are in the orthogonal complement of a preferred plane
M2 ⊂ M4, anti-commutativity is achieved. This assumption cannot be fully justified yet but
conforms with the general physical vision. There is an obvious analogy with the condition that
polarizations are in a plane orthogonal to M2. The condition indeed states that only transversal
deformations define quantum fluctuating WCW degrees of freedom contributing to the WCW
Kähler metric. In M8−H duality the preferred plane M2 is interpreted as a hyper-complex plane
belonging to the tangent space of the space-time surface and defines the plane of non-physical
polarizations. Also a generalization of this plane to an integrable distribution of planes M2(x)
has been proposed and one must consider also now the possibility of a varying plane M2(x) for
the pseudo-momenta. The scalar function Φ appearing in the general solution ansatz for the
field equations satisfies massless d’Alembert equation and its gradient defines a local light-like
direction at space-time-level and hence a 2-D plane of the tangent space. Maybe the projection
of this plane to M4 could define the preferred M2. The minimum condition is that these planes
are defined only at the ends of space-time surface and at wormhole throats.

3. If one accepts this hypothesis, one can write

Ψ =
[
cos(L(r)λ) + isin(λ(r))Γ̂rλkΓk)

]
Ψ0 ,

λ =
√
λkλk . (2.6.37)

4. Boundary conditions should fix the spectrum of masses. If the the flow lines of Kähler current
coincide with the flow lines of Kähler magnetic field or more general Beltrami current at worm-
hole throats one ends up with difficulties since the induced spinor fields must be constant along
flow lines and only trivial eigenvalues are possible. Hence it seems that the two Beltrami fields
must be transversal. This requires that at the partonic 2-surfaces the value of the induced spinor
mode in the interior coincides with its value at the throat. Since the induced spinor fields in
interior are constant along flow lines, one must have

exp(iλL(max)) = 1 . (2.6.38)

This implies that one has essentially particle in a box with size defined by the effective metric

λn =
n2π

L(rmax)
. (2.6.39)

5. This condition cannot however hold true simultaneously for all points of the partonic 2-surfaces
since L(rmax) depends on the point of the surface. In the most general case one can consider
only a subset consisting of the points for which the values of L(rmax) are rational multiples of the
value of L(rmax) at one of the points -call it L0. This implies the notion of number theoretical
braid. Induced spinor fields are localized to the points of the braid defined by the flow lines of
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the Kähler magnetic field (or equivalently, any conserved current- this resolves the longstanding
issue about the identification of number theoretical braids). The number of the included points
depends on measurement resolution characterized somehow by the number rationals which are
allowed. Only finite number of harmonics and sub-harmonics of L0 are possible so that for
integer multiples the number of points is finite. If nmaxL0 and L0/nmin are the largest and
smallest lengths involved, one can argue that the rationals nmax/n, n = 1, ..., nmax and n/nmin,
n = 1, ..., nmin are the natural ones.

6. One can consider also algebraic extensions for which L0 is scaled from its reference value by an
algebraic number so that the mass scale m must be scaled up in similar manner. The spectrum
comes also now in integer multiples. p-Adic mass calculations predicts mass scales to the inverses
of square roots of prime and this raises the expectation that

√
n harmonics and sub-harmonics

of L0 might be necessary. Notice however that pseudo-momentum spectrum is in question so
that this argument is on shaky grounds.

There is also the question about the allowed values of (λ0, λ3) for a given value of λ. This issue will
be discussed in the next section devoted to the attempt to calculate the Dirac determinant assignable
to this spectrum: suffice it to say that integer valued spectrum is the first guess implying that the
pseudo-momenta satisfy n2

0 − n2
3 = n2 and therefore correspond to Pythagorean triangles. What is

remarkable that the notion of number theoretic braid pops up automatically from the Beltrami flow
hypothesis.

2.6.7 Possible role of Beltrami flows and symplectic invariance in the de-
scription of gauge and gravitational interactions

One of the most recent observations made by people working with twistors is the finding of Monteiro
and O’Connell described in the preprint The Kinematic Algebra From the Self-Dual Sector [B65]. The
claim is that one can obtain supergravity amplitudes by replacing the color factors with kinematic
factors which obey formally 2-D symplectic algebra defined by the plane defined by light-like momen-
tum direction and complexified variable in the plane defined by polarizations. One could say that
momentum and polarization dependent kinematic factors are in exactly the same role as the factors
coming from Yang-Mills couplings. Unfortunately, the symplectic algebra looks rather formal object
since the first coordinate is light-like coordinate and second coordinate complex transverse coordinate.
It could make sense only in the complexification of Minkowski space.

In any case, this would suggest that the gravitational gauge group (to be distinguished from
diffeomorphisms) is symplectic group of some kind having enormous representative power as we know
from the fact that the symmetries of practically any physical system are realized in terms of symplectic
transformations. According to the authors of [B65] one can identify the Lie algebra of symplectic group
of sphere with that of SU(N) at large N limit in suitable basis. What makes this interesting is that
at large N limit non-planar diagrams which are the problem of twistor Grassmann approach vanish:
this is old result of t’Hooft, which initiated the developments leading to AdS/CFT correspondence.

The symplectic group of δM4
± × CP2 is the isometry algebra of WCW and I have proposed that

the effective replacement of gauge group with this group implies the vanishing of non-planar diagrams
[K87]. The extension of SYM to a theory of also gravitation in TGD framework could make Yangian
symmetry exact, resolve the infrared divergences, and the problems caused by non-planar diagrams.
It would also imply stringy picture in finite measurement resolution. Also the the construction of
the non-commutative homology and cohomology in TGD framework led to the lifting of Galois group
algebras to their braided variants realized as symplectic flows [K88] and to the conjecture that in
finite measurement resolution the cohomology obtained in this manner represents WCW (”world of
classical worlds”) spinor fields (or at least something very essential about them).

It is however difficult to understand how one could generalize the symplectic structure so that also
symplectic transformations involving light-like coordinate and complex coordinate of the partonic 2-
surface would make sense in some sense. In fact, a more natural interpretation for the kinematic
algebra would in terms of volume preserving flows which are also Beltrami flows [B52, B57]. This
gives a connection with quantum TGD since Beltrami flows define a basic dynamical symmetry for
the preferred extremals of Kähler action which might be called Maxwellian phase.

http://arxiv.org/abs/1105.2565
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1. Classical TGD is defined by Kähler action which is the analog of Maxwell action with Maxwell
field expressed as the projection of CP2 Kähler form. The field equations are extremely non-
linear and only the second topological half of Maxwell equations is satisfied. The remaining
equations state conservation laws for various isometry currents. Actually much more general
conservation laws are obtained.

2. As a special case one obtains solutions analogous to those for Maxwell equations but there are
also other objects such as CP2 type vacuum extremals providing correlates for elementary par-
ticles and string like objects: for these solutions it does not make sense to speak about QFT
in Minkowski space-time. For the Maxwell like solutions linear superposition is lost but a su-
perposition holds true for solutions with the same local direction of polarization and massless
four-momentum. This is a very quantal outcome (in accordance with quantum classical corre-
spondence) since also in quantum measurement one obtains final state with fixed polarization
and momentum. So called massless extremals (topological light rays) analogous to wave guides
containing laser beam and its phase conjugate are solutions of this kind. The solutions are very
interesting since no dispersion occurs so that wave packet preserves its form and the radiation
is precisely targeted.

3. Maxwellian preferred extremals decompose in Minkowskian space-time regions to regions that
can be regarded as classical space-time correlates for massless particles. Massless particles are
characterized by polarization direction and light-like momentum direction. Now these directions
can depend on position and are characterized by gradients of two scalar functions Φ and Ψ. Φ
defines light-like momentum direction and the square of the gradient of Φ in Minkowski metric
must vanish. Ψ defines polarization direction and its gradient is orthogonal to the gradient of
Φ since polarization is orthogonal to momentum.

4. The flow has the additional property that the coordinate associated with the flow lines integrates
to a global coordinate. Beltrami flow is the term used by mathematicians. Beltrami property
means that the condition j ∧ dj =0 is satisfied. In other words, tjhe current is in the plane
defined by its exterior derivative. The above representation obviously guarantees this. Beltrami
property allows to assign order parameter to the flow depending only the parameter varying
along flow line.

This is essential for the hydrodynamical interpretation of the preferred extremals which relies
on the idea that varies conservation laws hold along flow lines. For instance, super-conducting
phase requires this kind of flow and velocity along flow line is gradient of the order parameter.
The breakdown of super-conductivity would mean topologically the loss of the Beltrami flow
property. One might say that the space-time sheets in TGD Universe represent analogs of supra
flow and this property is spoiled only by the finite size of the sheets. This strongly suggests that
the space-time sheets correspond to perfect fluid flows with very low viscosity to entropy ratio
and one application is to the observed perfect flow behavior of quark gluon plasma.

5. The current J = Φ∇Ψ has vanishing divergence if besides the orthogonality of the gradients
the functions Ψ and Φ satisfy massless d’Alembert equation. This is natural for massless field
modes and when these functions represent constant wave vector and polarization also d’Alembert
equations are satisfied. One can actually add to ∇Ψ a gradient of an arbitrary function of Φ
this corresponds to U(1) gauge invariance and the addition to the polarization vector a vector
parallel to light-like four-momentum. One can replace Φ by any function of Φ so that one has
Abelian Lie algebra analogous to U(1) gauge algebra restricted to functions depending on Φ
only.

The general Beltrami flow gives as a special case the kinetic flow associated by Monteiro and
O’Connell with plane waves. For ordinary plane wave with constant direction of momentum vector
and polarization vector one could take Φ = cos(φ), φ = k ·m and Ψ = ε ·m. This would give a real
flow. The kinematical factor in SYM diagrams corresponds to a complexified flow Φ = exp(iφ) and
Ψ = φ+w, where w is complex coordinate for polarization plane or more naturally, complexificaton of
the coordinate in polarization direction. The flow is not unique since gauge invariance allows to modify
φ term. The complexified flow is volume preserving only in the formal algebraic sense and satisfies the
analog of Beltrami condition only in Dolbeault cohomology where d is identified as complex exterior
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derivative (df = df/dz dz for holomorphic functions). In ordinary cohomology it fails. This formal
complex flow of course does not define a real diffeomorphism at space-time level: one should replace
Minkowski space with its complexification to get a genuine flow.

The finding of Monteiro and O’Connel encourages to think that the proposed more general Abelian
algebra pops up also in non-Abelian YM theories. Discretization by braids would actually select single
polarization and momentum direction. If the volume preserving Beltrami flows characterize the basic
building bricks of radiation solutions of both general relativity and YM theories, it would not be
surprising if the kinematic Lie algebra generators would appear in the vertices of YM theory and
replace color factors in the transition from YM theory to general relativity. In TGD framework the
construction of vertices at partonic two-surfaces would define local kinematic factors as effectively
constant ones.

2.7 How to define Dirac determinant?

The basic challenge is to define Dirac determinant hoped to give rise to the exponent of Kähler action
associated with the preferred extremal. The reduction to almost topological QFT gives this kind
of expression in terms of Chern-Simons action and one might hope of obtaining even more concrete
expression from the Chern-Simons Dirac determinant. The calculation of the previous section allowed
to calculate the most general spectrum of the modified Dirac operator. If the number of the eigenvalues
is infinite as the naive expectation is then Dirac determinant diverges if calculated as the product of the
eigenvalues and one must calculate it by using some kind of regularization procedure. Zeta function
regularization is the natural manner to do this.

The following arguments however lead to a concrete vision how the regularization could be avoided
and a connection with infinite primes. In fact, the manifestly finite option and the option involving zeta
function regularization give Kähler functions differing only by a scaling factor and only the manifestly
finite option satisfies number theoretical constraints coming from p-adicization. An explicit expression
for the Dirac determinant in terms of geometric data of the orbit of the partonic 2-surface emerges.

Arithmetic quantum field theory defined by infinite emerges naturally. The lines of the generalized
Feynman graphs are characterized by infinite primes and the selection rules correlating the geometries
of the lines of the generalized Feynman graphs corresponds to the conservation of the sum of number
theoretic momenta log(pi) assignable to sub-braids corresponding to different primes pi assignable to
the orbit of parton. This conforms with the vision that infinite primes indeed characterize the geometry
of light-like 3-surfaces and therefore also of space-time sheets. The eigenvalues of the modified Dirac
operator are proportional 1/

√
pi where pi are the primes appearing in the definition of the p-adic prime

and the interpretation as analogs of Higgs vacuum expectation values makes sense and is consistent
with p-adic length scale hypothesis and p-adic mass calculations. It must be emphasized that all this is
essentially due to single basic hypothesis, namely the reduction of quantum TGD to almost topological
QFT guaranteed by the Beltrami ansatz for field equations and by the weak form of electric-magnetic
duality.

2.7.1 Dirac determinant when the number of eigenvalues is infinite

At first sight the general spectrum looks the only reasonable possibility but if the eigenvalues cor-
relate with the geometry of the partonic surface as quantum classical correspondence suggests, this
conclusion might be wrong. The original hope was the number of eigenvalues would be finite so that
also determinant would be finite automatically. There were some justifications for this hope in the
definition of Dirac determinant based on the dimensional reduction of DK as DK = DK,3 + D1 and
the identification of the generalized eigenvalues as those assigned to DK,3 as analogs of energy eigen-
values assignable to the light-like 3-surface. It will be found that number theoretic input could allow
to achieve a manifest finiteness in the case of DC−S and that this option is the only possible one if
number theoretic universality is required.

If there are no constraints on the eigenvalue spectrum of DC−S for a given partonic orbit, the naive
definition of the determinant gives an infinite result and one must define Dirac determinant using ζ
function regularization implying that Kähler function reduces to the derivative of the zeta function
ζD(s) -call it Dirac Zeta- associated with the eigenvalue spectrum.

Consider now the situation when the number of eigenvalues is infinite.
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1. In this kind of situation zeta function regularization is the standard manner to define the Dirac
determinant. What one does is to assign zeta function to the spectrum- let us call it Dirac zeta
function and denote by ζD(s)- as

ζD(s) =
∑
k

λ−sk . (2.7.1)

If the eigenvalue λk has degeneracy gk it appears gk times in the sum. In the case of harmonic
oscillator one obtains Riemann zeta for which sum representation converges only for Re(s) ≥ 1.
Riemann zeta can be however analytically continued to the entire complex plane and the idea
is that this can be done also in the more general case.

2. By the basic conjecture Kähler function corresponds to the logarithm of the Dirac determinant
and equals to the sum of the logarithms of the eigenvalues

K = log(
∏

λk) = −dζD
ds |s=0

. (2.7.2)

The expression on the left hand side diverges if taken as such but the expression on the right
had side based on the analytical continuation of the zeta function is completely well-defined and
finite quantity. Note that the replacement of eigenvalues λk by their powers λnk -or equivalently
the increase of the degeneracy by a factor n - brings in only a factor n to K: K → nK.

3. Dirac determinant involves in the minimal situation only the integer multiples of pseudo-mass
scale λ = 2π/Lmin. One can consider also rational and even algebraic multiples qLmin < Lmax,
q ≥ 1, of Lmin so that one would have several integer spectra simultaneously corresponding to
different braids. Here Lmin and Lmax are the extrema of the braid strand length determined
in terms of the effective metric as L =

∫
(ĝrr)−1/2dr. The question what multiples are involved

will be needed later.

4. Each rational or algebraic multiple of Lmin gives to the zeta function a contribution which is of
same form so that one has

ζD =
∑
q

ζ(log(qx)s) , x =
Lmin
R

, 1 ≤ q < Lmax
Lmin

. (2.7.3)

Kähler function can be expressed as

K =
∑
n

log(λn) = −dζD(s)

ds
= −

∑
q

log(qx)
dζ(s)

ds |s=0
, x =

Lmin
R

. (2.7.4)

What is remarkable that the number theoretical details of ζD determine only the overall scaling
factor of Kähler function and thus the value of Kähler coupling strength, which would be purely
number theoretically determined if the hypothesis about the role of infinite primes is correct.
Also the value of R is irrelevant since it does not affect the Kähler metric.

5. The dependence of Kähler function on WCW degrees of freedom would be coded completely by
the dependence of the length scales qLmin on the complex coordinates of WCW: note that this
dependence is different for each scale. This is reminiscent of the coding of the shape of the drum
(or more generally - manifold) by the spectrum of its eigen frequencies. Now Kähler geometry
would code for the dependence of the spectrum on the shape of the drum defined by the partonic
2-surface and the 4-D tangent space distribution associated with it.
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What happens at the limit of vacuum extremals serves as a test for the identification of Kähler
function as Dirac determinant. The weak form of electric magnetic duality implies that all com-
ponents of the induced Kähler field vanish simultaneously if Kähler magnetic field cancels. In the
modified Chern-Simons Dirac equation one obtains L =

∫
(ĝrr)−1/2dr. The modified gamma matrix

Γ̂r approaches a finite limit when Kähler magnetic field vanishes

Γ̂r = εrβγ(2JβkAγ + JβγAk)Γk → 2εrβγJβkΓk . (2.7.5)

The relevant component of the effective metric is ĝrr and is given by

ĝrr = (Γ̂r)2 = 4εrβγεrµνJβkJ
k

µ AγAν . (2.7.6)

The limit is non-vanishing in general and therefore the eigenvalues remain finite also at this limit
as also the parameter Lmin =

∫
(ĝrr)−1/2dr defining the minimum of the length of the braid strand

defined by Kähler magnetic flux line in the effective metric unless ĝrr goes to zero everywhere inside
the partonic surface. Chern-Simons action and Kähler action vanish for vacuum extremals so that in
this case one could require that Dirac determinant approaches to unity in a properly chosen gauge.
Dirac determinant should approach to unit for vacuum extremals indeed approaches to unity since
there are no finite eigenvalues at the limit ĝrr = 0.

2.7.2 Hyper-octonionic primes

Before detailed discussion of the hyper-octonionic option it is good to consider the basic properties of
hyper-octonionic primes.

1. Hyper-octonionic primes are of form

Πp = (n0, n3, n1, n2, ..., n7) , Π2
p = n2

0 −
∑
i

n2
i = p or p2 . (2.7.7)

2. Hyper-octonionic primes have a standard representation as hyper-complex primes. The Minkowski
norm squared factorizes into a product as

n2
0 − n2

3 = (n0 + n3)(n0 − n3) . (2.7.8)

If one has n3 6= 0, the prime property implies n0 − n3 = 1 so that one obtains n0 = n3 + 1 and
2n3 + 1 = p giving

(n0, n3) = ((p+ 1)/2, (p− 1)/2) .

(2.7.9)

Note that one has (p + 1)/2 odd for p mod 4 = 1) and (p + 1)/2 even for p mod 4 = 3). The
difference n0 − n3 = 1 characterizes prime property.

If n3 vanishes the prime prime property implies equivalence with ordinary prime and one has
n2

3 = p2. These hyper-octonionic primes represent particles at rest.
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3. The action of a discrete subgroup G(p) of the octonionic automorphism group G2 generates form
hyper-complex primes with n3 6= 0 further hyper-octonionic primes Π(p, k) corresponding to the
same value of n0 and p and for these the integer valued projection to M2 satisfies n2

0−n2
3 = n > p.

It is also possible to have a state representing the system at rest with (n0, n3) = ((p + 1)/2, 0)
so that the pseudo-mass varies in the range [

√
p, (p + 1)/2]. The subgroup G(n0, n3) ⊂ SU(3)

leaving invariant the projection (n0, n3) generates the hyper-octonionic primes corresponding
to the same value of mass for hyper-octonionic primes with same Minkowskian length p and
pseudo-mass λ = n ≥ √p.

4. One obtains two kinds of primes corresponding to the lengths of pseudo-momenta equal to p or√
p. The first kind of particles are always at rest whereas the second kind of particles can be

brought at rest only if one interprets the pseudo-momentum as M2 projection. This brings in
mind the secondary p-adic length scales assigned to causal diamonds (CDs) and the primary
p-adic lengths scales assigned to particles.

If the M2 projections of hyper-octonionic primes with length
√
p characterize the allowed basic

momenta, ζD is sum of zeta functions associated with various projections which must be in the limits
dictated by the geometry of the orbit of the partonic surface giving upper and lower bounds Lmax and
Lmin on the length L. Lmin is scaled up to

√
n2

0 − n2
3Lmin for a given projection (n0, n3). In general

a given M2 projection (n0, n3) corresponds to several hyper-octonionic primes since SU(3) rotations
give a new hyper-octonionic prime with the same M2 projection. This leads to an inconsistency unless
one has a good explanation for why some basic momentum can appear several times. One might argue
that the spinor mode is degenerate due to the possibility to perform discrete color rotations of the
state. For hyper complex representatives there is no such problem and it seems favored. In any case,
one can look how the degeneracy factors for given projection can be calculated.

1. To calculate the degeneracy factor D(n associated with given pseudo-mass value λ = n one must
find all hyper-octonionic primes Π, which can have projection in M2 with length n and sum up
the degeneracy factors D(n, p) associated with them:

D(n) =
∑
p

D(n, p) ,

D(n, p) =
∑

n2
0−n2

3=p

D(p, n0, n3) ,

n2
0 − n2

3 = n , Π2
p(n0, n3) = n2

0 − n2
3 −

∑
i

n2
i = n−

∑
i

n2
i = p . (2.7.10)

2. The condition n2
0 − n2

3 = n allows only Pythagorean triangles and one must find the discrete
subgroup G(n0, n3) ⊂ SU(3) producing hyper-octonions with integer valued components with
length p and components (n0, n3). The points at the orbit satisfy the condition

∑
n2
i = p− n . (2.7.11)

The degeneracy factor D(p, n0, n3) associated with given mass value n is the number of elements
of in the coset space G(n0, n3, p)/H(n0, n3, p), where H(n0, n3, p) is the isotropy group of given
hyper-octonionic prime obtained in this manner. For n2

0−n2
3 = p2 D(n0, n3, p) obviously equals

to unity.

2.7.3 Three basic options for the pseudo-momentum spectrum

The calculation of the scaling factor of the Kähler function requires the knowledge of the degeneracies
of the mass squared eigen values. There are three options to consider.
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First option: all pseudo-momenta are allowed

If the degeneracy for pseudo-momenta in M2 is same for all mass values- and formally characterizable
by a number N telling how many 2-D pseudo-momenta reside on mass shell n2

0−n2
3 = m2. In this case

zeta function would be proportional to a sum of Riemann Zetas with scaled arguments corresponding
to scalings of the basic mass m to m/q.

ζD(s) = N
∑
q

ζ(log(qx)s) , x =
Lmin
R

. (2.7.12)

This option provides no idea about the possible values of 1 ≤ q ≤ Lmax/Lmin. The number N
is given by the integral of relativistic density of states

∫
dk/2

√
k2 +m2 over the hyperbola and is

logarithmically divergent so that the normalization factor N of the Kähler function would be infinite.

Second option: All integer valued pseudomomenta are allowed

Second option is inspired by number theoretic vision and assumes integer valued components for the
momenta using mmax = 2π/Lmin as mass unit. p-Adicization motivates also the assumption that
momentum components using mmax as mass scale are integers. This would restrict the choice of the
number theoretical braids.

Integer valuedness together with masses coming as integer multiples of mmax implies (λ0, λ3) =
(n0, n3) with on mass shell condition n2

0−n2
3 = n2. Note that the condition is invariant under scaling.

These integers correspond to Pythagorean triangles plus the degenerate situation with n3 = 0. There
exists a finite number of pairs (n0, n3) satisfying this condition as one finds by expressing n0 as
n0 = n3 + k giving 2n3k + k2 = p2 giving n3 < n2/2,n0 < n2/2 + 1. This would be enough to have a
finite degeneracy D(n) ≥ 1 for a given value of mass squared and ζD would be well defined. ζD would
be a modification of Riemann zeta given by

ζD =
∑
q

ζ1(log(qx)s) , x =
Lmin
R

,

ζ1(s) =
∑

gnn
−s , gn ≥ 1 . (2.7.13)

For generalized Feynman diagrams this option allows conservation of pseudo-momentum and for loops
no divergences are possible since the integral over two-dimensional virtual momenta is replaced with
a sum over discrete mass shells containing only a finite number of points. This option looks thus
attractive but requires a regularization. On the other hand, the appearance of a zeta function having
a strong resemblance with Riemann zeta could explain the finding that Riemann zeta is closely related
to the description of critical systems. This point will be discussed later.

Third option: Infinite primes code for the allowed mass scales

According to the proposal of [K72] , [L11] the hyper-complex parts of hyper-octonionic primes ap-
pearing in their infinite counterparts correspond to the M2 projections of real four-momenta. This
hypothesis suggests a very detailed map between infinite primes and standard model quantum numbers
and predicts a universal mass spectrum [K72] . Since pseudo-momenta are automatically restricted
to the plane M2, one cannot avoid the question whether they could actually correspond to the hyper-
octonionic primes defining the infinite prime. These interpretations need not of course exclude each
other. This option allows several variants and at this stage it is not possible to exclude any of these
options.

1. One must choose between two alternatives for which pseudo-momentum corresponds to hyper-
complex prime serving as a canonical representative of a hyper-octonionic prime or a projection
of hyper-octonionic prime to M2.

2. One must decide whether one allows a) only the momenta corresponding to hyper-complex
primes, b) also their powers (p-adic fractality), or c) all their integer multiples (”Riemann
option”).
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One must also decide what hyper-octonionic primes are allowed.

1. The first guess is that all hyper-complex/hyper-octonionic primes defining length scale
√
pLmin ≤

Lmax or pLmin ≤ Lmax are allowed. p-Adic fractality suggests that also the higher p-adic length
scales pn/2Lmin < Lmax and pnLmin < Lmax, n ≥ 1, are possible.

It can however happen that no primes are allowed by this criterion. This would mean vanishing
Kähler function which is of course also possible since Kähler action can vanish (for instance, for
massless extremals). It seems therefore safer to allow also the scale corresponding to the trivial
prime (n0, n3) = (1, 0) (1 is formally prime because it is not divisible by any prime different
from 1) so that at least Lmin is possible. This option also allows only rather small primes unless
the partonic 2-surface contains vacuum regions in which case Lmax is infinite: in this case all
primes would be allowed and the exponent of Kähler function would vanish.

2. The hypothesis that only the hyper-complex or hyper-octonionic primes appearing in the infinite
hyper-octonionic prime are possible looks more reasonable since large values of p would be
possible and could be identified in terms of the p-adic length scale hypothesis. All hyper-
octonionic primes appearing in infinite prime would be possible and the geometry of the orbit of
the partonic 2-surface would define an infinite prime. This would also give a concrete physical
interpretation for the earlier hypothesis that hyper-octonionic primes appearing in the infinite
prime characterize partonic 2-surfaces geometrically. One can also identify the fermionic and
purely bosonic primes appearing in the infinite prime as braid strands carrying fermion number
and purely bosonic quantum numbers. This option will be assumed in the following.

2.7.4 Expression for the Dirac determinant for various options

The expressions for the Dirac determinant for various options can be deduced in a straightforward
manner. Numerically Riemann option and manifestly finite option do not differ much but their number
theoretic properties are totally different.

Riemann option

All integer multiples of these basic pseudo-momenta would be allowed for Riemann option so that ζD
would be sum of Riemann zetas with arguments scaled by the basic pseudo-masses coming as inverses
of the basic length scales for braid strands. For the option involving only hyper-complex primes the
formula for ζD reads as

ζD = ζ(log(xmins)) +
∑
i,n ζ(log(xi,ns)) +

∑
i,n ζ(log(yi,ns)) ,

xi,n = p
n/2
i xmin ≤ xmax , pi ≥ 3 , yi,n = pni xmin ≤ xmax . pi ≥ 2 ,

(2.7.14)

Lmax resp. Lmin is the maximal resp. minimal length L =
∫

(ĝrr)−1/2dr for the braid strand defined
by the flux line of the Kähler magnetic field in the effective metric. The contributions correspond to
the effective hyper-complex prime p1 = (1, 0) and hyper-complex primes with Minkowski lengths

√
p

(p ≥ 3) and p, p ≥ 2. If also higher p-adic length scales Ln = pn/2Lmin < Lmax and Ln = pnLmin <
Lmax, n > 1, are allowed there is no further restriction on the summation. For the restricted option
only Ln, n = 0, 2 is allowed.

The expressions for the Kähler function and its exponent reads as

K = k(log(xmin) +
∑
i

log(xi) +
∑
i

log(yi) ,

exp(K) = (
1

xmin
)k ×

∏
i

(
1

xi
)k ×

∏
i

(
1

yi
)k ,

xi ≤ xmax , yi ≤ xmax , k = −dζ(s)

ds |s=0
=

1

2
log(2π) ' .9184 .

(2.7.15)
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From the point of view of p-adicization program the appearance of strongly transcendental numbers
in the normalization factor of ζD is not a well-come property.

If the scaling of the WCW Kähler metric by 1/k is a legitimate procedure it would allow to get
rid of the transcendental scaling factor k and this scaling would cancel also the transcendental from
the exponent of Kähler function. The scaling is not however consistent with the view that Kähler
coupling strength determines the normalization of the WCW metric.

This formula generalizes in a rather obvious manner to the cases when one allows M2 projections
of hyper-octonionic primes.

Manifestly finite options

The options for which one does not allow summation over all integer multiples of the basic momenta
characterized by the canonical representatives of hyper-complex primes or their projections to M2

are manifestly finite. They differ from the Riemann option only in that the normalization factor
k =' .9184 defined by the derivative Riemann Zeta at origin is replaced with k = 1. This would mean
manifest finiteness of ζD. Kähler function and its exponent are given by

K = k(log(xmin) +
∑
i

log(xi) +
∑
i

log(yi) , xi ≤ xmax , yi ≤ xmax ,

exp(K) =
1

xmin
×
∏
i

1

xi
×
∏
i

1

yi
.

(2.7.16)

Numerically the Kähler functions do not differ much since their ratio is .9184. Number theoretically
these functions are however completely different. The resulting dependence involves only square roots
of primes and is an algebraic function of the lengths pi and rational function of xmin. p-Adicization
program would require rational values of the lengths xmin in the intersection of the real and p-adic
worlds if one allows algebraic extension containing the square roots of the primes involved. Note that
in p-adic context this algebraic extension involves two additional square roots for p > 2 if one does
not want square root of p. Whether one should allow for Rp also extension based on

√
p is not quite

clear. This would give 8-D extension.
For the more general option allowing all projections of hyper-complex primes to M2 the general

form of Kähler function is same. Instead of pseudo-masses coming as primes and their square roots
one has pseudomasses coming as square roots of some integers n ≤ p or n ≤ p2 for each p. In this
case the conservation laws are not so strong.

Note that in the case of vacuum extremals xmin = ∞ holds true so that there are no primes
satisfying the condition and Kähler function vanishes as it indeed should.

More concrete picture about the option based on infinite primes

The identification of pseudo-momenta in terms of infinite primes suggests a rather concrete connection
between number theory and physics.

1. One could assign the finite hyper-octonionic primes Πi making the infinite prime to the sub-
braids identified as Kähler magnetic flux lines with the same length L in the effective metric.
The primes assigned to the finite part of the infinite prime correspond to single fermion and
some number of bosons. The primes assigned to the infinite part correspond to purely bosonic
states assignable to the purely bosonic braid strands. Purely bosonic state would correspond to
the action of a WCW Hamiltonian to the state.

This correspondence can be expanded to include all quantum numbers by using the pair of
infinite primes corresponding to the ”vacuum primes” X±1, where X is the product of all finite
primes [K72] . The only difference with respect to the earlier proposal is that physical momenta
would be replaced by pseudo-momenta.

2. Different primes pi appearing in the infinite prime would correspond to their own sub-braids.
For each sub-braid there is a N -fold degeneracy of the generalized eigen modes corresponding
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to the number N of braid strands so that many particle states are possible as required by the
braid picture.

3. The correspondence of infinite primes with the hierarchy of Planck constants could allow to
understand the fermion-many boson states and many boson states assigned with a given finite
prime in terms of many-particle states assigned to na and nb-sheeted singular covering spaces of
CD and CP2 assignable to the two infinite primes. This interpretation requires that only single
p-adic prime pi is realized as quantum state meaning that quantum measurement always selects
a particular p-adic prime pi (and corresponding sub-braid) characterizing the p-adicity of the
quantum state. This selection of number field behind p-adic physics responsible for cognition
looks very plausible.

4. The correspondence between pairs of infinite primes and quantum states [K72] allows to interpret
color quantum numbers in terms of the states associated with the representations of a finite
subgroup of SU(3) transforming hyper-octonionic primes to each other and preserving the M2

pseudo-momentum. Same applies to SO(3). The most natural interpretation is in terms of wave
functions in the space of discrete SU(3) and SO(3) transforms of the partonic 2-surface. The
dependence of the pseudo-masses on these quantum numbers is natural so that the projection
hypothesis finds support from this interpretation.

5. The infinite prime characterizing the orbit of the partonic 2-surface would thus code which
multiples of the basic mass 2π/Lmin are possible. Either the M2 projections of hyper-octonionic
primes or their hyper-complex canonical representatives would fix the basic M2 pseudo-momenta
for the corresponding number theoretic braid associated. In the reverse direction the knowledge
of the light-like 3-surface, the CD and CP2 coverings, and the number of the allowed discrete
SU(3) and SU(2) rotations of the partonic 2-surface would dictate the infinite prime assignable
to the orbit of the partonic 2-surface.

One would also like to understand whether there is some kind of conservation laws associated
with the pseudo-momenta at vertices. The arithmetic QFT assignable to infinite primes would indeed
predict this kind of conservation laws.

1. For the manifestly finite option the ordinary conservation of pseudo-momentum conservation
at vertices is not possible since the addition of pseudo-momenta does not respect the condition
n0−n3 = 1. In fact, this difference in the sum of hyper-complex prime momenta tells how many
momenta are present. If one applies the conservation law to the sum of the pseudo-momenta
corresponding to different primes and corresponding braids, one can have reactions in which the
number of primes involved is conserved. This would give the selection rule

∑N
1 pi =

∑N
1 pf .

These reactions have interpretation in terms of the geometry of the 3-surface representing the
line of the generalized Feynman diagram.

2. Infinite primes define an arithmetic quantum field theory in which the total momentum defined
as
∑
nilog(pi) is a conserved quantity. As matter fact, each prime pi would define a separately

conserved momentum so that there would be an infinite number of conservation laws. If the sum∑
i log(pi) is conserved in the vertex , the primes pi associated with the incoming particle are

shared with the outgoing particles so that also the total momentum is conserved. This looks the
most plausible option and would give very powerful number theoretical selection rules at vertices
since the collection of primes associated with incoming line would be union of the collections
associated with the outgoing lines and also total pseudo-momentum would be conserved.

3. For the both Riemann zeta option and manifestly finite options the arithmetic QFT associated
with infinite primes would be realized at the level of pseudo-momenta meaning very strong
selection rules at vertices coding for how the geometries of the partonic lines entering the vertex
correlate. WCW integration would reduce for the lines of Feynman diagram to a sum over light-
like 3-surfaces characterized by (xmin, xmax) with a suitable weighting factor and the exponent
of Kähler function would give an exponential damping as a function of xmin.
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Which option to choose?

One should be able to make two choices. One must select between hyper-complex representations
and the projections of hyper-octonionic primes and between the manifestly finite options and the one
producing Riemann zeta?

Hyper-complex option seems to be slightly favored over the projection option.

1. The appearance of the scales
√
pixmin and possibly also their pn multiples brings in mind p-

adic length scales coming as
√
pn multiples of CP2 length scale. The scales pixmin associated

with hyper-complex primes reducing to ordinary primes in turn bring in mind the size scales
assignable to CDs. The hierarchy of Planck constants implies also ~/~0 =

√
nanb multiples of

these length scales but mass scales would not depend on na and nb [K73] . For large values
of p the pseudo-momenta are almost light-like for hyper-complex option whereas the projection
option allows also states at rest.

2. Hyper-complex option predicts that only the p-adic pseudo-mass scales appear in the partition
function and is thus favored by the p-adic length scale hypothesis. Projection option predicts
also the possibility of the mass scales (not all of them) coming as 1/

√
n. These mass scales are

however not predicted by the hierarchy of Planck constants.

3. The same pseudo-mass scale can appear several times for the projection option. This degeneracy
corresponds to the orbit of the hyper-complex prime under the subgroup of SU(3) respecting
integer property. Similar statement holds true in the case of SO(3): these groups are assigned
to the two infinite primes characterizing parton. The natural assignment of this degeneracy is to
the discrete color rotational and rotational degrees associated with the partonic 2-surface itself
rather than spinor modes at fixed partonic 2-surface. That the pseudo-mass would depend on
color and angular momentum quantum numbers would make sense.

Consider next the arguments in favor of the manifestly finite option.

1. The manifestly finite option is admittedly more elegant than the one based on Riemann zeta
and also guarantees that no additional loop summations over pseudo-momenta are present. The
strongest support for the manifestly finite option comes from number theoretical universality.

2. One could however argue that the restriction of the pseudo-momenta to a finite number is not
consistent with the modified Dirac-Chern-Simons equation. Quantum classical correspondence
however implies correlation between the geometry of the partonic orbits and the pseudo-momenta
and the summation over all prime valued pseudo-momenta is present but with a weighting factor
coming from Kähler function implying exponential suppression.

The Riemann zeta option could be also defended.

1. The numerical difference of the normalization factors of the Kähler function is however only
about 8 per cent and quantum field theorists might interpret the replacement the length scales
xi and yi with xdi and ydi , d ' .9184, in terms of an anomalous dimension of these length scales.
Could one say that radiative corrections mean the scaling of the original preferred coordinates
so that one could still have consistency with number theoretic universality?

2. Riemann zeta with a non-vanishing argument could have also other applications in quantum
TGD. Riemann zeta has interpretation as a partition function and the zeros of partition func-
tions have interpretation in terms of phase transitions. The quantum criticality of TGD indeed
corresponds to a phase transition point. There is also experimental evidence that the distribu-
tion of zeros of zeta corresponds to the distribution of energies of quantum critical systems in
the sense that the energies correspond to the imaginary parts of the zeros of zeta [A49] .

The first explanation would be in terms of the analogs of the harmonic oscillator coherent
states with integer multiple of the basic momentum taking the role of occupation number of
harmonic oscillator and the zeros s = 1/2 + iy of ζ defining the values of the complex coherence
parameters. TGD inspired strategy for the proof of Riemann hypothesis indeed leads to the
identification of the zeros as coherence parameters rather than energies as in the case of Hilbert-
Polya hypothesis [K65] and the vanishing of the zeta at zero has interpretation as orthogonality
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of the state with respect to the state defined by a vanishing coherence parameter interpreted as
a tachyon. One should demonstrate that the energies of quantum states can correspond to the
imaginary parts of the coherence parameters.

Second interpretation could be in terms of quantum critical zero energy states for which the
”complex square root of density matrix” defines time-like entanglement coefficients of M -matrix.
The complex square roots of the probabilities defined by the coefficient of harmonic oscillator
states (perhaps identifiable in terms of the multiples of pseudo-momentum) in the coherent state
defined by the zero of ζ would define the M -matrix in this situation. Energy would correspond
also now to the imaginary part of the coherence parameter. The norm of the state would be
completely well-defined.

Representation of configuration Kähler metric in terms of eigenvalues of DC−S

A surprisingly concrete connection of the configuration space metric in terms of generalized eigenvalue
spectrum of DC−S results. From the general expression of Kähler metric in terms of Kähler function

Gkl = ∂k∂lK =
∂k∂lexp(K)

exp(K)
− ∂kexp(K)

exp(K)

∂lexp(K)

exp(K)
, (2.7.17)

and from the expression of exp(K) =
∏
i λi as the product of of finite number of eigenvalues of DC−S

, the expression

Gkl =
∑
i

∂k∂lλi
λi

− ∂kλi
λi

∂lλi
λi

(2.7.18)

for the configuration space metric follows. Here complex coordinates refer to the complex coordinates
of configuration space. Hence the knowledge of the eigenvalue spectrum of DC−S(X3) as function of
some complex coordinates of configuration space allows to deduce the metric to arbitrary accuracy.
If the above arguments are correct the calculation reduces to the calculation of the derivatives of
log(
√
pLmin/R), where Lmin is the length of the Kähler magnetic flux line between partonic 2-surfaces

with respect to the effective metric defined by the anti-commutators of the modified gamma matrices.
Note that these length scales have different dependence on WCW coordinates so that one cannot
reduce everything to Lmin. Therefore one would have explicit representation of the basic building
brick of WCW Kähler metric in terms of the geometric data associated with the orbit of the partonic
2-surface.

The formula for the Kähler action of CP2 type vacuum extremals is consistent with the
Dirac determinant formula

The first killer test for the formula of Kähler function in terms of the Dirac determinant based on
infinite prime hypothesis is provided by the action of CP2 type vacuum extremals. One of the first
attempts to make quantitative predictions in TGD framework was the prediction for the gravitational
constant. The argument went as follows.

1. For dimensional reasons gravitational constant must be proportional to p-adic length scale
squared, where p characterizes the space-time sheet of the graviton. It must be also proportional
to the square of the vacuum function for the graviton representing a line of generalized Feynman
diagram and thus to the exponent exp(−2K) of Kähler action for topologically condensed CP2

type vacuum extremals with very long projection. If topological condensation does not reduce
much of the volume of CP2 type vacuum extremal, the action is just Kähler action for CP2

itself. This gives

~0G = L2
pexp(2LK(CP2) = pR2exp(2LK(CP2) . (2.7.19)
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2. Using as input the constraint αK ' αem ∼ 1/137 for Kähler coupling strengths coming from the
comparison of the TGD prediction for the rotation velocity of distant galaxies around galactic
nucleus and the p-adic mass calculation for the electron mass, one obtained the result

exp(2LK(CP2) =
1

p×
∏
pi≤23 pi

. (2.7.20)

The product contains the product of all primes smaller than 24 (pi ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23}).
The expression for the Kähler function would be just of the form predicted by the Dirac deter-
minant formula with Lmin replaced with CP2 length scale. As a matter fact, this was the first
indication that particles are characterized by several p-adic primes but that only one of them is
”active”. As explained, the number theoretical state function reduction explains this.

3. The same formula for the gravitational constant would result for any prime p but the value
of Kähler coupling strength would depend on prime p logarithmically for this option. I indeed
proposed that this formula fixes the discrete evolution of the Kähler coupling strength as function
of p-adic prime from the condition that gravitational constant is renormalization group invariant
quantity but gave up this hypothesis later. It is wisest to keep an agnostic attitude to this issue.

4. I also made numerous brave attempts to deduce an explicit formula for Kähler coupling strength.
The general form of the formula is

1

αK
= klog(K2), K2 = p× 2× 3× 5..× 23 . (2.7.21)

The problem is the exact value of k cannot be known precisely and the guesses for is value depend
on what one means with number theoretical universality. Should Kähler action be a rational
number? Or is it Kähler function which is rational number (it is for the Dirac determinant
option in this particular case). Is Kähler coupling strength g2

K/4π or g2
K a rational number?

Some of the guesses were k = π/4 and k = 137/107. The facts that the value of Kähler action
for the line of a generalized diagram is not exactly CP2 action and the value of αK is not known
precisely makes these kind of attempts hopeless in absence of additional ideas.

Also other elementary particles -in particular exchanged bosons- should involve the exponent of
Kähler action for CP2 type vacuum extremal. Since the values of gauge couplings are gigantic as
compared to the expression of the gravitational constant the value of Kähler action must be rather
small form them. CP2 type vacuum extremals must be short in the sense that Lmin in the effective
metric is very short. Note however that the p-adic prime characterizing the particle according to
p-adic mass calculations would be large also now. One can of course ask whether this p-adic prime
characterizes the gravitational space-time sheets associated with the particle and not the particle
itself. The assignment of p-adic mass calculations with thermodynamics at gravitational space-time
sheets of the particle would be indeed natural. The value of αK would depend on p in logarithmic
manner for this option. The topological condensation of could also eat a lot of CP2 volume for them.

Eigenvalues of DC−S as vacuum expectations of Higgs field?

Infinite prime hypothesis implies the analog of p-adic length scale hypothesis but since pseudo-
momenta are in question, this need not correspond to the p-adic length scale hypothesis for the
actual masses justified by p-adic thermodynamics. Note also that Lmin does not correspond to CP2

length scale. This is actually not a problem since the effective metric is not M4 metric and one can
quite well consider the possibility that Lmin corresponds to CP2 length scale in the the induced metric.
The reason is that light-like 3- surface is in question the distance along the Kähler magnetic flux line
reduces essentially to a distance along the partonic 2-surface having size scale of order CP2 length for
the partonic 2-surfaces identified as wormhole throats. Therefore infinite prime can code for genuine
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p-adic length scales associated with the light-like 3-surface and quantum states would correspond by
number theoretical state function reduction hypothesis to single ordinary prime.

Support for this identification comes also from the expression of gravitational constant deduced
from p-adic length scale hypothesis. The result is that gravitational constant is assumed to be pro-
portional to have the expression G = L2

pexp(−2SK(CP2)), where p characterizes graviton or the
space-time sheet mediating gravitational interaction and exponent gives Kähler action for CP2 type
vacuum extremal representing graviton. The argument allows to identify the p-adic prime p = M127

associated with electron (largest Mersenne prime which does not correspond to super-astronomical
length scale) as the p-adic prime characterizing also graviton. The exponent of Kähler action is pro-
portional to 1/p which conforms with the general expression for Kähler function. I have considered
several identifications of the numerical factor and one of them has been as product of primes 2 ≤ p ≤ 23
assuming that somehow the primes {2, ..., 23, p} characterize graviton. This guess is indeed consistent
with the prediction of the infinite-prime hypothesis.

The first guess inspired by the p-adic mass calculations is that the squares λ2
i of the eigenvalues

of DC−S could correspond to the conformal weights of ground states. Another natural physical
interpretation of λ is as an analog of the Higgs vacuum expectation. The instability of the Higgs=0
phase would corresponds to the fact that λ = 0 mode is not localized to any region in which ew
magnetic field or induced Kähler field is non-vanishing. By the previous argument one would have
order of magnitude estimate h0 =

√
2π/Lmin.

1. The vacuum expectation value of Higgs is only proportional to the scale of λ. Indeed, Higgs
and gauge bosons as elementary particles correspond to wormhole contacts carrying fermion
and anti-fermion at the two wormhole throats and must be distinguished from the space-time
correlate of its vacuum expectation as something proportional to λ. For free fermions the vacuum
expectation value of Higgs does not seem to be even possible since free fermions do not correspond
to wormhole contacts between two space-time sheets but possess only single wormhole throat
(p-adic mass calculations are consistent with this). If fermion suffers topological condensation as
indeed assumed to do in interaction region, a wormhole contact is generated and makes possible
the generation of Higgs vacuum expectation value.

2. Physical considerations suggest that the vacuum expectation of Higgs field corresponds to a
particular eigenvalue λi of modified Chern-Simons Dirac operator so that the eigenvalues λi
would define TGD counterparts for the minima of Higgs potential. For the minimal option
one has only a finite number of pseudo-mass eigenvalues inversely proportional

√
p so that the

identification as a Higgs vacuum expectation is consistent with the p-adic length scale hypothesis.
Since the vacuum expectation of Higgs corresponds to a condensate of wormhole contacts giving
rise to a coherent state, the vacuum expectation cannot be present for topologically condensed
CP2 type vacuum extremals representing fermions since only single wormhole throat is involved.
This raises a hen-egg question about whether Higgs contributes to the mass or whether Higgs is
only a correlate for massivation having description using more profound concepts. From TGD
point of view the most elegant option is that Higgs does not give rise to mass but Higgs vacuum
expectation value accompanies bosonic states and is naturally proportional to λi. With this
interpretation λi could give a contribution to both fermionic and bosonic masses.

3. If the coset construction for super-symplectic and super Kac-Moody algebra implying Equiva-
lence Principle is accepted, one encounters what looks like a problem. p-Adic mass calculations
require negative ground state conformal weight compensated by Super Virasoro generators in
order to obtain massless states. The tachyonicity of the ground states would mean a close anal-
ogy with both string models and Higgs mechanism. λ2

i is very natural candidate for the ground
state conformal weights identified but would have wrong sign. Therefore it seems that λ2

i can
define only a deviation of the ground state conformal weight from negative value and is positive.

4. In accordance with this λ2
i would give constant contribution to the ground state conformal

weight. What contributes to the thermal mass squared is the deviation of the ground state
conformal weight from half-odd integer since the negative integer part of the total conformal
weight can be compensated by applying Virasoro generators to the ground state. The first
guess motivated by cyclotron energy analogy is that the lowest conformal weights are of form
hc = −n/2+λ2

i where the negative contribution comes from Super Virasoro representation. The
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negative integer part of the net conformal weight can be canceled using Super Virasoro generators
but ∆hc would give to mass squared a contribution analogous to Higgs contribution. The
mapping of the real ground state conformal weight to a p-adic number by canonical identification
involves some delicacies.

5. p-Adic mass calculations are consistent with the assumption that Higgs type contribution is
vanishing (that is small) for fermions and dominates for gauge bosons. This requires that the
deviation of λ2

i with smallest magnitude from half-odd integer value in the case of fermions is
considerably smaller than in the case of gauge bosons in the scale defined by p-adic mass scale
1/L(k) in question. Somehow this difference could relate to the fact that bosons correspond to
pairs of wormhole throats.

Is there a connection between p-adic thermodynamics, hierarchy of Planck constants,
and infinite primes

The following observations suggest that there might be an intrinsic connection between p-adic ther-
modynamics, hierarchy of Planck constants, and infinite primes.

1. p-Adic thermodynamics [K43] is based on string mass formula in which mass squared is pro-
portional to conformal weight having values which are integers apart from the contribution of
the conformal weight of vacuum which can be non-integer valued. The thermal expectation
in p-adic thermodynamics is obtained by replacing the Boltzman weight exp(−E/T ) of ordi-
nary thermodynamics with p-adic conformal weight pn/Tp , where n is the value of conformal
weight and 1/Tp = m is integer values inverse p-adic temperature. Apart from the ground state
contribution and scale factor p-adic mass squared is essentially the expectation value

〈n〉 =

∑
n g(n)np

n
Tp∑

n g(n)p
n
Tp

. (2.7.22)

g(n) denotes the degeneracy of a state with given conformal weight and depends only on the
number of tensor factors in the representations of Virasoro or Super-Virasoro algebra. p-Adic
mass squared is mapped to its real counterpart by canonical identification

∑
xnp

n →
∑
xnp

−n.

The real counterpart of p-adic thermodynamics is obtained by the replacement p
− n
Tp and gives

under certain additional assumptions in an excellent accuracy the same results as the p-adic
thermodynamics.

2. An intriguing observation is that one could interpret p-adic and real thermodynamics for mass
squared also in terms of number theoretic thermodynamics for the number theoretic momentum
log(pn) = nlog(p). The expectation value for this differs from the expression for 〈n〉 only by the
factor log(p).

3. In the proposed characterization of the partonic orbits in terms of infinite primes the primes
appearing in infinite prime are identified as p-adic primes. For minimal option the p-adic prime
characterizes

√
p- or p- multiple of the minimum length Lmin of braid strand in the effective

metric defined by modified Chern-Simons gamma matrice. One can consider also (
√
p)n and

pn (p-adic fractality)- and even integer multiples of Lmin if they are below Lmax. If light-like
3-surface contains vacuum regions arbitrary large p:s are possible since for these one has Lmin →
∞. Number theoretic state function reduction implies that only single p can be realized -one
might say ”is active”- for a given quantum state. The powers pni appearing in the infinite prime
have interpretation as many particle states with total number theoretic momentum nilog(p)i.
For the finite part of infinite prime one has one fermion and ni−1 bosons and for the bosonic part
ni bosons. The arithmetic QFT associated with infinite primes - in particular the conservation
of the number theoretic momentum

∑
nilog(pi) - would naturally describe the correlations

between the geometries of light-like 3-surfaces representing the incoming lines of the vertex of
generalized Feynman diagram. As a matter fact, the momenta associated with different primes
are separately conserved so that one has infinite number of conservation laws.
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4. One must assign two infinite primes to given partonic two surface so that one has for a given
prime p two integers n+ and n−. Also the hierarchy of Planck constants assigns to a given page
of the Big Book two integers and one has ~ = nanb~0. If one has na = n+ and nb = n− then
the reactions in which given initial number theoretic momenta n±,ilog(pi) is shared between
final states would have concrete interpretation in terms of the integers na, nb characterizing the
coverings of incoming and outgoing lines.

Note that one can also consider the possibility that the hierarchy of Planck constants emerges
from the basic quantum TGD. Basically due to the vacuum degeneracy of Kähler action the
canonical momentum densities correspond to several values of the time derivatives of the imbed-
ding space oordinates so that for a given partonic 2-surface there are several space-time sheets
with same conserved quantities defined by isometry currents and Kähler current. This forces the
introduction of N -fold covering of CD × CP2 in order to describe the situation. The splitting
of the partonic 2-surface into N pieces implies a charge fractionization during its travel to the
upper end of CD. One can also develop an argument suggesting that the coverings factorize to
coverings of CD and CP2 so that the number of the sheets of the covering is N = nanb [K36] .

These observations make one wonder whether there could be a connection between p-adic thermo-
dynamics, hierarchy of Planck constants, and infinite primes.

1. Suppose that one accepts the identification na = n+ and nb = n−. Could one perform a
further identification of these integers as non-negative conformal weights characterizing physical
states so that conservation of the number theoretic momentum for a given p-adic prime would
correspond to the conservation of conformal weight. In p-adic thermodynamics this conformal
weight is sum of conformal weights of 5 tensor factors of Super-Virasoro algebra. The number
must be indeed five and one could assign them to the factors of the symmetry group. One factor
for color symmetries and two factors of electro-weak SU(2)L × U(1) are certainly present. The
remaining two factors could correspond to transversal degrees of freedom assignable to string
like objects but one can imagine also other identifications [K43] .

2. If this interpretation is correct, a given conformal weight n = na = n+ (say) would correspond
to all possible distributions of five conformal weights ni, i = 1, ..., 5 between the na sheets of
covering of CD satisfying

∑5
i=1 ni = na = n+. Single sheet of covering would carry only unit

conformal weight so that one would have the analog of fractionization also now and a possible
interpretation would be in terms of the instability of states with conformal weight n > 1.
Conformal thermodynamics would also mean thermodynamics in the space of states determined
by infinite primes and in the space of coverings.

3. The conformal weight assignable to the CD would naturally correspond to mass squared but
there is also the conformal weight assignable to CP2 and one can wonder what its interpretation
might be. Could it correspond to the expectation of pseudo mass squared characterizing the
generalized eigenstates of the modified Dirac operator? Note that one should allow in the
spectrum also the powers of hyper-complex primes up to some maximum power pnmax/2 ≤
Lmax/Lmin so that Dirac determinant would be non-vanishing and Kähler function finite. From
the point of conformal invariance this is indeed natural.

2.8 An attempt to understand preferred extremals of Kähler
action

There are pressing motivations for understanding the preferred extremals of Kähler action. For in-
stance, the conformal invariance of string models naturally generalizes to 4-D invariance defined by
quantum Yangian of quantum affine algebra (Kac-Moody type algebra) characterized by two complex
coordinates and therefore explaining naturally the effective 2-dimensionality [K87]. The problem is
however how to assign a complex coordinate with the string world sheet having Minkowskian signature
of metric. One can hope that the understanding of preferred extremals could allow to identify two
preferred complex coordinates whose existence is also suggested by number theoretical vision giving
preferred role for the rational points of partonic 2-surfaces in preferred coordinates. The best one
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could hope is a general solution of field equations in accordance with the hints that TGD is integrable
quantum theory.

A lot is is known about properties of preferred extremals and just by trying to integrate all this
understanding, one might gain new visions. The problem is that all these arguments are heuristic
and rely heavily on physical intuition. The following considerations relate to the space-time regions
having Minkowskian signature of the induced metric. The attempt to generalize the construction also
to Euclidian regions could be very rewarding. Only a humble attempt to combine various ideas to a
more coherent picture is in question.

The core observations and visions are following.

1. Hamilton-Jacobi coordinates for M4 (discussed in this chapter) define natural preferred coordi-
nates for Minkowskian space-time sheet and might allow to identify string world sheets for X4

as those for M4. Hamilton-Jacobi coordinates consist of light-like coordinate m and its dual
defining local 2-plane M2 ⊂M4 and complex transversal complex coordinates (w,w) for a plane
E2
x orthogonal to M2

x at each point of M4. Clearly, hyper-complex analyticity and complex
analyticity are in question.

2. Space-time sheets allow a slicing by string world sheets (partonic 2-surfaces) labelled by partonic
2-surfaces (string world sheets).

3. The quaternionic planes of octonion space containing preferred hyper-complex plane are labelled
by CP2, which might be called CPmod2 [K74]. The identification CP2 = CPmod2 motivates the
notion of M8 −−M4 × CP2 duality [K20]. It also inspires a concrete solution ansatz assuming
the equivalence of two different identifications of the quaternionic tangent space of the space-
time sheet and implying that string world sheets can be regarded as strings in the 6-D coset
space G2/SU(3). The group G2 of octonion automorphisms has already earlier appeared in
TGD framework.

4. The duality between partonic 2-surfaces and string world sheets in turn suggests that the CP2 =
CPmod2 conditions reduce to string model for partonic 2-surfaces in CP2 = SU(3)/U(2). String
model in both cases could mean just hypercomplex/complex analyticity for the coordinates of
the coset space as functions of hyper-complex/complex coordinate of string world sheet/partonic
2-surface.

The considerations of this section lead to a revival of an old very ambitious and very romantic
number theoretic idea.

1. To begin with express octonions in the form o = q1 + Iq2, where qi is quaternion and I is an
octonionic imaginary unit in the complement of fixed a quaternionic sub-space of octonions. Map
preferred coordinates of H = M4 × CP2 to octonionic coordinate, form an arbitrary octonion
analytic function having expansion with real Taylor or Laurent coefficients to avoid problems
due to non-commutativity and non-associativity. Map the outcome to a point of H to get a
map H → H. This procedure is nothing but a generalization of Wick rotation to get an 8-D
generalization of analytic map.

2. Identify the preferred extremals of Kähler action as surfaces obtained by requiring the vanishing
of the imaginary part of an octonion analytic function. Partonic 2-surfaces and string world
sheets would correspond to commutative sub-manifolds of the space-time surface and of imbed-
ding space and would emerge naturally. The ends of braid strands at partonic 2-surface would
naturally correspond to the poles of the octonion analytic functions. This would mean a huge
generalization of conformal invariance of string models to octonionic conformal invariance and
an exact solution of the field equations of TGD and presumably of quantum TGD itself.

2.8.1 Basic ideas about preferred extremals

The slicing of the space-time sheet by partonic 2-surfaces and string world sheets

The basic vision is that space-time sheets are sliced by partonic 2-surfaces and string world sheets.
The challenge is to formulate this more precisely at the level of the preferred extremals of Kähler
action.
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1. Almost topological QFT property means that the Kähler action reduces to Chern-Simons terms
assignable to 3-surfaces. This is guaranteed by the vanishing of the Coulomb term in the action
density implied automatically if conserved Kähler current is proportional to the instanton current
with proportionality coefficient some scalar function.

2. The field equations reduce to the conservation of isometry currents. An attractive ansatz is that
the flow lines of these currents define global coordinates. This means that these currents are
Beltrami flows [B52] so that corresponding 1-forms J satisfy the condition J ∧ dJ = 0. These
conditions are satisfied if

J = Φ∇Ψ

hold true for conserved currents. From this one obtains that Ψ defines global coordinate varying
along flow lines of J .

3. A possible interpretation is in terms of local polarization and momentum directions defined by
the scalar functions involved and natural additional conditions are that the gradients of Ψ and
Φ are orthogonal:

∇Φ · ∇Ψ = 0 ,

and that the Ψ satisfies massless d’Alembert equation

∇2Ψ = 0

as a consequence of current conservation. If Ψ defines a light-like vector field - in other words

∇Ψ · ∇Ψ = 0 ,

the light-like dual of Φ -call it Φc- defines a light-like like coordinate and Φ and Φc defines a
light-like plane at each point of space-time sheet.

If also Φ satisfies d’Alembert equation

∇2Φ = 0 ,

also the current

K = Ψ∇Φ

is conserved and its flow lines define a global coordinate in the polarization plane orthogonal to
time-lik plane defined by local light-like momentum direction.

If Φ allows a contination to an analytic function of the transversal complex coordinate, one
obtains a coordinatization of spacetime surface by Ψ and its dual (defining hyper-complex co-
ordinate) and w,w. Complex analyticity and its hyper-complex variant would allow to provide
space-time surface with four coordinates very much analogous with Hamilton-Jacobi coordinates
of M4.

This would mean a decomposition of the tangent space of space-time surface to orthogonal
planes defined by light-like momentum and plane orthogonal to it. If the flow lines of J defined
Beltrami flow it seems that the distribution of momentum planes is integrable.

4. General arguments suggest that the space-time sheets allow a slicing by string world sheets
parametrized by partonic 2-surfaces or vice versa. This would mean a intimate connection with
the mathematics of string models. The two complex coordinates assignable to the Yangian of
affine algebra would naturally relate to string world sheets and partonic 2-surfaces and the highly
non-trivial challenge is to identify them appropriately.
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Hamilton-Jacobi coordinates for M4

The earlier attempts to construct preferred extremals [K8] led to the realization that so called
Hamilton-Jacobi coordinates (m,w) for M4 define its slicing by string world sheets parametrized by
partonic 2-surfaces. m would be pair of light-like conjugate coordinates associated with an integrable
distribution of planes M2 and w would define a complex coordinate for the integrable distribution of
2-planes E2 orthogonal to M2. There is a great temptation to assume that these coordinates define
prefered coorinates for M4.

1. The slicing is very much analogous to that for space-time sheets and the natural question is how
these slicings relate. What is of special interest is that the momentum plane M2 can be defined
by massless momentum. The scaling of this vector does not matter so that these planes are
labelled by points z of sphere S2 telling the direction of the line M2 ∩E3, when one assigns rest
frame and therefore S2 with the preferred time coordinate defined by the line connecting the tips
of CD. This direction vector can be mapped to a twistor consisting of a spinor and its conjugate.
The complex scalings of the twistor (u, u)→ λu, u/λ) define the same plane. Projective twistor
like entities defining CP1 having only one complex component instead of three are in question.
This complex number defines with certain prerequisites a local coordinate for space-time sheet
and together with the complex coordinate of E2 could serve as a pair of complex coordinates
(z, w) for space-time sheet. This brings strongly in mind the two complex coordinates appearing
in the expansion of the generators of quantum Yangian of quantum affine algebra [K87].

2. The coordinate Ψ appearing in Beltrami flow defines the light-like vector field defining M2

distribution. Its hyper-complex conjugate would define Ψc and conjugate light-like direction.
An attractive possibility is that Φ allows analytic continuation to a holomorphic function of w.
In this manner one would have four coordinates for M4 also for space-time sheet.

3. The general vision is that at each point of space-time surface one can decompose the tangent
space to M2(x) ⊂ M4 = M2

x × E2
x representing momentum plane and polarization plane E2 ⊂

E2
x × T (CP2). The moduli space of planes E2 ⊂ E6 is 8-dimensional and parametrized by

SO(6)/SO(2)× SO(4) for a given E2
x. How can one achieve this selection and what conditions

it must satisfy? Certainly the choice must be integrable but this is not the only condition.

Space-time surfaces as quaternionic surfaces

The idea that number theory determines classical dynamics in terms of associativity condition means
that space-time surfaces are in some sense quaternionic surfaces of an octonionic space-time. It took
several trials before the recent form of this hypothesis was achieved.

1. Octonionic structure is defined in terms of the octonionic representaton of gamma matrices
of the imbedding space existing only in dimension D = 8 since octonion units are in one-one
correspondence with tangent vectors of the tangent space. Octonionic real unit corresponds to
a preferred time axes (and rest frame) identified naturally as that connecting the tips of CD.
What modified gamma matrices mean depends on variational principle for space-time surface.
For volume action one would obtain induced gamma matrices. For Kähler action one obtains
something different. In particular, the modified gamma matrices do not define vector basis
identical with tangent vector basis of space-time surface.

2. Quaternionicity means that the modified gamma matrices defined as contractions of gamma
matrices of H with canonical momentum densities for Kähler action span quaternionic sub-
space of the octonionic tangent space [K28]. A further condition is that each quaternionic space
defined in this manner contains a preferred hyper-complex subspace of octonions.

3. The sub-space defined by the modified gamma matrices does not co-incide with the tangent
space of space-time surface in general so that the interpretation of this condition is far from
obvious. The canonical momentum densities need not define four independent vectors at given
point. For instance, for massless extremals these densities are proportional to light-like vector
so that the situation is degenerate and the space in question reduces to 2-D hyper-complex
sub-space since light-like vector defines plane M2.



136 Chapter 2. Basic Extremals of the Kähler Action

The obvious questions are following.

1. Does the analog of tangent space defined by the octonionic modified gammas contain the local
tangent space M2 ⊂ M4 for preferred extremals? For massless extremals [K8] this condition
would be true. The orthogonal decomposition T (X4) = M2⊕⊥E2 can be defined at each point
if this is true. For massless extremals also the functions Ψ and Φ can be identified.

2. One should answer also the following delicate question. Can M2 really depend on point x of
space-time? CP2 as a moduli space of quaternionic planes emerges naturally if M2 is same
everywhere. It however seems that one should allow an integrable distribution of M2

x such that
M2
x is same for all points of a given partonic 2-surface.

How could one speak about fixed CP2 (the imbedding space) at the entire space-time sheet even
when M2

x varies?

(a) Note first that G2 defines the Lie group of octonionic automorphisms and G2 action is
needed to change the preferred hyper-octonionic sub-space. Various SU(3) subgroups of
G2 are related by G2 automorphism. Clearly, one must assign to each point of a string
world sheet in the slicing parameterizing the partonic 2-surfaces an element of G2. One
would have Minkowskian string model with G2 as a target space. As a matter fact, this
string model is defined in the target space G2/SU(3) having dimension D = 6 since SU(3)
automorphisms leave given SU(3) invariant.

(b) This would allow to identify at each point of the string world sheet standard quaternionic
basis - say in terms of complexified basis vectors consisting of two hyper-complex units and
octonionic unit q1 with ”color isospin” I3 = 1/2 and ”color hypercharge” Y = −1/3 and
its conjugate q1 with opposite color isospin and hypercharge.

(c) The CP2 point assigned with the quaternionic basis would correspond to the SU(3) rotation
needed to rotate the standard basis to this basis and would actually correspond to the first
row of SU(3) rotation matrix. Hyper-complex analyticity is the basic property of the
solutions of the field equations representing Minkowskian string world sheets. Also now the
same assumption is highly natural. In the case of string models in Minkowski space, the
reduction of the induced metric to standard form implies Virasoro conditions and similar
conditions are expected also now. There is no need to introduce action principle -just the
hyper-complex analycitity is enough-since Kähler action already defines it.

3. The WZW model inspired approach to the situation would be following. The parametrization
corresponds to a map g : X2 → G2 for which g defines a flat G2 connection at string world sheet.
WZW type action would give rise to this kind of situation. The transition G2 → G2/SU(3)
would require that one gauges SU(3) degrees of freedom by bringing in SU(3) connection.
Similar procedure for CP2 = SU(3)/U(2) would bring in SU(3) valued chiral field and U(2)
gauge field. Instead of introducing these connections one can simply introduce G2/SU(3) and
SU(3)/U(2) valued chiral fields. What this observation suggests that this ansatz indeed predicts
gluons and electroweak gauge bosons assignable to string like objects so that the mathematical
picture would be consistent with physical intuition.

The two interpretations of CP2

An old observation very relevant for what I have called M8−H duality [K20] is that the moduli space
of quaternionic sub-spaces of octonionic space (identifiable as M8) containing preferred hyper-complex
plane is CP2. Or equivalently, the space of two planes whose addition extends hyper-complex plane to
some quaternionic subspace can be parametrized by CP2. This CP2 can be called it CPmod2 to avoid
confusion. In the recent case this would mean that the space E2(x) ⊂ E2

x × T (CP2) is represented by
a point of CPmod2 . On the other hand, the imbedding of space-time surface to H defines a point of
”real” CP2. This gives two different CP2s.

1. The highly suggestive idea is that the identification CPmod2 = CP2 (apart from isometry) is
crucial for the construction of preferred extremals. Indeed, the projection of the space-time
point to CP2 would fix the local polarization plane completely. This condition for E2(x) would

http://en.wikipedia.org/wiki/G2_(mathematics)
http://en.wikipedia.org/wiki/WZW_model
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be purely local and depend on the values of CP2 coordinates only. Second condition for E2(x)
would involve the gradients of imbedding space coordinates including those of CP2 coordinates.

2. The conditions that the planes M2
x form an integrable distribution at space-like level and that

M2
x is determined by the modified gamma matrices. The integrability of this distribution for

M4 could imply the integrability for X2. X4 would differ from M4 only by a deformation in
degrees of freedom transversal to the string world sheets defined by the distribution of M2s.

Does this mean that one can begin from vacuum extremal with constant values of CP2 coordi-
nates and makes them non-constant but allows to depend only on transversal degrees of freedom?
This condition is too strong even for simplest massless extremals for which CP2 coordinates de-
pend on transversal coorinates defined by ε ·m and ε · k. One could however allow dependence
of CP2 coordinates on light-like M4 coordinate since the modification of the induced metric is
light-like so that light-like coordinate remains light-like coordinate in this modification of the
metric.

Therefore, if one generalizes directly what is known about massless extremals, the most general
dependence of CP2 points on the light-like coordinates assignable to the distribution of M2

x

would be dependence on either of the light-like coordinates of Hamilton-Jacobi coordinates but
not both.

2.8.2 What could be the construction recipe for the preferred extremals
assuming CP2 = CPmod

2 identification?

The crucial condition is that the planes E2(x) determined by the point of CP2 = CPmod2 identification
and by the tangent space of E2

x × CP2 are same. The challenge is to transform this condition to an
explicit form. CP2 = CPmod2 identification should be general coordinate invariant. This requires that
also the representation of E2 as (e2, e3) plane is general coordinate invariant suggesting that the use
of preferred CP2 coordinates -presumably complex Eguchi-Hanson coordinates- could make life easy.
Preferred coordinates are also suggested by number theoretical vision. A careful consideration of the
situation would be required.

The modified gamma matrices define a quaternionic sub-space analogous to tangent space of X4

but not in general identical with the tangent space: this would be the case only if the action were
4-volume. I will use the notation Tmx (X4) about the modified tangent space and call the vectors of
Tmx (X4) modified tangent vectors. I hope that this would not cause confusion.

CP2 = CPmod2 condition

Quaternionic property of the counterpart of Tmx (X4) allows an explicit formulation using the tangent
vectors of Tmx (X4).

1. The unit vector pair (e2, e3) should correspond to a unique tangent vector of H defined by
the coordinate differentials dhk in some natural coordinates used. Complex Eguchi-Hanson
coordinates [L1] are a natural candidate for CP2 and require complexified octonionic imaginary
units. If octonionic units correspond to the tangent vector basis of H uniquely, this is possible.

2. The pair (e2, e3) as also its complexification (q1 = e2 + ie3, q1 = e2 − ie3) is expressible as a
linear combination of octonionic units I2, ...I7 should be mapped to a point of CPmod2 = CP2

in canonical manner. This mapping is what should be expressed explicitly. One should express
given (e2, e3) in terms of SU(3) rotation applied to a standard vector. After that one should
define the corresponding CP2 point by the bundle projection SU(3)→ CP2.

3. The tangent vector pair

(∂wh
k, ∂wh

k)

defines second representation of the tangent space of E2(x). This pair should be equivalent with
the pair (q1, q1). Here one must be however very cautious with the choice of coordinates. If the
choice of w is unique apart from constant the gradients should be unique. One can use also real
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coordinates (x, y) instead of (w = x+ iy, w = x− iy) and the pair (e2, e3). One can project the
tangent vector pair to the standard vielbein basis which must correspond to the octonioni basis

(∂xh
k, ∂yh

k)→ (∂xh
keAk eA, ∂yh

keAk )eA)↔ (e2, e3) ,

where the eA denote the octonion units in 1-1 correspondence with vielbein vectors. This
expression can be compared to the expression of (e2, e3) derived from the knowledge of CP2

projection.

Formulation of quaternionicity condition in terms of octonionic structure constants

One can consider also a formulation of the quaternionic tangent planes in terms of (e2, e3) expressed
in terms of octonionic units deducible from the condition that unit vectors obey quaternionic algebra.
The expressions for octonionic resp. quaternionic structure constants can be found at [A30] resp. [A40].

1. The ansatz is

{Ek} = {1, I1, E2, E3} ,

E2 = E2ke
k ≡

7∑
k=2

E2ke
k , E3 = E3ke

k ≡
7∑
k=2

E3ke
k ,

|E2| = 1 , |E3| = 1 . (2.8.1)

2. The multiplication table for octonionic units expressible in terms of octonionic triangle [A30]
gives

f1klE2k = E3l , f1klE3k = −E2l , fklrE2kE3l = δr1 . (2.8.2)

Here the indices are raised by unit metric so that there is no difference between lower and upper
indices. Summation convention is assumed. Also the contribution of the real unit is present in
the structure constants of third equation but this contribution must vanish.

3. The conditions are linear and quadratic in the coefficients E2k and E3k and are expected to
allow an explicit solution. The first two conditions define homogenous equations which must
allow solution. The coefficient matrix acting on (E2, E3) is of the form

(
f1 1
−1 f1

)
,

where 1 denotes unit matrix. The vanishing of the determinant of this matrix should be due to
the highly symmetric properties of the structure constants. In fact the equations can be written
as eigen conditions

f1 ◦ (E2 ± iE3) = ∓i(E2 ± iE3) ,

and one can say that the structure constants are eigenstates of the hermitian operator defined
by I1 analogous to color hyper charge. Both values of color hyper charged are obtained.

http://en.wikipedia.org/wiki/Octonion
http://en.wikipedia.org/wiki/Quaternions
http://en.wikipedia.org/wiki/Octonion
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Explicit expression for the CP2 = CPmod2 conditions

The symmetry under SU(3) allows to construct the solutions of the above equations directly.

1. One can introduce complexified basis of octonion units transforming like (1, 1, 3, 3) under SU(3).
Note the analogy of triplet with color triplet of quarks. One can write complexified basis as
(1, e1, (q1, q2, q3), (q1q2, q3)). The expressions for complexified basis elements are

(q1, q2, q3) =
1√
2

(e2 + ie3, e4 + ie5, e6 + ie7) .

These options can be seen to be possible by studying octonionic triangle in which all lines
containing 3 units defined associative triple: any pair of octonion units at this kind o fline can
be used to form pair of complexified unit and its conjugate. In the tangent space of M4 × CP2

the basis vectors q1, and q2 are mixtures of E2
x and CP2 tangent vectors. q3 involves only CP2

tangent vectors and there is a temptation to interpret it as the analog of the quark having no
color isospin.

2. The quaternionic basis is real and must transform like (1, 1, q1, q1), where q1 is any quark in
the triplet and q1 its conjugate in antitriplet. Having fixed some basis one can perform SU(3)
rotations to get a new basis. The action of the rotation is by 3× 3 special unitary matrix. The
over all phases of its rows do not matter since they induce only a rotation in (e2, e3) plane not
affecting the plane itself. The action of SU(3) on q1 is simply the action of its first row on
(q1, q2, q3) triplet:

q1 → (Uq)1 = U11q1 + U12q2 + U13q3 ≡ z1q1 + z2q2 + z3q3

= z1(e2 + ie3) + z2(e4 + ie5) + z3(e6 + ie7) . (2.8.3)

The triplets (z1, z2, z3) defining a complex unit vector and point of S5. Since overall phase does
not matter a point of CP2 is in question. The new real octonion units are given by the formulas

e2 → Re(z1)e2 +Re(z2)e4 +Re(z3)e6 − Im(z1)e3 − Im(z2)e5 − Im(z3)e7 ,

e3 → Im(z1)e2 + Im(z2)e4 + Im(z3)e6 +Re(z1)e3 +Re(z2)e5 +Re(z3)e7 .

(2.8.4)

For instance the CP2 coordinates corresponding to the coordinate patch (z1, z2, z3) with z3 6= 0
are obtained as (ξ1, ξ2) = (z1/z3, z2/z3).

Using these expressions the equations expressing the conjecture CP2 = CPmod2 equivalence can be
expressed explicitly as first order differential equations. The conditions state the equivalence

(e2, e3) ↔ (∂xh
keAk eA, ∂yh

keAk eA) , (2.8.5)

where eA denote octonion units. The comparison of two pairs of vectors requires normalization of the
tangent vectors on the right hand side to unit vectors so that one takes unit vector in the direction of
the tangent vector. After this the vectors can be equated. This allows to expresses the contractions
of the partial derivatives with vielbein vectors with the 6 components of e2 and e3. Each condition
gives 6+6 first order partial differential equations which are non-linear by the presence of the overal
normalization factor for the right hand side. The equations are invariant under scalings of (x, y). The
very special form of these equations suggests that some symmetry is involved.

It must be emphasized that these equations make sense only in preferred coordinates: ordinary
Minkowski coordinates and Hamiltonin-Jacobi coordinates for M4 and Eguchi-Hanson complex co-
ordinates in which SU(2) × U(1) is represented linearly for CP2. These coordinates are preferred
because they carry deep physical meaning.

http://en.wikipedia.org/wiki/Octonion
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Does TGD boil down to two string models?

It is good to look what have we obtained. Besides Hamilton-Jacobi conditions, and CP2 = CPmod2

conditions one has what one might call string model with 6-dimensional G2/SU(3) as targent space.
The orbit of string in G2/SU(3) allows to deduce the G2 rotation identifiable as a point of G2/SU(3)
defining what one means with standard quaternionic plane at given point of string world sheet. The
hypothesis is that hyper-complex analyticity solves these equations.

The conjectured electric-magnetic duality implies duality between string world sheet and partonic
2-surfaces central for the proposed mathematical applications of TGD [K37, K38, K72, K88]. This
duality suggests that the solutions to the CP2 = CPmod2 conditions could reduce to holomorphy
with respect to the coordinate w for partonic 2-surface plus the analogs of Virasoro conditions. The
dependence on light-like coordinate would appear as a parametric dependence.

If this were the case, TGD would reduce at least partially to what might be regaded as dual
string models in G2/SU(3) and SU(3)/U(2) and also to string model in M4 and X4! In the previous
arguments one ends up to string models in moduli spaces of string world sheets and partonic 2-surfaces.
TGD seems to yield an inflation of string models! This not actually surprising since the slicing of
space-time sheets by string world sheets and partonic 2-surfaces implies automatically various kinds
of maps having interpretation in terms of string orbits.

2.8.3 Could octonion analyticity solve the field equations?

The interesting question is what happens in the space-time regions with Euclidian signature of induced
metric. In this case it is not possible to introduce light-like plane at each point of the space-time
sheet. Nothing however prevents from applying the above described procedure to construct conserved
currents whose flow lines define global coordinates. In both cases analytic continuation allows to
extend the coordinates to complex coordinates. Therefore one would have two complex functions
satisfying Laplace equation and having orthogonal gradients.

1. When CP2 projection is 4-dimensional, there is strong temptation to assume that these functions
could be reduced to complex CP2 coordinates analogous to the Hamilton-Jacobi coordinates for
M4. Complex Eguchi-Hanson coordinates transforming linearly under U(2) ⊂ SU(3) define the
simplest candidates in this respect. Laplace-equations are satisfied utomatically since holomor-
phic functions are in question. The gradients are also orthogonal automatically since the metric
is Kähler metric. Note however that one could argue that in innner product the conjugate of
the function appears. Any holomorphic map defines new coordinates of this kind. Note that the
maps need not be globally holomorphic since CP2 projection of space-time sheet need not cover
the entire CP2.

2. For string like objects X4 = X2 × Y 2 ⊂ M4 × CP2 with Minkowskian signature of the metric
the coordinate pair would be hyper-complex coordinate in M4 and complex coordinate in CP2.
If X2 has Euclidian signature of induced metric the coordinate in question would be complex
coordinate. The proposal in the case of CP2 allows all holomorphic functions of the complex
coordinates.

There is an objection against this construction. There should be a symmetry between M4 and
CP2 but this is not the case. Therefore this picture cannot be quite correct.

Could the construction of new preferred coordinates by holomorphic maps generalize as electic-
magnetic duality suggests? One can imagine several options, which bring in mind old ideas that what
I have christened as ”romantic stuff” [K74].

1. Should one generalize the holomorphic map to a quaternion analytic map with real Taylor
coefficients so that non-commutativity would not produce problems. One would map first M4

coordinates to quaternions, map these coordinates to new ones by quaternion analytic map
defined by a Taylor or even Laurnte expansion with real coefficients, and then map the resulting
quaternion valued coordinate back to hyper-quaternion defining four coordinates as fuctions in
M4. This procedure would be very much analogous to Wick rotation used in quantum field
theories. Similar quaternion analytic map be applied also in CP2 degrees of freedom followed
by the map of the quaternion to two complex numbers. This would give additional constraints
on the map. This option could be seen as a quaternionic generalization of conformal invariance.
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The problem is that one decouples M4 and CP2 degrees of freedom completely. These degrees
are however coupled in the proposed construction since the E2(x) corresponds to subspace of
E2
x × T (CP2). Something goes still wrong.

2. This motivates to imagine even more ambitious and even more romantic option realizing the
original idea about octonionic generalization of conformal invariance. Assume linear M4 ×CP2

coordinates (Eguchi-Hanson coordinates transforming linearly under U(2) in the case of CP2).
Map these to octonionic coordinate h. Map the octonionic coordinate to itself by an octo-
nionic analytic map defined by Taylor or even Laurent series with real coefficients so that non-
commutativity and non-associativity do not cause troubles. Map the resulting octonion valued
coordinates back to ordinary H-coordinates and expressible as functions of original coordinates.

It must be emphasized that this would be nothing but a generalization of Wick rotation and its
inverse used routinely in quantum field theories in order to define loop integrals.

Could octonion real-analyticity make sense?

Suppose that one -for a fleeting moment- takes octonionic analyticity seriously. For space-time surfaces
themselves one should have in some sense quaternionic variant of conformal invariance. What does
this mean?

1. Could one regard space-time surfaces analogous to the curves at which the imaginary part of
analytic function of complex argument vanishes so that complex analyticity reduces to real
analyticity. One can indeed divide octonion to quaternion and its imaginary part to give o =
q1 + Iq2: q1 and q2 are quaternionis and I is octonionic imaginary unit in the complement of
the quaternionic sub-space. This decomposition actually appears in the standard construction
of octonions. Therefore 4-dimensional surfaces at which the imaginary part of octonion valued
function vanishes make sense and defined in well-defined sense quaternionic 4-surfaces.

This kind of definition would be in nice accord with the vision about physics as algebraic geome-
try. Now the algebraic geometry would be extended from complex realm to the octonionic realm
since quaternionic surfaces/string world sheets could be regarded as associative/commutative
sub-algebras of the algebra of the octionic real-analytic functions.

2. Could these surfaces correspond to quaternionic 4-surfaces defined in terms of the modified
gamma matrices or induced gamma matrices? Contrary to the original expectations it will be
found that only induced gamma matrices is a plausible option. This would be an enormous
simplification and would mean that the theory is exactly solvable in the same sense as string
models are: complex analyticity would be replaced with octonion analyticity. I have considered
this option in several variants using the notion of real octonion analyticity [K74] but have not
managed to build any satisfactory scenario.

3. Hyper-complex and complex conformal symmetries would result by a restriction to hyper-
complex resp. complex sub-manifods of the imbedding space defined by string world sheets resp.
partonic 2-surfaces. The principle forcing this restriction would be commutativity. Yangian of
an affine algebra would unify these views to single coherent view [K87].

4-D n-point functions of the theory should result from the restriction on partonic 2-surfaces or
string world sheets with arguments of n-point functions identified as the ends of braid strands
so that a kind of analytic continuation from 2-D to the 4-D case would be in question. The
octonionic conformal invariance would be induced by the ordinary conformal invariance in ac-
cordance with strong form of General Coordinate Invariance.

4. This algebraic continuation of the ordinary conformal invariance could help to construct also
the representations of Yangians of affine Kac-Moody type algebras. For the Yangian symmetry
of 1+1 D integrable QFTs the charges are multilocal involving multiple integrals over ordered
multiple points of 1-D space. I

In the recent case multiple 1-D space is replaced with a space-like 3-surface at the light-like end
of CD. The point of the 1-D space appearing in the multiple integral are replaced by a partonic
2-surface represented by a collection of punctures. There is a strong temptation to assume
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that the intermediate points on the line correspond to genuine physical particles and therefore
to partonic 2-surfaces at which the signature of the induced metric changes. If so, the 1-D
space would correspond to a closed curve connecting punctures of different partonic 2-surfaces
representing physical particles and ordered along a loop. The integral over multiple points would
correspond to an integral over WCW rather than over fixed back-ground space-time.

1-D space would be replaced with a closed curve going through punctures of a subset of partonic
2-surfaces associated with a space-like 3-surface. If a given partonic surface or a given puncture
can contribute only once to the multiple integral the multi-locality is bounded from above and
only a finite number of Yangian generators are obtained in this manner unless one allows the
number of partonic 2-surfaces and of punctures for them to vary. This variation is physically
natural and would correspond to generation of particle pairs by vacuum polarization. Although
only punctures would contribute, the Yangian charges would be defined in WCW rather than
in fixed space-time. Integral over positions of punctures and possible numbers of them would
be actually an integral over WCW. 2-D modular invariance of Yangian charges for the partonic
2-surfaces is a natural constraint.

The question is whether some conformal fields at the punctures of the partonic 2-surfaces ap-
pearing in the multiple integral define the basic building bricks of the conserved quantum charges
representing the multilocal generators of the Yangian algebra? Note that Wick rotation would
be involved.

What Wick rotation could mean?

Second definition of quaternionicity is on more shaky basis and motivated by the solutions of 2-
D Laplace equation: quaternionic space-time surfaces would be obtained as zero loci of octonion
real–analytic functions. Unfortunately octonion real–analyticity does not make sense in Minkowskian
signature.

One could understand octonion real-analyticity in Minkowskian signature if one could understand
the deeper meaning of Wick rotation. Octonion real analyticity formulated as a condition for the
vanishing of the imaginary part of octonion real-analytic function makes sense for in octonionic co-
ordinates for E4 × CP2 with Euclidian signature of metric. M4 × CP2 is however only a subspace
of complexified octonions and not closed with respect to multiplication so that octonion real-analytic
functions do not make sense in M4 × CP2 . Wick rotation should transform the solution candidate
defined by an octonion real-analytic function to that defined in M4 × CP2. A natural additional
condition is that Wick rotation should reduce to that taking M2 ⊂M4 to E2 ⊂ E4.

The following trivial observation made in the construction of Hamilton-Jacobi structure in M4

with Minkowskian signature of the induced metric (see the appendix of [K92]) as a Wick rotation of
Hermitian structure in E4 might help here.

1. The components of the metric of E2 in complex coordinates (z, z) for E2 are given by gww = −1
whereas the metric of M2 in light-like coordinates (u = x+t, v = x−t) is given by guv = −1. The
metric is same and M2 and E2 correspond only to different interpretations for the coordinates!
One could say that M4 × CP2 and E4 × CP2 have same metric tensor, Kähler structure, and
spinor structure. Since only these appear in field equations, one could hope that the solutions
of field equations in M4×CP2 and E4×CP2 are obtained by Wick rotation. This for preferred
extremals at least and if the field equations reduce to purely algebraic ones.

2. If one accepts the proposed construction of preferred extremals of Kähler action discussed in
[K92], the field equations indeed reduce to purely algebraic conditions satisfied if space-time
surface possesses Hermitian structure in the case of Euclidian signature of the induced metric
and Hamilton-Jacobi structure in the case of Minkowskian signature. Just as in the case of
minimal surfaces, energy momentum tensor and second fundamental form have no common
non-vanishing components. The algebraization requires as a consistency condition Einstein’s
equations with a cosmological term. Gravitational constant and cosmological constant follow as
predictions.

3. If Wick rotation in the replacement of E2 coordinates (z, z) with M2 coordinates (u, v) makes
sense, one can hope that field equations for the preferred extremals hold true also for a Wick
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rotated surfaces obtained by mapping M2 ⊂M4 to E2 ⊂ E4. Also Einstein’s equations should
be satisfied by the Wick rotated metric with Euclidian signature.

4. Wick rotation makes sense also for the surfaces defined by the vanishing of the imaginary part
(complementary to quaternionic part) of octonion real-analytic function. Therefore one can hope
that this ansatz could work. Wick rotation is non-trivial geometrically. For instance, light-like
lines v = 0 of hyper-complex plane M2 are taken to z = 0 defining a point of complex plane E2.
Note that non-invertible hyper-complex numbers correspond to the two light-like lines u = 0
and v = 0 whereas non-invertible complex numbers correspond to the origin of E2.

5. If the conjecture holds true, one can apply to both factors in E4 = E2×E2 and to get preferred
extremals in M2,2 ×CP2. Minkowski space M2,2 is essential in twistor approach and the possi-
bility to carry out Wick rotation for preferred extremals could justify Wick rotation in quantum
theory.

What the non-triviality of the moduli space of the octonionic structures means?

The moduli space G2 of the octonionic structures is essentially the Galois group defined as maps of
octonions to itself respecting octonionic sum and multiplication. This raises the question whether
octonion analyticity should be generalized in such a manner that the global choice of the octonionic
imaginary units - in particular that of preferred commuting complex sub-space- would become local.
Physically this would correspond to the choice of momentum plane M2

x for a position dependent
light-iike momentum defining the plane of non-physical polarizations.

This question is inspired by the general solution ansatz based on the slicing of space-time sheets
which involves the dependence of the choice of the momentum plane M2

x on the point of string world
sheet. This dependence is parameterized by a point of G2/SU(3) and assumed to be constant along
partonic 2-surfaces. These slicings would be naturally associated with the two complex parts ci of the
quaternionic coordinate q1 = c1 + Ic2 of the space-time sheet.

This dependence is well-defined only for the quaternionic 4-surface defining the space-time surface
and can be seen as a local choice of a preferred complex imaginary unit along string world sheets.
CP2 would parametrize the remaining geometric degrees of freedom. Should/could one extend this
dependence to entire 8-D imbedding space? This is possible if the 8-D imbedding space allows a slicing
by the string world sheets. If the string world sheets correspond to the string world sheets appearing
in the slicing of M4 defined by Hamiton-Jacobi coordinates [K8], this slicing indeed exists.

Zero energy ontology and octonion analyticity

How does this picture relate to zero energy ontology and how partonic 2-surfaces and string world
sheets could be identified in this framework?

1. The intersection of the quaternionic four-surfaces with the 7-D light-like boundaries of CDs is 3-
D space-like surface. String world sheets are obtained as 2-D complex surfaces by putting c2 = 0,
where c2 is the imaginary part of the quaternion coordinate q = c1 + Ic2. Their intersections
with CD boundaries are generally 1-dimensional and represent space-like strings.

2. Partonic 2-surfaces could correspond to the intersections of Re(c1) = constant 3-surfaces with
the boundaries of CD. The variation of Re(c1) would give a family of (possibly light-like)
3-surfaces whose intersection with the boundaries of CD would be 2-dimensional. The interpre-
tation Re(c1) = constant surfaces as (possibly light-like) orbits of partonic 2-surfaces would be
natural. Wormhole throats at which the signature of the induced metric changes (by definition)
would correspond to some special value of Re(c1), naturally Re(c1) = 0.

What comes first in mind is that partonic 2-surfaces assignable to wormhole throats correspond
to co-complex 2-surfaces obtained by putting c1 = 0 (or c1 = constant) in the decomposition
q = c1 + ic2. This option is consistent with the above assumption if Im(c1) = 0 holds true at
the boundaries of CD. Note that also co-quaternionic surfaces make sense and would have Eu-
clidian signature of the induced metric: the interpretation as counterparts of lines of generalized
Feynman graphs might make sense.
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3. One can of course wonder whether also the poles of c1 might be relevant. The most natural idea
is that the value of Re(c1) varies between 0 and ∞ between the ends of the orbit of partonic
2-surface. This would mean that c1 has a pole at the other end of CD (or light-like orbit of
partonic 2-surface). In light of this the earlier proposal [K72] that zero energy states might
correspond to rational functions assignable to infinite primes and that the zeros/poles of these
functions correspond to the positive/negative energy part of the state is interesting.

The intersections of string world sheets and partonic 2-surfaces identifiable as the common ends
of space-like and time like brand strands would correspond to the points q = c1 + Ic2 = 0
and q = ∞ + Ic2, where ∞ means real infinity. In other words, to the zeros and real poles
of quaternion analytic function with real coefficients. In the number theoretic vision especially
interesting situations correspond to polynomials with rational number valued coefficients and
rational functions formed from these. In this kind of situations the number of zeros and therefore
of braid strands is always finite.

Do induced or modified gamma matrices define quaternionicity?

The are two options to be considered: either induced or modified gamma matrices define quaternion-
icity.

1. There are several arguments supporting this view that induced gamma matrices define quater-
nionicity and that quaternionic planes are therefore tangent planes for space-time sheet.

(a) H −M8 correspondence is based on the observation that quaternionic sub-spaces of octo-
nions containing preferred complex sub-space are labelled by points of CP2. The integra-
bility of the distribution of quaternionic spaces could follow from the parametrization by
points of CP2 (CP2 = CPmod condition). Quaternionic planes would be necessarily tangent
planes of space-time surface. Induced gamma matrices correspond naturally to the tangent
space vectors of the space-time surface.

Here one should however understand the role of the M4 coordinates. What is the func-
tional form of M4 coordinates as functions of space-time coordinates or does this matter
at all (general coordinate invariance): could one choose the space-time coordinates as M4

coordinates for surfaces representable as graphs for maps M4 → CP2? What about other
cases such as cosmic strings [K21]?

(b) Could one do entirely without gamma matrices and speak only about induced octonion
structure in 8-D tangent space (raising also dimension D = 8 to preferred role) with reduces
to quaternionic structure for quaternionic 4-surfaces. The interpretation of quaternionic
plane as tangent space would be unavoidable also now. In this approach there would be no
question about whether one should identify octonionic gamma matrices as induced gamma
matrices or as modified octonionic gamma matrices.

(c) If quaternion analyticity is defined in terms of modified gamma matrices defined by the
volume action why it would solve the field equations for Kähler action rather than for
minimal surfaces? Is the reason that quaternionic and octonionic analyticities defined as
generalized differentiability are not possible. The real and imaginary parts of quaternionic
real-analytic function with quaternion interpreted as bi-complex number are not analytic
functions of two complex variables of either complex variable. In 4-D situation minimal
surface property would be too strong a condition whereas Kähler action poses much weaker
conditions. Octonionic real-analyticity however poses strong symmetries and suggests ef-
fective 2-dimensionality.

2. The following argument suggest that modified gamma matrices cannot define the notion of
quaternionic plane.

(a) Modified gamma matrices can define sub-spaces of lower dimensionality so that they do
not defined a 4-plane. In this case they cannot define CP2 point so that CP2 = CPmod2

identity fails. Massless extremals represents the basic example about this. Hydrodynamic
solutions defined in terms of Beltrami flows could represent a more general phase of this
kind.
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(b) Modified gamma matrices are not in general parallel to the space-time surface. The CP2

part of field equations coming from the variation of Kähler form gives the non-tangential
contribution. If the distribution of the quaternionic planes is integrable it defines another
space-time surface and this looks rather strange.

(c) Integrable quaternionicity can mean only tangent space quaternionicity. For modified
gamma matrices this cannot be the case. One cannot assign to the octonion analytic
map modified gamma matrices in any natural manner.

The conclusion seems to be that induced gamma matrices or induced octonion structure must
define quaternionicity and quaternionic planes are tangent planes of space-time surface and therefore
define an integrable distribution. An open question is whether CP2 = CPmod2 condition implies the
integrability automatically.

Volume action or Kähler action?

What seems clear is that quaternionicity must be defined by the induced gamma matrices obtained as
contractions of canonical momentum densities associated with volume action with imbedding space
gamma matrices. Probably equivalent definition is in terms of induced octonion structure. For the
believer in strings this would suggest that the volume action is the correct choice. There are however
strong objections against this choice.

1. In 2-dimensional case the minimal surfaces allow conformal invariance and one can speak of
complex structure in their tangent space. In particular, string world sheets can be regarded as
complex 2-surfaces of quaternionic space-time surfaces. In 4-dimensional case the situation is
different since quaternionic differentiability fails by non-commutativity. It is quite possible that
only very few minimal surfaces (volume action) are quaternionic.

2. The possibility of Beltrami flows is a rather plausible property of quite many preferred extremals
of Kähler action. Beltrami flows are also possible for a 4-D minimal surface action. In particular,
M4 translations would define Beltrami flows for which the 1-forms would be gradients of linear
M4 coordinates. If M4 coordinate can be used on obtains flows in directions of all coordinate
axes. Hydrodynamical picture in the strong form therefore fails whereas for Kähler action various
isometry currents could be parallel (as they are for massless extremals).

3. For volume action topological QFT property fails as also fails the decomposition of solutions to
massless quanta in Minkowskian regions. The same applies to criticality. The crucial vacuum
degeneracy responsible for most nice features of Kähler action is absent and also the effective
2-dimensionality and almost topological QFT property are lost since the action does not reduce
to 3-D term.

One can however keep Kähler action and define quaternionicity in terms of induced gamma matrices
or induced octonion structure. Preferred extremals could be identified as extremals of Kähler action
which are also quaternionic 4-surfaces.

1. Preferred extremal property for Kähler action could be much weaker condition than minimal
surface property so that much larger set of quaternionic space-time surfaces would be extremals
of the Kähler action than of volume action. The reason would be that the rank of energy
momentum tensor for Maxwell action tends to be smaller than maximal. This expectation is
supported by the vacuum degeneracy, the properties of massless extremals and of CP2 type
vacuum extremals, and by the general hydrodynamical picture.

2. There is also a long list of beautiful properties supporting Kähler action which should be also
familiar: effective 2-dimensionality and slicing of space-time surface by string world sheets and
partonic 2-surfaces, reduction to almost topological QFT and to abelian Chern-Simons term,
weak form of electric-magnetic duality, quantum criticality, spin glass degeneracy, etc...
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Are quaternionicities defined in terms of induced gamma matrices resp. octonion real-
analytic maps equivalent?

Quaternionicity could be defined by induced gamma matrices or in terms of octonion real-analytic
maps. Are these two definitions equivalent and how could one test the equivalence?

1. The calculation technical problem is that space-time surfaces are not defined in terms of imbed-
ding map involving some coordinate choice but in terms of four vanishing conditions for the
imaginary part of the octonion real-analytic function expressible as biquaternion valued func-
tions.

2. Integrability to 4-D surface is achieved if there exists a 4-D closed Lie algebra defined by vector
fields identifiable as tangent vector fields. This Lie algebra can be generalized to a local 4-D
Lie algebra. One cannot however represent octonionic units in terms of 8-D vector fields since
the commutators of the latter do not form an associative algebra. Also the representation of 7
octonionic imaginary units as 8-D vector fields is impossible since the algebra in question is non-
assciative Malcev algebra [A26] which can be seen as a Lie algebra over non-associative number
field (one speaks of 7-dimensional cross product [A44]). One must use instead of vector fields
either octonionic units as such or octonionic gamma ”matrices” to represent tangent vectors. The
use of octonionic units as such would mean the introduction of the notion of octonionic tangent
space structure. That the subalgebra generated by any two octonionic units is associative brings
strongly in mind effective 2-dimensionality.

3. The tangent vector fields of space-time surface in the representation using octonionic units can
be identified in the following manner. Map can be defined using 8-D octonionic coordinates
defined by standard M4 coordinates or possibly Hamilton-Jacobi coordinates and CP2 complex
coordinates for which U(2) is represented linearly. Gamma ”matrices” for H using octonionic
representation are known in these coordinates. One can introduce the 8 components of the image
of a given point under the octonion real-analytic map as new imbedding space coordinates. One
can calculate the covariant gamma matrices of H in these coordinates.

What should check whether the octonionic gamma matrices associated with the four non-
vanishing coordinates define quaternionic (and thus associative) algebra in the octonionic basis
for the gamma matrices. Also the interpretation as a associative subspace of local Malcev alge-
bra elements is possible and one should check whether if the algebra reduces to a quaternionic
Lie-algebra. Local SO(2)× U(1) algebra should emerge in this manner.

4. Can one identify quaternionic imaginary units with vector fields generating SO(3) Lie algebra
or its local variant? The Lie algebra of rotation generators defines algebra equivalent with that
based on commutars of quaternionic units. Could the slicing of space-time sheet by time axis
define local SO(3) algebra? Light-like momentum direction and momentum direction and its
dual define as their sum space-like vector field and together with vector fields defining transversal
momentum directions they might generate a local SO(3) algebra.

Questions related to quaternion real-analyticity

There are many poorly understood issues and and the following questions represent only some of very
many such questions picked up rather randomly.

1. The above considerations are restricted to Minkowskian regions of space-time sheets. What
happens in the Euclidian regions? Does the existence of light-like Beltrami field and its dual
generalize to the existence of complex vector field and its dual?

2. It would be nice to find a justification for the notion of CD from basic principles. The condition
qq = 0 implies q = 0 for quaternions. For hyper-quaternionic subspace of complexified quater-
nions obtained by Wick rotation it implies qq = 0 corresponds the entire light-cone boundary. If
n-point functions can be identified identified as products of quaternion valued n-point functions
and their quaternionic conjugates, the outcome could be proportional to 1/qq having poles at
light-cone boundaries or CD boundaries rather than at single point as in Euclidian realm.

http://en.wikipedia.org/wiki/Malcev_algebra
http://en.wikipedia.org/wiki/Seven-dimensional_cross_product
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3. This correspondence of points and light-cone boundaries would effectively identify the points
at future and past light-like boundaries of CD along light rays. Could one think that only
the 2-sphere at which the upper and lower light-like boundaries of CD meet remains after this
identification. The structure would be homologically very much like CP2 which is obtained by
compactifying E4 by adding a 2-sphere at infinity. Could this CD − CP2 correspondence have
some deep physical meaning? Do the boundaries of CD somehow correspond to zeros and/or
poles of quaternionic analytic functions in the Minkowskian realm? Could the light-like orbits of
partonic 2-surfaces at which the signature of the induced metric changes correspond to similar
counterparts of zeros or poles when the quaternion analytic variables is obtained as quaternion
real analytic function of H coordinates regarded as bi-quaternions?

4. Could braids correspond to zeros and poles of an octonion real-analytic function? Consider
the partonic 2-surfaces at which the signature of the induced metric changes. The intersections
of these surfaces with string world sheets at the ends of CDs. contain only complex and thus
commutative points meaning that the imaginary part of bi-complex number representing quater-
nionic value of octonion real-analytic function vanishes. Braid ends would thus correspond to
the origins of local complex coordinate patches. Finite measurement resolution would be forced
by commutativity condition and correlate directly with the complexity of the partonic 2-surface
measured by the minimal number of coordinate patches. Its realization would be as an upper
bound on the number of braid strands. A natural expectation would be that only the values of
n-point functions at these points contribute to scattering amplitudes. Number theoretic braids
would be realized but in a manner different from the original guess.

How complex analysis could generalize?

One can make several questions related to the possible generalization of complex analysis to the
quaternionic and octonionic situation.

1. Does the notion of analyticity in the sense that derivatives df/dq and df/do make sense hold true?
The answer is ”No”: non-commutativity destroys all hopes about this kind of generalization.
Octonion and quaternion real-analyticity has however a well-defined meaning.

2. Could the generalization of residue calculus by keeping interaction contours as 1-D curves make
sense? Since residue formulas is the outcome of the fact that any analytic function g can be
written as g = df/dz locally, the answer is ”No”.

3. Could one generalize of the residue calculus by replacing 1-dimensional curves with 4-D surfaces
-possibly quaternionic 4-surfaces? Could one reduce the 4-D integral of quaternion analytic
function to a double residue integral? This would be the case if the quaternion real-analytic
function of q = c1 + Ic2 could be regarded as an analytic function of complex arguments c1
and c2. This is not the case. The product of two octonions decomposed to two quaternions as
oi = qi1 + Iqi2 , i = a, b reads as

oaob = qa1qb1 − qa2qb2 + I(qa1qb2 − qa2qb1) . (2.8.6)

The conjugations result from the anticommutativity of imaginary parts and I. This formula
gives similar formula for quaternions by restriction. As a special cas oa = ob = q1 + Iq2 one has

o2 = q2
1 − q2q2 + I(q1q2 − q2q1)

From this it is clear that the real part of an octonion real-analytic function cannot be regarded as
quaternion-analytic function unless one assumes that the imaginary part q2 vanishes. By similar
argument real part of quaternion real-analytic function q = c1 + Ic2 fails to be analytic unless
one restricts the consideration to a surface at which one has c2 = 0. These negative results are
obviously consistent with the effective 2-dimensionality.
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4. One must however notice that physicists use often what might be called analytization trick [A4]
working if the non-analytic function f(x, y) = f(z, z) is differentiable. The trick is to inter-
pret z and z as independent variables. In the recent case this is rather natural. Wick rotation
could be used to transform the integral over the space-time sheet to integral in quaternionic
domain. For 4-dimensional integrals of quaternion real-analytic function with integration mea-
sure proportional to dc1dc1dc2dc2 one could formally define the integral using multiple residue
integration with four complex variables. The constraint is that the poles associated with ci and
ci are conjugates of each other. Quaternion real-analyticity should guarantee this. This would
of course be a definition of four-dimensional integral and might work for the 4-D generalization
of conformal field theory.

Mandelbrot and Julia sets are fascinating fractals and already now more or less a standard piece
of complex analysis. The fact that the iteration of octonion real-analytic map produces a sequence
of space-time surfaces and partonic 2-surfaces encourages to ask whether these notions -and more
generally, the dynamics based on iteration of analytic functions - might have a higher-dimensional
generalization in the proposed framework.

1. The canonical Mandelbrot set corresponds to the set of the complex parameters c in f(z) = z2+c
for which iterates of z = 0 remain finite. In octonionic and quaternionic real-analytic case c
would be real so that one would obtain only the intersection of the Mandelbrot set with real
axes and the outcome would be rather uninteresting. This is true quite generally.

2. Julia set corresponds to the boundary of the Fatou set in which the dynamics defined by the
iteration of f(z) by definition behaves in a regular manner. In Julia set the behavior is chaotic.
Julia set can be defined as a set of complex plane resulting by taking inverse images of a generic
point belonging to the Julia set. For polynomials Julia set is the boundary of the region in which
iterates remain finite. In Julia set the dynamics defined by the iteration is chaotic.

Julia set could be interesting also in the recent case since it could make sense for real analytic
functions of both quaternions and octonions, and one might hope that the dynamics determined
by the iterations of octonion real-analytic function could have a physical meaning as a space-
time correlate for quantal self-organization by quantum jump in TGD framework. Single step in
iteration would be indeed a very natural space-time correlate for quantum jump. The restriction
of octonion analytic functions to string world sheets should produce the counterparts of the
ordinary Julia sets since these surfaces are mapped to themselves under iteration and octonion
real-analytic functions reduces to ordinary complex real-analytic functions at them. Therefore
one might obtain the counterparts of Julia sets in 4-D sense as extensions of ordinary Julia sets.
These extensions would be 3-D sets obtained as piles of ordinary Julia sets labelled by partonic
2-surfaces.

2.9 In what sense TGD could be an integrable theory?

During years evidence supporting the idea that TGD could be an integrable theory in some sense has
accumulated. The challenge is to show that various ideas about what integrability means form pieces
of a bigger coherent picture. Of course, some of the ideas are doomed to be only partially correct or
simply wrong. Since it is not possible to know beforehand what ideas are wrong and what are right
the situation is very much like in experimental physics and it is easy to claim (and has been and will
be claimed) that all this argumentation is useless speculation. This is the price that must be paid for
real thinking.

Integrable theories allow to solve nonlinear classical dynamics in terms of scattering data for a
linear system. In TGD framework this translates to quantum classical correspondence. The solutions
of modified Dirac equation define the scattering data. This data should define a real analytic function
whose octonionic extension defines the space-time surface as a surface for which its imaginary part
in the representation as bi-quaternion vanishes. There are excellent hopes about this thanks to the
reduction of the modified Dirac equation to geometric optics.

In the following I will first discuss briefly what integrability means in (quantum) field theories, list
some bits of evidence for integrability in TGD framework, discuss once again the question whether the
different pieces of evidence are consistent with other and what one really means with various notions.

http://en.wikipedia.org/wiki/Analytization_trick
http://en.wikipedia.org/wiki/Mandelbrot_set
http://en.wikipedia.org/wiki/Julia_set
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An an outcome I represent what I regard as a more coherent view about integrability of TGD. The
notion of octonion analyticity developed in the previous section is essential for the for what follows.

2.9.1 What integrable theories are?

The following is an attempt to get some bird’s eye of view about the landscape of integrable theories.

Examples of integrable theories

Integrable theories are typically non-linear 1+1-dimensional (quantum) field theories. Solitons and
various other particle like structures are the characteristic phenomenon in these theories. Scattering
matrix is trivial in the sense that the particles go through each other in the scattering and suffer only a
phase change. In particular, momenta are conserved. Korteveg-de Vries equation [B8]was motivated
by the attempt to explain the experimentally discovered shallow water wave preserving its shape
and moving with a constant velocity. Sine-Gordon equation [B17] describes geometrically constant
curvature surfaces and defines a Lorentz invariant non-linear field theory in 1+1-dimensional space-
time, which can be applied to Josephson junctions (in TGD inspired quantum biology it is encountered
in the model of nerve pulse [K61]). Non-linear Schrödinger equation [B13] having applications to optics
and water waves represents a further example. All these equations have various variants.

From TGD point of view conformal field theories represent an especially interesting example of
integrable theories. (Super-)conformal invariance is the basic underlying symmetry and by its infinite-
dimensional character implies infinite number of conserved quantities. The construction of the theory
reduces to the construction of the representations of (super-)conformal algebra. One can solve 2-
point functions exactly and characterize them in terms of (possibly anomalous) scaling dimensions of
conformal fields involved and the coefficients appearing in 3-point functions can be solved in terms
of fusion rules leading to an associative algebra for conformal fields. The basic applications are to
2-dimensional critical thermodynamical systems whose scaling invariance generalizes to conformal
invariance. String models represent second application in which a collection of super-conformal field
theories associated with various genera of 2-surface is needed to describe loop corrections to the
scattering amplitudes. Also moduli spaces of conformal equivalence classes become important.

Topological quantum field theories are also examples of integrable theories. Because of its inde-
pendence on the metric Chern-Simons action is in 3-D case the unique action defining a topological
quantum field theory. The calculations of knot invariants (for TGD approach see [K37]), topological
invariants of 3-manifolds and 4-manifolds, and topological quantum computation (for a model of DNA
as topological quantum computer see [K26]) represent applications of this approach. TGD as almost
topological QFT means that the Kähler action for preferred extremals reduces to a surface term by
the vanishing of Coulomb term in action and by the weak form of electric-magnetic duality reduces
to Chern-Simons action. Both Euclidian and Minkowskian regions give this kind of contribution.

N = 4 SYM is the a four-dimensional and very nearly realistic candidate for an integral quantum
field theory. The observation that twistor amplitudes allow also a dual of the 4-D conformal symmetry
motivates the extension of this symmetry to its infinite-dimensional Yangian variant [A54]. Also
the enormous progress in the construction of scattering amplitudes suggests integrability. In TGD
framework Yangian symmetry would emerge naturally by extending the symplectic variant of Kac-
Moody algebra from light-cone boundary to the interior of causal diamond and the Kac-Moody algebra
from light-like 3-surface representing wormhole throats at which the signature of the induced metric
changes to the space-time interior [K87].

About mathematical methods

The mathematical methods used in integrable theories are rather refined and have contributed to the
development of the modern mathematical physics. Mention only quantum groups, conformal algebras,
and Yangian algebras.

The basic element of integrability is the possibility to transform the non-linear classical problem
for which the interaction is characterized by a potential function or its analog to a linear scattering
problem depending on time. For instance, for the ordinary Schrödinger function one can solve potential
once single solution of the equation is known. This does not work in practice. One can however gather

http://en.wikipedia.org/wiki/Korteweg–de_Vries_equation
http://en.wikipedia.org/wiki/Sine-Gordon_equation
http://en.wikipedia.org/wiki/Non-linear_Schrödinger_equation
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information about the asymptotic states in scattering to deduce the potential. One cannot do without
information about bound state energies too.

In TGD framework asymptotic states correspond to partonic 2-surfaces at the two light-like bound-
aries of CD (more precisely: the largest CD involved and defining the IR resolution for momenta).
From the scattering data coding information about scattering for various values of energy of the
incoming particle one deduced the potential function or its analog.

1. The basic tool is inverse scattering transform known as Gelfand-Marchenko-Levitan (GML)
transform described in simple terms in [B21].

(a) In 1+1 dimensional case the S-matrix characterizing scattering is very simple since the
only thing that can take place in scattering is reflection or transmission. Therefore the S-
matrix elements describe either of these processes and by unitarity the sum of corresponding
probabilities equals to 1. The particle can arrive to the potential either from left or right
and is characterized by a momentum. The transmission coefficient can have a pole meaning
complex (imaginary in the simplest case) wave vector serving as a signal for the formation
of a bound state or resonance. The scattering data are represented by the reflection and
transmission coefficients as function of time.

(b) One can deduce an integral equation for a propagator like function K(t, x) describing how
delta pulse moving with light velocity is scattered from the potential and is expressible in
terms of time integral over scattering data with contributions from both scattering states
and bound states. The derivation of GML transform [B21] uses time reversal and time
translational invariance and causality defined in terms of light velocity. After some tricks
one obtains the integral equation as well as an expression for the time independent potential
as V (x) = K(x, x). The argument can be generalized to more complex problems to deduce
the GML transform.

2. The so called Lax pair is one manner to describe integrable systems [B9]. Lax pair consists of
two operators L and M . One studies what might be identified as ”energy” eigenstates satisfying
L(x, t)Ψ = λΨ. λ does not depend on time and one can say that the dynamics is associated
with x coordinate whereas as t is time coordinate parametrizing different variants of eigenvalue
problem with the same spectrum for L. The operator M(t) does not depend on x at all and the
independence of λ on time implies the condition

∂tL = [L,M ] .

This equation is analogous to a quantum mechanical evolution equation for an operator induced
by time dependent ”Hamiltonian” M and gives the non-linear classical evolution equation when
the commutator on the right hand side is a multiplicative operator (so that it does not involve
differential operators acting on the coordinate x). Non-linear classical dynamics for the time
dependent potential emerges as an integrability condition.

One could say that M(t) introduces the time evolution of L(t, x) as an automorphism which
depends on time and therefore does not affect the spectrum. One has L(t, x) = U(t)L(0, x)U−1(t)
with dU(t)/dt = M(t)U(t). The time evolution of the analog of the quantum state is given by
a similar equation.

3. A more refined view about Lax pair is based on the observation that the above equation can be
generalized so that M depends also on x. The generalization of the basic equation for M(x, t)
reads as

∂tL− ∂xM − [L,M ] = 0 .

The condition has interpretation as a vanishing of the curvature of a gauge potential having
components Ax = L,At = M . This generalization allows a beautiful geometric formulation of
the integrability conditions and extends the applicability of the inverse scattering transform.
The monodromy of the flat connection becomes important in this approach. Flat connections
in moduli spaces are indeed important in topological quantum field theories and in conformal
field theories.

http://terrytao.wordpress.com/2009/10/07/israel-gelfand/#more-2860
http://terrytao.wordpress.com/2009/10/07/israel-gelfand/#more-2860
http://en.wikipedia.org/wiki/Lax_pair
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4. There is also a connection with the so called Riemann-Hilbert problem [A42]. The monodromies
of the flat connection define monodromy group and Riemann-Hilbert problem concerns the
existence of linear differential equations having a given monodromy group. Monodromy group
emerges in the analytic continuation of an analytic function and the action of the element of the
monodromy group tells what happens for the resulting many-valued analytic function as one
turns around a singularity once (’mono-’). The linear equations obviously relate to the linear
scattering problem. The flat connection (M,L) in turn defines the monodromy group. What is
needed is that the functions involved are analytic functions of (t, x) replaced with a complex or
hyper-complex variable. Again Wick rotation is involved. Similar approach generalizes also to
higher dimensional moduli spaces with complex structures.

In TGD framework the effective 2-dimensionality raises the hope that this kind of mathematical
apparatus could be used. An interesting possibility is that finite measurement resolution could
be realized in terms of a gauge group or Kac-Moody type group represented by trivial gauge
potential defining a monodromy group for n-point functions. Monodromy invariance would
hold for the full n-point functions constructed in terms of analytic n-point functions and their
conjugates. The ends of braid strands are natural candidates for the singularities around which
monodromies are defined.

2.9.2 Why TGD could be integrable theory in some sense?

There are many indications that TGD could be an integrable theory in some sense. The challenge is
to see which ideas are consistent with each other and to build a coherent picture where everything
finds its own place.

1. 2-dimensionality or at least effective 2-dimensionality seems to be a prerequisite for integrability.
Effective 2-dimensionality is suggested by the strong form of General Coordinate Invariance
implying also holography and generalized conformal invariance predicting infinite number of
conservation laws. The dual roles of partonic 2-surfaces and string world sheets supports a four-
dimensional generalization of conformal invariance. Twistor considerations [K85] indeed suggest
that Yangian invariance and Kac-Moody invariances combine to a 4-D analog of conformal
invariance induced by 2-dimensional one by algebraic continuation.

2. Octonionic representation of imbedding space Clifford algebra and the identification of the space-
time surfaces as quaternionic space-time surfaces would define a number theoretically natural
generalization of conformal invariance. The reason for using gamma matrix representation is
that vector field representation for octonionic units does not exist. The problem concerns the
precise meaning of the octonionic representation of gamma matrices.

Space-time surfaces could be quaternionic also in the sense that conformal invariance is ana-
lytically continued from string curve to 8-D space by octonion real-analyticity. The question is
whether the Clifford algebra based notion of tangent space quaternionicity is equivalent with
octonionic real-analyticity based notion of quaternionicity.

The notions of co-associativity and co-quaternionicity make also sense and one must consider se-
riously the possibility that associativity-co-associativity dichotomy corresponds to Minkowskian-
Euclidian dichotomy.

3. Field equations define hydrodynamic Beltrami flows satisfying integrability conditions of form
J ∧ dJ = 0.

(a) One can assign local momentum and polarization directions to the preferred extremals and
this gives a decomposition of Minkowskian space-time regions to massless quanta analogous
to the 1+1-dimensional decomposition to solitons. The linear superposition of modes with
4-momenta with different directions possible for free Maxwell action does not look plausible
for the preferred extremals of Kähler action. This rather quantal and solitonic character is
in accordance with the quantum classical correspondence giving very concrete connection
between quantal and classical particle pictures. For 4-D volume action one does not obtain
this kind of decomposition. In 2-D case volume action gives superposition of solutions with
different polarization directions so that the situation is nearer to that for free Maxwell
action and is not like soliton decomposition.

http://en.wikipedia.org/wiki/Riemann-Hilbert_problem
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(b) Beltrami property in strong sense allows to identify 4 preferred coordinates for the space-
time surface in terms of corresponding Beltrami flows. This is possible also in Euclidian
regions using two complex coordinates instead of hyper-complex coordinate and complex
coordinate. The assumption that isometry currents are parallel to the same light-like
Beltrami flow implies hydrodynamic character of the field equations in the sense that one
can say that each flow line is analogous to particle carrying some quantum numbers. This
property is not true for all extremals (say cosmic strings).

(c) The tangent bundle theoretic view about integrability is that one can find a Lie algebra of
vector fields in some manifold spanning the tangent space of a lower-dimensional manifolds
and is expressed in terms of Frobenius theorem [A17]). The gradients of scalar functions
defining Beltrami flows appearing in the ansatz for preferred exremals would define these
vector fields and the slicing. Partonic 2-surfaces would correpond to two complex conjugate
vector fields (local polarization direction) and string world sheets to light-like vector field
and its dual (light-like momentum directions). This slicing generalizes to the Euclidian
regions.

4. Infinite number of conservation laws is the signature of integrability. Classical field equations
follow from the condition that the vector field defined by modified gamma matrices has vanishing
divergence and can be identified an integrability condition for the modified Dirac equation
guaranteing also the conservation of super currents so that one obtains an infinite number of
conserved charges.

5. Quantum criticality is a further signal of integrability. 2-D conformal field theories describe
critical systems so that the natural guess is that quantum criticality in TGD framework relates
to the generalization of conformal invariance and to integrability. Quantum criticality implies
that Kähler coupling strength is analogous to critical temperature. This condition does affects
classical field equations only via boundary conditions expressed as weak form of electric magnetic
duality at the wormhole throats at which the signature of the metric changes.

For finite-dimensional systems the vanishing of the determinant of the matrix defined by the
second derivatives of potential is similar signature and applies in catastrophe theory. Therefore
the existence of vanishing second variations of Kähler action should characterize criticality and
define a property of preferred extremals. The vanishing of second variations indeed leads to an
infinite number of conserved currents [K28, K8].

2.9.3 Questions

There are several questions which are not completely settled yet. Even the question what preferred
extremals are is still partially open. In the following I try to de-learn what I have possibly learned
during these years and start from scratch to see which assumptions might be un-necessarily strong or
even wrong.

2.9.4 Could TGD be an integrable theory?

Consider first the abstraction of integrability in TGD framework. Quantum classical correspondence
could be seen as a correspondence between linear quantum dynamics and non-linear classical dynamics.
Integrability would realize this correspondence. In integrable models such as Sine-Gordon equation
particle interactions are described by potential in 1+1 dimensions. This too primitive for the purposes
of TGD. The vertices of generalized Feynman diagrams take care of this. At lines one has free particle
dynamics so that the situation could be much simpler than in integrable models if one restricts the
considerations to the lines or Minkowskian space-time regions surrounding them.

The non-linear dynamics for the space-time sheets representing incoming lines of generalized Feyn-
man diagram should be obtainable from the linear dynamics for the induced spinor fields defined by
modified Dirac operator. There are two options.

1. Strong form of the quantum classical correspondence states that each solution for the linear
dynamics of spinor fields corresponds to space-time sheet. This is analogous to solving the
potential function in terms of a single solution of Schrödinger equation. Coupling of space-time

http://en.wikipedia.org/wiki/Frobenius_theorem_(differential_topology)
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geometry to quantum numbers via measurement interaction term is a proposal for realizing this
option. It is howwever the quantum numbers of positive/negative energy parts of zero energy
state which would be visible in the classical dynamics rather than those of induced spinor field
modes.

2. Only overall dynamics characterized by scattering data- the counterpart of S-matrix for the
modified Dirac operator- is mapped to the geometry of the space-time sheet. This is much more
abstract realization of quantum classical correspondence.

3. Can these two approaches be equivalent? This might be the case since quantum numbers of the
state are not those of the modes of induced spinor fields.

What the scattering data could be for the induced spinor field satisfying modified Dirac equation?

1. If the solution of field equation has hydrodynamic character, the solutions of the modified
Dirac equation can be localized to light-like Beltrami flow lines of hydrodynamic flow. These
correspond to basic solutions and the general solution is a superposition of these. There is no
dispersion and the dynamics is that of geometric optics at the basic level. This means geometric
optics like character of the spinor dynamics.

Solutions of the modified Dirac equation are completely analogous to the pulse solutions defining
the fundamental solution for the wave equation in the argument leading from wave equation
with external time independent potential to Marchenko-Gelfand-Levitan equation allowing to
identify potential in terms of scattering data. There is however no potential present now since
the interactions are described by the vertices of Feynman diagram where the particle lines meet.
Note that particle like regions are Euclidian and that this picture applies only to the Minkowskian
exteriors of particles.

2. Partonic 2-surfaces at the ends of the line of generalized Feynman diagram are connected by flow
lines. Partonic 2-surfaces at which the signature of the induced metric changes are in a special
position. Only the imaginary part of the bi-quaternionic value of the octonion valued map is
non-vanishing at these surfaces which can be said to be co-complex 2-surfaces. By geometric
optics behavior the scattering data correspond to a diffeomorphism mapping initial partonic
2-surface to the final one in some preferred complex coordinates common to both ends of the
line.

3. What could be these preferred coordinates? Complex coordinates for S2 at light-cone bound-
ary define natural complex coordinates for the partonic 2-surface. With these coordinates the
diffeomorphism defining scattering data is diffeomorphism of S2. Suppose that this map is real
analytic so that maps ”real axis” of S2 to itself. This map would be same as the map defin-
ing the octonionic real analyticity as algebraic extension of the complex real analytic map. By
octonionic analyticity one can make large number of alternative choices for the coordinates of
partonic 2-surface.

4. There can be non-uniqueness due to the possibility of G2/SU(3) valued map characterizing
the local octonionic units. The proposal is that the choice of octonionic imaginary units can
depend on the point of string like orbit: this would give string model in G2/SU(3). Conformal
invariance for this string model would imply analyticity and helps considerably but would not
probably fix the situation completely since the element of the coset space would constant at the
partonic 2-surfaces at the ends of CD. One can of course ask whether the G2/SU(3) element
could be constant for each propagator line and would change only at the 2-D vertices?

This would be the inverse scattering problem formulated in the spirit of TGD. There could be
also dependence of space-time surface on quantum numbers of quantum states but not on indididual
solution for the induced spinor field since the scattering data of this solution would be purely geometric.

2.10 About deformations of known extremals of Kähler action

I have done a considerable amount of speculative guesswork to identify what I have used to call
preferred extremals of Kähler action. The problem is that the mathematical problem at hand is ex-
tremely non-linear and that there is no existing mathematical literature. One must proceed by trying
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to guess the general constraints on the preferred extremals which look physically and mathematically
plausible. The hope is that this net of constraints could eventually chrystallize to Eureka! Certainly
the recent speculative picture involves also wrong guesses. The need to find explicit ansatz for the de-
formations of known extremals based on some common principles has become pressing. The following
considerations represent an attempt to combine the existing information to achieve this.

2.10.1 What might be the common features of the deformations of known
extremals

The dream is to discover the deformations of all known extremals by guessing what is common to all
of them. One might hope that the following list summarizes at least some common features.

Effective three-dimensionality at the level of action

1. Holography realized as effective 3-dimensionality also at the level of action requires that it
reduces to 3-dimensional effective boundary terms. This is achieved if the contraction jαAα
vanishes. This is true if jα vanishes or is light-like, or if it is proportional to instanton current
in which case current conservation requires that CP2 projection of the space-time surface is
3-dimensional. The first two options for j have a realization for known extremals. The status
of the third option - proportionality to instanton current - has remained unclear.

2. As I started to work again with the problem, I realized that instanton current could be replaced
with a more general current j = ∗B ∧ J or concretely: jα = εαβγδBβJγδ, where B is vector
field and CP2 projection is 3-dimensional, which it must be in any case. The contractions of j
appearing in field equations vanish automatically with this ansatz.

3. Almost topological QFT property in turn requires the reduction of effective boundary terms to
Chern-Simons terms: this is achieved by boundary conditions expressing weak form of electric
magnetic duality. If one generalizes the weak form of electric magnetic duality to J = Φ ∗ J one
has B = dΦ and j has a vanishing divergence for 3-D CP2 projection. This is clearly a more
general solution ansatz than the one based on proportionality of j with instanton current and
would reduce the field equations in concise notation to Tr(THk) = 0.

4. Any of the alternative properties of the Kähler current implies that the field equations reduce
to Tr(THk) = 0, where T and Hk are shorthands for Maxwellian energy momentum tensor and
second fundamental form and the product of tensors is obvious generalization of matrix product
involving index contraction.

Could Einstein’s equations emerge dynamically?

For jα satisfying one of the three conditions, the field equations have the same form as the equations
for minimal surfaces except that the metric g is replaced with Maxwell energy momentum tensor T .

1. This raises the question about dynamical generation of small cosmological constant Λ: T = Λg
would reduce equations to those for minimal surfaces. For T = Λg modified gamma matrices
would reduce to induced gamma matrices and the modified Dirac operator would be proportional
to ordinary Dirac operator defined by the induced gamma matrices. One can also consider weak
form for T = Λg obtained by restricting the consideration to sub-space of tangent space so that
space-time surface is only ”partially” minimal surface but this option is not so elegant although
necessary for other than CP2 type vacuum extremals.

2. What is remarkable is that T = Λg implies that the divergence of T which in the general case
equals to jβJαβ vanishes. This is guaranteed by one of the conditions for the Kähler current. Since
also Einstein tensor has a vanishing divergence, one can ask whether the condition to T = κG+Λg
could the general condition. This would give Einstein’s equations with cosmological term besides
the generalization of the minimal surface equations. GRT would emerge dynamically from the
non-linear Maxwell’s theory although in slightly different sense as conjectured [K79]! Note that
the expression for G involves also second derivatives of the imbedding space coordinates so that
actually a partial differential equation is in question. If field equations reduce to purely algebraic



2.10. About deformations of known extremals of Kähler action 155

ones, as the basic conjecture states, it is possible to have Tr(GHk) = 0 and Tr(gHk) = 0
separately so that also minimal surface equations would hold true.

What is amusing that the first guess for the action of TGD was curvature scalar. It gave
analogs of Einstein’s equations as a definition of conserved four-momentum currents. The recent
proposal would give the analog of ordinary Einstein equations as a dynamical constraint relating
Maxwellian energy momentum tensor to Einstein tensor and metric.

3. Minimal surface property is physically extremely nice since field equations can be interpreted
as a non-linear generalization of massless wave equation: something very natural for non-linear
variant of Maxwell action. The theory would be also very ”stringy” although the fundamental
action would not be space-time volume. This can however hold true only for Euclidian signature.
Note that for CP2 type vacuum extremals Einstein tensor is proportional to metric so that for
them the two options are equivalent. For their small deformations situation changes and it might
happen that the presence of G is necessary. The GRT limit of TGD discussed in [K79] [L14]
indeed suggests that CP2 type solutions satisfy Einstein’s equations with large cosmological
constant and that the small observed value of the cosmological constant is due to averaging and
small volume fraction of regions of Euclidian signature (lines of generalized Feynman diagrams).

4. For massless extremals and their deformations T = Λg cannot hold true. The reason is that for
massless extremals energy momentum tensor has component T vv which actually quite essential
for field equations since one has Hk

vv = 0. Hence for massless extremals and their deformations
T = Λg cannot hold true if the induced metric has Hamilton-Jacobi structure meaning that guu

and gvv vanish. A more general relationship of form T = κG + ΛG can however be consistent
with non-vanishing T vv but require that deformation has at most 3-D CP2 projection (CP2

coordinates do not depend on v).

5. The non-determinism of vacuum extremals suggest for their non-vacuum deformations a conflict
with the conservation laws. In, also massless extremals are characterized by a non-determinism
with respect to the light-like coordinate but like-likeness saves the situation. This suggests
that the transformation of a properly chosen time coordinate of vacuum extremal to a light-like
coordinate in the induced metric combined with Einstein’s equations in the induced metric of
the deformation could allow to handle the non-determinism.

Are complex structure of CP2 and Hamilton-Jacobi structure of M4 respected by the
deformations?

The complex structure of CP2 and Hamilton-Jacobi structure of M4 could be central for the under-
standing of the preferred extremal property algebraically.

1. There are reasons to believe that the Hermitian structure of the induced metric ((1,1) structure
in complex coordinates) for the deformations of CP2 type vacuum extremals could be crucial
property of the preferred extremals. Also the presence of light-like direction is also an essential
elements and 3-dimensionality of M4 projection could be essential. Hence a good guess is that
allowed deformations of CP2 type vacuum extremals are such that (2,0) and (0,2) components the
induced metric and/or of the energy momentum tensor vanish. This gives rise to the conditions
implying Virasoro conditions in string models in quantization:

gξiξj = 0 , g
ξ
i
ξ
j = 0 , i, j = 1, 2 . (2.10.1)

Holomorphisms of CP2 preserve the complex structure and Virasoro conditions are expected to
generalize to 4-dimensional conditions involving two complex coordinates. This means that the
generators have two integer valued indices but otherwise obey an algebra very similar to the
Virasoro algebra. Also the super-conformal variant of this algebra is expected to make sense.

These Virasoro conditions apply in the coordinate space for CP2 type vacuum extremals. One
expects similar conditions hold true also in field space, that is for M4 coordinates.
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2. The integrable decompositionM4(m) = M2(m)+E2(m) ofM4 tangent space to longitudinal and
transversal parts (non-physical and physical polarizations) - Hamilton-Jacobi structure- could
be a very general property of preferred extremals and very natural since non-linear Maxwellian
electrodynamics is in question. This decomposition led rather early to the introduction of the
analog of complex structure in terms of what I called Hamilton-Jacobi coordinates (u, v, w,w)
for M4. (u, v) defines a pair of light-like coordinates for the local longitudinal space M2(m) and
(w,w) complex coordinates for E2(m). The metric would not contain any cross terms between
M2(m) and E2(m): guw = gvw = guw = gvw = 0.

A good guess is that the deformations of massless extremals respect this structure. This con-
dition gives rise to the analog of the constraints leading to Virasoro conditions stating the
vanishing of the non-allowed components of the induced metric. guu = gvv = gww = gww =
guw = gvw = guw = gvw = 0. Again the generators of the algebra would involve two integers
and the structure is that of Virasoro algebra and also generalization to super algebra is expected
to make sense. The moduli space of Hamilton-Jacobi structures would be part of the moduli
space of the preferred extremals and analogous to the space of all possible choices of complex
coordinates. The analogs of infinitesimal holomorphic transformations would preserve the mod-
ular parameters and give rise to a 4-dimensional Minkowskian analog of Virasoro algebra. The
conformal algebra acting on CP2 coordinates acts in field degrees of freedom for Minkowskian
signature.

Field equations as purely algebraic conditions

If the proposed picture is correct, field equations would reduce basically to purely algebraically con-
ditions stating that the Maxwellian energy momentum tensor has no common index pairs with the
second fundamental form. For the deformations of CP2 type vacuum extremals T is a complex tensor
of type (1,1) and second fundamental form Hk a tensor of type (2,0) and (0,2) so that Tr(THk) =
is true. This requires that second light-like coordinate of M4 is constant so that the M4 projection
is 3-dimensional. For Minkowskian signature of the induced metric Hamilton-Jacobi structure re-
places conformal structure. Here the dependence of CP2 coordinates on second light-like coordinate
of M2(m) only plays a fundamental role. Note that now T vv is non-vanishing (and light-like). This
picture generalizes to the deformations of cosmic strings and even to the case of vacuum extremals.

2.10.2 What small deformations of CP2 type vacuum extremals could be?

I was led to these arguments when I tried find preferred extremals of Kähler action, which would have
4-D CP2 and M4 projections - the Maxwell phase analogous to the solutions of Maxwell’s equations
that I conjectured long time ago. It however turned out that the dimensions of the projections
can be (DM4 ≤ 3, DCP2 = 4) or (DM4 = 4, DCP2 ≤ 3). What happens is essentially breakdown
of linear superposition so that locally one can have superposition of modes which have 4-D wave
vectors in the same direction. This is actually very much like quantization of radiation field to
photons now represented as separate space-time sheets and one can say that Maxwellian superposition
corresponds to union of separate photonic space-time sheets in TGD. In the following I shall restrict
the consideeration to the deformations of CP2 type vacuum extremals.

Solution ansatz

I proceed by the following arguments to the ansatz.

1. Effective 3-dimensionality for action (holography) requires that action decomposes to vanishing
jαAα term + total divergence giving 3-D ”boundary” terms. The first term certainly vanishes
(giving effective 3-dimensionality) for

DβJ
αβ = jα = 0 .

Empty space Maxwell equations, something extremely natural. Also for the proposed GRT limit
these equations are true.
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2. How to obtain empty space Maxwell equations jα = 0? The answer is simple: assume self
duality or its slight modification:

J = ∗J

holding for CP2 type vacuum extremals or a more general condition

J = k ∗ J ,

In the simplest situation k is some constant not far from unity. * is Hodge dual involving 4-
D permutation symbol. k = constant requires that the determinant of the induced metric is
apart from constant equal to that of CP2 metric. It does not require that the induced metric
is proportional to the CP2 metric, which is not possible since M4 contribution to metric has
Minkowskian signature and cannot be therefore proportional to CP2 metric.

One can consider also a more general situation in which k is scalar function as a generalization
of the weak electric-magnetic duality. In this case the Kähler current is non-vanishing but
divergenceless. This also guarantees the reduction to Tr(THk) = 0. In this case however the
proportionality of the metric determinant to that for CP2 metric is not needed. This solution
ansatz becomes therefore more general.

3. Field equations reduce with these assumptions to equations differing from minimal surfaces equa-
tions only in that metric g is replaced by Maxwellian energy momentum tensor T . Schematically:

Tr(THk) = 0 ,

where T is the Maxwellian energy momentum tensor and Hk is the second fundamental form -
asymmetric 2-tensor defined by covariant derivative of gradients of imbedding space coordinates.

How to satisfy the condition Tr(THk) = 0?

It would be nice to have minimal surface equations since they are the non-linear generalization of
massless wave equations. It would be also nice to have the vanishing of the terms involving Kähler
current in field equations as a consequence of this condition. Indeed, T = κG + Λg implies this. In
the case of CP2 vacuum extremals one cannot distinguish between these options since CP2 itself is
constant curvature space with G ∝ g. Furthermore, if G and g have similar tensor structure the
algebraic field equations for G and g are satisfied separately so that one obtains minimal surface
property also now. In the following minimal surface option is considered.

1. The first opton is achieved if one has

T = Λg .

Maxwell energy momentum tensor would be proportional to the metric! One would have dynam-
ically generated cosmological constant! This begins to look really interesting since it appeared
also at the proposed GRT limit of TGD [L14]. Note that here also non-constant value of Λ can
be considered and would correspond to a situation in which k is scalar function: in this case the
the determinant condition can be dropped and one obtains just the minimal surface equations.

2. Very schematically and forgetting indices and being sloppy with signs, the expression for T reads
as

T = JJ − g/4Tr(JJ) .

Note that the product of tensors is obtained by generalizing matrix product. This should be
proportional to metric.

Self duality implies that Tr(JJ) is just the instanton density and does not depend on metric
and is constant.

http://tgdtheory.com/public_html/articles/egtgd.pdf
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For CP2 type vacuum extremals one obtains

T = −g + g = 0 .

Cosmological constant would vanish in this case.

3. Could it happen that for deformations a small value of cosmological constant is generated?

The condition would reduce to

JJ = (Λ− 1)g .

Λ must relate to the value of parameter k appearing in the generalized self-duality condition.
For the most general ansatz Λ would not be constant anymore.

This would generalize the defining condition for Kähler form

JJ = −g (i2 = −1 geometrically)

stating that the square of Kähler form is the negative of metric. The only modification would
be that index raising is carried out by using the induced metric containing also M4 contribution
rather than CP2 metric.

4. Explicitly:

JαµJ
µ
β = (Λ− 1)gαβ .

Cosmological constant would measure the breaking of Kähler structure. By writing g = s+m and
defining index raising of tensors using CP2 metric and their product accordingly, this condition
can be also written as

Jm = (Λ− 1)mJ .

If the parameter k is constant, the determinant of the induced metric must be proportional to the
CP2 metric. If k is scalar function, this condition can be dropped. Cosmological constant would not
be constant anymore but the dependence on k would drop out from the field equations and one would
hope of obtaining minimal surface equations also now. It however seems that the dimension of M4

projection cannot be four. For 4-D M4 projection the contribution of the M2 part of the M4 metric
gives a non-holomorphic contribution to CP2 metric and this spoils the field equations.

For T = κG + Λg option the value of the cosmological constant is large - just as it is for the
proposed GRT limit of TGD [K79] [L14]. The interpretation in this case is that the average value of
cosmological constant is small since the portion of space-time volume containing generalized Feynman
diagrams is very small.

More detailed ansatz for the deformations of CP2 type vacuum extremals

One can develop the ansatz to a more detailed form. The most obvious guess is that the induced metric
is apart from constant conformal factor the metric of CP2. This would guarantee self-duality apart
from constant factor and jα = 0. Metric would be in complex CP2 coordinates tensor of type (1,1)
whereas CP2 Riemann connection would have only purely holomorphic or anti-holomorphic indices.
Therefore CP2 contributions in Tr(THk) would vanish identically. M4 degrees of freedom however
bring in difficulty. The M4 contribution to the induced metric should be proportional to CP2 metric
and this is impossible due to the different signatures. The M4 contribution to the induced metric
breaks its Kähler property but would preserve Hermitian structure.

A more realistic guess based on the attempt to construct deformations of CP2 type vacuum ex-
tremals is following.
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1. Physical intuition suggests that M4 coordinates can be chosen so that one has integrable de-
composition to longitudinal degrees of freedom parametrized by two light-like coordinates u and
v and to transversal polarization degrees of freedom parametrized by complex coordinate w and
its conjugate. M4 metric would reduce in these coordinates to a direct sum of longitudinal and
transverse parts. I have called these coordinates Hamilton Jacobi coordinates.

2. w would be holomorphic function of CP2 coordinates and therefore satisfy massless wave equa-
tion. This would give hopes about rather general solution ansatz. u and v cannot be holomorphic
functions of CP2 coordinates. Unless wither u or v is constant, the induced metric would receive
contributions of type (2,0) and (0,2) coming from u and v which would break Kähler structure
and complex structure. These contributions would give no-vanishing contribution to all minimal
surface equations. Therefore either u or v is constant: the coordinate line for non-constant
coordinate -say u- would be analogous to the M4 projection of CP2 type vacuum extremal.

3. With these assumptions the induced metric would remain (1, 1) tensor and one might hope
that Tr(THk) contractions vanishes for all variables except u because the there are no com-
mon index pairs (this if non-vanishing Christoffel symbols for H involve only holomorphic or
anti-holomorphic indices in CP2 coordinates). For u one would obtain massless wave equation
expressing the minimal surface property.

4. If the value of k is constant the determinant of the induced metric must be proportional to the
determinant of CP2 metric. The induced metric would contain only the contribution from the
transversal degrees of freedom besides CP2 contribution. Minkowski contribution has however
rank 2 as CP2 tensor and cannot be proportional to CP2 metric. It is however enough that
its determinant is proportional to the determinant of CP2 metric with constant proportional-
ity coefficient. This condition gives an additional non-linear condition to the solution. One
would have wave equation for u (also w and its conjugate satisfy massless wave equation) and
determinant condition as an additional condition.

The determinant condition reduces by the linearity of determinant with respect to its rows to
sum of conditions involved 0,1,2 rows replaced by the transversal M4 contribution to metric
given if M4 metric decomposes to direct sum of longitudinal and transversal parts. Derivatives
with respect to derivative with respect to particular CP2 complex coordinate appear linearly in
this expression they can depend on u via the dependence of transversal metric components on
u. The challenge is to show that this equation has (or does not have) non-trivial solutions.

5. If the value of k is scalar function the situation changes and one has only the minimal surface
equations and Virasoro conditions.

What makes the ansatz attractive is that special solutions of Maxwell empty space equations are
in question, equations reduces to non-linear generalizations of Euclidian massless wave equations, and
possibly space-time dependent cosmological constant pops up dynamically. These properties are true
also for the GRT limit of TGD [L14].

2.10.3 Hamilton-Jacobi conditions in Minkowskian signature

The maximally optimistic guess is that the basic properties of the deformations of CP2 type vacuum
extremals generalize to the deformations of other known extremals such as massless extremals, vacuum
extremals with 2-D CP2 projection which is Lagrangian manifold, and cosmic strings characterized
by Minkowskian signature of the induced metric. These properties would be following.

1. The recomposition of M4 tangent space to longitudinal and transversal parts giving Hamilton-
Jacobi structure. The longitudinal part has hypercomplex structure but the second light-like
coordinate is constant: this plays a crucial role in guaranteeing the vanishing of contractions
in Tr(THk). It is the algebraic properties of g and T which are crucial. T can however have
light-like component T vv. For the deformations of CP2 type vacuum extremals (1, 1) structure
is enough and is guaranteed if second light-like coordinate of M4 is constant whereas w is
holomorphic function of CP2 coordinates.

http://tgdtheory.com/public_html/articles/egtgd.pdf
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2. What could happen in the case of massless extremals? Now one has 2-D CP2 projection in the
initial situation and CP2 coordinates depend on light-like coordinate u and single real transversal
coordinate. The generalization would be obvious: dependence on single light-like coordinate
u and holomorphic dependence on w for complex CP2 coordinates. The constraint is T =
Λg cannot hold true since T vv is non-vanishing (and light-like). This property restricted to
transversal degrees of freedom could reduce the field equations to minimal surface equations
in transversal degrees of freedom. The transversal part of energy momentum tensor would be
proportional to metric and hence covariantly constant. Gauge current would remain light-like
but would not be given by j = ∗dφ ∧ J . T = κG+ Λg seems to define the attractive option.

It therefore seems that the essential ingredient could be the condition

T = κG+ λg ,

which has structure (1,1) in both M2(m) and E2(m) degrees of freedom apart from the presence of
T vv component with deformations having no dependence on v. If the second fundamental form has
(2,0)+(0,2) structure, the minimal surface equations are satisfied provided Kähler current satisfies on
of the proposed three conditions and if G and g have similar tensor structure.

One can actually pose the conditions of metric as complete analogs of stringy constraints leading
to Virasoro conditions in quantization to give

guu = 0 , gvv = 0 , gww = 0 , gww = 0 . (2.10.2)

This brings in mind the generalization of Virasoro algebra to four-dimensional algebra for which an
identification in terms of non-local Yangian symmetry has been proposed [K87]. The number of
conditions is four and the same as the number of independent field equations. One can consider
similar conditions also for the energy momentum tensor T but allowing non-vanishing component
T vv if deformations has no v-dependence. This would solve the field equations if the gauge current
vanishes or is light-like. On this case the number of equations is 8. First order differential equations
are in question and they can be also interpreted as conditions fixing the coordinates used since there
is infinite number of manners to choose the Hamilton-Jacobi coordinates.

One can can try to apply the physical intuition about general solutions of field equations in the
linear case by writing the solution as a superposition of left and right propagating solutions:

ξk = fk+(u,w) + fk+(v, w) . (2.10.3)

This could guarantee that second fundamental form is of form (2,0)+(0,2) in both M2 and E2 part
of the tangent space and these terms if Tr(THk) vanish identically. The remaining terms involve
contractions of Tuw, Tuw and T vw, T vw with second fundamental form. Also these terms should sum
up to zero or vanish separately. Second fundamental form has components coming from fk+ and fk−

Second fundamental form Hk has as basic building bricks terms Ĥk given by

Ĥk
αβ = ∂α∂βh

k +
(
k
l m

)
∂αh

l∂βh
m . (2.10.4)

For the proposed ansatz the first terms give vanishing contribution to Hk
uv. The terms containing

Christoffel symbols however give a non-vanishing contribution and one can allow only fk+ or fk− as in
the case of massless extremals. This reduces the dimension of CP2 projection to D = 3.

What about the condition for Kähler current? Kähler form has components of type Jww whose
contravariant counterpart gives rise to space-like current component. Juw and Juw give rise to light-
like currents components. The condition would state that the Jww is covariantly constant. Solutions
would be characterized by a constant Kähler magnetic field. Also electric field is represent. The
interpretation both radiation and magnetic flux tube makes sense.
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2.10.4 Deformations of cosmic strings

In the physical applications it has been assumed that the thickening of cosmic strings to Kähler
magnetic flux tubes takes place. One indeed expects that the proposed construction generalizes also
to the case of cosmic strings having the decomposition X4 = X2 × Y 2 ⊂ M4 × CP2, where X2 is
minimal surface and Y 2 a complex homologically non-trivial sub-manifold of CP2. Now the starting
point structure is Hamilton-Jacobi structure for M2

m × Y 2 defining the coordinate space.

1. The deformation should increase the dimension of either CP2 or M4 projection or both. How this
thickening could take place? What comes in mind that the string orbits X2 can be interpreted
as a distribution of longitudinal spaces M2(x) so that for the deformation w coordinate becomes
a holomorphic function of the natural Y 2 complex coordinate so that M4 projection becomes
4-D but CP2 projection remains 2-D. The new contribution to the X2 part of the induced metric
is vanishing and the contribution to the Y 2 part is of type (1, 1) and the the ansatz T = κG+Λg
might be needed as a generalization of the minimal surface equations The ratio of κ and G would
be determined from the form of the Maxwellian energy momentum tensor and be fixed at the
limit of undeformed cosmic strong to T = (ag(Y 2)− bg(Y 2). The value of cosmological constant
is now large, and overall consistency suggests that T = κG + Λg is the correct option also for
the CP2 type vacuum extremals.

2. One could also imagine that remaining CP2 coordinates could depend on the complex coordinate
of Y 2 so that also CP2 projection would become 4-dimensional. The induced metric would receive
holomorphic contributions in Y 2 part. As a matter fact, this option is already implied by the
assumption that Y 2 is a complex surface of CP2.

2.10.5 Deformations of vacuum extremals?

What about the deformations of vacuum extremals representable as maps from M4 to CP2?

1. The basic challenge is the non-determinism of the vacuum extremals. One should perform the
deformation so that conservation laws are satisfied. For massless extremals there is also non-
determinism but it is associated with the light-like coordinate so that there are no problems with
the conservation laws. This would suggest that a properly chosen time coordinate consistent
with Hamilton-Jacobi decomposition becomes light-like coordinate in the induced metric. This
poses a conditions on the induced metric.

2. Physical intuition suggests that one cannot require T = Λg since this would mean that the rank
of T is maximal whereas the original situation corresponds to the vanishing of T . For small
deformations rank two for T looks more natural and one could think that T is proportional to a
projection of metric to a 2-D subspace. The vision about the long length scale limit of TGD is
that Einstein’s equations are satisfied and this would suggest T = kG or T = κG+Λg. The rank
of T could be smaller than four for this ansatz and this conditions binds together the values of
κ and G.

3. These extremals have CP2 projection which in the generic case is 2-D Lagrangian sub-manifold
Y 2. Again one could assume Hamilton-Jacobi coordinates for X4. For CP2 one could assume
Darboux coordinates (Pi, Qi), i = 1, 2, in which one has A = PidQ

i, and that Y 2 ⊂ CP2

corresponds to Qi = constant. In principle Pi would depend on arbitrary manner on M4

coordinates. It might be more convenient to use as coordinates (u, v) for M2 and (P1, P2) for
Y 2. This covers also the situation when M4 projection is not 4-D. By its 2-dimensionality Y 2

allows always a complex structure defined by its induced metric: this complex structure is not
consistent with the complex structure of CP2 (Y 2 is not complex sub-manifold).

Using Hamilton-Jacobi coordinates the pre-image of a given point of Y 2 is a 2-dimensional sub-
manifoldX2 ofX4 and defines also 2-D sub-manifold ofM4. The following picture suggests itself.
The projection of X2 to M4 can be seen for a suitable choice of Hamilton-Jacobi coordinates
as an analog of Lagrangian sub-manifold in M4 that is as surface for which v and Im(w) vary
and u and Re(w) are constant. X2 would be obtained by allowing u and Re(w) to vary: as a
matter fact, (P1, P2) and (u,Re(w)) would be related to each other. The induced metric should
be consistent with this picture. This would requires guRe(w) = 0.
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For the deformations Q1 and Q2 would become non-constant and they should depend on the
second light-like coordinate v only so that only guu and guw and guw gw,w and gw,w receive
contributions which vanish. This would give rise to the analogs of Virasoro conditions guaran-
teeing that T is a tensor of form (1, 1) in both M2 and E2 indices and that there are no cross
components in the induced metric. A more general formulation states that energy momentum
tensor satisfies these conditions. The conditions on T might be equivalent with the conditions
for g and G separately.

4. Einstein’s equations provide an attractive manner to achieve the vanishing of effective 3-dimensionality
of the action. Einstein equations would be second order differential equations and the idea that
a deformation of vacuum extremal is in question suggests that the dynamics associated with
them is in directions transversal to Y 2 so that only the deformation is dictated partially by
Einstein’s equations.

5. Lagrangian manifolds do not involve complex structure in any obvious manner. One could
however ask whether the deformations could involve complex structure in a natural manner in
CP2 degrees of freedom so that the vanishing of gww would be guaranteed by holomorphy of
CP2 complex coordinate as function of w.

One should get the complex structure in some natural manner: in other words, the complex
structure should relate to the geometry of CP2 somehow. The complex coordinate defined by
say z = P1 + iQ1 for the deformation suggests itself. This would suggest that at the limit when
one puts Q1 = 0 one obtains P1 = P1(Re(w)) for the vacuum extremals and the deformation
could be seen as an analytic continuation of real function to region of complex plane. This is
in spirit with the algebraic approach. The vanishing of Kähler current requires that the Kähler
magnetic field is covariantly constant: DzJ

zz = 0 and DzJ
zz = 0 .

6. One could consider the possibility that the resulting 3-D sub-manifold of CP2 can be regarded
as contact manifold with induced Kähler form non-vanishing in 2-D section with natural com-
plex coordinates. The third coordinate variable- call it s- of the contact manifold and second
coordinate of its transversal section would depend on time space-time coordinates for vacuum
extremals. The coordinate associated with the transversal section would be continued to a
complex coordinate which is holomorphic function of w and u.

7. The resulting thickened magnetic flux tubes could be seen as another representation of Kähler
magnetic flux tubes: at this time as deformations of vacuum flux tubes rather than cosmic
strings. For this ansatz it is however difficult to imagine deformations carrying Kähler electric
field.

2.10.6 About the interpretation of the generalized conformal algebras

The long-standing challenge has been finding of the direct connection between the super-conformal
symmetries assumed in the construction of the geometry of the ”world of classical worlds” (WCW)
and possible conformal symmetries of field equations. 4-dimensionality and Minkowskian signature
have been the basic problems. The recent construction provides new insights to this problem.

1. In the case of string models the quantization of the Fourier coefficients of coordinate variables
of the target space gives rise to Kac-Moody type algebra and Virasoro algebra generators are
quadratic in these. Also now Kac-Moody type algebra is expected. If one were to perform a
quantization of the coefficients in Laurents series for complex CP2 coordinates, one would ob-
tain interpretation in terms of su(3) = u(2) + t decomposition, where t corresponds to CP3: the
oscillator operators would correspond to generators in t and their commutator would give gen-
erators in u(2). SU(3)/SU(2) coset representation for Kac-Moody algebra would be in question.
Kac-Moody algebra would be associated with the generators in both M4 and CP2 degrees of
freedom. This kind of Kac-Moody algebra appears in quantum TGD.

2. The constraints on induced metric imply a very close resemblance with string models and a
generalization of Virasoro algebra emerges. An interesting question is how the two algebras
acting on coordinate and field degrees of freedom relate to the super-conformal algebras defined
by the symplectic group of δM4

+×CP2 acting on space-like 3-surfaces at boundaries of CD and
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to the Kac-Moody algebras acting on light-like 3-surfaces. It has been conjectured that these
algebras allow a continuation to the interior of space-time surface made possible by its slicing
by 2-surfaces parametrized by 2-surfaces. The proposed construction indeed provides this kind
of slicings in both M4 and CP2 factor.

3. In the recent case, the algebras defined by the Fourier coefficients of field variables would be
Kac-Moody algebras. Virasoro algebra acting on preferred coordinates would be expressed in
terms of the Kac-Moody algebra in the standard Sugawara construction applied in string models.
The algebra acting on field space would be analogous to the conformal algebra assignable to the
symplectic algebra so that also symplectic algebra is present. Stringy pragmatist could imagine
quantization of symplectic algebra by replacing CP2 coordinates in the expressions of Hamilto-
nians with oscillator operators. This description would be counterpart for the construction of
spinor harmonics in WCW and might provide some useful insights.

4. For given type of space-time surface either CP2 or M4 corresponds to Kac-Moody algebra but
not both. From the point of view of quantum TGD it looks as that something were missing. An
analogous problem was encountered at GRT limit of TGD [L14]. When Euclidian space-time
regions are allowed Einstein-Maxwell action is able to mimic standard model with a surprising
accuracy but there is a problem: one obtains either color charges or M4 charges but not both.
Perhaps it is not enough to consider either CP2 type vacuum extremal or its exterior but both to
describe particle: this would give the direct product of the Minkowskian and Euclidian algebras
acting on tensor product. This does not however seem to be consistent with the idea that the
two descriptions are duality related (the analog of T-duality).

2.11 Do geometric invariants of preferred extremals define
topological invariants of space-time surface and code for
quantum physics?

The recent progress in the understanding of preferred extremals [K8] led to a reduction of the field
equations to conditions stating for Euclidian signature the existence of Kähler metric. The resulting
conditions are a direct generalization of corresponding conditions emerging for the string world sheet
and stating that the 2-metric has only non-diagonal components in complex/hypercomplex coordi-
nates. Also energy momentum of Kähler action and has this characteristic (1,1) tensor structure. In
Minkowskian signature one obtains the analog of 4-D complex structure combining hyper-complex
structure and 2-D complex structure.

The construction lead also to the understanding of how Einstein’s equations with cosmological
term follow as a consistency condition guaranteeing that the covariant divergence of the Maxwell’s
energy momentum tensor assignable to Kähler action vanishes. This gives T = kG + Λg. By taking
trace a further condition follows from the vanishing trace of T :

R =
4Λ

k
. (2.11.1)

That any preferred extremal should have a constant Ricci scalar proportional to cosmological constant
is very strong prediction. Note that the accelerating expansion of the Universe would support positive
value of Λ. Note however that both Λ and k ∝ 1/G are both parameters characterizing one particular
preferred extremal. One could of course argue that the dynamics allowing only constant curvature
space-times is too simple. The point is however that particle can topologically condense on several
space-time sheets meaning effective superposition of various classical fields defined by induced metric
and spinor connection.

The following considerations demonstrate that preferred extremals can be seen as canonical rep-
resentatives for the constant curvature manifolds playing central role in Thurston’s geometrization
theorem [A51] known also as hyperbolization theorem implying that geometric invariants of space-
time surfaces transform to topological invariants. The generalization of the notion of Ricci flow to
Maxwell flow in the space of metrics and further to Kähler flow for preferred extremals in turn gives
a rather detailed vision about how preferred extremals organize to one-parameter orbits. It is quite

http://en.wikipedia.org/wiki/Hyperbolization_theorem
http://en.wikipedia.org/wiki/Hyperbolization_theorem
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possible that Kähler flow is actually discrete. The natural interpretation is in terms of dissipation and
self organization.

Quantum classical correspondence suggests that this line of thought could be continued even
further: could the geometric invariants of the preferred extremals could code not only for space-time
topology but also for quantum physics? How to calculate the correlation functions and coupling
constant evolution has remained a basic unresolved challenge of quantum TGD. Could the correlation
functions be reduced to statistical geometric invariants of preferred extemals? The latest (means
the end of 2012) and perhaps the most powerful idea hitherto about coupling constant evolution
is quantum classical correspondence in statistical sense stating that the statistical properties of a
preferred extremal in quantum superposition of them are same as those of the zero energy state in
question. This principle would be quantum generalization of ergodic theorem stating that the time
evolution of a single member of ensemble represents the ensemble statistically. This principle would
allow to deduce correlation functions and S-matrix from the statistical properties of single preferred
extremal alone using classical intuition. Also coupling constant evolution would be coded by the
statistical properties of the representative preferred extremal.

2.11.1 Preferred extremals of Kähler action as manifolds with constant
Ricci scalar whose geometric invariants are topological invariants

An old conjecture inspired by the preferred extremal property is that the geometric invariants of
space-time surface serve as topological invariants. The reduction of Kähler action to 3-D Chern-
Simons terms [K8] gives support for this conjecture as a classical counterpart for the view about TGD
as almost topological QFT. The following arguments give a more precise content to this conjecture in
terms of existing mathematics.

1. It is not possible to represent the scaling of the induced metric as a deformation of the space-time
surface preserving the preferred extremal property since the scale of CP2 breaks scale invariance.
Therefore the curvature scalar cannot be chosen to be equal to one numerically. Therefore also
the parameter R = 4Λ/k and also Λ and k separately characterize the equivalence class of
preferred extremals as is also physically clear.

Also the volume of the space-time sheet closed inside causal diamond CD remains constant
along the orbits of the flow and thus characterizes the space-time surface. Λ and even k ∝ 1/G
can indeed depend on space-time sheet and p-adic length scale hypothesis suggests a discrete
spectrum for Λ/k expressible in terms of p-adic length scales: Λ/k ∝ 1/L2

p with p ' 2k favored
by p-adic length scale hypothesis. During cosmic evolution the p-adic length scale would increase
gradually. This would resolve the problem posed by cosmological constant in GRT based theories.

2. One could also see the preferred extremals as 4-D counterparts of constant curvature 3-manifolds
in the topology of 3-manifolds. An interesting possibility raised by the observed negative value
of Λ is that most 4-surfaces are constant negative curvature 4-manifolds. By a general theorem
coset spaces H4/Γ, where H4 = SO(1, 4)/SO(4) is hyperboloid of M5 and Γ a torsion free
discrete subgroup of SO(1, 4) [A20]. It is not clear to me, whether the constant value of Ricci
scalar implies constant sectional curvatures and therefore hyperbolic space property. It could
happen that the space of spaces with constant Ricci curvature contain a hyperbolic manifold
as an especially symmetric representative. In any case, the geometric invariants of hyperbolic
metric are topological invariants.

By Mostow rigidity theorem [A28] finite-volume hyperbolic manifold is unique for D > 2 and
determined by the fundamental group of the manifold. Since the orbits under the Kähler flow
preserve the curvature scalar the manifolds at the orbit must represent different imbeddings of
one and hyperbolic 4-manifold. In 2-D case the moduli space for hyperbolic metric for a given
genus g > 0 is defined by Teichmueller parameters and has dimension 6(g − 1). Obviously the
exceptional character of D = 2 case relates to conformal invariance. Note that the moduli space
in question plays a key role in p-adic mass calculations [K18].

In the recent case Mostow rigidity theorem could hold true for the Euclidian regions and maybe
generalize also to Minkowskian regions. If so then both ”topological” and ”geometro” in ”Topo-
logical GeometroDynamics” would be fully justified. The fact that geometric invariants become

http://tgdtheory.com/public_html/tgdclass/tgdclass.html#class
http://tgdtheory.com/public_html/tgdclass/tgdclass.html#class
http://en.wikipedia.org/wiki/Hyperbolic_manifold
http://en.wikipedia.org/wiki/Mostow_rigidity_theorem
http://tgdtheory.com/public_html/paddark/paddark.html#elvafu
http://tgdtheory.com/public_html/paddark/paddark.html#elvafu
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topological invariants also conforms with ”TGD as almost topological QFT” and allows the
notion of scale to find its place in topology. Also the dream about exact solvability of the theory
would be realized in rather convincing manner.

These conjectures are the main result independent of whether the generalization of the Ricci flow
discussed in the sequel exists as a continuous flow or possibly discrete sequence of iterates in the
space of preferred extremals of Kähler action. My sincere hope is that the reader could grasp how far
reaching these result really are.

2.11.2 Is there a connection between preferred extremals and AdS4/CFT
correspondence?

The preferred extremals satisfy Einstein Maxwell equations with a cosmological constant and have
negative scalar curvature for negative value of Λ. 4-D space-times with hyperbolic metric provide
canonical representation for a large class of four-manifolds and an interesting question is whether
these spaces are obtained as preferred extremals and/or vacuum extremals.

4-D hyperbolic space with Minkowski signature is locally isometric with AdS4. This suggests at
connection with AdS4/CFT correspondence of M-theory. The boundary of AdS would be now replaced
with 3-D light-like orbit of partonic 2-surface at which the signature of the induced metric changes.
The metric 2-dimensionality of the light-like surface makes possible generalization of 2-D conformal
invariance with the light-like coordinate taking the role of complex coordinate at light-like boundary.
AdS could represent a special case of a more general family of space-time surfaces with constant Ricci
scalar satistying Einstein-Maxwell equations and generalizing the AdS4/CFT correspondence. There
is however a strong objection from cosmology: the accelerated expansion of the Universe requires
positive value of Λ and favors De Sitter Space dS4 instead of AdS4.

These observations provide motivations for finding whether AdS4 and/or dS4 allows an imbedding
as a vacuum extremal to M4 × S2 ⊂ M4 × CP2, where S2 is a homologically trivial geodesic sphere
of CP2. It is easy to guess the general form of the imbedding by writing the line elements of, M4, S2,
and AdS4.

1. The line element of M4 in spherical Minkowski coordinates (m, rM , θ, φ) reads as

ds2 = dm2 − dr2
M − r2

MdΩ2 . (2.11.2)

2. Also the line element of S2 is familiar:

ds2 = −R2(dΘ2 + sin2(θ)dΦ2) . (2.11.3)

3. By visiting in Wikipedia one learns that in spherical coordinate the line element of AdS4/dS4

is given by

ds2 = A(r)dt2 − 1

A(r)
dr2 − r2dΩ2 ,

A(r) = 1 + εy2 , y =
r

r0
,

ε = 1 for AdS4 , ε = −1 for dS4 . (2.11.4)

4. From these formulas it is easy to see that the ansatz is of the same general form as for the
imbedding of Schwartschild-Nordstöm metric:

m = Λt+ h(y) , rM = r ,
Θ = s(y) , Φ = ω(t+ f(y)) .

(2.11.5)

http://en.wikipedia.org/wiki/AdS
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The non-trivial conditions on the components of the induced metric are given by

gtt = Λ2 − x2sin2(Θ) = A(r) ,

gtr =
1

r0

[
Λ
dh

dy
− x2sin2(θ)

df

dr

]
= 0 ,

grr =
1

r2
0

[
(
dh

dy
)2 − 1− x2sin2(θ)(

df

dy
)2 −R2(

dΘ

dy
)2

]
= − 1

A(r)
,

x = Rω . (2.11.6)

By some simple algebraic manipulations one can derive expressions for sin(Θ), df/dr and dh/dr.

1. For Θ(r) the equation for gtt gives the expression

sin(Θ) = ±P
1/2

x
,

P = Λ2 −A = Λ2 − 1− εy2 . (2.11.7)

The condition 0 ≤ sin2(Θ) ≤ 1 gives the conditions

(Λ2 − x2 − 1)1/2 ≤ y ≤ (Λ2 − 1)1/2 for ε = 1 (AdS4) ,
(−Λ2 + 1)1/2 ≤ y ≤ (x2 + 1− Λ2)1/2 for ε = −1 (dS4) .

(2.11.8)

Only a spherical shell is possible in both cases. The model for the final state of star considered
in [K79] predicted similar layer layer like structure and inspired the proposal that stars quite
generally have an onionlike structure with radii of various shells characterize by p-adic length
scale hypothesis and thus coming in some powers of

√
2. This brings in mind also Titius-Bode

law.

2. From the vanishing of gtr one obtains

dh

dy
=

P

Λ

df

dy
.

(2.11.9)

3. The condition for grr gives

(
df

dy
)2 =

r2
0

AP
[A−1 −R2(

dΘ

dy
)2] . (2.11.10)

Clearly, the right-hand side is positive if P ≥ 0 holds true and RdΘ/dy is small. One can express
dΘ/dy using chain rule as

(
dΘ

dy
)2 = x2y2

P (P−x2) . (2.11.11)

One obtains
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(
df

dy
)2 = Λr2

0

y2

AP

[
1

1 + y2
− x2(

R

r0
)2 1

P (P − x2)

]
.

(2.11.12)

The right hand side of this equation is non-negative for certain range of parameters and variable
y. Note that for r0 � R the second term on the right hand side can be neglected. In this case
it is easy to integrate f(y).

The conclusion is that both AdS4 and dS4 allow a local imbedding as a vacuum extremal. Whether
also an imbedding as a non-vacuum preferred extremal to M4 × S2, S2 a homologically non-trivial
geodesic sphere is possible, is an interesting question.

2.11.3 Generalizing Ricci flow to Maxwell flow for 4-geometries and Kähler
flow for space-time surfaces

The notion of Ricci flow has played a key part in the geometrization of topological invariants of
Riemann manifolds. I certainly did not have this in mind when I choose to call my unification attempt
”Topological Geometrodynamics” but this title strongly suggests that a suitable generalization of Ricci
flow could play a key role in the understanding of also TGD.

Ricci flow and Maxwell flow for 4-geometries

The observation about constancy of 4-D curvature scalar for preferred extremals inspires a general-
ization of the well-known volume preserving Ricci flow [A41] introduced by Richard Hamilton. Ricci
flow is defined in the space of Riemann metrics as

dgαβ
dt

= −2Rαβ + 2
Ravg
D

gαβ . (2.11.13)

HereRavg denotes the average of the scalar curvature, andD is the dimension of the Riemann manifold.
The flow is volume preserving in average sense as one easily checks (〈gαβdgαβ/dt〉 = 0). The volume
preserving property of this flow allows to intuitively understand that the volume of a 3-manifold in the
asymptotic metric defined by the Ricci flow is topological invariant. The fixed points of the flow serve
as canonical representatives for the topological equivalence classes of 3-manifolds. These 3-manifolds
(for instance hyperbolic 3-manifolds with constant sectional curvatures) are highly symmetric. This
is easy to understand since the flow is dissipative and destroys all details from the metric.

What happens in the recent case? The first thing to do is to consider what might be called Maxwell
flow in the space of all 4-D Riemann manifolds allowing Maxwell field.

1. First of all, the vanishing of the trace of Maxwell’s energy momentum tensor codes for the
volume preserving character of the flow defined as

dgαβ
dt

= Tαβ . (2.11.14)

Taking covariant divergence on both sides and assuming that d/dt and Dα commute, one obtains
that Tαβ is divergenceless.

This is true if one assumes Einstein’s equations with cosmological term. This gives

dgαβ
dt

= kGαβ + Λgαβ = kRαβ + (−kR
2

+ Λ)gαβ . (2.11.15)

http://en.wikipedia.org/wiki/Ricci_flow
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The trace of this equation gives that the curvature scalar is constant. Note that the value of
the Kähler coupling strength plays a highly non-trivial role in these equations and it is quite
possible that solutions exist only for some critical values of αK . Quantum criticality should fix
the allow value triplets (G,Λ, αK) apart from overall scaling

(G,Λ, αK)→ (xG,Λ/x, xαK .

Fixing the value of G fixes the values remaining parameters at critical points. The rescaling of
the parameter t induces a scaling by x.

2. By taking trace one obtains the already mentioned condition fixing the curvature to be constant,
and one can write

dgαβ
dt

= kRαβ − Λgαβ . (2.11.16)

Note that in the recent case Ravg = R holds true since curvature scalar is constant. The fixed
points of the flow would be Einstein manifolds [A13, A65] satisfying

Rαβ =
Λ

k
gαβ (2.11.17)

.

3. It is by no means obvious that continuous flow is possible. The condition that Einstein-Maxwell
equations are satisfied might pick up from a completely general Maxwell flow a discrete subset
as solutions of Einstein-Maxwell equations with a cosmological term. If so, one could assign to
this subset a sequence of values tn of the flow parameter t.

4. I do not know whether 3-dimensionality is somehow absolutely essential for getting the topolog-
ical classification of closed 3-manifolds using Ricci flow. This ignorance allows me to pose some
innocent questions. Could one have a canonical representation of 4-geometries as spaces with
constant Ricci scalar? Could one select one particular Einstein space in the class four-metrics
and could the ratio Λ/k represent topological invariant if one normalizes metric or curvature
scalar suitably. In the 3-dimensional case curvature scalar is normalized to unity. In the recent
case this normalization would give k = 4Λ in turn giving Rαβ = gαβ/4. Does this mean that
there is only single fixed point in local sense, analogous to black hole toward which all geometries
are driven by the Maxwell flow? Does this imply that only the 4-volume of the original space
would serve as a topological invariant?

Maxwell flow for space-time surfaces

One can consider Maxwell flow for space-time surfaces too. In this case Kähler flow would be the
appropriate term and provides families of preferred extremals. Since space-time surfaces inside CD
are the basic physical objects are in TGD framework, a possible interpretation of these families would
be as flows describing physical dissipation as a four-dimensional phenomenon polishing details from
the space-time surface interpreted as an analog of Bohr orbit.

1. The flow is now induced by a vector field jk(x, t) of the space-time surface having values in
the tangent bundle of imbedding space M4 × CP2. In the most general case one has Kähler
flow without the Einstein equations. This flow would be defined in the space of all space-time
surfaces or possibly in the space of all extremals. The flow equations reduce to

hklDαj
k(x, t)Dβh

l =
1

2
Tαβ . (2.11.18)

http://en.wikipedia.org/wiki/Einstein_manifold
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The left hand side is the projection of the covariant gradient Dαj
k(x, t) of the flow vector field

jk(x, t) to the tangent space of the space-time surface. Dalpha is covariant derivative taking
into account that jk is imbedding space vector field. For a fixed point space-time surface
this projection must vanish assuming that this space-time surface reachable. A good guess for
the asymptotia is that the divergence of Maxwell energy momentum tensor vanishes and that
Einstein’s equations with cosmological constant are well-defined.

Asymptotes corresponds to vacuum extremals. In Euclidian regions CP2 type vacuum extremals
and in Minkowskian regions to any space-time surface in any 6-D sub-manifold M4×Y 2, where
Y 2 is Lagrangian sub-manifold of CP2 having therefore vanishing induced Kähler form. Sym-
plectic transformations of CP2 combined with diffeomorphisms of M4 give new Lagrangian
manifolds. One would expect that vacuum extremals are approached but never reached at
second extreme for the flow.

If one assumes Einstein’s equations with a cosmological term, allowed vacuum extremals must
be Einstein manifolds. For CP2 type vacuum extremals this is the case. It is quite possible that
these fixed points do not actually exist in Minkowskian sector, and could be replaced with more
complex asymptotic behavior such as limit, chaos, or strange attractor.

2. The flow could be also restricted to the space of preferred extremals. Assuming that Einstein
Maxwell equations indeed hold true, the flow equations reduce to

hklDαj
k(x, t)∂βh

l =
1

2
(kRαβ − Λgαβ) . (2.11.19)

Preferred extremals would correspond to a fixed sub-manifold of the general flow in the space
of all 4-surfaces.

3. One can also consider a situation in which jk(x, t) is replaced with jk(h, t) defining a flow in the
entire imbedding space. This assumption is probably too restrictive. In this case the equations
reduce to

(Drjl(x, t) +Dljr)∂αh
r∂βh

l = kRαβ − Λgαβ . (2.11.20)

Here Dr denotes covariant derivative. Asymptotia is achieved if the tensor Dkjl+Dkjl becomes
orthogonal to the space-time surface. Note for that Killing vector fields of H the left hand side
vanishes identically. Killing vector fields are indeed symmetries of also asymptotic states.

It must be made clear that the existence of a continuous flow in the space of preferred extremals
might be too strong a condition. Already the restriction of the general Maxwell flow in the space of
metrics to solutions of Einstein-Maxwell equations with cosmological term might lead to discretization,
and the assumption about reprentability as 4-surface in M4 × CP2 would give a further condition
reducing the number of solutions. On the other hand, one might consiser a possibility of a continuous
flow in the space of constant Ricci scalar metrics with a fixed 4-volume and having hyperbolic spaces
as the most symmetric representative.

Dissipation, self organization, transition to chaos, and coupling constant evolution

A beautiful connection with concepts like dissipation, self-organization, transition to chaos, and cou-
pling constant evolution suggests itself.

1. It is not at all clear whether the vacuum extremal limits of the preferred extremals can correspond
to Einstein spaces except in special cases such as CP2 type vacuum extremals isometric with
CP2. The imbeddability condition however defines a constraint force which might well force
asymptotically more complex situations such as limit cycles and strange attractors. In ordinary
dissipative dynamics an external energy feed is essential prerequisite for this kind of non-trivial
self-organization patterns.
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In the recent case the external energy feed could be replaced by the constraint forces due to
the imbeddability condition. It is not too difficult to imagine that the flow (if it exists!) could
define something analogous to a transition to chaos taking place in a stepwise manner for critical
values of the parameter t. Alternatively, these discrete values could correspond to those values
of t for which the preferred extremal property holds true for a general Maxwell flow in the space
of 4-metrics. Therefore the preferred extremals of Kähler action could emerge as one-parameter
(possibly discrete) families describing dissipation and self-organization at the level of space-time
dynamics.

2. For instance, one can consider the possibility that in some situations Einstein’s equations split
into two mutually consistent equations of which only the first one is independent

xJανJ
νβ = Rαβ ,

LK = xJανJ
νβ = 4Λ ,

x =
1

16παK
. (2.11.21)

Note that the first equation indeed gives the second one by tracing. This happens for CP2 type
vacuum extremals.

Kähler action density would reduce to cosmological constant which should have a continuous
spectrum if this happens always. A more plausible alternative is that this holds true only
asymptotically. In this case the flow equation could not lead arbitrary near to vacuum extremal,
and one can think of situation in which LK = 4Λ defines an analog of limiting cycle or perhaps
even strange attractor. In any case, the assumption would allow to deduce the asymptotic value
of the action density which is of utmost importance from calculational point of view: action
would be simply SK = 4ΛV4 and one could also say that one has minimal surface with Λ taking
the role of string tension.

3. One of the key ideas of TGD is quantum criticality implying that Kähler coupling strength is
analogous to critical temperature. Second key idea is that p-adic coupling constant evolution
represents discretized version of continuous coupling constant evolution so that each p-adic
prime would correspond a fixed point of ordinary coupling constant evolution in the sense that
the 4-volume characterized by the p-adic length scale remains constant. The invariance of the
geometric and thus geometric parameters of hyperbolic 4-manifold under the Kähler flow would
conform with the interpretation as a flow preserving scale assignable to a given p-adic prime.
The continuous evolution in question (if possible at all!) might correspond to a fixed p-adic
prime. Also the hierarchy of Planck constants relates to this picture naturally. Planck constant
~eff = n~ corresponds to a multi-furcation generating n-sheeted structure and certainly affecting
the fundamental group.

4. One can of course question the assumption that a continuous flow exists. The property of being a
solution of Einstein-Maxwell equations, imbeddability property, and preferred extremal property
might allow allow only discrete sequences of space-time surfaces perhaps interpretable as orbit
of an iterated map leading gradually to a fractal limit. This kind of discrete sequence might
be also be selected as preferred extremals from the orbit of Maxwell flow without assuming
Einstein-Maxwell equations. Perhaps the discrete p-adic coupling constant evolution could be
seen in this manner and be regarded as an iteration so that the connection with fractality would
become obvious too.

Does a 4-D counterpart of thermodynamics make sense?

The interpretation of the Kähler flow in terms of dissipation, the constancy of R, and almost constancy
of LK suggest an interpretation in terms of 4-D variant of thermodynamics natural in zero energy
ontology (ZEO), where physical states are analogs for pairs of initial and final states of quantum event
are quantum superpositions of classical time evolutions. Quantum theory becomes a ”square root” of
thermodynamics so that 4-D analog of thermodynamics might even replace ordinary thermodynamics
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as a fundamental description. If so this 4-D thermodynamics should be qualitatively consistent with
the ordinary 3-D thermodynamics.

1. The first naive guess would be the interpretation of the action density LK as an analog of energy
density e = E/V3 and that of R as the analog to entropy density s = S/V3. The asymptotic
states would be analogs of thermodynamical equilibria having constant values of LK and R.

2. Apart from an overall sign factor ε to be discussed, the analog of the first law de = Tds−pdV/V
would be

dLK = kdR+ Λ
dV4

V4
.

One would have the correspondences S → εRV4, e → εLK and k → T , p → −Λ. k ∝ 1/G
indeed appears formally in the role of temperature in Einstein’s action defining a formal partition
function via its exponent. The analog of second law would state the increase of the magnitude
of εRV4 during the Kähler flow.

3. One must be very careful with the signs and discuss Euclidian and Minkowskian regions sepa-
rately. Concerning purely thermodynamic aspects at the level of vacuum functional Euclidian
regions are those which matter.

(a) For CP2 type vacuum extremals LK ∝ E2 + B2 , R = Λ/k, and Λ are positive. In
thermodynamical analogy for ε = 1 this would mean that pressure is negative.

(b) In Minkowskian regions the value of R = Λ/k is negative for Λ < 0 suggested by the large
abundance of 4-manifolds allowing hyperbolic metric and also by cosmological considera-
tions. The asymptotic formula LK = 4Λ considered above suggests that also Kähler action
is negative in Minkowskian regions for magnetic flux tubes dominating in TGD inspired
cosmology: the reason is that the magnetic contribution to the action density LK ∝ E2−B2

dominates.

Consider now in more detail the 4-D thermodynamics interpretation in Euclidian and Minkowskian
regions assuming that the the evolution by quantum jumps has Kähler flow as a space-time correlate.

1. In Euclidian regions the choice ε = 1 seems to be more reasonable one. In Euclidian regions −Λ
as the analog of pressure would be negative, and asymptotically (that is for CP2 type vacuum
extremals) its value would be proportional to Λ ∝ 1/GR2, where R denotes CP2 radius defined
by the length of its geodesic circle.

A possible interpretation for negative pressure is in terms of string tension effectively inducing
negative pressure (note that the solutions of the modified Dirac equation indeed assign a string
to the wormhole contact). The analog of the second law would require the increase of RV4 in
quantum jumps. The magnitudes of LK , R, V4 and Λ would be reduced and approach their
asymptotic values. In particular, V4 would approach asymptotically the volume of CP2.

2. In Minkowskian regions Kähler action contributes to the vacuum functional a phase factor anal-
ogous to an imaginary exponent of action serving in the role of Morse function so that thermo-
dynamics interpretation can be questioned. Despite this one can check whether thermodynamic
interpretation can be considered. The choice ε = −1 seems to be the correct choice now. −Λ
would be analogous to a negative pressure whose gradually decreases. In 3-D thermodynamics it
is natural to assign negative pressure to the magnetic flux tube like structures as their effective
string tension defined by the density of magnetic energy per unit length. −R ≥ 0 would entropy
and −LK ≥ 0 would be the analog of energy density.

R = Λ/k and the reduction of Λ during cosmic evolution by quantum jumps suggests that the
larger the volume of CD and thus of (at least) Minkowskian space-time sheet the smaller the
negative value of Λ.

Assume the recent view about state function reduction explaining how the arrow of geometric
time is induced by the quantum jump sequence defining experienced time [K4]. According to
this view zero energy states are quantum superpositions over CDs of various size scales but
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with common tip, which can correspond to either the upper or lower light-like boundary of
CD. The sequence of quantum jumps the gradual increase of the average size of CD in the
quantum superposition and therefore that of average value of V4. On the other hand, a gradual
decrease of both −LK and −R looks physically very natural. If Kähler flow describes the effect
of dissipation by quantum jumps in ZEO then the space-time surfaces would gradually approach
nearly vacuum extremals with constant value of entropy density −R but gradually increasing
4-volume so that the analog of second law stating the increase of −RV4 would hold true.

3. The interpretation of −R > 0 as negentropy density assignable to entanglement is also possible
and is consistent with the interpretation in terms of second law. This interpretation would only
change the sign factor ε in the proposed formula. Otherwise the above arguments would remain
as such.

2.11.4 Could correlation functions, S-matrix, and coupling constant evo-
lution be coded the statistical properties of preferred extremals?

Quantum classical correspondence states that all aspects of quantum states should have correlates in
the geometry of preferred extremals. In particular, various elementary particle propagators should
have a representation as properties of preferred extremals. This would allow to realize the old dream
about being able to say something interesting about coupling constant evolution although it is not
yet possible to calculate the M-matrices and U-matrix. Hitherto everything that has been said about
coupling constant evolution has been rather speculative arguments except for the general vision that
it reduces to a discrete evolution defined by p-adic length scales. General first principle definitions
are however much more valuable than ad hoc guesses even if the latter give rise to explicit formulas.

In quantum TGD and also at its QFT limit various correlation functions in given quantum state
should code for its properties. By quantum classical correspondence these correlation functions should
have counterparts in the geometry of preferred extremals. Even more: these classical counterparts
for a given preferred extremal ought to be identical with the quantum correlation functions for the
superposition of preferred extremals. This correspondence could be called quantum ergodicity by
its analogy with ordinary ergodicity stating that the member of ensemble becomes representative of
ensemble.

1. The marvelous implication of quantum ergodicity would be that one could calculate everything
solely classically using the classical intuition - the only intuition that we have. Quantum ergodic-
ity would also solve the paradox raised by the quantum classical correspondence for momentum
eigenstates. Any preferred extremal in their superposition defining momentum eigenstate should
code for the momentum characterizing the superposition itself. This is indeed possible if every
extremal in the superposition codes the momentum to the properties of classical correlation
functions which are identical for all of them.

2. The only manner to possibly achieve quantum ergodicity is in terms of the statistical properties
of the preferred extremals. It should be possible to generalize the ergodic theorem stating
that the properties of statistical ensemble are represented by single space-time evolution in the
ensemble of time evolutions. Quantum superposition of classical worlds would effectively reduce
to single classical world as far as classical correlation functions are considered. The notion of
finite measurement resolution suggests that one must state this more precisely by adding that
classical correlation functions are calculated in a given UV and IR resolutions meaning UV cutoff
defined by the smallest CD and IR cutoff defined by the largest CD present.

3. The skeptic inside me immediately argues that TGD Universe is 4-D spin glass so that this
quantum ergodic theorem must be broken. In the case of the ordinary spin classes one has
not only statistical average for a fixed Hamiltonian but a statistical average over Hamiltonians.
There is a probability distribution over the coupling parameters appearing in the Hamiltonian.
Maybe the quantum counterpart of this is needed to predict the physically measurable correlation
functions.

Could this average be an ordinary classical statistical average over quantum states with different
classical correlation functions? This kind of average is indeed taken in density matrix formalism.
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Or could it be that the square root of thermodynamics defined by ZEO actually gives automati-
cally rise to this average? The eigenvalues of the ”hermitian square root ” of the density matrix
would code for components of the state characterized by different classical correlation functions.
One could assign these contributions to different ”phases”.

4. Quantum classical correspondence in statistical sense would be very much like holography (now
individual classical state represents the entire quantum state). Quantum ergodicity would pose
a rather strong constraint on quantum states. This symmetry principle could actually fix the
spectrum of zero energy states to a high degree and fix therefore the M-matrices given by the
product of hermitian square root of density matrix and unitary S-matrix and unitary U-matrix
having M-matrices as its orthonormal rows.

5. In TGD inspired theory of consciousness the counterpart of quantum ergodicity is the postulate
that the space-time geometry provides a symbolic representation for the quantum states and
also for the contents of consciousness assignable to quantum jumps between quantum states.
Quantum ergodicity would realize this strongly self-referential looking condition. The positive
and negative energy parts of zero energy state would be analogous to the initial and final
states of quantum jump and the classical correlation functions would code for the contents of
consciousness like written formulas code for the thoughts of mathematician and provide a sensory
feedback.

How classical correlation functions should be defined?

1. General Coordinate Invariance and Lorentz invariance are the basic constraints on the definition.
These are achieved for the space-time regions with Minkowskian signature and 4-DM4 projection
if linear Minkowski coordinates are used. This is equivalent with the contraction of the indices of
tensor fields with the space-time projections of M4 Killing vector fields representing translations.
Accepting ths generalization, there is no need to restrict oneself to 4-D M4 projection and one
can also consider also Euclidian regions identifiable as lines of generalized Feynman diagrams.

Quantum ergodicity very probably however forces to restrict the consideration to Minkowskian
and Euclidian space-time regions and various phases associated with them. Also CP2 Killing
vector fields can be projected to space-time surface and give a representation for classical gluon
fields. These in turn can be contracted with M4 Killing vectors giving rise to gluon fields as
analogs of graviton fields but with second polarization index replaced with color index.

2. The standard definition for the correlation functions associated with classical time evolution is
the appropriate starting point. The correlation function GXY (τ) for two dynamical variables
X(t) and Y (t) is defined as the average GXY (τ) =

∫
T
X(t)Y (t+τ)dt/T over an interval of length

T , and one can also consider the limit T →∞. In the recent case one would replace τ with the
difference m1−m2 = m of M4 coordinates of two points at the preferred extremal and integrate
over the points of the extremal to get the average. The finite time interval T is replaced with
the volume of causal diamond in a given length scale. Zero energy state with given quantum
numbers for positive and negative energy parts of the state defines the initial and final states
between which the fields appearing in the correlation functions are defined.

3. What correlation functions should be considered? Certainly one could calculate correlation func-
tions for the induced spinor connection given electro-weak propagators and correlation functions
for CP2 Killing vector fields giving correlation functions for gluon fields using the description in
terms of Killing vector fields. If one can uniquely separate from the Fourier transform uniquely
a term of form Z/(p2 −m2) by its momentum dependence, the coefficient Z can be identified
as coupling constant squared for the corresponding gauge potential component and one can in
principle deduce coupling constant evolution purely classically. One can imagine of calculating
spinorial propagators for string world sheets in the same manner. Note that also the depen-
dence on color quantum numbers would be present so that in principle all that is needed could
be calculated for a single preferred extremal without the need to construct QFT limit and to
introduce color quantum numbers of fermions as spin like quantum numbers (color quantum
numbers corresponds to CP2 partial wave for the tip of the CD assigned with the particle).
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4. What about Higgs field? TGD in principle allows scalar and pseudo-scalars which could be called
Higgs like states. These states are however not necessary for particle massivation although they
can represent particle massivation and must do so if one assumes that QFT limit exist. p-Adic
thermodynamics however describes particle massivation microscopically.

The problem is that Higgs like field does not seem to have any obvious space-time correlate.
The trace of the second fundamental form is the obvious candidate but vanishes for preferred
extremals which are both minimal surfaces and solutions of Einstein Maxwell equations with
cosmological constant. If the string world sheets at which all spinor components except right
handed neutrino are localized for the general solution ansatz of the modified Dirac equation, the
corresponding second fundamental form at the level of imbedding space defines a candidate for
classical Higgs field. A natural expectation is that string world sheets are minimal surfaces of
space-time surface. In general they are however not minimal surfaces of the imbedding space so
that one might achieve a microscopic definition of classical Higgs field and its vacuum expectation
value as an average of one point correlation function over the string world sheet.

Many detailed speculations about coupling constant evolution to be discussed in the sections
below must be taken as innovative guesses doomed to have the eventual fate of guesses. The notion of
quantum ergodicity could however be one of the really deep ideas about coupling constant evolution
comparable to the notion of p-adic coupling constant evolution. Quantum Ergodicity (briefly QE)
would also state something extremely non-trivial also about the construction of correlation functions
and S-matrix. Because this principle is so new, the rest of the chapter does not yet contain any
applications of QE. This should not lead the reader to under-estimate the potential power of QE.

2.12 Does thermodynamics have a representation at the level
of space-time geometry?

R. Kiehn has proposed what he calls Topological Thermodynamics (TTD) [B48] as a new formulation
of thermodynamics. The basic vision is that thermodynamical equations could be translated to
differential geometric statements using the notions of differential forms and Pfaffian system [A34].
That TTD differs from TGD by a single letter is not enough to ask whether some relationship between
them might exist. Quantum TGD can however in a well-defined sense be regarded as a square root
of thermodynamics in zero energy ontology (ZEO) and this leads leads to ask seriously whether TTD
might help to understand TGD at deeper level. The thermodynamical interpretation of space-time
dynamics would obviously generalize black hole thermodynamics to TGD framework and already
earlier some concrete proposals have been made in this direction.

One can raise several questions. Could the preferred extremals of Kähler action code for the square
root of thermodynamics? Could induced Kähler gauge potential and Kähler form (essentially Maxwell
field) have formal thermodynamic interpretation? The vacuum degeneracy of Kähler action implies
4-D spin glass degeneracy and strongly suggests the failure of strict determinism for the dynamics
of Kähler action for non-vacuum extremals too. Could thermodynamical irreversibility and preferred
arrow of time allow to characterize the notion of preferred extremal more sharply?

It indeed turns out that one can translate Kiehn’s notions to TGD framework rather straightfor-
wardly.

1. Kiehn’s work 1- form corresponds to induced Kähler gauge potential implying that the vanishing
of instanton density for Kähler form becomes a criterion of reversibility and irreversibility is
localized on the (4-D) ”lines” of generalized Feyman diagrams, which correspond to space-like
signature of the induced metric. The localization of heat production to generalized Feynman
diagrams conforms nicely with the kinetic equations of thermodynamics based on reaction rates
deduced from quantum mechanics. It also conforms with Kiehn’s vision that dissipation involves
topology change.

2. Heat produced in a given generalized Feynman diagram is just the integral of instanton density
and the condition that the arrow of geometric time has definite sign classically fixes the sign of
produced heat to be positive. In this picture the preferred extremals of Kähler action would allow
a trinity of interpretations as non-linear Maxwellian dynamics, thermodynamics, and integrable
hydrodynamics.

http://www22.pair.com/csdc/pdf/irevtors.pdf
http://en.wikipedia.org/wiki/Pfaffian_system
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3. The 4-D spin glass degeneracy of TGD breaking of ergodicity suggests that the notion of global
thermal equilibrium is too naive. The hierarchies of Planck constants and of p-adic length scales
suggests a hierarchical structure based on CDs withing CDs at imbedding space level and space-
time sheets topologically condensed at larger space-time sheets at space-time level. The arrow
of geometric time for quantum states could vary for sub-CDs and would have thermodynamical
space-time correlates realized in terms of distributions of arrows of geometric time for sub-CDs,
sub-sub-CDs, etc...

The hydrodynamical character of classical field equations of TGD means that field equations reduce
to local conservation laws for isometry currents and Kähler gauge current. This requires the extension
of Kiehn’s formalism to include besides forms and exterior derivative also induced metric, index raising
operation transforming 1-forms to vector fields, duality operation transforming k- forms to n-k forms,
and divergence which vanishes for conserved currents.

2.12.1 Motivations and background

It is good to begin by discussing the motivations for the geometrization of thermodynamics and by in-
troducing the existing mathematical framework identifying space-time surfaces as preferred extremals
of Kähler action.

ZEO and the need forthe space-time correlates for square root of thermodynamics

Quantum classical correspondence is basic guiding principle of quantum TGD. In ZEO TGD can
be regarded as a complex square root of thermodynamics so that the thermodynamics should have
correlates at the level of the geometry of space-time.

1. Zero energy states consist of pairs of positive and negative energy states assignable to opposite
boundaries of a causal diamond (CD). There is entire hierarchy of CDs characterized by their
scale coming as an integer multiple of a basic scale (also their Poincare transforms are allowed).

2. In ZEO zero energy states are automatically time-irreversible in the sense that either end of the
causal diamond (CD) corresponds to a state consisting of single particle states with well-defined
quantum numbers. In other words, this end of CD carries a prepared state. The other end
corresponds to a superposition of states which can have even different particle numbers: this is
the case in particle physics experiment typically. State function reduction reduces the second
end of CD to a prepared state. This process repeats itself. This suggests that the arrow of time
or rather, its geometric counterpart which we experience, alternates. This need not however be
the case if quantum classical correspondence holds true.

3. To illustrate what I have in mind consider a path towel, which has been been folded forth
and back. Assume that the direction in which folding is carried is time direction. Suppose
that the inhabitant of bath towel Universe is like the habitant of the famous Flatland and
therefore not able to detect the folding of the towel. If the classical dynamics of towel is time
irreversible (time corresponds to the direction in which the folding takes place), the inhabitant
sees ever lasting irreversible time evolution with single arrow of geometric time identified as time
coordinate for the towel: no changes in the arrow of geometric time. If the inhabitant is able to
make measurements about 3-D space the situation he or she might be able to see that his time
evolution takes place forth and back with respect to the time coordinate of higher-dimensional
imbedding space.

4. One might understand the arrow of time - albeit differently as in normal view about the situation
- if classical time evolution for the preferred extremals of Kähler action defines a geometric
correlate for quantum irreversibility of zero energy states. There are of course other space-time
sheets and other CDs present an it might be possible to detect the alternation of the arrow
of geometric time at imbedding space level by making measurements giving information about
their geometric arrows of time [K4].

By quantum classical correspondence one expects that the geometric arrow of time - irreversibility
- for zero energy states should have classical counterparts at the level of the dynamics of preferred
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extremals of Kähler action. What could be this counterpart? Thermodynamical evolution by quantum
jumps does not obey ordinary variational principle that would make it deterministic: Negentropy
Maximization Principle (NMP) [K46] for state function reductions of system is analogous to Second
Law for an ensemble of copies of system and actually implies it. Could one mimic irreversibility
by single classical evolution defined by a preferred extremal? Note that the dynamics of preferred
extremals is not actually strictly deterministic in the ordinary sense of the word: the reason is the
enormous vacuum degeneracy implying 4-D spin glass degeneracy. This makes it possible to mimic
not only quantum states but also sequences of quantum jumps by piece-wise deterministic evolution.

Preferred extremals of Kähler action

In Quantum TGD the basic arena of quantum dynamics is ”world of classical worlds” (WCW) [K62].
Purely classical spinor fields in this infinite-dimensional space define quantum states of the Universe.
General Coordinate Invariance (GCI) implies that classical worlds can be regarded as either 3-surfaces
or 4-D space-time surfaces analogous to Bohr orbits. Strong form of GCI implies in ZEO strong form
of holography in the sense that the points of WCW effectively correspond to collections of partonic
2-surfaces belonging to both ends of causal diamonds (CDs) plus their 4-D tangent space-time data.

Kähler geometry reduces to the notion of Kähler function [K36] and by quantum classical corre-
spondence a good guess is that Kähler function corresponds to so called Kähler action for Euclidian
space-time regions. Minkowskian space-time regions give a purely imaginary to Kähler action (square
root of metric determinant is imaginary) and this contribution plays the role of Morse function for
WCW. Stationary phase approximation imples that in first the approximation the extremals of the
Kähler function (to be distinguished from preferred extremals of Kähler action!) select one partic-
ular 3-surface and corresponding classical space-time surface (Bohr orbit) as that defining ”classical
physics”.

GCI implies holography and holography suggests that action reduces to 3-D terms. This is true if
one has jµAµ = 0 in the interior of space-time. If one assumes so called weak form of electric-magnetic
duality [K28] at the real and effective boundaries of space-time surface (3-D surfaces at the ends of
CDs and the light-like 3-surfaces at which the signature of induced 4-metric changes so that 4-metric
is degenerate), one obtains a reduction of Kähler action to Chern-Simons terms at the boundaries.
TGD reduces to almost topological QFT. ”Almost” means that the induced metric does not disappear
completely from the theory since it appears in the conditions expressing weak form of electric magnetic
duality and in the condition jµAµ = 0.

The strong form of holography implies effective 2-dimensionality and this suggests the reduction of
Chern-Simons terms to 2-dimensional areas of string world sheets and possible of partonic 2-surfaces.
This would mean almost reduction to string theory like theory with string tension becoming a dynamic
quantity.

Under additional rather general conditions the contributions from Minkowskian and Euclidian
regions of space-time surface are apart from the value of coefficient identical at light-like 3-surfaces.
At space-like 3-surfaces at the ends of space-time surface they need not be identical.

Quantum classical correspondence suggests that space-time surfaces provide a representation for
the square root of thermodynamics and therefore also for thermodynamics. In general relativity black
hole thermodynamics suggests the same. This idea is not new in TGD framework. For instance,
Hawking-Bekenstein formula for blackbody entropy [B1] allows a p-adic generalization in terms of
area of partonic 2-surfaces [K55]. The challenge is to deduce precise form of this correspondence and
here Kiehn’s topological thermodynamics might help in this task.

2.12.2 Kiehn’s topological thermodynamics (TTD)

The basic in the work of Kiehn is that thermodynamics allows a topological formulation in terms of
differential geometry.

1. Kiehn introduces also the notions of hrefhttp://www22.pair.com/csdc/pdf/irevtors.pdfPfaff sys-
tem and Pfaff dimension as the number of non-vanishing forms in the sequence for given 1-form
such as W or Q: W , dW , W ∧dW , dW ∧dW . Pfaff dimension D ≤ 4 tells that one can describe
W as sum W =

∑
Wkdx

k of gradients of D variables. D = 4 corresponds to open system,
D = 3 to a closed system and W ∧ dW 6= 0 defines what can be regarded as a chirality. For
D = 2 chirality vanishes no spontaneous parity breaking.

http://tgdtheory.com/public_html/tgdview/tgdview.html#tgdgeom
http://en.wikipedia.org/wiki/Black_hole_thermodynamics
http://tgdtheory.com/public_html/tgdnumber/tgdnumber.html#phblocks


2.12. Does thermodynamics have a representation at the level of space-time geometry?177

2. Kiehn’s king idea that Pfaffian systems provide a universal description of thermodynamical
reversisibility. Kiehn introduces heat 1- form Q. System is thermodynamically reversible if Q is
integrable. In other words, the condition Q∧dQ = 0 holds true which implies that one can write
Q = TdS: Q allows an integrable factor T and is expressible in terms of the gradient of entropy.
Q = TdS condition implies that Q correspond to a global flow defined by the coordinate lines
of S. This in turn implies that it is possible define phase factors depending on S along the flow
line: this relates to macroscopic quantum coherence for macroscopic quantum phases.

3. The first law expressing the work 1-form W as W = Q−dU = TdS−dU for reversible processes.
This gives dW ∧ dW = 0. The condition dW ∧ dW 6= 0 therefore characterizes irreversible
processes.

4. Symplectic transformations are natural in Kiehn’s framework but not absolutely essential.

Reader is encouraged to get familiar with Kiehn’s examples [B48] about the description of various
simple thermodynamical systems in this conceptual framework. Kiehn has also worked with the
differential topology of electrodynamics and discussed concepts like integrable flows known as Beltrami
flows. These flows generalized to TGD framework and are in key role in the construction of proposals
for preferred extremals of Kähler action: the basic idea would be that various conserved isometry
currents define Beltrami flows so that theit flow lines can be associated with coordinate lines.

2.12.3 Attempt to identify TTD in TGD framework

Let us now try to identify TTD or its complex square root in TGD framework.

The role of symplectic transformations

Symplectic transformations are important in Kiehn’s approach although they are not a necessary
ingredient of it and actually impossible to realize in Minkowski space-time.

1. Symplectic symmetries of WCW induced by synmplectic symmetries of CP2 and light-like
boundary of CD are important also in TGD framework [K17] and define the isometries of WCW.
As a matter fact, symplectic group parameterizes the quantum fluctuating degrees of freedom
and zero modes defining classical variables are symplectic invariants. One cannot assign to entire
space-time surfaces symplectic structure although this is possible for partonic 2-surfaces.

2. The symplectic transformations of CP2 act on the Kähler gauge potential as U(1) gauge trans-
formations formally but modify the shape of the space-time surface. These symplectic trans-
formations are symmetries of Kähler action only in the vacuum sector which as such does not
belong to WCW whereas small deformations of vacua belong. Therefore genuine gauge symme-
tries are not in question. One can of course formally assign to Kähler gauge potential a separate
U(1) gauge invariance.

3. Vacuum extremals with at most 2-D CP2 projection (Lagrangian sub-manifold) form an infinite-
dimensional space. Both M4 diffeomorphisms and symplectic transformations of CP2 produce
new vacuum extremals, whose small deformations are expected to correspond preferred ex-
tremals. This gives rise to 4-D spin glass degeneracy [K55] to be distinguished from 4-D gauge
degeneracy.

Identification of basic 1-forms of TTD in TGD framework

Consider nex the identification of the basic variables which are forms of various degrees in TTD.

1. Kähler gauge potential is analogous to work 1-form W . In classical electrodynamics vector
potential indeed has this interpretation. dW ∧ dW is replaced with J ∧ J defining instanton
density (EK ·BK in physicist’s notation) for Kähler form and its non-vanishing - or equivalently 4-
dimensionality of CP2 projection of space-time surface - would be the signature of irreversibility.
dJ = 0 holds true only locally and one can have magnetic monoples since CP2 has non-trivial
homology. Therefore the non-trivial topology of CP2 implying that the counterpart of W is not
globablly defined, brings in non-trivial new element to Kiehn’s theory.

http://tgdtheory.com/public_html/tgdnumber/tgdnumber.html#phblocks
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2. Chirality C−S = A∧J is essentially Chern-Simons 3-form and in ordinary QFT non-vanishing
of C − S- if present in action - means parity breaking in ordinary quantum field theories. Now
one must be very cautious since parity is a symmetry of the imbedding space rather than that
of space-time sheet.

3. Pfaff dimension equals to the dimension of CP2 projection and has been used to classify exist-
ing preferred extremals. I have called the extremals with 4-D CP2 projection chaotic and so
called CP2 vacuum extremals with 4-D CP2 projection correspond to such extremals. Massless
extremals or topological light rays correspond to D = 2 as do also cosmic strings. In Euclidian
regions preferred extremals with D = 4 are are possible but not in Minkowskian regions if one
accepts effective 3-dimensionality. Here one must keep mind open.

Irreversibility identified as a non-vanishing of the instanton density J ∧J has a purely geometrical
and topological description in TGD Universe if one accepts effective 3-dimensionality.

1. The effective 3-dimensionality for space-time sheets (holography implied by general coordinate
invariance) implies that Kähler action reduces to Chern-Simons terms so that the Pfaff di-
mension is at most D = 3 for Minkowskian regions of space-time surface so that they are are
thermodynamically reversible.

2. For Euclidian regions (say deformations of CP2 type vacuum extremals) representing orbits of
elementary particles and lines of generalized Feynman diagrams D = 4 is possible. Therefore
Euclidian space-like regions of space-time would be solely responsible for the irreversibility. This
is quite strong conclusion but conforms with the standard quantum view about thermodynamics
according to which various particle reaction rates deduced from quantum theory appear in kinetic
equations giving rise to irreversible dynamics at the level of ensembles. The presence of Morse
function coming from Minkowskian regions is natural since square root of thermodynamics is
in question. Morse function is analogous to the action in QFTs whereas Kähler function is
analogous to Hamiltonian in thermodynamics. Also this conforms with the square root of TTD
interpretation.

Instanton current, instanton density, and irreversibility

Classical TGD has the structure of hydrodynamics in the sense that field equations are conservation
laws for isometry currents and Kähler current. These are vector fields although induced metric allows
to transform them to forms. This aspect should be visible also in thermodynamic interpretation
and forces to add to the Kiehn’s formulation involving only forms and exterior derivative also induced
metric transforming 1-forms to vector fields, the duality mapping 4-k forms and k-forms to each other,
and divergence operation.

It was already found that irreversibility and dissipation corresponds locally to a non-vanishing
instanton density J ∧ J . This form can be regarded as exterior derivative of Chern-Simons 3-form or
equivalently as divergence of instanton current.

1. The dual of C-S 3-form given by ∗(A ∧ J) defines what I have called instanton current. This
current is not conserved in general and the interpretation as a heat current would be natural.
The exterior derivative of C-S gives instanton density J ∧ J . Equivalently, the divergence of
instanton currengives the dual of J ∧ J and the integral of instanton density gives the analog
of instanton number analogous to the heat generated in a given space-time volume. Note that
in Minkowskian regions one can multiply instanton current with a function of CP2 coordinates
without losing closedness property so that infinite number similar conserved currents is possible.

The heat 3-form is expressible in terms of Chern-Simons 3-form and for preferred extremals it
would be proportional to the weight sum of Kähler actions from Minkowskian and Euclidian
regions (coeffecients are purely imaginary and real in these two regions). Instead of single
real quantity one would have complex quantity characterizing irreversibility. Complexity would
conform with the idea that quantum TGD is complex square root of thermodynamics.

2. The integral of heat 3-form over effective boundaries associated with a given space-time region
define the net heat flow from that region. Only the regions defining the lines of generalized Feyn-
man diagrams give rise to non-vanishing heat fluxes. Second law states that one has ∆Q ≥ 0.
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Generalized second law means at the level of quantum classical correspondence would mean
that depending on the arrow of geometric time for zero energy state ∆Q is defined as difference
between upper and lower or lower and upper boundaries of CD. This condition applied to CD
and sub-CD:s would generalize the conditions familiar from hydrodynamics (stating for instance
that for shock waves the branch of bifurcation for which the entropy increases is selected). Note
that the field equations of TGD are hydrodynamical in the sense that they express conservation
of various isometry currents. The naive picture about irreversibility is that classical dynamics
generates CP2 type vacuum extremals so that the number of outgoing lines of generalized Feyn-
man diagram is higher than that of incoming ones. Therefore that the number of space-like
3-surfaces giving rise to Chern-Simons contribution is larger at the end of CD corresponding to
the final (negative energy) state.

3. A more precise characterization of the irreversible states involves several non-trivial questions.

(a) By the failure of strict classical determinism the condition that for a given CD the number
outgoing lines is not smaller than incoming lines need not provide a unique manner to fix
the preferred extremal when partonic 2-surfaces at the ends are fixed. Could the arrow
of geometric time depend on sub-CD as the model for living matter suggests (recall also
phase conjugate light rays)?

In ordinary quantum mechanical approach to kinetic equations also the reactions, which
decrease entropy are allowed but their weight is smaller in thermal equilibrium. Could
this fact be described as a probability distribution for the arrow of time associated for the
sub-CDs, sub-sub-CDs, etc... ? Space-time correlates for quantal thermodynamics would
be probability distributions for space-time sheets and hierarchy of sub-CDs.

(b) 4-D spin glass degeneracy suggests breaking of ergodic hypothesis: could this mean that
one does not have thermodynamical equilibrium but very large number of spin glass states
caused by the frustation for which induced Kähler form provides a representation? Could
these states correspond to a varying arrow of geometric time for sub-CDs? Or could
different deformed vacuum extremals correspond to different space-time sheets in thermal
equilibrium with different thermal parameters.

Also Kähler current and isometry currents are needed

The conservation Kähler current and of isometry currents imply the hydrodynamical character of
TGD.

1. The conserved Kähler current jK is defined as 3-form jK = ∗(d ∗ J), where d ∗ J is closed
3-form and defines the counterpart of d∗dW . Field equations for preferred extremals require
∗jK ∧ A = 0 satsfied if one Kähler current is proportional to instanton current: ∗jK ∝ A ∧ J .
As a consequence Kähler action reduces to 3-dimensional Chern-Simons terms (classical holog-
raphy) and Minkowskian space-time regions have at most 3-D CP2 projection (Pfaff dimension
D ≤ 3) so that one has J ∧ J = 0 and reversibility. This condition holds true for preferred
extremals representing macroscopically the propagation of massless quanta but not Euclidian
regions representing quanta themselves and identifiable as basic building bricks of wormhole
contacts between Minkowskian space-time sheets.

2. A more general proposal is that all conserved currents transformed to 1-forms using the induced
metric (classical gravitation comes into play!) are integrable: in other words, on has j ∧ dj = 0
for both isometry currents and Kähler current. This would mean that they are analogous to
heat 1-forms in the reversible case and therefore have arepresentation analogous to Q = TdS,
W = PdV , µdN and the coordinate along flowline defines the analog of S, V , or N (note
however that dS,dV, dN would more naturally correspond to 3-forms than 1-forms, see below)
A stronger form corresponds to the analog of hydrodynamics for one particle species: all one-
forms are proportional (by scalar function) to single 1-form which is A∧J (all quantum number
flows are parallel to each other).
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Questions

There are several questions to be answered.

1. In Darboux coordinates in which one has A = P1dQ
1 + P2dQ2. The identification of A as

counterpart for W = PdV − µdN comes first in mind. For thermodynamical equilibria one
would have TdS = dU + W translating to TdS = dU + A so that Q for reversible processes
would be apart from U(1) gauge transformation equal to the Kähler gauge potential. Symplectic
transformations of CP2 generate U(1) gauge transformations and dU might have interpretation
in terms of energy flow induced by this kind of transformation. Recall however that symplectic
transformations are not symmetries of space-time surfaces but only of the WCW metric and act
on partonic 2-surfaces and their tangent space data as such.

2. Does the conserved Kähler current jK have any thermodynamical interpretation? Clearly the
countepars of conserved (and also non-conserved quantities) in Kiehn’s formulation would be
3-forms with vanishing curl d(∗jK) = 0 in conserved case. Therefore it seems impossible to
reduce them to 1-forms unless one introduces divergence besides exterior derivative as a basic
differential operation.

The hypothesis that the flow lines of these 1-forms associated with jK vector field are integrable
implies that they are gradients apart from the presence of integrating factor. Reduction to
a gradient (j = dU) means that U satisfies massless d’Alembert equation d ∗ dU = 0. Note
that local polarization and light-like momentum are gradients of scalar functions which satisfy
masslesd d’Alembert equation for the Mikowskian space-time regions representing propagating
of massless quanta.

3. In genuinely 3-dimensional context S, V,N are integrals of 3-forms over 3-surfaces for some
current defining 3-form. This is in conflict with Kiehn’s description where they are 0-forms.
One can imagine three cures and first two ones look

(a) The integrability of the flows allows to see them as superposition of independent 1-dimensional
flows. This picture would make it natural to regard the TGD counterparts of S, V,N as
0-forms rather than 2-forms. This would also allow to deduce J ∧ J = 0 as a reversibility
condition using Kiehn’s argument.

(b) Unless one requires integrable flows, one must consider the replacement of Q = TdS resp.
W = PdV resp. µdN Q = TdS resp. W = PdV resp. µdN where W , Q, dS,dV, anddN
with 3-forms. So that S, V, N would be 2-forms and the 3-integrals of dS, dV, dN over
3-surfaces would reduce to integrals over partonic 2-surfaces, which is of course highly non-
trivial but physically natural implication of the effective 2-dimensionality. First law should
now read as ∗W = T ∗dS−∗dU and would give d∗W = dT ∧∗dS+Td∗dS+d∗dU . If S and
U as 2-forms satisfy massless d’Alembert equation, one obtains d ∗W = dT ∧ ∗dS giving
d ∗W ∧ d ∗W = 0 as the reversibility condition. If one replaces W ↔ A correspondence
with ∗W ↔ A correspondence, one obtains the vanishing of instanton density as a condition
for reversibility. For the preferred extremals having interpretation as massless modes the
massless d’Alembert equations are satisfied and it might that this option makes sense and
be equivalent with the first option.

(c) In accordance with the idea that finite measurement resolution is realized at the level of
modified Dirac equation, its solutions at lightlike 3-surfaces reduces to solutions restricted
to lines connecting partonic 2-surfaces. Could one regard W , Q, dS, dV , and dN as singular
one-forms restricted to these lines? The vanishing of instanton density would be obtained
as a condition for reversibility only at the braid strands, and one could keep the original
view of Kiehn. Note however that the instanton density could be non-vanishing elsewhere
unless one develops a separate argument for its vanishing. For instance, the condition
that isometries of imbedding space say translations produce braid ends points for which
instanton density also vanishes for the reversible situation might be enough.

To sum up, it seems that TTD allows to develop considerable insights about how classical space-
time surfaces could code for classical thermodynamics. An essential ingredient seems to be the re-
duction of the hydrodynamical flows for isometry currents to what might be called perfect flows
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decomposing to 1-dimensional flows with conservation laws holding true for individual flow lines.
An interesting challenge is to find expressions for total heat in terms of temperature and entropy.
Blackhole-elementary particle analogy suggest the reduction as well as effective 2-dimensionality sug-
gest the reduction of the integrals of Chern-Simons terms defining total heat flux to two 2-D volume
integrals over string world sheets and/or partonic 2-surfaces and this would be quite near to Hawking-
Bekenstein formula.

2.13 Robert Kiehn’s ideas about Falaco solitons and genera-
tion of turbulent wake from TGD perspective

I have been reading two highly interesting articles by Robert Kiehn. The first article has the title
”Hydrodynamics wakes and minimal surfaces with fractal boundaries” [B46]. Second article is titled
”Instability patterns, wakes and topological limit sets” [B47]. There are very many contacts on TGD
inspired vision and its open interpretational problems.

The notion of Falaco soliton has surprisingly close resemblance with Kähler magnetic flux tubes
defining fundamental structures in TGD Universe. Fermionic strings are also fundamental structures
of TGD accompanying magnetic flux tubes and this supports the vision that these string like objects
could allow reduction of various condensed matter phenomena such as sound waves -usually regarded
as emergent phenomena allowing only highly phenomenological description - to the fundamental mi-
croscopic level in TGD framework. This can be seen as the basic outcome of this article.

Kiehn proposed a new description for the generation of various instability patterns of hydrody-
namics flows (Kelvin-Helmholtz and Rayleigh-Taylor instabilities) in terms of hyperbolic dynamics
so that a connection with wave phenomena like interference and diffraction would emerge. The role
of characteristic surfaces as surfaces of tangential and also normal discontinuities is central for the
approach. In TGD framework the characteristic surfaces have as analogs light-like wormhole throats
at which the signature of the induced 4-metric changes and these surfaces indeed define boundaries
of two phases and of material objects in general. This inspires a more detailed comparison of Kiehn’s
approach with TGD.

2.13.1 Falaco solitons and TGD

In the first article [B46] Kiehn tells about his basic motivations. The first motivating observations
were related to so called Falaco solitons. Second observation was related to the so called mushroom
pattern associated with RayleighTaylor instability or fingering instability [B14], which appears in very
many contexts, the most familiar being perhaps the mushroom shaped cloud created by a nuclear
explosion. The idea was that both structures whose stability is not easy to understand in standard
hydrodynamics, could have topological description.

Falaco solitons are very fascinating objects. Kiehn describes in detail the formation and properties
in [B46]: anyone possessing swimming pool can repeat these elegant and simple experiments. The
vortex string connecting the end singularities - dimpled indentations at the surface of water - is the
basic notion. Kiehn asks whether there migh be a deeper connection with a model of mesons in which
strings connecting quark and antiquark appear. The formation of spiral structures around the end
gaps in the initial formative states of Falaco soliton is emphasized and compared to the structure of
spiral galaxies. The suggestion is that galaxies could appear as pairs connected by strings.

Kähler magnetic tubes carrying monopole flux are central in TGD and have several interesting
resemblances with Falaco solutions.

1. In TGD framework so called cosmic strings fundamental primordial objects. They have 2-D
Minkowski space projection and 2-D CP2 projection so that one can say that there is no space-
time in ordinary sense present during the primordial phase. During cosmic evolution their
time= constant M4 projection gradually thickens from ideal string to a magnetic flux tube.
Among other things this explains the presence of magnetic fields in all cosmic scale not easy
to understand in standard view. The decay of cosmic strings generates visible and dark matter
much in the same manner as the decay of inflaton field does in inflationary scenario. One however
avoids the many problems of inflationary scenario.

http://www22.pair.com/csdc/pdf/barcelon.pdf
http://arxiv.org/pdf/physics/0102005.pdf
http://en.wikipedia.org/wiki/File:HD-Rayleigh-Taylor.gif
http://en.wikipedia.org/wiki/File:HD-Rayleigh-Taylor.gif
http://en.wikipedia.org/wiki/Rayleigh–Taylor_instability
http://tgdtheory.com/public_html/articles/inflatgd.pdf
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Cosmic strings would contain ordinary matter and dark matter around them like necklace con-
tains pearls along it. Cosmic strings carry Kähler magnetic monopole flux which stabilizes
them. The magnetic field energy explains dark energy. Magnetic tension explains the negative
”pressure” explaining accelerated expansion. The linear distribution of field energy along cos-
mic strings gives rise to logarithmic gravitational potential, which explains the constant velocity
spectrum of distant stars around galaxy and therefore galactic dark matter.

2. Magnetic flux tubes form a fractal structure and the notion of Falaco soliton has also an analogy
in TGD based description of elementary particles. In TGD framework the ends caps of vortices
correspond to pairs of wormhole throats connected by short wormhole contact and there is a
magnetic flux tube carrying monopole flux at both space-time sheets.

So called modified Dirac equation assigns with this flux tube 1-D closed string and to it string
world sheets, which might be 2-D minimal surface of space-time surface [K92]. Rather surpris-
ingly, string model in 4-D space-time emerges naturally in TGD framework and has also very
special properties due to the knotting of strings as 1-knots and knotting of string world sheets as
2-knots. Braiding and linking of strings is also involved and make dimension D=4 for space-time
completely unique.

Both elementary particles and hadron like state are describable in terms of these string like
objects. Wormhole throats are the basic building brick of particles which are in the simplest
situation two-sheeted structure with wormhole contact structures connecting the sheets and
giving rise to one or more closed flux tubes accompanied by closed strings.

2.13.2 Stringy description of condensed matter physics and chemistry?

What is important that magnetic flux tubes and associated string world sheets can also connect
wormhole throats associated with different elementary particles in the sense that their boundaries
are along light-like wormhole throats assignable to different elementary particles. These string worlds
sheets therefore mediate interactions between elementary particles.

1. What these interactions are? Could string world sheets could provide a microscopic first principle
description of condensed matter phenomena - in particular of sound waves and various waves
analogs of sound waves usually regarded as emergent phenomena requiring phenomenological
models of condensed matter?

The hypothesis that this is the case would allow to test basic assumptions of quantum TGD at
the level of condensed matter physics. String model in 4-D space-time could describe concrete
experimental everyday reality rather than esoteric Planck length scale physics! The phenomena
of condensed matter physics often thought to be high level emergent phenomena would have
first principle microscopic description at the level of space-time geometry.

2. The idea about stringy reductionism extends also to chemistry. One of the poorly understanding
basic notions of molecular chemistry is the formation of valence bond as pairing of two valence
electrons belonging to different atoms. Could this pairing correspond to a formation of a closed
Kähler magnetic flux tube with two wormhole contacts carrying quantum numbers of electron?
Could also Cooper pairs be regarded as this kind of structure with long connecting pair of flux
tubes between electron carrying wormhole contacts as has been suggested already earlier?

3. The proposal indeed is that TGD inspired biochemistry and neuroscience indeed has magnetic
flux tubes and flux sheets as a key element. For instance, the notion of magnetic body plays a
key role in TGD inspired view about EEG and magnetic flux tubes represent braid strands in
the model for DNA-cell membrane system as topological quantum computer [K26].

One can argue that this is not a totally new idea: basically one particular variant of holography1

is in question and follows in TGD framework from general coordinate invariance alone: the geometry
of world of classical worlds must assign to a given 3-surface a unique space-time surface.

1The equivalent of holography emerged from the construction of the Kähler geometry of ”world of classical worlds”
as an implication of general coordinate invariance around 1990, about five years before it was introduced by t’Hooft
and Susskind.
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1. The fashionable manner to realize holography is by replacing 4-D space-time with 10-D one.
String world sheets in 10-D space-time AdS5 − S5 connecting the points of 4+5-D boundary of
AdS5 − S5 are hoped to provide a dual description of even condensed matter phenomena in the
case that the system is described by a theory enjoying conformal invariance in 4-D sense.

2. In TGD framework holography is much more concrete: 3-D light-like 3-surfaces (giving rise to
generalized conformal invariance by their metric 2-dimensionality) are enough. One has actually
a strong form of holography stating that 2-D partonic 2-surfaces plus their 4-D tangent space
data are enough. Partonic 2-surfaces define the ends of light-like 3-surfaces at the ends of space-
time surface at the light-like 7-D boundaries of causal diamonds. 10-D space is replaced with
the familiar 4-D space-time and 4+5-D boundary with end 2-D ends of 3-D light-like wormhole
orbits (plus 4-D tangent space data). These partonic 2-surfaces are highly analogous to the 2-D
sections of your characteristic surfaces.

Consider now how sound waves as and various oscillations of this kind could be understood in terms
of string word sheets. String world sheets have both geometric and fermionic degrees of freedom.

1. A good first guess is that string world sheet is minimal surface in space-time - this does not mean
minimal surface property in imbedding space and the non-vanishing second fundamental form-
in particular its CP2 part should have physical meaning - maybe the parameter that would be
called Higgs vacuum expectation in QFT limit of TGD could relate to it.

2. Another possibility that I have proposed is that a minimal surface of imbedding space (not the
minimal surface is geometric analog for a solution of massless wave equation) but in the effective
metric defined by the anti-commutators of modified gamma matrices defined by the canonical
momentum densities of Kähler action is in question: in this case one might even dream about
the possibility that the analog of light-velocity defined by the effective metric has interpretation
as sound velocity.

For string world sheets as minimal surfaces of X4 (the first option) oscillations would propagate
with light-velocity but as one adds massive particle momenta at wormhole throats defining their ends
the situation changes due to the additional inertia making impossible propagation with light-velocity.
Consideration of the situation for ordinary non-relativistic condensed matter string with masses at
ends as a simple example, the velocity of propagation is in the first naive estimate just square root of
the ratio of the magnetic energy of string portion to its total energy which also concludes the mass at
its ends. Kähler magnetic energy is given by string tension which has a spectrum determined by p-adic
length scale hypothesis so that one ends up with a rough quantitative picture and coil understand the
dependence of the sound velocity on temperature.

In TGD framework massless quanta moving in different directions correspond to different space-
time sheets: linear superposition for fields is replaced with a set theoretic union and effects superpose
instead of fields. This would hold true also for sound waves which would always be restricted at stringy
world sheets: superposition can make sense only for wave moving in exactly the same direction. This
of course conforms with the properties of phonons so that Bohr orbitology would be realized for sound
waves and ordinary description of sound waves would be only an approximation. The fundamental
difference between light and sound defining fundamental qualia would be the dimension of the quanta
as geometric structures.

2.13.3 New manner to understand the generation of turbulent wake

Kiehn proposes a new manner to understand the generation of turbulent wake [B47]. The dynamics
generating it would be that of hyperbolic wave equation rather than diffusive parabolic or elliptic dy-
namics. The decay of the turbulence would however obey the diffusive parabolic dynamics. Therefore
sound velocity and supersonic velocities would be involved with the generation of the turbulence.

Kiehn considers Landau’s nonlinear model for a scalar potential of velocity in the case of 2-D
compressible isentropic fluid as an example. The wave equation is given by

(c2 − Φ2
x)Φxx + (c2 − Φ2

y)Φyy − 2ΦxΦuΦxy = 0 . (2.13.1)

http://arxiv.org/pdf/physics/0102005.pdf
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Here c denotes sound velocity and velocity is given by v = ∇Φ. 3-D generalization is obvious. This
partial differential equation for the velocity potential is quasi-linear equation of the form

AΦηη + 2BΦηξ + CΦξξ = 0 . (2.13.2)

The characteristic surfaces contain imbedded curves which are given by solutions to ordinary differentia
equations

dη

dξ
=

B ± (B2AC)1/2

C
. (2.13.3)

Real solutions are possible when the argument of the square root is positive. This is true when the
local velocity exceeds the local characteristic speed c. These characteristic lines combine to form
characteristic surfaces.

Velocity field would be compressible (∇·v 6= 0) but irrotational (∇×v = 0) in this approach whereas
in standard approach velocity field would be incompressible (∇ · v = 0) but irrotational (∇× v 6= 0).
There would be two phases in which these two different options would be realized and at the boundary
the dynamics would be both in-compressible and irrotational and these boundaries would correspond
to characteristic surfaces which are minimal surfaces which evolve with time somehow. The presence
of scalar function satisfying Laplace equation (∇2Φ = 0) would serve as a signature of this.

The emergence of this hyperbolic dynamics would explain the sharpness and long-lived character
of the singular structures. Kiehn also proposes that the formation of wake could have analogies
with diffraction and interference - basic aspects of wave motion. This picture does not conform
with standard view which assumes diffusive parabolic or elliptic dynamics as the origin of the wake
turbulence.

Characteristic surfaces and light-like wormhole throat orbits

Characteristic surface is key notion in Kiehn’s approach and he suggests that the creation of wakes
relies on hyperbolic dynamics in restricted regions [B47]. If I have understood correctly, the boundaries
of vortices created in the process could be seen as this kind of characteristic surfaces: some physical
quantities would have tangential discontinuities at them since a boundary between different phases
(fluid and air) would be in question.

Another situation corresponds to a shock wave in which case there is a flow of matter through
the characteristic surface. Also boundary patterns associated with Kelvin-Helmholtz instability (for-
mation of waves due to wind and their breaking) and Rayleigh-Taylor instability (the formation of
mushroom like fingers of heavier substance resting above lighter one).

The proposal of Kiehn is that the characteristic minimal surfaces have the following general form:

u = dη
ds = A(ρ)× sin(Q(s)) , v = dη

ds = −A(ρ)× cos(Q(s)) ,
w = F (u, v) = Q(u/v = s) per, Q(s) = arctan(s) .

(2.13.4)

If F (u, v) satisfies the equation

(1 + F 2
v )Fuu + (1 + F 2

u)Fvv − 2FuFvFuv = 0 . (2.13.5)

This expresses the vanishing of the trace of the second fundamental form, actually the component
corresponding to the coordinate w. The minimal surface in question is known as right helicoid.

In TGD framework light-like 3-surfaces defined by wormhole throats are the counterparts of char-
acteristic surfaces.

1. By their light-likeness the light-like wormhole throats are analogous to characteristic surfaces
(In TGD context light-velocity of course replace local sound velocity). Since the signature of
the metric changes at wormhole throats, the 4-D tangent space reduces to 3-D in metric sense
at them so that they indeed are singular in a unique sense. Gravitational effects imply that they
need not look expanding in Minkowski coordinates. The light-velocity in the induced metric is
in general smaller than maximal signal velocity in Minkowski space and can be arbitrarily small.

http://arxiv.org/pdf/physics/0102005.pdf
http://en.wikipedia.org/wiki/Mushroom_cloud
http://en.wikipedia.org/wiki/File:HD-Rayleigh-Taylor.gif
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2. In TGD framework light-like 3-surfaces would be naturally associated with phase boundaries
defining boundaries of physical objects. They would be light-like metrically degenerate 3-surfaces
in space-time along which the space-time sheet assignable to fluid flow meets the space-time sheet
assignable to say air. The generation of wake turbulence would in TGD framework mean the
decay of a large 3-surface representing a laminar flow to sheet of separate cylindrical 3-surfaces
representing vortex sheet. Also the amalgamation of vortices can be considered as a reverse
process.

3. Interesting question related to the time evolution of these 2-D boundaries. In TGD framework it
should give rise to 3-D light-like surface. The simulations for the evolution of Kelvin-Helmholtz
insability and Rayleigh-Taylor mushroom pattern in Wikipedia and its seems that at the initial
stages there is period of growth bringing in mind expanding light-front: the velocity of expansion
is not its value in Minkowski space but corresponds to that assignable to the induced metric and
can be much smaller. Recall also that in TGD framework gravitational effects are large near the
singularity so that growth is not with the light-velocity in vacuum.

The proposal of Kiehn that very special minimal surfaces (right helicoids) are in question would
in TGD framework correspond to a light-like 3-surfaces representing light-like orbits of these minimal
surfaces presumably expanding at least in the beginning of the time evolution.

Minkowskian hydrodynamics/Maxwellian dynamics as hyperbolic dynamics and Euclid-
ian hydrodynamics as elliptic dynamics

In Kiehn’s proposal both the hyperbolic wave dynamics (about which Maxwell’s equations provide a
simple linear example) and diffusive elliptic or parabolic dynamics are present. In TGD framework
both aspects are present at the level of field equations and correspond to the hyperbolic dynamics in
Minkowskian space-time regions and elliptic dynamics in Euclidian space-time regions.

The dynamics of preferred extremals can be seen in two manners. Either as hydrodynamics or as
Maxwellian dynamics with Bohr rules expressing the decomposition of the field to quanta- magnetic
flux quanta or massless radiation quanta.

1. Maxwellian hydrodynamics involves a considerable restriction: superposition of modes moving
in different directions is not allowed: one has just left-movers or right-movers in given direction,
not both. Preferred extremals are ”Bohr orbit like” and resemble outcomes of state function
reduction measuring polarization and wave vector. The linear superposition of fields is replaced
with the superposition of effects. The test particle topologically condenses to several space-time
sheets simultaneously and experiences the sum of the forces of classical fields associated with
the space-time sheets. Therefore one avoids the worst objection against TGD that I have been
able to invent. Only four primary field like variables would replace the multitude of primary
fields encountered in a typical unification. Besides this one has second quantized induced spinor
fields.

2. Field equations are hydrodynamical in the sense that the field equations state classical conser-
vation laws of four-momentum and color charges. In fermionic sector conservation of electro-
magnetic charge (in quantum sense so that different charge states for spinor mode do not mix)
requires the localization of solutions to 2-D string world sheets for all states except right-handed
neutrino. This leads to 2-D conformal invariance. A possible identification of string world sheet
is as 2-D minimal surface of space-time (rather than that of imbedding space).

What is remarkable that in Minkowskian space-time regions most preferred extremals (magnetic
flux tube structures define an exception to this) are locally analogous to the modes of massless
field with polarization direction and light-like momentum direction which in the general case
can depend on position so that one has curvilinear light-like curve as analog of light-ray. The
curvilinear light-like orbits results when two parallel preferred extremals with constant light-
like direction form bound states via the formation of magnetically charged wormhole contact
structures identifiable as elementary particles. Total momentum is conserved and is time-like
for this kind of states, and the hypothesis is that the values of mass squared are given by p-adic
thermodynamics. The conservation of Kähler current holds true as also its integrability in the
sense of Frobenius giving j = Ψ∇Φ. Besides this massless wave equations hold true for both

http://en.wikipedia.org/wiki/Mushroom_cloud
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Ψ and Φ. This looks like 4-D generalization of your equations at the characteristic defined by
phase boundary.

3. In Euclidian regions one has naturally elliptic ”hydrodynamics”. Euclidian regions correspond
for 4-D CP2 projection to the 4-D ”lines” of generalized Feynman diagrams. Their M4 pro-
jections can be arbitrary large and the proposal is that the space-time sheet characterizing the
macroscopic objects is actually Euclidian. In AdS5 − S5correspondence the corresponding idea
is that macroscopic object is described as a blackhole in 10-D space. Now blackhole interiors
have Euclidian signature as lines of generalized Feynman diagrams and blackhole interior does
not differ from the interior of any system in any dramatical manner. Whether the Euclidian
and Minkowskian dynamics are dual of each other or whether both are necessary is an open
question.



Chapter 3

The Recent Vision about
Preferred Extremals and
Solutions of the Modified Dirac
Equation

3.1 Introduction

During years several approaches to what preferred extremals of Kähler action and solutions of
the modified Dirac equation could be have been proposed and the challenge is to see whether
at least some of these approaches are consistent with each other. It is good to list various
approaches first.

(a) For preferred extremals generalization of conformal invariance to 4-D situation is very at-
tractive approach and leads to concrete conditions formally similar to those encountered
in string model [K8]. In particular, Einstein’s equations with cosmological constant follow
as consistency conditions and field equations reduce to a purely algebraic statements anal-
ogous to those appearing in equations for minimal surfaces if one assumes that space-time
surface has Hermitian structure or its Minkowskian variant Hamilton-Jacobi structure (Ap-
pendix). The older approach based on basic heuristics for massless equations, on effective
3-dimensionality, and weak form of electric magnetic duality, and Beltrami flows is also
promising. An alternative approach is inspired by number theoretical considerations and
identifies space-time surfaces as associative or co-associative sub-manifolds of octonionic
imbedding space [K74].

The basic step of progress was the realization that the known extremals of Kähler action
- certainly limiting cases of more general extremals - can be deformed to more general
extremals having interpretation as preferred extremals.

i. The generalization boils down to the condition that field equations reduce to the condi-
tion that the traces Tr(THk) for the product of energy momentum tensor and second
fundamental form vanish. In string models energy momentum tensor corresponds to
metric and one obtains minimal surface equations. The equations reduce to purely
algebraic conditions stating that T and Hk have no common components. Complex
structure of string world sheet makes this possible.
Stringy conditions for metric stating gzz = gzz = 0 generalize. The condition that
field equations reduce to Tr(THk) = 0 requires that the terms involving Kähler gauge
current in field equations vanish. This is achieved if Einstein’s equations hold true. The
conditions guaranteeing the vanishing of the trace in turn boil down to the existence of
Hermitian structure in the case of Euclidian signature and to the existence of its analog
- Hamilton-Jacobi structure - for Minkowskian signature (Appendix). These conditions
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state that certain components of the induced metric vanish in complex coordinates or
Hamilton-Jacobi coordinates.
In string model the replacement of the imbedding space coordinate variables with
quantized ones allows to interpret the conditions on metric as Virasoro conditions.
In the recent case generalization of classical Virasoro conditions to four-dimensional
ones would be in question. An interesting question is whether quantization of these
conditions could make sense also in TGD framework at least as a useful trick to deduce
information about quantum states in WCW degrees of freedom.
The interpretation of the extended algebra as Yangian [A54] [B50] suggested previ-
ously [K87] to act as a generalization of conformal algebra in TGD Universe is at-
tractive. There is also the conjecture that preferred extremals could be interpreted
as quaternionic of co-quaternionic 4-surface of the octonionic imbedding space with
octonionic representation of the gamma matrices defining the notion of tangent space
quanternionicity.

(b) There are also several approaches for solving the modified Dirac equation. The most promis-
ing approach is assumes that the solutions are restricted on 2-D stringy world sheets and/or
partonic 2-surfaces. This strange looking view is a rather natural consequence of both
strong form of holography and of number theoretic vision, and also follows from the notion
of finite measurement resolution having discretization at partonic 2-surfaces as a geometric
correlate. The conditions stating that electric charge is conserved for preferred extremals is
an alternative very promising approach. One expects that stringy approach based on 4-D
generalization of conformal invariance or its 2-D variant at 2-D preferred surfaces should
also allow to understand the modified Dirac equation. In accordance with the earlier con-
jecture, all modes of the modified Dirac operator generate badly broken super-symmetries.
Right-handed neutrino allows also holomorphic modes delocalized at entire space-time sur-
face and the delocalization inside Euclidian region defining the line of generalized Feynman
diagram is a good candidate for the right-handed neutrino generating the least broken
super-symmetry. This super-symmetry seems however to differ from the ordinary one in
that νR is expected to behave like a passive spectator in the scattering.

In the following the question whether these various approaches are mutually consistent is dis-
cussed. It indeed turns out that the approach based on the conservation of electric charge leads
under rather general assumptions to the proposal that solutions of the modified Dirac equa-
tion are localized on 2-dimensional string world sheets and/or partonic 2-surfaces. Einstein’s
equations are satisfied for the preferred extremals and this implies that the earlier proposal for
the realization of Equivalence Principle is not needed. This leads to a considerable progress in
the understanding of super Virasoro representations for super-symplectic and super-Kac-Moody
algebra. In particular, the proposal is that super-Kac-Moody currents assignable to string world
sheets define duals of gauge potentials and their generalization for gravitons: in the approxima-
tion that gauge group is Abelian - motivated by the notion of finite measurement resolution -
the exponents for the sum of KM charges would define non-integrable phase factors. One can
also identify Yangian as the algebra generated by these charges. The approach allows also to
understand the special role of the right handed neutrino in SUSY according to TGD.

3.2 About deformations of known extremals of Kähler ac-
tion

I have done a considerable amount of speculative guesswork to identify what I have used to call
preferred extremals of Kähler action. The problem is that the mathematical problem at hand is
extremely non-linear and that there is no existing mathematical literature. One must proceed
by trying to guess the general constraints on the preferred extremals which look physically and
mathematically plausible. The hope is that this net of constraints could eventually chrystallize
to Eureka! Certainly the recent speculative picture involves also wrong guesses. The need to
find explicit ansatz for the deformations of known extremals based on some common principles
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has become pressing. The following considerations represent an attempt to combine the existing
information to achieve this.

3.2.1 What might be the common features of the deformations of
known extremals

The dream is to discover the deformations of all known extremals by guessing what is common to
all of them. One might hope that the following list summarizes at least some common features.

Effective three-dimensionality at the level of action

(a) Holography realized as effective 3-dimensionality also at the level of action requires that
it reduces to 3-dimensional effective boundary terms. This is achieved if the contraction
jαAα vanishes. This is true if jα vanishes or is light-like, or if it is proportional to instanton
current in which case current conservation requires that CP2 projection of the space-time
surface is 3-dimensional. The first two options for j have a realization for known extremals.
The status of the third option - proportionality to instanton current - has remained unclear.

(b) As I started to work again with the problem, I realized that instanton current could be
replaced with a more general current j = ∗B ∧ J or concretely: jα = εαβγδBβJγδ, where
B is vector field and CP2 projection is 3-dimensional, which it must be in any case. The
contractions of j appearing in field equations vanish automatically with this ansatz.

(c) Almost topological QFT property in turn requires the reduction of effective boundary terms
to Chern-Simons terms: this is achieved by boundary conditions expressing weak form of
electric magnetic duality. If one generalizes the weak form of electric magnetic duality to
J = Φ ∗ J one has B = dΦ and j has a vanishing divergence for 3-D CP2 projection. This
is clearly a more general solution ansatz than the one based on proportionality of j with
instanton current and would reduce the field equations in concise notation to Tr(THk) = 0.

(d) Any of the alternative properties of the Kähler current implies that the field equations
reduce to Tr(THk) = 0, where T and Hk are shorthands for Maxwellian energy momentum
tensor and second fundamental form and the product of tensors is obvious generalization
of matrix product involving index contraction.

Could Einstein’s equations emerge dynamically?

For jα satisfying one of the three conditions, the field equations have the same form as the equa-
tions for minimal surfaces except that the metric g is replaced with Maxwell energy momentum
tensor T .

(a) This raises the question about dynamical generation of small cosmological constant Λ:
T = Λg would reduce equations to those for minimal surfaces. For T = Λg modified gamma
matrices would reduce to induced gamma matrices and the modified Dirac operator would
be proportional to ordinary Dirac operator defined by the induced gamma matrices. One
can also consider weak form for T = Λg obtained by restricting the consideration to sub-
space of tangent space so that space-time surface is only ”partially” minimal surface but
this option is not so elegant although necessary for other than CP2 type vacuum extremals.

(b) What is remarkable is that T = Λg implies that the divergence of T which in the general case
equals to jβJαβ vanishes. This is guaranteed by one of the conditions for the Kähler current.
Since also Einstein tensor has a vanishing divergence, one can ask whether the condition
to T = κG + Λg could the general condition. This would give Einstein’s equations with
cosmological term besides the generalization of the minimal surface equations. GRT would
emerge dynamically from the non-linear Maxwell’s theory although in slightly different
sense as conjectured [K79]! Note that the expression for G involves also second derivatives
of the imbedding space coordinates so that actually a partial differential equation is in
question. If field equations reduce to purely algebraic ones, as the basic conjecture states,
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it is possible to have Tr(GHk) = 0 and Tr(gHk) = 0 separately so that also minimal
surface equations would hold true.

What is amusing that the first guess for the action of TGD was curvature scalar. It
gave analogs of Einstein’s equations as a definition of conserved four-momentum currents.
The recent proposal would give the analog of ordinary Einstein equations as a dynamical
constraint relating Maxwellian energy momentum tensor to Einstein tensor and metric.

(c) Minimal surface property is physically extremely nice since field equations can be inter-
preted as a non-linear generalization of massless wave equation: something very natural for
non-linear variant of Maxwell action. The theory would be also very ”stringy” although
the fundamental action would not be space-time volume. This can however hold true
only for Euclidian signature. Note that for CP2 type vacuum extremals Einstein tensor
is proportional to metric so that for them the two options are equivalent. For their small
deformations situation changes and it might happen that the presence of G is necessary.
The GRT limit of TGD discussed in [K79] [L14] indeed suggests that CP2 type solutions
satisfy Einstein’s equations with large cosmological constant and that the small observed
value of the cosmological constant is due to averaging and small volume fraction of regions
of Euclidian signature (lines of generalized Feynman diagrams).

(d) For massless extremals and their deformations T = Λg cannot hold true. The reason is that
for massless extremals energy momentum tensor has component T vv which actually quite
essential for field equations since one has Hk

vv = 0. Hence for massless extremals and their
deformations T = Λg cannot hold true if the induced metric has Hamilton-Jacobi structure
meaning that guu and gvv vanish. A more general relationship of form T = κG+ ΛG can
however be consistent with non-vanishing T vv but require that deformation has at most
3-D CP2 projection (CP2 coordinates do not depend on v).

(e) The non-determinism of vacuum extremals suggest for their non-vacuum deformations a
conflict with the conservation laws. In, also massless extremals are characterized by a non-
determinism with respect to the light-like coordinate but like-likeness saves the situation.
This suggests that the transformation of a properly chosen time coordinate of vacuum
extremal to a light-like coordinate in the induced metric combined with Einstein’s equations
in the induced metric of the deformation could allow to handle the non-determinism.

Are complex structure of CP2 and Hamilton-Jacobi structure of M4 respected by
the deformations?

The complex structure of CP2 and Hamilton-Jacobi structure of M4 could be central for the
understanding of the preferred extremal property algebraically.

(a) There are reasons to believe that the Hermitian structure of the induced metric ((1,1)
structure in complex coordinates) for the deformations of CP2 type vacuum extremals could
be crucial property of the preferred extremals. Also the presence of light-like direction is
also an essential elements and 3-dimensionality of M4 projection could be essential. Hence
a good guess is that allowed deformations of CP2 type vacuum extremals are such that
(2,0) and (0,2) components the induced metric and/or of the energy momentum tensor
vanish. This gives rise to the conditions implying Virasoro conditions in string models in
quantization:

gξiξj = 0 , g
ξ
i
ξ
j = 0 , i, j = 1, 2 . (3.2.1)

Holomorphisms of CP2 preserve the complex structure and Virasoro conditions are expected
to generalize to 4-dimensional conditions involving two complex coordinates. This means
that the generators have two integer valued indices but otherwise obey an algebra very
similar to the Virasoro algebra. Also the super-conformal variant of this algebra is expected
to make sense.

These Virasoro conditions apply in the coordinate space for CP2 type vacuum extremals.
One expects similar conditions hold true also in field space, that is for M4 coordinates.
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(b) The integrable decomposition M4(m) = M2(m) + E2(m) of M4 tangent space to longi-
tudinal and transversal parts (non-physical and physical polarizations) - Hamilton-Jacobi
structure- could be a very general property of preferred extremals and very natural since
non-linear Maxwellian electrodynamics is in question. This decomposition led rather early
to the introduction of the analog of complex structure in terms of what I called Hamilton-
Jacobi coordinates (u, v, w,w) for M4. (u, v) defines a pair of light-like coordinates for the
local longitudinal space M2(m) and (w,w) complex coordinates for E2(m). The Hamilton-
Jacobi conditions on induced metric would be obtained by replacing imaginary unit in the
definition of Hermitian metric for some complex coordinates with e, e2 = 1 and defining
hyper-complex conjugation as u→ v for light-like-coordinate (Appendix).

A good guess is that the deformations of massless extremals respect this structure. This
condition gives rise to the analog of the constraints leading to Virasoro conditions stating
the vanishing of the non-allowed components of the induced metric plus the analogs of
hermiticity conditions. Again the generators of the algebra would involve two integers
and the structure is that of Virasoro algebra and also generalization to super algebra is
expected to make sense. The moduli space of Hamilton-Jacobi structures would be part of
the moduli space of the preferred extremals and analogous to the space of all possible choices
of complex coordinates. The analogs of infinitesimal holomorphic transformations would
preserve the modular parameters and give rise to a 4-dimensional Minkowskian analog of
Virasoro algebra. The conformal algebra acting on CP2 coordinates acts in field degrees of
freedom for Minkowskian signature.

Field equations as purely algebraic conditions

If the proposed picture is correct, field equations would reduce basically to purely algebraically
conditions stating that the Maxwellian energy momentum tensor has no common index pairs
with the second fundamental form. For the deformations of CP2 type vacuum extremals T is
a complex tensor of type (1,1) and second fundamental form Hk a tensor of type (2,0) and
(0,2) so that Tr(THk) = is true. This requires that second light-like coordinate of M4 is
constant so that the M4 projection is 3-dimensional. For Minkowskian signature of the induced
metric Hamilton-Jacobi structure replaces conformal structure. Here the dependence of CP2

coordinates on second light-like coordinate of M2(m) only plays a fundamental role. Note that
now T vv is non-vanishing (and light-like). This picture generalizes to the deformations of cosmic
strings and even to the case of vacuum extremals.

3.2.2 What small deformations of CP2 type vacuum extremals could
be?

I was led to these arguments when I tried find preferred extremals of Kähler action, which would
have 4-D CP2 and M4 projections - the Maxwell phase analogous to the solutions of Maxwell’s
equations that I conjectured long time ago. It however turned out that the dimensions of the
projections can be (DM4 ≤ 3, DCP2

= 4) or (DM4 = 4, DCP2
≤ 3). What happens is essentially

breakdown of linear superposition so that locally one can have superposition of modes which
have 4-D wave vectors in the same direction. This is actually very much like quantization of
radiation field to photons now represented as separate space-time sheets and one can say that
Maxwellian superposition corresponds to union of separate photonic space-time sheets in TGD.
In the following I shall restrict the consideeration to the deformations of CP2 type vacuum
extremals.

Solution ansatz

I proceed by the following arguments to the ansatz.

(a) Effective 3-dimensionality for action (holography) requires that action decomposes to van-
ishing jαAα term + total divergence giving 3-D ”boundary” terms. The first term certainly
vanishes (giving effective 3-dimensionality) for
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DβJ
αβ = jα = 0 .

Empty space Maxwell equations, something extremely natural. Also for the proposed GRT
limit these equations are true.

(b) How to obtain empty space Maxwell equations jα = 0? The answer is simple: assume self
duality or its slight modification:

J = ∗J

holding for CP2 type vacuum extremals or a more general condition

J = k ∗ J ,

In the simplest situation k is some constant not far from unity. * is Hodge dual involving
4-D permutation symbol. k = constant requires that the determinant of the induced metric
is apart from constant equal to that of CP2 metric. It does not require that the induced
metric is proportional to the CP2 metric, which is not possible since M4 contribution to
metric has Minkowskian signature and cannot be therefore proportional to CP2 metric.

One can consider also a more general situation in which k is scalar function as a generaliza-
tion of the weak electric-magnetic duality. In this case the Kähler current is non-vanishing
but divergenceless. This also guarantees the reduction to Tr(THk) = 0. In this case how-
ever the proportionality of the metric determinant to that for CP2 metric is not needed.
This solution ansatz becomes therefore more general.

(c) Field equations reduce with these assumptions to equations differing from minimal surfaces
equations only in that metric g is replaced by Maxwellian energy momentum tensor T .
Schematically:

Tr(THk) = 0 ,

where T is the Maxwellian energy momentum tensor and Hk is the second fundamental
form - asymmetric 2-tensor defined by covariant derivative of gradients of imbedding space
coordinates.

How to satisfy the condition Tr(THk) = 0?

It would be nice to have minimal surface equations since they are the non-linear generalization
of massless wave equations. It would be also nice to have the vanishing of the terms involving
Kähler current in field equations as a consequence of this condition. Indeed, T = κG+Λg implies
this. In the case of CP2 vacuum extremals one cannot distinguish between these options since
CP2 itself is constant curvature space with G ∝ g. Furthermore, if G and g have similar tensor
structure the algebraic field equations for G and g are satisfied separately so that one obtains
minimal surface property also now. In the following minimal surface option is considered.

(a) The first opton is achieved if one has

T = Λg .

Maxwell energy momentum tensor would be proportional to the metric! One would have
dynamically generated cosmological constant! This begins to look really interesting since it
appeared also at the proposed GRT limit of TGD [L14]. Note that here also non-constant
value of Λ can be considered and would correspond to a situation in which k is scalar
function: in this case the the determinant condition can be dropped and one obtains just
the minimal surface equations.

http://tgdtheory.com/public_html/articles/egtgd.pdf
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(b) Very schematically and forgetting indices and being sloppy with signs, the expression for
T reads as

T = JJ − g/4Tr(JJ) .

Note that the product of tensors is obtained by generalizing matrix product. This should
be proportional to metric.

Self duality implies that Tr(JJ) is just the instanton density and does not depend on metric
and is constant.

For CP2 type vacuum extremals one obtains

T = −g + g = 0 .

Cosmological constant would vanish in this case.

(c) Could it happen that for deformations a small value of cosmological constant is generated?

The condition would reduce to

JJ = (Λ− 1)g .

Λ must relate to the value of parameter k appearing in the generalized self-duality condition.
For the most general ansatz Λ would not be constant anymore.

This would generalize the defining condition for Kähler form

JJ = −g (i2 = −1 geometrically)

stating that the square of Kähler form is the negative of metric. The only modification
would be that index raising is carried out by using the induced metric containing also M4

contribution rather than CP2 metric.

(d) Explicitly:

JαµJ
µ
β = (Λ− 1)gαβ .

Cosmological constant would measure the breaking of Kähler structure. By writing g =
s+m and defining index raising of tensors using CP2 metric and their product accordingly,
this condition can be also written as

Jm = (Λ− 1)mJ .

If the parameter k is constant, the determinant of the induced metric must be proportional to
the CP2 metric. If k is scalar function, this condition can be dropped. Cosmological constant
would not be constant anymore but the dependence on k would drop out from the field equations
and one would hope of obtaining minimal surface equations also now. It however seems that the
dimension of M4 projection cannot be four. For 4-D M4 projection the contribution of the M2

part of the M4 metric gives a non-holomorphic contribution to CP2 metric and this spoils the
field equations.

For T = κG + Λg option the value of the cosmological constant is large - just as it is for the
proposed GRT limit of TGD [K79] [L14]. The interpretation in this case is that the average value
of cosmological constant is small since the portion of space-time volume containing generalized
Feynman diagrams is very small.

More detailed ansatz for the deformations of CP2 type vacuum extremals

One can develop the ansatz to a more detailed form. The most obvious guess is that the induced
metric is apart from constant conformal factor the metric of CP2. This would guarantee self-
duality apart from constant factor and jα = 0. Metric would be in complex CP2 coordinates
tensor of type (1,1) whereas CP2 Riemann connection would have only purely holomorphic or
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anti-holomorphic indices. Therefore CP2 contributions in Tr(THk) would vanish identically.
M4 degrees of freedom however bring in difficulty. The M4 contribution to the induced metric
should be proportional to CP2 metric and this is impossible due to the different signatures. The
M4 contribution to the induced metric breaks its Kähler property but would preserve Hermitian
structure.

A more realistic guess based on the attempt to construct deformations of CP2 type vacuum
extremals is following.

(a) Physical intuition suggests that M4 coordinates can be chosen so that one has integrable
decomposition to longitudinal degrees of freedom parametrized by two light-like coordi-
nates u and v and to transversal polarization degrees of freedom parametrized by complex
coordinate w and its conjugate. M4 metric would reduce in these coordinates to a direct
sum of longitudinal and transverse parts. I have called these coordinates Hamilton Jacobi
coordinates.

(b) w would be holomorphic function of CP2 coordinates and therefore satisfy massless wave
equation. This would give hopes about rather general solution ansatz. u and v cannot be
holomorphic functions of CP2 coordinates. Unless wither u or v is constant, the induced
metric would receive contributions of type (2,0) and (0,2) coming from u and v which
would break Kähler structure and complex structure. These contributions would give no-
vanishing contribution to all minimal surface equations. Therefore either u or v is constant:
the coordinate line for non-constant coordinate -say u- would be analogous to the M4

projection of CP2 type vacuum extremal.

(c) With these assumptions the induced metric would remain (1, 1) tensor and one might hope
that Tr(THk) contractions vanishes for all variables except u because the there are no com-
mon index pairs (this if non-vanishing Christoffel symbols for H involve only holomorphic
or anti-holomorphic indices in CP2 coordinates). For u one would obtain massless wave
equation expressing the minimal surface property.

(d) If the value of k is constant the determinant of the induced metric must be proportional to
the determinant of CP2 metric. The induced metric would contain only the contribution
from the transversal degrees of freedom besides CP2 contribution. Minkowski contribution
has however rank 2 as CP2 tensor and cannot be proportional to CP2 metric. It is however
enough that its determinant is proportional to the determinant of CP2 metric with constant
proportionality coefficient. This condition gives an additional non-linear condition to the
solution. One would have wave equation for u (also w and its conjugate satisfy massless
wave equation) and determinant condition as an additional condition.

The determinant condition reduces by the linearity of determinant with respect to its rows
to sum of conditions involved 0,1,2 rows replaced by the transversal M4 contribution to
metric given if M4 metric decomposes to direct sum of longitudinal and transversal parts.
Derivatives with respect to derivative with respect to particular CP2 complex coordinate
appear linearly in this expression they can depend on u via the dependence of transversal
metric components on u. The challenge is to show that this equation has (or does not have)
non-trivial solutions.

(e) If the value of k is scalar function the situation changes and one has only the minimal
surface equations and Virasoro conditions.

What makes the ansatz attractive is that special solutions of Maxwell empty space equations are
in question, equations reduces to non-linear generalizations of Euclidian massless wave equations,
and possibly space-time dependent cosmological constant pops up dynamically. These properties
are true also for the GRT limit of TGD [L14].

3.2.3 Hamilton-Jacobi conditions in Minkowskian signature

The maximally optimistic guess is that the basic properties of the deformations of CP2 type
vacuum extremals generalize to the deformations of other known extremals such as massless
extremals, vacuum extremals with 2-D CP2 projection which is Lagrangian manifold, and cosmic

http://tgdtheory.com/public_html/articles/egtgd.pdf
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strings characterized by Minkowskian signature of the induced metric. These properties would
be following.

(a) The recomposition ofM4 tangent space to longitudinal and transversal parts giving Hamilton-
Jacobi structure. The longitudinal part has hypercomplex structure but the second light-
like coordinate is constant: this plays a crucial role in guaranteeing the vanishing of con-
tractions in Tr(THk). It is the algebraic properties of g and T which are crucial. T can
however have light-like component T vv. For the deformations of CP2 type vacuum ex-
tremals (1, 1) structure is enough and is guaranteed if second light-like coordinate of M4 is
constant whereas w is holomorphic function of CP2 coordinates.

(b) What could happen in the case of massless extremals? Now one has 2-D CP2 projection
in the initial situation and CP2 coordinates depend on light-like coordinate u and single
real transversal coordinate. The generalization would be obvious: dependence on single
light-like coordinate u and holomorphic dependence on w for complex CP2 coordinates.
The constraint is T = Λg cannot hold true since T vv is non-vanishing (and light-like).
This property restricted to transversal degrees of freedom could reduce the field equations
to minimal surface equations in transversal degrees of freedom. The transversal part of
energy momentum tensor would be proportional to metric and hence covariantly constant.
Gauge current would remain light-like but would not be given by j = ∗dφ∧J . T = κG+Λg
seems to define the attractive option.

It therefore seems that the essential ingredient could be the condition

T = κG+ λg ,

which has structure (1,1) in both M2(m) and E2(m) degrees of freedom apart from the presence
of T vv component with deformations having no dependence on v. If the second fundamental form
has (2,0)+(0,2) structure, the minimal surface equations are satisfied provided Kähler current
satisfies on of the proposed three conditions and if G and g have similar tensor structure.

One can actually pose the conditions of metric as complete analogs of stringy constraints leading
to Virasoro conditions in quantization to give

guu = 0 , gvv = 0 , gww = 0 , gww = 0 . (3.2.2)

This brings in mind the generalization of Virasoro algebra to four-dimensional algebra for which
an identification in terms of non-local Yangian symmetry has been proposed [K87]. The number
of conditions is four and the same as the number of independent field equations. One can
consider similar conditions also for the energy momentum tensor T but allowing non-vanishing
component T vv if deformations has no v-dependence. This would solve the field equations if
the gauge current vanishes or is light-like. On this case the number of equations is 8. First
order differential equations are in question and they can be also interpreted as conditions fixing
the coordinates used since there is infinite number of manners to choose the Hamilton-Jacobi
coordinates.

One can can try to apply the physical intuition about general solutions of field equations in the
linear case by writing the solution as a superposition of left and right propagating solutions:

ξk = fk+(u,w) + fk+(v, w) . (3.2.3)

This could guarantee that second fundamental form is of form (2,0)+(0,2) in both M2 and E2

part of the tangent space and these terms if Tr(THk) vanish identically. The remaining terms
involve contractions of Tuw, Tuw and T vw, T vw with second fundamental form. Also these terms
should sum up to zero or vanish separately. Second fundamental form has components coming
from fk+ and fk−
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Second fundamental form Hk has as basic building bricks terms Ĥk given by

Ĥk
αβ = ∂α∂βh

k +
(
k
l m

)
∂αh

l∂βh
m . (3.2.4)

For the proposed ansatz the first terms give vanishing contribution to Hk
uv. The terms containing

Christoffel symbols however give a non-vanishing contribution and one can allow only fk+ or fk−
as in the case of massless extremals. This reduces the dimension of CP2 projection to D = 3.

What about the condition for Kähler current? Kähler form has components of type Jww whose
contravariant counterpart gives rise to space-like current component. Juw and Juw give rise to
light-like currents components. The condition would state that the Jww is covariantly constant.
Solutions would be characterized by a constant Kähler magnetic field. Also electric field is
represent. The interpretation both radiation and magnetic flux tube makes sense.

3.2.4 Deformations of cosmic strings

In the physical applications it has been assumed that the thickening of cosmic strings to Kähler
magnetic flux tubes takes place. One indeed expects that the proposed construction generalizes
also to the case of cosmic strings having the decomposition X4 = X2 × Y 2 ⊂M4 ×CP2, where
X2 is minimal surface and Y 2 a complex homologically non-trivial sub-manifold of CP2. Now
the starting point structure is Hamilton-Jacobi structure for M2

m × Y 2 defining the coordinate
space.

(a) The deformation should increase the dimension of either CP2 or M4 projection or both.
How this thickening could take place? What comes in mind that the string orbits X2 can
be interpreted as a distribution of longitudinal spaces M2(x) so that for the deformation
w coordinate becomes a holomorphic function of the natural Y 2 complex coordinate so
that M4 projection becomes 4-D but CP2 projection remains 2-D. The new contribution
to the X2 part of the induced metric is vanishing and the contribution to the Y 2 part is
of type (1, 1) and the the ansatz T = κG+ Λg might be needed as a generalization of the
minimal surface equations The ratio of κ and G would be determined from the form of
the Maxwellian energy momentum tensor and be fixed at the limit of undeformed cosmic
strong to T = (ag(Y 2) − bg(Y 2). The value of cosmological constant is now large, and
overall consistency suggests that T = κG+ Λg is the correct option also for the CP2 type
vacuum extremals.

(b) One could also imagine that remaining CP2 coordinates could depend on the complex
coordinate of Y 2 so that also CP2 projection would become 4-dimensional. The induced
metric would receive holomorphic contributions in Y 2 part. As a matter fact, this option
is already implied by the assumption that Y 2 is a complex surface of CP2.

3.2.5 Deformations of vacuum extremals?

What about the deformations of vacuum extremals representable as maps from M4 to CP2?

(a) The basic challenge is the non-determinism of the vacuum extremals. One should perform
the deformation so that conservation laws are satisfied. For massless extremals there is
also non-determinism but it is associated with the light-like coordinate so that there are
no problems with the conservation laws. This would suggest that a properly chosen time
coordinate consistent with Hamilton-Jacobi decomposition becomes light-like coordinate in
the induced metric. This poses a conditions on the induced metric.

(b) Physical intuition suggests that one cannot require T = Λg since this would mean that
the rank of T is maximal whereas the original situation corresponds to the vanishing of
T . For small deformations rank two for T looks more natural and one could think that
T is proportional to a projection of metric to a 2-D subspace. The vision about the long
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length scale limit of TGD is that Einstein’s equations are satisfied and this would suggest
T = kG or T = κG + Λg. The rank of T could be smaller than four for this ansatz and
this conditions binds together the values of κ and G.

(c) These extremals have CP2 projection which in the generic case is 2-D Lagrangian sub-
manifold Y 2. Again one could assume Hamilton-Jacobi coordinates for X4. For CP2 one
could assume Darboux coordinates (Pi, Qi), i = 1, 2, in which one has A = PidQ

i, and
that Y 2 ⊂ CP2 corresponds to Qi = constant. In principle Pi would depend on arbitrary
manner on M4 coordinates. It might be more convenient to use as coordinates (u, v) for M2

and (P1, P2) for Y 2. This covers also the situation when M4 projection is not 4-D. By its
2-dimensionality Y 2 allows always a complex structure defined by its induced metric: this
complex structure is not consistent with the complex structure of CP2 (Y 2 is not complex
sub-manifold).

Using Hamilton-Jacobi coordinates the pre-image of a given point of Y 2 is a 2-dimensional
sub-manifold X2 of X4 and defines also 2-D sub-manifold of M4. The following picture
suggests itself. The projection of X2 to M4 can be seen for a suitable choice of Hamilton-
Jacobi coordinates as an analog of Lagrangian sub-manifold in M4 that is as surface for
which v and Im(w) vary and u and Re(w) are constant. X2 would be obtained by allowing
u and Re(w) to vary: as a matter fact, (P1, P2) and (u,Re(w)) would be related to each
other. The induced metric should be consistent with this picture. This would requires
guRe(w) = 0.

For the deformations Q1 and Q2 would become non-constant and they should depend on the
second light-like coordinate v only so that only guu and guw and guw gw,w and gw,w receive
contributions which vanish. This would give rise to the analogs of Virasoro conditions
guaranteeing that T is a tensor of form (1, 1) in both M2 and E2 indices and that there are
no cross components in the induced metric. A more general formulation states that energy
momentum tensor satisfies these conditions. The conditions on T might be equivalent with
the conditions for g and G separately.

(d) Einstein’s equations provide an attractive manner to achieve the vanishing of effective
3-dimensionality of the action. Einstein equations would be second order differential equa-
tions and the idea that a deformation of vacuum extremal is in question suggests that the
dynamics associated with them is in directions transversal to Y 2 so that only the deforma-
tion is dictated partially by Einstein’s equations.

(e) Lagrangian manifolds do not involve complex structure in any obvious manner. One could
however ask whether the deformations could involve complex structure in a natural manner
in CP2 degrees of freedom so that the vanishing of gww would be guaranteed by holomorphy
of CP2 complex coordinate as function of w.

One should get the complex structure in some natural manner: in other words, the complex
structure should relate to the geometry of CP2 somehow. The complex coordinate defined
by say z = P1 + iQ1 for the deformation suggests itself. This would suggest that at the
limit when one puts Q1 = 0 one obtains P1 = P1(Re(w)) for the vacuum extremals and
the deformation could be seen as an analytic continuation of real function to region of
complex plane. This is in spirit with the algebraic approach. The vanishing of Kähler
current requires that the Kähler magnetic field is covariantly constant: DzJ

zz = 0 and
DzJ

zz = 0 .

(f) One could consider the possibility that the resulting 3-D sub-manifold of CP2 can be re-
garded as contact manifold with induced Kähler form non-vanishing in 2-D section with
natural complex coordinates. The third coordinate variable- call it s- of the contact man-
ifold and second coordinate of its transversal section would depend on time space-time
coordinates for vacuum extremals. The coordinate associated with the transversal section
would be continued to a complex coordinate which is holomorphic function of w and u.

(g) The resulting thickened magnetic flux tubes could be seen as another representation of
Kähler magnetic flux tubes: at this time as deformations of vacuum flux tubes rather than
cosmic strings. For this ansatz it is however difficult to imagine deformations carrying
Kähler electric field.
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3.2.6 About the interpretation of the generalized conformal algebras

The long-standing challenge has been finding of the direct connection between the super-conformal
symmetries assumed in the construction of the geometry of the ”world of classical worlds”
(WCW) and possible conformal symmetries of field equations. 4-dimensionality and Minkowskian
signature have been the basic problems. The recent construction provides new insights to this
problem.

(a) In the case of string models the quantization of the Fourier coefficients of coordinate vari-
ables of the target space gives rise to Kac-Moody type algebra and Virasoro algebra gen-
erators are quadratic in these. Also now Kac-Moody type algebra is expected. If one
were to perform a quantization of the coefficients in Laurents series for complex CP2 co-
ordinates, one would obtain interpretation in terms of su(3) = u(2) + t decomposition,
where t corresponds to CP3: the oscillator operators would correspond to generators in t
and their commutator would give generators in u(2). SU(3)/SU(2) coset representation for
Kac-Moody algebra would be in question. Kac-Moody algebra would be associated with
the generators in both M4 and CP2 degrees of freedom. This kind of Kac-Moody algebra
appears in quantum TGD.

(b) The constraints on induced metric imply a very close resemblance with string models and a
generalization of Virasoro algebra emerges. An interesting question is how the two algebras
acting on coordinate and field degrees of freedom relate to the super-conformal algebras
defined by the symplectic group of δM4

+×CP2 acting on space-like 3-surfaces at boundaries
of CD and to the Kac-Moody algebras acting on light-like 3-surfaces. It has been conjec-
tured that these algebras allow a continuation to the interior of space-time surface made
possible by its slicing by 2-surfaces parametrized by 2-surfaces. The proposed construction
indeed provides this kind of slicings in both M4 and CP2 factor.

(c) In the recent case, the algebras defined by the Fourier coefficients of field variables would be
Kac-Moody algebras. Virasoro algebra acting on preferred coordinates would be expressed
in terms of the Kac-Moody algebra in the standard Sugawara construction applied in string
models. The algebra acting on field space would be analogous to the conformal algebra
assignable to the symplectic algebra so that also symplectic algebra is present. Stringy
pragmatist could imagine quantization of symplectic algebra by replacing CP2 coordinates
in the expressions of Hamiltonians with oscillator operators. This description would be
counterpart for the construction of spinor harmonics in WCW and might provide some
useful insights.

(d) For given type of space-time surface either CP2 or M4 corresponds to Kac-Moody algebra
but not both. From the point of view of quantum TGD it looks as that something were
missing. An analogous problem was encountered at GRT limit of TGD [L14]. When
Euclidian space-time regions are allowed Einstein-Maxwell action is able to mimic standard
model with a surprising accuracy but there is a problem: one obtains either color charges
or M4 charges but not both. Perhaps it is not enough to consider either CP2 type vacuum
extremal or its exterior but both to describe particle: this would give the direct product of
the Minkowskian and Euclidian algebras acting on tensor product. This does not however
seem to be consistent with the idea that the two descriptions are duality related (the analog
of T-duality).

3.3 Under what conditions electric charge is conserved for
the modified Dirac equation?

One might think that talking about the conservation of electric charge at 21st century is a waste
of time. In TGD framework this is certainly not the case and the following arguments suggests
that the conservation of electric charge is the Golden Road to the understanding of the spinorial
dynamics.
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(a) In quantum field theories there are two manners to define em charge: as electric flux over
2-D surface sufficiently far from the source region or in the case of spinor field quantum
mechanically as combination of fermion number and vectorial isospin. The latter definition
is quantum mechanically more appropriate.

(b) There is however a problem. In standard approach to gauge theory Dirac equation in the
presence of charged classical gauge fields does not conserve the electric charge: electron is
transformed to neutrino and vice versa. Quantization solves the problem since the non-
conservation can be interpreted in terms of emission of gauge bosons. In TGD framework
this does not work since one does not have path integral quantization anymore. Preferred
extremals carry classical gauge fields and the question whether em charge is conserved
arises. Heuristic picture suggests that em charge must be conserved. This condition might
be actually one of the conditions defining what it is to be a preferred extremal. It is not
however trivial whether this kind of additional condition can be posed.

3.3.1 Conditions guaranteing the conservation of em charge

What does the conservation of em charge imply in the case of the modified Dirac equation?
The obvious guess that the em charged part of the modified Dirac operator must annihilate the
solutions, turns out to be correct as the following argument demonstrates.

(a) Em charge as coupling matrix can be defined as a linear combination Q = aI + bI3,
I3 = JklΣ

kl, where I is unit matrix and I3 vectorial isospin matrix, Jkl is the Kähler form
of CP2, Σkl denotes sigma matrices, and a and b are numerical constants different for
quarks and leptons. Q is covariantly constant in M4 × CP2 and its covariant derivatives
at space-time surface are also well-defined and vanish.

(b) The modes of the modified Dirac equation should be eigen modes of Q. This is the case
if the modified Dirac operator D commutes with Q. The covariant constancy of Q can be
used to derive the condition

[D,Q] Ψ = D1Ψ = 0 ,

D = Γ̂µDµ , D1 = [D,Q] = Γ̂µ1Dµ , Γ̂µ1 =
[
Γ̂µ, Q

]
. (3.3.1)

Covariant constancy of J is absolutely essential: without it the resulting conditions would
not be so simple.

It is easy to find that also [D1, Q]Ψ = 0 and its higher iterates [Dn, Q]Ψ = 0, Dn =
[Dn−1, Q] must be true. The solutions of the modified Dirac equation would have an
additional symmetry.

(c) The commutator D1 = [D,Q] reduces to a sum of terms involving the commutators of the
vectorial isospin I3 = JklΣ

kl with the CP2 part of the gamma matrices:

D1 = [Q,D] = [I3,Γr]∂µs
rTαµDα . (3.3.2)

In standard complex coordinates in which U(2) acts linearly the complexified gamma ma-
trices can be chosen to be eigenstates of vectorial isospin. Only the charged flat space
complexified gamma matrices ΓA denoted by Γ+ and Γ− possessing charges +1 and -1
contribute to the right hand side. Therefore the additional Dirac equation D1Ψ = 0 states

D1Ψ = [Q,D]Ψ = I3(A)eArΓ
A∂µs

rTαµDαΨ

= (e+rΓ
+ − e−rΓ−)∂µs

rTαµDαΨ = 0 . (3.3.3)

The next condition is

D2Ψ = [Q,D]Ψ = (e+rΓ
+ + e−rΓ

−)∂µs
rTαµDαΨ = 0 . (3.3.4)
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Only the relative sign of the two terms has changed. The remaining conditions give nothing
new.

(d) These equations imply two separate equations for the two charged gamma matrices

D+Ψ = Tα+Γ+DαΨ = 0 ,

D−Ψ = Tα−Γ−DαΨ = 0 ,

Tα± = e±r∂µs
rTαµ . (3.3.5)

These conditions state what one might have expected: the charged part of the modified
Dirac operator annihilates separately the solutions. The reason is that the classical W
fields are proportional to er±.

The above equations can be generalized to define a decomposition of the energy momentum
tensor to charged and neutral components in terms of vierbein projections. The equations
state that the analogs of the modified Dirac equation defined by charged components of
the energy momentum tensor are satisfied separately.

(e) In complex coordinates one expects that the two equations are complex conjugates of each
other for Euclidian signature. For the Minkowskian signature an analogous condition should
hold true. The dynamics enters the game in an essential manner: whether the equations
can be satisfied depends on the coefficients a and b in the expression T = aG+ bg implied
by Einstein’s equations in turn guaranteeing that the solution ansatz generalizing minimal
surface solutions holds true [K8].

(f) As a result one obtains three separate Dirac equations corresponding to the the neutral
part D0Ψ = 0 and charged parts D±Ψ = 0 of the modified Dirac equation. By acting on
the equations with these Dirac operators one obtains also that the commutators [D+, D−],
[D0, D±] and also higher commutators obtained from these annihilate the induced spinor
field mode. Therefore possibly infinite-dimensional algebra would annihilate the induced
spinor fields unless the charged parts of the energy momentum tensor vanish identically.

3.3.2 Dirac equation in CP2 as a test bench

What could the conservation of electric charge mean from the point of view of the solutions of
the modified Dirac equation? The field equations for the preferred extremals of Kähler action
reduce to purely algebraic conditions in the same manner as the field equations for the minimal
surfaces in string model. Could something similar happen also for the modified Dirac equation
and could the condition on charged part of the Dirac operator help to achieve this?

(a) For CP2 type vacuum extremals the modified Dirac operator vanishes identically for the
Kähler action. For volume action it reduces to the ordinary Dirac operator in CP2 and
one can ask whether ordinary Dirac operator could in this case allow solutions with a well-
defined em charge. Since also spinor harmonics of the imbedding space are expected to be
important and associated with the representations of conformal symmetries assignable to
the boundary of light cone involving symplectic group of δM4

± × CP2, it would be nice if
this construction would work for CP2.

(b) One can construct the solutions of the ordinary Dirac equation from covariantly constant
right-handed neutrino spinor playing the role of fermionic vacuum annihilated by the second
half of complexified gamma matrices. Dirac equation reduces to Laplace equation for a
scalar function and solution can be constructed from this ”vacuum” by multiplying with the
spherical harmonics of CP2 and applying Dirac operator [K43]. Similar construction works
quite generally thanks to the existence of covariantly constant right handed neutrino spinor.
Spherical harmonics of CP2 are only replaced with those of space-time surface possessing
either hermitian structure of Hamilton-Jacobi structure (corresponding to Euclidian and
Minkowskian signatures of the induced metric (Appendix)).
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(c) A good guess is that holomorphy codes the statement that only spinor harmonics of form
(n, 0) and (0, n) should be allowed. The first problem is that these modes are not actually
holomorphic since color triplet partial waves are proportional to 1/

√
1 + |ξ1|2 + |ξ2|2: The

are good hopes that covariant derivative containing also a term proportional to Kähler
gauge potential and coupling to leptons and quarks differently takes care of this.

Dirac equation in CP2 allows only modes with (m,m + 3), (m + 3,m) for leptons and
anti-leptons and modes (m+1,m) and (m,m+1) for quarks. More general solutions could
be possible but would not be global solutions. If this picture is correct, the dynamics in
fermionic degrees of freedom would be extremely restricted and only only very few color
partial waves would survive.

(d) Most holomorphic and anti-holomorphic modes for leptons and quarks would represent
gauge degrees of freedom. The remaining three modes for quarks could be interpreted in
terms of color of ground state. At first this looks good since only color neutral leptons and
color triplet quarks would be allowed. This result just what has been observed and the
experimental absence has indeed a challenge for quantum TGD. The experimental absence
of higher modes would be due to Kac-Moody gauge invariance.

Lepto-pion hypothesis in its original form and postulating color octet leptons would be
however wrong. This might not be a catastrophe: a variant of this hypothesis identifies
lepto-pion as quark antiquark pair associated with scaled down variant of hadron physics
[K78].

(e) A further work described in the sequel however shows that the correct identification of
partial waves of imbedding space spinors is in terms of cm degrees of freedom of the partonic
2-surface and can be assigned to the super-symplectic conformal invariance dictating the
ground states of Super-Kac-Moody representations. There is therefore no need to modify
the earlier well-tested picture.

3.3.3 How to satisfy the conditions guaranteeing the conservation of
em charge?

There are two manners to satisfy the conditions guaranteeing the conservation of em charge
leading to three separate Dirac equations. The first option is inspired by string model and
solutions are annihilated either by second charged gamma matrix or holomorphic covariant
derivative or by the conjugates of these. For the second option the charged modified gamma
matrices vanish identically.

Holomorphy of the solutions

In string model holomorphy/antiholomorphy for the modes of the induced spinor field is essential
from the point of view of Super-Virasoro conditions. For preferred extremals the holomorphy
seems to be in a key role and it would not be surprising if this were the case also in the fermionic
sector. Could the additional Dirac equations associated with charged parts of the modified
Dirac operator be solved by a generalization of holomorphy or anti-holomorphy? For the second
charged Dirac operator - say D+ - complexified gamma matrices would annihilate spinor mode
and for the second one - say D− - holomorphic covariant derivative would annihilate the spinor.
Note that the gamma matrices Γ+ and Γ− are hermitian conjugates of each other.

The condition that either charged gamma matrix annihilates the spinor mode for the space-
time sheet in question requires super-symmetry. For CP2 one has this kind of supersymmetry
but covariant constancy allows only right handed neutrino spinor: in this case however both
holomorphic gamma matrices annihilate the spinor. In super-string models in flat target space,
one has maximal supersymmetry allowing maximal number of covariantly constant spinor modes.
For modified gamma matrices this kind of situation might be realized. If one allows the restriction
of the induced spinor fields to string world sheets or partonic 2-surfaces, the situation simplifies
further, and it might be possible to assume holomorphy in the complex coordinate parametrizing
the 2-surface.
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Either Γ+ or Γ− should annihilate the spinor mode. For right-handed neutrino second half of
complexified gamma matrices annihilate it. This condition is analogous to the condition that
fermionic annihilation operators annihilate the state. In the recent case the condition is weaker
since only single complexified gamma matrix annihilates the state. For CP2 Dirac operator
one obtains four basic solutions corresponding to νR, Γ+νR, Γ0νR, Γ0Γ+νR. Γ0 is the second
holomorphic complexitifed gamma matrix. Therefore it seems that one might be able to obtain
at least two charged states for both quarks and lepton as required by the standard model plus
possible higher color partial waves.

A stronger condition is that both Γ+ and Γ− vanish and Dirac operator reduces to neutral Dirac
operator acting on complex coordinate and its conjugate. If the vanishing of Γ+ or Γ− takes
place everywhere the energy momentum tensor must be effectively 2-dimensional. This option
has been proposed earlier as a solution ansatz. If the vanishing occurs only at 2-D surface,
effective 2-dimensionality holds true only at this surface. This option looks more plausible one.

Option for which charged parts of energy momentum tensor vanish

The vanishing of the charged parts of the modified Dirac operator D - or equivalently, those
of the energy momentum tensor - would reduce D to its neutral part and the conditions would
trivialize. There would be no need for the full holomorphy, which could be an un-physical
condition for CP2 and not favored if one assumes that all color partial waves in CP2 correspond
to physical states in the construction of representations of the symplectic conformal algebra.
On the other hand, the reduction of allowed modes to just the observed one (singlet for leptons
and triplet for quarks) is an attractive property. In string models one would speak about super-
symmetry breaking. Note that holomorphy in the remaining neutral complex or hyper-complex
coordinate could provide elegant solution of the modified Dirac equation exactly in the same
manner as it does in string models.

It is however not at all clear whether the charged part of the energy momentum tensor can vanish
everywhere. Note however that since imvbedding space projections of the energy momentum
tensor are in question, the conditions do not mean reduction of the rank of energy momentum
tensor to at most two. The possibility that the vanishing occurs only at 2-D surfaces analogous
to string world sheets and that induced spinor fields must be restricted to these, is consistent
with the existent vision

One can study the option allowing non-vanishing charged Dirac operators and requiring holomor-
phy, covariant constancy, and extended supersymmetry in more detail. To get some perspective
one can the situation in the case of CP2 type vacuum extremals. In this case the energy mo-
mentum tensor and therefore also modified gamma matrices vanish identically. Therefore the
situation trivializes and one might hope that for the deformations of CP2 type vacuum extremals
the charged parts of the modified Dirac operator vanish or that holomorphy makes sense.

3.3.4 Could the solutions of the modified Dirac equation be restricted
to 2-D surfaces?

The condition that the charged Dirac operators (and also neutral one) annihilate physical states
is rather strong. If the charged parts Tα± of the energy momentum tensor vanish, these conditions
apply only to the space-time surface. These conditions are however quite strong and the question
is whether one could require them for 2-D sub-manifolds of space-time surface- the analogs of
string world sheets- only, and assume that the modes of Dirac equation are restricted on these.

There are several other manners to end up with this view.

(a) The vision inspired by the finite measurement resolution is that the solutions of the modified
Dirac equation are singular and restricted to 2-dimensional surfaces identifiable as string
world sheets in Minkowskian signature and as partonic 2-surfaces in Euclidian signature.
For 3-D light-like surfaces solutions would be restricted at word lines defining strands of
braid defining discretization as space-time correlate for the finite measurement resolution.
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The interesting self-referential aspect would be that physical system itself would define the
finite measurement resolution.

(b) Another interpretation is in terms of the number theoretical vision [K74]. Space-time sur-
faces define associative or co-associative 4-surfaces with tangent space allowing quaternionic
of co-quaternionic structure or its Minkowskian variant. This is a formulation for the idea
that classical dynamics is determined by associativity condition. One can however go fur-
ther and require also commutativity or co-commutativity and this leads to string world
sheets or partonic 2-surfaces. The vanishing of the charged components of the energy mo-
mentum tensor could be indeed seen as a condition stating that the surface is complex or
co-complex sub-manifold (or hyper-complex or co-hyper-complex one).

(c) Also strong form of holography leads to the idea that 2-D partonic surfaces or string world
sheets and the 4-D tangent space data at them should be enough for the formulation
of quantum theory and 4-D space-time surfaces are necessary only for the realization of
quantum classical correspondence. One could say that space-time surface is analogous
to phase space and that in quantum theory only 2-D slice of it analogous to Lagrangian
sub-manifold can be used.

The general vision about preferred extremals involves a non-trivial aspect not yet mentioned [K8]
and this allows to developed an argument in favor of reductionof spinorial dynamics to that at
2-D surfaces.

(a) Various conserved currents are suggested to define integrable flows meaning that one can
identify a global coordinate varying along the flow lines. Could the charged parts of the
energy momentum tensor defined as currents define Beltrami flow? If so, these currents
have expression of form J± = Φ±∇Ψ±, where Φ± and Ψ± are complex scalar functions such
that the latter ones define the global coordinate. If this is the case, then the surface at which
J± vanishes corresponds to the surface Φ+ = Φ− = 0 and by complex valuedness of Φ± = 0
is 2-dimensional rather than 0-dimensional as for a generic vector field. The charged parts
of energy momentum tensor vanish identically as do the corresponding modified gamma
matrices.

(b) Vanishing of Φ± would reduce the 4-D conformal algebra to 2-dimensional conformal al-
gebra associated with the string world sheet or partonic 2-surface, and this is just what
is expected on basis of physical intuition. One could say that locally space-time surface
reduces to effectively 2-D surface. Charge conservation would select 2-dimensional string
world sheets and/or partonic 2-surfaces and reproduce the earlier picture inspired by the no-
tion of finite measurement resolution, by number theoretical considerations, and by strong
form of holography.

A couple of further comments about are in order.

(a) A natural consistency condition is that the modified gamma matrices in the modified Dirac
operator are parallel to the 2-D surface. Otherwise one obtains covariant derivatives in
transversal direction giving delta functions. This requires that modified gamma matrices
generate a 2-D subspace tangential to X2 at X2. This condition need not hold true else-
where. This would mean that with respect to the effective metric defined by the anticommu-
tators of the modified gamma matrices space-time surface becomes effectively 2-dimensional
locally. Effective 2-dimensionality of the effective metric was conjectured already earlier
but now it is restricted to string world sheets and partonic 2-surfaces thus appearing as
singularities of the preferred extremals. String world sheets and partonic 2-surfaces must
obey some dynamics and minimal surface equation in the effective metric is a good guess
since it automatically would reduce the situation to 2-D one.

(b) Weak form of electric magnetic duality states that at partonic 2-surface X2 the Kähler
electric field strength Jnβ in 2-dimensional tangent plane of X4 transversal to X2 is pro-
portional to the 4-D dual of the Kähler magnetic field strength Jαβ at X2 : Jnβ = kεnβγδJγδ
, k = constant. The transversal plane is not unique without some additional condition and
the natural condition is that it defines tangent plane to the string world sheet.
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3.3.5 The algebra spanned by the modified Dirac operators

The conservation of em charge for the modified Dirac equation implies that the electromagnetic
charge determined defined as Q = aI+ bI3 is conserved in the classical electro-weak gauge fields
identified as induced gauge fields. This condition is highly non-trivial and as has been found
could hold true only at 2-D surfaces implying a stringy localization of fermions.

For the modified Dirac equation additional consistency conditions analogous to Super-Virasoro
conditions follow from the conditions that electromagnetic charge is constant for the modes of
the modified Dirac equation. The conditions state that the possibly infinite-dimensional algebra
or super-algebra generated by the neutral part and two charged parts with charges ±1 of the
modified Dirac operator annihilates the preferred solutions of the modified Dirac equation.

For super-algebra option one would start with anti-commutators of the Dirac operators and con-
sider commutators when either generators has even value of em charge. For algebra option one
would consider only commutators which are formally Lie commutators of gamma matrix valued
vector fields Γαi Dα which ordinary derivatives replaced with covariant derivatives and compo-
nents of the vector fields replaced with the modified gamma matrices obtained by contracting
the neutral or charged part of the energy momentum tensor with flat space gamma matrices.

The commutator is the more feasible option as following arguments show.

(a) Ordinary modified Dirac equation gives rise to a conserved fermionic current and its con-
servation could be seen as a consequence of the modified Dirac equation. The statement
that the modified Dirac operators annihilate the induced spinors could thus be equivalent
with the statement that SU(2) triplet of fermionic currents is conserved. In old fashioned
hadron physics this corresponds to conserved vector current hypothesis.

(b) The algebra defined by the commutators has the structure of vectorial SU(2) algebra and
the natural guess is that this algebra relates closely to N = 2 super-conformal algebra for
which super-generators G form SU(2) triplets and which allows conserved U(1) currents
besides energy momentum tensor.

In the recent case the U(1) charge would be em charge. As a matter fact, N = 2 algebra is
accompanied also by SU(2) algebra of conserved currents and the attractive interpretation
is that the Dirac operators generate this algebra.

(c) The algebra of Dirac operators annihilating the induced spinor field would define algebra of
divergences of fermionic currents of form Jαi = ΨΓαi Ψ. These currents are conserved if the
modified Dirac equations are satisfied. The algebra generated by the commutators of these
fermionic currents assuming anti-commutation relations for the induced spinor fields should
be equivalent with the algebra of Dirac operators. This should fix the anti-commutation
relations for the induced spinor fields.

(d) The outcome is a bosonic algebra of vector currents. By replacing Ψ or Ψ with a mode of the
induced spinor field one would obtain super-algebra generators of extended super-algebra.
The divergences of fermionic and bosonic generators would generate algebra which vanishes
identically for the solutions of the modified Dirac equation. The currents themselves would
be non-vanishing.

(e) If the charged currents vanish at 2-surface then the commutator of charged Dirac operator
vanishes identically. The commutators of neutral and charged Dirac operators need not
vanish identically and it might be necessary to pose this as an additional conditions. The
vanishing conditions reduce to the vanishing of the ordinary commutator [T0, T±] of vector
fields T0 and T±.

What about the super algebra part of the Super-Virasoro algebra. Is it also present?

(a) One must notice that it is the ”gamma matrix fields” defined by neutral and charged parts
of the modified gamma matrices ΓAi forming an SU(2) triplet and these anti-commute
classically to parts of the modified metric for which certain parts should vanish. These
”certain parts” should vanish also for the induced metric resulting as anti-commutators
of the induced gamma matrices. The conditions are not expected to be independent and
should correspond to Virasoro conditions for the induced metric.
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(b) The SU(2) Super Virasoro algebra discussed above would naturally relate to N = 2 variant
of the ordinary Super-Virasoro algebra and electromagnetic charge would take the role
of conserved U(1) current accompanying N = 2 algebra. This algebra indeed involves
SU(2) as an additional symmetry algebra. Modified Dirac equations would correspond to
conservation of the SU(2) currents and the vanishing conditions on the induced metric
and/or its analog defined by the anti-commutators of the modified gamma matrices would
correspond to Virasoro conditions. It is however not clear whether the modified gamma
matrices - or rather, their second quantized variants - should annihilate the physical states.
This condition would correspond for the induced spinor fields a condition stating that
second half of complexified modified gamma matrices annihilates the right handed neutrino
spinor serving as the analog of fermionic Fock vacuum.

3.3.6 Connection with the number theoretical vision about field equa-
tions

The recent progress in the understanding of preferred extremals of Kḧler action suggests also an
interesting connection to the number theoretic vision about field equations [K74]. In particular,
it might be possible to understand how one can have Hermitian/Harmilton-Jacobi structure
simultaneously with quaternionic structure and how quaternionic structure is possible for the
Minkowskian signature of the induced metric.

One can imagine two manners of introducing octonionic and quaternionic structures. The first
one is based on the introduction of octonionic representation of gamma matrices and second on
the notion of octonion real-analycity.

(a) If quaternionic structure is defined in terms of the octonionic representation of the imbed-
ding space gamma matrices, there seems to be no obvious problems since one considers
automatically complexification of quaternions represented in terms of gamma matrices.
For the approach based on the notion of quaternion real analyticity, one is forced to use
Wick rotation to define the quaternionic structure in Minkowskian regions or to introduce
what I have called hyper-quaternionic structure by imbedding the space-time surface to a
sub-space M8 of complexified octonions. This is admittedly artificial.

(b) The octonionic representation effectively replaces SO(7, 1) as tangent space group with
G2 and means selection of preferred M2 ⊂ M4 having interpretation complex plane of
octonionic space. A more general condition is that the tangent space of space-time surface
at each point contains preferred sub-space M2(x) ⊂M4 forming an integrable distribution.
The same condition is involved with the definition of Hamilton-Jacobi structure. What puts
bells ringing is that the modified Dirac equation for the octonionic representation of gamma
matrices allows the conservation of electromagnetic charge in the proposed sense a observed
for years ago. One can ask whether the conditions on the charged part of energy momentum
tensor could relate to the reduction of SO(7, 1) to G2.

(c) Octonionic gamma matrices appear also in the proposal stating that space-time surfaces are
quaternionic in the sense that tangent space of the space-time surface is quaternionic in the
sense that induced octonionic gamma matrices generate a quaternionic sub-space at a given
point of space-time time. Besides this the already mentioned additional condition stating
that the tangent space contains preferred sub-space M2 ⊂ M4 or integrable distribution
of this kind of sub-spaces is required. It must be emphasized that induced rather than
modified gamma matrices are natural in these conditions.

Definition of quaternionicity based on gamma matrices

The definition of quaternionicity in terms of gamma matrices looks more promising. This how-
ever raises two questions.

(a) Can the quaternionicity of the space-time surface together with a preferred distribution of
tangent planes M2(x) ⊂M4 or E2(x) ⊂ CP2 be equivalent with the reduction of the field
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equations to the analogs of minimal surface equations stating that certain components of the
induced metric in complex/Hamilton-Jacobi coordinates vanish in turn guaranteeing that
field equations reduce to algebraic identifies following from the fact that energy momentum
tensor and second fundamental form have no common components? This should be the
case if one requires that the two solution ansätze are equivalent.

(b) Can the conditions for the modified Dirac equation select complex of co-complex 2-sub-
manifold of space-time surface identified as quaternionic or co-quaternionic 4-surface?
Could the conditions stating the vanishing of charged energy momentum currents state that
the spinor fields are localized to complex or co-complex (hyper-complex or co-hypercomplex)
2-surfaces?

One should assign to the space-time sheets both quaternionic and Hermitian or Hamilton-Jacobi
structure. There are two structures involved. Euclidian metric is an essential aspect of what it
is to be quaternionic or octonions. It however seems that one can assign to the induced metric
only Hermitian or Hamilton-Jacobi structure. This leads to a serious of innocent questions.

(a) Could these two structures be associated with canonical momentum currents and metric
respectively? Anti-commutators of the modified gamma matrices define an effective metric
expressible in terms of canonical momentum currents as

Gαβ = Πα
kΠβk .

Here Πα
k = ∂L/∂αh

k is the canonical momentum current. This effective metric should have
a deep physical and mathematical meaning but this meaning has remained a mystery.

(b) CouldG be assigned with the quaternionic structure and induced metric to the Hermitian/Hamilton-
Jacobi structures? Or perhaps vice versa? Could the neutral and charged components of
the energy momentum tensor somehow correspond to quaternionic units?

The basic potential problem with the assignment of quaternionic structure to the induced gamma
matrices is the signature of the metric in Minkowskian regions.

(a) If quaternionic structrures is defined in terms of the octonionic representation of the imbed-
ding space gamma matrices, there seems to be no obvious problems since one considers
automatically complexification of quaternions.

(b) For the approach based on the notion of quaternion real analyticity, one is forced to use Wick
rotation to define the quaternionic structure or to introduce hyper-quaternionic structure by
imbedding the space-time surface to a sub-space M¡sup¿8¡/sup¿ of complexified octonions.
This is admittedly artificial.

Could one pose the additional requirement that the signature of the effective metric G defined
by the modified gamma marices (and to be distinguished from Einstein tensor) is Euclidian in
the sense that all four eigenvalues of this tensor would have same sign.

(a) For the induced metric the projections of gamma matrices are given by

Γα = Γaeaα , eaα = eak∂αh
k .

For the modified gamma matrices their analogs would be given by

Γα = ΓaEαa , Eαa = ekaΠα
k .

One cannot induce G from any metric defined in the imbedding space but the notion of
tangent space quaternionicity is well-defined.

(b) What quaternionic structure for G could mean? One can imagine several options.
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i. For the ordinary complex structure metric has vanishing diagonal components and the
inner product for infinitesimal vectors is just gzz̄(dz1dz2 +dz2dz1). Could this formula
generalize to gQQ̄(dQ1dQ2 + dQ2dQ1)? The generalization would be a direct gener-
alization of conformal invariance to 4-D context stating that 4-metric is quaternion-
conformally equivalent to flat metric. This would give additional strong condition on
energy momentum tensor:

G = Πα
kΠβk = T 2δαβ .

The proportionality to Euclidian metric means in Minkowskian realm that the G is
of form G = T 2(2uαuβ − gαβ . Here u is time-like vector field satisfying uαuα =
1 and having interpretation as a local four-velocity (in Robertson-Walker cosmology
similar situation is encountered). The eigen value problem in the form Gαβx

β = λxα

makes sense and eigenvectors would be uα with eigenvalue λ = T 2 and three vectors
orthogonal to it with eigenvalue −T 2. This requires integrable flow defined by u and
defining a preferred time coordinate. In number theoretic vision this kind of time
coordinate is introduced and corresponds to the direction assignable to the octonionic
real unit. Note that the vanishing of charged projections of the energy momentum
tensor does not imply a reduction of the rank of T so that this options might work.

ii. Quaternionicity could mean also the structure of hyper-Kähler manifold. Metric and
Kähler form for Kähler manifold are generalized to metric representing quaternion
real unit and three covariantly constant Kähler forms Ii obeying the multiplication
rules for quaternions. The necessary condition is that the holonomy group equals
to SU(2) identifiable as automorphism group of quaternions. One can also define
quaternionic structure: there would exist three antisymmetric tensors, whose squares
give the negative of the metric. CP2 allows quaternionic structure in this sense and
only one of these forms is covariantly constant.
Could space-time surface allow Hyper-Kähler or quaternionic structure somehow in-
duced from that of CP2? This does not work forG. G is quadratic in energy momentum
tensor and therefore involves four power of J rather than being square of projection of
J or two other quaternionic imaginary units of CP2. One can of course ask whether
the induced quaternionic units could obey the multiplication of quaternionic units and
have same square given by the projection of CP2 metric. In this case CP2 metric would
define the effective metric and would be indeed Euclidian. For the ansatz for preferred
extremals with Minkowskian signature CP2 projection is at most 3-dimensional but
also in this case the imaginary units might allow a realization as projections.

Definition of quaternionicity based on octonion real-analyticity

Second definition of quaternionicity is on more shaky basis and motivated by the solutions
of 2-D Laplace equation: quaternionic space-time surfaces would be obtained as zero loci of
octonion real–analytic functions. Unfortunately octonion real–analyticity does not make sense
in Minkowskian signature.

One could understand octonion real-analyticity in Minkowskian signature if one could under-
stand the deeper meaning of Wick rotation. Octonion real analyticity formulated as a condition
for the vanishing of the imaginary part of octonion real-analytic function makes sense for in
octonionic coordinates for E4 × CP2 with Euclidian signature of metric. M4 × CP2 is how-
ever only a subspace of complexified octonions and not closed with respect to multiplication so
that octonion real-analytic functions do not make sense in M4 × CP2 . Wick rotation should
transform the solution candidate defined by an octonion real-analytic function to that defined
in M4×CP2. A natural additional condition is that Wick rotation should reduce to that taking
M2 ⊂M4 to E2 ⊂ E4.

The following trivial observation made in the construction of Hamilton-Jacobi structure in M4

with Minkowskian signature of the induced metric (see the Appendix) as a Wick rotation of
Hermitian structure in E4 might help here.
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(a) The components of the metric of E2 in complex coordinates (z, z) for E2 are given by
gww = −1 whereas the metric of M2 in light-like coordinates (u = x + t, v = x − t) is
given by guv = −1. The metric is same and M2 and E2 correspond only to different
interpretations for the coordinates! One could say that M4 × CP2 and E4 × CP2 have
same metric tensor, Kähler structure, and spinor structure. Since only these appear in
field equations, one could hope that the solutions of field equations in M4 × CP2 and
E4 × CP2 are obtained by Wick rotation. This for preferred extremals at least and if the
field equations reduce to purely algebraic ones.

(b) If one accepts the proposed construction of preferred extremals of Kähler action discussed
in [K92], the field equations indeed reduce to purely algebraic conditions satisfied if space-
time surface possesses Hermitian structure in the case of Euclidian signature of the induced
metric and Hamilton-Jacobi structure in the case of Minkowskian signature. Just as in the
case of minimal surfaces, energy momentum tensor and second fundamental form have no
common non-vanishing components. The algebraization requires as a consistency condition
Einstein’s equations with a cosmological term. Gravitational constant and cosmological
constant follow as predictions.

(c) If Wick rotation in the replacement of E2 coordinates (z, z) with M2 coordinates (u, v)
makes sense, one can hope that field equations for the preferred extremals hold true also
for a Wick rotated surfaces obtained by mapping M2 ⊂ M4 to E2 ⊂ E4. Also Einstein’s
equations should be satisfied by the Wick rotated metric with Euclidian signature.

(d) Wick rotation makes sense also for the surfaces defined by the vanishing of the imaginary
part (complementary to quaternionic part) of octonion real-analytic function. Therefore
one can hope that this ansatz could work. Wick rotation is non-trivial geometrically. For
instance, light-like lines v = 0 of hyper-complex plane M2 are taken to z = 0 defining a
point of complex plane E2. Note that non-invertible hyper-complex numbers correspond to
the two light-like lines u = 0 and v = 0 whereas non-invertible complex numbers correspond
to the origin of E2.

(e) If the conjecture holds true, one can apply to both factors in E4 = E2 × E2 and to get
preferred extremals in M2,2 ×CP2. Minkowski space M2,2 is essential in twistor approach
and the possibility to carry out Wick rotation for preferred extremals could justify Wick
rotation in quantum theory.

3.3.7 Modification of the measurement interaction term

By quantum classical correspondence the momenta and other quantum numbers should have
correlates in the geometry of the space-time sheet. This suggests an inclusion to the modified
Dirac action of a general coordinate invariant measurement interaction term invariant under
appropriate subgroup of isometries characterizing the choice of the measurement axis. In the
following only the measurement interaction term assignable to four-momentum is discussed.
One could assign this term only to 3-D space-like ends of space-time surface and the light-like
wormhole throats. Somewhat surprisingly the effective gauge character of this term allows also
the assignment to space-time interior.

The first guess for the measurement interaction term for 4-momentum would be as λΨΓαpαΨ
restricted to 3-D preferred surface in question. This term however vanishes at the light-like
orbits of wormhole throats since the modified gamma matries defined by the Chern-Simons
term contain only CP2 gamma matrices. This forced to replace the term with λΨγkpkΨ in the
original approach [K28]. This term does not possess a formal gauge character and treats M4

and CP2 asymmetrically. Second problem is that measurement interaction term is proportional
to a constant λ with dimensions of mass and unless one can relate it to gravitational constant,
is un-natural.

As already noticed, the measurement interaction term formally corresponds to a gauge transform
of Kähler gauge potential by the gradient pα = pk∂αm

k defining the momentum projection. The
change of the gauge eliminating this term introduces plane wave factor to the induced spinor field.
The gauge transformation eliminating the measurement interaction term does not become trivial
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asymptotically and might therefore carry physical information. Therefore one can consider also
the possibility that measurement interaction term is introduced at the entire 4-D space-time
sheet. In this case the change of gauge by a phase transformation introducing a plane-wave
factor would lead to the equation without measurement interaction term and one would obtain
holomorphic solutions.

Consider now the 4-D option in more detail.

(a) One can argue that the measurement interaction term in the interior can be transformed
away by a gauge transformation Aα → Aα − pα so that the holomorphic solutions are
not lost. The global nature of the gauge transformation gives hopes that it indeed codes
information via the plane wave phase multiplying the holomorphic solutions. The projection
pα appearing in the contraction with the modified gamma matrices is automatically parallel
to the tangent space of the string world sheet or partonic 2-surface.

(b) The question whether there is a connection between gravitational and ordinary Planck
constants led to the conjecture that the gravitational momentum squared defined by the
modified gamma matrices would be equal to inertial momentum squared [K27] just as
Equivalence Principle requires. In other words, the gravitational longitudinal 2-momentum
squared p2

gr = gαβeffpαpβ would be equal to the inertial 2-momentum squared p2
I = mkl

2 pkpl
at respective tangent spaces M2 resp. E2 of string world sheet resp. partonic 2-surface.
At the ends of braid strands defining the intersections of string world sheets and partonic
2-surfaces, one would have

p2
gr = gαβeff,spαpβ + gαβeff,ppαpβ = p2 .

Here the subscripts ’s’ and ’p’ refer to string world sheet and partonic 2-surface respectively.

(c) It would be nice if this condition would somehow follow from the proposed field equation
for the induced spinors at the edges of string world sheet, where one should treat the gauge
conditions carefully without doing the gauge transformation. At the intersection point
it would seem necessary to assume that the ordinary derivatives - maybe even covariant
derivatives - vanish. If covariant derivatives vanish, the modified Dirac equation in 4-D
sense would reduce to the condition that the sum of the measurement interaction terms
annihilates the spinor modes. This would give

ΓαpαΨ = 0

at the ends of braid strands and this would give massless condition in 4-D sense stating
p2
gr,|| + p2

gr,⊥ = 0.

(d) The modified Dirac equation contains a boundary term ΓnΨ at the boundaries of the
string world sheet. The vanishing of Γn proportional to the canonical momentum current
in the normal direction at wormhole throats could be forced by the condition that classical
charges do not leak between Minkowskian and Euclidian regions of the space-time sheet.
This condition cannot be posed at space-like 3-surfaces since they represent initial data.

To sum up, this option is favored because no dimensional coupling is needed and because one
obtains a connection between ordinary Planck constant and gravitational Planck constant as
discussed in [K27]. Also a close connection with braid picture and generalized Feynman diagrams
with lines identified as massless wormhole throats emerges.

3.4 Preferred extremals and solutions of the modified Dirac
equation and super-conformal symmetries

The new vision about preferred exrtremals and modified Dirac equations is bound to check the
existing vision about super-conformal symmetries. One important discovery is that Einstein’s
equations follow from the vanishing of terms proportional to Kähler current in field equations
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for preferred extremals and Equivalence Principle at the classical level is realized automatically
in all scales in contrast to the earlier belief. This obviously must have implications to the general
vision about Super-Virasoro representations and one must be ready to modify the existing picture
based on the assumption that quantum version of Equivalence Principle is realized in terms coset
representations.

The very special role of right handed neutrino is also bound to have profound implications.
A further important outcome is the identification of gauge potentials as duals of Kac-Moody
currents at the boundaries of string world sheets: quantum gauge potentials are defined only
where they are needed that is the curves defining the non-integrable phase factors. This gives
also rise to the realization of the conjecture Yangian in terms of the Kac-Moody charges and
commutators in accordance with the earlier conjecture.

3.4.1 Super-conformal symmetries

It is good to summarize first the basic ideas about Super-Virasoro representations. TGD allows
two kinds of super-conformal symmetries.

(a) The first super-conformal symmetry is associated with δM4
± × CP2 and corresponds to

symplectic symmetries of δM4
± × CP2. The reason for extension of conformal symmetries

is metric 2-dimensionality of the light-like boundary δM4
± defining upper/lower boundary

of causal diamond (CD). This super-conformal symmetry is something new and corre-
sponds to replacing finite-dimensional Lie-group G for Kac-Moody symmetry with infinite-
dimensional symplectic group. The light-like radial coordinate of δM4

± takes the role of the
real part of complex coordinate z for ordinary conformal symmetry. Together with complex
coordinate of S2 it defines 3-D restriction of Hamilton-Jacobi variant of 4-D super-conformal
symmetries. One can continue the conformal symmetries from light-cone boundary to CD
by forming a slicing by parallel copies of δM4

±. There are two possible slicings correspond-
ing to the choices δM4

+ and δM4
− assignable to the upper and lower boundaries of CD.

These two choices correspond to two arrows of geometric time for the basis of zero energy
states in ZEO.

(b) Super-symplectic degrees of freedom determine the electroweak and color quantum num-
bers of elementary particles. Bosonic emergence implies that ground states assignable to
partonic 2-surfaces correspond to partial waves in δM4

± and one obtains color partial waves
in particular. These partial waves correspond to the solutions for the Dirac equation in
imbedding space and the correlation between color and electroweak quantum numbers is
not quite correct. Super-Kac-Moody generators give the compensating color for massless
states obtained from tachyonic ground states guaranteeing that standard correlation is ob-
tained. Super-symplectic degrees are therefore directly visible in particle spectrum. One
can say that at the pointlike limit the WCW spinors reduce to tensor products of imbedding
space spinors assignable to the center of mass degrees of freedom for the partonic 2-surfaces
defining wormhole throats.

I have proposed a physical interpretation of super-symplectic vibrational degrees of freedom
in terms of degrees of freedom assignable to non-perturbative QCD. These degrees of free-
dom would be responsible for most of the baryon masses but their theoretical understanding
is lacking in QCD framework.

(c) The second super-conformal symmetry is assigned light-like 3-surfaces and to the isometries
and holonomies of the imbedding space and is analogous to the super-Kac-Moody symmetry
of string models. Kac-Moody symmetries could be assigned to the light-like deformations
of light-like 3-surfaces. Isometries give tensor factor E2 × SU(3) and holonomies factor
SU(2)L × U(1). Altogether one has 5 tensor factors to super-conformal algebra. That the
number is just five is essential for the success p-adic mass calculations [K50, K43].

The construction of solutions of the modified Dirac equation suggests strongly that the
fermionic representation of the Super-Kac-Moody algebra can be assigned as conserved
charges associated with the space-like braid strands at both the 3-D space-like ends of space-
time surfaces and with the light-like (or space-like with a small deformation) associated with
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the light-like 3-surfaces. The extension to Yangian algebra involving higher multilinears of
super-Kac Moody generators is also highly suggestive. These charges would be non-local
and assignable to several wormhole contacts simultaneously. The ends of braids would
correspond points of partonic 2-surfaces defining a discretization of the partonic 2-surface
having interpretation in terms of finite measurement resolution.

These symmetries would correspond to electroweak and strong gauge fields and to grav-
itation. The duals of the currents giving rise to Kac-Moody charges would define the
counterparts of gauge potentials and the conserved Kac-Moody charges would define the
counterparts of non-integrable phase factors in gauge theories. The higher Yangian charges
would define generalization of non-integrable phase factors. This would suggest a rather
direct connection with the twistorial program for calculating the scattering amplitudes
implies also by zero energy ontology.

Quantization recipes have worked in the case of super-string models and one can ask whether
the application of quantization to the coefficients of powers of complex coordinates or Hamilton-
Jacobi coordinates could lead to the understanding of the 4-D variants of the conformal sym-
metries and give detailed information about the representations of the Kac-Moody algebra too.

3.4.2 What is the role of the right-handed neutrino?

A highly interesting aspect of Super-Kac-Moody symmetry is the special role of right handed
neutrino.

(a) Only right handed neutrino allows besides the modes restricted to 2-D surfaces also the 4D
modes delocalized to the entire space-time surface. The first ones are holomorphic functions
of single coordinate and the latter ones holomorphic functions of two complex/Hamilton-
Jacobi coordinates. Only νR has the full D = 4 counterpart of the conformal symmetry
and the localization to 2-surfaces has interpretation as super-conformal symmetry breaking
halving the number of super-conformal generators.

(b) This forces to ask for the meaning of super-partners. Are super-partners obtained by adding
νR neutrino localized at partonic 2-surface or delocalized to entire space-time surface or
its Euclidian or Minkowskian region accompanying particle identified as wormhole throat?
Only the Euclidian option allows to assign right handed neutrino to a unique partonic 2-
surface. For the Minkowskian regions the assignment is to many particle state defined by
the partonic 2-surfaces associated with the 3-surface. Hence for spartners the 4-D right-
handed neutrino must be associated with the 4-D Euclidian line of the generalized Feynman
diagram.

(c) The orthogonality of the localized and de-localized right handed neutrino modes requires
that 2-D modes correspond to higher color partial waves at the level of imbedding space. If
color octet is in question, the 2-D right handed neutrino as the candidate for the generator
of standard SUSY would combine with the left handed neutrino to form a massive neutrino.
If 2-D massive neutrino acts as a generator of super-symmetries, it is is in the same role
as badly broken supers-ymmeries generated by other 2-D modes of the induced spinor field
(SUSY with rather large value of N ) and one can argue that the counterpart of standard
SUSY cannot correspond to this kind of super-symmetries. The right-handed neutrinos
delocalized inside the lines of generalized Feynman diagrams, could generate N = 2 variant
of the standard SUSY.

How particle and right handed neutrino are bound together?

Ordinary SUSY means that apart from kinematical spin factors sparticles and particles behave
identically with respect to standard model interactions. These spin factors would allow to
distinguish between particles and sparticles. But is this the case now?

(a) One can argue that 2-D particle and 4-D right-handed neutrino behave like independent
entities, and because νR has no standard model couplings this entire structure behaves like
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a particle rather than sparticle with respect to standard model interactions: the kinematical
spin dependent factors would be absent.

(b) The question is also about the internal structure of the sparticle. How the four-momentum
is divided between the νR and and 2-D fermion. If νR carries a negligible portion of four-
momentum, the four-momentum carried by the particle part of sparticle is same as that
carried by particle for given four-momentum so that the distinctions are only kinematical
for the ordinary view about sparticle and trivial for the view suggested by the 4-D character
of νR.

Could sparticle character become manifest in the ordinary scattering of sparticle?

(a) If νR behaves as an independent unit not bound to the particle, it would continue in the
original direction as particle scatters: sparticle would decay to particle and right-handed
neutrino. If νR carries a non-negligible energy the scattering could be detected via a
missing energy. If not, then the decay could be detected by the interactions revealing the
presence of νR. νR can have only gravitational interactions. What these gravitational
interactions are is not however quite clear since the proposed identification of gravitational
gauge potentials is as duals of Kac-Moody currents analogous to gauge potentials located
at the boundaries of string world sheets. Does this mean that 4-D right-handed neutrino
has no quantal gravitational interactions? Does internal consistency require νR to have a
vanishing gravitational and inertial masses and does this mean that this particle carries
only spin?

(b) The cautious conclusion would be following: if delocalized νR and parton are un-correlated
particle and sparticle cannot be distinguished experimentally and one might perhaps un-
derstand the failure to detect standard SUSY at LHC. Note however that the 2-D fermionic
oscillator algebra defines badly broken large N SUSY containing also massive (longitudinal
momentum square is non-vanishing) neutrino modes as generators.

Taking a closer look on sparticles

It is good to take a closer look at the delocalized right handed neutrino modes.

(a) At imbedding space level that is in cm mass degrees of freedom they correspond to covari-
antly constant CP2 spinors carrying light-like momentum which for causal diamond could
be discretized. For non-vanishing momentum one can speak about helicity having opposite
sign for νR and νR. For vanishing four-momentum the situation is delicate since only spin
remains and Majorana like behavior is suggestive. Unless one has momentum continuum,
this mode might be important and generate additional SUSY resembling standard N = 1
SUSY.

(b) At space-time level the solutions of modified Dirac equation are holomorphic or anti-
holomorphic.

i. For non-constant holomorphic modes these characteristics correlate naturally with
fermion number and helicity of νR . One can assign creation/annihilation operator
to these two kinds of modes and the sign of fermion number correlates with the sign
of helicity.

ii. The covariantly constant mode is naturally assignable to the covariantly constant neu-
trino spinor of imbedding space. To the two helicities one can assign also oscilla-
tor operators {a±, a†±}. The effective Majorana property is expressed in terms of
non-orthogonality of νR and and νR translated to the the non-vanishing of the anti-
commutator {a†+, a−} = {a†−, a+} = 1. The reduction of the rank of the 4× 4 matrix
defined by anti-commutators to two expresses the fact that the number of degrees of
freedom has halved. a†+ = a− realizes the conditions and implies that one has only
N = 1 SUSY multiplet since the state containing both νR and νR is same as that
containing no right handed neutrinos.
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iii. One can wonder whether this SUSY is masked totally by the fact that sparticles with
all possible conformal weights n for induced spinor field are possible and the branching
ratio to n = 0 channel is small. If momentum continuum is present, the zero momentum
mode might be equivalent to nothing.

What can happen in spin degrees of freedom in super-symmetric interaction vertices if one
accepts this interpretation? As already noticed, this depends solely on what one assumes about
the correlation of the four-momenta of particle and νR.

(a) For SUSY generated by covariantly constant νR and νR there is no neutrino four-momentum
involved so that only spin matters. One cannot speak about the change of direction for
νR. In the scattering of sparticle the direction of particle changes and introduces different
spin quantization axes. νR retains its spin and in new system it is superposition of two
spin projections. The presence of both helicities requires that the transformation νR → νR
happens with an amplitude determined purely kinematically by spin rotation matrices.
This is consistent with fermion number conservation modulo 2. N = 1 SUSY based on
Majorana spinors is highly suggestive.

(b) For SUSY generated by non-constant holomorphic and anti-holomorphic modes carrying
fermion number the behavior in the scattering is different. Suppose that the sparticle does
not split to particle moving in the new direction and νR moving in the original direction so
that also νR or νR carrying some massless fraction of four-momentum changes its direction
of motion. One can form the spin projections with respect to the new spin axis but must
drop the projection which does not conserve fermion number. Therefore the kinematics at
the vertices is different. HenceN = 2 SUSY with fermion number conservation is suggestive
when the momentum directions of particle and νR are completely correlated.

(c) Since right-handed neutrino has no standard model couplings, p-adic thermodynamics for
4-D right-handed neutrino must correspond to a very low p-adic temperature T = 1/n. This
implies that the excitations with non-vanishing conformal weights are effectively absent and
one would have N = 1 SUSY effectively.

The simplest assumption is that particle and sparticle correspond to the same p-adic mass
scale and have degenerate masses: it is difficult to imagine any good reason for why the p-
adic mass scales should differ. This should have been observed -say in decay widths of weak
bosons - unless the spartners correspond to large hbar phase and therefore to dark matter.
Note that for the badly broken 2-D N=2 SUSY in fermionic sector this kind of almost
degeneracy cannot be excluded and I have considered an explanation for the mysterious X
and Y mesons in terms of this degeneracy [K47].

Why space-time SUSY is not possible in TGD framework?

LHC suggests that one does not have N = 1 SUSY in standard sense. Why one cannot have
standard space-time SUSY in TGD framework. Let us begin by listing all arguments popping
in mind.

(a) Could covariantly constant νR represents a gauge degree of freedom? This is plausible since
the corresponding fermion current is non-vanishing.

(b) The original argument for absence of space-time SUSY years ago was indirect: M4 × CP2

does not allow Majorana spinors so that N = 1 SUSY is excluded.

(c) One can however consider N = 2 SUSY by including both helicities possible for covariantly
constant νR. For νR the four-momentum vanishes so that one cannot distinguish the modes
assigned to the creation operator and its conjugate via complex conjugation of the spinor.
Rather, one oscillator operator and its conjugate correspond to the two different helicities
of right-handed neutrino with respect to the direction determined by the momentum of the
particle. The spinors can be chosen to be real in this basis. This indeed gives rise to an
irreducible representation of spin 1/2 SUSY algebra with right-handed neutrino creation
operator acting as a ladder operator. This is however N = 1 algebra and right-handed neu-
trino in this particular basis behaves effectively like Majorana spinor. One can argue that
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the system is mathematically inconsistent. By choosing the spin projection axis differently
the spinor basis becomes complex. In the new basis one would have N = 2 , which however
reduces to N = 1 in the real basis.

(d) Or could it be that fermion and sfermion do exist but cannot be related by SUSY? In stan-
dard SUSY fermions and sfermions forming irreducible representations of super Poincare
algebra are combined to components of superfield very much like finite-dimensional rep-
resentations of Lorentz group are combined to those of Poincare. In TGD framework νR
generates in space-time interior generalization of 2-D super-conformal symmetry but co-
varianlty constant νR cannot give rise to space-time SUSY.

This would be very natural since right-handed neutrinos do not have any electroweak in-
teractions and are are delocalized into the interior of the space-time surface unlike other
particles localized at 2-surfaces. It is difficult to imagine how fermion and νR could behave
as a single coherent unit reflecting itself in the characteristic spin and momentum depen-
dence of vertices implied by SUSY. Rather, it would seem that fermion and sfermion should
behave identically with respect to electroweak interactions.

The third argument looks rather convincing and can be developed to a precise argument.

(a) If sfermion is to represent elementary bosons, the products of fermionic oscillator operators
with the oscillator operators assignable to the covariantly constant right handed neutrinos
must define might-be bosonic oscillator operators as bn = ana and b†n = a†na

† One can
calculate the commutator for the product of operators. If fermionic oscillator operators
commute, so do the corresponding bosonic operators. The commutator [bn, b

†
n] is however

proportional to occupation number for νR in N = 1 SUSY representation and vanishes for
the second state of the representation. Therefore N = 1 SUSY is a pure gauge symmetry.

(b) One can however have both irreducible representations of SUSY: for them either fermion or
sfermion has a non-vanishing norm. One would have both fermions and sfermions but they
would not belong to the same SUSY multiplet, and one cannot expect SUSY symmetries
of 3-particle vertices.

(c) For instance, γFF vertex is closely related to γF̃ F̃ in standard SUSY. Now one expects
this vertex to decompose to a product of γFF vertex and amplitude for the creation of
νRν̃R from vacuum so that the characteristic momentum and spin dependent factors distin-
guishing between the couplings of photon to scalar and and fermion are absent. Both states
behave like fermions. The amplitude for the creation of νRν̃R from vacuum is naturally
equal to unity as an occupation number operator by crossing symmetry. The presence of
right-handed neutrinos would be invisible if this picture is correct. Whether this invisible
label can have some consequences is not quite clear: one could argue that the decay rates of
weak bosons to fermion pairs are doubled unless one introduces 1/

√
2 factors to couplings.

Where the sfermions might make themselves visible are loops. What loops are? Consider
boson line first. Boson line is replaced with a sum of two contributions corresponding
to ordinary contribution with fermion and antifermion at opposite throats and second
contribution with fermion and antifermion accompanied by right-handed neutrino νR and
its antiparticle which now has opposite helicity to νR. The loop for νR decomposes to
four pieces since also the propagation from wormhole throat to the opposite wormhole
throat must be taken into account. Each of the four propagators equals to a†1/2a

†
−1/2 or

its hermitian conjugate. The product of these is slashed between vacuum states and anti-
commutations give imaginary unit per propagator giving i4 = 1. The two contributions
are therefore identical and the scaling g → g/

√
2 for coupling constants guarantees that

sfermions do not affect the scattering amplitudes at all. The argument is identical for the
internal fermion lines.

3.4.3 WCW geometry and super-conformal symmetries

The vision about the geometry of WCW has been roughly the following and the recent steps of
progress induce to it only small modifications if any.
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(a) Kähler geometry is forced by the condition that hermitian conjugation allows geometriza-
tion. Kähler function is given by the Kähler action coming from space-time regions with
Euclidian signature of the induced metric identifiable as lines of generalized Feynman dia-
grams. Minkowskian regions give imaginary contribution identifiable as the analog of Morse
function and implying interference effects and stationary phase approximation. The vision
about quantum TGD as almost topological QFT inspires the proposal that Kähler action
reduces to 3-D terms reducing to Chern-Simons terms by the weak form of electric-magnetic
duality. The recent proposal for preferred extremals is consistent with this property real-
izing also holography implied by general coordinate invariance. Strong form of general
coordinate invariance implying effective 2-dimensionality in turn suggests that Kähler ac-
tion is expressible in terms of areas of partonic 2-surfaces and string world sheets.

(b) The complexified gamma matrices of WCW come as hermitian conjugate pairs and anti-
commute to the Kähler metric of WCW. Also bosonic generators of symplectic transforma-
tions of δM4

±×CP2 a assumed to act as isometries of WCW geometry can be complexified
and appear as similar pairs. The action of isometry generators co-incides with that of sym-
plectic generators at partonic 2-surfaces and string world sheets but elsewhere inside the
space-time surface it is expected to be deformed from the symplectic action. The super-
conformal transformations of δM4

±×CP2 acting on the light-like radial coordinate of δM4
±

act as gauge symmetries of the geometry meaning that the corresponding WCW vector
fields have zero norm.

(c) WCW geometry has also zero modes which by definition do not contribute to WCW met-
ric expect possibly by the dependence of the elements of WCW metric on zero modes
through a conformal factor. In particular, induced CP2 Kähler form and its analog for
sphere rM = constant of light cone boundary are symplectic invariants, and one can de-
fine an infinite number of zero modes as invariants defined by Kähler fluxes over partonic
2-surfaces and string world sheets. This requires however the slicing of CD parallel copies
of δM4

+ or δM4
−. The physical interpretation of these non-quantum fluctuating degrees of

freedom is as classical variables necessary for the interpretation of quantum measurement
theory. Classical variable would metaphorically correspond the position of the pointer of
the measurement instrument.

(d) The construction receives a strong philosophical inspiration from the geometry of loop
spaces. Loop spaces allow a unique Kähler geometry with maximal isometry group identifi-
able as Kac-Moody group. The reason is that otherwise Riemann connection does not exist.
The only problem is that curvature scalar diverges since the Riemann tensor is by constant
curvature property proportional to the metric. In 3-D case one would have union of con-
stant curvature spaces labelled by zero modes and the situation is expected to be even more
restrictive. The conjecture indeed is that WCW geometry exists only for H = M4 × CP2:
infinite-D Kähler geometric existence and therefore physics would be unique. One can also
hope that Ricci scalar is finite and therefore zero by the constant curvature property so
that Einstein’s equations are satisfied.

(e) WCW Hamiltonians determined the isometry currents and WCW metric is given in terms
of the anti-commutators of the Killing vector fields associated with symplectic isometry
currents. The WCW Hamiltonians generating symplectic isometries correspond to the
Hamiltonians spanning the symplectic group of δM4

± × CP2. One can say that the space
of quantum fluctuating degrees of freedom is this symplectic group of δM4

± × CP2 or its
subgroup or coset space: this must have very deep implications for the structure of the
quantum TGD.

(f) Zero energy ontology brings in additional delicacies. Basic objects are now unions of par-
tonic 2-surfaces at the ends of CD. Also string world sheets would naturally contribute.
One can generalize the expressions for the isometry generators in a straightforward man-
ner by requiring that given isometry restricts to a symplectic transformation at partonic
2-surfaces and string world sheets.

(g) One could criticize the effective metric 2-dimensionality forced by general consistency ar-
guments as something non-physical. The Hamiltonians are expressed using only the data
at partonic 2-surfaces: this includes also 4-D tangent space data via the weak form of
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electric-magnetic duality so that one has only effective 2-dimensionality. Obviously WCW
geometry must have large gauge symmetries besides zero modes. The super-conformal sym-
metries indeed represent gauge symmetries of this kind. Effective 2-dimensionality realizing
strong form of holography in turn is induced by the strong form of general coordinate in-
variance. Light-like 3-surfaces at which the signature of the induced metric changes must
be equivalent with the 3-D space-like ends of space-time surfaces at the light-boundaries
of space-time surfaces as far as WCW geometry is considered. This requires that the data
from their 2-D intersections defining partonic 2-surfaces should dictate the WCW geome-
try. Note however that Super-Kac-Moody charges giving information about the interiors
of 3-surfaces appear in the construction of the physical states.

What is the role of the right handed neutrino in this construction?

(a) In the construction of components of WCW metric as anti-commutators of super-generators
only the covariantly constant right-handed neutrino appears in the super-generators anal-
ogous to super-Kac-Moody generators. All holomorphic modes of right handed neutrino
characterized by two integers could in principle contribute to the WCW gamma matrices
identified as fermionic super-symplectic generators anti-commuting to the metric. At the
space-like ends of space-time surface the holomorphic generators would restrict to symplec-
tic generators since the radial light-like coordinate rM identified and complex coordinate of
CP2 allowing identification as restrictions of two complex coordinates or Hamilton-Jacobi
coordinates to light-like boundary.

(b) The non-covariantly constant modes could also correspond to purely super-conformal gauge
degrees of freedom. Originally the restriction to right-handed neutrino looked somewhat
un-satisfactory but the recent view about Super-Kac-Moody symmetries makes its special
role rather natural. One could say that WCW geometry possesses the maximal D = 4
supersymmetry.

(c) One can of course ask whether the Super-Kac-Moody generators assignable to the isometries
of H and expressible as conserved charges associated with the boundaries of string world
sheets could contribute to the WCW geometry via the anti-commutators. This option
cannot be excluded but in this case the interpretation in terms of Hamiltonians is not
obvious.

3.4.4 Equivalence Principle

An important physical input has been the condition that a generalization of Equivalence Prin-
ciple is obtained.

(a) The proposal has been that inertial and gravitational masses can be assigned with the
super-symplectic and super-Kac-Moody representations via the condition that the scaling
generator L0 defined as a difference of the corresponding generators for the two represen-
tations annihilates physical states. This requires that super-Kac-Moody algebra can be
regarded in some sense as a sub-algebra of super-symplectic algebra. For isometries this
would be natural but in the case of holonomies the situation is problematic. The idea has
been that the ordinary realization of Equivalence Principle follows as Einstein’s equations
for fluctuations around vacuum extremals expressing the average energy momentum tensor
for the fluctuations.

(b) The emergence of Einstein’s equations for preferred extremals as additional conditions
[K8, K79] allowing the algebraization of the equations to analogs of minimal surface equa-
tions changes the situation completely. Is there anymore need to realize Equivalence Prin-
ciple at quantum level? If one drops this condition one can imagine very simple option
obtained as tensor product of the super-symplectic and super-Kac-Moody representations.
Of course, coset representations for the symplectic group and its suitable subgroup - say
subgroup defining measurement resolution - can be present but would not nothing to do
with Equivalence Principle.
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(c) One can of course argue that one has very naturally to different mass squared operators
and therefore inertial and gravitational masses. Inertial mass squared would be natu-
rally assignable to the representations of the super-symplectic algebra imbedding space
d’Alembertian and gravitational mass squared with the spinor d’Alembertian at string
world sheets at space-time surfaces. Quantum level realization for Equivalence Principle
could mean that these two mass squared operators are identical or something analogous to
this. One can however criticize this idea as un-necessary and also because the signature
of the effective metric defined by the modified Dirac gamma matrices is speculated to be
Euclidian.

3.4.5 Constraints from p-adic mass calculations and ZEO

A further important physical input comes from p-adic thermodynamics forming a core element
of p-adic mass calculations.

(a) The first thing that one can get worried about relates to the extension of conformal sym-
metries. If the conformal symmetries generalize to D = 4, how can one take seriously
the results of p-adic mass calculations based on 2-D conformal invariance? There is no
reason to worry. The reduction of the conformal invariance to 2-D one for the preferred
extremals takes care of this problem. This however requires that the fermionic contri-
butions assignable to string world sheets and/or partonic 2-surfaces - Super- Kac-Moody
contributions - should dictate the elementary particle masses. For hadrons also symplec-
tic contributions should be present. This is a valuable hint in attempts to identify the
mathematical structure in more detail.

(b) ZEO suggests that all particles, even virtual ones correspond to massless wormhole throats
carrying fermions. As a consequenc, twistor approach would work and the kinematical
constraints to vertices would allow th cancellation of divergences. This would suggest that
the p-adic thermal expectation value is for the longitudinal M2 momentum squared (the
definition of CD selects M1 ⊂ M2 ⊂ M4 as also does number theoretic vision). Also
propagator would be determined by M2 momentum. Lorentz invariance would be obtained
by integration of the moduli for CD including also Lorentz boosts of CD.

(c) In the original approach one allows states with arbitrary large values of L0 as physical states.
Usually one would require that L0 annihilates the states. In the calculations however mass
squared was assumed to be proportional L0 apart from vacuum contribution. This is a
questionable assumption. ZEO suggests that total mass squared vanishes and that one can
decompose mass squared to a sum of longitudinal and transversal parts. If one can do
the same decomposition to longitudinal and transverse parts also for the Super Virasoro
algebra then one can calculate longitudinal mass squared as a p-adic thermal expectation
in the transversal super-Virasoro algebra and only states with L0 = 0 would contribute and
one would have conformal invariance in the standard sense.

(d) In the original approach the assumption motivated by Lorentz invariance has been that mass
squared is replaced with conformal weight in thermodynamics, and that one first calculates
the thermal average of the conformal weight and then equates it with mass squared. This
assumption is somewhat ad hoc. ZEO however suggests an alternative interpretation in
which one has zero energy states for which longitudinal mass squared of positive energy
state derive from p-adic thermodynamics. Thermodynamics - or rather, its square root -
would become part of quantum theory in ZEO. M -matrix is indeed product of hermitian
square root of density matrix multiplied by unitary S-matrix and defines the entanglement
coefficients between positive and negative energy parts of zero energy state.

(e) The crucial constraint is that the number of super-conformal tensor factors is N = 5: this
suggests that thermodynamics applied in Super-Kac-Moody degrees of freedom assignable
to string world sheets is enough, when one is interested in the masses of fermions and
gauge bosons. Super-symplectic degrees of freedom can also contribute and determine the
dominant contribution to baryon masses. Should also this contribution obey p-adic thermo-
dynamics in the case when it is present? Or does the very fact that this contribution need
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not be present mean that it is not thermal? The symplectic contribution should correspond
to hadronic p-adic length prime rather the one assignable to (say ) u quark. Hadronic p-
adic mass squared and partonic p-adic mass squared cannot be summed since primes are
different. If one accepts the basic rules [K53], longitudinal energy and momentum are
additive as indeed assumed in perturbative QCD.

(f) Calculations work if the vacuum expectation value of the mass squared must be assumed
to be tachyonic. There are two options depending on whether one whether p-adic thermo-
dynamics gives total mass squared or longitudinal mass squared.

i. One could argue that the total mass squared has naturally tachyonic ground state ex-
pectation since for massless extremals longitudinal momentum is light-like and transver-
sal momentum squared is necessary present and non-vanishing by the localization to
topological light ray of finite thickness of order p-adic length scale. Transversal degrees
of freedom would be modeled with a particle in a box.

ii. If longitudinal mass squared is what is calculated, the condition would require that
transversal momentum squared is negative so that instead of plane wave like behavior
exponential damping would be required. This would conform with the localization in
transversal degrees of freedom.

(g) What about Equivalence Principle in this framework? A possible quantum counterpart
of Equivalence Principle could be that the longitudinal parts of the imbedding space mass
squared operator for a given massless state equals to that for d’Alembert operator assignable
to the modified Dirac action. The attempts to formulate this in more precise manner
however seem to produce only additional troubles.

3.4.6 The emergence of Yangian symmetry and gauge potentials as
duals of Kac-Moody currents

Yangian symmetry plays a key role in N = 4 super-symmetric gauge theories. What is special in
Yangian symmetry is that the algebra contains also multi-local generators. In TGD framework
multi-locality would naturally correspond to that with respect to partonic 2-surfaces and string
world sheets and the proposal has been that the Super-Kac-Moody algebras assignable to string
worlds sheets could generalize to Yangian.

Witten has written a beautiful exposition of Yangian algebras [B50]. Yangian is generated by
two kinds of generators JA and QA by a repeated formation of commutators. The number of
commutations tells the integer characterizing the multi-locality and provides the Yangian algebra
with grading by natural numbers. Witten describes a 2-dimensional QFT like situation in which
one has 2-D situation and Kac-Moody currents assignable to real axis define the Kac-Moody
charges as integrals in the usual manner. It is also assumed that the gauge potentials defined
by the 1-form associated with the Kac-Moody current define a flat connection:

∂µj
A
ν − ∂νjAν + [jAµ , j

A
ν ] = 0 . (3.4.1)

This condition guarantees that the generators of Yangian are conserved charges. One can how-
ever consider alternative manners to obtain the conservation.

(a) The generators of first kind - call them JA - are just the conserved Kac-Moody charges.
The formula is given by

JA =

∫ ∞
−∞

dxjA0(x, t) . (3.4.2)

(b) The generators of second kind contain bi-local part. They are convolutions of generators
of first kind associated with different points of string described as real axis. In the basic
formula one has integration over the point of real axis.
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QA = fABC

∫ ∞
−∞

dx

∫ ∞
x

dyjB0(x, t)jC0(y, t)− 2

∫ ∞
−∞

jAx dx . (3.4.3)

These charges are indeed conserved if the curvature form is vanishing as a little calculation
shows.

How to generalize this to the recent context?

(a) The Kac-Moody charges would be associated with the braid strands connecting two partonic
2-surfaces - Strands would be located either at the space-like 3-surfaces at the ends of the
space-time surface or at light-like 3-surfaces connecting the ends. Modified Dirac equation
would define Super-Kac-Moody charges as standard Noether charges. Super charges would
be obtained by replacing the second quantized spinor field or its conjugate in the fermionic
bilinear by particular mode of the spinor field. By replacing both spinor field and its
conjugate by its mode one would obtain a conserved c-number charge corresponding to
an anti-commutator of two fermionic super-charges. The convolution involving double
integral is however not number theoretically attactive whereas single 1-D integrals might
make sense.

(b) An encouraging observation is that the Hodge dual of the Kac-Moody current defines the
analog of gauge potential and exponents of the conserved Kac-Moody charges could be iden-
tified as analogs for the non-integrable phase factors for the components of this gauge poten-
tial. This identification is precise only in the approximation that generators commute since
only in this case the ordered integral P (exp(i

∫
Adx)) reduces to P (exp(i

∫
Adx)).Partonic

2-surfaces connected by braid strand would be analogous to nearby points of space-time
in its discretization implying that Abelian approximation works. This conforms with the
vision about finite measurement resolution as discretization in terms partonic 2-surfaces
and braids.

This would make possible a direct identification of Kac-Moody symmetries in terms of
gauge symmetries. For isometries one would obtain color gauge potentials and the analogs
of gauge potentials for graviton field (in TGD framework the contraction with M4 vierbein
would transform tensor field to 4 vector fields). For Kac-Moody generators corresponding
to holonomies one would obtain electroweak gauge potentials. Note that super-charges
would give rise to a collection of spartners of gauge potentials automatically. One would
obtain a badly broken SUSY with very large value of N defined by the number of spinor
modes as indeed speculated earlier [K29].

(c) The condition that the gauge field defined by 1-forms associated with the Kac-Moody
currents are trivial looks unphysical since it would give rise to the analog of topological
QFT with gauge potentials defined by the Kac-Moody charges. For the duals of Kac-
Moody currents defining gauge potentials only covariant divergence vanishes implying that
curvature form is

Fαβ = εαβ [jµ, j
µ] , (3.4.4)

so that the situation does not reduce to topological QFT unless the induced metric is
diagonal. This is not the case in general for string world sheets.

(d) It seems however that there is no need to assume that jµ defines a flat connection. Witten
mentions that although the discretization in the definition of JA does not seem to be
possible, it makes sense for QA in the case of G = SU(N) for any representation of G. For
general G and its general representation there exists no satisfactory definition of Q. For
certain representations, such as the fundamental representation of SU(N), the definition
of QA is especially simple. One just takes the bi-local part of the previous formula:

QA = fABC
∑
i<j

JBi J
C
j . (3.4.5)
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What is remarkable that in this formula the summation need not refer to a discretized
point of braid but to braid strands ordered by the label i by requiring that they form a
connected polygon. Therefore the definition of JA could be just as above.

(e) This brings strongly in mind the interpretation in terms of twistor diagrams. Yangian would
be identified as the algebra generated by the logarithms of non-integrable phase factors in
Abelian approximation assigned with pairs of partonic 2-surfaces defined in terms of Kac-
Moody currents assigned with the modified Dirac action. Partonic 2-surfaces connected by
braid strand would be analogous to nearby points of space-time in its discretization. This
would fit nicely with the vision about finite measurement resolution as discretization in
terms partonic 2-surfaces and braids.

The resulting algebra satisfies the basic commutation relations

[
JA, JB

]
= fABC JC ,

[
JA, QB

]
= fABC QC . (3.4.6)

plus the rather complex Serre relations described in [B50].

3.4.7 Quantum criticality and electro-weak gauge symmetries

Quantum criticality is one of the basic guiding principles of Quantum TGD. What it means
mathematically is however far from clear.

(a) What is obvious is that quantum criticality implies quantization of Kähler coupling strength
as a mathematical analog of critical temperature so that the theory becomes mathematically
unique if only single critical temperature is possible. Physically this means the presence of
long range fluctuations characteristic for criticality and perhaps assignable to the effective
hierarchy of Planck constants having explanation in terms of effective covering spaces of
the imbedding space. This hierarchy follows from the vacuum degeneracy of Kähler action,
which in turn implies 4-D spin-glass degeneracy. It is easy to interpret the degeneracy in
terms of criticality.

(b) At more technical level one would expect criticality to corresponds deformations of a given
preferred extremal defining a vanishing second variation of Kähler action. This is anal-
ogous to the vanishing of also second derivatives of potential function at extremum in
certain directions so that the matrix defined by second derivatives does not have maximum
rank. Entire hierarchy of criticalities is expected and a good finite-dimensional model is
provided by the catastrophe theory of Thom [A149]. Cusp catastrophe [A8] is the simplest
catastrophe one can think of, and here the folds of cusp where discontinuous jump occurs
correspond to criticality with respect to one control variable and the tip to criticality with
respect to both control variables.

(c) I have discussed what criticality could mean for modified Dirac action [K28] and claimed
that it leads to the existence of additional conserved currents defined by the variations which
do not affect the value of Kähler action. These arguments are far from being mathematically
rigorous and the recent view about the solutions of the modified Dirac equation predicting
that the spinor modes are restricted to 2-D string world sheets requires a modification of
these arguments.

In the following these arguments are updated. The unexpected result is that critical deformations
induce conformal scalings of the modified metric and electro-weak gauge transformations of the
induced spinor connection at X2. Therefore holomorphy brings in the Kac-Moody symmetries
associated with isometries ofH (gravitation and color gauge group) and quantum criticality those
associated with the holonomies of H (electro-weak-gauge group) as additional symmetries.

http://en.wikipedia.org/wiki/Catastrophe_theory#Cusp_catastrophe
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The variation of modes of the induced spinor field in a variation of space-time
surface respecting the preferred extremal property

Consider first the variation of the induced spinor field in a variation of space-time surface respect-
ing the preferred extremal property. The deformation must be such that the deformed modified
Dirac operator D annihilates the modified mode. By writing explicitly the variation of the mod-
ified Dirac action (the action vanishes by modified Dirac equation) one obtains deformations
and requiring its vanishing one obtains

δΨ = D−1(δD)Ψ . (3.4.7)

D−1 is the inverse of the modified Dirac operator defining the analog of Dirac propagator and δD
defines vertex completely analogous to γkδAk in gauge theory context. The functional integral
over preferred extremals can be carried out perturbatively by expressing δD in terms of δhk

and one obtains stringy perturbation theory around X2 associated with the preferred extremal
defining maximum of Kähler function in Euclidian region and extremum of Kähler action in
Minkowskian region (stationary phase approximation).

What one obtains is stringy perturbation theory for calculating n-points functions for fermions
at the ends of braid strands located at partonic 2-surfaces and representing intersections of
string world sheets and partonic 2-surfaces at the light-like boundaries of CDs. δD- or more
precisely, its partial derivatives with respect to functional integration variables - appear atthe
vertices located anywhere in the interior of X2 with outcoming fermions at braid ends. Bosonic
propagators are replaced with correlation functions for δhk. Fermionic propagator is defined by
D−1.

After 35 years or hard work this provides for the first time a reasonably explicit formula for
the N-point functions of fermions. This is enough since by bosonic emergence [K58] these N-
point functions define the basic building blocks of the scattering amplitudes. Note that bosonic
emergence states that bosons corresponds to wormhole contacts with fermion and antifermion
at the opposite wormhole throats.

What critical modes could mean for the induced spinor fields?

What critical modes could mean for the induced spinor fields at string world sheets and partonic
2-surfaces. The problematic part seems to be the variation of the modified Dirac operator since
it involves gradient. One cannot require that covariant derivative remains invariant since this
would require that the components of the induced spinor connection remain invariant and this
is quite too restrictive condition. Right handed neutrino solutions delocalized into entire X2

are however an exception since they have no electro-weak gauge couplings and in this case the
condition is obvious: modified gamma matrices suffer a local scaling for critical deformations:

δΓµ = Λ(x)Γµ . (3.4.8)

This guarantees that the modified Dirac operator D is mapped to ΛD and still annihilates the
modes of νR labelled by conformal weight, which thus remain unchanged.

What is the situation for the 2-D modes located at string world sheets? The condition is obvious.
Ψ suffers an electro-weak gauge transformation as does also the induced spinor connection so
that Dµ is not affected at all. Criticality condition states that the deformation of the space-
time surfaces induces a conformal scaling of Γµ at X2. It might be possible to continue this
conformal scaling of the entire space-time sheet but this might be not necessary and this would
mean that all critical deformations induced conformal transformations of the effective metric
of the space-time surface defined by {Γµ,Γν} = 2Gµν . Thus it seems that effective metric is
indeed central concept (recall that if the conjectured quaternionic structure is associated with
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the effective metric, it might be possible to avoid problem related to the Minkowskian signature
in an elegant manner).

In fact, one can consider even more general action of critical deformation: the modes of the in-
duced spinor field would be mixed together in the infinitesimal deformation besides infinitesimal
electroweak gauge transformation, which is same for all modes. This would extend electroweak
gauge symmetry. Modified Dirac equation holds true also for these deformations. One might
wonder whether the conjectured dynamically generated gauge symmetries assignable to finite
measurement resolution could be generated in this manner.

The infinitesimal generator of a critical deformation JM can be expressed as tensor product of
matrix AM acting in the space of zero modes and of a generator of infinitemal electro-weak
gauge transformation TM (x) acting in the same manner on all modes: JM = AM ⊗ TM (x). AM
is a spatially constant matrix and TM (x) decomposes to a direct sum of left- and right-handed
SU(2) × U(1) Lie-algebra generators. Left-handed Lie-algebra generator can be regarded as
a quaternion and right handed as a complex number. One can speak of a direct sum of left-
handed local quaternion qM,L and right-handed local complex number cM,R. The commutator
[JM , JN ] is given by [JM , JN ] = [AM , AN ] ⊗ {TM (x), TN (x)} + {AM , AN} ⊗ [TM (x), TN (x)].
One has {TM (x), TN (x)} = {qM,L(x), qN,L(x)} ⊕ {cM,R(x), cN,R(x)} and [TM (x), TN (x)] =
[qM,L(x), qN,L(x)]. The commutators make sense also for more general gauge group but quater-
nion/complex number property might have some deeper role.

Thus the critical deformations would induce conformal scalings of the effective metric and dy-
namical electro-weak gauge transformations. Electro-weak gauge symmetry would be a dynam-
ical symmetry restricted to string world sheets and partonic 2-surfaces rather than acting at
the entire space-time surface. For 4-D delocalized right-handed neutrino modes the conformal
scalings of the effective metric are analogous to the conformal transformations of M4 for N = 4
SYMs. Also ordinary conformal symmetries of M4 could be present for string world sheets and
could act as symmetries of generalized Feynman graphs since even virtual wormhole throats
are massless. An interesting question is whether the conformal invariance associated with the
effective metric is the analog of dual conformal invariance in N = 4 theories.

Critical deformations of space-time surface are accompanied by conserved fermionic currents.
By using standard Noetherian formulas one can write

Jµi = ΨΓµδiΨ + δiΨΓµΨ . (3.4.9)

Here δΨi denotes derivative of the variation with respect to a group parameter labeled by i. Since
δΨi reduces to an infinitesimal gauge transformation of Ψ induced by deformation, these currents
are the analogs of gauge currents. The integrals of these currents along the braid strands at the
ends of string world sheets define the analogs of gauge charges. The interpretation as Kac-Moody
charges is also very attractive and I have proposed that the 2-D Hodge duals of gauge potentials
could be identified as Kac-Moody currents. If so, the 2-D Hodge duals of J would define the
quantum analogs of dynamical electro-weak gauge fields and Kac-Moody charge could be also
seen as non-integral phase factor associated with the braid strand in Abelian approximation (the
interpretation in terms of finite measurement resolution is discussed earlier).

One can also define super currents by replacing Ψ or Ψ by a particular mode of the induced
spinor field as well as c-number valued currents by performing the replacement for both Ψ or
Ψ. As expected, one obtains a super-conformal algebra with all modes of induced spinor fields
acting as generators of super-symmetries restricted to 2-D surfaces. The number of the charges
which do not annihilate physical states as also the effective number of fermionic modes could be
finite and this would suggest that the integer N for the supersymmetry in question is finite. This
would conform with the earlier proposal inspired by the notion of finite measurement resolution
implying the replacement of the partonic 2-surfaces with collections of braid ends.

Note that Kac-Moody charges might be associated with ”long” braid strands connecting differ-
ent wormhole throats as well as short braid strands connecting opposite throats of wormhole
contacts. Both kinds of charges would appear in the theory.
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What is the interpretation of the critical deformations?

Critical deformations bring in an additional gauge symmetry. Certainly not all possible gauge
transformations are induced by the deformations of preferred extremals and a good guess is that
they correspond to holomorphic gauge group elements as in theories with Kac-Moody symmetry.
What is the physical character of this dynamical gauge symmetry?

(a) Do the gauge charges vanish? Do they annihilate the physical states? Do only their
positive energy parts annihilate the states so that one has a situation characteristic for the
representation of Kac-Moody algebras. Or could some of these charges be analogous to the
gauge charges associated with the constant gauge transformations in gauge theories and
be therefore non-vanishing in the absence of confinement. Now one has electro-weak gauge
charges and these should be non-vanishing. Can one assign them to deformations with a
vanishing conformal weight and the remaining deformations to those with non-vanishing
conformal weight and acting like Kac-Moody generators on the physical states?

(b) The simplest option is that the critical Kac-Moody charges/gauge charges with non-vanishing
positive conformal weight annihilate the physical states. Critical degrees of freedom would
not disappear but make their presence known via the states labelled by different gauge
charges assignable to critical deformations with vanishing conformal weight. Note that
constant gauge transformations can be said to break the gauge symmetry also in the ordi-
nary gauge theories unless one has confinement.

(c) The hierarchy of quantum criticalities suggests however entire hierarchy of electro-weak
Kac-Moody algebras. Does this mean a hierarchy of electro-weak symmetries breakings in
which the number of Kac-Moody generators not annihilating the physical states gradually
increases as also modes with a higher value of positive conformal weight fail to annihilate
the physical state?

The only manner to have a hierarchy of algebras is by assuming that only the generators
satisfying n mod N = 0 define the sub-Kac-Moody algebra annihilating the physical states
so that the generators with n mod N 6= 0 would define the analogs of gauge charges. I
have suggested for long time ago the relevance of kind of fractal hierarchy of Kac-Moody
and Super-Virasoro algebras for TGD but failed to imagine any concrete realization.

A stronger condition would be that the algebra reduces to a finite dimensional algebra in
the sense that the actions of generators Qn and Qn+kN are identical. This would corre-
spond to periodic boundary conditions in the space of conformal weights. The notion of
finite measurement resolution suggests that the number of independent fermionic oscillator
operators is proportional to the number of braid ends so that an effective reduction to a
finite algebra is expected.

Whatever the correct interpretation is, this would obviously refine the usual view about
electro-weak symmetry breaking.

These arguments suggests the following overall view. The holomorphy of spinor modes gives
rise to Kac-Moody algebra defined by isometries and includes besides Minkowskian generators
associated with gravitation also SU(3) generators associated with color symmetries. Vanishing
second variations in turn define electro-weak Kac-Moody type algebra.

Note that criticality suggests that one must perform functional integral over WCW by decompos-
ing it to an integral over zero modes for which deformations of X4 induce only an electro-weak
gauge transformation of the induced spinor field and to an integral over moduli corresponding
to the remaining degrees of freedom.

3.4.8 The importance of being light-like

The singular geometric objects associated with the space-time surface have become increasingly
important in TGD framework. In particular, the recent progress has made clear that these
objects might be crucial for the understanding of quantum TGD. The singular objects are
associated not only with the induced metric but also with the effective metric defined by the
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anti-commutators of the modified gamma matrices appearing in the modified Dirac equation
and determined by the Kähler action.

The singular objects associated with the induced metric

Consider first the singular objects associated with the induced metric.

(a) At light-like 3-surfaces defined by wormhole throats the signature of the induced metric
changes from Euclidian to Minkowskian so that 4-metric is degenerate. These surfaces are
carriers of elementary particle quantum numbers and the 4-D induced metric degenerates
locally to 3-D one at these surfaces.

(b) Braid strands at light-like 3-surfaces are most naturally light-like curves: this correspond
to the boundary condition for open strings. One can assign fermion number to the braid
strands. Braid strands allow an identification as curves along which the Euclidian signature
of the string world sheet in Euclidian region transforms to Minkowskian one. Number
theoretic interpretation would be as a transformation of complex regions to hyper-complex
regions meaning that imaginary unit i satisfying i2 = −1 becomes hyper-complex unit
e satisfying e2 = 1. The complex coordinates (z, z) become hyper-complex coordinates
(u = t+ ex, v = t− ex) giving the standard light-like coordinates when one puts e = 1.

The singular objects associated with the effective metric

There are also singular objects assignable to the effective metric. According to the simple argu-
ments already developed, string world sheets and possibly also partonic 2-surfaces are singular
objects with respect to the effective metric defined by the anti-commutators of the modified
gamma matrices rather than induced gamma matrices. Therefore the effective metric seems to
be much more than a mere formal structure.

(a) For instance, quaternionicity of the space-time surface could allow an elegant formulation
in terms of the effective metric avoiding the problems due to the Minkowski signature. This
is achieved if the effective metric has Euclidian signature ε×(1, 1, 1, 1), ε = ±1 or a complex
counterpart of the Minkowskian signature ε(1, 1,−1,−1).

(b) String word sheets and perhaps also partonic 2-surfaces could be understood as singularities
of the effective metric. What happens that the effective metric with Euclidian signature
ε× (1, 1, 1, 1) transforms to the signature ε(1, 1,−1,−1) (say) at string world sheet so that
one would have the degenerate signature ε× (1, 1, 0, 0) at the string world sheet.

What is amazing is that this works also number theoretically. It came as a total surprise
to me that the notion of hyper-quaternions as a closed algebraic structure indeed exists.
The hyper-quaternionic units would be given by (1, I, iJ, iK), where i is a commuting
imaginary unit satisfying i2 = −1. Hyper-quaternionic numbers defined as combinations of
these units with real coefficients do form a closed algebraic structure which however fails
to be a number field just like hyper-complex numbers do. Note that the hyper-quaternions
obtained with real coefficients from the basis (1, iI, iJ, iK) fail to form an algebra since the
product is not hyper-quaternion in this sense but belongs to the algebra of complexified
quaternions. The same problem is encountered in the case of hyper-octonions defined in
this manner. This has been a stone in my shoe since I feel strong disrelish towards Wick
rotation as a trick for moving between different signatures.

(c) Could also partonic 2-surfaces correspond to this kind of singular 2-surfaces? In princi-
ple, 2-D surfaces of 4-D space intersect at discrete points just as string world sheets and
partonic 2-surfaces do so that this might make sense. By complex structure the situation
is algebraically equivalent to the analog of plane with non-flat metric allowing all possible
signatures (ε1, ε2) in various regions. At light-like curve either ε1 or ε2 changes sign and
light-like curves for these two kinds of changes can intersect as one can easily verify by
drawing what happens. At the intersection point the metric is completely degenerate and
simply vanishes.
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(d) Replacing real 2-dimensionality with complex 2-dimensionality, one obtains by the univer-
sality of algebraic dimension the same result for partonic 2-surfaces and string world sheets.
The braid ends at partonic 2-surfaces representing the intersection points of 2-surfaces of
this kind would have completely degenerate effective metric so that the modified gamma
matrices would vanish implying that energy momentum tensor vanishes as does also the
induced Kähler field.

(e) The effective metric suffers a local conformal scaling in the critical deformations identified in
the proposed manner. Since ordinary conformal group acts on Minkowski space and leaves
the boundary of light-cone invariant, one has two conformal groups. It is not however
clear whether the M4 conformal transformations can act as symmetries in TGD, where the
presence of the induced metric in Kähler action breaks M4 conformal symmetry. As found,
also in TGD framework the Kac-Moody currents assigned to the braid strands generate
Yangian: this is expected to be true also for the Kac-Moody counterparts of the conformal
algebra associated with quantum criticality. On the other hand, in twistor program one
encounters also two conformal groups and the space in which the second conformal group
acts remains somewhat mysterious object. The Lie algebras for the two conformal groups
generate the conformal Yangian and the integrands of the scattering amplitudes are Yangian
invariants. Twistor approach should apply in TGD if zero energy ontology is right. Does
this mean a deep connection?

What is also intriguing that twistor approach in principle works in strict mathematical sense
only at signatures ε× (1, 1,−1− 1) and the scattering amplitudes in Minkowski signature
are obtained by analytic continuation. Could the effective metric give rise to the desired
signature? Note that the notion of massless particle does not make sense in the signature
ε× (1, 1, 1, 1).

These arguments provide genuine a support for the notion of quaternionicity and suggest a
connection with the twistor approach.

3.4.9 Realization of large N SUSY in TGD

The generators large N SUSY algebras are obtained by taking fermionic currents for second
quantized fermions and replacing either fermion field or its conjugate with its particular mode.
The resulting super currents are conserved and define super charges. By replacing both fermion
and its conjugate with modes one obtains c number valued currents. Therefore N = ∞ SUSY
- presumably equivalent with super-conformal invariance - or its finite N cutoff is realized in
TGD framework and the challenge is to understand the realization in more detail.

Super-space viz. Grassmann algebra valued fields

Standard SUSY induces super-space extending space-time by adding anti-commuting coordi-
nates as a formal tool. Many mathematicians are not enthusiastic about this approach because
of the purely formal nature of anti-commuting coordinates. Also I regard them as a non-sense
geometrically and there is actually no need to introduce them as the following little argument
shows.

Grassmann parameters (anti-commuting theta parameters) are generators of Grassmann algebra
and the natural object replacing super-space is this Grassmann algebra with coefficients of
Grassmann algebra basis appearing as ordinary real or complex coordinates. This is just an
ordinary space with additional algebraic structure: the mysterious anti-commuting coordinates
are not needed. To me this notion is one of the conceptual monsters created by the over-
pragmatic thinking of theoreticians.

This allows allows to replace field space with super field space, which is completely well-defined
object mathematically, and leave space-time untouched. Linear field space is simply replaced
with its Grassmann algebra. For non-linear field space this replacement does not work. This
allows to formulate the notion of linear super-field just in the same manner as it is done usually.
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The generators of super-symmetries in super-space formulation reduce to super translations ,
which anti-commute to translations. The super generators Qα and Qβ̇ of super Poincare algebra
are Weyl spinors commuting with momenta and anti-commuting to momenta:

{Qα, Qβ̇} = 2σµ
αβ̇
Pµ . (3.4.10)

One particular representation of super generators acting on super fields is given by

Dα = i
∂

∂θα
,

Dα̇ = i
∂

∂θα̇
+ θβσµβα̇∂µ (3.4.11)

Here the index raising for 2-spinors is carried out using antisymmetric 2-tensor εαβ . Super-space
interpretation is not necessary since one can interpret this action as an action on Grassmann
algebra valued field mixing components with different fermion numbers.

Chiral superfields are defined as fields annihilated by Dα̇. Chiral fields are of form Ψ(xµ +
iθσµθ, θ). The dependence on θα̇ comes only from its presence in the translated Minkowski
coordinate annihilated by Dα̇. Super-space enthusiast would say that by a translation of M4

coordinates chiral fields reduce to fields, which depend on θ only.

The space of fermionic Fock states at partonic 2-surface as TGD counterpart of
chiral super field

As already noticed, another manner to realize SUSY in terms of representations the super algebra
of conserved super-charges. In TGD framework these super charges are naturally associated with
the modified Dirac equation, and anti-commuting coordinates and super-fields do not appear
anywhere. One can however ask whether one could identify a mathematical structure replacing
the notion of chiral super field.

In [K29] it was proposed that generalized chiral super-fields could effectively replace induced
spinor fields and that second quantized fermionic oscillator operators define the analog of SUSY
algebra. One would have N = ∞ if all the conformal excitations of the induced spinor field
restricted on 2-surface are present. For right-handed neutrino the modes are labeled by two
integers and delocalized to the interior of Euclidian or Minkowskian regions of space-time sheet.

The obvious guess is that chiral super-field generalizes to the field having as its components
many-fermions states at partonic 2-surfaces with theta parameters and their conjugates in one-
one correspondence with fermionic creation operators and their hermitian conjugates.

(a) Fermionic creation operators - in classical theory corresponding anti-commuting Grassmann
parameters - replace theta parameters. Theta parameters and their conjugates are not in
one-one correspondence with spinor components but with the fermionic creation operators
and their hermitian conjugates. One can say that the super-field in question is defined in
the ”world of classical worlds” (WCW) rather than in space-time. Fermionic Fock state at
the partonic 2-surface is the value of the chiral super field at particular point of WCW.

(b) The matrix defined by the σµ∂µ is replaced with a matrix defined by the modified Dirac
operator D between spinor modes acting in the solution space of the modified Dirac equa-
tion. Since modified Dirac operator annihilates the modes of the induced spinor field, super
covariant derivatives reduce to ordinary derivatives with respect the theta parameters la-
beling the modes. Hence the chiral super field is a field that depends on θm or conjugates
θm only. In second quantization the modes of the chiral super-field are many-fermion states
assigned to partonic 2-surfaces and string world sheets. Note that this is the only possibility
since the notion of super-coordinate does not make sense now.
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(c) It would seem that the notion of super-field does not bring anything new. This is not
the case. First of all, the spinor fields are restricted to 2-surfaces. Second point is that
one cannot assign to the fermions of the many-fermion states separate non-parallel or even
parallel four-momenta. The many-fermion state behaves like elementary particle. This has
non-trivial implications for propagators and a simple argument [K29] leads to the proposal
that propagator for N-fermion partonic state is proportional to 1/pN . This would mean
that only the states with fermion number equal to 1 or 2 behave like ordinary elementary
particles.

How the fermionic anti-commutation relations are determined?

Understanding the fermionic anti-commutation relations is not trivial since all fermion fields ex-
cept right-handed neutrino are assumed to be localized at 2-surfaces. Since fermionic conserved
currents must give rise to well-defined charges as 3-D integrals the spinor modes must be propor-
tional to a square root of delta function in normal directions. Furthermore, the modified Dirac
operator must act only in the directions tangential to the 2-surface in order that the modified
Dirac equation can be satisfied.

The square root of delta function can be formally defined by starting from the expansion of delta
function in discrete basis for a particle in 1-D box. The product of two functions in x-space is
convolution of Fourier transforms and the coefficients of Fourier transform of delta function are
apart from a constant multiplier equal to 1: δ(x) = K

∑
n exp(inx/2πL). Therefore the Fourier

transform of square root of delta function is obtained by normalizing the Fourier transform
of delta function by 1/

√
N , where N → ∞ is the number of plane waves. In other words:√

δ(x) =
√

K
N

∑
n

∑
exp(inx/2πL).

Canonical quantization defines the standard approach to the second quantization of the Dirac
equation.

(a) One restricts the consideration to time=constant slices of space-time surface. Now the
3-surfaces at the ends of CD are natural slices. The intersection of string world sheet
with these surfaces is 1-D whereas partonic 2-surfaces have 2-D Euclidian intersection with
them.

(b) The canonical momentum density is defined by

Πα =
∂L

∂tΨα(x)
= ΓtΨ ,

Γt =
∂LK
∂(∂thk)

. (3.4.12)

LK denotes Kähler action density: consistency requires DµΓµ = 0, and this is guaranteed
only by using the modified gamma matrices defined by Kähler action. Note that Γt contains
also the

√
g4 factor. Induced gamma matrices would require action defined by four-volume.

t is time coordinate varying in direction tangential to 2-surface.

(c) The standard equal time canonical anti-commutation relations state

{Πα,Ψβ} = δ3(x, y)δαβ . (3.4.13)

Can these conditions be applied both at string world sheets and partonic 2-surfaces.

(a) Sttring world sheets do not pose problems. The restriction of the modes to string world
sheets means that the square root of delta function in the normal direction of string world
sheet takes care of the normal dimensions and the dynamical part of anti-commutation
relations is 1-dimensional just as in the case of strings.
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(b) Partonic 2-surfaces are problematic. The
√
g4 factor in Γt implies that Γt approaches zero at

partonic 2-surfaces since they belong to light-like wormhole throats at which the signature
of the induced metric changes. Energy momentum tensor appearing in Γt involves to index
raisins by induced metric so that it can grow without limit as one approaches partonic two-
surface. Therefore it is quite possible that the limit is finite and the boundary conditions
defined by the weak form of electric magnetic duality might imply that the limit is finite.
The open question is whether one can apply canonical quantization at partonic 2-surfaces.
One can also ask whether one can define induced spinor fields at wormhole throats only at
the ends of string world sheets so that partonic 2-surface would be effectively discretized.
This cautious conclusion emerged in the earlier study of the modified Dirac equation [K28].

(c) Suppose that one can assume spinor modes at partonic 2-surfaces. 2-D conformal invariance
suggests that the situation reduces to effectively one-dimensional also at the partonic two-
surfaces. If so, one should pose the anti-commutation relations at some 1-D curves of the
partonic 2-surface only. This is the only sensical option. The point is that the action of the
modified Dirac operator is tangential so that also the canonical momentum current must
be tangential and one can fix anti-commutations only at some set of curves of the partonic
2-surface.

One can of course worry what happens at the limit of vacuum extremals. The problem is that
Γt vanishes for space-time surfaces reducing to vacuum extremals at the 2-surfaces carrying
fermions so that the anti-commutations are inconsistent. Should one require - as done earlier-
that the anti-commutation relations make sense at this limit and cannot therefore have the
standard form but involve the scalar magnetic flux formed from the induced Kähler form by
permuting it with the 2-D permutations symbl? The restriction to preferred extremals, which
are always non-vacuum extremals, might allow to avoid this kind of problems automatically.

In the case of right-handed neutrino the situation is genuinely 3-dimensional and in this case
non-vacuum extremal property must hold true in the regions where the modes of νR are non-
vanishing. The same mechanism would save from problems also at the partonic 2-surfaces.
The dynamics of induced spinor fields must avoid classical vacuum. Could this relate to color
confinement? Could hadrons be surrounded by an insulating layer of Kähler vacuum?

3.5 Twistor revolution and TGD

Lubos Motl wrote a nice summary about the talk of Nima Arkani Hamed about twistor revolution
in Strings 2012 and gave also a link to the talk [B25]. It seems that Nima and collaborators
are ending to a picture about scattering amplitudes which strongly resembles that provided bt
generalized Feynman diagrammatics in TGD framework

TGD framework is much more general than N = 4 SYM and is to it same as general relativity
for special relativity whereas the latter is completely explicit. Of course, I cannot hope that
TGD view could be taken seriously - at least publicly. One might hope that these approaches
could be combined some day: both have a lot to give for each other. Below I compare these
approaches.

3.5.1 The origin of twistor diagrammatics

In TGD framework zero energy ontology forces to replace the idea about continuous unitary
evolution in Minkowski space with something more general assignable to causal diamonds (CDs),
and S-matrix is replaced with a square root of density matrix equal to a hermitian l square root
of density matrix multiplied by unitary S-matrix. Also in twistor approach unitarity has ceased
to be a star actor. In p-Adic context continuous unitary time evolution fails to make sense also
mathematically.

Twistor diagrammatics involves only massless on mass shell particles on both external and
internal lines. Zero energy ontology (ZEO) requires same in TGD: wormhole lines carry parallely

http://motls.blogspot.fi/2012/07/permutations-join-twistor-minirevolution.html
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moving massless fermions and antifermions. The mass shell conditions at vertices are enormously
powerful and imply UV finiteness. Also IR finiteness follows if external particles are massive.

What one means with mass is however a delicate matter. What does one mean with mass? I have
pondered 35 years this question and the recent view is inspired by p-adic mass calculations and
ZEO, and states that observed mass is in a well-defined sense expectation value of longitudinal
mass squared for all possible choices of M2 ⊂ M4 characterizing the choices of quantization
axis for energy and spin at the level of ”world of classical worlds” (WCW) assignable with given
causal diamond CD.

The choice of quantization axis thus becomes part of the geometry of WCW. All wormhole
throats are massless but develop non-vanishing longitudinal mass squared. Gauge bosons cor-
respond to wormhole contacts and thus consist of pairs of massless wormhole throats. Gauge
bosons could develop 4-D mass squared but also remain massless in 4-D sense if the throats have
parallel massless momenta. Longitudinal mass squared is however non-vanishing andp-adic ther-
modynamics predicts it.

3.5.2 The emergence of 2-D sub-dynamics at space-time level

Nima et al introduce ordering of the vertices in 4-D case. Ordering and related braiding are
however essentially 2-D notions. Somehow 2-D theory must be a part of the 4-D theory also
at space-time level, and I understood that understanding this is the challenge of the twistor
approach at this moment.

The twistor amplitude can be represented as sum over the permutations of n external gluons and
all diagrams corresponding to the same permutation are equivalent. Permutations are more like
braidings since they carry information about how the permutation proceeded as a homotopy.
Yang-Baxter equation emerges and states associativity of the braid group. The allowed braidings
are minimal braidings in the sense that the repetitions of permutations of two adjacent vertices
are not considered to be separate. Minimal braidings reduce to ordinary permutations. Nima also
talks about affine braidings which I interpret as analogs of Kac-Moody algebras meaning that one
uses projective representations which for Kac-Moody algebra mean non-trivial central extension.
Perhaps the condition is that the square of a permutation permuting only two vertices which
each other gives only a non-trivial phase factor. Lubos suggests an alternative interpretation
which would select only special permutations and cannot be therefore correct.

There are rules of identifying the permutation associated with a given diagram involving only
basic 3-gluon vertex with white circle and its conjugate. Lubos explains this ”Mickey Mouse in
maze” rule in his posting in detail: to determine the image p(n) of vertex n in the permutation
put a mouse in the maze defined by the diagram and let it run around obeying single rule: if the
vertex is black turn to the right and if the vertex is white turn to the left. The mouse cannot
remain in a loop: if it would do so, the rule would force it to run back to n after single full
loop and one would have a fixed point: p(n) = n. The reduction in the number of diagrams is
enormous: the infinity of different diagrams reduces to n! diagrams!

What happens in TGD framework?

(a) In TGD framework string world sheets and partonic 2-surfaces (or either or these if they
are dual notions as conjectured) at space-time surface would define the sought for 2-D
theory, and one obtains indeed perturbative expansion with fermionic propagator defined
by the inverse of the modified Dirac operator and bosonic propagator defined by the cor-
relation function for small deformations of the string world sheet. The vertices of twistor
diagrams emerge as braid ends defining the intersections of string world sheets and partonic
2-surfaces.

String model like description becomes part of TGD and the role of string world sheets in
X4 is highly analogous to that of string world sheets connecting branes in AdS5 × S5 of
N = 4 SYM. In TGD framework 10-D AdS5 × S5 is replaced with 4-D space-time surface
in M4 × CP2. The meaning of the analog of AdS5 duality in TGD framework should
be understood. In particular, it could it be that the descriptions involving string world
sheets on one hand and partonic 2-surfaces - or 3-D orbits of wormhole throats defining the

http://motls.blogspot.fi/2012/07/permutations-join-twistor-minirevolution.html
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generalized Feynman diagram- on the other hand are dual to each other. I have conjectured
something like this earlier but it takes some time for this kind of issues to find their natural
answer.

(b) As described in the article, string world sheets and partonic 2-surfaces emerge directly from
the construction of the solutions of the modified Dirac equation by requiring conservation
of em charge. This result has been conjectured already earlier but using other less direct
arguments. 2-D ”string world sheets” as sub-manifolds of the space-time surface make the
ordering possible, and guarantee the finiteness of the perturbation theory involving n-point
functions of a conformal QFT for fermions at wormhole throats and n-point functions for
the deformations of the space-time surface. Conformal invariance should dictate these n-
point functions to a high degree. In TGD framework the fundamental 3-vertex corresponds
to joining of light-like orbits of three wormhole contacts along their 2-D ends (partonic
2-surfaces).

3.5.3 The emergence of Yangian symmetry

Yangian symmetry associated with the conformal transformations of M4 is a key symmetry of
Grassmannian approach. Is it possible to derive it in TGD framework?

(a) TGD indeed leads to a concrete representation of Yangian algebra as generalization of color
and electroweak gauge Kac-Moody algebra using general formula discussed in Witten’s
article about Yangian algebras (see the article).

(b) Article discusses also a conjecture about 2-D Hodge duality of quantized YM gauge poten-
tials assignable to string world sheets with Kac-Moody currents. Quantum gauge potentials
are defined only where they are needed - at string world sheets rather than entire 4-D space-
time.

(c) Conformal scalings of the effective metric defined by the anticommutators of the modified
gamma matrices emerges as realization of quantum criticality. They are induced by critical
deformations (second variations not changing Kähler action) of the space-time surface.
This algebra can be generalized to Yangian using the formulas in Witten’s article (see the
article).

(d) Critical deformations induce also electroweak gauge transformations and even more general
symmetries for which infinitesimal generators are products of U(n) generators permuting
n modes of the modified Dirac operator and infinitesimal generators of local electro-weak
gauge transformations. These symmetries would relate in a natural manner to finite mea-
surement resolution realized in terms of inclusions of hyperfinite factors with included al-
gebra taking the role of gauge group transforming to each other states not distinguishable
from each other.

(e) How to end up with Grassmannian picture in TGD framework? This has inspired some
speculations in the past. From Nima’s lecture one however learns that Grassmannian
picture emerges as a convenient parametrization. One starts from the basic 3-gluon vertex
or its conjugate expressed in terms of twistors. Momentum conservation implies that with
the three twistors λi or their conjugates are proportional to each other (depending on
which is the case one assigns white or black dot with the vertex). This constraint can be
expressed as a delta function constraint by introducing additional integration variables and
these integration variables lead to the emergence of the Grassmannian Gn,k where n is the
number of gluons, and k the number of positive helicity gluons.

Since only momentum conservation is involved, and since twistorial description works be-
cause only massless on mass shell virtual particles are involved, one is bound to end up
with the Grassmannian description also in TGD.

3.5.4 The analog of AdS5 duality in TGD framework

The generalization of AdS5 duality of N = 4 SYMs to TGD framework is highly suggestive and
states that string world sheets and partonic 2-surfaces play a dual role in the construction of

http://tgdtheory.com/public_html/articles/svira.pdf
http://tgdtheory.com/public_html/articles/svira.pdf
http://arxiv.org/pdf/hep-th/0401243v2.pdf
http://tgdtheory.com/public_html/articles/svira.pdf
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M-matrices. Some terminology first.

(a) Let us agree that string world sheets and partonic 2-surfaces refer to 2-surfaces in the slicing
of space-time region defined by Hermitian structure or Hamilton-Jacobi structure.

(b) Let us also agree that singular string world sheets and partonic 2-surfaces are surfaces at
which the effective metric defined by the anticommutators of the modified gamma matrices
degenerates to effectively 2-D one.

(c) Braid strands at wormhole throats in turn would be loci at which the induced metric of the
string world sheet transforms from Euclidian to Minkowskian as the signature of induced
metric changes from Euclidian to Minkowskian.

AdS5 duality suggest that string world sheets are in the same role as string world sheets of 10-D
space connecting branes in AdS5 duality for N = 4 SYM. What is important is that there should
exist a duality meaning two manners to calculate the amplitudes. What the duality could mean
now?

(a) Also in TGD framework the first manner would be string model like description using
string world sheets. The second one would be a generalization of conformal QFT at light-
like 3-surfaces (allowing generalized conformal symmetry) defining the lines of generalized
Feynman diagram. The correlation functions to be calculated would have points at the
intersections of partonic 2-surfaces and string world sheets and would represent braid ends.

(b) General Coordinate Invariance (GCI) implies that physics should be codable by 3-surfaces.
Light-like 3-surfaces define 3-surfaces of this kind and same applies to space-like 3-surfaces.
There are also preferred 3-surfaces of this kind. The orbits of 2-D wormhole throats at
which 4-metric degenerates to 3-dimensional one define preferred light-like 3-surfaces. Also
the space-like 3-surfaces at the ends of space-time surface at light-like boundaries of causal
diamonds (CDs) define preferred space-like 3-surfaces. Both light-like and space-like 3-
surfaces should code for the same physics and therefore their intersections defining partonic
2-surfaces plus the 4-D tangent space data at them should be enough to code for physics.
This is strong form of GCI implying effective 2-dimensionality. As a special case one obtains
singular string world sheets at which the effective metric reduces to 2-dimensional and
singular partonic 2-surfaces defining the wormhole throats. For these 2-surfaces situation
could be especially simple mathematically.

(c) The guess inspired by strong GCI is that string world sheet -partonic 2-surface duality
holds true. The functional integrals over the deformations of 2 kinds of 2-surfaces should
give the same result so tthat functional integration over either kinds of 2-surfaces should
be enough. Note that the members of a given pair in the slicing intersect at discrete set
of points and these points define braid ends carrying fermion number. Discretization and
braid picture follow automatically.

(d) Scattering amplitudes in the twistorial approach could be thus calculated by using any pair
in the slicing - or only either member of the pair if the analog of AdS5 duality holds true as
argued. The possibility to choose any pair in the slicing means general coordinate invariance
as a symmetry of the Kähler metric of WCW and of the entire theory suggested already
early: Kähler functions for difference choices in the slicing would differ by a real part of
holomorphic function and give rise to same Kähler metric of ”world of classical worlds”
(WCW). For a general pair one obtains functional integral over deformations of space-time
surface inducing deformations of 2-surfaces with only other kind 2-surface contributing to
amplitude. This means the analog of stringy QFT: Minkowskian or Euclidian string theory
depending on choice.

(e) For singular string world sheets and partonic 2-surfaces an enormous simplification results.
The propagators for fermions and correlation functions for deformations reduce to 1-D
instead of being 2-D: the propagation takes place only along the light-like lines at which
the string world sheets with Euclidian signature (inside CP2 like regions) change to those
with Minkowskian signature of induced metric. The local reduction of space-time dimension
would be very real for particles moving along sub-manifolds at which higher dimensional
space-time has reduced metric dimension: they cannot get out from lower-D sub-manifold.
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This is like ending down to 1-D black hole interior and one would obtain the analog of
ordinary Feynman diagrammatics. This kind of Feynman diagrammatics involving only
braid strands is what I have indeed ended up earlier so that it seems that I can trust good
intuition combined with a sloppy mathematics sometimes works;-).

These singular lines represent orbits of point like particles carrying fermion number at the
orbits of wormhole throats. Furthermore, in this representation the expansions coming
from string world sheets and partonic 2-surfaces are identical automatically. This follows
from the fact that only the light-like lines connecting points common to singular string
world sheets and singular partonic 2-surfaces appear as propagator lines!

(f) The TGD analog of AdS5 duality of N = 4 SUSYs would be trivially true as an identity
in this special case, and the good guess is that it is true also generally. One could indeed
use integral over either string world sheets or partonic 2-sheets to deduce the amplitudes.

What is important to notice that singularities of Feynman diagrams crucial for the Grassmannian
approach of Nima and others would correspond at space-time level 2-D singularities of the
effective metric defined by the modified gamma matrices defined as contractions of canonical
momentum currents for Kähler action with ordinary gamma matrices of the imbedding space
and therefore directly reflecting classical dynamics.

3.5.5 Problems of the twistor approach from TGD point of view

Twistor approach has also its problems and here TGD suggests how to proceed. Signature
problem is the first problem.

(a) Twistor diagrammatics works in a strict mathematical sense only for M2,2 with metric
signature (1,1,-1,-1) rather than M4 with metric signature (1,-1,-1,-1). Metric signature is
wrong in the physical case. This is a real problem which must be solved eventually.

(b) Effective metric defined by anticommutators of the modified gamma matrices (to be distin-
guished from the induced gamma matrices) could solve that problem since it would have
the correct signature in TGD framework (see the article). String world sheets and par-
tonic 2-surfaces would correspond to the 2-D singularities of this effective metric at which
the even-even signature (1,1,1,1) changes to even-even signature (1,1,-1,-1). Space-time
at string world sheet would become locally 2-D with respect to effective metric just as
space-time becomes locally 3-D with respect to the induced metric at the light-like orbits
of wormhole throats. String world sheets become also locally 1-D at light-like curves at
which Euclidian signature of world sheet in induced metric transforms to Minkowskian.

(c) Twistor amplitudes are indeed singularities and string world sheets implied in TGD frame-
work by conservation of em charge would represent these singularities at space-time level.
At the end of the talk Nima conjectured about lower-dimensional manifolds of space-time
as representation of space-time singularities. Note that string world sheets and partonic
2-surfaces have been part of TGD for years. TGD is of course to N = 4 SYM what general
relativity is for the special relativity. Space-time surface is dynamical and possesses induced
and effective metrics rather than being flat.

Second limitation is that twistor diagrammatics works only for planar diagrams. This is a
problem which must be also fixed sooner or later.

(a) This perhaps dangerous and blasphemous statement that I will regret it some day but I will
make it;-). Nima and others have not yet discovered that M2 ⊂M4 must be there but will
discover it when they begin to generalize the results to non-planar diagrams and realize that
Feynman diagrams are analogous to knot diagrams in 2-D plane (with crossings allowed)
and that this 2-D plane must correspond to M2 ⊂ M4. The different choices of causal
diamond CD correspond to different choices of M2 representing choice of quantization
axes 4-momentum and spin. The integral over these choices guarantees Lorentz invariance.
Gauge conditions are modified: longitudinal M2 projection of massless four-momentum is
orthogonal to polarization so that three polarizations are possible: states are massive in
longitudinal sense.

http://tgdtheory.com/public_html/articles/svira.pdf
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(b) In TGD framework one replaces the lines of Feynman diagrams with the light-like 3-surfaces
defining orbits of wormhole throats. These lines carry many fermion states defining braid
strands at light-like 3-surfaces. There is internal braiding associated with these braid
strands. String world sheets connect fermions at different wormhole throats with space-
like braid strands. The M2 projections of generalized Feynman diagrams with 4-D ”lines”
replaced with genuine lines define the ordinary Feynman diagram as the analog of braid
diagram. The conjecture is that one can reduce non-planar diagrams to planar diagrams
using a procedure analogous to the construction of knot invariants by un-knotting the knot
in Alexandrian manner by allowing it to be cut temporarily.

(c) The permutations of string vertices emerge naturally as one constructs diagrams by adding
to the interior of polygon sub-polygons connected to the external vertices. This corresponds
to the addition of internal partonic two-surfaces. There are very many equivalent diagrams
of this kind. Only permutations matter and the permutation associated with a given
diagram of this kind can be deduced by the Mickey-Mouse rule described explicitly by
Lubos. A connection with planar operads is highly suggestive and also conjecture already
earlier in TGD framework.

3.5.6 Could N = 2 or N = 4 SYM be a part of TGD after all?

Whether right-handed neutrinos generate a supersymmetry in TGD has been a long standing
open question. N = 1 SUSY is certainly excluded by fermion number conservation but already
N = 2 defining a ”complexification” of N = 1 SUSY is possible and could generate right-
handed neutrino and its antiparticle. These states should however possess a non-vanishing
light-like momentum since the fully covariantly constant right-handed neutrino generates zero
norm states. So called massless extremals (MEs) allow massless solutions of the modified Dirac
equation for right-handed neutrino in the interior of space-time surface, and this seems to be case
quite generally in Minkowskian signature for preferred extremals. This suggests that particle
represented as magnetic flux tube structure with two wormhole contacts sliced between two MEs
could serve as a starting point in attempts to understand the role of right handed neutrinos and
how N = 2 or N = 4 SYM emerges at the level of space-time geometry. The following arguments
inspired by the article of Nima Arkani-Hamed et al [B37] about twistorial scattering amplitudes
suggest a more detailed physical interpretation of the possible SUSY associated with the right-
handed neutrinos.

The fact that right handed neutrinos have only gravitational interaction suggests a radical re-
interpretation of SUSY: no SUSY breaking is needed since it is very difficult to distinguish
between mass degenerate spartners of ordinary particles. In order to distinguish between differ-
ent spartners one must be able to compare the gravitomagnetic energies of spartners in slowly
varying external gravimagnetic field: this effect is extremely small.

Scattering amplitudes and the positive Grassmannian

The work of Nima Arkani-Hamed and others represents something which makes me very opti-
mistic and I would be happy if I could understand the horrible technicalities of their work. The
article Scattering Amplitudes and the Positive Grassmannian by Arkani-Hamed, Bourjaily, Cac-
hazo, Goncharov, Postnikov, and Trnka [B37] summarizes the recent situation in a form, which
should be accessible to ordinary physicist. Lubos has already discussed the article. The following
considerations do not relate much to the main message of the article (positive Grassmannians)
but more to the question how this approach could be applied in TGD framework.

1. All scattering amplitudes have on shell amplitudes for massless particles as building bricks

The key idea is that all planar amplitudes can be constructed from on shell amplitudes: all
virtual particles are actually real. In zero energy ontology I ended up with the representation
of TGD analogs of Feynman diagrams using only mass shell massless states with both positive
and negative energies. The enormous number of kinematic constraints eliminates UV and IR

http://arxiv.org/pdf/1212.5605v1.pdf
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divergences and also the description of massive particles as bound states of massless ones becomes
possible.

In TGD framework quantum classical correspondence requires a space-time correlate for the
on mass shell property and it indeed exists. The mathematically ill-defined path integral over
all 4-surfaces is replaced with a superposition of preferred extremals of Kähler action analo-
gous to Bohr orbits, and one has only a functional integral over the 3-D ends at the light-like
boundaries of causal diamond (Euclidian/Minkowskian space-time regions give real/imaginary
Chern-Simons exponent to the vacuum functional). This would be obviously the deeper principle
behind on mass shell representation of scattering amplitudes that Nima and others are certainly
trying to identify. This principle in turn reduces to general coordinate invariance at the level of
the world of classical worlds.

Quantum classical correspondence and quantum ergodicity would imply even stronger condition:
the quantal correlation functions should be identical with classical correlation functions for any
preferred extremal in the superposition: all preferred extremals in the superposition would be
statistically equivalent [K92]. 4-D spin glass degeneracy of Kähler action however suggests that
this is is probably too strong a condition applying only to building bricks of the superposition.

Minimal surface property is the geometric counterpart for masslessness and the preferred ex-
tremals are also minimal surfaces: this property reduces to the generalization of complex struc-
ture at space-time surfaces, which I call Hamilton-Jacobi structure for the Minkowskian signature
of the induced metric. Einstein Maxwell equations with cosmological term are also satisfied.

2. Massless extremals and twistor approach

The decomposition M4 = M2 ×E2 is fundamental in the formulation of quantum TGD, in the
number theoretical vision about TGD, in the construction of preferred extremals, and for the
vision about generalized Feynman diagrams. It is also fundamental in the decomposition of the
degrees of string to longitudinal and transversal ones. An additional item to the list is that
also the states appearing in thermodynamical ensemble in p-adic thermodynamics correspond
to four-momenta in M2 fixed by the direction of the Lorentz boost. In twistor approach to TGD
the possibility to decompose also internal lines to massless states at parallel space-time sheets
is crucial.

Can one find a concrete identification for M2 × E2 decomposition at the level of preferred ex-
tremals? Could these preferred extremals be interpreted as the internal lines of generalized
Feynman diagrams carrying massless momenta? Could one identify the mass of particle pre-
dicted by p-adic thermodynamics with the sum of massless classical momenta assignable to
two preferred extremals of this kind connected by wormhole contacts defining the elementary
particle?

Candidates for this kind of preferred extremals indeed exist. Local M2×E2 decomposition and
light-like longitudinal massless momentum assignable to M2 characterizes ”massless extremals”
(MEs, ”topological light rays”). The simplest MEs correspond to single space-time sheet carrying
a conserved light-like M2 momentum. For several MEs connected by wormhole contacts the
longitudinal massless momenta are not conserved anymore but their sum defines a time-like
conserved four-momentum: one has a bound states of massless MEs. The stable wormhole
contacts binding MEs together possess Kähler magnetic charge and serve as building bricks of
elementary particles. Particles are necessary closed magnetic flux tubes having two wormhole
contacts at their ends and connecting the two MEs.

The sum of the classical massless momenta assignable to the pair of MEs is conserved even
when they exchange momentum. Quantum classical correspondence requires that the conserved
classical rest energy of the particle equals to the prediction of p-adic mass calculations. The
massless momenta assignable to MEs would naturally correspond to the massless momenta
propagating along the internal lines of generalized Feynman diagrams assumed in zero energy
ontology. Masslessness of virtual particles makes also possible twistor approach. This supports
the view that MEs are fundamental for the twistor approach in TGD framework.

3. Scattering amplitudes as representations for braids whose threads can fuse at 3-vertices

http://matpitka.blogspot.fi/2012/12/how-coupling-constant-evolution-could.html
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Just a little comment about the content of the article. The main message of the article is that
non-equivalent contributions to a given scattering amplitude in N = 4 SYM represent elements
of the group of permutations of external lines - or to be more precise - decorated permutations
which replace permutation group Sn with n! elements with its decorated version containing 2nn!
elements. Besides 3-vertex the basic dynamical process is permutation having the exchange of
neighboring lines as a generating permutation completely analogous to fundamental braiding.
BFCW bridge has interpretation as a representations for the basic braiding operation.

This supports the TGD inspired proposal (TGD as almost topological QFT) that generalized
Feynman diagrams are in some sense also knot or braid diagrams allowing besides braiding
operation also two 3-vertices [K37]. The first 3-vertex generalizes the standard stringy 3-vertex
but with totally different interpretation having nothing to do with particle decay: rather particle
travels along two paths simultaneously after 1 → 2 decay. Second 3-vertex generalizes the 3-
vertex of ordinary Feynman diagram (three 4-D lines of generalized Feynman diagram identified
as Euclidian space-time regions meet at this vertex). The main idea is that in TGD framework
knotting and braiding emerges at two levels.

(a) At the level of space-time surface string world sheets at which the induced spinor fields
(except right-handed neutrino [K92]) are localized due to the conservation of electric charge
can form 2-knots and can intersect at discrete points in the generic case. The boundaries
of strings world sheets at light-like wormhole throat orbits and at space-like 3-surfaces
defining the ends of the space-time at light-like boundaries of causal diamonds can form
ordinary 1-knots, and get linked and braided. Elementary particles themselves correspond
to closed loops at the ends of space-time surface and can also get knotted (possible effects
are discussed in [K37]).

(b) One can assign to the lines of generalized Feynman diagrams lines in M2 characterizing
given causal diamond. Therefore the 2-D representation of Feynman diagrams has con-
crete physical interpretation in TGD. These lines can intersect and what suggests itself is
a description of non-planar diagrams (having this kind of intersections) in terms of an al-
gebraic knot theory. A natural guess is that it is this knot theoretic operation which allows
to describe also non-planar diagrams by reducing them to planar ones as one does when
one constructs knot invariant by reducing the knot to a trivial one. Scattering amplitudes
would be basically knot invariants.

”Almost topological” has also a meaning usually not assigned with it. Thurston’s geometrization
conjecture stating that geometric invariants of canonical representation of manifold as Riemann
geometry, defined topological invariants, could generalize somehow. For instance, the geometric
invariants of preferred extremals could be seen as topological or more refined invariants (symplec-
tic, conformal in the sense of 4-D generalization of conformal structure). If quantum ergodicity
holds true, the statistical geometric invariants defined by the classical correlation functions of
various induced classical gauge fields for preferred extremals could be regarded as this kind
of invariants for sub-manifolds. What would distinguish TGD from standard topological QFT
would be that the invariants in question would involve length scale and thus have a physical
content in the usual sense of the word!

Could N =2 or N = 4 SUSY have something to do with TGD?

N = 4 SYM has been the theoretical laboratory of Nima and others. N = 4 SYM is definitely
a completely exceptional theory, and one cannot avoid the question whether it could in some
sense be part of fundamental physics. In TGD framework right handed neutrinos have remained
a mystery: whether one should assign space-time SUSY to them or not. Could they give rise to
something resembpling N = 2 or N = 4 SUSY with fermion number conservation?

1. Earlier results

My latest view is that fully covariantly constant right-handed neutrinos decouple from the dy-
namics completely. I will repeat first the earlier arguments which consider only fully covariantly
constant right-handed neutrinos.

http://en.wikipedia.org/wiki/Thurston's_geometrization_conjecture
http://en.wikipedia.org/wiki/Thurston's_geometrization_conjecture
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(a) N = 1 SUSY is certainly excluded since it would require Majorana property not possible in
TGD framework since it would require superposition of left and right handed neutrinos and
lead to a breaking of lepton number conservation. Could one imagine SUSY in which both
MEs between which particle wormhole contacts reside have N = 2 SUSY which combine
to form an N = 4 SUSY?

(b) Right-handed neutrinos which are covariantly constant right-handed neutrinos in both M4

degrees of freedom cannot define a non-trivial theory as shown already earlier. They have
no electroweak nor gravitational couplings and carry no momentum, only spin.

The fully covariantly constant right-handed neutrinos with two possible helicities at given
ME would define representation of SUSY at the limit of vanishing light-like momentum. At
this limit the creation and annihilation operators creating the states would have vanishing
anticommutator so that the oscillator operators would generate Grassmann algebra. Since
creation and annihilation operators are hermitian conjugates, the states would have zero
norm and the states generated by oscillator operators would be pure gauge and decouple
from physics. This is the core of the earlier argument demonstrating that N = 1 SUSY is
not possible in TGD framework: LHC has given convincing experimental support for this
belief.

2. Could massless right-handed neutrinos covariantly constant in CP2 degrees of freedom define
N = 2 or N = 4 SUSY?

Consider next right-handed neutrinos, which are covariantly constant in CP2 degrees of freedom
but have a light-like four-momentum. In this case fermion number is conserved but this is
consistent with N = 2 SUSY at both MEs with fermion number conservation. N = 2 SUSYs
could emerge from N = 4 SUSY when one half of SUSY generators annihilate the states, which
is a basic phenomenon in supersymmetric theories.

(a) At space-time level right-handed neutrinos couple to the space-time geometry - gravitation
- although weak and color interactions are absent. One can say that this coupling forces
them to move with light-like momentum parallel to that of ME. At the level of space-time
surface right-handed neutrinos have a spectrum of excitations of four-dimensional analogs
of conformal spinors at string world sheet (Hamilton-Jacobi structure).

For MEs one indeed obtains massless solutions depending on longitudinal M2 coordinates
only since the induced metric in M2 differs from the light-like metric only by a contribution
which is light-like and contracts to zero with light-like momentum in the same direction.
These solutions are analogs of (say) left movers of string theory. The dependence on E2

degrees of freedom is holomorphic. That left movers are only possible would suggest that
one has only single helicity and conservation of fermion number at given space-time sheet
rather than 2 helicities and non-conserved fermion number: two real Majorana spinors
combine to single complex Weyl spinor.

(b) At imbedding space level one obtains a tensor product of ordinary representations of N =
2 SUSY consisting of Weyl spinors with opposite helicities assigned with the ME. The state
content is same as for a reduced N = 4 SUSY with four N = 1 Majorana spinors replaced
by two complex N = 2 spinors with fermion number conservation. This gives 4 states at
both space-time sheets constructed from νR and its antiparticle. Altogether the two MEs
give 8 states, which is one half of the 16 states of N = 4 SUSY so that a degeneration of
this symmetry forced by non-Majorana property is in question.

3. Is the dynamics of N = 2 or N = 4 SYM possible in right-handed neutrino sector?

Could N = 2 or N = 4 SYM be a part of quantum TGD? Could TGD be seen a fusion of a
degenerate N = 4 SYM describing the right-handed neutrino sector and string theory like theory
describing the contribution of string world sheets carrying other leptonic and quark spinors? Or
could one imagine even something simpler?

What is interesting that the net momenta assigned to the right handed neutrinos associated
with a pair of MEs would correspond to the momenta assignable to the particles and obtained
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by p-adic mass calculations. It would seem that right-handed neutrinos provide a representation
of the momenta of the elementary particles represented by wormhole contact structures. Does
this mimircry generalize to a full duality so that all quantum numbers and even microscopic
dynamics of defined by generalized Feynman diagrams (Euclidian space-time regions) would be
represented by right-handed neutrinos and MEs? Could a generalization of N = 4 SYM with
non-trivial gauge group with proper choices of the ground states helicities allow to represent the
entire microscopic dynamics?

Irrespective of the answer to this question one can compare the TGD based view about super-
symmetric dynamics with what I have understood about N = 4 SYM.

(a) In the scattering of MEs induced by the dynamics of Kähler action the right-handed neu-
trinos play a passive role. Modified Dirac equation forces them to adopt the same direction
of four-momentum as the MEs so that the scattering reduces to the geometric scattering
for MEs as one indeed expects on basic of quantum classical correspondence. In νR sector
the basic scattering vertex involves four MEs and could be a re-sharing of the right-handed
neutrino content of the incoming two MEs between outgoing two MEs respecting fermion
number conservation. Therefore N = 4 SYM with fermion number conservation would
represent the scattering of MEs at quantum level.

(b) N = 4 SUSY would suggest that also in the degenerate case one obtains the full scattering
amplitude as a sum of permutations of external particles followed by projections to the
directions of light-like momenta and that BCFW bridge represents the analog of funda-
mental braiding operation. The decoration of permutations means that each external line
is effectively doubled. Could the scattering of MEs can be interpreted in terms of these
decorated permutations? Could the doubling of permutations by decoration relate to the
occurrence of pairs of MEs?

One can also revert these questions. Could one construct massive states in N = 4 SYM
using pairs of momenta associated with particle with integer label k and its decorated copy
with label k + n? Massive external particles obtained in this manner as bound states of
massless ones could solve the IR divergence problem of N = 4 SYM.

(c) The description of amplitudes in terms of leading singularities means picking up of the
singular contribution by putting the fermionic propagators on mass shell. In the recent
case it would give the inverse of massless Dirac propagator acting on the spinor at the end
of the internal line annihilating it if it is a solution of Dirac equation.

The only way out is a kind of cohomology theory in which solutions of Dirac equation
represent exact forms. Dirac operator defines the exterior derivative d and virtual lines
correspond to non-physical helicities with dΨ 6= 0. Virtual fermions would be on mass-shell
fermions with non-physical polarization satisfying d2Ψ = 0. External particles would be
those with physical polarization satisfying dΨ = 0, and one can say that the Feynman
diagrams containing physical helicities split into products of Feynman diagrams containing
only non-physical helicities in internal lines.

(d) The fermionic states at wormhole contacts should define the ground states of SUSY repre-
sentation with helicity +1/2 and -1/2 rather than spin 1 or -1 as in standard realization of
N = 4 SYM used in the article. This would modify the theory but the twistorial and Grass-
mannian description would remain more or less as such since it depends on light-likeneness
and momentum conservation only.

4. 3-vertices for sparticles are replaced with 4-vertices for MEs

In N = 4 SYM the basic vertex is on mass-shell 3-vertex which requires that for real light-like
momenta all 3 states are parallel. One must allow complex momenta in order to satisfy energy
conservation and light-likeness conditions. This is strange from the point of view of physics
although number theoretically oriented person might argue that the extensions of rationals
involving also imaginary unit are rather natural.

The complex momenta can be expressed in terms of two light-like momenta in 3-vertex with one
real momentum. For instance, the three light-like momenta can be taken to be p, k, and p− ka
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with k = apR. Here p (incoming momentum) and pR are real light-like momenta satisfying
p · pR = 0 but with opposite sign of energy, and a is complex number. What is remarkable that
also the negative sign of energy is necessary also now.

Should one allow complex light-like momenta in TGD framework? One can imagine two options.

(a) Option I: no complex momenta. In zero energy ontology the situation is different due to the
presence of a pair of MEs meaning replaced of 3-vertices with 4-vertices or 6-vertices, the
allowance of negative energies in internal lines, and the fact that scattering is of sparticles is
induced by that of MEs. In the simplest vertex a massive external particle with non-parallel
MEs carrying non-parallel light-like momenta can decay to a pair of MEs with light-like
momenta. This can be interpreted as 4-ME-vertex rather than 3-vertex (say) BFF so that
complex momenta are not needed. For an incoming boson identified as wormhole contact
the vertex can be seen as BFF vertex.

To obtain space-like momentum exchanges one must allow negative sign of energy and
one has strong conditions coming from momentum conservation and light-likeness which
allow non-trivial solutions (real momenta in the vertex are not parallel) since basically the
vertices are 4-vertices. This reduces dramatically the number of graphs. Note that one
can also consider vertices in which three pairs of MEs join along their ends so that 6 MEs
(analog of 3-boson vertex) would be involved.

(b) Option II: complex momenta are allowed. Proceeding just formally, the
√
g4 factor in

Kähler action density is imaginary in Minkowskian and real in Euclidian regions. It is now
clear that the formal approach is correct: Euclidian regions give rise to Kähler function and
Minkowskian regions to the analog of Morse function. TGD as almost topological QFT
inspires the conjecture about the reduction of Kähler action to boundary terms proportional
to Chern-Simons term. This is guaranteed if the condition jµKAµ = 0 holds true: for the
known extremals this is the case since Kähler current jK is light-like or vanishing for
them. This would seem that Minkowskian and Euclidian regions provide dual descriptions
of physics. If so, it would not be surprising if the real and complex parts of the four-
momentum were parallel and in constant proportion to each other.

This argument suggests that also the conserved quantities implied by the Noether theorem
have the same structure so that charges would receive an imaginary contribution from
Minkowskian regions and a real contribution from Euclidian regions (or vice versa). Four-
momentum would be complex number of form P = PM + iPE . Generalized light-likeness
condition would give P 2

M = P 2
E and PM · PE = 0. Complexified momentum would have 6

free components. A stronger condition would be P 2
M = 0 = P 2

E so that one would have two
light-like momenta ”orthogonal” to each other. For both relative signs energy PM and PE
would be actually parallel: parametrization would be in terms of light-like momentum and
scaling factor. This would suggest that complex momenta do not bring in anything new
and Option II reduces effectively to Option I. If one wants a complete analogy with the
usual twistor approach then P 2

M = P 2
E 6= 0 must be allowed.

5. Is SUSY breaking possible or needed?

It is difficult to imagine the breaking of the proposed kind of SUSY in TGD framework, and the
first guess is that all these 4 super-partners of particle have identical masses. p-Adic thermo-
dynamics does not distinguish between these states and the only possibility is that the p-adic
primes differ for the spartners. But is the breaking of SUSY really necessary? Can one really
distinguish between the 8 different states of a given elementary particle using the recent day
experimental methods?

(a) In electroweak and color interactions the spartners behave in an identical manner classically.
The coupling of right-handed neutrinos to space-time geometry however forces the right-
handed neutrinos to adopt the same direction of four-momentum as MEs has. Could some
gravitational effect allow to distinguish between spartners? This would be trivially the
case if the p-adic mass scales of spartners would be different. Why this should be the case
remains however an open question.
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(b) In the case of unbroken SUSY only spin distinguishes between spartners. Spin determines
statistics and the first naive guess would be that bosonic spartners obey totally different
atomic physics allowing condensation of selectrons to the ground state. Very probably this
is not true: the right-handed neutrinos are delocalized to 4-D MEs and other fermions
correspond to wormhole contact structures and 2-D string world sheets.

The coupling of the spin to the space-time geometry seems to provide the only possible man-
ner to distinguish between spartners. Could one imagine a gravimagnetic effect with energy
splitting proportional to the product of gravimagnetic moment and external gravimagnetic
field B? If gravimagnetic moment is proportional to spin projection in the direction of B,
a non-trivial effect would be possible. Needless to say this kind of effect is extremely small
so that the unbroken SUSY might remain undetected.

(c) If the spin of sparticle be seen in the classical angular momentum of ME as quantum
classical correspondence would suggest then the value of the angular momentum might
allow to distinguish between spartners. Also now the effect is extremely small.

6. What can one say about scattering amplitudes?

One expect that scattering amplitudes factorize with the only correlation between right-handed
neutrino scattering and ordinary particle scattering coming from the condition that the four-
momentum of the right-handed neutrino is parallel to that of massless extremal of more general
preferred extremal having interpretation as a geometric counterpart of radiation quantum. This
momentum is in turn equal to the massless four-momentum associated with the space-time
sheet in question such that the sum of classical four-momenta associated with the space-time
sheets equals to that for all wormhole throats involved. The right-handed neutrino amplitude
itself would be simply constant. This certainly satisfies the SUSY constraint and it is actually
difficult to find other candidates for the amplitude. The dynamics of right-handed neutrinos
would be therefore that of spectator following the leader.

Right-handed neutrino as inert neutrino?

There is a very interesting posting by Jester in Resonaances with title How many neutrinos in the
sky? [C3]. Jester tells about the recent 9 years WMAP data [C12] and compares it with earlier
7 years data. In the earlier data the effective number of neutrino types was Neff = 4.34± 0.87
and in the recent data it is Neff = 3.26 ± 0.35. WMAP alone would give Neff = 3.89 ± 0.67
also in the recent data but also other data are used to pose constraings on Neff .

To be precise, Neff could include instead of fourth neutrino species also some other weakly
interacting particle. The only criterion for contributing to Neff is that the particle is in ther-
mal equilibrium with other massless particles and thus contributes to the density of matter
considerably during the radiation dominated epoch.

Jester also refers to the constraints on Neff from nucleosynthesis, which show that Neff ∼ 4 us
slightly favored although the entire range [3, 5] is consistent with data.

It seems that the effective number of neutrinos could be 4 instead of 3 although latest WMAP
data combined with some other measurements favor 3. Later a corrected version of the eprint
appeared [C12] telling that the original estimate of Neff contained a mistake and the correct
estimate is Neff = 3.84± 0.40.

An interesting question is what Neff = 4 could mean in TGD framework?

(a) One poses to the modes of the modified Dirac equation the following condition: electric
charge is conserved in the sense that the time evolution by modified Dirac equation does
not mix a mode with a well-defined em charge with those with different em charge. The
implication is that all modes except pure right handed neutrino are restricted at string
world sheets. The first guess is that string world sheets are minimal surfaces of space-time
surface (rather than those of imbedding space). One can also consider minimal surfaces of
imbedding space but with effective metric defined by the anti-commutators of the modified

http://resonaances.blogspot.fi/2013/01/how-many-neutrinos-in-sky.html
http://resonaances.blogspot.fi/2013/01/how-many-neutrinos-in-sky.html
http://3.bp.blogspot.com/-levjUYMaqQE/UPl798LhJ8I/AAAAAAAAA-8/6GChqA3jp5Y/s1600/Neff_nucleosynthesis.png
http://arxiv.org/abs/1212.5226v2
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gamma matrices. This would give a direct physical meaning for this somewhat mysterious
effective metric.

For the neutrino modes localized at string world sheets mixing of left and right handed
modes takes place and they become massive. If only 3 lowest genera for partonic 2-surfaces
are light, one has 3 neutrinos of this kind. The same applies to all other fermion species.
The argument for why this could be the case relies on simple observation [K18]: the genera
g=0,1,2 have the property that they allow for all values of conformal moduli Z2 as a
conformal symmetry (hyper-ellipticity). For g > 2 this is not the case. The guess is that
this additional conformal symmetry is the reason for lightness of the three lowest genera.

(b) Only purely right-handed neutrino is completely delocalized in 4-volume so that one can-
not assign to it genus of the partonic 2-surfaces as a topological quantum number and it
effectively gives rise to a fourth neutrino very much analogous to what is called sterile neu-
trino. Delocalized right-handed neutrinos couple only to gravitation and in case of massless
extremals this forces them to have four-momentum parallel to that of ME: only massless
modes are possible. Very probably this holds true for all preferred extremals to which one
can assign massless longitudinal momentum direction which can vary with spatial position.

(c) The coupling of νR is to gravitation alone and all electroweak and color couplings are
absent. According to standard wisdom delocalized right-handed neutrinos cannot be in
thermal equilibrium with other particles. This according to standard wisdom. But what
about TGD?

One should be very careful here: delocalized right-handed neutrinos is proposed to give rise
to SUSY (not N = 1 requiring Majorana fermions) and their dynamics is that of passive
spectator who follows the leader. The simplest guess is that the dynamics of right handed
neutrinos at the level of amplitudes is completely trivial and thus trivially supersymmetric.
There are however correlations between four-momenta.

i. The four-momentum of νR is parallel to the light-like momentum direction assignable to
the massless extremal (or more general preferred extremal). This direct coupling to the
geometry is a special feature of the modified Dirac operator and thus of sub-manifold
gravity.

ii. On the other hand, the sum of massless four-momenta of two parallel pieces of pre-
ferred extremals is the - in general massive - four-momentum of the elementary particle
defined by the wormhole contact structure connecting the space-time sheets (which are
glued along their boundaries together since this is seems to be the only manner to get
rid of boundary conditions requiring vacuum extremal property near the boundary).
Could this direct coupling of the fouyr-momentum direction of right-handed neutrino
to geometry and four-momentum directions of other fermions be enough for the right
handed neutrinos to be counted as a fourth neutrino species in thermal equilibrium?
This might be the case!

One cannot of course exclude the coupling of 2-D neutrino at string world sheets to 4-
D purely right handed neutrinos analogous to the coupling inducing a mixing of sterile
neutrino with ordinary neutrinos. Also this could help to achieve the thermal equilibrium
with 2-D neutrino species.

3.6 M 8 − H duality, preferred extremals, criticality, and
Mandelbrot fractals

M8 − H duality [K74] represents an intriguing connection between number theory and TGD
but the mathematics involved is extremely abstract and difficult so that I can only represent
conjectures. In the following the basic duality is used to formulate a general conjecture for the
construction of preferred extremals by iterative procedure. What is remarkable and extremely
surprising is that the iteration gives rise to the analogs of Mandelbrot fractals and space-time
surfaces can be seen as fractals defined as fixed sets of iteration. The analogy with Mandelbrot
set can be also seen as a geometric correlate for quantum criticality.
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3.6.1 M8 −H duality briefly

M8 − M4 × CP2 duality [?]tates that certain 4-surfaces of M8 regarded as a sub-space of
complexified octonions can be mapped in a natural manner to 4-surfaces in M4 × CP2: this
would mean that M4 × CP2 and therefore also the symmetries of standard model would have
purely number theoretical meaning.

Consider a distribution of two planes M2(x) integrating to a 2-surface M̃2 with the property
that a fixed 1-plane M1 defining time axis globally is contained in each M2(x) and therefore
in M̃2. M1 defines real axis of octonionic plane M8 and M2(x) a local hyper-complex plane.
Quaternionic subspaces with this property can be parameterized by points of CP2: this leads to
M8 −H duality as can be shown by a simple argument.

(a) Hyper-octonionic subspace of complexified octonions is obtained by multiplying octonionic
imaginary units by commuting imaginary unit. This does not bring anything new as far
as automorphisms are considered so that it is enough to consider octonions (so that M2 is
replaced with C). Octonionic frame consists of orthogonal octonionic units. The space of
octonionic frames containing sub-frame spanning fixed C is parameterized by SU(3). The
reason is that complexified octonionic units can be decomposed to the representations of
SU(3) ⊂ G2 as 1 + 1 + 3 + 3 and the sub-frame 1+1 spans the preferred C.

(b) The quaternionic planes H are represented by frames defined by four unit octonions span-
ning a quaternionic plane. Fixing C ⊂ H means fixing the 1+1 part in the above decompo-
sition. The sub-group of SU(3) leaving the plane H invariant can perform only a rotation
in the plane defined by two quaternionic units in 3. This sub-group is U(2) so that the
space of quaternionic planes H ⊃ C is parameterized by SU(3)/U(2) = CP2.

(c) Therefore quaternionic tangent plane H ⊃ C can be mapped to a point of CP2. In par-
ticular, any quaternionic surface in E8, whose tangent plane at each point is quaternionic
and contains C, can be mapped to E4 × CP2 by mapping the point (e1, e2) ∈ E4 × E4 to
(e1, s) ∈ e4 × CP2. The generalization from E8 to M8 is trivial. This is essentially what
M8 −H duality says.

This can be made more explicit. Define quaternionic surfaces in M8 as 4-surfaces, whose tangent
plane is quaternionic at each point x and contains the local hyper-complex plane M2(x) and
is therefore labelled by a point s(x) ∈ CP2. One can write these surfaces as union over 2-D
surfaces associated with points of M̃2:

X4 = ∪x∈M̃2X
2(x) ⊂ E6 .

These surfaces can be mapped to surfaces of M4 × CP2 via the correspondence (m(x), e(x))→
(m, s(T (X4(x)). Also the image surface contains at given point x the preferred plane M2(x) ⊃
M1. One can also write these surfaces as union over 2-D surfaces associated with points of M̃2:

X4 = ∪x∈M̃2X
2(x) ⊂ E2 × CP2 .

One can also ask what are the conditions under which one can map surfaces X4 = ∪x∈M̃2X2 ⊂
E2 ×CP2 to 4-surfaces in M8. The map would be given by (m, s)→ (m,T 4(s) and the surface
would be of the form as already described. The surface X4 must be such that the distribution of
4-D tangent planes defined inM8 is integrable and this gives complicated integrability conditions.
One might hope that the conditions might hold true for preferred extremals satisfying some
additional conditions.

One must make clear that the conditions discussed above do not allow most general possible
surface.

(a) The point is that for preferred extremals with Euclidian signature of metric the M4 pro-
jection is 3-dimensional and involves light like projection. Here the fact that light-like line
L ⊂ M2 spans M2 in the sense that the complement of its orthogonal complement in M8

is M2. Therefore one could consider also more general solution ansatz for which one has
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X4 = ∪x∈L(x)⊂M̃2X
3(x) ⊂ E2 × CP2 .

(b) One can also consider co-quaternionic surfaces as surfaces for which tangent space is in the
dual of a quaternionic subspace. This says that the normal bundle rather than tangent
bundle is quaternionic. The space-time regions with Euclidian signature of induced metric
correspond naturally to co-quaternionic surfaces. Quaternionic surfaces are maximal asso-
ciative sub-manifolds of octonionic space and one of the key ideas of the number theoretic
vision about TGD is that associativity (co-associativity) defines the dynamics iof space-
time surfaces. That this dynamics gives preferred extremals of Kähler action remains to
be proven.

3.6.2 The integrability conditions

The integrability conditions are associated with the expression of tangent vectors of T (X4) as a
linear combination of coordinate gradients ∇mk, where mk denote the coordinates of M8. Con-
sider the 4 tangent vectors ei) for the quaternionic tangent plane (containing M2(x)) regarded

as vectors of M8. ei) have components eki), i = 1, .., 4, k = 1, ..., 8. One must be able to express

ei) as linear combinations of coordinate gradients ∇mk:

eki) = eαi)∂αm
k .

Here xα and ek denote coordinates for X4 and M8. By forming inner products of of ei) one
finds that matrix eαi) represents the components of vierbein at X4. One can invert this matrix

to get e
i)
α satisfying e

i)
αe

β
i) = δβα and e

i)
αeαj) = δij . One can solve the coordinate gradients ∇mk

from above equation to get

∂αm
k = ei)αe

k
i) ≡ E

k
α .

The integrability conditions follow from the gradient property and state

DαE
k
β = DβE

k
α .

One obtains 8 × 6 = 48 conditions in the general case. The slicing to a union of two-surfaces
labeled by M2(x) reduces the number of conditions since the number of coordinates mk reduces
from 8 to 6 and one has 36 integrability conditions but still them is much larger than the number
of free variables- essentially the six transversal coordinates mk.

For co-quaternionic surfaces one can formulate integrability conditions now as conditions for the
existence of integrable distribution of orthogonal complements for tangent planes and it seems
that the conditions are formally similar.

3.6.3 How to solve the integrability conditions and field equations for
preferred extremals?

The basic idea has been that the integrability condition characterize preferred extremals so that
they can be said to be quaternionic in a well-defined sense. Could one imagine solving the
integrability conditions by some simple ansatz utilizing the core idea of M8−H duality? What
comes in mind is that M8 represents tangent space of M4 × CP2 so that one can assign to
any point (m, s) of 4-surface X4 ⊂ M4 × CP2 a tangent plane T 4(x) in its tangent space M8

identifiable as subspace of complexified octonions in the proposed manner. Assume that s ∈ CP2

corresponds to a fixed tangent plane containing M2(x), and that all planes M2(x) are mapped
to the same standard fixed hyper-octonionic plane M2 ⊂M8, which does not depend on x. This
guarantees that s corresponds to a unique quaternionic tangent plane for given M2(x).
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Consider the map T ◦ s. The map takes the tangent plane T 4 at point (m, e) ∈ M4 × E4 and
maps it to (m, s1 = s(T 4)) ∈ M4 × CP2. The obvious identification of quaternionic tangent
plane at (m, s1) would be as T 4. One would have T ◦ s = Id. One could do this for all points of
the quaternion surface X4 ⊂ E4 and hope of getting smooth 4-surface X4 ⊂ H as a result. This
is the case if the integrability conditions at various points (m, s(T 4)(x)) ∈ H are satisfied. One
could equally well start from a quaternionic surface of H and end up with integrability conditions
in M8 discussed above. The geometric meaning would be that the quaternionic surface in H is
image of quaternionic surface in M8 under this map.

Could one somehow generalize this construction so that one could iterate the map T ◦ s to get
T ◦ s = Id at the limit? If so, quaternionic space-time surfaces would be obtained as limits of
iteration for rather arbitrary space-time surface in either M8 or H. One can also consider limit
cycles, even limiting manifolds with finite-dimension which would give quaternionic surfaces.
This would give a connection with chaos theory.

(a) One could try to proceed by discretizing the situation in M8 and H. One does not fix
quaternionic surface at either side but just considers for a fixed m2 ∈ M2(x) a discrete
collection X {(T 4

i } ⊃ M2(x) of quaternionic planes in M8. The points e2,i ⊂ E2 ⊂
M2 × E2 = M4 are not fixed. One can also assume that the points si = s(T 4

i ) of CP2

defined by the collection of planes form in a good approximation a cubic lattice in CP2 but
this is not absolutely essential. Complex Eguchi-Hanson coordinates ξi are natural choice
for the coordinates of CP2. Assume also that the distances between the nearest CP2 points
are below some upper limit.

(b) Consider now the iteration. One can map the collection X to H by mapping it to the set
s(X) of pairs ((m2, si). Next one must select some candidates for the points e2,i ∈ E2 ⊂M4

somehow. One can define a piece-wise linear surface in M4 × CP2 consisting of 4-planes
defined by the nearest neighbors of given point (m2, e2,i, si). The coordinates e2,i for
E2 ⊂ M4 can be chosen rather freely. The collection (e2,i,i ) defines a piece-wise linear
surface in H consisting of four-cubes in the simplest case. One can hope that for certain
choices of e2,i the four-cubes are quaternionic and that there is some further criterion
allowing to choose the points e2,i uniquely. The tangent planes contain by construction
M2(x) so that the product of remaining two spanning tangent space vectors (e3, e4) must
give an element of M2 in order to achieve quaternionicity. Another natural condition would
be that the resulting tangent planes are not only quaternionic but also as near as possible
to the planes T 4

i . These conditions allow to find e2,i giving rise to geometrically determined
quaternionic tangent planes as near as possible to those determined by si.

(c) What to do next? Should one replace the quaternionic planes T 4
i with geometrically deter-

mined quaternionic planes as near as possible to them and map them to points si slightly
different from the original one and repeat the procedure? This would not add new points
to the approximation, and this is an unsatisfactory feature.

(d) Second possibility is based on the addition of the quaternionic tangent planes obtained
in this manner to the original collection of quaternionic planes. Therefore the number of
points in discretization increases and the added points of CP2 are as near as possible to
existing ones. One can again determine the points e2,i in such a manner that the resulting
geometrically determined quaternionic tangent planes are as near as possible to the original
ones. This guarantees that the algorithm converges.

(e) The iteration can be stopped when desired accuracy is achieved: in other words the ge-
ometrically determined quaternionic tangent planes are near enough to those determined
by the points si. Also limit cycles are possible and would be assignable to the transversal
coordinates e2i varying periodically during iteration. One can quite well allow this kind
of cycles, and they would mean that e2 coordinate as a function of CP2 coordinates char-
acterizing the tangent plane is many-valued. This is certainly very probable for solutions
representable locally as graphs M4 → CP2. In this case the tangent planes associated with
distant points in E2 would be strongly correlated which must have non-trivial physical
implications. The iteration makes sense also p-adically and it might be that in some cases
only p-adic iteration converges for some value of p.
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It is not obvious whether the proposed procedure gives rise to a smooth or even continuous
4-surface. The conditions for this are geometric analogs of the above described algebraic inte-
grability conditions for the map assigning to the surface in M4×CP2 a surface in M8. Therefore
M8 −H duality could express the integrability conditions and preferred extremals would be 4-
surfaces having counterparts also in the tangent space M8 of H.

One might hope that the self-referentiality condition s ◦T = Id for the CP2 projection of (m, s)
or its fractal generalization could solve the complicated integrability conditions for the map T .
The image of the space-time surface in tangent space M8 in turn could be interpreted as a
description of space-time surface using coordinates defined by the local tangent space M8. Also
the analogy for the duality between position and momentum suggests itself.

Is there any hope that this kind of construction could make sense? Or could one demonstrate
that it fails? If s would fix completely the tangent plane it would be probably easy to kill the
conjecture but this is not the case. Same s corresponds for different planes M2(x) to different
point tangent plane. Presumably they are related by a local G2 or SO(7) rotation. Note that
the construction can be formulated without any reference to the representation of the imbedding
space gamma matrices in terms of octonions. Complexified octonions are enough in the tangent
space of M8.

3.6.4 Connection with Mandelbrot fractal and fractals as fixed sets
for iteration

The occurrence of iteration in the construction of preferred extremals suggests a deep connec-
tion with the standard construction of 2-D fractals by iteration - about which Mandelbrot frac-
tal [A115, A27] is the canonical example. X2(x) (or X3(x) in the case of light-like L(x) ⊂M2(x))
could be identified as a union of orbits for the iteration of s ◦ T . The appearance of the iter-
ation map in the construction of solutions of field equation would answer positively to a long
standing question whether the extremely beautiful mathematics of 2-D fractals could have some
application at the level of fundamental physics according to TGD.

X2 (or X3) would be completely analogous to Mandelbrot set in the sense that it would be
boundary separating points in two different basis of attraction. In the case of Mandelbrot set
iteration would take points at the other side of boundary to origin on the other side and to
infinity. The points of Mandelbrot set are permuted by the iteration. In the recent case s ◦ T
maps X2 (or X3) to itself. This map need not be diffeomorphism or even continuous map. The
criticality of X2 (or X3) could be seen as a geometric correlate for quantum criticality.

In fact, iteration plays a very general role in the construction of fractals. Very general frac-
tals can be defined as fixed sets of iteration and simple rules for iteration produce impressive
representations for fractals appearing in Nature. The book of Michael Barnsley [A62] gives fas-
cinating pictures about fractals appearing in Nature using this method. Therefore it would be
highly satisfactory if space-time surfaces would be in a well-defined sense fixed sets of iteration.
This would be also numerically beautiful aspect since fixed sets of iteration can be obtained as
infinite limit of iteration for almost arbitrary initial set. This construction recipe would also
give a concrete content for the notion measurement resolution at the level of construction of
preferred extremals.

What is intriguing is that there are several very attractive approaches to the construction of
preferred extremals. The challenge of unifying them still remains to be met.

3.7 Do geometric invariants of preferred extremals define
topological invariants of space-time surface and code for
quantum physics?

The recent progress in the understanding of preferred extremals [K8] led to a reduction of
the field equations to conditions stating for Euclidian signature the existence of Kähler met-
ric. The resulting conditions are a direct generalization of corresponding conditions emerging

http://en.wikipedia.org/wiki/Mandelbrot_set
http://en.wikipedia.org/wiki/Mandelbrot_set
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for the string world sheet and stating that the 2-metric has only non-diagonal components
in complex/hypercomplex coordinates. Also energy momentum of Kähler action and has this
characteristic (1,1) tensor structure. In Minkowskian signature one obtains the analog of 4-D
complex structure combining hyper-complex structure and 2-D complex structure.

The construction lead also to the understanding of how Einstein’s equations with cosmolog-
ical term follow as a consistency condition guaranteeing that the covariant divergence of the
Maxwell’s energy momentum tensor assignable to Kähler action vanishes. This gives T =
kG+ Λg. By taking trace a further condition follows from the vanishing trace of T :

R =
4Λ

k
. (3.7.1)

That any preferred extremal should have a constant Ricci scalar proportional to cosmological
constant is very strong prediction. Note that the accelerating expansion of the Universe would
support positive value of Λ. Note however that both Λ and k ∝ 1/G are both parameters
characterizing one particular preferred extremal. One could of course argue that the dynamics
allowing only constant curvature space-times is too simple. The point is however that particle can
topologically condense on several space-time sheets meaning effective superposition of various
classical fields defined by induced metric and spinor connection.

The following considerations demonstrate that preferred extremals can be seen as canonical rep-
resentatives for the constant curvature manifolds playing central role in Thurston’s geometriza-
tion theorem [A51] known also as hyperbolization theorem implying that geometric invariants of
space-time surfaces transform to topological invariants. The generalization of the notion of Ricci
flow to Maxwell flow in the space of metrics and further to Kähler flow for preferred extremals
in turn gives a rather detailed vision about how preferred extremals organize to one-parameter
orbits. It is quite possible that Kähler flow is actually discrete. The natural interpretation is in
terms of dissipation and self organization.

Quantum classical correspondence suggests that this line of thought could be continued even
further: could the geometric invariants of the preferred extremals could code not only for space-
time topology but also for quantum physics? How to calculate the correlation functions and
coupling constant evolution has remained a basic unresolved challenge of quantum TGD. Could
the correlation functions be reduced to statistical geometric invariants of preferred extemals?
The latest (means the end of 2012) and perhaps the most powerful idea hitherto about coupling
constant evolution is quantum classical correspondence in statistical sense stating that the sta-
tistical properties of a preferred extremal in quantum superposition of them are same as those
of the zero energy state in question. This principle would be quantum generalization of ergodic
theorem stating that the time evolution of a single member of ensemble represents the ensemble
statistically. This principle would allow to deduce correlation functions and S-matrix from the
statistical properties of single preferred extremal alone using classical intuition. Also coupling
constant evolution would be coded by the statistical properties of the representative preferred
extremal.

3.7.1 Preferred extremals of Kähler action as manifolds with constant
Ricci scalar whose geometric invariants are topological invariants

An old conjecture inspired by the preferred extremal property is that the geometric invariants of
space-time surface serve as topological invariants. The reduction of Kähler action to 3-D Chern-
Simons terms [K8] gives support for this conjecture as a classical counterpart for the view about
TGD as almost topological QFT. The following arguments give a more precise content to this
conjecture in terms of existing mathematics.

(a) It is not possible to represent the scaling of the induced metric as a deformation of the space-
time surface preserving the preferred extremal property since the scale of CP2 breaks scale
invariance. Therefore the curvature scalar cannot be chosen to be equal to one numerically.

http://en.wikipedia.org/wiki/Hyperbolization_theorem
http://en.wikipedia.org/wiki/Hyperbolization_theorem
http://tgdtheory.com/public_html/tgdclass/tgdclass.html#class
http://tgdtheory.com/public_html/tgdclass/tgdclass.html#class
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Therefore also the parameter R = 4Λ/k and also Λ and k separately characterize the
equivalence class of preferred extremals as is also physically clear.

Also the volume of the space-time sheet closed inside causal diamond CD remains constant
along the orbits of the flow and thus characterizes the space-time surface. Λ and even
k ∝ 1/G can indeed depend on space-time sheet and p-adic length scale hypothesis suggests
a discrete spectrum for Λ/k expressible in terms of p-adic length scales: Λ/k ∝ 1/L2

p with

p ' 2k favored by p-adic length scale hypothesis. During cosmic evolution the p-adic length
scale would increase gradually. This would resolve the problem posed by cosmological
constant in GRT based theories.

(b) One could also see the preferred extremals as 4-D counterparts of constant curvature 3-
manifolds in the topology of 3-manifolds. An interesting possibility raised by the observed
negative value of Λ is that most 4-surfaces are constant negative curvature 4-manifolds. By
a general theorem coset spaces H4/Γ, where H4 = SO(1, 4)/SO(4) is hyperboloid of M5

and Γ a torsion free discrete subgroup of SO(1, 4) [A20]. It is not clear to me, whether the
constant value of Ricci scalar implies constant sectional curvatures and therefore hyperbolic
space property. It could happen that the space of spaces with constant Ricci curvature
contain a hyperbolic manifold as an especially symmetric representative. In any case, the
geometric invariants of hyperbolic metric are topological invariants.

By Mostow rigidity theorem [A28] finite-volume hyperbolic manifold is unique for D > 2
and determined by the fundamental group of the manifold. Since the orbits under the
Kähler flow preserve the curvature scalar the manifolds at the orbit must represent different
imbeddings of one and hyperbolic 4-manifold. In 2-D case the moduli space for hyperbolic
metric for a given genus g > 0 is defined by Teichmueller parameters and has dimension
6(g−1). Obviously the exceptional character of D = 2 case relates to conformal invariance.
Note that the moduli space in question plays a key role in p-adic mass calculations [K18].

In the recent case Mostow rigidity theorem could hold true for the Euclidian regions and
maybe generalize also to Minkowskian regions. If so then both ”topological” and ”ge-
ometro” in ”Topological GeometroDynamics” would be fully justified. The fact that geo-
metric invariants become topological invariants also conforms with ”TGD as almost topo-
logical QFT” and allows the notion of scale to find its place in topology. Also the dream
about exact solvability of the theory would be realized in rather convincing manner.

These conjectures are the main result independent of whether the generalization of the Ricci
flow discussed in the sequel exists as a continuous flow or possibly discrete sequence of iterates
in the space of preferred extremals of Kähler action. My sincere hope is that the reader could
grasp how far reaching these result really are.

3.7.2 Is there a connection between preferred extremals and AdS4/CFT
correspondence?

The preferred extremals satisfy Einstein Maxwell equations with a cosmological constant and
have negative scalar curvature for negative value of Λ. 4-D space-times with hyperbolic metric
provide canonical representation for a large class of four-manifolds and an interesting question
is whether these spaces are obtained as preferred extremals and/or vacuum extremals.

4-D hyperbolic space with Minkowski signature is locally isometric with AdS4. This suggests at
connection with AdS4/CFT correspondence of M-theory. The boundary of AdS would be now
replaced with 3-D light-like orbit of partonic 2-surface at which the signature of the induced
metric changes. The metric 2-dimensionality of the light-like surface makes possible general-
ization of 2-D conformal invariance with the light-like coordinate taking the role of complex
coordinate at light-like boundary. AdS could represent a special case of a more general family of
space-time surfaces with constant Ricci scalar satistying Einstein-Maxwell equations and gen-
eralizing the AdS4/CFT correspondence. There is however a strong objection from cosmology:
the accelerated expansion of the Universe requires positive value of Λ and favors De Sitter Space
dS4 instead of AdS4.

http://en.wikipedia.org/wiki/Hyperbolic_manifold
http://en.wikipedia.org/wiki/Mostow_rigidity_theorem
http://tgdtheory.com/public_html/paddark/paddark.html#elvafu
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These observations provide motivations for finding whether AdS4 and/or dS4 allows an imbed-
ding as a vacuum extremal to M4×S2 ⊂M4×CP2, where S2 is a homologically trivial geodesic
sphere of CP2. It is easy to guess the general form of the imbedding by writing the line elements
of, M4, S2, and AdS4.

(a) The line element of M4 in spherical Minkowski coordinates (m, rM , θ, φ) reads as

ds2 = dm2 − dr2
M − r2

MdΩ2 . (3.7.2)

(b) Also the line element of S2 is familiar:

ds2 = −R2(dΘ2 + sin2(θ)dΦ2) . (3.7.3)

(c) By visiting in Wikipedia one learns that in spherical coordinate the line element of AdS4/dS4

is given by

ds2 = A(r)dt2 − 1

A(r)
dr2 − r2dΩ2 ,

A(r) = 1 + εy2 , y =
r

r0
,

ε = 1 for AdS4 , ε = −1 for dS4 . (3.7.4)

(d) From these formulas it is easy to see that the ansatz is of the same general form as for the
imbedding of Schwartschild-Nordstöm metric:

m = Λt+ h(y) , rM = r ,
Θ = s(y) , Φ = ω(t+ f(y)) .

(3.7.5)

The non-trivial conditions on the components of the induced metric are given by

gtt = Λ2 − x2sin2(Θ) = A(r) ,

gtr =
1

r0

[
Λ
dh

dy
− x2sin2(θ)

df

dr

]
= 0 ,

grr =
1

r2
0

[
(
dh

dy
)2 − 1− x2sin2(θ)(

df

dy
)2 −R2(

dΘ

dy
)2

]
= − 1

A(r)
,

x = Rω . (3.7.6)

By some simple algebraic manipulations one can derive expressions for sin(Θ), df/dr and dh/dr.

(a) For Θ(r) the equation for gtt gives the expression

sin(Θ) = ±P
1/2

x
,

P = Λ2 −A = Λ2 − 1− εy2 . (3.7.7)

The condition 0 ≤ sin2(Θ) ≤ 1 gives the conditions

(Λ2 − x2 − 1)1/2 ≤ y ≤ (Λ2 − 1)1/2 for ε = 1 (AdS4) ,
(−Λ2 + 1)1/2 ≤ y ≤ (x2 + 1− Λ2)1/2 for ε = −1 (dS4) .

(3.7.8)

Only a spherical shell is possible in both cases. The model for the final state of star
considered in [K79] predicted similar layer layer like structure and inspired the proposal
that stars quite generally have an onionlike structure with radii of various shells characterize
by p-adic length scale hypothesis and thus coming in some powers of

√
2. This brings in

mind also Titius-Bode law.

http://en.wikipedia.org/wiki/AdS
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(b) From the vanishing of gtr one obtains

dh

dy
=

P

Λ

df

dy
.

(3.7.9)

(c) The condition for grr gives

(
df

dy
)2 =

r2
0

AP
[A−1 −R2(

dΘ

dy
)2] . (3.7.10)

Clearly, the right-hand side is positive if P ≥ 0 holds true and RdΘ/dy is small. One can
express dΘ/dy using chain rule as

(
dΘ

dy
)2 = x2y2

P (P−x2) . (3.7.11)

One obtains

(
df

dy
)2 = Λr2

0

y2

AP

[
1

1 + y2
− x2(

R

r0
)2 1

P (P − x2)

]
.

(3.7.12)

The right hand side of this equation is non-negative for certain range of parameters and
variable y. Note that for r0 � R the second term on the right hand side can be neglected.
In this case it is easy to integrate f(y).

The conclusion is that both AdS4 and dS4 allow a local imbedding as a vacuum extremal.
Whether also an imbedding as a non-vacuum preferred extremal to M4×S2, S2 a homologically
non-trivial geodesic sphere is possible, is an interesting question.

3.7.3 Generalizing Ricci flow to Maxwell flow for 4-geometries and
Kähler flow for space-time surfaces

The notion of Ricci flow has played a key part in the geometrization of topological invariants
of Riemann manifolds. I certainly did not have this in mind when I choose to call my unifica-
tion attempt ”Topological Geometrodynamics” but this title strongly suggests that a suitable
generalization of Ricci flow could play a key role in the understanding of also TGD.

Ricci flow and Maxwell flow for 4-geometries

The observation about constancy of 4-D curvature scalar for preferred extremals inspires a
generalization of the well-known volume preserving Ricci flow [A41] introduced by Richard
Hamilton. Ricci flow is defined in the space of Riemann metrics as

dgαβ
dt

= −2Rαβ + 2
Ravg
D

gαβ . (3.7.13)

Here Ravg denotes the average of the scalar curvature, and D is the dimension of the Riemann
manifold. The flow is volume preserving in average sense as one easily checks (〈gαβdgαβ/dt〉 = 0).
The volume preserving property of this flow allows to intuitively understand that the volume
of a 3-manifold in the asymptotic metric defined by the Ricci flow is topological invariant. The
fixed points of the flow serve as canonical representatives for the topological equivalence classes

http://en.wikipedia.org/wiki/Ricci_flow
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of 3-manifolds. These 3-manifolds (for instance hyperbolic 3-manifolds with constant sectional
curvatures) are highly symmetric. This is easy to understand since the flow is dissipative and
destroys all details from the metric.

What happens in the recent case? The first thing to do is to consider what might be called
Maxwell flow in the space of all 4-D Riemann manifolds allowing Maxwell field.

(a) First of all, the vanishing of the trace of Maxwell’s energy momentum tensor codes for the
volume preserving character of the flow defined as

dgαβ
dt

= Tαβ . (3.7.14)

Taking covariant divergence on both sides and assuming that d/dt and Dα commute, one
obtains that Tαβ is divergenceless.

This is true if one assumes Einstein’s equations with cosmological term. This gives

dgαβ
dt

= kGαβ + Λgαβ = kRαβ + (−kR
2

+ Λ)gαβ . (3.7.15)

The trace of this equation gives that the curvature scalar is constant. Note that the value
of the Kähler coupling strength plays a highly non-trivial role in these equations and it is
quite possible that solutions exist only for some critical values of αK . Quantum criticality
should fix the allow value triplets (G,Λ, αK) apart from overall scaling

(G,Λ, αK)→ (xG,Λ/x, xαK .

Fixing the value of G fixes the values remaining parameters at critical points. The rescaling
of the parameter t induces a scaling by x.

(b) By taking trace one obtains the already mentioned condition fixing the curvature to be
constant, and one can write

dgαβ
dt

= kRαβ − Λgαβ . (3.7.16)

Note that in the recent case Ravg = R holds true since curvature scalar is constant. The
fixed points of the flow would be Einstein manifolds [A13, A65] satisfying

Rαβ =
Λ

k
gαβ (3.7.17)

.

(c) It is by no means obvious that continuous flow is possible. The condition that Einstein-
Maxwell equations are satisfied might pick up from a completely general Maxwell flow a
discrete subset as solutions of Einstein-Maxwell equations with a cosmological term. If so,
one could assign to this subset a sequence of values tn of the flow parameter t.

(d) I do not know whether 3-dimensionality is somehow absolutely essential for getting the
topological classification of closed 3-manifolds using Ricci flow. This ignorance allows
me to pose some innocent questions. Could one have a canonical representation of 4-
geometries as spaces with constant Ricci scalar? Could one select one particular Einstein
space in the class four-metrics and could the ratio Λ/k represent topological invariant if
one normalizes metric or curvature scalar suitably. In the 3-dimensional case curvature
scalar is normalized to unity. In the recent case this normalization would give k = 4Λ in
turn giving Rαβ = gαβ/4. Does this mean that there is only single fixed point in local
sense, analogous to black hole toward which all geometries are driven by the Maxwell flow?
Does this imply that only the 4-volume of the original space would serve as a topological
invariant?

http://en.wikipedia.org/wiki/Einstein_manifold
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Maxwell flow for space-time surfaces

One can consider Maxwell flow for space-time surfaces too. In this case Kähler flow would be the
appropriate term and provides families of preferred extremals. Since space-time surfaces inside
CD are the basic physical objects are in TGD framework, a possible interpretation of these
families would be as flows describing physical dissipation as a four-dimensional phenomenon
polishing details from the space-time surface interpreted as an analog of Bohr orbit.

(a) The flow is now induced by a vector field jk(x, t) of the space-time surface having values
in the tangent bundle of imbedding space M4 × CP2. In the most general case one has
Kähler flow without the Einstein equations. This flow would be defined in the space of all
space-time surfaces or possibly in the space of all extremals. The flow equations reduce to

hklDαj
k(x, t)Dβh

l =
1

2
Tαβ . (3.7.18)

The left hand side is the projection of the covariant gradient Dαj
k(x, t) of the flow vector

field jk(x, t) to the tangent space of the space-time surface. Dalpha is covariant derivative
taking into account that jk is imbedding space vector field. For a fixed point space-time
surface this projection must vanish assuming that this space-time surface reachable. A
good guess for the asymptotia is that the divergence of Maxwell energy momentum tensor
vanishes and that Einstein’s equations with cosmological constant are well-defined.

Asymptotes corresponds to vacuum extremals. In Euclidian regions CP2 type vacuum
extremals and in Minkowskian regions to any space-time surface in any 6-D sub-manifold
M4×Y 2, where Y 2 is Lagrangian sub-manifold of CP2 having therefore vanishing induced
Kähler form. Symplectic transformations of CP2 combined with diffeomorphisms of M4

give new Lagrangian manifolds. One would expect that vacuum extremals are approached
but never reached at second extreme for the flow.

If one assumes Einstein’s equations with a cosmological term, allowed vacuum extremals
must be Einstein manifolds. For CP2 type vacuum extremals this is the case. It is quite
possible that these fixed points do not actually exist in Minkowskian sector, and could be
replaced with more complex asymptotic behavior such as limit, chaos, or strange attractor.

(b) The flow could be also restricted to the space of preferred extremals. Assuming that
Einstein Maxwell equations indeed hold true, the flow equations reduce to

hklDαj
k(x, t)∂βh

l =
1

2
(kRαβ − Λgαβ) . (3.7.19)

Preferred extremals would correspond to a fixed sub-manifold of the general flow in the
space of all 4-surfaces.

(c) One can also consider a situation in which jk(x, t) is replaced with jk(h, t) defining a flow
in the entire imbedding space. This assumption is probably too restrictive. In this case the
equations reduce to

(Drjl(x, t) +Dljr)∂αh
r∂βh

l = kRαβ − Λgαβ . (3.7.20)

Here Dr denotes covariant derivative. Asymptotia is achieved if the tensor Dkjl + Dkjl
becomes orthogonal to the space-time surface. Note for that Killing vector fields of H
the left hand side vanishes identically. Killing vector fields are indeed symmetries of also
asymptotic states.

It must be made clear that the existence of a continuous flow in the space of preferred extremals
might be too strong a condition. Already the restriction of the general Maxwell flow in the
space of metrics to solutions of Einstein-Maxwell equations with cosmological term might lead
to discretization, and the assumption about reprentability as 4-surface in M4×CP2 would give
a further condition reducing the number of solutions. On the other hand, one might consiser a
possibility of a continuous flow in the space of constant Ricci scalar metrics with a fixed 4-volume
and having hyperbolic spaces as the most symmetric representative.
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Dissipation, self organization, transition to chaos, and coupling constant evolution

A beautiful connection with concepts like dissipation, self-organization, transition to chaos, and
coupling constant evolution suggests itself.

(a) It is not at all clear whether the vacuum extremal limits of the preferred extremals can
correspond to Einstein spaces except in special cases such as CP2 type vacuum extremals
isometric with CP2. The imbeddability condition however defines a constraint force which
might well force asymptotically more complex situations such as limit cycles and strange
attractors. In ordinary dissipative dynamics an external energy feed is essential prerequisite
for this kind of non-trivial self-organization patterns.

In the recent case the external energy feed could be replaced by the constraint forces due
to the imbeddability condition. It is not too difficult to imagine that the flow (if it exists!)
could define something analogous to a transition to chaos taking place in a stepwise manner
for critical values of the parameter t. Alternatively, these discrete values could correspond
to those values of t for which the preferred extremal property holds true for a general
Maxwell flow in the space of 4-metrics. Therefore the preferred extremals of Kähler action
could emerge as one-parameter (possibly discrete) families describing dissipation and self-
organization at the level of space-time dynamics.

(b) For instance, one can consider the possibility that in some situations Einstein’s equations
split into two mutually consistent equations of which only the first one is independent

xJανJ
νβ = Rαβ ,

LK = xJανJ
νβ = 4Λ ,

x =
1

16παK
. (3.7.21)

Note that the first equation indeed gives the second one by tracing. This happens for CP2

type vacuum extremals.

Kähler action density would reduce to cosmological constant which should have a continuous
spectrum if this happens always. A more plausible alternative is that this holds true only
asymptotically. In this case the flow equation could not lead arbitrary near to vacuum
extremal, and one can think of situation in which LK = 4Λ defines an analog of limiting
cycle or perhaps even strange attractor. In any case, the assumption would allow to deduce
the asymptotic value of the action density which is of utmost importance from calculational
point of view: action would be simply SK = 4ΛV4 and one could also say that one has
minimal surface with Λ taking the role of string tension.

(c) One of the key ideas of TGD is quantum criticality implying that Kähler coupling strength
is analogous to critical temperature. Second key idea is that p-adic coupling constant
evolution represents discretized version of continuous coupling constant evolution so that
each p-adic prime would correspond a fixed point of ordinary coupling constant evolution in
the sense that the 4-volume characterized by the p-adic length scale remains constant. The
invariance of the geometric and thus geometric parameters of hyperbolic 4-manifold under
the Kähler flow would conform with the interpretation as a flow preserving scale assignable
to a given p-adic prime. The continuous evolution in question (if possible at all!) might
correspond to a fixed p-adic prime. Also the hierarchy of Planck constants relates to this
picture naturally. Planck constant ~eff = n~ corresponds to a multi-furcation generating
n-sheeted structure and certainly affecting the fundamental group.

(d) One can of course question the assumption that a continuous flow exists. The property
of being a solution of Einstein-Maxwell equations, imbeddability property, and preferred
extremal property might allow allow only discrete sequences of space-time surfaces perhaps
interpretable as orbit of an iterated map leading gradually to a fractal limit. This kind of
discrete sequence might be also be selected as preferred extremals from the orbit of Maxwell
flow without assuming Einstein-Maxwell equations. Perhaps the discrete p-adic coupling
constant evolution could be seen in this manner and be regarded as an iteration so that
the connection with fractality would become obvious too.
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Does a 4-D counterpart of thermodynamics make sense?

The interpretation of the Kähler flow in terms of dissipation, the constancy of R, and almost
constancy of LK suggest an interpretation in terms of 4-D variant of thermodynamics natural in
zero energy ontology (ZEO), where physical states are analogs for pairs of initial and final states
of quantum event are quantum superpositions of classical time evolutions. Quantum theory
becomes a ”square root” of thermodynamics so that 4-D analog of thermodynamics might even
replace ordinary thermodynamics as a fundamental description. If so this 4-D thermodynamics
should be qualitatively consistent with the ordinary 3-D thermodynamics.

(a) The first naive guess would be the interpretation of the action density LK as an analog of
energy density e = E/V3 and that of R as the analog to entropy density s = S/V3. The
asymptotic states would be analogs of thermodynamical equilibria having constant values
of LK and R.

(b) Apart from an overall sign factor ε to be discussed, the analog of the first law de =
Tds− pdV/V would be

dLK = kdR+ Λ
dV4

V4
.

One would have the correspondences S → εRV4, e → εLK and k → T , p → −Λ. k ∝ 1/G
indeed appears formally in the role of temperature in Einstein’s action defining a formal
partition function via its exponent. The analog of second law would state the increase of
the magnitude of εRV4 during the Kähler flow.

(c) One must be very careful with the signs and discuss Euclidian and Minkowskian regions
separately. Concerning purely thermodynamic aspects at the level of vacuum functional
Euclidian regions are those which matter.

i. For CP2 type vacuum extremals LK ∝ E2 + B2 , R = Λ/k, and Λ are positive. In
thermodynamical analogy for ε = 1 this would mean that pressure is negative.

ii. In Minkowskian regions the value of R = Λ/k is negative for Λ < 0 suggested by the
large abundance of 4-manifolds allowing hyperbolic metric and also by cosmological
considerations. The asymptotic formula LK = 4Λ considered above suggests that also
Kähler action is negative in Minkowskian regions for magnetic flux tubes dominating
in TGD inspired cosmology: the reason is that the magnetic contribution to the action
density LK ∝ E2 −B2 dominates.

Consider now in more detail the 4-D thermodynamics interpretation in Euclidian and Minkowskian
regions assuming that the the evolution by quantum jumps has Kähler flow as a space-time cor-
relate.

(a) In Euclidian regions the choice ε = 1 seems to be more reasonable one. In Euclidian regions
−Λ as the analog of pressure would be negative, and asymptotically (that is for CP2 type
vacuum extremals) its value would be proportional to Λ ∝ 1/GR2, where R denotes CP2

radius defined by the length of its geodesic circle.

A possible interpretation for negative pressure is in terms of string tension effectively in-
ducing negative pressure (note that the solutions of the modified Dirac equation indeed
assign a string to the wormhole contact). The analog of the second law would require the
increase of RV4 in quantum jumps. The magnitudes of LK , R, V4 and Λ would be reduced
and approach their asymptotic values. In particular, V4 would approach asymptotically the
volume of CP2.

(b) In Minkowskian regions Kähler action contributes to the vacuum functional a phase factor
analogous to an imaginary exponent of action serving in the role of Morse function so that
thermodynamics interpretation can be questioned. Despite this one can check whether
thermodynamic interpretation can be considered. The choice ε = −1 seems to be the correct
choice now. −Λ would be analogous to a negative pressure whose gradually decreases. In
3-D thermodynamics it is natural to assign negative pressure to the magnetic flux tube like
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structures as their effective string tension defined by the density of magnetic energy per
unit length. −R ≥ 0 would entropy and −LK ≥ 0 would be the analog of energy density.

R = Λ/k and the reduction of Λ during cosmic evolution by quantum jumps suggests that
the larger the volume of CD and thus of (at least) Minkowskian space-time sheet the smaller
the negative value of Λ.

Assume the recent view about state function reduction explaining how the arrow of ge-
ometric time is induced by the quantum jump sequence defining experienced time [K4].
According to this view zero energy states are quantum superpositions over CDs of vari-
ous size scales but with common tip, which can correspond to either the upper or lower
light-like boundary of CD. The sequence of quantum jumps the gradual increase of the
average size of CD in the quantum superposition and therefore that of average value of
V4. On the other hand, a gradual decrease of both −LK and −R looks physically very
natural. If Kähler flow describes the effect of dissipation by quantum jumps in ZEO then
the space-time surfaces would gradually approach nearly vacuum extremals with constant
value of entropy density −R but gradually increasing 4-volume so that the analog of second
law stating the increase of −RV4 would hold true.

(c) The interpretation of −R > 0 as negentropy density assignable to entanglement is also
possible and is consistent with the interpretation in terms of second law. This interpretation
would only change the sign factor ε in the proposed formula. Otherwise the above arguments
would remain as such.

3.7.4 Could correlation functions, S-matrix, and coupling constant
evolution be coded the statistical properties of preferred extremals?

Quantum classical correspondence states that all aspects of quantum states should have corre-
lates in the geometry of preferred extremals. In particular, various elementary particle propa-
gators should have a representation as properties of preferred extremals. This would allow to
realize the old dream about being able to say something interesting about coupling constant
evolution although it is not yet possible to calculate the M-matrices and U-matrix. Hitherto
everything that has been said about coupling constant evolution has been rather speculative
arguments except for the general vision that it reduces to a discrete evolution defined by p-adic
length scales. General first principle definitions are however much more valuable than ad hoc
guesses even if the latter give rise to explicit formulas.

In quantum TGD and also at its QFT limit various correlation functions in given quantum
state should code for its properties. By quantum classical correspondence these correlation
functions should have counterparts in the geometry of preferred extremals. Even more: these
classical counterparts for a given preferred extremal ought to be identical with the quantum
correlation functions for the superposition of preferred extremals. This correspondence could be
called quantum ergodicity by its analogy with ordinary ergodicity stating that the member of
ensemble becomes representative of ensemble.

(a) The marvelous implication of quantum ergodicity would be that one could calculate ev-
erything solely classically using the classical intuition - the only intuition that we have.
Quantum ergodicity would also solve the paradox raised by the quantum classical corre-
spondence for momentum eigenstates. Any preferred extremal in their superposition defin-
ing momentum eigenstate should code for the momentum characterizing the superposition
itself. This is indeed possible if every extremal in the superposition codes the momentum
to the properties of classical correlation functions which are identical for all of them.

(b) The only manner to possibly achieve quantum ergodicity is in terms of the statistical
properties of the preferred extremals. It should be possible to generalize the ergodic theorem
stating that the properties of statistical ensemble are represented by single space-time
evolution in the ensemble of time evolutions. Quantum superposition of classical worlds
would effectively reduce to single classical world as far as classical correlation functions are
considered. The notion of finite measurement resolution suggests that one must state this
more precisely by adding that classical correlation functions are calculated in a given UV



254
Chapter 3. The Recent Vision about Preferred Extremals and Solutions of the

Modified Dirac Equation

and IR resolutions meaning UV cutoff defined by the smallest CD and IR cutoff defined by
the largest CD present.

(c) The skeptic inside me immediately argues that TGD Universe is 4-D spin glass so that
this quantum ergodic theorem must be broken. In the case of the ordinary spin classes
one has not only statistical average for a fixed Hamiltonian but a statistical average over
Hamiltonians. There is a probability distribution over the coupling parameters appearing
in the Hamiltonian. Maybe the quantum counterpart of this is needed to predict the
physically measurable correlation functions.

Could this average be an ordinary classical statistical average over quantum states with
different classical correlation functions? This kind of average is indeed taken in density
matrix formalism. Or could it be that the square root of thermodynamics defined by
ZEO actually gives automatically rise to this average? The eigenvalues of the ”hermitian
square root ” of the density matrix would code for components of the state characterized by
different classical correlation functions. One could assign these contributions to different
”phases”.

(d) Quantum classical correspondence in statistical sense would be very much like holography
(now individual classical state represents the entire quantum state). Quantum ergodicity
would pose a rather strong constraint on quantum states. This symmetry principle could
actually fix the spectrum of zero energy states to a high degree and fix therefore the M-
matrices given by the product of hermitian square root of density matrix and unitary
S-matrix and unitary U-matrix having M-matrices as its orthonormal rows.

(e) In TGD inspired theory of consciousness the counterpart of quantum ergodicity is the
postulate that the space-time geometry provides a symbolic representation for the quantum
states and also for the contents of consciousness assignable to quantum jumps between
quantum states. Quantum ergodicity would realize this strongly self-referential looking
condition. The positive and negative energy parts of zero energy state would be analogous
to the initial and final states of quantum jump and the classical correlation functions
would code for the contents of consciousness like written formulas code for the thoughts of
mathematician and provide a sensory feedback.

How classical correlation functions should be defined?

(a) General Coordinate Invariance and Lorentz invariance are the basic constraints on the
definition. These are achieved for the space-time regions with Minkowskian signature and
4-D M4 projection if linear Minkowski coordinates are used. This is equivalent with the
contraction of the indices of tensor fields with the space-time projections of M4 Killing
vector fields representing translations. Accepting ths generalization, there is no need to
restrict oneself to 4-D M4 projection and one can also consider also Euclidian regions
identifiable as lines of generalized Feynman diagrams.

Quantum ergodicity very probably however forces to restrict the consideration to Minkowskian
and Euclidian space-time regions and various phases associated with them. Also CP2

Killing vector fields can be projected to space-time surface and give a representation for
classical gluon fields. These in turn can be contracted with M4 Killing vectors giving rise
to gluon fields as analogs of graviton fields but with second polarization index replaced
with color index.

(b) The standard definition for the correlation functions associated with classical time evolution
is the appropriate starting point. The correlation function GXY (τ) for two dynamical
variables X(t) and Y (t) is defined as the average GXY (τ) =

∫
T
X(t)Y (t + τ)dt/T over

an interval of length T , and one can also consider the limit T → ∞. In the recent case
one would replace τ with the difference m1 −m2 = m of M4 coordinates of two points at
the preferred extremal and integrate over the points of the extremal to get the average.
The finite time interval T is replaced with the volume of causal diamond in a given length
scale. Zero energy state with given quantum numbers for positive and negative energy
parts of the state defines the initial and final states between which the fields appearing in
the correlation functions are defined.
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(c) What correlation functions should be considered? Certainly one could calculate correlation
functions for the induced spinor connection given electro-weak propagators and correlation
functions for CP2 Killing vector fields giving correlation functions for gluon fields using
the description in terms of Killing vector fields. If one can uniquely separate from the
Fourier transform uniquely a term of form Z/(p2−m2) by its momentum dependence, the
coefficient Z can be identified as coupling constant squared for the corresponding gauge
potential component and one can in principle deduce coupling constant evolution purely
classically. One can imagine of calculating spinorial propagators for string world sheets
in the same manner. Note that also the dependence on color quantum numbers would
be present so that in principle all that is needed could be calculated for a single preferred
extremal without the need to construct QFT limit and to introduce color quantum numbers
of fermions as spin like quantum numbers (color quantum numbers corresponds to CP2

partial wave for the tip of the CD assigned with the particle).

(d) What about Higgs field? TGD in principle allows scalar and pseudo-scalars which could
be called Higgs like states. These states are however not necessary for particle massivation
although they can represent particle massivation and must do so if one assumes that QFT
limit exist. p-Adic thermodynamics however describes particle massivation microscopically.

The problem is that Higgs like field does not seem to have any obvious space-time correlate.
The trace of the second fundamental form is the obvious candidate but vanishes for preferred
extremals which are both minimal surfaces and solutions of Einstein Maxwell equations
with cosmological constant. If the string world sheets at which all spinor components
except right handed neutrino are localized for the general solution ansatz of the modified
Dirac equation, the corresponding second fundamental form at the level of imbedding space
defines a candidate for classical Higgs field. A natural expectation is that string world sheets
are minimal surfaces of space-time surface. In general they are however not minimal surfaces
of the imbedding space so that one might achieve a microscopic definition of classical Higgs
field and its vacuum expectation value as an average of one point correlation function over
the string world sheet.

Many detailed speculations about coupling constant evolution to be discussed in the sections be-
low must be taken as innovative guesses doomed to have the eventual fate of guesses. The notion
of quantum ergodicity could however be one of the really deep ideas about coupling constant
evolution comparable to the notion of p-adic coupling constant evolution. Quantum Ergodicity
(briefly QE) would also state something extremely non-trivial also about the construction of
correlation functions and S-matrix. Because this principle is so new, the rest of the chapter does
not yet contain any applications of QE. This should not lead the reader to under-estimate the
potential power of QE.

3.8 Appendix: Hamilton-Jacobi structure

In the following the definition of Hamilton-Jacobi structure is discussed in detail.

3.8.1 Hermitian and hyper-Hermitian structures

The starting point is the observation that besides the complex numbers forming a number field
there are hyper-complex numbers. Imaginary unit i is replaced with e satisfying e2 = 1. One
obtains an algebra but not a number field since the norm is Minkowskian norm x2 − y2, which
vanishes at light-cone x = y so that light-like hypercomplex numbers x± e) do not have inverse.
One has ”almost” number field.

Hyper-complex numbers appear naturally in 2-D Minkowski space since the solutions of a mass-
less field equation can be written as f = g(u = t − ex) + h(v = t + ex) whith e2 = 1 realized
by putting e = 1. Therefore Wick rotation relates sums of holomorphic and antiholomorphic
functions to sums of hyper-holomorphic and anti-hyper-holomorphic functions. Note that u and
v are hyper-complex conjugates of each other.
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Complex n-dimensional spaces allow Hermitian structure. This means that the metric has in
complex coordinates (z1, ...., zn) the form in which the matrix elements of metric are nonvanishing
only between zi and complex conjugate of zj . In 2-D case one obtains just ds2 = gzzdzdz. Note
that in this case metric is conformally flat since line element is proportional to the line element
ds2 = dzdz of plane. This form is always possible locally. For complex n-D case one obtains
ds2 = gijdz

idzj . gij = gji guaranteing the reality of ds2. In 2-D case this condition gives
gzz = gzz.

How could one generalize this line element to hyper-complex n-dimensional case. In 2-D case
Minkowski space M2 one has ds2 = guvdudv, guv = 1. The obvious generalization would be
the replacement ds2 = guivjdu

idvj . Also now the analogs of reality conditions must hold with
respect to ui ↔ vi.

3.8.2 Hamilton-Jacobi structure

Consider next the path leading to Hamilton-Jacobi structure.

4-D Minkowski space M4 = M2 ×E2 is Cartesian product of hyper-complex M2 with complex
plane E2, and one has ds2 = dudv + dzdz in standard Minkowski coordinates. One can also
consider more general integrable decompositions of M4 for which the tangent space TM4 = M4

at each point is decomposed to M2(x) × E2(x). The physical analogy would be a position
dependent decomposition of the degrees of freedom of massless particle to longitudinal ones
(M2(x): light-like momentum is in this plane) and transversal ones (E2(x): polarization vector
is in this plane). Cylindrical and spherical variants of Minkowski coordinates define two examples
of this kind of coordinates (it is perhaps a good exercize to think what kind of decomposition
of tangent space is in question in these examples). An interesting mathematical problem highly
relevant for TGD is to identify all possible decompositions of this kind for empty Minkowski
space.

The integrability of the decomposition means that the planes M2(x) are tangent planes for
2-D surfaces of M4 analogous to Euclidian string world sheet. This gives slicing of M4 to
Minkowskian string world sheets parametrized by euclidian string world sheets. The question
is whether the sheets are stringy in a strong sense: that is minimal surfaces. This is not the
case: for spherical coordinates the Euclidian string world sheets would be spheres which are not
minimal surfaces. For cylindrical and spherical coordinates hower M2(x) integrate to plane M2

which is minimal surface.

Integrability means in the case of M2(x) the existence of light-like vector field J whose flow lines
define a global coordinate. Its existence implies also the existence of its conjugate and together
these vector fields give rise to M2(x) at each point. This means that one has J = Ψ∇Φ: Φ
indeed defines the global coordinate along flow lines. In the case of M2 either the coordinate u
or v would be the coordinate in question. This kind of flows are called Beltrami flows. Obviously
the same holds for the transversal planes E2.

One can generalize this metric to the case of general 4-D space with Minkowski signature of
metric. At least the elements guv and gzz are non-vanishing and can depend on both u, v
and z, z . They must satisfy the reality conditions gzz = gzz and guv = gvu where complex
conjugation in the argument involves also u↔ v besides z ↔ z.

The question is whether the components guz, gvz, and their complex conjugates are non-vanishing
if they satisfy some conditions. They can. The direct generalization from complex 2-D space
would be that one treats u and v as complex conjugates and therefore requires a direct general-
ization of the hermiticity condition

guz = gvz , gvz = guz .

This would give complete symmetry with the complex 2-D (4-D in real sense) spaces. This would
allow the algebraic continuation of hermitian structures to Hamilton-Jacobi structures by just
replacing i with e for some complex coordinates.
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Chapter 4

Construction of Quantum
Theory: Symmetries

4.1 Introduction

This chapter provides a summary about the role of symmetries in the construction of quantum
TGD. The discussions are based on the general vision that quantum states of the Universe
correspond to the modes of classical spinor fields in the ”world of the classical worlds” (WCW)
identified as the infinite-dimensional configuration space of light-like 3-surfaces of H = M4×CP2

(more or less-equivalently, the corresponding 4-surfaces defining generalized Bohr orbits). The
following topics are discussed on basis of this vision.

4.1.1 Physics as infinite-dimensional Kähler geometry

(a) The basic idea is that it is possible to reduce quantum theory to configuration space ge-
ometry and spinor structure. The geometrization of loop spaces inspires the idea that the
mere existence of Riemann connection fixes configuration space Kähler geometry uniquely.
Accordingly, configuration space can be regarded as a union of infinite-dimensional sym-
metric spaces labeled by zero modes labeling classical non-quantum fluctuating degrees of
freedom.

The huge symmetries of the configuration space geometry deriving from the light-likeness
of 3-surfaces and from the special conformal properties of the boundary of 4-D light-cone
would guarantee the maximal isometry group necessary for the symmetric space property.
Quantum criticality is the fundamental hypothesis allowing to fix the Kähler function and
thus dynamics of TGD uniquely. Quantum criticality leads to surprisingly strong predic-
tions about the evolution of coupling constants.

(b) Configuration space spinors correspond to Fock states and anti-commutation relations for
fermionic oscillator operators correspond to anti-commutation relations for the gamma
matrices of the configuration space. Configuration space gamma matrices contracted with
Killing vector fields give rise to a super-symplectic algebra which together with Hamiltoni-
ans of the configuration space forms what I have used to call super-symplectic algebra.

Super-symplectic degrees of freedom represent completely new degrees of freedom and have
no electroweak couplings. In the case of hadrons super-symplectic quanta correspond to
what has been identified as non-perturbative sector of QCD: they define TGD correlate for
the degrees of freedom assignable to hadronic strings. They are responsible for the most of
the mass of hadron and resolve spin puzzle of proton.

(c) Besides super-symplectic symmetries there are Super-Kac Moody symmetries assignable
to light-like 3-surfaces and together these algebras extend the conformal symmetries of
string models to dynamical conformal symmetries instead of mere gauge symmetries. The
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construction of the representations of these symmetries is one of the main challenges of
quantum TGD.

(d) Modular invariance is one aspect of conformal symmetries and plays a key role in the
understanding of elementary particle vacuum functionals and the description of family
replication phenomenon in terms of the topology of partonic 2-surfaces.

(e) Modified Dirac equation gives also rise to a hierarchy super-conformal algebras assignable
to zero modes. These algebras follow from the existence of conserved fermionic currents.
The corresponding deformations of the space-time surface correspond to vanishing second
variations of Kähler action and provide a realization of quantum criticality. This led to
a breakthrough in the understanding of the modified Dirac action via the addition of a
measurement interaction term to the action allowing to obtain among other things stringy
propagator and the coding of quantum numbers of super-conformal representations to the
geometry of space-time surfaces required by quantum classical correspondence.

(f) The effective 2-dimensionality of the space-like 3-surfaces realizing quantum holography
can be formulated as a symmetry stating that the replacement of wormhole throat by
any light-like 3-surfaces parallel to it in the slicing of the space-time sheet induces only a
gauge transformation of WCW Kähler function adding to it a real part of a holomorphic
function of complex coordinate of WCW depending also on zero modes. This means that
the Kähler metric of WCW remains invariant. It is also postulated that measurement
interaction added to the modified Dirac action induces similar gauge symmetry.

(g) The study of the modified Dirac equation leads to a detailed identification of super charges
of the super-conformal algebras relevant for TGD [K92]: these results represent the most
recent layer in the development of ideas about supersymmetry in TGD Universe. Whereas
many considerations related to supersymmetry represented earlier rely on general argu-
ments, the results deriving from the modified Dirac equation are rather concrete and clarify
the crucial role of the right-handed neutrino in TGD based realization of super-conformal
symmetries. N = 1 SUSY- now almost excluded at LHC - is not possible in TGD because it
requires Majorana spinors. Also N = 2 variant of the standard space-time SUSY seems to
be excluded in TGD Universe. Fermionic oscillator operators for the induced spinor fields
restricted to 2-D surfaces however generate large N SUSY and super-conformal algebra
and the modes of right-handed neutrino its 4-D version.

4.1.2 p-Adic physics as physics of cognition and intentionality

p-Adic mass calculations relying on p-adic length scale hypothesis led to an understanding of
elementary particle masses using only super-conformal symmetries and p-adic thermodynamics.
The need to fuse real physics and various p-adic physics to single coherent whole led to a
generalization of the notion of number obtained by gluing together reals and p-adics together
along common rationals and algebraics. The interpretation of p-adic space-time sheets is as
correlates for cognition and intentionality. p-Adic and real space-time sheets intersect along
common rationals and algebraics and the subset of these points defines what I call number
theoretic braid in terms of which both configuration space geometry and S-matrix elements
should be expressible. Thus one would obtain number theoretical discretization, which involves
no adhoc elements and is inherent to the physics of TGD.

The original idea was that the notion of number theoretic braid could pose strong number
theoretic conditions on physics just as p-adic thermodynamics poses on elementary particle mass
spectrum. A practically oriented physicist would argue that general braids must be allowed if one
wants to calculate something and that number theoretic braids represent only the intersection
between the real and various p-adic physics. He could also insist that at the level of WCW
various sectors must be realized in a more abstract manner - say as hierarchies of polynomials
with coefficients belonging to various extensions or rationals so that one can speak about surfaces
common to real and various p-adic sectors. In this view the fusion of various physics would be
analogous to the completion of rationals to various number fields.

Perhaps the most dramatic implication relates to the fact that points, which are p-adically
infinitesimally close to each other, are infinitely distant in the real sense (recall that real and



4.1. Introduction 261

p-adic imbedding spaces are glued together along rational imbedding space points). This means
that any open set of p-adic space-time sheet is discrete and of infinite extension in the real
sense. This means that cognition is a cosmic phenomenon and involves always discretization
from the point of view of the real topology. The testable physical implication of effective p-
adic topology of real space-time sheets is p-adic fractality meaning characteristic long range
correlations combined with short range chaos.

Also a given real space-time sheets should correspond to a well-defined prime or possibly several
of them. The classical non-determinism of Kähler action should correspond to p-adic non-
determinism for some prime(s) p in the sense that the effective topology of the real space-time
sheet is p-adic in some length scale range. p-Adic space-time sheets with same prime should have
many common rational points with the real space-time and be easily transformable to the real
space-time sheet in quantum jump representing intention-to-action transformation. The concrete
model for the transformation of intention to action leads to a series of highly non-trivial number
theoretical conjectures assuming that the extensions of p-adics involved are finite-dimensional
and can contain also transcendentals.

An ideal realization of the space-time sheet as a cognitive representation results if the CP2

coordinates as functions of M4
+ coordinates have the same functional form for reals and various

p-adic number fields and that these surfaces have discrete subset of rational numbers with upper
and lower length scale cutoffs as common. The hierarchical structure of cognition inspires the
idea that S-matrices form a hierarchy labeled by primes p and the dimensions of algebraic
extensions.

The number-theoretic hierarchy of extensions of rationals appears also at the level of configu-
ration space spinor fields and allows to replace the notion of entanglement entropy based on
Shannon entropy with its number theoretic counterpart having also negative values in which
case one can speak about genuine information. In this case case entanglement is stable against
Negentropy Maximization Principle stating that entanglement entropy is minimized in the self
measurement and can be regarded as bound state entanglement. Bound state entanglement
makes possible macro-temporal quantum coherence. One can say that rationals and their finite-
dimensional extensions define islands of order in the chaos of continua and that life and intelli-
gence correspond to these islands.

TGD inspired theory of consciousness and number theoretic considerations inspired for years
ago the notion of infinite primes [K72] . It came as a surprise, that this notion might have direct
relevance for the understanding of mathematical cognition. The idea is very simple. There is
infinite hierarchy of infinite rationals having real norm one but different but finite p-adic norms.
Thus single real number (complex number, (hyper-)quaternion, (hyper-)octonion) corresponds
to an algebraically infinite-dimensional space of numbers equivalent in the sense of real topology.
Space-time and imbedding space points become infinitely structured and single space-time point
would represent the Platonia of mathematical ideas. This structure would be completely invisible
at the level of real physics but would be crucial for mathematical cognition and explain why we
are able to imagine also those mathematical structures which do not exist physically. Space-time
could be also regarded as an algebraic hologram. The connection with Brahman=Atman idea
is also obvious.

4.1.3 Hierarchy of Planck constants and dark matter hierarchy

The work with HFFs combined with experiment The realization for the hierarchy of Planck
constants proposed as a solution to the dark matter puzzles leads to a profound generalization
of quantum TGD through a generalization of the notion of imbedding space to characterize
quantum criticality. The resulting space has a book like structure with various almost-copies
of the imbedding space representing the pages of the book meeting at quantum critical sub-
manifolds. A particular page of the book can be seen as an n-fold singular covering or factor
space of CP2 or of a causal diamond (CD ) of M4 defined as an intersection of the future and
past directed light-cones. Therefore the cyclic groups Zn appear as discrete symmetry groups.
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4.1.4 Number theoretical symmetries

TGD as a generalized number theory vision leads to the idea that also number theoretical
symmetries are important for physics.

(a) There are good reasons to believe that the strands of number theoretical braids can be
assigned with the roots of a polynomial with suggests the interpretation corresponding
Galois groups as purely number theoretical symmetries of quantum TGD. Galois groups
are subgroups of the permutation group S∞ of infinitely manner objects acting as the Galois
group of algebraic numbers. The group algebra of S∞ is HFF which can be mapped to
the HFF defined by configuration space spinors. This picture suggest a number theoretical
gauge invariance stating that S∞ acts as a gauge group of the theory and that global
gauge transformations in its completion correspond to the elements of finite Galois groups
represented as diagonal groups of G×G× .... of the completion of S∞.

(b) HFFs inspire also an idea about how entire TGD emerges from classical number fields,
actually their complexifications. In particular, SU(3) acts as subgroup of octonion auto-
morphisms leaving invariant preferred imaginary unit. If space-time surfaces are hyper-
quaternionic (meaning that the octonionic counterparts of the modified gamma matrices
span complex quaternionic sub-algebra of octonions) and contain at each point a preferred
plane M2 of M4, one ends up with M8 − H duality stating that space-time surfaces can
be equivalently regarded as surfaces in M8 or M4 ×CP2. One can actually generalize M2

to a two-dimensional Minkowskian sub-manifold of M4. One ends up with quantum TGD
by considering associative sub-algebras of the local octonionic Clifford algebra of M8 or H.
so that TGD could be seen as a generalized number theory.

4.2 Symmetries

The most general expectation is that configuration space can be regarded as a union of coset
spaces which are infinite-dimensional symmetric spaces with Kähler structure: C(H) = ∪iG/H(i).
Index i labels 3-topology and zero modes. The group G, which can depend on 3-surface, can
be identified as a subgroup of diffeomorphisms of δM4

+ × CP2 and H must contain as its sub-
group a group, whose action reduces to Diff(X3) so that these transformations leave 3-surface
invariant.

The task is to identify plausible candidate for G and H and to show that the tangent space of
the configuration space allows Kähler structure, in other words that the Lie-algebras of G and
H(i) allow complexification. One must also identify the zero modes and construct integration
measure for the functional integral in these degrees of freedom. Besides this one must deduce
information about the explicit form of configuration space metric from symmetry considerations
combined with the hypothesis that Kähler function is Kähler action for a preferred extremal of
Kähler action. One must of course understand what ”preferred” means.

4.2.1 General Coordinate Invariance and generalized quantum gravi-
tational holography

The basic motivation for the construction of configuration space geometry is the vision that
physics reduces to the geometry of classical spinor fields in the infinite-dimensional configuration
space of 3-surfaces of M4

+ ×CP2 or of M4 ×CP2. Hermitian conjugation is the basic operation
in quantum theory and its geometrization requires that configuration space possesses Kähler
geometry. Kähler geometry is coded into Kähler function.

The original belief was that the four-dimensional general coordinate invariance of Kähler func-
tion reduces the construction of the geometry to that for the boundary of configuration space
consisting of 3-surfaces on δM4

+ ×CP2, the moment of big bang. The proposal was that Kähler
function K(Y 3) could be defined as a preferred extremal of so called Kähler action for the unique
space-time surface X4(Y 3) going through given 3-surface Y 3 at δM4

+ × CP2. For Diff4 trans-
forms of Y 3 at X4(Y 3) Kähler function would have the same value so that Diff4 invariance and
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degeneracy would be the outcome. The proposal was that the preferred extremals are absolute
minima of Kähler action.

This picture turned out to be too simple.

(a) I have already described the recent view about light-like 3-surfaces as generalized Feynman
diagrams and space-time surfaces as preferred extremals of Kähler action and will not
repeat what has been said.

(b) It has also become obvious that the gigantic symmetries associated with δM4
± × CP2 ⊂

CD×CP2 manifest themselves as the properties of propagators and vertices. Cosmological
considerations, Poincare invariance, and the new view about energy favor the decompo-
sition of the configuration space to a union of configuration spaces assignable to causal
diamonds CDs defined as intersections of future and past directed light-cones. The min-
imum assumption is that CDs label the sectors of CH: the nice feature of this option is
that the considerations of this chapter restricted to δM4

+×CP2 generalize almost trivially.
This option is beautiful because the center of mass degrees of freedom associated with the
different sectors of CH would correspond to M4 itself and its Cartesian powers.

The definition of the Kähler function requires that the many-to-one correspondence X3 →
X4(X3) must be replaced by a bijective correspondence in the sense that X3

l as light-like 3-
surface is unique among all its Diff4 translates. This also allows physically preferred ”gauge
fixing” allowing to get rid of the mathematical complications due to Diff4 degeneracy. The
internal geometry of the space-time sheet must define the preferred 3-surface X3

l .

The realization of this vision means a considerable mathematical challenge. The effective metric
2-dimensionality of 3-dimensional light-like surfaces X3

l of M4 implies generalized conformal
and symplectic symmetries allowing to generalize quantum gravitational holography from light
like boundary so that the complexities due to the non-determinism can be taken into account
properly.

4.2.2 Light like 3-D causal determinants and effective 2-dimensionality

The light like 3-surfaces X3
l of space-time surface appear as 3-D causal determinants. Basic

examples are boundaries and elementary particle horizons at which Minkowskian signature of the
induced metric transforms to Euclidian one. This brings in a second conformal symmetry related
to the metric 2-dimensionality of the 3-D light-like 3-surface. This symmetry is identifiable as
TGD counterpart of the Kac Moody symmetry of string models. The challenge is to understand
the relationship of this symmetry to configuration space geometry and the interaction between
the two conformal symmetries.

(a) Field-particle duality is realized. Light-like 3-surfaces X3
l -generalized Feynman diagrams -

correspond to the particle aspect of field-particle duality whereas the physics in the interior
of space-time surface X4(X3

l ) would correspond to the field aspect. Generalized Feynman
diagrams in 4-D sense could be identified as regions of space-time surface having Euclidian
signature.

(b) One could also say that light-like 3-surfaces X3
l and the space-like 3-surfaces X3 in the

intersections of X4(X3
l ) ∩ CD × CP2 where the causal diamond CD is defined as the

intersections of future and past directed light-cones provide dual descriptions.

(c) Generalized coset construction implies that the differences of super-symplectic and Su-
per Kac-Moody type Super Virasoro generators annihilated physical states. This implies
Equivalence Principle. This construction in turn led to the realization that configuration
space for fixed values of zero modes - in particular the values of the induced Kähler form of
δM4
±×CP2 - allows identification as a coset space obtained by dividing the symplectic group

of δM4
±×CP2 with Kac-Moody group, whose generators vanish at X2 = X3

l ×δM4
±×CP2.

One can say that quantum fluctuating degrees of freedom in a very concrete sense corre-
spond to the local variant of S2 × CP2.
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The analog of conformal invariance in the light-like direction of X3
l and in the light-like radial

direction of δM4
± implies that the data at either X3 or X3

l should be enough to determine con-
figuration space geometry. This implies that the relevant data is contained to their intersection
X2 at least for finite regions of X3. This is the case if the deformations of X3

l not affecting
X2 and preserving light-likeness corresponding to zero modes or gauge degrees of freedom and
induce deformations of X3 also acting as zero modes. The outcome is effective 2-dimensionality.
One must be however cautious in order to not make over-statements. The reduction to 2-D
theory in global sense would trivialize the theory and the reduction to 2-D theory must takes
places for finite region of X3 only so one has in well defined sense three-dimensionality in dis-
crete sense. A more precise formulation of this vision is in terms of hierarchy of CDs containing
CDs containing.... The introduction of sub-CD:s brings in improved measurement resolution
and means also that effective 2-dimensionality is realized in the scale of sub-CD only.

One cannot over-emphasize the importance of the effective 2-dimensionality. It indeed simplifies
dramatically the earlier formulas for configuration space metric involving 3-dimensional integrals
over X3 ⊂M4

+ × CP2 reducing now to 2-dimensional integrals. Note that X3 is determined by
preferred extremal property of X4(X3

l ) once X3
l is fixed and one can hope that this mapping is

one-to-one.

4.2.3 Magic properties of light cone boundary and isometries of con-
figuration space

The special conformal, metric and symplectic properties of the light cone of four-dimensional
Minkowski space: δM4

+, the boundary of four-dimensional light cone is metrically 2-dimensional(!)
sphere allowing infinite-dimensional group of conformal transformations and isometries(!) as
well as Kähler structure. Kähler structure is not unique: possible Kähler structures of light
cone boundary are paramet3rized by Lobatchevski space SO(3, 1)/SO(3). The requirement
that the isotropy group SO(3) of S2 corresponds to the isotropy group of the unique classical
3-momentum assigned to X4(Y 3) defined as a preferred extremum of Kähler action, fixes the
choice of the complex structure uniquely. Therefore group theoretical approach and the approach
based on Kähler action complement each other.

(a) The allowance of an infinite-dimensional group of isometries isomorphic to the group of
conformal transformations of 2-sphere is completely unique feature of the 4-dimensional
light cone boundary. Even more, in case of δM4

+×CP2 the isometry group of δM4
+ becomes

localized with respect to CP2! Furthermore, the Kähler structure of δM4
+ defines also

symplectic structure.

Hence any function of δM4
+ × CP2 would serve as a Hamiltonian transformation acting

in both CP2 and δM4
+ degrees of freedom. These transformations obviously differ from

ordinary local gauge transformations. This group leaves the symplectic form of δM4
+ ×

CP2, defined as the sum of light cone and CP2 symplectic forms, invariant. The group of
symplectic transformations of δM4

+ × CP2 is a good candidate for the isometry group of
the configuration space.

(b) The approximate symplectic invariance of Kähler action is broken only by gravitational
effects and is exact for vacuum extremals. If Kähler function were exactly invariant under
the symplectic transformations of CP2, CP2 symplectic transformations wiykd correspond
to zero modes having zero norm in the Kähler metric of configuration space. This does
not make sense since symplectic transformations of δM4 × CP2 actually parameterize the
quantum fluctuation degrees of freedom.

(c) The groups G and H, and thus configuration space itself, should inherit the complex struc-
ture of the light cone boundary. The diffeomorphims of M4 act as dynamical symmetries of
vacuum extremals. The radial Virasoro localized with respect to S2×CP2 could in turn act
in zero modes perhaps inducing conformal transformations: note that these transformations
lead out from the symmetric space associated with given values of zero modes.
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4.2.4 Symplectic transformations of δM4
+×CP2 as isometries of config-

uration space

The symplectic transformations of δM4
+ × CP2 are excellent candidates for inducing symplec-

tic transformations of the configuration space acting as isometries. There are however deep
differences with respect to the Kac Moody algebras.

(a) The conformal algebra of the configuration space is gigantic when compared with the Vira-
soro + Kac Moody algebras of string models as is clear from the fact that the Lie-algebra
generator of a symplectic transformation of δM4

+ × CP2 corresponding to a Hamiltonian
which is product of functions defined in δM4

+ and CP2 is sum of generator of δM4
+-local

symplectic transformation of CP2 and CP2-local symplectic transformations of δM4
+. This

means also that the notion of local gauge transformation generalizes.

(b) The physical interpretation is also quite different: the relevant quantum numbers label the
unitary representations of Lorentz group and color group, and the four-momentum labeling
the states of Kac Moody representations is not present. Physical states carrying no energy
and momentum at quantum level are predicted. The appearance of a new kind of angular
momentum not assignable to elementary particles might shed some light to the longstanding
problem of baryonic spin (quarks are not responsible for the entire spin of proton). The
possibility of a new kind of color might have implications even in macroscopic length scales.

(c) The central extension induced from the natural central extension associated with δM4
+ ×

CP2 Poisson brackets is anti-symmetric with respect to the generators of the symplectic
algebra rather than symmetric as in the case of Kac Moody algebras associated with loop
spaces. At first this seems to mean a dramatic difference. For instance, in the case of
CP2 symplectic transformations localized with respect to δM4

+ the central extension would
vanish for Cartan algebra, which means a profound physical difference. For δM4

+ × CP2

symplectic algebra a generalization of the Kac Moody type structure however emerges
naturally.

The point is that δM4
+-local CP2 symplectic transformations are accompanied by CP2

local δM4
+ symplectic transformations. Therefore the Poisson bracket of two δM4

+ local
CP2 Hamiltonians involves a term analogous to a central extension term symmetric with
respect to CP2 Hamiltonians, and resulting from the δM4

+ bracket of functions multiplying
the Hamiltonians. This additional term could give the entire bracket of the configuration
space Hamiltonians at the maximum of the Kähler function where one expects that CP2

Hamiltonians vanish and have a form essentially identical with Kac Moody central extension
because it is indeed symmetric with respect to indices of the symplectic group.

4.2.5 Does the symmetric space property reduce to coset construction
for Super Virasoro algebras?

The idea about symmetric space is extremely beautiful but it took a long time and several false
alarms before the time was ripe for identifying the precise form of the Cartan decomposition
g = t+ h satisfying the defining conditions

g = t+ h , [t, t] ⊂ h , [h, t] ⊂ t . (4.2.1)

The ultimate solution of the puzzle turned out to be amazingly simple and came only after
quantum TGD was understood well enough.

Configuration space geometry allows two super-conformal symmetries. The first one corre-
sponds to super-symplectic transformations acting at the level of imbedding space. The second
one corresponds to super Kac-Moody symmetry acting as deformations of light-like 3-surfaces
respecting their light-likeness. Super Kac-Moody algebra can be regarded as sub-algebra of
super-symplectic algebra, and quantum states correspond to the coset representations for these
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two algebras so that the differences of the corresponding super-Virasoro generators annihilate
physical states. This obviously generalizes Goddard-Olive-Kent construction [A136] . The phys-
ical interpretation is in terms of Equivalence Principle. After having realized this it took still
some time to realize that this coset representation and therefore also Equivalence Principle also
corresponds to the coset structure of the configuration space!

The first guess would be that t corresponds to super-symplectic algebra made also local with
respect to X3 and h corresponds to super Kac-Moody algebra. The experience with finite-
dimensional coset spaces would suggest that super Kac-Moody generators interpreted in terms
of h leave the points of configuration space analogous to the origin of say CP2 invariant and
in fact vanish at this point. Therefore super Kac-Moody generators should vanish for those 3-
surfaces X3

l which correspond to the origin of coset space. The maxima of Kähler function could
correspond to this kind of points and could play also an essential role in the integration over
configuration space by generalizing the Gaussian integration of free quantum field theories. The
dynamical Kac-Moody algebra appearing in p-adic mass calculations and in coset construction
would be a larger algebra affecting also X2. Thus one must distinguish between the Kac-Moody
algebras associated with the coset construction and coset space.

The first guess is not quite correct. The generators of super-symplectic and super Kac-Moody
algebra are not completely free functions of X3 coordinates. The condition that they leave
induced CP2 Kähler form Jµν(x) of the partonic 2-surfaces X2(v) ⊂ X3

l (v is light-like coordinate
of X3

l ) invariant implies that they depend on the symplectic invariant J = εµνJµν(x) only. J
obviously takes the role of complex coordinate [K17] .

4.2.6 What effective 2-dimensionality and holography really mean?

Concerning the interpretation of Kac-Moody algebra there are some poorly understood points,
which directly relate to what one means with holography.

(a) The strongest view about effective 2-dimensionality (holography) is that for preferred ex-
tremals the partonic 2-surfaces X2 at the ends of CD act as causal determinants fixing
X3
l in the resolution defined by CD. A weaker view about holography is that light-like 3-

surfaces with fixed ends give rise to same configuration space metric and the deformations
of these surfaces by Kac-Moody algebra correspond to zero modes just like the interior
degrees of freedom for space-like 3-surface do. Which of these options is the correct one?
The same question can be posed in the case of space-like 3-surfaces.

(b) The non-trivial action of Kac-Moody algebra in the interior of X3
l together with effective

2-dimensionality and holography would encourage the interpretation of Kac-Moody symme-
tries acting trivially at X2 as gauge symmetries. Light-like 3-surfaces having fixed partonic
2-surfaces at their ends would be equivalent physically and effective 2-dimensionality and
holography would be realized modulo gauge transformations.

(c) There are also Kac-Moody generators which do not vanish at the ends of the X3
l , and

these would act as physical symmetries and their action would reduce at X2 to symplectic
action. This Kac-Moody algebra should appear in p-adic mass calculations. This seems to
be in conflict with the idea that coset construction corresponds to coset space construction.
Perhaps strict correspondence is too naive an assumption. Why couldn’t one use the larger
Kac-Moody algebra in coset construction and smaller Kac-Moody algebra in coset space
construction?

(d) Gauge symmetry property means that the Kähler metric of the configuration space is
same for all gauge equivalent choices of X3

l and Kac-Moody deformations correspond to
zero modes. Kähler function could differ by a real part of a holomorphic function of
configuration space coordinates representing now Kac-Moody transforms of X3

l . If Dirac
determinant gives the exponent of Kähler function, the eigenvalues of the modified Dirac
action can differ only by scalings with are products of holomorphic function of configuration
space coordinates and its conjugates labeling different Kac-Moody transforms of X3

l . This
condition makes sense if one restricts the consideration to the finite number of eigenvalues
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λk assigned to DK . The introduction of instanton term transforming the eigenvalues to
λk +

√
n would not allow his scaling.

Either one must assume more general spectrum of form λk +
√
nxk with λk and xk scaling

in identical manner or that n = 0 modes are enough to define Kähler function. The latter
option might be correct since the preferred extremal realizes effective 2-dimensionality at
space-time level and conformal excitations break it so that they should not contribute
to Kähler function. Also number theoretic universality favors this option. One cannot
however exclude the first option. It must be admitted that the situation is not completely
understood.

4.2.7 About the relationship between super-symplectic and super Kac-
Moody algebras

The relationship between Kac-Moody and symplectic algebras is now relatively well understood
but the physical interpretation of Kac-Moody algebra deserves attention. There are two Kac-
Moody algebras: the smaller one leaves partonic 2-surfaces invariant and second one affects also
them. Both of them are in dual relation to the symplectic algebra and these relations correspond
to coset space construction and coset construction.

TGD inspired quantum measurement theory suggests that the super-symplectic algebra and
smaller Kac-Moody algebra correspond to each other like classical and quantal degrees of free-
dom. Hence smaller Kac-Moody algebra would act in the zero modes of the configuration
space metric. In the proposed construction this indeed is the case for Kac Moody algebra ele-
ments leaving partonic 2-surface invariant and appearing in the coset space construction but not
for those Kac-Moody algebra elements affecting partonic 2-surface and allowing interpretation
as sub-algebra of symplectic algebra and appearing in coset construction. This interpretation
conforms also with the fact that Kac-Moody algebra generates massive excitations in p-adic
thermodynamics.

In TGD inspired quantum measurement zero modes correspond to classical non-quantum fluc-
tuating dynamical variables in 1-1 correspondence with quantum fluctuating degrees of freedom
like the positions of the pointer of the measurement apparatus with the directions of spin of
electron. Hence Kac-Moody algebra would define configuration space coordinates in terms of
the map induced by correlation between classical and quantal degrees of freedom induced by
entanglement. The choice of gauge selecting one particular light-like 3-surface X3

l could have
thus interpretation as a map mapping quantum degrees of freedom to classical ones. This choice
of gauge could be achieved by the addition of phase factor depending on quantum numbers as-
signed with the braid strands so that stationary phase approximation would select the preferred
3-surface with fluctuations around them allowed.

The dual relation between super symplectic algebra and bigger Kac-Moody algebra is realized in
terms of coset construction. The idea inspired by Olive-Goddard-Kent coset construction is that
the generators of Super Virasoro algebra corresponds to the differences of those associated with
Super Kac-Moody and super-symplectic algebras. The justification comes from the miraculous
geometry of the light cone boundary implying that Super Kac-Moody conformal symmetries
of X2 can be compensated by super-symplectic local radial scalings so that the differences of
corresponding Super Virasoro generators annihilate physical states. If the central extension
parameters are same, the resulting central extension is trivial. What is done is to construct
first a state with a non-positive conformal weight using super-symplectic generators, and then
to apply Super-Kac Moody generators to compensate this conformal weight to get a state with
vanishing conformal weight. Mass squared would however correspond to either Super-Kac Moody
or super-symplectic mass. The identity of these masses gives rise to Equivalence Principle as a
one manifestation of the coset representation.

Basic super-conformal symmetries

The identification of explicit representations of super conformal algebras was for a long time
plagued by the lack of appropriate formalism. The modified Dirac operator DK associated
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with Kähler action resolves this problem if one accepts the implications of number theoretic
compactification supported by what is known about preferred extremals of Kähler action and one
can identify the charges associated with symplectic and Kac-Moody algebra as Noether charges.
Fermionic generators can in turn be identified from the condition that they anticommute to X2

local Hamiltonians of corresponding bosonic transformations. In case of Super Virasoro algebra
Sugaware construction allows to construct super generators G.

(a) Covariantly constant right handed neutrino is the fundamental generator of dynamical
super conformal symmetries and appears in both leptonic and quark-like realizations of
gamma matrices. Γ matrices have also Super Kac-Moody counterparts and reduce in
special case to symplectic ones. Also super currents whose anti-commutators give products
of corresponding Hamiltonians can be defined so that both ordinary product and Poisson
bracket give rise to quark and lepton like realizations of super-symmetries. Besides this
there are also electric and magnetic representations of the gamma matrices.

(b) The zero modes of DK(X2) which do not depend on the light-like radial coordinate of X3
l

define super conformal symmetries for which any c-number spinor field generates super
conformal symmetry. These symmetries are pure gauge symmetries but also them can be
parameterized by Hamiltonians and by functions depending only on the coordinates of the
transverse section X2 so that one obtains also now both function algebra and symplectic
algebra localized with respect to X2. Similar picture applies in both super-symplectic and
super Kac-Moody sector. In particular, one can deduce canonical expressions for the super
currents associated with these super symmetries. Since all charge states are possible for
the generators of these super symmetries, these super symmetries naturally correspond to
those assignable to electro-weak degrees of freedom.

(c) The notion of X2 local super-symmetry makes sense if the choice of coordinates x for
X2 is specified by the inherent properties of X2 so that same coordinates x apply for all
surfaces obtained as deformations of X2. The regions, where induced Kähler form is non-
vanishing define good candidates for coordinate patches. The Hamilton-Jacobi coordinates
associated with the decomposition of M4 are a natural choice. Also geodesic coordinates
can be considered. The redundancy related to rotations of coordinate axis around origin
can be reduced by choosing second axis so that it connects the origin to nearest point of
the number theoretic braid.

(d) The diffeomorphisms of light-like coordinate of δM4
± and X3

l playing the role of conformal
transformations. One can construct fermionic representations of as Noether charges associ-
ated with modified Dirac action. The problem is however that that super-generators cannot
be derived in this manner so that these transformations cannot be regarded as symplectic
transformations. The manner to circumvent the difficulty is to construct fermionic super
charges ΓA as gamma matrices for both super symplectic and super Kac-Moody algebras in
terms of generators jAkΓk and corresponding Kac-Moody algebra elements TA as fermionic
super charges. From these operators super generators G can be constructed by the stan-
dard Sugawara construction allowing to interpret operators G = TAΓA as Dirac operators
at the level of configuration space. By coset construction the actions of super-symplectic
and super Kac-Moody Dirac operators are identical. Internal consistency requires that the
Virasoro generators obtained as anticommutator L = {G,G†} are equal to the Virasoro
generators derived as fermionic Noether charges.

Finite measurement resolution and cutoff in the spectrum of conformal weights

The basic properties of Kähler action imply that the number generalized eigenvalues λi of
DK(X2) is finite. The interpretation is that the notion of finite measurement resolution is coded
by Kähler action to space-time dynamics. This has also implications for the representations of
super-conformal algebras.

(a) The fermionic representations of various super-algebras involve only finite number of oscil-
lator operators. Hence some kind of cutoff in the number of states reflecting the finiteness
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of the measurement resolution is unavoidable. A cutoff reduce integers as labels of the gen-
erators of super-conformal algebras to a finite number of integers. Finite field G(p, 1) for
some prime p would be a natural candidate. Since p-adic integers modulo p are in question
the cutoff could relate closely to effective p-adicity and p-adic length scale-hypothesis.

(b) The interpretation of the eigenvalues of the modified Dirac operator as ground state con-
formal weights raises the question how to represent states with conformal weights n+ λ2

i ,
n > 0. The notion of number theoretic braid allows to circumvent the difficulty. Since
canonical anti-commutation relations fail, one must replace the integral representations of
super-conformal generators with discrete sums over the points of number theoretic braid,
the resulting representations of super-conformal algebras must reduce to representation of
finite-dimensional algebras. The cutoff on conformal weight must result from the fact that
the higher Virasoro generators are expressible in terms of lower ones. The cutoff is not a
problem since n < 3 cutoff for conformal weights gives an excellent accuracy in p-adic mass
calculations. A not-very-educated guess but the only one that one can imagine is that for
p ' 2k, nmax = k defines the cutoff on allowed conformal weights.

Generalized coset representation

X2 local super-symplectic algebra as super Kac-Moody algebra as sub-algebra. Since X2 locality
corresponds to a full 2-D gauge invariance, one can conclude that SKM is in well defined sense
sub-algebra of super-symplectic algebra so that generalized coset construction makes sense and
generalizes Equivalence Principle in the sense that not only four-momenta but all analogous
quantum numbers associated with SKM and SS algebras are identical.

(a) In this framework the ground state conformal weights associated with both super-symplectic
and super Kac-Moody algebras can be identified as squares of the eigenvalues λi of DK(X2).
This identification together with p-adic mass thermodynamics predicts that λ2

i gives to
mass squared a contribution analogous to the square of Higgs vacuum expectation. This
identification would resolve the long-standing problem of identifying the values of these
ground state conformal weights for super-conformal algebras and give a direct connection
with Higgs mechanism.

(b) The identification of SKM as a sub-algebra of super-symplectic algebra becomes more
convincing if the light-like coordinate r allows lifting to a light-like coordinate of H. This
is achieved if r is identified as coordinate associated with a light-like curve whose tangent
at point x ∈ X3

l is light-like vector in M2(x) ⊂ T (X4(X3). With this interpretation of
SKM algebra as sub-algebra of super-symplectic algebra becomes natural.

(c) The existence of a lifting of SS and SKM algebras to entire H would solve the problems.
The lifting problem is obviously non-trivial only in M4 degrees of freedom. Suppose that
the existence of an integrable distribution of planes M2(x) and their orthogonal comple-
ments E2(x) belonging to the tangent space of M4 projection PM4(X4(X3)) characterizes
the preferred extremals with Minkowskian signature of induced metric. In this case the
lifting of the super-symplectic and super Kac-Moody algebras to entire H is possible. The
local degrees of freedom contributing to the configuration space metric would belong to
the integrable distribution of orthogonal complements E2(x) of M2(x) having physical
interpretation as planes of physical polarizations.

4.2.8 Comparison of TGD and stringy views about super-conformal
symmetries

The best manner to represent TGD based view about conformal symmetries is by comparison
with the conformal symmetries of super string models.
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Basic differences between the realization of super conformal symmetries in TGD
and in super-string models

The realization super conformal symmetries in TGD framework differs from that in string models
in several fundamental aspects.

(a) In TGD framework super-symmetry generators acting as configuration space gamma ma-
trices carry either lepton or quark number. Majorana condition required by the hermiticity
of super generators which is crucial for super string models would be in conflict with the
conservation of baryon and lepton numbers and is avoided. This is made possible by the
realization of bosonic generators represented as Hamiltonians of X2-local symplectic trans-
formations rather than vector fields generating them [K17] . This kind of representation
applies also in Kac-Moody sector since the local transversal isometries localized in X3

l

and respecting light-likeness condition can be regarded as X2 local symplectic transfor-
mations, whose Hamiltonians generate also isometries. Localization is not complete: the
functions of X2 coordinates multiplying symplectic and Kac-Moody generators are func-
tions of the symplectic invariant J = εµνJµν so that effective one-dimensionality results
but in different sense than in conformal field theories. This realization of super symmetries
is what distinguishes between TGD and super string models and leads to a totally different
physical interpretation of super-conformal symmetries. The fermionic representations of
super-symplectic and super Kac-Moody generators can be identified as Noether charges in
standard manner.

(b) A long-standing problem of quantum TGD was that stringy propagator 1/G does not make
sense ifG carries fermion number. The progress in the understanding of second quantization
of the modified Dirac operator made it however possible to identify the counterpart of G
as a c-number valued operator and interpret it as different representation of G [K19] .

(c) The notion of super-space is not needed at all since Hamiltonians rather than vector fields
represent bosonic generators, no super-variant of geometry is needed. The distinction
between Ramond and N-S representations important for N = 1 super-conformal symmetry
and allowing only ground state weight 0 an 1/2 disappears. Indeed, for N = 2 super-
conformal symmetry it is already possible to generate spectral flow transforming these
Ramond and N-S representations to each other (Gn is not Hermitian anymore). This
means that the interpretation of λ2

i (λi is generalized eigenvalue of DK(X2)) as ground
state conformal weight does not lead to difficulties.

(d) If Kähler action defines the modified Dirac operator, the number of spinor modes is finite.
One must be here somewhat cautious since bound state in the Coulomb potential associated
with electric part of induced electro-weak gauge field might give rise to an infinite number of
bound states which eigenvalues converging to a fixed eigenvalue (as in the case of hydrogen
atom). Finite number of generalized eigenmodes means that the representations of super-
conformal algebras reduces to finite-dimensional ones in TGD framework. Also the notion of
number theoretic braid indeed implies this. The physical interpretation is in terms of finite
measurement resolution. If Kähler action is complexified to include imaginary part defined
by CP breaking instanton term, the number of generalized eigenvalues becomes infinite since
conformal excitations are possible. This means breakdown of exact holography and effective
2-dimensionality of 3-surfaces. It seems that the inclusion of instanton term is necessary for
several reasons. The notion of finite measurement resolution forces conformal cutoff also
now. There are arguments suggesting that only the modes with vanishing conformal weight
contribute to the Dirac determinant defining vacuum functional identified as exponent of
Kähler function in turn identified as Kähler action for its preferred extremal.

(e) What makes spinor field mode a generator of gauge super-symmetry is that is c-number
and not an eigenmode of DK(X2) and thus represents non-dynamical degrees of freedom.
If the number of eigen modes of DK(X2) is indeed finite means that most of spinor field
modes represent super gauge degrees of freedom.
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The super generators G are not Hermitian in TGD!

The already noticed important difference between TGD based and the usual Super Virasoro
representations is that the Super Virasoro generator G cannot Hermitian in TGD. The reason is
that configuration space gamma matrices possess a well defined fermion number. The hermiticity
of the configuration space gamma matrices Γ and of the Super Virasoro current G could be
achieved by posing Majorana conditions on the second quantized H-spinors. Majorana conditions
can be however realized only for space-time dimension D mod 8 = 2 so that super string type
approach does not work in TGD context. This kind of conditions would also lead to the non-
conservation of baryon and lepton numbers.

An analogous situation is encountered in super-symmetric quantum mechanics, where the general
situation corresponds to super symmetric operators S, S†, whose anti-commutator is Hamilto-
nian: {S, S†} = H. One can define a simpler system by considering a Hermitian operator
S0 = S + S† satisfying S2

0 = H: this relation is completely analogous to the ordinary Super Vi-
rasoro relation GG = L. On basis of this observation it is clear that one should replace ordinary
Super Virasoro structure GG = L with GG† = L in TGD context.

It took a long time to realize the trivial fact that N = 2 super-symmetry is the standard physics
counterpart for TGD super symmetry. N = 2 super-symmetry indeed involves the doubling of
super generators and super generators carry U(1) charge having an interpretation as fermion
number in recent context. The so called short representations of N = 2 super-symmetry algebra
can be regarded as representations of N = 1 super-symmetry algebra.

Configuration space gamma matrix Γn, n > 0 corresponds to an operator creating fermion
whereas Γn, n < 0 annihilates antifermion. For the Hermitian conjugate Γ†n the roles of fermion
and antifermion are interchanged. Only the anti-commutators of gamma matrices and their
Hermitian conjugates are non-vanishing. The dynamical Kac Moody type generators are Her-
mitian and are constructed as bilinears of the gamma matrices and their Hermitian conjugates
and, just like conserved currents of the ordinary quantum theory, contain parts proportional to
a†a, b†b, a†b† and ab (a and b refer to fermionic and antifermionic oscillator operators). The
commutators between Kac Moody generators and Kac Moody generators and gamma matrices
remain as such.

For a given value of m Gn, n > 0 creates fermions whereas Gn, n < 0 annihilates antifermions.
Analogous result holds for G†n. Virasoro generators remain Hermitian and decompose just like
Kac Moody generators do. Thus the usual anti-commutation relations for the super Virasoro
generators must be replaced with anti-commutations between Gm and G†n and one has

{Gm, G†n} = 2Lm+n + c
3 (m2 − 1

4 )δm,−n ,
{Gm, Gn} = 0 ,
{G†m, G†n} = 0 .

(4.2.2)

The commutators of type [Lm, Ln] are not changed. Same applies to the purely kinematical
commutators between Ln and Gm/G†m.

The Super Virasoro conditions satisfied by the physical states are as before in case of Ln whereas
the conditions for Gn are doubled to those of Gn, n < 0 and G†n, n > 0.

What could be the counter parts of stringy conformal fields in TGD framework?

The experience with string models would suggest the conformal symmetries associated with the
complex coordinates of X2 as a candidate for conformal super-symmetries. One can imagine
two counterparts of the stringy coordinate z in TGD framework.

(a) Super-symplectic and super Kac-Moody symmetries are local with respect to X2 in the
sense that the coefficients of generators depend on the invariant J = εαβJαβ

√
g2 rather than

being completely free [K17] . Thus the real variable J replaces complex (or hyper-complex)
stringy coordinate and effective 1-dimensionality holds true also now but in different sense
than for conformal field theories.
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(b) The slicing of X2 by string world sheets Y 2 and partonic 2-surfaces X2 implied by number
theoretical compactification implies string-parton duality and involves the super conformal
fermionic gauge symmetries associated with the coordinates u and w in the dual dimen-
sional reductions to stringy and partonic dynamics. These coordinates define the natural
analogs of stringy coordinate. The effective reduction of X3

l to braid by finite measurement
resolution implies the effective reduction of X4(X3) to string world sheet. This implies quite
strong resemblance with string model and allows to understand among other things how
Equivalence Principle emerges in TGD framework at space-time level from its quantum
counterpart realized in terms of generalized coset representation for super-symplectic and
Super Kac-Moody algebras.

(c) The conformal fields of string model would reside at X2 or Y 2 depending on which descrip-
tion one uses and complex (hyper-complex) string coordinate would be identified accord-
ingly. Y 2 could be fixed as a union of stringy world sheets having the strands of number
theoretic braids as its ends. The proposed definition of braids is unique and characterizes
finite measurement resolution at space-time level. X2 could be fixed uniquely as the inter-
section of X3

l (the light-like 3-surface at which induced metric of space-time surface changes
its signature) with δM4

±×CP2. Clearly, wormhole throats X3
l would take the role of branes

and would be connected by string world sheets defined by number theoretic braids.

(d) An alternative identification for TGD parts of conformal fields is inspired byM8−H duality.
Conformal fields would be fields in configuration space. The counterpart of z coordinate
could be the hyper-octonionic M8 coordinate m appearing as argument in the Laurent
series of configuration space Clifford algebra elements. m would characterize the position
of the tip of CD and the fractal hierarchy of CDs within CDs would give a hierarchy
of Clifford algebras and thus inclusions of hyper-finite factors of type II1. Reduction to
hyper-quaternionic field -that is field in M4 center of mass degrees of freedom- would be
needed to obtained associativity. The arguments m at various level might correspond to
arguments of N-point function in quantum field theory.

4.3 Number theoretic compactification and M 8−H duality

This section summarizes the basic vision about number theoretic compactification reducing
the classical dynamics to number theory. In strong form M8 − H duality boils down to the
assumption that space-time surfaces can be regarded either as surfaces of H or as surfaces of
M8 composed of hyper-quaternionic and co-hyper-quaternionic regions identifiable as regions of
space-time possessing Minkowskian resp. Euclidian signature of the induced metric.

4.3.1 Basic idea behind M8 −M4 × CP2 duality

The hopes of giving M4×CP2 hyper-octonionic structure are meager. This circumstance forces
to ask whether four-surfacesX4 ⊂M8 could under some conditions define 4-surfaces inM4×CP2

indirectly so that the spontaneous compactification of super string models would correspond in
TGD to two different manners to interpret the space-time surface. The following arguments
suggest that this is indeed the case.

The hard mathematical fact behind number theoretical compactification is that the quaternionic
sub-algebras of octonions with fixed complex structure (that is complex sub-space) are parame-
terized by CP2 just as the complex planes of quaternion space are parameterized by CP1 = S2.
Same applies to hyper-quaternionic sub-spaces of hyper-octonions. SU(3) would thus have an
interpretation as the isometry group of CP2, as the automorphism sub-group of octonions, and
as color group.

(a) The space of complex structures of the octonion space is parameterized by S6. The sub-
group SU(3) of the full automorphism group G2 respects the a priori selected complex struc-
ture and thus leaves invariant one octonionic imaginary unit, call it e1. Hyper-quaternions
can be identified as U(2) Lie-algebra but it is obvious that hyper-octonions do not allow
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an identification as SU(3) Lie algebra. Rather, octonions decompose as 1 ⊕ 1 ⊕ 3 ⊕ 3 to
the irreducible representations of SU(3).

(b) Geometrically the choice of a preferred complex (quaternionic) structure means fixing of
complex (quaternionic) sub-space of octonions. The fixing of a hyper-quaternionic structure
of hyper-octonionic M8 means a selection of a fixed hyper-quaternionic sub-space M4 ⊂M8

implying the decomposition M8 = M4 × E4. If M8 is identified as the tangent space of
H = M4 × CP2, this decomposition results naturally. It is also possible to select a fixed
hyper-complex structure, which means a further decomposition M4 = M2 × E2.

(c) The basic result behind number theoretic compactification and M8 − H duality is that
hyper-quaternionic sub-spaces M4 ⊂M8 containing a fixed hyper-complex sub-space M2 ⊂
M4 or its light-like line M± are parameterized by CP2. The choices of a fixed hyper-
quaternionic basis 1, e1, e2, e3 with a fixed complex sub-space (choice of e1) are labeled by
U(2) ⊂ SU(3). The choice of e2 and e3 amounts to fixing e2 ±

√
−1e3, which selects the

U(2) = SU(2) × U(1) subgroup of SU(3). U(1) leaves 1 invariant and induced a phase
multiplication of e1 and e2 ± e3. SU(2) induces rotations of the spinor having e2 and e3

components. Hence all possible completions of 1, e1 by adding e2, e3 doublet are labeled by
SU(3)/U(2) = CP2.

(d) Space-time surface X4 ⊂M8 is by the standard definition hyper-quaternionic if the tangent
spaces of X4 are hyper-quaternionic planes. Co-hyper-quaternionicity means the same for
normal spaces. The presence of fixed hyper-complex structure means at space-time level
that the tangent space of X4 contains fixed M2 at each point. Under this assumption one
can map the points (m, e) ∈ M8 to points (m, s) ∈ H by assigning to the point (m, e) of
X4 the point (m, s), where s ∈ CP2 characterize T (X4) as hyper-quaternionic plane. This
definition is not the only one and even the appropriate one in TGD context the replacement
of the tangent plane with the 4-D plane spanned by modified gamma matrices defined by
Kähler action is a more natural choice. This plane is not parallel to tangent plane in
general. In the sequel T (X4) denotes the preferred 4-plane which co-incides with tangent
plane of X4 only if the action defining modified gamma matrices is 4-volume.

(e) The choice of M2 can be made also local in the sense that one has T (X4) ⊃ M2(x) ⊂
M4 ⊂ H. It turns out that strong form of number theoretic compactification requires this
kind of generalization. In this case one must be able to fix the convention how the point
of CP2 is assigned to a hyper-quaternionic plane so that it applies to all possible choices
of M2 ⊂ M4. Since SO(3) hyper-quaternionic rotation relates the hyper-quaternionic
planes to each other, the natural assumption is hyper-quaternionic planes related by SO(3)
rotation correspond to the same point of CP2. Under this assumption it is possible to map
hyper-quaternionic surfaces of M8 for which M2 ⊂M4 depends on point of X4 to H.

4.3.2 Hyper-octonionic Pauli ”matrices” and modified definition of
hyper-quaternionicity

Hyper-octonionic Pauli matrices suggest an interesting possibility to define precisely what hyper-
quaternionicity means at space-time level (for background see [K85] ).

(a) According to the standard definition space-time surface X4 is hyper-quaternionic if the
tangent space at each point of X4 in X4 ⊂M8 picture is hyper-quaternionic. What raises
worries is that this definition involves in no manner the action principle so that it is far from
obvious that this identification is consistent with the vacuum degeneracy of Kähler action.
It also unclear how one should formulate hyper-quaternionicity condition in X4 ⊂M4×CP2

picture.

(b) The idea is to map the modified gamma matrices Γα = ∂LK
∂hkα

Γk, Γk = eAk γA, to hyper-

octonionic Pauli matrices σα by replacing γA with hyper-octonion unit. Hyper-quaternionicity
would state that the hyper-octonionic Pauli matrices σα obtained in this manner span com-
plexified quaternion sub-algebra at each point of space-time. These conditions would pro-
vide a number theoretic manner to select preferred extremals of Kähler action. Remarkably,
this definition applies both in case of M8 and M4 × CP2.
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(c) Modified Pauli matrices span the tangent space of X4 if the action is four-volume because
one has ∂LK

∂hkα
=
√
ggαβ∂hlβhkl. Modified gamma matrices reduce to ordinary induced

gamma matrices in this case: 4-volume indeed defines a super-conformally symmetric action
for ordinary gamma matrices since the mass term of the Dirac action given by the trace of
the second fundamental form vanishes for minimal surfaces.

(d) For Kähler action the hyper-quaternionic sub-space does not coincide with the tangent
space since ∂LK

∂hkα
contains besides the gravitational contribution coming from the induced

metric also the ”Maxwell contribution” from the induced Kähler form not parallel to space-
time surface. Modified gamma matrices are required by super conformal symmetry for the
extremals of Kähler action and they also guarantee that vacuum extremals defined by
surfaces in M4 × Y 2, Y 2 a Lagrange sub-manifold of CP2, are trivially hyper-quaternionic
surfaces. The modified definition of hyper-quaternionicity does not affect in any manner
M8 ↔M4×CP2 duality allowing purely number theoretic interpretation of standard model
symmetries.

A side comment not strictly related to hyper-quaternionicity is in order. The anticommutators
of the modified gamma matrices define an effective Riemann metric and one can assign to it the
counterparts of Riemann connection, curvature tensor, geodesic line, volume, etc... One would
have two different metrics associated with the space-time surface. Only if the action defining
space-time surface is identified as the volume in the ordinary metric, these metrics are equivalent.
The index raising for the effective metric could be defined also by the induced metric and it is not
clear whether one can define Riemann connection also in this case. Could this effective metric
have concrete physical significance and play a deeper role in quantum TGD? For instance, AdS-
CFT duality leads to ask whether interactions be coded in terms of the gravitation associated
with the effective metric.

4.3.3 Minimal form of M8 −H duality

The basic problem in the construction of quantum TGD has been the identification of the
preferred extremals of Kähler action playing a key role in the definition of the theory. The most
elegant manner to do this is by fixing the 4-D tangent space T (X4(X3

l )) of X4(X3
l ) at each point

of X3
l so that the boundary value problem is well defined. What I called number theoretical

compactification allows to achieve just this although I did not fully realize this in the original
vision. The minimal picture is following.

(a) The basic observations are following. Let M8 be endowed with hyper-octonionic structure.
For hyper-quaternionic space-time surfaces in M8 tangent spaces are by definition hyper-
quaternionic. If they contain a preferred plane M2 ⊂ M4 ⊂ M8 in their tangent space,
they can be mapped to 4-surfaces in M4×CP2. The reason is that the hyper-quaternionic
planes containing preferred the hyper-complex plane M2 of M± ⊂ M2 are parameterized
by points of CP2. The map is simply (m, e) → (m, s(m, e)), where m is point of M4, e
is point of E4, and s(m, 2) is point of CP2 representing the hyperquaternionic plane. The
inverse map assigns to each point (m, s) in M4 ×CP2 point m of M4, undetermined point
e of E4 and 4-D plane. The requirement that the distribution of planes containing the
preferred M2 or M± corresponds to a distribution of planes for 4-D surface is expected to
fix the points e. The physical interpretation of M2 is in terms of plane of non-physical
polarizations so that gauge conditions have purely number theoretical interpretation.

(b) In principle, the condition that T (X4) contains M2 can be replaced with a weaker condition
that either of the two light-like vectors of M2 is contained in it since already this condition
assigns to T (X4) M2 and the map H → M8 becomes possible. Only this weaker form
applies in the case of massless extremals [K8] as will be found.

(c) The original idea was that hyper-quaternionic 4-surfaces in M8 containing M2 ⊂ M4 in
their tangent space could correspond to preferred extremals of Kähler action. This condition
does not seem to be consistent with what is known about the extremals of Kähler action.
The weaker form of the hypothesis is that hyper-quaternionicity holds only for 4-D tangent
spaces of X3

l ⊂ H = M4 × CP2 identified as wormhole throats or boundary components
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lifted to 3-surfaces in 8-D tangent space M8 of H. The minimal hypothesis would be that
only T (X4(X3

l )) at X3
l is associative that is hyper-quaternionic for fixed M2. X3

l ⊂ M8

and T (X4(X3
l )) at X3

l can be mapped to X3
l ⊂ H if tangent space contains also M± ⊂M2

or M2 ⊂ M4 ⊂ M8 itself having interpretation as preferred hyper-complex plane. This
condition is not satisfied by all surfaces X3

l as is clear from the fact that the inverse map
involves local E4 translation. The requirements that the distribution of hyper-quaternionic
planes containing M2 corresponds to a distribution of 4-D tangent planes should fix the
E4 translation to a high degree.

(d) A natural requirement is that the image of X3
l ⊂ H in M8 is light-like. The condition

that the determinant of induced metric vanishes gives an additional condition reducing the
number of free parameters by one. This condition cannot be formulated as a condition
on CP2 coordinate characterizing the hyper-quaternionic plane. Since M4 projections are
same for the two representations, this condition is satisfied if the contributions from CP2

and E4 and projections to the induced metric are identical: skl∂αs
k∂βs

l = ekl∂αe
k∂βe

l.
This condition means that only a subset of light-like surfaces of M8 are realized physically.
One might argue that this is as it must be since the volume of E4 is infinite and that of CP2

finite: only an infinitesimal portion of all possible light-like 3-surfaces in M8 can can have
H counterparts. The conclusion would be that number theoretical compactification is 4-D
isometry between X4 ⊂ H and X4 ⊂M8 at X3

l . This unproven conjecture is unavoidable.

(e) M2 ⊂ T (X4(X3
l )) condition fixes T (X4(X3

l )) in the generic case by extending the tangent
space of X3

l , and the construction of configuration space spinor structure fixes boundary
conditions completely by additional conditions necessary when X3

l corresponds to a light-
like 3 surfaces defining wormhole throat at which the signature of induced metric changes.
What is especially beautiful that only the data in T (X4(X3

l )) at X3
l is needed to calculate

the vacuum functional of the theory as Dirac determinant: the only remaining conjecture
(strictly speaking un-necessary but realistic looking) is that this determinant gives exponent
of Kähler action for the preferred extremal and there are excellent hopes for this by the
structure of the basic construction.

The basic criticism relates to the condition that light-like 3-surfaces are mapped to light-like
3-surfaces guaranteed by the condition that M8 −H duality is isometry at X3

l .

4.3.4 Strong form of M8 −H duality

The proposed picture is the minimal one. One can of course ask whether the original much
stronger conjecture that the preferred extrema of Kähler action correspond to hyper-quaternionic
surfaces could make sense in some form. One can also wonder whether one could allow the choice
of the plane M2 of non-physical polarization to be local so that one would have M2(x) ⊂M4 ⊂
M4 × E4, where M4 is fixed hyper-quaternionic sub-space of M8 and identifiable as M4 factor
of H.

(a) If M2 is same for all points of X3
l , the inverse map X3

l ⊂ H → X3
l ⊂ M8 is fixed apart

from possible non-uniquencess related to the local translation in E4 from the condition
that hyper-quaternionic planes represent light-like tangent 4-planes of light-like 3-surfaces.
The question is whether not only X3

l but entire four-surface X4(X3
l ) could be mapped to

the tangent space of M8. By selecting suitably the local E4 translation one might hope of
achieving the achieving this. The conjecture would be that the preferred extrema of Kähler
action are those for which the distribution integrates to a distribution of tangent planes.

(b) There is however a problem. What is known about extremals of Kähler action is not
consistent with the assumption that fixed M2 of M± ⊂ M2is contained in the tangent
space of X4. This suggests that one should relax the condition that M2 ⊂ M4 ⊂ M8 is
a fixed hyper-complex plane associated with the tangent space or normal space X4 and
allow M2 to vary from point to point so that one would have M2 = M2(x). In M8 → H
direction the justification comes from the observation (to be discussed below) that it is
possible to uniquely fix the convention assigning CP2 point to a hyper-quaternionic plane
containing varying hyper-complex plane M2(x) ⊂M4.
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Number theoretic compactification fixes naturally M4 ⊂ M8 so that it applies to any
M2(x) ⊂ M4. Under this condition the selection is parameterized by an element of
SO(3)/SO(2) = S2. Note that M4 projection of X4 would be at least 2-dimensional
in hyper-quaternionic case. In co-hyper-quaternionic case E4 projection would be at least
2-D. SO(2) would act as a number theoretic gauge symmetry and the SO(3) valued chiral
field would approach to constant at X3

l invariant under global SO(2) in the case that one
keeps the assumption that M2 is fixed ad X3

l .

(c) This picture requires a generalization of the map assigning to hyper-quaternionic plane
a point of CP2 so that this map is defined for all possible choices of M2 ⊂ M4. Since
the SO(3) rotation of the hyper-quaternionic unit defining M2 rotates different choices
parameterized by S2 to each other, a natural assumption is that the hyper-quaternionic
planes related by SO(3) rotation correspond to the same point of CP2. Denoting by M2

the standard representative of M2, this means that for the map M8 → H one must perform
SO(3) rotation of hyper-quaternionic plane taking M2(x) to M2 and map the rotated plane
to CP2 point. In M8 → H case one must first map the point of CP2 to hyper-quaternionic
plane and rotate this plane by a rotation taking M2(x) to M2.

(d) In this framework local M2 can vary also at the surfaces X3
l , which considerably relaxes the

boundary conditions at wormhole throats and light-like boundaries and allows much more
general variety of light-like 3-surfaces since the basic requirement is that M4 projection
is at least 1-dimensional. The physical interpretation would be that a local choice of the
plane of non-physical polarizations is possible everywhere in X4(X3

l ). This does not seem
to be in any obvious conflict with physical intuition.

These observation provide support for the conjecture that (classical) S2 = SO(3)/SO(2) con-
formal field theory might be relevant for (classical) TGD.

(a) General coordinate invariance suggests that the theory should allow a formulation using any
light-like 3-surface X3 inside X4(X3

l ) besides X3
l identified as union of wormhole throats

and boundary components. For these surfaces the element g(x) ∈ SO(3) would vary also
at partonic 2-surfaces X2 defined as intersections of δCD×CP2 and X3 (here CD denotes
causal diamond defined as intersection of future and past directed light-cones). Hence
one could have S2 = SO(3)/SO(2) conformal field theory at X2 (regarded as quantum
fluctuating so that also g(x) varies) generalizing to WZW model for light-like surfaces X3.

(b) The presence of E4 factor would extend this theory to a classical E4 × S2 WZW model
bringing in mind string model with 6-D Euclidian target space extended to a model of
light-like 3-surfaces. A further extension to X4 would be needed to integrate the WZW
models associated with 3-surfaces to a full 4-D description. General Coordinate Invariance
however suggests that X3

l description is enough for practical purposes.

(c) The choices of M2(x) in the interior of X3
l is dictated by dynamics and the first optimistic

conjecture is that a classical solution of SO(3)/SO(2) Wess-Zumino-Witten model obtained
by coupling SO(3) valued field to a covariantly constant SO(2) gauge potential characterizes
the choice of M2(x) in the interior of M8 ⊃ X4(X3

l ) ⊂ H and thus also partially the
structure of the preferred extremal. Second optimistic conjecture is that the Kähler action
involving also E4 degrees of freedom allows to assign light-like 3-surface to light-like 3-
surface.

(d) The best that one can hope is that M8−H duality could allow to transform the extremely
non-linear classical dynamics of TGD to a generalization of WZW-type model. The basic
problem is to understand how to characterize the dynamics of CP2 projection at each point.

In H picture there are two basic types of vacuum extremals: CP2 type extremals representing el-
ementary particles and vacuum extremals having CP2 projection which is at most 2-dimensional
Lagrange manifold and representing say hadron. Vacuum extremals can appear only as limiting
cases of preferred extremals which are non-vacuum extremals. Since vacuum extremals have so
decisive role in TGD, it is natural to requires that this notion makes sense also in M8 picture.
In particular, the notion of vacuum extremal makes sense in M8.
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This requires that Kähler form exist in M8. E4 indeed allows full S2 of covariantly constant
Kähler forms representing quaternionic imaginary units so that one can identify Kähler form
and construct Kähler action. The obvious conjecture is that hyper-quaternionic space-time
surface is extremal of this Kähler action and that the values of Kähler actions in M8 and H are
identical. The elegant manner to achieve this, as well as the mapping of vacuum extremals to
vacuum extremals and the mapping of light-like 3-surfaces to light-like 3-surfaces is to assume
that M8 −H duality is Kähler isometry so that induced Kähler forms are identical.

This picture contains many speculative elements and some words of warning are in order.

(a) Light-likeness conjecture would boil down to the hypothesis that M8−H correspondence is
Kähler isometry so that the metric and Kähler form of X4 induced from M8 and H would
be identical. This would guarantee also that Kähler actions for the preferred extremal are
identical. This conjecture is beautiful but strong.

(b) The slicing of X4(X3
l ) by light-like 3-surfaces is very strong condition on the classical dy-

namics of Kähler action and does not make sense for pieces of CP2 type vacuum extremals.

Minkowskian-Euclidian ↔ associative–co-associative

The 8-dimensionality of M8 allows to consider both associativity (hyper-quaternionicity) of the
tangent space and associativity of the normal space- let us call this co-assosiativity of tangent
space- as alternative options. Both options are needed as has been already found. Since space-
time surface decomposes into regions whose induced metric possesses either Minkowskian or
Euclidian signature, there is a strong temptation to propose that Minkowskian regions corre-
spond to associative and Euclidian regions to co-associative regions so that space-time itself
would provide both the description and its dual.

The proposed interpretation of conjectured associative-co-associative duality relates in an inter-
esting manner to p-adic length scale hypothesis selecting the primes p ' 2k, k positive integer as
preferred p-adic length scales. Lp ∝

√
p corresponds to the p-adic length scale defining the size

of the space-time sheet at which elementary particle represented as CP2 type extremal is topo-
logically condensed and is of order Compton length. Lk ∝

√
k represents the p-adic length scale

of the wormhole contacts associated with the CP2 type extremal and CP2 size is the natural
length unit now. Obviously the quantitative formulation for associative-co-associative duality
would be in terms p→ k duality.

Are the known extremals of Kähler action consistent with the strong form of M8−H
duality

It is interesting to check whether the known extremals of Kähler action [K8] are consistent with
strong form of M8 −H duality assuming that M2 or its light-like ray is contained in T (X4) or
normal space.

(a) CP2 type vacuum extremals correspond cannot be hyper-quaternionic surfaces but co-
hyper-quaternionicity is natural for them. In the same manner canonically imbedded M4

can be only hyper-quaternionic.

(b) String like objects are associative since tangent space obviously contains M2(x). Objects of
form M1 ×X3 ⊂M4 ×CP2 do not have M2 either in their tangent space or normal space
in H. So that the map from H →M8 is not well defined. There are no known extremals of
Kähler action of this type. The replacement of M1 random light-like curve however gives
vacuum extremal with vanishing volume, which need not mean physical triviality since
fundamental objects of the theory are light-like 3-surfaces.

(c) For canonically imbedded CP2 the assignment of M2(x) to normal space is possible but
the choice of M2(x) ⊂ N(CP2) is completely arbitrary. For a generic CP2 type vacuum
extremals M4 projection is a random light-like curve in M4 = M1×E3 and M2(x) can be
defined uniquely by the normal vector n ∈ E3 for the local plane defined by the tangent
vector dxµ/dt and acceleration vector d2xµ/dt2 assignable to the orbit.
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(d) Consider next massless extremals. Let us fix the coordinates ofX4 as (t, z, x, y) = (m0,m2,m1,m2).
For simplest massless extremals CP2 coordinates are arbitrary functions of variables u =
k · m = t − z and v = ε · m = x, where k = (1, 1, 0, 0) is light-like vector of M4 and
ε = (0, 0, 1, 0) a polarization vector orthogonal to it. Obviously, the extremals defines a
decomposition M4 = M2×E2. Tangent space is spanned by the four H-vectors ∇αhk with
M4 part given by ∇αmk = δkα and CP2 part by ∇αsk = ∂us

kkα + ∂vs
kεα.

The normal space cannot contain M4 vectors since the M4 projection of the extremal is
M4. To realize hyper-quaternionic representation one should be able to from these vector
two vectors of M2, which means linear combinations of tangent vectors for which CP2

part vanishes. The vector ∂th
k − ∂zh

k has vanishing CP2 part and corresponds to M4

vector (1,−1, 0, 0) fix assigns to each point the plane M2. To obtain M2 one would need
(1, 1, 0, 0) too but this is not possible. The vector ∂yh

k is M4 vector orthogonal to ε
but M2 would require also (1, 0, 0, 0). The proposed generalization of massless extremals
allows the light-like line M± to depend on point of M4 [K8] , and leads to the introduction
of Hamilton-Jacobi coordinates involving a local decomposition of M4 to M2(x) and its
orthogonal complement with light-like coordinate lines having interpretation as curved light
rays. M2(x) ⊂ T (X4) assumption fails fails also for vacuum extremals of form X1 ×X3 ⊂
M4×CP2, where X1 is light-like random curve. In the latter case, vacuum property follows
from the vanishing of the determinant of the induced metric.

(e) The deformations of string like objects to magnetic flux quanta are basic conjectural ex-
tremals of Kähler action and the proposed picture supports this conjecture. In hyper-
quaternionic case the assumption that local 4-D plane of X3 defined by modified gamma
matrices contains M2(x) but that T (X3) does not contain it, is very strong. It states
that T (X4) at each point can be regarded as a product M2(x) × T 2, T 2 ⊂ T (CP2), so
that hyper-quaternionic X4 would be a collection of Cartesian products of infinitesimal
2-D planes M2(x) ⊂ M4 and T 2(x) ⊂ CP2. The extremals in question could be seen as
local variants of string like objects X2 × Y 2 ⊂ M4 × CP2, where X2 is minimal surface
and Y 2 holomorphic surface of CP2. One can say that X2 is replaced by a collection of in-
finitesimal pieces of M2(x) and Y 2 with similar pieces of homologically non-trivial geodesic
sphere S2(x) of CP2, and the Cartesian products of these pieces are glued together to form
a continuous surface defining an extremal of Kähler action. Field equations would pose
conditions on how M2(x) and S2(x) can depend on x. This description applies to magnetic
flux quanta, which are the most important must-be extremals of Kähler action.

Geometric interpretation of strong M8 −H duality

In the proposed framework M8 −H duality would have a purely geometric meaning and there
would nothing magical in it.

(a) X4(X3
l ) ⊂ H could be seen a curve representing the orbit of a light-like 3-surface defining a

4-D surface. The question is how to determine the notion of tangent vector for the orbit of
X3
l . Intuitively tangent vector is a one-dimensional arrow tangential to the curve at point

X3
l . The identification of the hyper-quaternionic surface X4(X3

l ) ⊂ M8 as tangent vector
conforms with this intuition.

(b) One could argue that M8 representation of space-time surface is kind of chart of the real
space-time surface obtained by replacing real curve by its tangent line. If so, one cannot
avoid the question under which conditions this kind of chart is faithful. An alternative inter-
pretation is that a representation making possible to realize number theoretical universality
is in question.

(c) An interesting question is whether X4(X3
l ) as orbit of light-like 3-surface is analogous to

a geodesic line -possibly light-like- so that its tangent vector would be parallel translated
in the sense that X4(X3) for any light-like surface at the orbit is same as X4(X3

l ). This
would give justification for the possibility to interpret space-time surfaces as a geodesic of
configuration space: this is one of the first -and practically forgotten- speculations inspired
by the construction of configuration space geometry. The light-likeness of the geodesic
could correspond at the level of X4 the possibility to decompose the tangent space to a
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direct sum of two light-like spaces and 2-D transversal space producing the foliation of X4

to light-like 3-surfaces X3
l along light-like curves.

(d) M8 − H duality would assign to X3
l classical orbit and its tangent vector at X3

l as a
generalization of Bohr orbit. This picture differs from the wave particle duality of wave
mechanics stating that once the position of particle is known its momentum is completely
unknown. The outcome is however the same: for X3

l corresponding to wormhole throats
and light-like boundaries of X4, canonical momentum densities in the normal direction
vanish identically by conservation laws and one can say that the the analog of (q, p) phase
space as the space carrying wave functions is replaced with the analog of subspace consisting
of points (q, 0). The dual description in M8 would not be analogous to wave functions in
momentum space space but to those in the space of unique tangents of curves at their
initial points.

The Kähler and spinor structures of M8

If one introduces M8 as dual of H, one cannot avoid the idea that hyper-quaternionic surfaces
obtained as images of the preferred extremals of Kähler action in H are also extremals of M8

Kähler action with same value of Kähler action. As found, this leads to the conclusion that
theM8 −H duality is Kähler isometry. Coupling of spinors to Kähler potential is the next step
and this in turn leads to the introduction of spinor structure so that quantum TGD in H should
have full M8 dual.

There are strong physical constraints on M8 dual and they could kill the hypothesis. The basic
constraint to the spinor structure of M8 is that it reproduces basic facts about electro-weak
interactions. This includes neutral electro-weak couplings to quarks and leptons identified as
different H-chiralities and parity breaking.

(a) By the flatness of the metric of E4 its spinor connection is trivial. E4 however allows full
S2 of covariantly constant Kähler forms so that one can accommodate free independent
Abelian gauge fields assuming that the independent gauge fields are orthogonal to each
other when interpreted as realizations of quaternionic imaginary units.

(b) One should be able to distinguish between quarks and leptons also in M8, which suggests
that one introduce spinor structure and Kähler structure in E4. The Kähler structure of
E4 is unique apart form SO(3) rotation since all three quaternionic imaginary units and the
unit vectors formed from them allow a representation as an antisymmetric tensor. Hence
one must select one preferred Kähler structure, that is fix a point of S2 representing the
selected imaginary unit. It is natural to assume different couplings of the Kähler gauge
potential to spinor chiralities representing quarks and leptons: these couplings can be
assumed to be same as in case of H.

(c) Electro-weak gauge potential has vectorial and axial parts. Em part is vectorial involving
coupling to Kähler form and Z0 contains both axial and vector parts. The free Kähler
forms could thus allow to produce M8 counterparts of these gauge potentials possessing
same couplings as their H counterparts. This picture would produce parity breaking in
M8 picture correctly.

(d) Only the charged parts of classical electro-weak gauge fields would be absent. This would
conform with the standard thinking that charged classical fields are not important. The
predicted classical W fields is one of the basic distinctions between TGD and standard
model and in this framework. A further prediction is that this distinction becomes visible
only in situations, where H picture is necessary. This is the case at high energies, where
the description of quarks in terms of SU(3) color is convenient whereas SO(4) QCD would
require large number of E4 partial waves. At low energies large number of SU(3) color
partial waves are needed and the convenient description would be in terms of SO(4) QCD.
Proton spin crisis might relate to this.

(e) Also super-symmetries of quantum TGD crucial for the construction of configuration space
geometry force this picture. In the absence of coupling to Kähler gauge potential all con-
stant spinor fields and their conjugates would generate super-symmetries so that M8 would
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allow N = 8 super-symmetry. The introduction of the coupling to Kähler gauge potential
in turn means that all covariantly constant spinor fields are lost. Only the representation
of all three neutral parts of electro-weak gauge potentials in terms of three independent
Kähler gauge potentials allows right-handed neutrino as the only super-symmetry generator
as in the case of H.

(f) The SO(3) element characterizing M2(x) is fixed apart from a local SO(2) transformation,
which suggests an additional U(1) gauge field associated with SO(2) gauge invariance
and representable as Kähler form corresponding to a quaternionic unit of E4. A possible
identification of this gauge field would be as a part of electro-weak gauge field.

M8 dual of configuration space geometry and spinor structure?

If one introduces M8 spinor structure and preferred extremals of M8 Kähler action, one cannot
avoid the question whether it is possible or useful to formulate the notion of configuration space
geometry and spinor structure for light-like 3-surfaces in M8 using the exponent of Kähler action
as vacuum functional.

(a) The isometries of the configuration space in M8 and H formulations would correspond to
symplectic transformation of δM4

± × E4 and δM4
± × CP2 and the Hamiltonians involved

would belong to the representations of SO(4) and SU(3) with 2-dimensional Cartan sub-
algebras. In H picture color group would be the familiar SU(3) but in M8 picture it would
be SO(4). Color confinement in both SU(3) and SO(4) sense could allow these two pictures
without any inconsistency.

(b) For M4 × CP2 the two spin states of covariantly constant right handed neutrino and an-
tineutrino spinors generate super-symmetries. This super-symmetry plays an important
role in the proposed construction of configuration space geometry. As found, this sym-
metry would be present also in M8 formulation so that the construction of M8 geometry
should reduce more or less to the replacement of CP2 Hamiltonians in representations of
SU(3) with E4 Hamiltonians in representations of SO(4). These Hamiltonians can be taken
to be proportional to functions of E4 radius which is SO(4) invariant and these functions
bring in additional degree of freedom.

(c) The construction of Dirac determinant identified as a vacuum functional can be done also
in M8 picture and the conjecture is that the result is same as in the case of H. In this
framework the construction is much simpler due to the flatness of E4. In particular, the
generalized eigen modes of the Dirac operator DK(Y 3

l ) restricted to the X3
l correspond to

a situation in which one has fermion in induced Maxwell field mimicking the neutral part of
electro-weak gauge field in H as far as couplings are considered. Induced Kähler field would
be same as in H. Eigen modes are localized to regions inside which the Kähler magnetic
field is non-vanishing and apart from the fact that the metric is the effective metric defined
in terms of canonical momentum densities via the formula Γ̂α = ∂LK/∂h

k
αΓk for effective

gamma matrices. This in fact, forces the localization of modes implying that their number is
finite so that Dirac determinant is a product over finite number eigenvalues. It is clear that
M8 picture could dramatically simplify the construction of configuration space geometry.

(d) The eigenvalue spectra of the transversal parts of DK operators in M8 and H should
identical. This motivates the question whether it is possible to achieve a complete corre-
spondence between H and M8 pictures also at the level of spinor fields at X3 by performing
a gauge transformation eliminating the classical W gauge boson field altogether at X3

l and
whether this allows to transform the modified Dirac equation in H to that in M8 when
restricted to X3

l . That something like this might be achieved is supported by the fact that
in Coulombic gauge the component of gauge potential in the light-like direction vanishes
so that the situation is effectively 2-dimensional and holonomy group is Abelian.

Why M8 −H duality is useful?

Skeptic could of course argue that M8 − H duality produces only an inflation of unproven
conjectures. There are however strong reasons for M8−H duality: both theoretical and physical.
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(a) The map of X3
l ⊂ H → X3

l ⊂ M8 and corresponding map of space-time surfaces would
allow to realize number theoretical universality. M8 = M4×E4 allows linear coordinates as
natural coordinates in which one can say what it means that the point of imbedding space
is rational/algebraic. The point of X4 ⊂ H is algebraic if it is mapped to an algebraic
point of M8 in number theoretic compactification. This of course restricts the symme-
try groups to their rational/algebraic variants but this does not have practical meaning.
Number theoretical compactication could in fact be motivated by the number theoretical
universality.

(b) M8 −H duality could provide much simpler description of preferred extremals of Kähler
action since the Kähler form in E4 has constant components. If the spinor connection in
E4 is combination of the three Kähler forms mimicking neutral part of electro-weak gauge
potential, the eigenvalue spectrum for the modified Dirac operator would correspond to
that for a fermion in U(1) magnetic field defined by an Abelian magnetic field whereas in
M4 × CP2 picture U(2)ew magnetic fields would be present.

(c) M8 − H duality provides insights to low energy hadron physics. M8 description might
work when H-description fails. For instance, perturbative QCD which corresponds to
H-description fails at low energies whereas M8 description might become perturbative de-
scription at this limit. Strong SO(4) = SU(2)L×SU(2)R invariance is the basic symmetry
of the phenomenological low energy hadron models based on conserved vector current hy-
pothesis (CVC) and partially conserved axial current hypothesis (PCAC). Strong SO(4) =
SU(2)L×SU(2)R relates closely also to electro-weak gauge group SU(2)L×U(1) and this
connection is not well understood in QCD description. M8 −H duality could provide this
connection. Strong SO(4) symmetry would emerge as a low energy dual of the color sym-
metry. Orbital SO(4) would correspond to strong SU(2)L × SU(2)R and by flatness of E4

spin like SO(4) would correspond to electro-weak group SU(2)L × U(1)R ⊂ SO(4). Note
that the inclusion of coupling to Kähler gauge potential is necessary to achieve respectable
spinor structure in CP2. One could say that the orbital angular momentum in SO(4)
corresponds to strong isospin and spin part of angular momentum to the weak isospin.

4.3.5 M8 −H duality and low energy hadron physics

The description of M8 − H at the configuration space level can be applied to gain a view
about color confinement and its dual for electro-weak interactions at short distance limit. The
basic idea is that SO(4) and SU(3) provide provide dual descriptions of quark color using E4

and CP2 partial waves and low energy hadron physics corresponds to a situation in which M8

picture provides the perturbative approach whereas H picture works at high energies. The basic
prediction is that SO(4) should appear as dynamical symmetry group of low energy hadron
physics and this is indeed the case.

Consider color confinement at the long length scale limit in terms of M8 −H duality.

(a) At high energy limit only lowest color triplet color partial waves for quarks dominate so that
QCD description becomes appropriate whereas very higher color partial waves for quarks
and gluons are expected to appear at the confinement limit. Since configuration space
degrees of freedom begin to dominate, color confinement limit transcends the descriptive
power of QCD.

(b) The success of SO(4) sigma model in the description of low lying hadrons would directly
relate to the fact that this group labels also the E4 Hamiltonians in M8 picture. Strong
SO(4) quantum numbers can be identified as orbital counterparts of right and left handed
electro-weak isospin coinciding with strong isospin for lowest quarks. In sigma model pion
and sigma boson form the components of E4 valued vector field or equivalently collection
of four E4 Hamiltonians corresponding to spherical E4 coordinates. Pion corresponds to
S3 valued unit vector field with charge states of pion identifiable as three Hamiltonians
defined by the coordinate components. Sigma is mapped to the Hamiltonian defined by
the E4 radial coordinate. Excited mesons corresponding to more complex Hamiltonians
are predicted.
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(c) The generalization of sigma model would assign to quarks E4 partial waves belonging to the
representations of SO(4). The model would involve also 6 SO(4) gluons and their SO(4)
partial waves. At the low energy limit only lowest representations would be be important
whereas at higher energies higher partial waves would be excited and the description based
on CP2 partial waves would become more appropriate.

(d) The low energy quark model would rely on quarks moving SO(4) color partial waves. Left
resp. right handed quarks could correspond to SU(2)L resp. SU(2)R triplets so that spin
statistics problem would be solved in the same manner as in the standard quark model.

(e) Family replication phenomenon is described in TGD framework the same manner in both
cases so that quantum numbers like strangeness and charm are not fundamental. Indeed,
p-adic mass calculations allowing fractally scaled up versions of various quarks allow to
replace Gell-Mann mass formula with highly successful predictions for hadron masses [K53]
.

To my opinion these observations are intriguing enough to motivate a concrete attempt to
construct low energy hadron physics in terms of SO(4) gauge theory.

4.3.6 The notion of number theoretical braid

Braids -not necessary number theoretical- provide a realization discretization as a space-time
correlate for the finite measurement resolution. The notion of braid was inspired by the idea
about quantum TGD as almost topological quantum field theory. Although the original form
of this idea has been buried, the notion of braid has survived: in the decomposition of space-
time sheets to string world sheets, the ends of strings define representatives for braid strands at
light-like 3-surfaces.

The notion of number theoretic universality inspired the much more restrictive notion of number
theoretic braid requiring that the points in the intersection of the braid with the partonic 2-
surface correspond to rational or at most algebraic points of H in preferred coordinates fixed by
symmetry considerations. The challenge has been to find a unique identification of the number
theoretic braid or at least of the end points of the braid. The following consideration suggest
that the number theoretic braids are not a useful notion in the generic case but make sense and
are needed in the intersection of real and p-adic worlds which is in crucial role in TGD based
vision about living matter [K46] .

It is only the braiding that matters in topological quantum field theories used to classify braids.
Hence braid should require only the fixing of the end points of the braids at the intersection
of the braid at the light-like boundaries of CDs and the braiding equivalence class of the braid
itself. Therefore it is enough is to specify the topology of the braid and the end points of the
braid in accordance with the attribute ”number theoretic”. Of course, the condition that all
points of the strand of the number theoretic braid are algebraic is impossible to satisfy.

The situation in which the equations defining X2 make sense both in real sense and p-adic sense
using appropriate algebraic extension of p-adic number field is central in the TGD based vision
about living matter [K46] . The reason is that in this case the notion of number entanglement
theoretic entropy having negative values makes sense and entanglement becomes information
carrying. This motivates the identification of life as something in the intersection of real and
p-adic worlds. In this situation the identification of the ends of the number theoretic braid
as points belonging to the intersection of real and p-adic worlds is natural. These points -call
them briefly algebraic points- belong to the algebraic extension of rationals needed to define
the algebraic extension of p-adic numbers. This definition however makes sense also when the
equations defining the partonic 2-surfaces fail to make sense in both real and p-adic sense. In
the generic case the set of points satisfying the conditions is discrete. For instance, according
to Fermat’s theorem the set of rational points satisfying Xn + Y n = Zn reduces to the point
(0, 0, 0) for n = 3, 4, .... Hence the constraint might be quite enough in the intersection of real
and p-adic worlds where the choice of the algebraic extension is unique.

One can however criticize this proposal.
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(a) One must fix the the number of points of the braid and outside the intersection and the non-
uniquencess of the algebraic extension makes the situation problematic. Physical intuition
suggests that the points of braid define carriers of quantum numbers assignable to second
quantized induced spinor fields so that the total number of fermions antifermions would
define the number of braids. In the intersection the highly non-trivial implication is that
this number cannot exceed the number of algebraic points.

(b) In the generic case one expects that even the smallest deformation of the partonic 2-surface
can change the number of algebraic points and also the character of the algebraic extension
of rational numbers needed. The restriction to rational points is not expected to help in
the generic case. If the notion of number theoretical braid is meant to be practical, must be
able to decompose WCW to open sets inside which the numbers of algebraic points of braid
at its ends are constant. For real topology this is expected to be impossible and it does
not make sense to use p-adic topology for WCW whose points do not allow interpretation
as p-adic partonic surfaces.

(c) In the intersection of real and p-adic worlds which corresponds to a discrete subset of WCW,
the situation is different. Since the coefficients of polynomials involved with the definition
of the partonic 2-surface must be rational or at most algebraic, continuous deformations
are not possible so that one avoids the problem.

(d) This forces to ask the reason why for the number theoretic braids. In the generic case they
seem to produce only troubles. In the intersection of real and p-adic worlds they could
however allow the construction of the elements of M -matrix describing quantum transitions
changing p-adic to real surfaces and vice versa as realizations of intentions and generation
of cognitions. In this the case it is natural that only the data from the intersection of the
two worlds are used. In [K46] I have sketched the idea about number theoretic quantum
field theory as a description of intentional action and cognition.

There is also the the problem of fixing the interior points of the braid modulo deformations not
affecting the topology of the braid.

(a) Infinite number of non-equivalent braidings are possible. Should one allow all possible
braidings for a fixed light-like 3-surface and say that their existence is what makes the
dynamics essentially three-dimensional even in the topological sense? In this case there
would be no problems with the condition that the points at both ends of braid are algebraic.

(b) Or should one try to characterize the braiding uniquely for a given partonic 2-surfaces
and corresponding 4-D tangent space distributions? The slicing of the space-time sheet
by partonic 2-surfaces and string word sheets suggests that the ends of string world sheets
could define the braid strands in the generic context when there is no algebraicity condition
involved. This could be taken as a very natural manner to fix the topology of braid but
leave the freedom to choose the representative for the braid. In the intersection of real
and p-adic worlds there is no good reason for the end points of strands in this case to be
algebraic at both ends of the string world sheet. One can however start from the braid
defined by the end points of string world sheets, restrict the end points to be algebraic at
the end with a smaller number of algebraic points and and then perform a topologically
non-trivial deformation of the braid so that also the points at the other end are algebraic?
Non-trivial deformations need not be possible for all possible choices of algebraic braid
points at the other end of braid and different choices of the set of algebraic points would
give rise to different braidings. A further constraint is that only the algebraic points at
which one has assign fermion or antifermion are used so that the number of braid points is
not always maximal.

(c) One can also ask whether one should perform the gauge fixing for the strands of the number
theoretic braid using algebraic functions making sense both in real and p-adic context. This
question does not seem terribly relevant since since it is only the topology of the braid that
matters.
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4.3.7 Connection with string model and Equivalence Principle at space-
time level

Coset construction allows to generalize Equivalence Principle and understand it at quantum level.
This is however not quite enough: a precise understanding of Equivalence Principle is required
also at the classical level. Also the mechanism selecting via stationary phase approximation a
preferred extremal of Kähler action providing a correlation between quantum numbers of the
particle and geometry of the preferred extremals is still poorly understood.

Is stringy action principle coded by the geometry of preferred extremals?

It seems very difficult to deduce Equivalence Principle as an identity of gravitational and inertial
masses identified as Noether charges associated with corresponding action principles. Since string
model is an excellent theory of quantum gravitation, one can consider a less direct approach
in which one tries to deduce a connection between classical TGD and string model and hope
that the bridge from string model to General Relativity is easier to build. Number theoretical
compactification gives good hopes that this kind of connection exists.

(a) Number theoretic compactification implies that the preferred extremals of Kähler action
have the property that one can assign to each point of M4 projection PM4(X4(X3

l )) of the
preferred extremal M2(x) identified as the plane of non-physical polarizations and also as
the plane in which local massless four-momentum lies.

(b) If the distribution of the planes M2(x) is integrable, one can slice PM4(X4(X3
l )) to string

world-sheets. The intersection of string world sheets with X3 ⊂ δM4
± × CP2 corresponds

to a light-like curve having tangent in local tangent space M2(x) at light-cone boundary.
This is the first candidate for the definition of number theoretic braid. Second definition
assumes M2 to be fixed at δCD: in this case the slicing is parameterized by the sphere S2

defined by the light rays of δM4
±.

(c) One can assign to the string world sheet -call it Y 2 - the standard area action

SG(Y 2) =

∫
Y 2

T
√
g2d

2y , (4.3.1)

where g2 is either the induced metric or only its M4 part. The latter option looks more
natural since M4 projection is considered. T is string tension.

(d) The naivest guess would be T = 1/~G apart from some numerical constant but one must be
very cautious here since T = 1/L2

p apart from a numerical constant is also a good candidate
if one accepts the basic argument identifying G in terms of p-adic length Lp and Kähler
action for two pieces of CP2 type vacuum extremals representing propagating graviton.
The formula reads G = L2

pexp(−2aSK(CP2)), a ≤ 1 [K3, K27] . The interaction strength
which would be L2

p without the presence of CP2 type vacuum extremals is reduced by the
exponential factor coming from the exponent of Kähler function of configuration space.

(e) One would have string model in either CD × CP2 or CD ⊂ M4 with the constraint
that stringy world sheet belongs to X4(X3

l ). For the extremals of SG(Y 2) gravitational
four-momentum defined as Noether charge is conserved. The extremal property of string
world sheet need not however be consistent with the preferred extremal property. This
constraint might bring in coupling of gravitons to matter. The natural guess is that graviton
corresponds to a string connecting wormhole contacts. The strings could also represent
formation of gravitational bound states when they connect wormhole contacts separated
by a large distance. The energy of the string is roughly E ∼ ~TL and for T = 1/~G
gives E ∼ L/G. Macroscopic strings are not allowed except as models of black holes. The
identification T ∼ 1/L2

p gives E ∼ ~L/L2
p, which does not favor long strings for large values

of ~. The identification Gp = L2
p/~0 gives T = 1/~Gp and E ∼ ~0L/L

2
p, which makes sense

and allows strings with length not much longer than p-adic length scale. Quantization
- that is the presence of configuration space degrees of freedom- would bring in massless
gravitons as deformations of string whereas strings would carry the gravitational mass.
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(f) The exponent exp(iSG) can appear as a phase factor in the definition of quantum states
for preferred extremals. SG is not however enough. One can assign also to the points of
number theoretic braid action describing the interaction of a point like current Qdxµ/ds
with induced gauge potentials Aµ. The corresponding contribution to the action is

Sbraid =

∫
braid

iT r(Q
dxµ

ds
Aµ)dx . (4.3.2)

In stationary phase approximation subject to the additional constraint that a preferred
extremal of Kähler action is in question one obtains the desired correlation between the
geometry of preferred extremal and the quantum numbers of elementary particle. This
interaction term carries information only about the charges of elementary particle. It is
quite possible that the interaction term is more complex: for instance, it could contain spin
dependent terms (Stern-Gerlach experiment).

(g) The constraint coming from preferred extremal property of Kähler action can be expressed
in terms of Lagrange multipliers

Sc =

∫
Y 2

λkDα(
∂LK
∂αhk

)
√
g2d

2y . (4.3.3)

(h) The action exponential reads as

exp(iSG + Sbraid + Sc) . (4.3.4)

The resulting field equations couple stringy M4 degrees of freedom to the second variation
of Kähler action with respect to M4 coordinates and involve third derivatives of M4 coor-
dinates at the right hand side. If the second variation of Kähler action with respect to M4

coordinates vanishes, free string results. This is trivially the case if a vacuum extremal of
Kähler action is in question.

(i) An interesting question is whether the preferred extremal property boils down to the condi-
tion that the second variation of Kähler action with respect to M4 coordinates or actually
all coordinates vanishes so that gravitonic string is free. As a matter fact, the stronger
condition is required that the Noether currents associated with the modified Dirac action
are conserved. The physical interpretation would be in terms of quantum criticality which
is the basic conjecture about the dynamics of quantum TGD. This is clear from the fact
that in 1-D system criticality means that the potential V (x) = ax+ bx2 + .. has b = 0. In
field theory criticality corresponds to the vanishing of the term m2φ2/2 so that massless
situation corresponds to massless theory and criticality and long range correlations. For
more than one dynamical variable there is a hierarchy of criticalities corresponding to the
gradual reduction of the rank of the matrix of the matrix defined by the second derivatives
of V (x) and this gives rise to a classification of criticalities. Maximum criticality would
correspond to the total vanishing of this matrix. In infinite-D case this hierarchy is infinite.

What does the equality of gravitational and inertial masses mean?

Consider next the question in what form Equivalence Principle could be realized in this frame-
work.

(a) Coset construction inspires the conjecture that gravitational and inertial four-momenta
are identical. Also some milder form of it would make sense. What is clear is that the
construction of preferred extremal involving the distribution of M2(x) implies that con-
served four-momentum associated with Kähler action can be expressed formally as stringy
four-momentum. The integral of the conserved inertial momentum current over X3 indeed
reduces to an integral over the curve defining string as one integrates over other two degrees
of freedom. It would not be surprising if a stringy expression for four-momentum would
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result but with string tension depending on the point of string and possibly also on the
component of four-momentum. If the dependence of string tension on the point of string
and on the choice of the stringy world sheet is slow, the interpretation could be in terms
of coupling constant evolution associated with the stringy coordinates. An alternative in-
terpretation is that string tension corresponds to a scalar field. A quite reasonable option
is that for given X3

l T defines a scalar field and that the observed T corresponds to the
average value of T over deformations of X3

l .

(b) The minimum option is that Kähler mass is equal to the sum gravitational masses assignable
to strings connecting points of wormhole throat or two different wormhole throats. This
hypothesis makes sense even for wormhole contacts having size of order Planck length.

(c) The condition that gravitational mass equals to the inertial mass (rest energy) assigned
to Kähler action is the most obvious condition that one can imagine. The breaking of
Poincare invariance to Lorentz invariance with respect to the tip of CD supports this form
of Equivalence Principle. This would predict the value of the ratio of the parameter R2T
and p-adic length scale hypothesis would allow only discrete values for this parameter.
p ' 2k following from the quantization of the temporal distance T (n) between the tips
of CD as T (n) = 2nT0 would suggest string tension Tn = 2nR2 apart from a numerical
factor. Gp ∝ 2nR2/~0 would emerge as a prediction of the theory. G can be seen either as
a prediction or RG invariant input parameter fixed by quantum criticality. The arguments
related to p-adic coupling constant evolution suggest R2/~0G = 3× 223 [K3, K27] .

(d) The scalar field property of string tension should be consistent with the vacuum degeneracy
of Kähler action. For instance, for the vacuum extremals of Kähler action stringy action is
non-vanishing. The simplest possibility is that one includes the integral of the scalar JµνJµν
over the degrees transversal to M2 to the stringy action so that string tension vanishes for
vacuum extremals. This would be nothing but dimensional reduction of 4-D theory to a
2-D theory using the slicing of X4(X3

l ) to partonic 2-surfaces and stringy word sheets. For
cosmic strings Kähler action reduces to stringy action with string tension T ∝ 1/g2

KR
2

apart from a numerical constant. If one wants consistency with T ∝ 1/L2
p, one must have

T ∝ 1/g2
K2nR2 for the cosmic strings deformed to Kähler magnetic flux tubes. This looks

rather plausible if the thickness of deformed string in M4 degrees of freedom is given by
p-adic length scale.

4.4 Does modified Dirac action define the fundamental ac-
tion principle?

Although quantum criticality in principle predicts the possible values of Kähler coupling strength,
one might hope that there exists even more fundamental approach involving no coupling con-
stants and predicting even quantum criticality and realizing quantum gravitational holography.
The Dirac determinant associated with the modified Dirac action is an excellent candidate in
this respect.

The original working hypothesis was that Dirac determinant defines the vacuum functional of
the theory having interpretation as the exponent of Kähler function of world of classical worlds
(WCW) expressible and that Kähler function reduces to Kähler action for a preferred extremal
of Kähler action.

4.4.1 What are the basic equations of quantum TGD?

A good place to start is to as what might the basic equations of quantum TGD. There are two
kinds of equations at the level of space-time surfaces.

(a) Purely classical equations define the dynamics of the space-time sheets as preferred ex-
tremals of Kähler action. Preferred extremals are quantum critical in the sense that second
variation vanishes for critical deformations representing zero modes. This condition guar-
antees that corresponding fermionic currents are conserved. There is infinite hierarchy of
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these currents and they define fermionic counterparts for zero modes. Space-time sheets
can be also regarded as hyper-quaternionic surfaces. What these statements precisely mean
has become clear only during this year. A rigorous proof for the equivalence of these two
identifications is still lacking.

(b) The purely quantal equations are associated with the representations of various super-
conformal algebras and with the modified Dirac equation. The requirement that there
are deformations of the space-time surface -actually infinite number of them- giving rise
to conserved fermionic charges implies quantum criticality at the level of Kähler action in
the sense of critical deformations. The precise form of the modified Dirac equation is not
however completely fixed without further input. Quantal equations involve also generalized
Feynman rules for M -matrix generalizing S-matrix to a ”complex square root” of density
matrix and defined by time-like entanglement coefficients between positive and negative
energy parts of zero energy states is certainly the basic goal of quantum TGD.

(c) The notion of weak electric-magnetic duality generalizing the notion of electric-magnetic
duality [K28] , [L12] leads to a detailed understanding of how TGD reduces to almost
topological quantum field theory [K28] , [L12] . If Kähler current defines Beltrami flow [B52]
it is possible to find a gauge in which Coulomb contribution to Kähler action vanishes so that
it reduces to Chern-Simons term. If light-like 3-surfaces and ends of space-time surface are
extremals of Chern-Simons action also effective 2-dimensionality is realized. The condition
that the theory reduces to almost topological QFT and the hydrodynamical character of
field equations leads to a detailed ansatz for the general solution of field equations and
also for the solutions of the modified Dirac equation relying on the notion of Beltrami
flow for which the flow parameter associated with the flow lines defined by a conserved
current extends to a global coordinate. This makes the theory is in well-defined sense
completely integrable. Direct connection with massless theories emerges: every conserved
Beltrami currents corresponds to a pair of scalar functions with the first one satisfying
massless d’Alembert equation in the induced metric. The orthogonality of the gradients
of these functions allows interpretation in terms of polarization and momentum directions.
The Beltrami flow property can be also seen as one aspect of quantum criticality since the
conserved currents associated with critical deformations define this kind of pairs.

(d) The hierarchy of Planck constants provides also a fresh view to the quantum criticality. The
original justification for the hierarchy of Planck constants came from the indications that
Planck constant could have large values in both astrophysical systems involving dark mat-
ter and also in biology. The realization of the hierarchy in terms of the singular coverings
and possibly also factor spaces of CD and CP2 emerged from consistency conditions. It
however seems that TGD actually predicts this hierarchy of covering spaces. The extreme
non-linearity of the field equations defined by Kähler action means that the correspon-
dence between canonical momentum densities and time derivatives of the imbedding space
coordinates is 1-to-many. This leads naturally to the introduction of the covering space of
CD × CP2, where CD denotes causal diamond defined as intersection of future and past
directed light-cones.

At the level of WCW there is the generalization of the Dirac equation which can be regarded
as a purely classical Dirac equation. The modified Dirac operators associated with quarks and
leptons carry fermion number but the Dirac equations are well-defined. An orthogonal basis of
solutions of these Dirac operators define in zero energy ontology a basis of zero energy states.
The M -matrices defining entanglement between positive and negative energy parts of the zero
energy state define what can be regarded as analogs of thermal S-matrices. The M-matrices
associated with the solution basis of the WCW Dirac equation define by their orthogonality
unitary U-matrix between zero energy states. This matrix finds the proper interpretation in
TGD inspired theory of consciousness. WCW Dirac equation as the analog of super-Virasoro
conditions for the ”gamma fields” of superstring models defining super counterparts of Virasoro
generators was the main focus during earlier period of quantum TGD but has not received so
much attention lately and will not be discussed in this chapter.
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4.4.2 Quantum criticality and modified Dirac action

The precise mathematical formulation of quantum criticality has remained one of the basic
challenges of quantum TGD. The question leading to a considerable progress in the problem was
simple: Under what conditions the modified Dirac action allows to assign conserved fermionic
currents with the deformations of the space-time surface? The answer was equally simple:
These currents exists only if these deformations correspond to vanishing second variations of
Kähler action - which is what criticality is. The vacuum degeneracy of Kähler action strongly
suggests that the number of critical deformations is always infinite and that these deformations
define an infinite inclusion hierarchy of super-conformal algebras. This inclusion hierarchy would
correspond to a fractal hierarchy of breakings of super-conformal symmetry generalizing the
symmetry breaking hierarchies of gauge theories. These super-conformal inclusion hierarchies
would realize the inclusion hierarchies for hyper-finite factors of type II1.

Quantum criticality and fermionic representation of conserved charges associated
with second variations of Kähler action

It is rather obvious that TGD allows a huge generalizations of conformal symmetries. The
development of the understanding of conservation laws has been slow. Modified Dirac action
provides excellent candidates for quantum counterparts of Noether charges. Unfortunately, the
isometry charges vanish for Cartan algebras. The only manner to obtain non-trivial isometry
charges is to add a direct coupling to the charges in Cartan algebra as will be found later. This
addition involves Chern-Simons Dirac action so that the original intuition guided by almost
TQFT idea was not wrong after all.

1. Conservation of the fermionic current requires the vanishing of the second variation of Kähler
action

(a) The modified Dirac action assigns to a deformation of the space-time surface a conserved
charge expressible as bilinears of fermionic oscillator operators only if the first variation of
the modified Dirac action under this deformation vanishes. The vanishing of the first vari-
ation for the modified Dirac action is equivalent with the vanishing of the second variation
for the Kähler action. This can be seen by the explicit calculation of the second variation
of the modified Dirac action and by performing partial integration for the terms containing
derivatives of Ψ and Ψ to give a total divergence representing the difference of the charge
at upper and lower boundaries of the causal diamond plus a four-dimensional integral of
the divergence term defined as the integral of the quantity

∆SD = ΨΓkDαJ
α
k Ψ ,

Jαk =
∂2LK
∂hkα∂h

l
β

δhkβ +
∂2LK
∂hkα∂h

l
δhl . (4.4.1)

Here hkβ denote partial derivative of the imbedding space coordinate with respect to space-
time coordinates. This term must vanish:

DαJ
α
k = 0 .

The condition states the vanishing of the second variation of Kähler action. This can of
course occur only for preferred deformations of X4. One could consider the possibility that
these deformations vanish at light-like 3-surfaces or at the boundaries of CD. Note that
covariant divergence is in question so that Jαk does not define conserved classical charge in
the general case.

(b) It is essential that the modified Dirac equation holds true so that the modified Dirac action
vanishes: this is needed to cancel the contribution to the second variation coming from
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the determinant of the induced metric. The condition that the modified Dirac equation is
satisfied for the deformed space-time surface requires that also Ψ suffers a transformation
determined by the deformation. This gives

δΨ = − 1

D
× ΓkJαk Ψ . (4.4.2)

Here 1/D is the inverse of the modified Dirac operator defining the counterpart of the
fermionic propagator.

(c) The fermionic conserved currents associated with the deformations are obtained from the
standard conserved fermion current

Jα = ΨΓαΨ . (4.4.3)

Note that this current is conserved only if the space-time surface is extremal of Kähler
action: this is also needed to guarantee Hermiticity and same form for the modified Dirac
equation for Ψ and its conjugate as well as absence of mass term essential for super-
conformal invariance [A43, A46] . Note also that ordinary divergence rather only covariant
divergence of the current vanishes.

The conserved currents are expressible as sums of three terms. The first term is obtained
by replacing modified gamma matrices with their increments in the deformation keeping Ψ
and its conjugate constant. Second term is obtained by replacing Ψ with its increment δΨ.
The third term is obtained by performing same operation for δΨ.

Jα = ΨΓkJαk Ψ + ΨΓ̂αδΨ + δΨΓ̂αΨ . (4.4.4)

These currents provide a representation for the algebra defined by the conserved charges
analogous to a fermionic representation of Kac-Moody algebra [A22] .

(d) Also conserved super charges corresponding to super-conformal invariance are obtained.
The first class of super currents are obtained by replacing Ψ or Ψ right-handed neutrino
spinor or its conjugate in the expression for the conserved fermion current and performing
the above procedure giving two terms since nothing happens to the covariantly constant
right handed-neutrino spinor. Second class of conserved currents is defined by the solutions
of the modified Dirac equation interpreted as c-number fields replacing Ψ or Ψ and the
same procedure gives three terms appearing in the super current.

(e) The existence of vanishing of second variations is analogous to criticality in systems defined
by a potential function for which the rank of the matrix defined by second derivatives of
the potential function vanishes at criticality. Quantum criticality becomes the prerequisite
for the existence of quantum theory since fermionic anti-commutation relations in principle
can be fixed from the condition that the algebra in question is equivalent with the algebra
formed by the vector fields defining the deformations of the space-time surface defining
second variations. Quantum criticality in this sense would also select preferred extremals of
Kähler action as analogs of Bohr orbits and the the spectrum of preferred extremals would
be more or less equivalent with the expected existence of infinite-dimensional symmetry
algebras.

2. About the general structure of the algebra of conserved charges

Some general comments about the structure of the algebra of conserved charges are in order.

(a) Any Cartan algebra of the isometry group P × SU(3) (there are two types of them for P
corresponding to linear and cylindrical Minkowski coordinates) defines critical deformations
(one could require that the isometries respect the geometry of CD). The corresponding
charges are conserved but vanish since the corresponding conjugate coordinates are cyclic
for the Kähler metric and Kähler form so that the conserved current is proportional to
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the gradient of a Killing vector field which is constant in these coordinates. Therefore
one cannot represent isometry charges as fermionic bilinears. Four-momentum and color
quantum numbers are defined for Kähler action as classical conserved quantities but this
is probably not enough. This can be seen as a problem.

i. Four-momentum and color Cartan algebra emerge naturally in the representations of
super-conformal algebras. In the case of color algebra the charges in the complement of
the Cartan algebra can be constructed in standard manner as extension of those for the
Cartan algebra using free field representation of Kac-Moody algebras. In string theories
four-momentum appears linearly in bosonic Kac-Moody generators and in Sugawara
construction [A136] of super Virasoro generators as bilinears of bosonic Kac-Moody
generators and fermionic super Kac-Moody generators [A22] . Also now quantized
transversal parts for M4 coordinates could define a second quantized field having in-
terpretation as an operator acting on spinor fields of WCW. The angle coordinates
conjugate to color isospin and hyper charge take the role of M4 coordinates in case of
CP2.

ii. Somehow one should be able to feed the information about the super-conformal repre-
sentation of the isometry charges to the modified Dirac action by adding to it a term
coupling fermionic current to the Cartan charges in general coordinate invariant and
isometry invariant manner. As will be shown later, this is possible. The interpretation
is as measurement interaction guaranteeing also the stringy character of the fermionic
propagators. The values of the couplings involved are fixed by the condition of quan-
tum criticality assumed in the sense that Kähler function of WCW suffers only a U(1)
gauge transformation K → K + f + f , where f is a holomorphic function of WCW
coordinates depending also on zero modes.

iii. The simplest addition involves the modified gamma matrices defined by a Chern-Simon
term at the light-like wormhole throats and is sum of Chern-Simons Dirac action and
corresponding coupling term linear in Cartan charges assignable to the partonic 2-
surfaces at the ends of the throats. Hence the modified Dirac equation in the interior
of the space-time sheet is not affected and nothing changes as far as quantum criticality
in interior is considered.

(b) The action defined by four-volume gives a first glimpse about what one can expect. In this
case modified gamma matrices reduce to the induced gamma matrices. Second variations
satisfy d’Alembert type equation in the induced metric so that the analogs of massless
fields are in question. Mass term is present only if some dimensions are compact. The
vanishing of excitations at light-like boundaries is a natural boundary condition and might
well imply that the solution spectrum could be empty. Hence it is quite possible that
four-volume action leads to a trivial theory.

(c) For the vacuum extremals of Kähler action the situation is different. There exists an
infinite number of second variations and the classical non-determinism suggests that defor-
mations vanishing at the light-like boundaries exist. For the canonical imbedding of M4

the equation for second variations is trivially satisfied. If the CP2 projection of the vac-
uum extremal is one-dimensional, the second variation contains a on-vanishing term and an
equation analogous to massless d’Alembert equation for the increments of CP2 coordinates
is obtained. Also for the vacuum extremals of Kähler action with 2-D CP2 projection all
terms involving induced Kähler form vanish and the field equations reduce to d’Alembert
type equations for CP2 coordinates. A possible interpretation is as the classical analog of
Higgs field. For the deformations of non-vacuum extremals this would suggest the presence
of terms analogous to mass terms: these kind of terms indeed appear and are proportional
to δsk. M4 degrees of freedom decouple completely and one obtains QFT type situation.

(d) The physical expectation is that at least for the vacuum extremals the critical manifold is
infinite-dimensional. The notion of finite measurement resolution suggests infinite hierar-
chies of inclusions of hyper-finite factors of type II1 possibly having interpretation in terms
of inclusions of the super conformal algebras defined by the critical deformations.

(e) The properties of Kähler action give support for this expectation. The critical manifold is
infinite-dimensional in the case of vacuum extremals. Canonical imbedding of M4 would
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correspond to maximal criticality analogous to that encountered at the tip of the cusp
catastrophe. The natural guess would be that as one deforms the vacuum extremal the
previously critical degrees of freedom are transformed to non-critical ones. The dimension
of the critical manifold could remain infinite for all preferred extremals of the Kähler
action. For instance, for cosmic string like objects any complex manifold of CP2 defines
cosmic string like objects so that there is a huge degeneracy is expected also now. For CP2

type vacuum extremals M4 projection is arbitrary light-like curve so that also now infinite
degeneracy is expected for the deformations.

3. Critical super algebra and zero modes

The relationship of the critical super-algebra to configuration space geometry is interesting.

(a) The vanishing of the second variation plus the identification of Kähler function as a Kähler
action for preferred extremals means that the critical variations are orthogonal to all defor-
mations of the space-time surface with respect to the configuration space metric and thus
correspond to zero modes. This conforms with the fact that configuration space metric
vanishes identically for canonically imbedded M4. Zero modes do not seem to correspond
to gauge degrees of freedom so that the super-conformal algebra associated with the zero
modes has genuine physical content.

(b) Since the action of X4 local Hamiltonians of δM4
×CP2 corresponds to the action in quantum

fluctuating degrees of freedom, critical deformations cannot correspond to this kind of
Hamiltonians.

(c) The notion of finite measurement resolution suggests that the degrees of freedom which are
below measurement resolution correspond to vanishing gauge charges. The sub-algebras of
critical super-conformal algebra for which charges annihilate physical states could corre-
spond to this kind of gauge algebras.

(d) The conserved super charges associated with the vanishing second variations cannot give
configuration space metric as their anti-commutator. This would also lead to a conflict
with the effective 2-dimensionality stating that the configuration space line-element is ex-
pressible as sum of contribution coming from partonic 2-surfaces as also with fermionic
anti-commutation relations.

4. Connection with quantum criticality

The vanishing of the second variation for some deformations means that the system is critical,
in the recent case quantum critical. Basic example of criticality is bifurcation diagram for cusp
catastrophe. For some mysterious reason I failed to realize that quantum criticality realized
as the vanishing of the second variation makes possible a more or less unique identification of
preferred extremals and considered alternative identifications such as absolute minimization of
Kähler action which is just the opposite of criticality. Both the super-symmetry of DK and
conservation Dirac Noether currents for modified Dirac action have thus a connection with
quantum criticality.

(a) Finite-dimensional critical systems defined by a potential function V (x1, x2, ..) are charac-
terized by the matrix defined by the second derivatives of the potential function and the
rank of system classifies the levels in the hierarchy of criticalities. Maximal criticality corre-
sponds to the complete vanishing of this matrix. Thom’s catastrophe theory classifies these
hierarchies, when the numbers of behavior and control variables are small (smaller than 5).
In the recent case the situation is infinite-dimensional and the criticality conditions give
additional field equations as existence of vanishing second variations of Kähler action.

(b) The vacuum degeneracy of Kähler action allows to expect that this kind infinite hierarchy
of criticalities is realized. For a general vacuum extremal with at most 2-D CP2 projection
the matrix defined by the second variation vanishes because Jαβ = 0 vanishes and also the

matrix (Jαk + J α
k )(Jβl + J β

l ) vanishes by the antisymmetry Jαk = −J α
k . Recall that the

formulation of Equivalence Principle in string picture demonstrated that the reduction of
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stringy dynamics to that for free strings requires that second variation with respect to M4

coordinates vanish. This condition would guarantee the conservation of fermionic Noether
currents defining gravitational four-momentum and other Poincare quantum numbers but
not those for gravitational color quantum numbers. Encouragingly, the action of CP2 type
vacuum extremals having random light-like curve as M4 projection have vanishing second
variation with respect to M4 coordinates (this follows from the vanishing of Kähler energy
momentum tensor, second fundamental form, and Kähler gauge current). In this case
however the momentum is vanishing.

(c) Conserved bosonic and fermionic Noether charges would characterize quantum criticality.
In particular, the isometries of the imbedding space define conserved currents represented in
terms of the fermionic oscillator operators if the second variations defined by the infinitesi-
mal isometries vanish for the modified Dirac action. For vacuum extremals the dimension of
the critical manifold is infinite: maybe there is hierarchy of quantum criticalities for which
this dimension decreases step by step but remains always infinite. This hierarchy could
closely relate to the hierarchy of inclusions of hyper-finite factors of type II1. Also the
conserved charges associated with Super-symplectic and Super Kac-Moody algebras would
require infinite-dimensional critical manifold defined by the spectrum of second variations.

(d) Phase transitions are characterized by the symmetries of the phases involved with the
transitions, and it is natural to expect that dynamical symmetries characterize the hierarchy
of quantum criticalities. The notion of finite quantum measurement resolution based on
the hierarchy of Jones inclusions indeed suggests the existence of a hierarchy of dynamical
gauge symmetries characterized by gauge groups in ADE hierarchy [K27] with degrees of
freedom below the measurement resolution identified as gauge degrees of freedom.

(e) A breakthrough in understanding of the criticality was the discovery that the realization
that the hierarchy of singular coverings of CD × CP2 needed to realize the hierarchy of
Planck constants could correspond directly to a similar hierarchy of coverings forced by
the factor that classical canonical momentum densities correspond to several values of the
time derivatives of the imbedding space coordinates led to a considerable progress if the
understanding of the relationship between criticality and hierarchy of Planck constants
[K36] , [L10] . Therefore the problem which led to the geometrization program of quantum
TGD, also allowed to reduce the hierarchy of Planck constants introduced on basis of
experimental evidence to the basic quantum TGD. One can say that the 3-surfaces at the
ends of CD resp. wormhole throats are critical in the sense that they are unstable against
splitting to nb resp. na surfaces so that one obtains space-time surfaces which can be
regarded as surfaces in na×nb fold covering of CD×CP2. This allows to understand why
Planck constant is effectively replaced with nanb~0 and explains charge fractionization.

Preferred extremal property as classical correlate for quantum criticality, hologra-
phy, and quantum classical correspondence

The Noether currents assignable to the modified Dirac equation are conserved only if the first
variation of the modified Dirac operator DK defined by Kähler action vanishes. This is equiv-
alent with the vanishing of the second variation of Kähler action -at least for the variations
corresponding to dynamical symmetries having interpretation as dynamical degrees of freedom
which are below measurement resolution and therefore effectively gauge symmetries.

The vanishing of the second variation in interior of X4(X3
l ) is what corresponds exactly to

quantum criticality so that the basic vision about quantum dynamics of quantum TGD would
lead directly to a precise identification of the preferred extremals. Something which I should
have noticed for more than decade ago! The question whether these extremals correspond to
absolute minima remains however open.

The vanishing of second variations of preferred extremals -at least for deformations representing
dynamical symmetries, suggests a generalization of catastrophe theory of Thom, where the
rank of the matrix defined by the second derivatives of potential function defines a hierarchy of
criticalities with the tip of bifurcation set of the catastrophe representing the complete vanishing
of this matrix. In the recent case this theory would be generalized to infinite-dimensional context.
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There are three kind of variables now but quantum classical correspondence (holography) allows
to reduce the types of variables to two.

(a) The variations of X4(X3
l ) vanishing at the intersections of X4(X3

l ) wth the light-like bound-
aries of causal diamonds CD would represent behavior variables. At least the vacuum ex-
tremals of Kähler action would represent extremals for which the second variation vanishes
identically (the ”tip” of the multi-furcation set).

(b) The zero modes of Kähler function would define the control variables interpreted as classical
degrees of freedom necessary in quantum measurement theory. By effective 2-dimensionality
(or holography or quantum classical correspondence) meaning that the configuration space
metric is determined by the data coming from partonic 2-surfaces X2 at intersections of X3

l

with boundaries of CD, the interiors of 3-surfaces X3 at the boundaries of CDs in rough
sense correspond to zero modes so that there is indeed huge number of them. Also the
variables characterizing 2-surface, which cannot be complexified and thus cannot contribute
to the Kähler metric of configuration space represent zero modes. Fixing the interior of
the 3-surface would mean fixing of control variables. Extremum property would fix the
4-surface and behavior variables if boundary conditions are fixed to sufficient degree.

(c) The complex variables characterizing X2 would represent third kind of variables identified
as quantum fluctuating degrees of freedom contributing to the configuration space met-
ric. Quantum classical correspondence requires 1-1 correspondence between zero modes
and these variables. This would be essentially holography stating that the 2-D ”causal
boundary” X2 of X3(X2) codes for the interior. Preferred extremal property identified as
criticality condition would realize the holography by fixing the values of zero modes once
X2 is known and give rise to the holographic correspondence X2 → X3(X2). The values
of behavior variables determined by extremization would fix then the space-time surface
X4(X3

l ) as a preferred extremal.

(d) Clearly, the presence of zero modes would be absolutely essential element of the picture.
Quantum criticality, quantum classical correspondence, holography, and preferred extremal
property would all represent more or less the same thing. One must of course be very
cautious since the boundary conditions at X3

l involve normal derivative and might bring
in delicacies forcing to modify the simplest heuristic picture.

(e) There is a possible connection with the notion of self-organized criticality [B16] introduced
to explain the behavior of systems like sand piles. Self-organization in these systems tends
to lead ”to the edge”. The challenge is to understand how system ends up to a critical state,
which by definition is unstable. Mechanisms for this have been discovered and based on
phase transitions occurring in a wide range of parameters so that critical point extends to
a critical manifold. In TGD Universe quantum criticality suggests a universal mechanism
of this kind. The criticality for the preferred extremals of Kähler action would mean that
classically all systems are critical in well-defined sense and the question is only about the
degree of criticality. Evolution could be seen as a process leading gradually to increasingly
critical systems. One must however distinguish between the criticality associated with the
preferred extremals of Kähler action and the criticality caused by the spin glass like energy
landscape like structure for the space of the maxima of Kähler function.

4.4.3 Handful of problems with a common resolution

Theory building could be compared to pattern recognition or to a solving a crossword puzzle. It
is essential to make trials, even if one is aware that they are probably wrong. When stares long
enough to the letters which do not quite fit, one suddenly realizes what one particular crossword
must actually be and it is soon clear what those other crosswords are. In the following I describe
an example in which this analogy is rather concrete. Let us begin by listing the problems.

(a) The condition that modified Dirac action allows conserved charges leads to the condition
that the symmetries in question give rise to vanishing second variations of Kähler action.
The interpretation is as quantum criticality and there are good arguments suggesting that
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the critical symmetries define an infinite-dimensional super-conformal algebra forming an
inclusion hierarchy related to a sequence of symmetry breakings closely related to a hier-
archy of inclusions of hyper-finite factors of types II1 and III1. This means an enormous
generalization of the symmetry breaking patterns of gauge theories.

There is however a problem. For the translations of M4 and color hyper charge and
isospin (more generally, any Cartan algebra of P × SU(3)) the resulting fermionic charges
vanish. The trial for the crossword in absence of nothing better would be the following
argument. By the abelianity of these charges the vanishing of quantal representation of
four-momentum and color Cartan charges is not a problem and that classical representation
of these charges or their super-conformal representation is enough.

(b) Modified Dirac equation is satisfied in the interior of space-time surface always. This
means that one does not obtain off-mass shell propagation at all in 4-D sense. Effective 2-
dimensionality suggests that off mass shell propagation takes place along wormhole throats.
The reduction to almost topological QFT with Kähler function reducing to Chern-Simonst
type action implied by the weak form of electric-magnetic duality and a proper gauge choice
for the induced Kähler gauge potential implies effective 3-dimensionality at classical level.
This inspires the question whether Chern-Simons type action resulting from an instanton
term could define the modified gamma matrices appearing in the 3-D modified Dirac action
associated with wormhole throats and the ends of the space-time sheet at the boundaries
of CD.

The assumption that modified Dirac equation is satisfied also at the ends and wormhole
throats would realize effective 2-dimensionality as conditions on the boundary values of the
4-D Dirac equation but would would not allow off mass shell propagation. Therefore one
could argue that effective 2-dimensionality in this sense holds true only for incoming and
outgoing particles.

The reduction of Kähler action to Chern-Simons term together with effective 2-dimensionality
suggests that Kähler function corresponds to an extremum of this action with a constraint
term due to the weak form of electric-magnetic duality. Without this term the extrema
of Chern-Simons action have 2-D CP2 projection not consistent with the weak form of
electric-magnetic duality. The extrema are not maxima of Kähler function: they are ob-
tained by varying with respect to tangent space data of the partonic 2-surfaces. Lagrange
multiplier term induces also to the modified gamma matrices a contribution which is of the
same general form as for any general coordinate invariant action.

(c) Quantum classical correspondence requires that the geometry of the space-time sheet should
correlate with the quantum numbers characterizing positive (negative) energy part of the
quantum state. One could argue that by multiplying WCW spinor field by a suitable phase
factor depending on the charges of the state, the correspondence follows from stationary
phase approximation. This crossword looks unconvincing. A more precise connection
between quantum and classical is required.

(d) In quantum measurement theory classical macroscopic variables identified as degrees of
freedom assignable to the interior of the space-time sheet correlate with quantum numbers.
Stern Gerlach experiment is an excellent example of the situation. The generalization of the
imbedding space concept by replacing it with a book like structure implies that imbedding
space geometry at given page and for given causal diamond (CD) carries information about
the choice of the quantization axes (preferred plane M2 of M4 resp. geodesic sphere of CP2

associated with singular covering/factor space of CD resp. CP2 ). This is a big step but
not enough. Modified Dirac action as such does not seem to provide any hint about how
to achieve this correspondence. One could even wonder whether dissipative processes or
at least the breaking of T and CP characterizing the outcome of quantum jump sequence
should have space-time correlate. How to achieve this?

Each of these problems makes one suspect that something is lacking from the modified Dirac
action: there should exist an elegant manner to feed information about quantum numbers of
the state to the modified Dirac action in turn determining vacuum functional as an exponent
Kähler function identified as Kähler action for the preferred extremal assumed to be dictated
by by quantum criticality and equivalently by hyper-quaternionicity.
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This observation leads to what might be the correct question. Could a general coordinate
invariant and Poincare invariant modification of the modified Dirac action consistent with the
vacuum degeneracy of Kähler action allow to achieve this information flow somehow? In the
following one manner to achieve this modification is discussed. It must be however emphasized
that I have considered many alternatives and the one discussed below finds its justification only
from the fact that it is the simplest one found hitherto.

The identification of the measurement interaction term

The idea is simple: add to the modified Dirac action a term which is analogous to the Dirac
action in M4 × CP2. One can consider two options according to whether the term is assigned
with interior or with a 3-D light-like 3-surface and last years have been continual argumentation
about which option is the correct one.

(a) The additional term would be essentially the analog of the ordinary Dirac action at the
imbedding space level.

Sint =
∑
A

QA

∫
ΨgABjBαΓ̂αΨ

√
gd4x ,

gAB = jkAhklj
l
B , gABgBC = δAC ,

jBα = jkBhkl∂αh
l . (4.4.5)

The sum is over isometry charges QA interpreted as quantal charges and jAk denotes the
Killing vector field of the isometry. gAB is the inverse of the tensor gAB defined by the
local inner products of Killing vectors fields in M4 and CP2. The space-time projections
of the Killing vector fields jBα have interpretation as classical color gauge potentials in the
case of SU(3). In M4 degrees of freedom and for Cartan algebra of SU(3) jBα reduce to
the gradients of linear M4 coordinates in case of translations. Modified gamma matrices
could be assigned to Kähler action or its instanton term or with Chern-Simons action.

(b) The added term containing quantal charges must make sense in the modified Dirac equation.
This requires that the physical state is an eigenstate of momentum and color charges. This
allows only color hyper-charge and color isospin so that there is no hope of obtaining exactly
the stringy formula for the propagator. The modified Dirac operator is given by

D = D +Dint = Γ̂αDα + Γ̂α
∑
A

QAg
ABjBα

= Γ̂α(Dα + ∂αφ) , ∂αφ =
∑
A

QAg
ABjBα . (4.4.6)

The conserved fermionic isometry currents are

JAα =
∑
B

QBΨgBCjkChklj
l
AΓ̂αΨ = QAΨΓ̂αΨ . (4.4.7)

Here the sum is restricted to a Cartan sub-algebra of Poincare group and color group.

(c) An important restriction is that by four-dimensionality of M4 and CP2 the rank of gAB
is 4 so that gAB exists only when one considers only four conserved charges. In the case
of M4 this is achieved by a restriction to translation generators QA = pA. gAB reduces to
Minkowski metric and Killing vector fields are constants. The Cartan sub-algebra could be
however replaced by any four commuting charges in the case of Poincare algebra (second
one corresponds to time translation plus translation, boost and rotation in given direction).
In the case of SU(3) one must restrict the consideration either to U(2) sub-algebra or its
complement. CP2 = SU(3)/SU(2) decomposition would suggest the complement as the
correct choice. One can indeed build the generators of U(2) as commutators of the charges
in the complement. On the other hand, Cartan algebra is enough in free field construction
of Kac-Moody algebras.
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(d) What is remarkable that for the Cartan algebra of M4×SU(3) the measurement interaction
term is equivalent with the addition of gauge part ∂αφ of the induced Kähler gauge potential
Aα. This property might hold true for any measurement interaction term. This also
suggests that the change in Kähler function is only the transformation Aα → Aα + ∂αφ,
∂αφ =

∑
AQAg

ABjBα.

(e) Recall that the φ for U(1) gauge transformations respecting the vanishing of the Coulomb
interaction term of Kähler action [K36] , [L10] the current jαKφ is conserved, which implies
that the change of the Kähler action is trivial. These properties characterize the gauge
transformations respecting the gauge in which Coulombic interaction term of the Kähler
action vanishes so that Kähler action reduces to 3-dimensional generalized Chern-Simons
term if the weak form of electric-magnetic duality holds true guaranteeing among other
things that the induced Kähler field is not too singular at the wormhole throats [K36]
, [L10] . The scalar function assignable to the measurement interaction terms does not
have this property and this is what is expected since it must change the value of the Kähler
function and therefore affect the preferred extremal.

Concerning the precise form of the modified Dirac action the basic clue comes from the obser-
vation that the measurement interaction term corresponds to the addition of a gauge part to
the induced CP2 Kähler gauge potential Aα. The basic question is what part of the action one
assigns the measurement interaction term.

(a) One could define the measurement interaction term using either the four-dimensional in-
stanton term or its reduction to Chern-Simons terms. The part of Dirac action defined by
the instanton term in the interior does not reduce to a 3-D form unless the Dirac equation
defined by the instanton term is satisfied : this cannot be true. Hence Chern-Simons term
is the only possibility.

The classical field equations associated with the Chern-Simons term cannot be assumed
since they would imply that the CP2 projection of the wormhole throat and space-like 3-
surface are 2-dimensional. This might hold true for space-like 3-surfaces at the ends of CD
and incoming and outgoing particles but not for off mass shell particles. This is however not
a problem since DαΓ̂αC−S for the modified gamma matrices for Chern-Simons action does
not contain second derivatives. This is due to the topological character of this term. For
Kähler action second derivatives are present and this forces extremal property of Kähler
action in the modified Dirac Kähler action so that classical physics results as a consistency
condition.

(b) If one assigns measurement interaction term to both DK and DC−S the measurement
interaction corresponds to a mere gauge transformation for ASα and is trivial. Therefore
it seems that one must choose between DK or DC−S . At least formally the measurement
interaction term associated with DK is gauge equivalent with its negative DC−S . The
addition of the measurement interaction toDK changes the basis for the 4-D induced spinors
by the phase exp(−iQKφ) and therefore also the basis for the generalized eigenstates of
DC−S and this brings in effectively the measurement interaction term affecting the Dirac
determinant.

(c) The definition of Dirac determinant should be in terms of Chern-Simons action induced
by the instanton term and identified as a product of the generalized eigenvalues of this
operator. The modified Dirac equation for Ψ is consistent with that for its conjugate if
the coefficient of the instanton term is real and one uses the Dirac action Ψ(D→ −D←)Ψ
giving modified Dirac equation as

DC−SΨ +
1

2
(DαΓ̂αC−S)Ψ = 0 . (4.4.8)

As noticed, the divergence of gamma matrices does not contain second derivatives in the
case of Chern-Simons action. In the case of Kähler action they occur unless field equations
equivalent with the vanishing of the divergence term are satisfied.
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Also the fermionic current is conserved in this case, which conforms with the idea that
fermions flow along the light-like 3-surfaces. If one uses the action ΨD→Ψ, Ψ does not
satisfy the Dirac equation following from the variational principle and fermion current
is not conserved. Also if the Chern-Simons term is imaginary - as a naive idea about
dissipation would suggest- the Dirac equation fails to be consistent with the conjugation.

(d) Off mass shell states appear in the lines of the generalized Feynman diagrams and for these
DC−S cannot annihilate the spinor field. The generalized eigen modes lf DC−S should
be such that one obtains the counterpart of Dirac propagator which is purely algebraic
and does not therefore depend on the coordinates of the throat. This is satisfied if the
generalized eigenvalues are expressible in terms of covariantly constant combinations of
gamma matrices and here only M4 gamma matrices are possible. Therefore the eigenvalue
equation reqards as

DΨ = λkγkΨ , D = DC−S +DαΓ̂αC−S , DC−S = Γ̂αC−SDα .

(4.4.9)

Here the covariant derivatives Dα contain the measurement interaction term as an apparent
gauge term. Covariant constancy allows to take the square of this equation and one has

(D2 +
[
D,λkγk

]
)Ψ+ = λkλkΨ . (4.4.10)

The commutator term is analogous to magnetic moment interaction. The generalized eigen-
values correspond to λ =

√
λkλk and Dirac determinant is defined as a product of the

eigenvalues. λ is completely analogous to mass. For incoming lines this mass would vanish
so that all incoming particles irrespective their actual quantum numbers would be massless
in this sense and the propagator is indeed that for a massless particle. Note that the eigen
modes define the boundary values for the solutions of DKΨ = 0 so that the values of λ
indeed define the counterpart of the momentum space.

This transmutation of massive particles to effectively massless ones might make possible
the application of the twistor formalism as such in TGD framework [K85] . N = 4 SUSY
is one of the very few gauge theory which might be UV finite but it is definitely unphysical
due to the masslessness of the basic quanta. Could the resolution of the interpretational
problems be that the four-momenta appearing in this theory do not directly correspond to
the observed four-momenta?

Objections

The alert reader has probably raised several critical questions. Doesn’t the need to solve λk as
functions of incoming quantum numbers plus the need to construct the measurement interactions
makes the practical application of the theory hopelessly difficult? Could the resulting pseudo-
momentum λk correspond to the actual four-momentum? Could one drop the measurement
interaction term altogether and assume that the quantum classical correspondence is through the
identification of the eigenvalues as the four-momenta of the on mass shell particles propagating at
the wormhole throats? Could one indeed assume that the momenta have a continuous spectrum
and thus do not depend on the boundary conditions at all? Usually the thinking is just the
opposite and in the general case would lead to to singular eigen modes.

(a) Only the information about four-momentum would be fed into the space-time geometry.
TGD however allows much more general measurement interaction terms and it would be
very strange if the space-time geometry would not correlate also with the other quantum
numbers. Mass formulas would of course contain information also about other quantum
numbers so that this claim is not quite justified.

(b) Number theoretic considerations and also the construction of octonionic variant of Dirac
equation [K72] , [L11] force the conclusion that the spectrum of pseudo four-momentum is
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restricted to a preferred plane M2 of M4 and this excludes the interpretation of λk as a
genuine four-momentum. It also improves the hopes that the sum over pseudo-momenta
does not imply divergences.

(c) Dirac determinant would depend on the mass spectrum only and could not be identified as
exponent of Kähler function. Note that the original guideline was the dream about stringy
propagators. This is achieved for λAλ

A = n in suitable units. This spectrum would of
course also imply that Dirac determinant defined in terms of ζ function regularization is
independent of the space-time surface and could not be identified with the exponent of
Kähler function. One must of course take the identification of exponent of Kähler function
as Dirac determinant as an additional conjecture which is not necessary for the calculation
of Kähler function if the weak form of electric-magnetic duality is accepted.

(d) All particles would behave as massless particles and this would not be consistent with the
proposed Feynman diagrammatics inspired by zero energy ontology. Since wormhole throats
carry on mass shell particles with positive or negative energy so that the net momentum
can be also space-like propagators diverge for massless particles. One might overcome this
problem by assuming small thermal mass (from p-adic thermodynamics [K50] ) and this is
indeed assumed to reduce the number of generalized Feynman diagrams contributing to a
given reaction to finite number.

Second objection of the skeptic reader relates to the delicacies of U(1) gauge invariance. The
modified Dirac action seems to break gauge symmetries and this breaking of gauge symmetry is
absolutely essential for the dependence of the Dirac determinant on the quantum numbers. It
however seems that this breaking of gauge invariance is only apparent.

(a) One must distinguish between genuine U(1) gauge transformations carried out for the
induced Kähler gauge potential Aα and apparent gauge transformations of the Kähler gauge
potential Ak of S2×CP2 induced by symplectic transformations deforming the space-time
surface and affect also induced metric. This delicacy of U(1) gauge symmetry explains also
the apparent breaking of U(1) gauge symmetry of Chern-Simons Dirac action due to the
presence of explicit terms Ak and Aα.

(b) CP2 Kähler gauge potential is obtained in complex coordinates from Kähler function as
(Kξi ,Kξi

) = (∂ξiK,−∂ξiK). Gauge transformations correspond to the additions K →
K + f + f , where f is a holomorphic function. Kähler gauge potential has a unique gauge
in which the Kähler function of CP2 is U(2) invariant and contains no holomorphic part.
Hence Ak is defined in a preferred gauge and is a gauge invariant quantity in this sense.
Same applies to S2 part of the Kähler potential if present.

(c) Aα should be also gauge invariant under gauge transformation respecting the vanishing
of Coulombic interaction energy. The allowed gauge transformations Aα → Aα + ∂αφ
must satisfy Dα(jαKφ) = 0. If the scalar function φ reduces to constant at the wormhole
throats and at the ends of the space-time surface DC−S is gauge invariant. The gauge
transformations for which φ does not satisfy this condition are identified as representations
of critical deformations of space-time surface so that the change of Aα would code for this
kind of deformation and indeed affect the modified Dirac operator and Kähler function (the
change would be due to the change of zero modes).

Some details about the modified Dirac equation defined by Chern-Simons action

First some general comments about DC−S are in order.

(a) Quite generally, there is vacuum avoidance in the sense that Ψ must vanish in the regions
where the modified gamma matrices vanish. A physical analogy for the system consider
is a charged particle in an external magnetic field. The effective metric defined by the
anti-commutators of the modified gamma matrices so that standard intuitions might not
help much. What one would naively expect would be analogs of bound states in magnetic
field localized into regions inside which the magnetic field is non-vanishing.
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(b) If only CP2 Kähler form appears in the Kähler action, the modified Dirac action defined by
the Chern-Simons term is non-vanishing only when the dimension of the CP2 projection of
the 3-surface is D(CP2) ≥ 2 and the induced Kähler field is non-vanishing. This conforms
with the properties of Kähler action. The solutions of the modified Dirac equation with a
vanishing eigenvalue λ would naturally correspond to incoming and outgoing particles.

(c) D(CP2) ≤ 2 is apparently inconsistent with the weak form of electric-magnetic duality
requiring D(CP2) = 3. The conclusion is wrong: the variations of Chern-Simons action are
subject to the constraint that electric-magnetic duality holds true expressible in terms of
Lagrange multiplier term

∫
Λα(Jnα −KεnαβγJβγ)

√
g4d

3x . (4.4.11)

This gives a constraint force to the field equations and also a dependence on the induced
4-metric so that one has only almost topological QFT. This term also guarantees the M4

part of WCW Kähler metric is non-trivial. The condition that the ends of space-time sheet
and wormhole throats are extrema of Chern-Simons action subject to the electric-magnetic
duality constraint is strongly suggested by the effective 2-dimensionality.

(d) Electric-magnetic duality constraint gives an additional term to the Dirac action determined
by the Lagrange multiplier term. This term gives an additional contribution to the modified
gamma matrices having the same general form as coming from Kähler action and Chern-
Simons action. In the following this term will not be considered. For the extremals it only
affects the modified gamma matrices and leaves the general form of solutions unchanged.

In absence of the constraint from the weak form of electric-magnetic duality the explicit expres-
sion of DC−S is given by

D = Γ̂µDµ +
1

2
DµΓ̂µ ,

Γ̂µ =
∂LC−S
∂µhk

Γk = εµαβ
[
2Jkl∂αh

lAβ + JαβAk
]

ΓkDµ ,

DµΓ̂µ = BαK(Jkα + ∂αAk) ,

BαK = εαβγJβγ , Jkα = Jkl∂αs
l , ε̂αβγ = εαβγ

√
g3 . (4.4.12)

Note ε̂αβγ = does not depend on the induced metric.

The extremals of Chern-Simons action without constraint term satisfy

BαK(Jkl + ∂lAk)∂αh
l = 0 , BαK = εαβγJβγ . (4.4.13)

For a non-vanishing Kähler magnetic field Bα these equations hold true when CP2 projection is
2-dimensional. This implies a vanishing of Chern-Simons action in absence of the constraint term
realizing electric-magnetic duality, which is therefore absolutely essential in order for having a
non-vanishing WCW metric.

Consider now the situation in more detail.

(a) Suppose that one can assign a global coordinate to the flow lines of the Kähler magnetic
field. In this case one might hope that ordinary intuitions about motion in constant mag-
netic field might be helpful. The repetition of the discussion of [K36] , [L10] leads to the
condition B ∧ dB = 0 implying that a Beltrami flow for which current flows along the field
lines and Lorentz forces vanishes is in question. This need not be the generic case.
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(b) With this assumption the modified Dirac operator reduces to a one-dimensional Dirac
operator

D = ε̂rαβ
[
2Jkl∂αh

lAβ + JαβAk
]

ΓkDr . (4.4.14)

(c) The general solutions of the modified Dirac equation is covariantly constant with respect
to the coordinate r:

DrΨ = 0 . (4.4.15)

The solution to this condition can be written immediately in terms of a non-integrable
phase factor Pexp(i

∫
Ardr), where integration is along curve with constant transversal co-

ordinates. If Γ̂v is light-like vector field also Γ̂vΨ0 defines a solution of DC−S . This solution
corresponds to a zero mode for DC−S and does not contribute to the Dirac determinant.
Note that the dependence of these solutions on transversal coordinates of X3

l is arbitrary.

(d) The formal solution associated with a general eigenvalue can be constructed by integrating
the eigenvalue equation separately along all coordinate curves. This makes sense if r indeed
assigned to light-like curves indeed defines a global coordinate. What is strange that there
is no correlation between the behaviors with respect longitudinal coordinate and transversal
coordinates. System would be like a collection of totally uncorrelated point like particles
reflecting the flow of the current along flux lines. It is difficult to say anything about
the spectrum of the generalized eigenvalues in this case: it might be that the boundary
conditions at the ends of the flow lines fix the allowed values of λ. Clearly, the Beltrami
flow property is what makes this case very special.

A connection with quantum measurement theory

It is encouraging that isometry charges and also other charges could make themselves visible in
the geometry of space-time surface as they should by quantum classical correspondence. This
suggests an interpretation in terms of quantum measurement theory.

(a) The interpretation resolves the problem caused by the fact that the choice of the commuting
isometry charges is not unique. Cartan algebra corresponds naturally to the measured
observables. For instance, one could choose the Cartan algebra of Poincare group to consist
of energy and momentum, angular momentum and boost (velocity) in particular direction
as generators of the Cartan algebra of Poincare group. In fact, the choices of a preferred
plane M2 ⊂ M4 and geodesic sphere S2 ⊂ CP2 allowing to fix the measurement sub-
algebra to a high degree are implied by the replacement of the imbedding space with a
book like structure forced by the hierarchy of Planck constants. Therefore the hierarchy
of Planck constants seems to be required by quantum measurement theory. One cannot
overemphasize the importance of this connection.

(b) One can add similar couplings of the net values of the measured observables to the currents
whose existence and conservation is guaranteed by quantum criticality. It is essential that
one maps the observables to Cartan algebra coupled to critical current characterizing the
observable in question. The coupling should have interpretation as a replacement of the in-
duced Kähler gauge potential with its gauge transform. Quantum classical correspondence
encourages the identification of the classical charges associated with Kähler action with
quantal Cartan charges. This would support the interpretation in terms of a measurement
interaction feeding information to classical space-time physics about the eigenvalues of the
observables of the measured system. The resulting field equations remain second order
partial differential equations since the second order partial derivatives appear only linearly
in the added terms.

(c) What about the space-time correlates of electro-weak charges? The earlier proposal explains
this correlation in terms of the properties of quantum states: the coupling of electro-weak
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charges to Chern-Simons term could give the correlation in stationary phase approximation.
It would be however very strange if the coupling of electro-weak charges with the geometry
of the space-time sheet would not have the same universal description based on quantum
measurement theory as isometry charges have.

i. The hint as how this description could be achieved comes from a long standing un-
answered question motivated by the fact that electro-weak gauge group identifiable as
the holonomy group of CP2 can be identified as U(2) subgroup of color group. Could
the electro-weak charges be identified as classical color charges? This might make sense
since the color charges have also identification as fermionic charges implied by quantum
criticality. Or could electro-weak charges be only represented as classical color charges
by mapping them to classical color currents in the measurement interaction term in
the modified Dirac action? At least this question might make sense.

ii. It does not make sense to couple both electro-weak and color charges to the same
fermion current. There are also other fundamental fermion currents which are con-
served. All the following currents are conserved.

Jα = ΨOΓ̂αΨ

O ∈ {1 , J ≡ JklΣkl , ΣAB , ΣABJ} . (4.4.16)

Here Jkl is the covariantly constant CP2 Kähler form and ΣAB is the (also covariantly)
constant sigma matrix of M4 (flatness is absolutely essential).

iii. Electromagnetic charge can be expressed as a linear combination of currents corre-
sponding to O = 1 and O = J and vectorial isospin current corresponds to J . It is
natural to couple of electromagnetic charge to the the projection of Killing vector field
of color hyper charge and coupling it to the current defined by Oem = a + bJ . This
allows to interpret the puzzling finding that electromagnetic charge can be identified
as anomalous color hyper-charge for induced spinor fields made already during the first
years of TGD. There exist no conserved axial isospin currents in accordance with CVC
and PCAC hypothesis which belong to the basic stuff of the hadron physics of old days.

iv. Color charges would couple naturally to lepton and quark number current and the U(1)
part of electro-weak charges to the n = 1 multiple of quark current and n = 3 multiple
of the lepton current (note that leptons resp. quarks correspond to t = 0 resp. t = ±1
color partial waves). If electro-weak resp. couplings to H-chirality are proportional to
1 resp. Γ9, the fermionic currents assigned to color and electro-weak charges can be
regarded as independent. This explains why the possibility of both vectorial and axial
couplings in 8-D sense does not imply the doubling of gauge bosons.

v. There is also an infinite variety of conserved currents obtained as the quantum critical
deformations of the basic fermion currents identified above. This would allow in prin-
ciple to couple an arbitrary number of observables to the geometry of the space-time
sheet by mapping them to Cartan algebras of Poincare and color group for a particular
conserved quantum critical current. Quantum criticality would therefore make possi-
ble classical space-time correlates of observables necessary for quantum measurement
theory.

vi. The coupling constants associated with the deformations would appear in the couplings.
Quantum criticality (K → K + f + f condition) should predict the spectrum of these
couplings. In the case of momentum the coupling would be proportional to

√
G/~0=

kR/~0 and k ∼ 211 should follow from quantum criticality. p-Adic coupling constant
evolution should follow from the dependence on the scale of CD coming as powers of
2.

(d) Quantum criticality implies fluctuations in long length and time scales and it is not surpris-
ing that quantum criticality is needed to produce a correlation between quantal degrees of
freedom and macroscopic degrees of freedom. Note that quantum classical correspondence
can be regarded as an abstract form of entanglement induced by the entanglement between
quantum charges QA and fermion number type charges assignable to zero modes.

(e) Space-time sheets can have an arbitrary number of wormhole contacts so that the interpre-
tation in terms of measurement theory coupling short and long length scales suggests that
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the measurement interaction terms are localizable at the wormhole throats. This would fa-
vor Chern-Simons term or possibly instanton term if reducible to Chern-Simons terms. The
breaking of CP and T might relate to the fact that state function reductions performed in
quantum measurements indeed induce dissipation and breaking of time reversal invariance.

(f) The experimental arrangement quite concretely splits the quantum state to a quantum
superposition of space-time sheets such that each eigenstate of the measured observables
in the superposition corresponds to different space-time sheet already before the realiza-
tion of state function reduction. This relates interestingly to the question whether state
function reduction really occurs or whether only a branching of wave function defined by
WCW spinor field takes place as in multiverse interpretation in which different branches
correspond to different observers. TGD inspired theory consciousness requires that state
function reduction takes place. Maybe multiversalist might be able to find from this picture
support for his own beliefs.

(g) One can argue that ”free will” appears not only at the level of quantum jumps but also as
the possibility to select the observables appearing in the modified Dirac action dictating
in turn the Kähler function defining the Kähler metric of WCW representing the ”laws
of physics”. This need not to be the case. The choice of CD fixes M2 and the geodesic
sphere S2: this does not fix completely the choice of the quantization axis but by isometry
invariance rotations and color rotations do not affect Kähler function for given CD and
for a given type of Cartan algebra. In M4 degrees of freedom the possibility to select the
observables in two manners corresponding to linear and cylindrical Minkowski coordinates
could imply that the resulting Kähler functions are different. The corresponding Kähler
metrics do not differ if the real parts of the Kähler functions associated with the two
choices differ by a term f(Z) + f(Z), where Z denotes complex coordinates of WCW, the
Kähler metric remains the same. The function f can depend also on zero modes. If this
is the case then one can allow in given CD superpositions of WCW spinor fields for which
the measurement interactions are different. This condition is expected to pose non-trivial
constraints on the measurement action and quantize coupling parameters appearing in it.

New view about gravitational mass and matter antimatter asymmetry

The physical interpretation of the additional term in the modified Dirac action might force quite
a radical revision of the ideas about matter and antimatter.

(a) The term pA∂αm
A contracted with the fermion current is analogous to a gauge potential

coupling to fermion number. Since the additional terms in the modified Dirac operator
induce stringy propagation, a natural interpretation of the coupling to the induced spinor
fields is in terms of gravitation. One might perhaps say that the measurement of four
momentum induces gravitational interaction. Besides momentum components also color
charges take the role of gravitational charges. As a matter fact, any observable takes this
role via coupling to the projections of Killing vector fields of Cartan algebra. The analogy
of color interactions with gravitational interactions is indeed one of the oldest ideas in TGD.

(b) The coupling to four-momentum is through fermion number (both quark number and lepton
number). For states with a vanishing fermion number isometry charges therefore vanish.
In this framework matter antimatter asymmetry would be due to the fact that matter (an-
timatter) corresponds to positive (negative) energy parts of zero energy states for massive
systems so that the contributions to the net gravitational four-momentum are of same sign.
Could antimatter be unobservable to us because it resides at negative energy space-time
sheets? As a matter fact, I proposed already years ago that gravitational mass is essentially
the magnitude of the inertial mass but gave up this idea.

(c) Bosons do not couple at all to gravitation if they are purely local bound states of fermion
and anti-fermion at the same space-time sheet (say represented by generators of super Kac-
Moody algebra). Therefore the only possible identification of gauge bosons is as wormhole
contacts. If the fermion and anti-fermion at the opposite throats of the contact correspond
to positive and negative energy states the net gravitational energy receives a positive contri-
bution from both sheets. If both correspond to positive (negative) energy the contributions
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to the net four-momentum have opposite signs. It is not yet clear which identification is
the correct one.

4.4.4 Generalized eigenvalues of DC−S and General Coordinate Invari-
ance

The fixing of light-like 3-surface to be the wormhole throat at which the signature of induced
metric changes from Minkowskian to Euclidian corresponds to a convenient fixing of gauge.
General Coordinate Invariance however requires that any light-like surface Y 3

l parallel to X3
l in

the slicing is equally good choice. In particular, it should give rise to same Kähler metric but
not necessarily the same exponent of Kähler function identified as the product of the generalized
eigenvalues of DC,S at Y 3

l .

General Coordinate Invariance requires that the components of Kähler metric of configuration
space defined in terms of Kähler function as

Gkl = ∂k∂lK =
∑
i

∂k∂lλi

remain invariant under this flow. Here complex coordinate are of course associated with the
configuration space. This is the case if the flow corresponds to the addition of sum of holomorphic
function f(z) and its conjugate f(z)) which is anti-holomorphic function to K. This boils down
to the scaling of eigenvalues λi by

λi → exp(fi(z) + fi(z))λi . (4.4.17)

If the eigenvalues are interpreted as vacuum conformal weights, general coordinate transforma-
tions correspond to a spectral flow scaling the eigenvalues in this manner. This in turn would
induce spectral flow of ground state conformal weights if the squares of λi correspond to ground
state conformal weights.

4.5 Super-conformal symmetries at space-time and con-
figuration space level

The physical interpretation and detailed mathematical understanding of super-conformal sym-
metries has developed rather slowly and has involved several side tracks. In the following I try
to summarize the basic picture with minimal amount of formulas with the understanding that
the statement ”Noether charge associated with geometrically realized Kac-Moody symmetry” is
enough for the reader to write down the needed formula explicitly.

4.5.1 Configuration space as a union of symmetric spaces

In finite-dimensional context globally symmetric spaces are of form G/H and connection and
curvature are independent of the metric, provided it is left invariant under G. The hope is that
same holds true in infinite-dimensional context. The most one can hope of obtaining is the
decomposition C(H) = ∪iG/Hi over orbits of G. One could allow also symmetry breaking in
the sense that G and H depend on the orbit: C(H) = ∪iGi/Hi but it seems that G can be
chosen to be same for all orbits. What is essential is that these groups are infinite-dimensional.
The basic properties of the coset space decomposition give very strong constraints on the group
H, which certainly contains the subgroup of G, whose action reduces to diffeomorphisms of X3.
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Consequences of the decomposition

If the decomposition to a union of coset spaces indeed occurs, the consequences for the cal-
culability of the theory are enormous since it suffices to find metric and curvature tensor for
single representative 3-surface on a given orbit (contravariant form of metric gives propagator in
perturbative calculation of matrix elements as functional integrals over the configuration space).
The representative surface can be chosen to correspond to the maximum of Kähler function on
a given orbit and one obtains perturbation theory around this maximum (Kähler function is not
isometry invariant).

The task is to identify the infinite-dimensional groups G and H and to understand the zero mode
structure of the configuration space. Almost twenty (seven according to long held belief!) years
after the discovery of the candidate for the Kähler function defining the metric, it became finally
clear that these identifications follow quite nicely from Diff4 invariance and Diff4 degeneracy
as well as special properties of the Kähler action.

The guess (not the first one!) would be following. G corresponds to the symplectic transforma-
tions of δM4

±×CP2 leaving the induced Kähler form invariant. If G acts as isometries the values
of Kähler form at partonic 2-surfaces (remember effective 2-dimensionality) are zero modes and
configuration space allows slicing to symplectic orbits of the partonic 2-surface with fixed in-
duced Kähler form. Quantum fluctuating degrees of freedom would correspond to symplectic
group and to the fluctuations of the induced metric. The group H dividing G would in turn
correspond to the Kac-Moody symmetries respecting light-likeness of X3

l and acting in X3
l but

trivially at the partonic 2-surface X2. This coset structure was originally discovered via coset
construction for super Virasoro algebras of super-symplectic and super Kac-Moody algebras and
realizes Equivalence Principle at quantum level.

Configuration space isometries as a subgroup of Diff(δM4
+ × CP2)

The reduction to light cone boundary leads to the identification of the isometry group as some
subgroup of for the group G for the diffeomorphisms of δM4

+ × CP2. These diffeomorphisms
indeed act in a natural manner in δCH, the the space of 3-surfaces in δM4

+×CP2. Configuration
space is expected to decompose to a union of the coset spaces G/Hi, where Hi corresponds to
some subgroup of G containing the transformations of G acting as diffeomorphisms for given X3.
Geometrically the vector fields acting as diffeomorphisms of X3 are tangential to the 3-surface.
Hi could depend on the topology of X3 and since G does not change the topology of 3-surface
each 3-topology defines separate orbit of G. Therefore, the union involves sum over all topologies
of X3 plus possibly other ’zero modes’. Different topologies are naturally glued together since
singular 3-surfaces intermediate between two 3-topologies correspond to points common to the
two sectors with different topologies.

4.5.2 Isometries of configuration space geometry as symplectic trans-
formations of δM4

+ × CP2

During last decade I have considered several candidates for the group G of isometries of the
configuration space as the sub-algebra of the subalgebra of Diff(δM4

+ × CP2). To begin with
let us write the general decomposition of diff(δM4

+ × CP2):

diff(δM4
+ × CP2) = S(CP2)× diff(δM4

+)⊕ S(δM4
+)× diff(CP2) . (4.5.1)

Here S(X) denotes the scalar function basis of space X. This Lie-algebra is the direct sum of
light cone diffeomorphisms made local with respect to CP2 and CP2 diffeomorphisms made local
with respect to light cone boundary.

The idea that entire diffeomorphism group would act as isometries looks unrealistic since the
theory should be more or less equivalent with topological field theory in this case. Consider now
the various candidates for G.



4.5. Super-conformal symmetries at space-time and configuration space level 305

(a) The fact that symplectic transformations of CP2 and M4
+ diffeomorphisms are dynamical

symmetries of the vacuum extremals suggests the possibility that the diffeomorphisms
of the light cone boundary and symplectic transformations of CP2 could leave Kähler
function invariant and thus correspond to zero modes. The symplectic transformations of
CP2 localized with respect to light cone boundary acting as symplectic transformations of
CP2 have interpretation as local color transformations and are a good candidate for the
isometries. The fact that local color transformations are not even approximate symmetries
of Kähler action is not a problem: if they were exact symmetries, Kähler function would
be invariant and zero modes would be in question.

(b) CP2 local conformal transformations of the light cone boundary act as isometries of δM4
+.

Besides this there is a huge group of the symplectic symmetries of δM4
+×CP2 if light cone

boundary is provided with the symplectic structure. Both groups must be considered as
candidates for groups of isometries. δM4

+×CP2 option exploits fully the special properties
of δM4

+ × CP2, and one can develop simple argument demonstrating that δM4
+ × CP2

symplectic invariance is the correct option. Also the construction of configuration space
gamma matrices as super-symplectic charges supports δM4

+ × CP2 option.

This picture remained same for a long time. The discovery that Kac-Moody algebra consisting of
X2 local symmetries generated by Hamiltonians of isometry sub-algebra of symplectic algebra
forced to challenge this picture and ask whether also X2-local transformations of symplectic
group could be involved.

(a) The basic condition is that the X2 local transformation acts leaves induced Kähler form
invariant apart from diffeomorphism. Denote the infinitesimal generator of X2 local sym-
plecto morphism by ΦA(x)jAk, where A labels Hamiltonians in the sum and by jα the
generator of X2 diffeomorphism.

(b) The invariance of J = εαβJαβ
√
g2 modulo diffeomorphism under the infinitesimal symplec-

tic transformation gives

{HA,ΦA} ≡ ∂αH
Aεαβ∂βΦA = ∂αJj

α . (4.5.2)

(c) Note that here the Poisson bracket is not defined by Jαβ but εαβ defined by the induced
metric. Left hand side reflects the failure of symplectomorphism property due to the
dependence of ΦA(x) on X2 coordinate which and comes from the gradients of δM4×CP2

coordinates in the expression of the induced Kähler form. Right hand side corresponds to
the action of infinitesimal diffeomorphism.

(d) Let us assume that one can restrict the consideration to single Hamiltonian so that the
transformation is generated by Φ(x)HA and that to each Φ(x) there corresponds a diffeo-
morphism of X2, which is a symplectic transformation of X2 with respect to symplectic
form εαβ and generated by Hamiltonian Ψ(x). This transforms the invariance condition to

{HA,Φ} ≡ ∂αH
Aεαβ∂βΦ = ∂αJε

αβ∂βΨA = {J,ΨA} . (4.5.3)

This condition can be solved identically by assuming that ΦA and Ψ are proportional to
arbitrary smooth function of J :

Φ = f(J) , ΨA = −f(J)HA . (4.5.4)

Therefore the X2 local symplectomorphisms of H reduce to symplectic transformations of
X2 with Hamiltonians depending on single coordinate J of X2. The analogy with conformal
invariance for which transformations depend on single coordinate z is obvious. As far as
the anti-commutation relations for induced spinor fields are considered this means that
J = consant curves behave as points points. For extrema of J appearing as candidates for
points of number theoretic braids J = constant curves reduce to points.
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(e) From the structure of the conditions it is easy to see that the transformations generate a
Lie-algebra. For the transformations Φ1

AH
A Φ2

AH
A the commutator is

Φ
[1,2]
A = f BC

A ΦBΦC , (4.5.5)

where f BC
A are the structure constants for the symplectic algebra of δM4

± × CP2. From
this form it is easy to check that Jacobi identifies are satisfied. The commutator has same
form as the commutator of gauge algebra generators. BRST gauge symmetry is perhaps
the nearest analog of this symmetry. In the case of isometries these transforms realized
local color gauge symmetry in TGD sense.

(f) If space-time surface allows a slicing to light-like 3-surfaces Y 3
l parallel to X3

l , these con-
ditions make sense also for the partonic 2-surfaces defined by the intersections of Y 3

l with
δM4
± × CP2 and ”parallel” to X2. The local symplectic transformations also generalize to

their local variants in X3
l . Light-likeness of X3

l means effective metric 2-dimensionality so
that 2-D Kähler metric and symplectic form as well as the invariant J = εαβJαβ exist. A
straightforward calculation shows that the the notion of local symplectic transformation
makes sense also now and formulas are exactly the same as above.

4.5.3 SUSY algebra defined by the anticommutation relations of fermionic
oscillator operators and WCW local Clifford algebra elements as chiral
super-fields

Whether TGD allows space-time supersymmetry has been a long-standing question. Majo-
rana spinors appear in N = 1 super-symmetric QFTs- in particular minimally super-symmetric
standard model (MSSM). Majorana-Weyl spinors appear in M-theory and super string models.
An undesirable consequence is chiral anomaly in the case that the numbers of left and right
handed spinors are not same. For D = 11 and D = 10 these anomalies cancel which led to the
breakthrough of string models and later to M-theory. The probable reason for considering these
dimensions is that standard model does not predict right-handed neutrino (although neutrino
mass suggests that right handed neutrino exists) so that the numbers of left and right handed
Weyl-spinors are not the same.

In TGD framework the situation is different. Covariantly constant right-handed neutrino spinor
acts as a super-symmetry in CP2. One might think that right-handed neutrino in a well-
defined sense disappears from the spectrum as a zero mode so that the number of right and
left handed chiralities in M4 × CP2 would not be same. For light-like 3-surfaces covariantly
constant right-handed neutrino does not however solve the counterpart of Dirac equation for a
non-vanishing four-momentum and color quantum numbers of the physical state. Therefore it
does not disappear from the spectrum anymore and one expects the same number of right and
left handed chiralities.

In TGD framework the separate conservation of baryon and lepton numbers excludes Majorana
spinors and also the the Minkowski signature of M4×CP2 makes them impossible. The conclu-
sion that TGD does not allow super-symmetry is however wrong. For N = 2N Weyl spinors are
indeed possible and if the number of right and left handed Weyl spinors is same super-symmetry
is possible. In 8-D context right and left-handed fermions correspond to quarks and leptons and
since color in TGD framework corresponds to CP2 partial waves rather than spin like quantum
number, also the numbers of quark and lepton-like spinors are same.

The physical picture suggest a new kind of approach to super-symmetry in the sense that the
anticommutations of fermionic oscillator operators associated with the modes of the induced
spinor fields define a structure analogous to SUSY algebra. This means that N = 2N SUSY
with large N is in question allowing spins higher than two and also large fermion numbers.
Recall that N ≤ 32 is implied by the absence of spins higher than two and the number of real
spinor components is N = 32 also in TGD. The situation clearly differs from that encountered
in super-string models and SUSYs and the large value of N allows to expect very powerful
constraints on dynamics irrespective of the fact that SUSY is broken. Right handed neutrino
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modes define a sub-algebra for which the SUSY is only slightly broken by the absence of weak
interactions and one could also consider a theory containing a large number of N = 2 super-
multiplets corresponding to the addition of right-handed neutrinos and antineutrinos at the
wormhole throat.

Masslessness condition is essential for super-symmetry and at the fundamental level it could
be formulated in terms of modified gamma matrices using octonionic representation and as-
suming that they span local quaternionic sub-algebra at each point of the space-time sheet.
SUSY algebra has standard interpretation with respect to spin and isospin indices only at the
partonic 2-surfaces so that the basic algebra should be formulated at these surfaces. Effective
2-dimensionality would require that partonic 2-surfaces can be taken to be ends of any light-like
3-surface Y 3

l in the slicing of the region surrounding a given wormhole throat.

Super-algebra associated with the modified gamma matrices

Anti-commutation relations for fermionic oscillator operators associated with the induced spinor
fields are naturally formulated in terms of the modified gamma matrices. Super-conformal
symmetry suggests that the anti-commutation relations for the fermionic oscillator operators at
light-like 3-surfaces or at their ends are most naturally formulated as anti-commutation relations
for SUSY algebra. The resulting anti-commutation relations would fix the quantum TGD.

{a†nα, anβ} = DmnDαβ ,

D = (pµ +
∑
a

Qµa)σ̂µ . (4.5.6)

Here pµ and Qµa are space-time projections of momentum and color charges in Cartan algebra.
Their action is purely algebraic. The anti-commutations are nothing but a generalization of the
ordinary equal-time anticommutation relations for fermionic oscillator operators to a manifestly
covariant form. The matrix Dm,n is expected to reduce to a diagonal form with a proper
normalization of the oscillator operators. The experience with extended SUSY algebra suggest
that the anti-commutators could contain additional central term proportional to δαβ .

One can consider basically two different options concerning the definition of the super-algebra.

(a) If the super-algebra is defined at the 3-D ends of the intersection of X4 with the boundaries
of CD, the modified gamma matrices appearing in the operator D appearing in the anti-
commutator are associated with Kähler action. If the generalized masslessness condition
D2 = 0 holds true -as suggested already earlier- one can hope that no explicit breaking of
super-symmetry takes place and elegant description of massive states as effectively massless
states making also possible generalization of twistor is possible. One must however notice
that also massive representatives of SUSY exist.

(b) SUSY algebra could be also defined at 2-D ends of light-like 3-surfaces.

According to considerations of [K28] these options are equivalent for a large class of space-time
sheets. If the effective 3-dimensionality realized in the sense that the effective metric defined
by the modified gamma matrices is degenerate, propagation takes place along 3-D light-like
3-surfaces. This condition definitely fails for string like objects.

One can realize the local Clifford algebra also by introducing theta parameters in the standard
manner and the expressing a collection of local Clifford algebra element with varying values of
fermion numbers (function of CD and CP2 coordinates) as a chiral super-field. The definition
of a chiral super field requires the introduction of super-covariant derivatives. Standard form for
the anti-commutators of super-covariant derivatives Dα make sense only if they do not affect the
modified gamma matrices. This is achieved if pk acts on the position of the tip of CD (rather
than internal coordinates of the space-time sheet). Qa in turn must act on CP2 coordinates of
the tip.
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Super-fields associated with WCW Clifford algebra

WCW local Clifford algebra elements possess definite fermion numbers and it is not physically
sensible to super-pose local Clifford algebra elements with different fermion numbers. The
extremely elegant formulation of super-symmetric theories in terms of super-fields encourages
to ask whether the local Clifford algebra elements could allow expansion in terms of complex
theta parameters assigned to various fermionic oscillator operator in order to obtain formal
superposition of elements with different fermion numbers. One can also ask whether the notion
of chiral super field might make sense.

The obvious question is whether it makes sense to assign super-fields with the modified gamma
matrices.

(a) Modified gamma matrices are not covariantly constant but this is not a problem since
the action of momentum generators and color generators is purely algebraic space-time
coordinates.

(b) One can define the notion of chiral super-field also at the fundamental level. Chiral super-
field would be continuation of the local Clifford algebra of associated with CD to a local
Clifford algebra element associated with the union of CDs. This would allow elegant
description of cm degrees of freedom, which are the most interesting as far as QFT limit is
considered.

(c) Kähler function of WCW as a function of complex coordinates could be extended to a chiral
super-field defined in quantum fluctuation degrees of freedom. It would depend on zero
modes too. Does also the latter dependence allow super-space continuation? Coefficients
of powers of theta would correspond to fermionic oscillator operators. Does this function
define the propagators of various states associated with light-like 3-surface? Configuration
space complex coordinates would correspond to the modes of induced spinor field so that
super-symmetry would be realized very concretely.

4.5.4 Identification of Kac-Moody symmetries

The Kac-Moody algebra of symmetries acting as symmetries respecting the light-likeness of
3-surfaces plays a crucial role in the identification of quantum fluctuating configuration space
degrees of freedom contributing to the metric.

Identification of Kac-Moody algebra

The generators of bosonic super Kac-Moody algebra leave the light-likeness condition
√
g3 = 0

invariant. This gives the condition

δgαβCof(gαβ) = 0 , (4.5.7)

Here Cof refers to matrix cofactor of gαβ and summation over indices is understood. The
conditions can be satisfied if the symmetries act as combinations of infinitesimal diffeomorphisms
xµ → xµ + ξµ of X3 and of infinitesimal conformal symmetries of the induced metric

δgαβ = λ(x)gαβ + ∂µgαβξ
µ + gµβ∂αξ

µ + gαµ∂βξ
µ . (4.5.8)
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Ansatz as an X3-local conformal transformation of imbedding space

Write δhk as a super-position of X3-local infinitesimal diffeomorphisms of the imbedding space
generated by vector fields JA = jA,k∂k:

δhk = cA(x)jA,k . (4.5.9)

This gives

cA(x)
[
Dkj

A
l +Dlj

A
k

]
∂αh

k∂βh
l + 2∂αcAhklj

A,k∂βh
l

= λ(x)gαβ + ∂µgαβξ
µ + gµβ∂αξ

µ + gαµ∂βξ
µ . (4.5.10)

If an X3-local variant of a conformal transformation of the imbedding space is in question, the
first term is proportional to the metric since one has

Dkj
A
l +Dlj

A
k = 2hkl . (4.5.11)

The transformations in question includes conformal transformations of H± and isometries of the
imbedding space H.

The contribution of the second term must correspond to an infinitesimal diffeomorphism of X3

reducible to infinitesimal conformal transformation ψµ:

2∂αcAhklj
A,k∂βh

l = ξµ∂µgαβ + gµβ∂αξ
µ + gαµ∂βξ

µ . (4.5.12)

A rough analysis of the conditions

One could consider a strategy of fixing cA and solving solving ξµ from the differential equations.
In order to simplify the situation one could assume that gir = grr = 0. The possibility to cast
the metric in this form is plausible since generic 3-manifold allows coordinates in which the
metric is diagonal.

(a) The equation for grr gives

∂rcAhklj
Ak∂rh

k = 0 . (4.5.13)

The radial derivative of the transformation is orthogonal to X3. No condition on ξα results.
If cA has common multiplicative dependence on cA = f(r)dA by a one obtains

dAhklj
Ak∂rh

k = 0 . (4.5.14)

so that JA is orthogonal to the light-like tangent vector ∂rh
k X3 which is the counter-

part for the condition that Kac-Moody algebra acts in the transversal degrees of freedom
only. The condition also states that the components gri is not changed in the infinitesimal
transformation.

It is possible to choose f(r) freely so that one can perform the choice f(r) = rn and
the notion of radial conformal weight makes sense. The dependence of cA on transversal
coordinates is constrained by the transversality condition only. In particular, a common
scale factor having free dependence on the transversal coordinates is possible meaning that
X3- local conformal transformations of H are in question.
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(b) The equation for gri gives

∂rξ
i = ∂rcAhklj

Akhij∂jh
k . (4.5.15)

The equation states that gri are not affected by the symmetry. The radial dependence of
ξi is fixed by this differential equation. No condition on ξr results. These conditions imply
that the local gauge transformations are dynamical with the light-like radial coordinate r
playing the role of the time variable. One should be able to fix the transformation more or
less arbitrarily at the partonic 2-surface X2.

(c) The three independent equations for gij give

ξα∂αgij + gkj∂iξ
k + gki∂jξ

k = ∂icAhklj
Ak∂jh

l . (4.5.16)

These are 3 differential equations for 3 functions ξα on 2 independent variables xi with r
appearing as a parameter. Note however that the derivatives of ξr do not appear in the
equation. At least formally equations are not over-determined so that solutions should
exist for arbitrary choices of cA as functions of X3 coordinates satisfying the orthogonality
conditions. If this is the case, the Kac-Moody algebra can be regarded as a local algebra
in X3 subject to the orthogonality constraint.

This algebra contains as a subalgebra the analog of Kac-Moody algebra for which all cA
except the one associated with time translation and fixed by the orthogonality condition
depends on the radial coordinate r only. The larger algebra decomposes into a direct sum
of representations of this algebra.

Commutators of infinitesimal symmetries

The commutators of infinitesimal symmetries need not be what one might expect since the vector
fields ξµ are functionals cA and of the induced metric and also cA depends on induced metric
via the orthogonality condition. What this means that jA,k in principle acts also to φB in the
commutator [cAJ

A, cBJ
B ].

[
cAJ

A, cBJ
B
]

= cAcBJ
[A,B] + JA ◦ cBJB − JB ◦ cAJA , (4.5.17)

where ◦ is a short hand notation for the change of cB induced by the effect of the conformal
transformation JA on the induced metric.

Luckily, the conditions in the case grr = gir = 0 state that the components grr and gir of the
induced metric are unchanged in the transformation so that the condition for cA resulting from
grr component of the metric is not affected. Also the conditions coming from gir = 0 remain
unchanged. Therefore the commutation relations of local algebra apart from constraint from
transversality result.

The commutator algebra of infinitesimal symmetries should also close in some sense. The or-
thogonality to the light-like tangent vector creates here a problem since the commutator does
not obviously satisfy this condition automatically. The problem can be solved by following the
recipes of non-covariant quantization of string model.

(a) Make a choice of gauge by choosing time translation P 0 in a preferred M4 coordinate
frame to be the preferred generator JA0 ≡ P 0, whose coefficient ΦA0

≡ Ψ(P 0) is solved
from the orthogonality condition. This assumption is analogous with the assumption that
time coordinate is non-dynamical in the quantization of strings. The natural basis for the
algebra is obtained by allowing only a single generator JA besides P 0 and putting dA = 1.
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(b) This prescription must be consistent with the well-defined radial conformal weight for
the JA 6= P 0 in the sense that the proportionality of dA to rn for JA 6= P 0 must be
consistent with commutators. SU(3) part of the algebra is of course not a problem. From
the Lorentz vector property of P k it is clear that the commutators resulting in a repeated
commutation have well-defined radial conformal weights only if one restricts SO(3, 1) to
SO(3) commuting with P 0. Also D could be allowed without losing well-defined radial
conformal weights but the argument below excludes it. This picture conforms with the
earlier identification of the Kac-Moody algebra.

Conformal algebra contains besides Poincare algebra and the dilation D = mk∂mk the
mutually commuting generators Kk = (mrmr∂mk − 2mkml∂ml)/2. The commutators
involving added generators are

[
D,Kk

]
= −Kk ,

[
D,P k

]
= P k ,[

Kk,Kl
]

= 0 ,
[
Kk, P l

]
= mklD −Mkl .

(4.5.18)

From the last commutation relation it is clear that the inclusion of Kk would mean loss of
well-defined radial conformal weights.

(c) The coefficient dm0/dr of Ψ(P 0) in the equation

Ψ(P 0)
dm0

dr
= −JAkhkl∂rhl

is always non-vanishing due to the light-likeness of r. Since P 0 commutes with generators
of SO(3) (but not with D so that it is excluded!), one can define the commutator of two
generators as a commutator of the remaining part and identify Ψ(P 0) from the condition
above.

(d) Of course, also the more general transformations act as Kac-Moody type symmetries but
the interpretation would be that the sub-algebra plays the same role as SO(3) in the case of
Lorentz group: that is gives rise to generalized spin degrees of freedom whereas the entire
algebra divided by this sub-algebra would define the coset space playing the role of orbital
degrees of freedom. In fact, also the Kac-Moody type symmetries for which cA depends
on the transversal coordinates of X3 would correspond to orbital degrees of freedom. The
presence of these orbital degrees of freedom arranging super Kac-Moody representations
into infinite multiplets labeled by function basis for X2 means that the number of degrees
of freedom is much larger than in string models.

(e) It is possible to replace the preferred time coordinate m0 with a preferred light-like coor-
dinate. There are good reasons to believe that orbifold singularity for phases of matter
involving non-standard value of Planck constant corresponds to a preferred light-ray going
through the tip of δM4

±. Thus it would be natural to assume that the preferred M4 coor-
dinate varies along this light ray or its dual. The Kac-Moody group SO(3)×E3 respecting
the radial conformal weights would reduce to SO(2) × E2 as in string models. E2 would
act in tangent plane of S2

± along this ray defining also SO(2) rotation axis.

Hamiltonians

The action of these transformations on Kähler action is well-defined and one can deduce the
conserved quantities having identification as configuration space Hamiltonians. Hamiltonians
also correspond to closed 2-forms. The condition that the Hamiltonian reduces to a dual of
closed 2-form is satisfied becauseX2-local conformal transformations ofM4

±×CP2 are in question
(X2-locality does not imply any additional conditions).

The action of Kac-Moody algebra on spinors and fermionic representations of Kac-
Moody algebra

One can imagine two interpretations for the action of generalized Kac-Moody transformations
on spinors.
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(a) The basic goal is to deduce the fermionic Noether charge associated with the bosonic Kac-
Moody symmetry and this can be done by a standard recipe. The first contribution to
the charge comes from the transformation of modified gamma matrices appearing in the
modified Dirac action associated with fermions. Second contribution comes from spinor
rotation.

(b) Both SO(3) and SU(3) rotations have a standard action as spin rotation and electro-weak
rotation allowing to define the action of the Kac-Moody algebra JA on spinors.

How central extension term could emerge?

The central extension term of Kac-Moody algebra could correspond to a symplectic extension
which can emerge from the freedom to add a constant term to Hamiltonians as in the case of
super-symplectic algebra. The expression of the Hamiltonians as closed forms could allow to
understand how the central extension term emerges.

In principle one can construct a representation for the action of Kac-Moody algebra on fermions
a representations as a fermionic bilinear and the central extension of Kac-Moody algebra could
emerge in this construction just as it appears in Sugawara construction.

About the interpretation of super Kac-Moody symmetries

Also the light like 3-surfacesX3
l ofH defining elementary particle horizons at which Minkowskian

signature of the metric is changed to Euclidian and boundaries of space-time sheets can act as
causal determinants, and thus contribute to the configuration space metric. In this case the
symmetries correspond to the isometries of the imbedding space localized with respect to the
complex coordinate of the 2-surface X2 determining the light like 3-surface X3

l so that Kac-
Moody type symmetry results. Also the condition

√
g3 = 0 for the determinant of the induced

metric seems to define a conformal symmetry associated with the light like direction.

If is enough to localize only the H-isometries with respect to X3
l , the purely bosonic part of the

Kac-Moody algebra corresponds to the isometry group M4 × SO(3, 1) × SU(3). The physical
interpretation of these symmetries is not so obvious as one might think. The point is that one
can generalize the formulas characterizing the action of infinitesimal isometries on spinor fields
of finite-dimensional Kähler manifold to the level of the configuration space. This gives rise to
bosonic generators containing also a sigma-matrix term bilinear in fermionic oscillator operators.
This representation need not be equivalent with the purely fermionic representations provided
by induced Dirac action. Thus one has two groups of local color charges and the challenge is to
find a physical interpretation for them.

The following arguments support one possible identification.

(a) The hint comes from the fact that U(2) in the decomposition CP2 = SU(3)/U(2) corre-
sponds in a well-defined sense electro-weak algebra identified as a holonomy algebra of the
spinor connection. Hence one could argue that the U(2) generators of either SU(3) algebra
might be identifiable as generators of local U(2)ew gauge transformations whereas non-
diagonal generators would correspond to Higgs field. This interpretation would conform
with the idea that Higgs field is a genuine scalar field rather than a composite of fermions.

(b) Since X3
l -local SU(3) transformations represented by fermionic currents are characterized

by central extension they would naturally correspond to the electro-weak gauge algebra
and Higgs bosons. This is also consistent with the fact that both leptons and quarks define
fermionic Kac Moody currents.

(c) The fact that only quarks appear in the gamma matrices of the configuration space supports
the view that action of the generators of X3

l -local color transformations on configuration
space spinor fields represents local color transformations. If the action of X3

l -local SU(3)
transformations on configuration space spinor fields has trivial central extension term the
identification as a representation of local color symmetries is possible.
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The topological explanation of the family replication phenomenon is based on an assignment
of 2-dimensional boundary to a 3-surface characterizing the elementary particle. The precise
identification of this surface has remained open and one possibility is that the 2-surface X2

defining the light light-like surface associated with an elementary particle horizon is in question.
This assumption would conform with the notion of elementary particle vacuum functionals
defined in the zero modes characterizing different conformal equivalences classes for X2.

The relationship of the Super-Kac Moody symmetry to the standard super-conformal
invariance

Super-Kac Moody symmetry can be regarded as N = 4 complex super-symmetry with complex
H-spinor modes of H representing the 4 physical helicities of 8-component leptonic and quark
like spinors acting as generators of complex dynamical super-symmetries. The super-symmetries
generated by the covariantly constant right handed neutrino appear with both M4 helicities: it
however seems that covariantly constant neutrino does not generate any global super-symmetry
in the sense of particle-sparticle mass degeneracy. Only righthanded neutrino spinor modes
(apart from covariantly constant mode) appear in the expressions of configuration space gamma
matrices forming a subalgebra of the full super-algebra.

N = 2 real super-conformal algebra is generated by the energy momentum tensor T (z), U(1)
current J(z), and super generators G±(z) carrying U(1) charge. Now U(1) current would cor-
respond to right-handed neutrino number and super generators would involve contraction of
covariantly constant neutrino spinor with second quantized induced spinor field. The further
facts that N = 2 algebra is associated naturally with Kähler geometry, that the partition func-
tions associated with N = 2 super-conformal representations are modular invariant, and that
N = 2 algebra defines so called chiral ring defining a topological quantum field theory [A71],
lend a further support for the belief that N = 2 super-conformal algebra acts in super-symplectic
degrees of freedom.

The values of c and conformal weights for N = 2 super-conformal field theories are given by

c =
3k

k + 2
,

∆l,m(NS) =
l(l + 2)−m2

4(k + 2)
, l = 0, 1, ..., k ,

qm =
m

k + 2
, m = −l,−l + 2, ...., l − 2, l . (4.5.19)

qm is the fractional value of the U(1) charge, which would now correspond to a fractional fermion
number. For k = 1 one would have q = 0, 1/3,−1/3, which brings in mind anyons. ∆l=0,m=0 = 0
state would correspond to a massless state with a vanishing fermion number. Note that SU(2)k
Wess-Zumino model has the same value of c but different conformal weights. More information
about conformal algebras can be found from the appendix of [A71].

For Ramond representation L0 − c/24 or equivalently G0 must annihilate the massless states.
This occurs for ∆ = c/24 giving the condition k = 2

[
l(l + 2)−m2

]
(note that k must be

even and that (k, l,m) = (4, 1, 1) is the simplest non-trivial solution to the condition). Note the
appearance of a fractional vacuum fermion number qvac = ±c/12 = ±k/4(k+2). I have proposed
that NS and Ramond algebras could combine to a larger algebra containing also lepto-quark type
generators but this not necessary.

The conformal algebra defined as a direct sum of Ramond and NS N = 4 complex sub-algebras
associated with quarks and leptons might further extend to a larger algebra if lepto-quark
generators acting effectively as half odd-integer Virasoro generators can be allowed. The algebra
would contain spin and electro-weak spin as fermionic indices. Poincare and color Kac-Moody
generators would act as symplectically extended isometry generators on configuration space
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Hamiltonians expressible in terms of Hamiltonians of X3
l × CP2. Electro-weak and color Kac-

Moody currents have conformal weight h = 1 whereas T and G have conformal weights h = 2
and h = 3/2.

The experience with N = 4 complex super-conformal invariance suggests that the extended
algebra requires the inclusion of also second quantized induced spinor fields with h = 1/2 and
their super-partners with h = 0 and realized as fermion-antifermion bilinears. Since G and Ψ
are labeled by 2× 4 spinor indices, super-partners would correspond to 2× (3 + 1) = 8 massless
electro-weak gauge boson states with polarization included. Their inclusion would make the
theory highly predictive since induced spinor and electro-weak fields are the fundamental fields
in TGD.

4.5.5 Coset space structure for configuration space as a symmetric
space

The key ingredient in the theory of symmetric spaces is that the Lie-algebra of G has the
following decomposition

g = h+ t ,
[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h .

In present case this has highly nontrivial consequences. The commutator of any two infinitesi-
mal generators generating nontrivial deformation of 3-surface belongs to h and thus vanishing
norm in the configuration space metric at the point which is left invariant by H. In fact,
this same condition follows from Ricci flatness requirement and guarantees also that G acts as
isometries of the configuration space. This generalization is supported by the properties of the
unitary representations of Lorentz group at the light cone boundary and by number theoretical
considerations.

The algebras suggesting themselves as candidates are symplectic algebra of δM± × CP2 and
Kac-Moody algebra mapping light-like 3-surfaces to light-like 3-surfaces to be discussed in the
next section.

The identification of the precise form of the coset space structure is however somewhat delicate.

(a) The essential point is that both symplectic and Kac-Moody algebras allow representation
in terms of X3

l -local Hamiltonians. The general expression for the Hamilton of Kac-Moody
algebra is

H =
∑

ΦA(x)HA . (4.5.20)

Here HA are Hamiltonians of SO(3)×SU(3) acting in δX3
l ×CP2. For symplectic algebra

any Hamiltonian is allowed. If x corresponds to any point of X3
l , one must assume a slicing

of the causal diamond CD by translates of δM4
±.

(b) For symplectic generators the dependence of form on r∆ on light-like coordinate of δX3
l ×

CP2 is allowed. ∆ is complex parameter whose modulus squared is interpreted as conformal
weight. ∆ is identified as analogous quantum number labeling the modes of induced spinor
field.

(c) One can wonder whether the choices of the rM = constant sphere S2 is the only choice.
The Hamiltonin-Jacobi coordinate for X4

X3
l

suggest an alternative choice as E2 in the

decomposition of M4 = M2(x) × E2(x) required by number theoretical compactification
and present for known extremals of Kähler action with Minkowskian signature of induced
metric. In this case SO(3) would be replaced with SO(2). It however seems that the radial
light-like coordinate u of X4(X3

l ) would remain the same since any other curve along light-
like boundary would be space-like.
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(d) The vector fields for representing Kac-Moody algebra must vanish at the partonic 2-surface
X2 ⊂ δM4

± × CP2. The corresponding vector field must vanish at each point of X2:

jk =
∑

ΦA(x)JklHA
l = 0 . (4.5.21)

This means that the vector field corresponds to SO(2)× U(2) defining the isotropy group
of the point of S2 × CP2.

This expression could be deduced from the idea that the surfaces X2 are analogous to origin
of CP2 at which U(2) vector fields vanish. Configuration space at X2 could be also regarded
as the analog of the origin of local S2 × CP2. This interpretation is in accordance with
the original idea which however was given up in the lack of proper realization. The same
picture can be deduced from braiding in which case the Kac-Moody algebra corresponds
to local SO(2) × U(2) for each point of the braid at X2. The condition that Kac-Moody
generators with positive conformal weight annihilate physical states could be interpreted
by stating effective 2-dimensionality in the sense that the deformations of X3

l preserving
its light-likeness do not affect the physics. Note however that Kac-Moody type Virasoro
generators do not annihilate physical states.

(e) Kac-Moody algebra generator must leave induced Kähler form invariant at X2. This is of
course trivial since the action leaves each point invariant. The conditions of Cartan decom-
position are satisfied. The commutators of the Kac-Moody vector fields with symplectic
generators are non-vanishing since the action of symplectic generator on Kac-Moody gen-
erator restricted to X2 gives a non-vanishing result belonging to the symplectic algebra.
Also the commutators of Kac-Moody generators are Kac-Moody generators.

4.5.6 The relationship between super-symplectic and Super Kac-Moody
algebras, Equivalence Principle, and justification of p-adic thermody-
namics

The relationship between super-symplectic algebra (SS) acting at light-cone boundary and Super
Kac-Moody algebra (SKM) acting on light-like 3-surfaces has remained somewhat enigmatic
due to the lack of physical insights. This is not the only problem. The question to precisely
what extent Equivalence Principle (EP) remains true in TGD framework and what might be
the precise mathematical realization of EP is waiting for an answer. Also the justification of
p-adic thermodynamics for the scaling generator L0 of Virasoro algebra -in obvious conflict with
the basic wisdom that this generator should annihilate physical states- is lacking. It seems that
these three problems could have a common solution.

New vision about the relationship between SSV and SKMV

Consider now the new vision about the relationship between SSV and SKMV .

(a) The isometries of H assignable with SKM are also symplectic transformations [K17] (note
that I have used the attribute ”canonical” instead of ”symplectic” previously). Hence might
consider the possibility that SKM could be identified as a subalgebra of SS. If this makes
sense, a generalization of the coset construction obtained by replacing finite-dimensional Lie
group with infinite-dimensional symplectic group suggests itself. The differences of SSV
and SKMV elements would annihilate physical states and commute/anticommute with
SKMV . Also the generators On, n > 0, for both algebras would annihilate the physical
states so that the differences of the elements would annihilate automatically physical states
for n > 0.

(b) The super-generator G0 contains the Dirac operator D of H. If the action of SSV and
SKMV Dirac operators on physical states are identical then cm of degrees of freedom
disappear from the differences G0(SCV )−G0(SKMV ) and L0(SCV )−L0(SKMV ). One
could interpret the identical action of the Dirac operators as the long sought-for precise
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realization of Equivalence Principle (EP) in TGD framework. EP would state that the total
inertial four-momentum and color quantum numbers assignable to SS (imbedding space
level) are equal to the gravitational four-momentum and color quantum numbers assignable
to SKM (space-time level). Note that since super-symplectic transformations correspond
to the isometries of the ”world of classical worlds” the assignment of the attribute ”inertial”
to them is natural.

Consistency with p-adic thermodynamics

The consistency with p-adic thermodynamics provides a strong reality test and has been already
used as a constraint in attempts to understand the super-conformal symmetries in partonic level.

(a) In physical states the p-adic thermal expectation value of the SKM and SS conformal
weights would be non-vanishing and identical and mass squared could be identified equiv-
alently either as the expectation value of SKM or SS scaling generator L0. There would
be no need to give up Super Virasoro conditions for SCV − SKMV .

(b) There is consistency with p-adic mass calculations for hadrons [K53] since the non-perturbative
SS contributions and perturbative SKM contributions to the mass correspond to space-
time sheets labeled by different p-adic primes. The earlier statement that SS is responsible
for the dominating non-perturbative contributions to the hadron mass transforms to a
statement reflecting SS − SKM duality. The perturbative quark contributions to hadron
masses can be calculated most conveniently by using p-adic thermodynamics for SKM
whereas non-perturbative contributions to hadron masses can be calculated most conve-
niently by using p-adic thermodynamics for SS. Also the proposal that the exotic analogs
of baryons resulting when baryon looses its valence quarks [K47] remains intact in this
framework.

(c) The results of p-adic mass calculations depend crucially on the number N of tensor factors
contributing to the Super-Virasoro algebra. The required number is N = 5 and during years
I have proposed several explanations for this number. It seems that holonomic contributions
that is electro-weak and spin contributions must be regarded as contributions separate from
those coming from isometries. SKM algebras in electro-weak degrees and spin degrees of
of freedom, would give 2+1=3 tensor factors corresponding to U(2)ew × SU(2). SU(3)
and SO(3) (or SO(2) ⊂ SO(3) leaving the intersection of light-like ray with S2 invariant)
would give 2 additional tensor factors. Altogether one would indeed have 5 tensor factors.

There are some further questions which pop up in mind immediately.

(a) Why mass squared corresponds to the thermal expectation value of the net conformal
weight? This option is forced among other things by Lorentz invariance but it is not possible
to provide a really satisfactory answer to this question yet. In the coset construction there
is no reason to require that the mass squared equals to the integer value conformal weight
for SKM algebra. This allows the possibility that mass squared has same value for states
with different values of SKM conformal weights appearing in the thermal state and equals
to the average of the conformal weight.

(b) The coefficient of proportionality can be however deduced from the observation that the
mass squared values for CP2 Dirac operator correspond to definite values of conformal
weight in p-adic mass calculations. It is indeed possible to assign to partonic 2-surface
X2 CP2 partial waves correlating strongly with the net electro-weak quantum numbers of
the parton so that the assignment of ground state conformal weight to CP2 partial waves
makes sense.

(c) In the case of M4 degrees of freedom it is strictly speaking not possible to talk about
momentum eigen states since translations take parton out of δH+. This would suggests
that 4-momentum must be assigned with the tip of the light-cone containing the particle
but this is not consistent with zero energy ontology. Hence it seems that one must restrict
the translations of X3

l to time like translations in the direction of geometric future at
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δM4
+×CP2. The decomposition of the partonic 3-surface X3

l to regions X3
l,i carrying non-

vanishing induced Kähler form and the possibility to assign M2(x) ⊂ M4 to the tangent
space of X4(X3

l ) at points of X3
l suggests that the points of number theoretic braid to

which oscillator operators can be assigned can carry four-momentum in the plane defined
by M2(x). One could assume that the four-momenta assigned with points in given region
X3
i are collinear but even this restriction is not necessary.

(d) The additivity of conformal weight means additivity of mass squared at parton level and
this has been indeed used in p-adic mass calculations. This implies the conditions

(
∑
i

pi)
2 =

∑
i

m2
i (4.5.22)

The assumption p2
i = m2

i makes sense only for massless partons moving collinearly. In
the QCD based model of hadrons only longitudinal momenta and transverse momentum
squared are used as labels of parton states, which together with the presence of preferred
plane M2 would suggest that one has

p2
i,|| = m2

i ,

−
∑
i

p2
i,⊥ + 2

∑
i,j

pi · pj = 0 . (4.5.23)

The masses would be reduced in bound states: m2
i → m2

i − (p2
T )i. This could explain why

massive quarks can behave as nearly massless quarks inside hadrons.

How it is possible to have negative conformal weights for ground states?

p-Adic mass calculations require negative conformal weights for ground states [K43] . The only
elegant solution of the problems caused by this requirement seems to be p-adic: the conformal
weights are positive in the real sense but as p-adic numbers their dominating part is negative
integer (in the real sense), which can be compensated by the conformal weights of Super Virasoro
generators.

(a) If ±λ2
i as such corresponds to a ground state conformal weight and if λi is real the ground

state conformal weight positive in the real sense. In complex case (instanton term) the
most natural formula is h = ±|λ|2.

(b) The first option is based on the understanding of conformal excitations in terms of CP
breaking instanton term added to the modified Dirac operator. In this case the conformal
weights are identified as h = n − |λk|2 and the minus sign comes from the Euclidian
signature of the effective metric for the modified Dirac operator. Ground state conformal
weight would be non-vanishing for non-zero modes of D(X3

l ). Massless bosons produce
difficulties unless one has h = |λi(1) − λi(2)|2, where i = 1, 2 refers to the two wormhole
throats. In this case the difference can vanish and its non-vanishing would be due to the
symmetric breaking. This scenario is assumed in p-adic mass calculations. Fermions are
predicted to be always massive since zero modes of D(X2) represent super gauge degrees
of freedom.

(c) In the context of p-adic thermodynamics a loop hole opens allowing λi to be real. In spirit
of rational physics suppose that one has in natural units h = λ2

i = xp2 − n, where x is
integer. This number is positive and large in the real sense. In p-adic sense the dominating
part of this number is −n and can be compensated by the net conformal weight n of Super
Virasoro generators acting on the ground state. xp2 represents the small Higgs contribution
to the mass squared proportional to (xp2)R ' x/p2 (R refers to canonical identification ).
By the basic features of the canonical identification p > x ' p should hold true for gauge
bosons for which Higgs contribution dominates. For fermions x should be small since p-adic
mass calculations are consistent with the vanishing of Higgs contribution to the fermion



318 Chapter 4. Construction of Quantum Theory: Symmetries

mass. This would lead to the earlier conclusion that xp2 and hence BK is large for bosons
and small for fermions and that the size of fermionic (bosonic) wormhole throat is large
(small). This kind of picture is consistent with the p-adic modular arithmetics and suggests
by the cutoff for conformal weights implied by the fact that both the number of fermionic
oscillator operators and the number of points of number theoretic braid are finite. This
solution is however tricky and does not conform with number theoretical universality.

4.6 Trying to understand N = 4 super-conformal symme-
try

The original idea was that N = 4 super-conformal symmetry is a symmetry generated by
the solutions of the modified Dirac equation for the second quantized induced spinor fields.
Later I was ended up with this symmetry by considering the general structure of these algebras
interpreted in TGD framework. In the following the latter approach is discussed in detail.

Needless to say, a lot remains to be understood. One of the problems is that my understanding
of N = 4 super-conformal symmetry at technical level is rather modest. There are also profound
differences between these two kinds of super conformal symmetries. In TGD framework super
generators carry quark or lepton number, super-symplectic and super Kac-Moody generators are
identified as Hamiltonians rather than vector fields, and symplectic group is infinite-dimensional
whereas the Lie groups associated with Kac-Moody algebras are finite-dimensional. On the
other hand, finite measurement resolution implies discretization and cutoff in conformal weight.
Therefore the naive attempt to re-interpret results of standard super-conformal symmetry to
TGD framework might lead to erratic conclusions.

N > 0 super-conformal algebras contain besides super Virasoro generators also other types of
generators and this raises the question whether it might be possible to find an algebra coding
the basic quantum numbers of the induced spinor fields.

There are several variants of N = 4 SCAs and they correspond to the Kac-Moody algebras
SU(2) (small SCA), SU(2) × SU(2) × U(1) (large SCA) and SU(2) × U(1)4. Rasmussen has
found also a fourth variant based on SU(2) × U(1) Kac-Moody algebra [A123] . It seems that
only minimal and maximal N = 4 SCAs can represent realistic options. The reduction to almost
topological string theory in critical phase is probably lost for other than minimal SCA but could
result as an appropriate limit for other variants.

It must be emphasized that the discussion of this section is not based on the recent view about
generalization of space-time supersymmetry to TGD framework in which fermionic oscillator
operators define an infinite-dimensional super-symmetry algebra with anticommutators fixed by
the measurement interaction term of the modified Dirac action [K28] . Therefore the direction
connection with quantum TGD remains loose.

4.6.1 Large N = 4 SCA

Large N = 4 SCA is described in the following in detail since it might be a natural algebra in
TGD framework.

The structure of large N = 4 SCA algebra

Large N = 4 super-conformal symmetry with SU(2)+ × SU(2)− × U(1) inherent Kac-Moody
symmetry correspond to a fundamental partonic super-conformal symmetry in TGD framework.

A concise discussion of this symmetry with explicit expressions of commutation and anticommu-
tation relations can be found in [A123] . The representations of SCA are characterized by three
central extension parameters for Kac-Moody algebras but only two of them are independent and
given by



4.6. Trying to understand N = 4 super-conformal symmetry 319

k± ≡ k(SU(2)±) ,

k1 ≡ k(U(1)) = k+ + k− . (4.6.1)

The central extension parameter c is given as

c =
6k+k−
k+ + k−

. (4.6.2)

and is rational valued as required.

A much studied N = 4 SCA corresponds to the special case

k− = 1 , k+ = k + 1 , k1 = k + 2 ,

c =
6(k + 1)

k + 2
. (4.6.3)

c = 0 would correspond to k+ = 0, k− = 1, k1 = 1. For k+ > 0 one has k1 = k+ + k− 6= k+.

About unitary representations of large N = 4 SCA

The unitary representations of large N = 4 SCA are briefly discussed in [A88] . The repre-
sentations are labeled by the ground state conformal weigh h, SU(2) spins l+, l−, and U(1)
charge u. Besides the inherent Kac-Moody algebra there is also ”external” Kac-Moody group
G involved and could correspond in TGD framework to the symplectic algebra associated with
δH± = δM4

± × CP2 or to Kac-Moody group respecting light-likeness of light-like 3-surfaces.

Unitarity constraints apply completely generally irrespective of G so that one can apply them
also in TGD framework. There are two kinds of unitary representations.

(a) Generic/long/massive representations which are ge generated from vacuum state as usual.
In this case there are no null vectors.

(b) Short or massless representations have a null vector. The expression for the conformal
weigt hshort of the null vector reads in terms of l+, l− and k+, k− as

hshort =
1

k+ + k−
(k−l+ + k+l− + (l+ − l−)2 + u2) . (4.6.4)

Unitarity demands that both short and long representations lie at or above h ≥ hshort and
that spins lie in the range l± = 0, 1/2, ..., (k± − 1)/2.

Interesting examples of N = 4 SCA are provided by WZW coset modelsW×U(1), whereW
is WZW model associated wto a quaternionic (Wolf) space. Examples based on classical
groups are W = G/H = SU(n)/SU(n − 1) × U(1), SO(n)/SO(n − 4) × SU(2), and
Sp(2n)/Sp(2n− 2). For n = 3 first series gives CP2 whereas second series gives for n = 4
SO(4)/SU(2) = SU(2). In this case one has k+ = κ+ 1, and k− = ĉG, where κ is the level
of the bosonic current algebra for G and ĉG is its dual Coxeter number.
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4.6.2 Overall view about how different N = 4 SCAs could emerge in
TGD framework

The basic idea is simple N = 4 fermion states obtained as different combinations of spin and
isospin for given H-chirality of imbedding space spinor correspond to N = 4 multiplet. In case
of leptons the holonomy group of S2 × CP2 for given spinor chirality is SU(2)R × SU(2)R or
SU(2)L × SU(2)R depending on M4 chirality of the spinor. In case of quark one has SU(2)L ×
SU(2)L or SU(2)R × SU(2)R. The coupling to Kähler gauge potential adds to the group U(1)
factor so that large N = 4 SCA is obtained. For covariantly constant right handed neutrino
electro-weak part of holonomy group drops away as also U(1) factor so that one obtains SU(2)L
or SU(2)R and small N = 4 SCA.

How maximal N = 4 SCA could emerge in TGD framework?

Consider the Kac-Moody algebra SU(2)×SU(2)×U(1) associated with the maximal N = 4 SCA.
Besides Kac-Moody currents it contains 4 spin 1/2 fermions having an identification as quantum
counterparts of leptonic spinor fields. The interpretation of the first SU(2) is as rotations as
rotations leaving invariant the sphere S2 ⊂ δM4

±. U(2) has interpretation as electro-weak gauge
group and as maximal linearly realized subgroup of SU(3). This algebra acts naturally as
symmetries of the 8-component spinors representing super partners of quaternions.

The algebra involves the integer value central extension parameters k+ and k− associated with
the two SU(2) algebras as parameters. The value of U(1) central extension parameter k is given
by k = k+ + k−. The value of central extension parameter c is given by

c = 6k−
x

1 + x
< 6k+ , x =

k+

k−
.

c can have all non-negative rational values m/n for positive values of k± given by k+ = rm, k− =
(6nr − 1)m. Unitarity might pose further restrictions on the values of c. At the limit k− = k,
k+ → ∞ the algebra reduces to the minimal N = 4 SCA with c = 6k since the contributions
from the second SU(2) and U(1) to super Virasoro currents vanish at this limit.

How small N = 4 SCA could emerge in TGD framework?

Consider the TGD based interpretation of the small N = 4 SCA.

(a) The group SU(2) associated with the small N = 4 SCA and acting as rotations of covari-
antly constant right-handed neutrino spinors allows also an interpretation as a group SO(3)
leaving invariant the sphere S2 of the light-cone boundary identified as rM = m0=constant
surface defining generalized Kähler and symplectic structures in δM4

±. Electro-weak de-
grees of freedom are obviously completely frozen so that SU(2)− ×U1 factor indeed drops
out.

(b) The choice of the preferred coordinate system should have a physical justification. The
interpretation of SO(3) as the isotropy group of the rest system defined by the total four-
momentum assignable to the 3-surface containing partonic 2-surfaces is supported by the
quantum classical correspondence. The subgroup U(1) of SU(2) acts naturally as rotations
around the axis defined by the light ray from the tip of M4

± orthogonal to S2. For c =
0, k = 0 case these groups define local gauge symmetries. In the more general case local
gauge invariance is broken whereas global invariance remains as it should.

In M2 × E2 decomposition E2 corresponds to the tangent space of S2 at a given point
and M2 to the plane orthogonal to it. The natural assumption is that the right handed
neutrino spinor is annihilated by the momentum space Dirac operator corresponding to the
light-like momentum defining M2 × E2 decomposition.

(c) For covariantly constant right handed neutrinos the dynamics would be essentially that
defined by a topological quantum field theory and this kind of almost trivial dynamics is
indeed associated with small N = 4 SCA.
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1. Why N = 4 super-conformal symmetry would be so nice?

N = 2 super-conformal invariance has been claimed to imply the vanishing of all amplitudes
with more than 3 external legs for closed critical N = 2 strings having c = 6, k = 1 which is
proposed to correspond to n→∞ limit [A64, A108] . Only the partition function and 2 ≤ N ≤ 3
scattering amplitudes would be non-vanishing. The argument of [A64] relies on the imbedding
of N = 2 super-conformal field theory to N = 4 topological string theory whereas in [A108] the
Ward identities for additional unbroken symmetries associated with the chiral ring accompanying
N = 2 super-symmetry [A71] are utilized. In fact, N = 4 topological string theory allows also
imbeddings of N = 1 super strings [A64] .

The properties of c = 6 critical theory allowing only integral valued U(1) charges and fermion
numbers would conform nicely with what we know about the perturbative electro-weak physics
of leptons and gauge bosons. c = 1, k = 1 sector with N = 2 super-conformal symmetry would
involve genuinely stringy physics since all N-point functions would be non-vanishing and the
earlier hypothesis that strong interactions can be identified as electro-weak interactions which
have become strong inspired by HO-H duality [K74] could find a concrete realization.

In c = 6 phase N = 2-vertices the loop corrections coming from the presence of higher lepton
genera in amplitude could be interpreted as topological mixing forced by unitarity implying in
turn leptonic CKM mixing for leptons. The non-triviality of 3-point amplitudes would in turn
be enough to have a stringy description of particle number changing reactions, such as single
photon brehmstrahlung. The amplitude for the emission of more than one brehmstrahlung
photons from a given lepton would vanish. Obviously the connection with quantum field theory
picture would be extremely tight and imbeddability to a topological N = 4 quantum field theory
could make the theory to a high degree exactly solvable.

2. Objections

There are also several reasons for why one must take the idea about the usefulness of c = 6
super-conformal strings from the point of view of TGD with an extreme caution.

(a) Stringy diagrams have quite different interpretation in TGD framework. The target space
for these theories has dimension four and metric signature (2,2) or (0,4) and the vanish-
ing theorems hold only for (2, 2) signature. In lepton sector one might regard the co-
variantly constant complex right-handed neutrino spinors as generators of N = 2 real
super-symmetries but in quark sector there are no super-symmetries.

(b) The spectrum looks unrealistic: all degrees of freedom are eliminated by symmetries ex-
cept single massless scalar field so that one can wonder what is achieved by introducing
the extremely heavy computational machinery of string theories. This argument relies on
the assumption that time-like modes correspond to negative norm so that the target space
reduces effectively to a 2-dimensional Euclidian sub-space E2 so that only the vibrations in
directions orthogonal to the string in E2 remain. The situation changes if one assigns nega-
tive conformal weights and negative energies to the time like excitations. In the generalized
coset representation used to construct physical states this is indeed assumed.

(c) The central charge has only values c = 6k, where k is the central extension parameter of
SU(2) algebra [A56] so that it seems impossible to realize the genuinely rational values of
c which should correspond to the series of Jones inclusions. One manner to circumvent the
problem would be the reduction to N = 2 super-conformal symmetry.

(d) SU(2) Kac-Moody algebra allows to introduce only 2-component spinors naturally whereas
super-quaternions allow quantum counterparts of 8-component spinors.

The N = 2 super-conformal algebra automatically extends to the so called small N = 4 algebra
with four super-generators G± and their conjugates [A64] . In TGD framework G± degeneracy
corresponds to the two spin directions of the covariantly constant right handed neutrinos and
the conjugate of G± is obtained by charge conjugation of right handed neutrino. From these
generators one can build up a right-handed SU(2) algebra.
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Hence the SU(2) Kac-Moody of the small N = 4 algebra corresponds to the three imaginary
quaternionic units and the U(1) ofN = 2 algebra to ordinary imaginary unit. Energy momentum
tensor T and SU(2) generators would correspond to quaternionic units. G± to their super
counterparts and their conjugates would define their ”square roots”.

What about N = 4 SCA with SU(2)× U(1) Kac-Moody algebra?

Rasussen [A123] has discovered an N = 4 super-conformal algebra containing besides Virasoro
generators and 4 Super-Virasoro generators SU(2)×U(1) Kac-Moody algebra and two spin 1/2
fermions and a scalar.

The first identification of SU(2)×U(1) is as electro-weak algebra for a given spin state. Second
and more natural identification is as the algebra defined by rotation group and electromagnetic
or Kähler charge acting on given charge state of fermion and naturally resulting in electro-weak
symmetry breaking. Scalar might relate to Higgs field which is M4 scalar but CP2 vector.

There are actually two versions about Rasmussen’s article [A123]: in the first version the author
talks about SU(2)× U(1) Kac-Moody algebra and in the second one about SL(2)× U(1) Kac-
Moody algebra.

These variants could correspond in TGD framework to two different inclusions of hyper-finite
factors of type II1.

(a) The first inclusion could be defined by G = SL(2, R) ⊂ SO(3, 1) acting on M4 part of H-
spinors (or alternatively, as Lorentz group inducing motions in the plane E2 orthogonal to
a light-like ray from the origin of light-cone M4

+). Physically the inclusion would mean that
Lorentz degrees of freedom are frozen in the physical measurement. This leaves electro-weak
group SU(2)L × U(1) as the group acting on H-spinors.

(b) The second inclusion would be defined by the electro-weak group SU(2)L so that Kac-
Moody algebra SL(2, R)× U(1) remains dynamical.

4.6.3 How large N = 4 SCA could emerge in quantum TGD?

The discovery of the formulation of TGD as a N = 4 almost topological super-conformal QFT
with light-like partonic 3-surfaces identified as basic dynamical objects increased considerably the
understanding of super-conformal symmetries and their breaking in TGD framework. N = 4
super-conformal algebra corresponds to the maximal algebra with SU(2) × U(2) Kac-Moody
algebra as inherent fermionic Kac-Moody algebra.

Concerning the interpretation the first guess would be that SU(2)+ and SU(2)− correspond
to vectorial spinor rotations in M4 and CP2 and U(1) to Kähler charge or electromagnetic
charge. For given imbedding space chirality (lepton/quark) and M4 chirality SU(2) groups are
completely fixed.

Identification of super generators

Consider first the fermionic generators of the super Kac-Moody algebra.

(a) Assume that the modified Dirac operator decomposition D = D(Y 2) +D(X2) = D(Y 1) +
D(X1)+D(X2) reflecting the dual slicings of space-time surfaces to string world sheets Y 2

and partonic 2-surfaces X2.

(b) Y 1 represents light-like direction and also string connecting braid strands at same compo-
nent of X3

l or at two different components of X3
l . Modified Dirac equation implies that the

charges

∫
X3
l

Ψλk,nΓ̂vΨ (4.6.5)
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define conserved super charges in time direction associated with Y 1 and carrying quark or
lepton number. Here Ψλk,n corresponds to n:th conformal excitation of Ψλk and λk is is a
generalized eigenvalue of D(X2), whose modulus squared has interpretation as ground state
conformal weight. In the case of ordinary Dirac equation essentially fermionic oscillator
operators would be in question.

(c) The zero modes of D(X2) define a sub-algebra which represents super gauge symmetries.
In particular, covariantly constant right handed neutrinos define this kind of super gauge
super-symmetries. N = 2 super-conformal symmetry would correspond in TGD framework
to covariantly constant complex right handed neutrino spinors with two spin directions
forming a right handed doublet and would be exact and act only in the leptonic sector
relating configuration space Hamiltonians and super-Hamiltonians. This algebra extends
to the so called small N = 4 algebra if one introduces the conjugates of the right handed
neutrino spinors. This symmetry is exact if only leptonic chirality is present in theory or
if free quarks carry leptonic charges.

A physically attractive realization of the braids - and more generally- of slicings of space-time
surface by 3-surfaces and string world sheets, is discussed in [K37] by starting from the obser-
vation that TGD defines an almost topological QFT of braids, braid cobordisms, and 2-knots.
The boundaries of the string world sheets at the space-like 3-surfaces at boundaries of CDs and
wormhole throats would define space-like and time-like braids uniquely.

The idea relies on a rather direct translation of the notions of singular surfaces and surface
operators used in gauge theory approach to knots [A147] to TGD framework. It leads to the
identification of slicing by three-surfaces as that induced by the inverse images of r = constant
surfaces of CP2, where r is U(2) invariant radial coordinate of CP2 playing the role of Higgs field
vacuum expectation value in gauge theories. r =∞ surfaces correspond to geodesic spheres and
define analogs of fractionally magnetically charged Dirac strings identifiable as preferred string
world sheets. The union of these sheets labelled by subgroups U(2) ⊂ SU(3) would define the
slicing of space-time surface by string world sheets. The choice of U(2) relates directly to the
choice of quantization axes for color quantum numbers characterizing CD and would have the
choice of braids and string world sheets as a space-time correlate.

Identification of Kac-Moody generators

Consider next the generators of inherent Kac-Moody algebras for SU(2) × SU(L) × U(1) and
freely chosen group G.

(a) Generators of Kac-Moody algebra associated with isometries correspond Noether currents
associated with the infinitesimal action of Kac-Moody algebra to the induced spinor fields.
Local SO(3)×SU(3) algebra is in question and excitations should have dependence on the
coordinate u in direction of Y 1. The most natural guess is that this algebra corresponds
to the Kac-Moody algebra for group G.

(b) The natural candidate for the inherent Kac-Moody algebra is the holonomy algebra as-
sociated with S2 × CP2. This algebra should correspond to a broken symmetry. The
generalized eigen modes of D(X2) labeled by λk should from the representation space in
this case. If Kac-Moody symmetry were not broken these representations would correspond
a degeneracy associated with given value of λk. Electro-weak symmetry breaking is how-
ever present and coded already into the geometry of CP2. Also SO(3) symmetry is broken
due to the presence of classical electro-weak magnetic fields. The broken symmetries could
be formulated in terms of initial values of generalized eigen modes at X2 defining either
end of X3

l . One can rotate these initial values by spinor rotations. Symmetry breaking
would mean that the modes obtained by a rotation by angle φ = π from a mode with fixed
eigenvalue λk have different eigenvalues. Four states would be obtained for a given imbed-
ding space chirality (quark or lepton). One expects that an analog of cyclotron spectrum
with cutoff results with each cyclotron state split to four states with different eigenvalues
λk. Kac-Moody generators could be expressed as matrices acting in the space spanned by
the eigen modes.
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Consistency with p-adic mass calculations

The consistency with p-adic mass calculations provides a strong guide line in attempts to inter-
pret N = 4 SCA. The basis ideas of p-adic mass calculations are following.

(a) Fermionic partons move in color partial waves in their cm degrees of freedom. This gives
to conformal weight a vacuum contribution equal to the CP2 contribution to mass squared.
The contribution depends on electro-weak isospin and equals hc(U) = 2 and hc(D) = 3 for
quarks and one has hc(ν) = 1 and hc(L) = 2.

(b) The ground state can correspond also to non-negative value of L0 for SKMV algebra which
gives rise to a thermal degeneracy of massless states. p-Adic mass calculations require
(hgr(D), hgr(U)) = (0,−1, ) and (hgr(L), hgr(ν)) = (−1,−2) so that the super-symplectic
operator Oc screening the anomalous color charge has conformal weight hc = −3 for all
fermions.

The simplest interpretation is that the free parameter h appearing in the representations of the
SCA corresponds to the conformal weight due to the color partial wave so that the correlation
with electromagnetic charge would indeed emerge but from the correlation of color partial waves
and electro-weak quantum numbers.

The requirement that ground states are null states with respect to the SCV associated with
the radial light-like coordinate of δM4

± gives an additional consistency condition and hc = −3
should satisfy this condition. p-Adic mass calculations do not pose non-trivial conditions on h
for option 1) if one makes the identification u = Qem since one has hshort < 1 for all values of
k+ + k−. Therefore both options 1) and 2) can be considered.

About symmetry breaking for large N = 4 SCA

Partonic formulation predicts that large N = 4 SCA is a broken symmetry, and the first guess
is that breaking occurs via several steps. First a ”small” N = 4 SCA with Kac-Moody group
SU(2)+ × U(1), where SU(2)+ corresponds to ordinary rotations on spinor with fixed helicity,
would result in electro-weak symmetry breaking. The next step break spin symmetry would
lead to N = 2 SCA and the final step to N = 0 SCA. Several symmetry breaking scenarios are
possible.

(a) The interpretation of SU(2)+ in terms of right- or left- handed spin rotations and U(1) as
electromagnetic gauge group conforms with the general vision about electro-weak symme-
try breaking in non-stringy phase. The interpretation certainly makes sense for covariantly
constant right handed neutrinos for which spin direction is free. For left handed charged
electro-weak bosons the action of right-handed spinor rotations is trivial so that the inter-
pretation would make sense also now.

(b) The next step in the symmetry breaking sequence would be N = 2 SCA with electromag-
netic Kac-Moody algebra as inherent Kac-Moody algebra U(1).

4.6.4 Relationship to super string models, M theory and WZW model

In hope of achieving more precise understanding one can try to understand the relationship of
N = 4 super conformal symmetry as it might appear in TGD to super strings, M theory and
WZW model.

Relationship to super-strings and M-theory

The (4,4) signature characterizing N = 4 SCA topological field theory is not a problem since in
TGD framework the target space becomes a fictive concept defined by the Cartan algebra. Both
M4 × CP2 decomposition of the imbedding space and space-time dimension are crucial for the
2+2+2+2 structure of the Cartan algebra, which together with the notions of the configuration
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space and generalized coset representation formed from super Kac-Moody and super-symplectic
algebras guarantees N = 4 super-conformal invariance.

Including the 2 gauge degrees of freedom associated with M2 factor of M4 = M2×E2 the critical
dimension becomes D = 10 and and including the radial degree of light-cone boundary the
critical dimension becomes D = 11 of M-theory. Hence the fictive target space associated with
the vertex operator construction corresponds to a flat background of super-string theory and flat
background of M-theory with one light-like direction. From TGD point view the difficulties of
these approaches are due to the un-necessary assumption that the fictive target space defined by
the Cartan algebra corresponds to the physical imbedding space. The flatness of the fictive target
space forces to introduce the notion of spontaneous compactification and dynamical imbedding
space and this in turn leads to the notion of landscape.

Consistency with critical dimension of super-string models and M-theory

Mass squared is identified as the conformal weight of the positive energy component of the state
rather than as a contribution to the conformal weight canceling the total conformal weight.
Also the Lorentz invariance of the p-adic thermodynamics requires this. As a consequence, the
pseudo 4-momentum p assignable to M4 super Kac-Moody algebra could be always light-like or
even tachyonic.

Super-symplectic algebra would generate the negative conformal weight of the ground state
required by the p-adic mass calculations and super-Kac Moody algebra would generate the non-
negative net conformal weight identified as mass squared. In this interpretation SKM and SC
degrees of freedom are independent and correspond to opposite signs for conformal weights.

The construction is consistent with p-adic mass calculations [K43, K52] and the critical dimen-
sion of super-string models.

(a) Five Super Virasoro sectors are predicted as required by the p-adic mass calculations (the
predicted mass spectrum depends only on the number of tensor factors). Super-symplectic
algebra gives Can(CP2) and Can(S2). In SKM sector one has SU(2)L, U(1), local SU(3),
SO(2) and E2 so that 5 sectors indeed result.

(b) The Cartan algebras involved of SC is 2-dimensional and that of SKM is 7-dimensional so
that 10-dimensional Cartan algebra results. This means that vertex operator construction
implies generation of 10-dimensional target space which in super-string framework would
be identified as imbedding space. Note however that these dimensions have Euclidian
signature unlike in superstring models. SKM algebra allows also the option SO(3)× E(3)
in M4 degrees of freedom: this would mean that SKM Cartan algebra is 10-dimensional
and the whole algebra 11-dimensional.

N = 4 super-conformal symmetry and WZW models

One can question the naive idea that the basic structure Gint = SU(2)×U(2) structure of N = 4
SCA generalizes as such to the recent framework.

(a) N = 4 SCA is originally associated with Majorana spinors. N = 4 algebra can be trans-
formed from a real form to complex form with 2 complex fermions and their conjugates
corresponding to complex H-spinors of definite chirality having spin and weak isospin. At
least at formal level the complexification of N = 4 SCA algebra seems to make sense and
might be interpreted as a direct sum of two N = 4 SCAs and complexified quaternions.
Central charge would remain c = 6k+k−/(k+ + k−) if naive complexification works. The
fact that Kac-Moody algebra of spinor rotations is Gint = SO(4)×SO(4)×U(1) is naturally
assignable naturally to spinors of H suggests that it represents a natural generalization of
SO(4)× U(1) algebra to inherent Kac-Moody algebra.

(b) One might wonder whether the complex form of N = 4 algebra could result from N = 8
SCA by posing the associativity condition.
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(c) The article of Gunaydin [A97] about the representations of N = 4 super-conformal algebras
realized in terms of Goddard-Kent-Olive construction and using gauged Wess-Zumino-
Witten models forces however to question the straightforward translation of results about
N = 4 SCA to TGD framework and it must be admitted that the situation is something
confusing. Of course, there is no deep reason to believe that WZW models are appropriate
in TGD framework.

i. Gauged WZW models are constructed using super-space formalism which is not natural
in TGD framework. The coset space CP2 × U(2) where U(2), could be identified
as sub-algebra of color algebra or possibly as electro-weak algebra provides one such
realization. Also the complexifixation of the N = 4 algebra is something new.

ii. The representation involves 5-grading by the values of color isospin for SU(3) and
makes sense as a coset space realization for G/H×U(1) if H is chosen in such a manner
that G/H × SU(2) is quaternionic space. For SU(3) one has H = U(1) identifiable in
terms of color hyper charge CP2 is indeed quaternionic space. For SU(2) 5-grading
degenerates since spin 1/2 Lie-algebra generators are absent and H is trivial group. In
M4 degrees of gauged WZW model would be trivial.

iii. N = 4 SCA results as an extension of N = 2 SCA using so called Freudenthal triple
system. N = 2 SCA has realization in terms of G/H × U(1) gauged WZW theory
whereas the extension to N = 4 SCA gives G × U(1)/H gauged WZW model: note
that SU(3) × U(1)/H does not have an obvious interpretation in TGD framework.
The Kac-Moody central extension parameters satisfy the constraint k+ = k + 1 and
k− = ĝ − 1, where k is the central extension parameter for G. For G = SU(3) one
obtains k− = 1 and c = 6(k+1)/(k+2). H = U(1) corresponding to color hyper-charge
and U(1) for N = 2 algebra corresponds to color isospin. The group U(1) appearing
in SU(3)× U(1) might be interpreted in terms of fermion number or Kähler charge.

iv. What looks somewhat puzzling is that the generators of second SU(2) algebra carry
fermion number F = 4I3. Note however that the sigma matrices of configuration
space with fermion number ±2 are non-vanishing since corresponding gamma matrices
anti-commute. Second strange feature is that fermionic generators correspond to 3+3
super-coordinates of the flag-manifold SU(3)/U(1) × U(1) plus 2 fermions and their
conjugates. Perhaps the coset realization in CP2 degrees of freedom is not appropriate
in TGD framework and that one should work directly with the realization based on
second quantized induced spinor fields.

4.6.5 The interpretation of the critical dimension D = 4 and the ob-
jection related to the signature of the space-time metric

The first task is to show that D = 4 (D = 8) as critical dimension of target space for N = 2
(N = 4) super-conformal symmetry makes sense in TGD framework and that the signature (2,2)
((4, 4) of the metric of the target space is not a fatal flaw. The lifting of TGD to twistor space
seems the most promising manner to bring in (2, 2) signature. One must of course remember
that super-conformal symmetry in TGD sense differs from that in the standard sense so that
one must be very cautious with comparisons at this level.

Space-time as a target space for partonic string world sheets?

Since partonic 2-surfaces are sub-manifolds of 4-D space-time surface, it would be natural to
interpret space-time surface as the target space for N = 2 super-conformal string theory so that
space-time dimension would find a natural explanation. Different Bohr orbit like solutions of
the classical field equations could be the TGD counterpart for the dynamic target space metric
of M-theory. Since partonic two-surfaces belong to 3-surface X3

V , the correlations caused by the
vacuum functional would imply non-trivial scattering amplitudes with CP2 type extremals as
pieces of X3

V providing the correlate for virtual particles. Hence the theory could be physically
realistic in TGD framework and would conform with perturbative character for the interactions
of leptons. N = 2 super-conformal theory would of course not describe everything. This
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algebra seems to be still too small and the question remains how the functional integral over
the configuration space degrees of freedom is carried out. It will be found that N = 4 super-
conformal algebra results neatly when super Kac-Moody and super-symplectic degrees of freedom
are combined.

The interpretation of the critical signature

The basic problem with this interpretation is that the signature of the induced metric cannot be
(2,2) which is essential for obtaining the cancelation for N = 2 SCA imbedded to N = 4 SCA
with critical dimension D = 8 and signature (4,4). When super-generators carry fermion number
and do not reduce to ordinary gamma matrices for vanishing conformal weights, there is no need
to pose the condition of the metric signature. The (4,4) signature of the target space metric is
not so serious limitation as it looks if one is ready to consider the target space appearing in the
calculation of N-point functions as a fictive notion.

The resolution of the problems relies on two observations.

(a) The super Kac-Moody and super-symplectic Cartan algebras have dimension D = 2 in
both M4 and CP2 degrees of freedom giving total effective dimension D = 8.

(b) The generalized coset construction to be discussed in the sequel allows to assign opposite sig-
natures of metric to super Kac-Moody Cartan algebra and corresponding super-symplectic
Cartan algebra so that the desired signature (4,4) results. Altogether one has 8-D effective
target space with signature (4,4) characterizing N = 4 super-conformal topological strings.
Hence the number of physical degrees of freedom is Dphys = 8 as in super-string theory.
Including the non-physical M2 degrees of freedom, one has critical dimension D = 10. If
also the radial degree of freedom associated with δM4

± is taken into account, one obtains
D = 11 as in M-theory.

Small N = 4 SCA as sub-algebra of N = 8 SCA in TGD framework?

A possible interpretation of the small N = 4 super-conformal algebra would be quaternionic sub-
SCA of the non-associative octonionic SCA. The N = 4 algebra associated with a fixed fermionic
chirality would represent the fermionic counterpart for the restriction to the hyper-quaternionic
submanifold of HO and N = 2 algebra in the further restriction to commutative sub-manifold
of HO so that this algebra would naturally appear at the parton level. Super-affine version of
the quaternion algebra can be constructed straightforwardly as a special case of corresponding
octonionic algebra [A55] . The construction implies 4 fermion spin doublets corresponding and
unit quaternion naturally corresponds to right handed neutrino spin doublet. The interpretation
is as leptonic spinor fields appearing in Sugawara representation of Super Virasoro algebra.

A possible octonionic generalization of Super Virasoro algebra would involve 4 doublets G
i)
±,

i = 1, ..., 4 of super-generators and their conjugates having interpretation as SO(8) spinor and

its its conjugate. G
i)
± and their conjugates G

i)

± would anti-commute to SO(8) vector octet having
an interpretation as a super-affine algebra defined by the octonionic units: this would conform
nicely with SO(8) triality.

One could say that the energy momentum tensor T extends to an octonionic energy momentum
tensor T as real component and affine generators as imaginary components: the real part would
have conformal weight h = 2 and imaginary parts conformal weight h = 1 in the proposed
constructions reflecting the special role of real numbers. The ordinary gamma matrices appearing
in the expression of G in Sugawara construction should be represented by units of complexified
octonions to achieve non-associativity. This construction would differ from that of [A55] in that
G fields would define an SO(8) octet in the proposed construction: HO-H duality would however
suggest that these constructions are equivalent.

One can consider two possible interpretations for G
i)
± and corresponding analogs of super Kac-

Moody generators in TGD framework.
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(a) Leptonic right handed neutrino spinors correspond to G
i)
± generating quaternionic units

and quark like left-handed neutrino spinors with leptonic charges to the remaining non-
associative octonionic units. The interpretation in terms of so called mirror symmetry
would be natural. What is is clear the direct sum of N = 4 SCAs corresponding to the
Kac-Moody group SU(2)×SU(2) would be exact symmetry if free quarks and leptons carry
integer charges. One might however hope of getting also N = 8 super-conformal algebra.
The problem with this interpretation is that SO(8) transformations would in general mix
states with different fermion numbers. The only way out would be the allowance of mixtures
of right-handed neutrinos of both chiralities and also of their conjugates which looks an
ugly option.

In any case, the well-definedness of the fermion number would require the restriction to
N = 4 algebra. Obviously this restriction would be a super-symmetric version for the
restriction to 4-D quaternionic- or co-quaternionic sub-manifold of H.

(b) One can ask whether G
i)
± and their conjugates could be interpreted as components of lep-

tonic H-spinor field. This would give 4 doublets plus their conjugates and mean N = 16
super-symmetry by generalizing the interpretation of N = 4 super-symmetry. In this
case fermion number conservation would not forbid the realization of SO(8) rotations.
Super-conformal variant of complexified octonionic algebra obtained by adding a commut-
ing imaginary unit would result. This option cannot be excluded since in TGD framework
complexified octonions and quaternions play a key role. The fact that only right handed
neutrinos generate associative super-symmetries would mean that the remaining compo-

nents G
i)
± and their conjugates could be used to construct physical states. N = 8 super-

symmetry would thus break down to small N = 4 symmetry for purely number theoretic
reasons and the geometry of CP2 would reflect this breaking.

The objection is that the remaining fermion doublets do not allow covariantly constant
modes at the level of imbedding space. They could however allow these modes as induced
H-spinors in some special cases which is however not enough and this option can be con-
sidered only if one accepts breaking of the super-conformal symmetry from beginning. The
conclusion is that the N = 8 or even N = 16 algebra might appear as a spectrum generating
algebra allowing elegant coding of the primary fermionic fields of the theory.

4.6.6 How could exotic Kac-Moody algebras emerge from Jones in-
clusions?

Also other Kac-Moody algebras than those associated with the basic symmetries of quantum
TGD could emerge from Jones inclusions. The interpretation would be the TGD is able to
mimic various conformal field theories. The discussion is restricted to Jones inclusions defined
by discrete groups acting in CP2 degrees of freedom in TGD framework but the generalization
to the case of M4 degrees of freedom is straightforward.

M : N = β < 4 case

The first situation corresponds to M : N = β < 4 for which a finite subgroup G ⊂ SU(2)L de-
fines Jones inclusion NG ⊂MG, with G commuting with the Clifford algebra elements creating
physical states. N corresponds to a subalgebra of the entire infinite-dimensional Clifford algebra
Cl for which one 8-D Clifford algebra factor identifiable as Clifford algebra of the imbedding
space is replaced with Clifford algebra of M4.

Each M4 point corresponds to G orbit in CP2 and the order of maximal cyclic subgroup of G
defines the integer n defining the quantum phase q = exp(iπ/n). In this case the points in the
covering give rise to a representation of G defining multiplets for Kac-Moody group Ĝ assignable
to G via the ADE diagram characterizing G using McKay correspondence. Partonic boundary
component defines the Riemann surface in which the conformal field theory with Kac Moody
symmetry is defined. The formula n = k+ hĜ would determine the value of Kac-Moody central
extension parameter k. The singletness of fermionic oscillator operators with respect to G would
be compensated by the emergence of representations of G realized in the covering of M4.



4.6. Trying to understand N = 4 super-conformal symmetry 329

M : N = β = 4 case

Second situation corresponds to β = 4. In this case the inclusions are classified by extended
ADE diagrams assignable to Kac Moody algebras. The interpretation n = k+ hG assigning the

quantum phase to SU(2) Kac Moody algebra corresponds to the Jones inclusion N Ĝ ⊂ MĜ

of configuration space spinors for Ĝ = SU(2)L with index M : N = 4 and trivial quantum
phase q = 1. The Clifford algebra elements in question would be products of fermionic oscillator
operators having vanishing SU(2)L quantum numbers but arbitrary U(1)R quantum numbers
if the identification Ĝ = SU(2)L is correct. Thus only right handed fermions carrying homolog-
ical magnetic charge would be allowed and obviously these fermions must behave like massless
particles so that β < 4 could be interpreted in terms of massivation. The ends of cosmic strings
X2×S2 ⊂M4×CP2 would represent an example of this phase having only Abelian electro-weak
interactions.

According to the proposal of [K86] the finite subgroup G ⊂ SU(2) defining the quantum phase
emerges from the effective decomposition of the geodesic sphere S2 ⊂ CP2 to a lattice having
S2/G as the unit cell. The discrete wave functions in the lattice would give rise to SU(2)L ⊃ G-
multiplets defining the Kac Moody representations and S2/G would represent the 2-dimensional
Riemann surface in which the conformal theory in question would be defined. Quantum phases
would correspond to the holonomy of S2/G. Therefore the singletness in fermionic degrees of
freedom would be compensated by the emergence of G- multiplets in lattice degrees of freedom.

4.6.7 Are both quark and lepton like chiralities needed/possible?

Before the formulation of quantum TGD based on the identification of light-like 3-surfaces as a
representation of parton orbits emerged, one had to consider two different physical realizations of
N = 4 super-conformal symmetry. The original option for which leptons and quarks correspond
to different H-chiralities of the induced spinor field is consistent with the partonic picture and
definitely favored so that this subsection can be regarded as as interesting side track.

On the other hand, only lepton like chiralities are needed if one can accepts a possible instability
of proton. This option is mathematically the minimal but it is not at all clear whether the SU(3)
associated with A2 characterizing Jones inclusion can correspond to color SU(3). One can go
further and ask whether it is even possible to have both chiralities.

Option I: N = 4 SCA and fractionally charged quarks

Quarks generate super affinization of quaternions, which involves in no manner the Kähler
charge of quarks but for fractional quark charges only SCA in the leptonic sector is possible
since covariant constancy fails. At the fundamental level one the spectrum generating algebra
for quarks would thus emerge and they could appear as primary fields of N = 4 conformal
field theory. Configuration space gamma matrices could be uniquely constructed in terms of
the leptonic oscillator operators since they could correspond to super-generators of super-Kac
Moody algebra. Furthermore, if the solutions of the modified Dirac equation generate super-
conformal symmetries, it might be possible to have super-conformal symmetry acting also in the
quark sector.

A possible manner to understand quarks is as a phase with N = 2 super-conformal symmetry
with U(1) Kac-Moody algebra. Using just the requirement that the charges in the k = 1, c = 1
phase for N = 2 super-conformal symmetry are proportional to factor 1/3, one can conclude that
this phase can contain ordinary quarks and fractionally charged leptons whose charge results
from the phase factors depending on the sheet of the 3-fold covering of CP2. Also phases with
n > 3 are possible and require fractionization of both quark and lepton charges. For quarks the
condition n mod 3 = 0 must be satisfied in this case.
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Option II: N = 4 SCA and quarks as fractionally charged leptons

For the simplest option realizing N = 4 SCA only leptons are fundamental particles and quarks
would be leptons in the anyonic k = 1, c = 1, n = 3 phase of the theory. This option would
resolve elegantly the problem whether one should construct configuration space gamma matrices
using leptonic or quark like gamma matrices. Fermion number fractionization might in principle
allow the decay of proton to positron plus pion as in GUTs. This decay might be however
excluded for purely mathematical reasons. Indeed, the worlds corresponding to different value
of q = exp(iπ/n) could communicate only via exchanges of bosons having a vanishing fermion
number.

In the interactions between leptons and quarks the gauge bosons would penetrate to the space-
time sheets corresponding to the hadrons. In k = 1 phase weak interactions would become
strong since arbitrarily high parton vertices would become possible and strong interactions could
be simply electro-weak interactions which have become strong in the anyonic phases as HO-
H duality strongly suggests [K74] . By the same duality strong interactions wold have dual
descriptions as non-perturbative electro-weak interactions and as color interactions.

There are objections against this picture.

(a) p-Adic mass calculations rely strongly on the fact that free quarks have fractional charges
and move in CP2 partial waves and it would be pity to lose the nice results of these
calculations.

(b) This option requires that the SU(3) associated with A2 characterizing n = 3 Jones inclusion
produces states equivalent with triality 1 partial waves for quarks in order to reproduce
the results of p-adic mass calculations. This does not seem to be the case although one
can understand how effective triality 1 states results by considering 3-fold coverings of CP2

points by M4 points defined by the space-time surfaces in question. The essential point
is that 2π rotation in CP2 phase angle leads to a different M4 point than original and 6π
rotation brings back to the original point. This might not be however enough.

Option III: Integer charged leptons and quarks

For the third option N = 4 superconformal symmetry can be realized in both lepton and quark
sector but by the previous arguments N = 8 SCA is not possible. Both imbedding space chiral-
ities would possess leptonic quantum numbers and would be allowed as fundamental fermions.
At the level of configuration space the choice of either chirality to realize the configuration space
gamma matrices would correspond to the selection of quark or lepton like chirality. This pre-
sumably leads to problems with continuity unless the two chiralities correspond to completely
disjoint parts of the configuration space.

Finding an explanation for the experimental absence of the free integer charged quarks is the
basic challenge met by the advocate of integer charged free quarks. A possible explanation could
rely on the fact that also gauge bosons would be doubled. There are two options.

(a) The two kinds of gauge bosons couple to only single H-chirality. One can indeed argue
that if one allows at given space-time sheet only quark or lepton like chirality then it
is not possible to have quantum superpositions of fermion-antifermion pairs of opposite
chiralities at a given space-time sheet so that bosons would couple to either quark or lepton
like chirality. This would mean that leptons and free quarks would have no electro-weak
interactions. Even gravitational interaction would be absent. This would however imply
that ordinary hadrons should consist of fractionally charged leptons so that second chirality
would not appear at all in known or experimentally testable physics.

(b) An option allowing ordinary hadrons to consist of genuine quarks is that the couplings of
these two bosons are vectorial and axial with respect to H-chirality (the simplest option)
and left-right permutation occurs for electro-weak couplings. This would induce a breaking
of the chiral symmetry at the level of H just as the ordinary weak interactions do at the
level of M4 and the masses of integer charged quarks could differ from those of genuine
leptons.
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If H-vectorial and H-axial gauge bosons have same coupling strengths and masses, the diagrams
representing exchanges of vectorial and axial gauge bosons would interfere to zero so that free
leptons and quarks would not see each other at all. This should be true in (c = 6, n = ∞)
phase. This could be the case for even gravitons. On the other hand, the interactions between
free quarks and hadronic quarks would be possible and would make free quarks visible so that
this option seems to produce more problems than to solve them.

In (c = 1, k = 1, n = 3) phase leptons and quarks should interact and this is achieved if the
masses and couplings of H-vectorial or H-axial electro-weak bosons are different in this phase. It
is far from clear whether this picture can be consistent with what is known about lepton-hadron
interactions.

Common features of the options I and II

Consider now the common features of options I and II which on basis of the previous arguments
look the only realistic ones.

(a) For both options only c = 6 would correspond to the integer charged world and hadrons
would be represented by primary fields in this phase. Hadrons would correspond to k =
1, c = 1 representation for the reduced N = 2 conformal symmetry. Elementary fermions
inside hadrons would correspond to the lowest n = 3 Jones inclusion having k = 1 which
indeed corresponds to A2 Dynkin diagram and thus SU(3). Ordinary leptons and quarks
(whether fractionally charged leptons or not) would thus live in different CP2:s (recall that
the generalized imbedding space has fan like structure with different M4 × CP2:s meeting
along M4). This would explain the impossibility to observe free fractionally charged quarks.

Anyonic color triplet leptons and fractionally charged quarks would live at the three
branches of the covering of CP2. The observation that leptonic spinors possess anoma-
lous color hyper-charge identifiable as lepton number and that this charge corresponds to
weak hyper-charge explains why the electromagnetic charge of lepton can be fractionized
but not its weak isospin.

(b) An infinite hierarchy of states with fractionally charged fermions would be predicted with
charges of form m/n appearing as dark matter so that the counterparts of quarks would rep-
resent only the simplest Jones inclusion. For quarks one would have n = k+ 2 mod 3 = 0.
The invisibility of free fractionally charged fermions would be equivalent with the invisibil-
ity of dark matter with scaled up value of CP2 Planck constant in both options. For option
I the phase transition transforming leptons to quarks and vice versa would require three
leptons per quark in order to achieve conservation of fermion number.

(c) I have already proposed the idea that antimatter is dark matter [K66] and the obvious
possibility is that matter-antimatter asymmetry corresponds to the transformation of n
anti-leptons to baryon like entities consisting of n fractionally charged leptons inside which
they behave like dark matter. For option II anti-leptons would correspond to baryons and
antimatter would be directly observable.

Lepton-hadron interactions for various options

The interactions between leptons and quarks and their fractionally charged counterparts can be
also understood. The following arguments favor option I and II over option III.

(a) Quite generally, the CP2 type extremal representing virtual electroweak boson must tunnel
between two CP2:s in the fan formed by M4 × CP2:s glued together along M4 and in
this process transform to hadronic weak boson. This means that also strong interactions
between leptons and hadrons are generated but these interactions could be seen as secondary
strong interactions occurring inside hadron in any case via the decay of photon to quark
pair in turn interacting strongly with other partons.

The coupling constant characterizing the tunneling must be such that correct results for
electro-weak interactions between quarks and leptons are obtained in the lowest order.
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The notion of vector meson dominance meaning that weak bosons transform to strongly
interacting mesons with same electro-weak quantum numbers conforms with this picture.

(b) For option II the lowest order contributions to electro-weak interactions inside hadrons
could be identified as direct lepton-quark interaction and there are no obvious problems
involved.

(c) For option I gauge bosons must couple to both chiralities in order to make possible the
interaction between leptons and quarks. This is possible and the prediction is that gauge
bosons should appear as H-vectorial and H-axial variants or their mixtures. A doubling
of ordinary vector bosons is predicted. This however does not have any dramatic effects
if ordinary gauge bosons correspond to H-vectorial gauge bosons and axial ones are heavy
enough. Nothing new is predicted for situation in which leptons do not penetrate inside
hadrons. A lepton penetrating into hadron must suffer an anyonization and becomes frac-
tionally charged and decomposes into a triplet of leptons with fractional fermion number.
This implies that lepton has strong interactions with quarks.

(d) For option III the understanding of the interactions between leptons and hadrons consisting
of genuine quarks becomes a highly non-trivial problem for several reasons.

i. The hypothesis that only fermions of fixed chirality are possible at a given space-time
sheet would exclude the possibility of non-trivial interactions between leptons and
hadrons. If one gives up this assumption the doubling of electro-weak interactions gives
however hopes for describing the interactions. The non-observability of free quarks in
c = 6 phase is guaranteed if the masses and couplings of H-vectorial and -axial bosons
are identical in this phase. To have interactions in k = 1 phase, these couplings
and masses must be different. This would look nice at first since one could hope of
explaining strong interactions in terms of this symmetry breaking.

ii. However, if H-vectorial and -axial couplings are different inside hadrons, the expecta-
tion is that the resulting low energy lepton-hadron electro-weak interactions are quite
different from what they are known to be experimentally. The most natural guess sug-
gested by the masslessness of gluons is that all (say) H-axial weak bosons are massless
inside hadrons. However, if both H-vectorial and -axial photons are massless there
would be no electromagnetic coupling between quarks and leptons and hadrons would
look like em neutral particles at low energies.

iii. The coupling constant characterizing this tunneling should have a value making pos-
sible to reproduce the standard model picture about lepton-quark scattering. If only
(say) H-vectorial ew bosons can tunnel to hadron and the amplitude A for the tunneling
equals to A = 2 it gives amplitude equal to V − V +A−A = 2V − V between leptons
then quark-lepton scattering can be reproduced correctly. This kind of transformation
is however not described by a unitary S-matrix.

New view about strong interactions

The proposed picture suggests the identification of strong interactions as electro-weak inter-
actions which have become strong in k = 1 anyonic phase. HO-H duality leads to the same
proposal [K74] .

1. Strong interactions as electro-weak interactions in a non-perturbative phase?

Consider the situation in k = 1, c = 1 hadronic sector at the sheets of 3-fold covering of M4

at which fractionally charged fermions reside. It is an experimental fact that their electro-weak
interactions allow a perturbative description. One would however obtain all higher order stringy
diagrams allowed by rational conformal field theories. This looks like a paradox but one can
consider the possibility that electro-weak interactions give rise also to strong interactions.

For all options the non-vanishing of higher n-point functions in k = 1, c = 1 phase would give rise
to and additional non-perturbative contribution to electro-weak interactions having a natural
interpretation as strong interactions. Weak isospin and hypercharge could be interpreted also
as strong isospin and hyper-charge as is indeed found to be the case experimentally. Conserved
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vector current hypothesis and partially conserved axial current hypothesis of the old-fashioned
hadron physics indeed support this kind of duality.

For option I one can consider the possibility that H-axial bosons define the dual counterparts
of gluons and are massless. H-axial electro-weak interactions would give rise also to strong
interactions between quarks and anyonic leptons inside hadrons. The idea that color interactions
have dual description as H-axial electro-weak interactions is admittedly rather seductive.

For option III different masses and couplings of H-vectorial and H-axial bosons inside hadrons
would allow to interpret strong interactions as (say) axial weak interactions. The simplest option
would be that H-axial weak bosons are massless so that strong isospin and hyper-charge would
correspond to their H-axial variants. The problems relating to the interaction between leptons
and hadrons have been already mentioned: for instance, em interactions between leptons and
quarks would vanish if they vanish in c = 6 phase.

2. HO-H duality and equivalence with QCD type description

One can ask how QCD type description emerges if strong interactions are non-perturbative
electro-weak interactions (option II) or H-axial counterparts of them (option I). In [K74] I have
discussed a possible duality suggested by the fact that space-time surfaces can be regarded as
4-surfaces in hyper-octonionic H = M8 or in H = M4 ×CP2. In the first picture spinors would
be octonionic spinors and correspond to two leptonic singlets and color triplet and its conjugate:
there would be no trace about spin and electro-weak quantum numbers besides electro-weak
hyper charge.

The absence of spin in HO description could provide a resolution of the spin puzzle of proton
(quarks do not seem to contribute to the spin of proton). In H picture spinors would carry only
electro-weak quantum numbers and spin besides anomalous color hypercharge. The question is
whether quark like spinors in HO are equivalent with leptonic spinors in H and whether the
descriptions based on (possibly) doubled electro-weak and color interactions are equivalent for
many-sheeted coverings.

4.7 Preferred extremals and solutions of the modified Dirac
equation and super-conformal symmetries

The previous considerations concerning super-confromal symmetries and space-time SUSY have
been based on general arguments. The new vision about preferred extremals and modified Dirac
equation [K92] however leads to a detailed understanding of super-conformal symmetries at
the level of field equations and is bound to modify the existing vision about super-conformal
symmetries. One important discovery is that Einstein’s equations follow from the vanishing of
terms proportional to Kähler current in field equations for preferred extremals and Equivalence
Principle at the classical level is realized automatically in all scales in contrast to the earlier belief.
This obviously must have implications to the general vision about Super-Virasoro representations
and one must be ready to modify the existing picture based on the assumption that quantum
version of Equivalence Principle is realized in terms coset representations.

The very special role of right handed neutrino is also bound to have profound implications.
A further important outcome is the identification of gauge potentials as duals of Kac-Moody
currents at the boundaries of string world sheets: quantum gauge potentials are defined only
where they are needed that is the curves defining the non-integrable phase factors. This gives
also rise to the realization of the conjecture Yangian in terms of the Kac-Moody charges and
commutators in accordance with the earlier conjecture.

4.7.1 Super-conformal symmetries

It is good to summarize first the basic ideas about Super-Virasoro representations. TGD allows
two kinds of super-conformal symmetries.
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(a) The first super-conformal symmetry is associated with δM4
± × CP2 and corresponds to

symplectic symmetries of δM4
± × CP2. The reason for extension of conformal symmetries

is metric 2-dimensionality of the light-like boundary δM4
± defining upper/lower boundary

of causal diamond (CD). This super-conformal symmetry is something new and corre-
sponds to replacing finite-dimensional Lie-group G for Kac-Moody symmetry with infinite-
dimensional symplectic group. The light-like radial coordinate of δM4

± takes the role of the
real part of complex coordinate z for ordinary conformal symmetry. Together with complex
coordinate of S2 it defines 3-D restriction of Hamilton-Jacobi variant of 4-D super-conformal
symmetries. One can continue the conformal symmetries from light-cone boundary to CD
by forming a slicing by parallel copies of δM4

±. There are two possible slicings correspond-
ing to the choices δM4

+ and δM4
− assignable to the upper and lower boundaries of CD.

These two choices correspond to two arrows of geometric time for the basis of zero energy
states in ZEO.

(b) Super-symplectic degrees of freedom determine the electroweak and color quantum num-
bers of elementary particles. Bosonic emergence implies that ground states assignable to
partonic 2-surfaces correspond to partial waves in δM4

± and one obtains color partial waves
in particular. These partial waves correspond to the solutions for the Dirac equation in
imbedding space and the correlation between color and electroweak quantum numbers is
not quite correct. Super-Kac-Moody generators give the compensating color for massless
states obtained from tachyonic ground states guaranteeing that standard correlation is ob-
tained. Super-symplectic degrees are therefore directly visible in particle spectrum. One
can say that at the pointlike limit the WCW spinors reduce to tensor products of imbedding
space spinors assignable to the center of mass degrees of freedom for the partonic 2-surfaces
defining wormhole throats.

I have proposed a physical interpretation of super-symplectic vibrational degrees of freedom
in terms of degrees of freedom assignable to non-perturbative QCD. These degrees of free-
dom would be responsible for most of the baryon masses but their theoretical understanding
is lacking in QCD framework.

(c) The second super-conformal symmetry is assigned light-like 3-surfaces and to the isometries
and holonomies of the imbedding space and is analogous to the super-Kac-Moody symmetry
of string models. Kac-Moody symmetries could be assigned to the light-like deformations
of light-like 3-surfaces. Isometries give tensor factor E2 × SU(3) and holonomies factor
SU(2)L × U(1). Altogether one has 5 tensor factors to super-conformal algebra. That the
number is just five is essential for the success p-adic mass calculations [K50, K43].

The construction of solutions of the modified Dirac equation suggests strongly that the
fermionic representation of the Super-Kac-Moody algebra can be assigned as conserved
charges associated with the space-like braid strands at both the 3-D space-like ends of space-
time surfaces and with the light-like (or space-like with a small deformation) associated with
the light-like 3-surfaces. The extension to Yangian algebra involving higher multilinears of
super-Kac Moody generators is also highly suggestive. These charges would be non-local
and assignable to several wormhole contacts simultaneously. The ends of braids would
correspond points of partonic 2-surfaces defining a discretization of the partonic 2-surface
having interpretation in terms of finite measurement resolution.

These symmetries would correspond to electroweak and strong gauge fields and to grav-
itation. The duals of the currents giving rise to Kac-Moody charges would define the
counterparts of gauge potentials and the conserved Kac-Moody charges would define the
counterparts of non-integrable phase factors in gauge theories. The higher Yangian charges
would define generalization of non-integrable phase factors. This would suggest a rather
direct connection with the twistorial program for calculating the scattering amplitudes
implies also by zero energy ontology.

Quantization recipes have worked in the case of super-string models and one can ask whether
the application of quantization to the coefficients of powers of complex coordinates or Hamilton-
Jacobi coordinates could lead to the understanding of the 4-D variants of the conformal sym-
metries and give detailed information about the representations of the Kac-Moody algebra too.
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4.7.2 What is the role of the right-handed neutrino?

A highly interesting aspect of Super-Kac-Moody symmetry is the special role of right handed
neutrino.

(a) Only right handed neutrino allows besides the modes restricted to 2-D surfaces also the 4D
modes delocalized to the entire space-time surface. The first ones are holomorphic functions
of single coordinate and the latter ones holomorphic functions of two complex/Hamilton-
Jacobi coordinates. Only νR has the full D = 4 counterpart of the conformal symmetry
and the localization to 2-surfaces has interpretation as super-conformal symmetry breaking
halving the number of super-conformal generators.

(b) This forces to ask for the meaning of super-partners. Are super-partners obtained by adding
νR neutrino localized at partonic 2-surface or delocalized to entire space-time surface or
its Euclidian or Minkowskian region accompanying particle identified as wormhole throat?
Only the Euclidian option allows to assign right handed neutrino to a unique partonic 2-
surface. For the Minkowskian regions the assignment is to many particle state defined by
the partonic 2-surfaces associated with the 3-surface. Hence for spartners the 4-D right-
handed neutrino must be associated with the 4-D Euclidian line of the generalized Feynman
diagram.

(c) The orthogonality of the localized and de-localized right handed neutrino modes requires
that 2-D modes correspond to higher color partial waves at the level of imbedding space. If
color octet is in question, the 2-D right handed neutrino as the candidate for the generator
of standard SUSY would combine with the left handed neutrino to form a massive neutrino.
If 2-D massive neutrino acts as a generator of super-symmetries, it is is in the same role
as badly broken supers-ymmeries generated by other 2-D modes of the induced spinor field
(SUSY with rather large value of N ) and one can argue that the counterpart of standard
SUSY cannot correspond to this kind of super-symmetries. The right-handed neutrinos
delocalized inside the lines of generalized Feynman diagrams, could generate N = 2 variant
of the standard SUSY.

How particle and right handed neutrino are bound together?

Ordinary SUSY means that apart from kinematical spin factors sparticles and particles behave
identically with respect to standard model interactions. These spin factors would allow to
distinguish between particles and sparticles. But is this the case now?

(a) One can argue that 2-D particle and 4-D right-handed neutrino behave like independent
entities, and because νR has no standard model couplings this entire structure behaves like
a particle rather than sparticle with respect to standard model interactions: the kinematical
spin dependent factors would be absent.

(b) The question is also about the internal structure of the sparticle. How the four-momentum
is divided between the νR and and 2-D fermion. If νR carries a negligible portion of four-
momentum, the four-momentum carried by the particle part of sparticle is same as that
carried by particle for given four-momentum so that the distinctions are only kinematical
for the ordinary view about sparticle and trivial for the view suggested by the 4-D character
of νR.

Could sparticle character become manifest in the ordinary scattering of sparticle?

(a) If νR behaves as an independent unit not bound to the particle, it would continue in the
original direction as particle scatters: sparticle would decay to particle and right-handed
neutrino. If νR carries a non-negligible energy the scattering could be detected via a
missing energy. If not, then the decay could be detected by the interactions revealing the
presence of νR. νR can have only gravitational interactions. What these gravitational
interactions are is not however quite clear since the proposed identification of gravitational
gauge potentials is as duals of Kac-Moody currents analogous to gauge potentials located
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at the boundaries of string world sheets. Does this mean that 4-D right-handed neutrino
has no quantal gravitational interactions? Does internal consistency require νR to have a
vanishing gravitational and inertial masses and does this mean that this particle carries
only spin?

(b) The cautious conclusion would be following: if delocalized νR and parton are un-correlated
particle and sparticle cannot be distinguished experimentally and one might perhaps un-
derstand the failure to detect standard SUSY at LHC. Note however that the 2-D fermionic
oscillator algebra defines badly broken large N SUSY containing also massive (longitudinal
momentum square is non-vanishing) neutrino modes as generators.

Taking a closer look on sparticles

It is good to take a closer look at the delocalized right handed neutrino modes.

(a) At imbedding space level that is in cm mass degrees of freedom they correspond to covari-
antly constant CP2 spinors carrying light-like momentum which for causal diamond could
be discretized. For non-vanishing momentum one can speak about helicity having opposite
sign for νR and νR. For vanishing four-momentum the situation is delicate since only spin
remains and Majorana like behavior is suggestive. Unless one has momentum continuum,
this mode might be important and generate additional SUSY resembling standard N = 1
SUSY.

(b) At space-time level the solutions of modified Dirac equation are holomorphic or anti-
holomorphic.

i. For non-constant holomorphic modes these characteristics correlate naturally with
fermion number and helicity of νR . One can assign creation/annihilation operator
to these two kinds of modes and the sign of fermion number correlates with the sign
of helicity.

ii. The covariantly constant mode is naturally assignable to the covariantly constant neu-
trino spinor of imbedding space. To the two helicities one can assign also oscilla-
tor operators {a±, a†±}. The effective Majorana property is expressed in terms of
non-orthogonality of νR and and νR translated to the the non-vanishing of the anti-
commutator {a†+, a−} = {a†−, a+} = 1. The reduction of the rank of the 4× 4 matrix
defined by anti-commutators to two expresses the fact that the number of degrees of
freedom has halved. a†+ = a− realizes the conditions and implies that one has only
N = 1 SUSY multiplet since the state containing both νR and νR is same as that
containing no right handed neutrinos.

iii. One can wonder whether this SUSY is masked totally by the fact that sparticles with
all possible conformal weights n for induced spinor field are possible and the branching
ratio to n = 0 channel is small. If momentum continuum is present, the zero momentum
mode might be equivalent to nothing.

What can happen in spin degrees of freedom in super-symmetric interaction vertices if one
accepts this interpretation? As already noticed, this depends solely on what one assumes about
the correlation of the four-momenta of particle and νR.

(a) For SUSY generated by covariantly constant νR and νR there is no neutrino four-momentum
involved so that only spin matters. One cannot speak about the change of direction for
νR. In the scattering of sparticle the direction of particle changes and introduces different
spin quantization axes. νR retains its spin and in new system it is superposition of two
spin projections. The presence of both helicities requires that the transformation νR → νR
happens with an amplitude determined purely kinematically by spin rotation matrices.
This is consistent with fermion number conservation modulo 2. N = 1 SUSY based on
Majorana spinors is highly suggestive.

(b) For SUSY generated by non-constant holomorphic and anti-holomorphic modes carrying
fermion number the behavior in the scattering is different. Suppose that the sparticle does



4.7. Preferred extremals and solutions of the modified Dirac equation and
super-conformal symmetries 337

not split to particle moving in the new direction and νR moving in the original direction so
that also νR or νR carrying some massless fraction of four-momentum changes its direction
of motion. One can form the spin projections with respect to the new spin axis but must
drop the projection which does not conserve fermion number. Therefore the kinematics at
the vertices is different. HenceN = 2 SUSY with fermion number conservation is suggestive
when the momentum directions of particle and νR are completely correlated.

(c) Since right-handed neutrino has no standard model couplings, p-adic thermodynamics for
4-D right-handed neutrino must correspond to a very low p-adic temperature T = 1/n. This
implies that the excitations with non-vanishing conformal weights are effectively absent and
one would have N = 1 SUSY effectively.

The simplest assumption is that particle and sparticle correspond to the same p-adic mass
scale and have degenerate masses: it is difficult to imagine any good reason for why the p-
adic mass scales should differ. This should have been observed -say in decay widths of weak
bosons - unless the spartners correspond to large hbar phase and therefore to dark matter.
Note that for the badly broken 2-D N=2 SUSY in fermionic sector this kind of almost
degeneracy cannot be excluded and I have considered an explanation for the mysterious X
and Y mesons in terms of this degeneracy [K47].

Why space-time SUSY is not possible in TGD framework?

LHC suggests that one does not have N = 1 SUSY in standard sense. Why one cannot have
standard space-time SUSY in TGD framework. Let us begin by listing all arguments popping
in mind.

(a) Could covariantly constant νR represents a gauge degree of freedom? This is plausible since
the corresponding fermion current is non-vanishing.

(b) The original argument for absence of space-time SUSY years ago was indirect: M4 × CP2

does not allow Majorana spinors so that N = 1 SUSY is excluded.

(c) One can however consider N = 2 SUSY by including both helicities possible for covariantly
constant νR. For νR the four-momentum vanishes so that one cannot distinguish the modes
assigned to the creation operator and its conjugate via complex conjugation of the spinor.
Rather, one oscillator operator and its conjugate correspond to the two different helicities
of right-handed neutrino with respect to the direction determined by the momentum of the
particle. The spinors can be chosen to be real in this basis. This indeed gives rise to an
irreducible representation of spin 1/2 SUSY algebra with right-handed neutrino creation
operator acting as a ladder operator. This is however N = 1 algebra and right-handed neu-
trino in this particular basis behaves effectively like Majorana spinor. One can argue that
the system is mathematically inconsistent. By choosing the spin projection axis differently
the spinor basis becomes complex. In the new basis one would have N = 2 , which however
reduces to N = 1 in the real basis.

(d) Or could it be that fermion and sfermion do exist but cannot be related by SUSY? In stan-
dard SUSY fermions and sfermions forming irreducible representations of super Poincare
algebra are combined to components of superfield very much like finite-dimensional rep-
resentations of Lorentz group are combined to those of Poincare. In TGD framework νR
generates in space-time interior generalization of 2-D super-conformal symmetry but co-
varianlty constant νR cannot give rise to space-time SUSY.

This would be very natural since right-handed neutrinos do not have any electroweak in-
teractions and are are delocalized into the interior of the space-time surface unlike other
particles localized at 2-surfaces. It is difficult to imagine how fermion and νR could behave
as a single coherent unit reflecting itself in the characteristic spin and momentum depen-
dence of vertices implied by SUSY. Rather, it would seem that fermion and sfermion should
behave identically with respect to electroweak interactions.

The third argument looks rather convincing and can be developed to a precise argument.
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(a) If sfermion is to represent elementary bosons, the products of fermionic oscillator operators
with the oscillator operators assignable to the covariantly constant right handed neutrinos
must define might-be bosonic oscillator operators as bn = ana and b†n = a†na

† One can
calculate the commutator for the product of operators. If fermionic oscillator operators
commute, so do the corresponding bosonic operators. The commutator [bn, b

†
n] is however

proportional to occupation number for νR in N = 1 SUSY representation and vanishes for
the second state of the representation. Therefore N = 1 SUSY is a pure gauge symmetry.

(b) One can however have both irreducible representations of SUSY: for them either fermion or
sfermion has a non-vanishing norm. One would have both fermions and sfermions but they
would not belong to the same SUSY multiplet, and one cannot expect SUSY symmetries
of 3-particle vertices.

(c) For instance, γFF vertex is closely related to γF̃ F̃ in standard SUSY. Now one expects
this vertex to decompose to a product of γFF vertex and amplitude for the creation of
νRν̃R from vacuum so that the characteristic momentum and spin dependent factors distin-
guishing between the couplings of photon to scalar and and fermion are absent. Both states
behave like fermions. The amplitude for the creation of νRν̃R from vacuum is naturally
equal to unity as an occupation number operator by crossing symmetry. The presence of
right-handed neutrinos would be invisible if this picture is correct. Whether this invisible
label can have some consequences is not quite clear: one could argue that the decay rates of
weak bosons to fermion pairs are doubled unless one introduces 1/

√
2 factors to couplings.

Where the sfermions might make themselves visible are loops. What loops are? Consider
boson line first. Boson line is replaced with a sum of two contributions corresponding
to ordinary contribution with fermion and antifermion at opposite throats and second
contribution with fermion and antifermion accompanied by right-handed neutrino νR and
its antiparticle which now has opposite helicity to νR. The loop for νR decomposes to
four pieces since also the propagation from wormhole throat to the opposite wormhole
throat must be taken into account. Each of the four propagators equals to a†1/2a

†
−1/2 or

its hermitian conjugate. The product of these is slashed between vacuum states and anti-
commutations give imaginary unit per propagator giving i4 = 1. The two contributions
are therefore identical and the scaling g → g/

√
2 for coupling constants guarantees that

sfermions do not affect the scattering amplitudes at all. The argument is identical for the
internal fermion lines.

4.7.3 WCW geometry and super-conformal symmetries

The vision about the geometry of WCW has been roughly the following and the recent steps of
progress induce to it only small modifications if any.

(a) Kähler geometry is forced by the condition that hermitian conjugation allows geometriza-
tion. Kähler function is given by the Kähler action coming from space-time regions with
Euclidian signature of the induced metric identifiable as lines of generalized Feynman dia-
grams. Minkowskian regions give imaginary contribution identifiable as the analog of Morse
function and implying interference effects and stationary phase approximation. The vision
about quantum TGD as almost topological QFT inspires the proposal that Kähler action
reduces to 3-D terms reducing to Chern-Simons terms by the weak form of electric-magnetic
duality. The recent proposal for preferred extremals is consistent with this property real-
izing also holography implied by general coordinate invariance. Strong form of general
coordinate invariance implying effective 2-dimensionality in turn suggests that Kähler ac-
tion is expressible in terms of areas of partonic 2-surfaces and string world sheets.

(b) The complexified gamma matrices of WCW come as hermitian conjugate pairs and anti-
commute to the Kähler metric of WCW. Also bosonic generators of symplectic transforma-
tions of δM4

±×CP2 a assumed to act as isometries of WCW geometry can be complexified
and appear as similar pairs. The action of isometry generators co-incides with that of sym-
plectic generators at partonic 2-surfaces and string world sheets but elsewhere inside the
space-time surface it is expected to be deformed from the symplectic action. The super-
conformal transformations of δM4

±×CP2 acting on the light-like radial coordinate of δM4
±
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act as gauge symmetries of the geometry meaning that the corresponding WCW vector
fields have zero norm.

(c) WCW geometry has also zero modes which by definition do not contribute to WCW met-
ric expect possibly by the dependence of the elements of WCW metric on zero modes
through a conformal factor. In particular, induced CP2 Kähler form and its analog for
sphere rM = constant of light cone boundary are symplectic invariants, and one can de-
fine an infinite number of zero modes as invariants defined by Kähler fluxes over partonic
2-surfaces and string world sheets. This requires however the slicing of CD parallel copies
of δM4

+ or δM4
−. The physical interpretation of these non-quantum fluctuating degrees of

freedom is as classical variables necessary for the interpretation of quantum measurement
theory. Classical variable would metaphorically correspond the position of the pointer of
the measurement instrument.

(d) The construction receives a strong philosophical inspiration from the geometry of loop
spaces. Loop spaces allow a unique Kähler geometry with maximal isometry group identifi-
able as Kac-Moody group. The reason is that otherwise Riemann connection does not exist.
The only problem is that curvature scalar diverges since the Riemann tensor is by constant
curvature property proportional to the metric. In 3-D case one would have union of con-
stant curvature spaces labelled by zero modes and the situation is expected to be even more
restrictive. The conjecture indeed is that WCW geometry exists only for H = M4 × CP2:
infinite-D Kähler geometric existence and therefore physics would be unique. One can also
hope that Ricci scalar is finite and therefore zero by the constant curvature property so
that Einstein’s equations are satisfied.

(e) WCW Hamiltonians determined the isometry currents and WCW metric is given in terms
of the anti-commutators of the Killing vector fields associated with symplectic isometry
currents. The WCW Hamiltonians generating symplectic isometries correspond to the
Hamiltonians spanning the symplectic group of δM4

± × CP2. One can say that the space
of quantum fluctuating degrees of freedom is this symplectic group of δM4

± × CP2 or its
subgroup or coset space: this must have very deep implications for the structure of the
quantum TGD.

(f) Zero energy ontology brings in additional delicacies. Basic objects are now unions of par-
tonic 2-surfaces at the ends of CD. Also string world sheets would naturally contribute.
One can generalize the expressions for the isometry generators in a straightforward man-
ner by requiring that given isometry restricts to a symplectic transformation at partonic
2-surfaces and string world sheets.

(g) One could criticize the effective metric 2-dimensionality forced by general consistency ar-
guments as something non-physical. The Hamiltonians are expressed using only the data
at partonic 2-surfaces: this includes also 4-D tangent space data via the weak form of
electric-magnetic duality so that one has only effective 2-dimensionality. Obviously WCW
geometry must have large gauge symmetries besides zero modes. The super-conformal sym-
metries indeed represent gauge symmetries of this kind. Effective 2-dimensionality realizing
strong form of holography in turn is induced by the strong form of general coordinate in-
variance. Light-like 3-surfaces at which the signature of the induced metric changes must
be equivalent with the 3-D space-like ends of space-time surfaces at the light-boundaries
of space-time surfaces as far as WCW geometry is considered. This requires that the data
from their 2-D intersections defining partonic 2-surfaces should dictate the WCW geome-
try. Note however that Super-Kac-Moody charges giving information about the interiors
of 3-surfaces appear in the construction of the physical states.

What is the role of the right handed neutrino in this construction?

(a) In the construction of components of WCW metric as anti-commutators of super-generators
only the covariantly constant right-handed neutrino appears in the super-generators anal-
ogous to super-Kac-Moody generators. All holomorphic modes of right handed neutrino
characterized by two integers could in principle contribute to the WCW gamma matrices
identified as fermionic super-symplectic generators anti-commuting to the metric. At the
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space-like ends of space-time surface the holomorphic generators would restrict to symplec-
tic generators since the radial light-like coordinate rM identified and complex coordinate of
CP2 allowing identification as restrictions of two complex coordinates or Hamilton-Jacobi
coordinates to light-like boundary.

(b) The non-covariantly constant modes could also correspond to purely super-conformal gauge
degrees of freedom. Originally the restriction to right-handed neutrino looked somewhat
un-satisfactory but the recent view about Super-Kac-Moody symmetries makes its special
role rather natural. One could say that WCW geometry possesses the maximal D = 4
supersymmetry.

(c) One can of course ask whether the Super-Kac-Moody generators assignable to the isometries
of H and expressible as conserved charges associated with the boundaries of string world
sheets could contribute to the WCW geometry via the anti-commutators. This option
cannot be excluded but in this case the interpretation in terms of Hamiltonians is not
obvious.

4.7.4 Equivalence Principle

An important physical input has been the condition that a generalization of Equivalence Prin-
ciple is obtained.

(a) The proposal has been that inertial and gravitational masses can be assigned with the
super-symplectic and super-Kac-Moody representations via the condition that the scaling
generator L0 defined as a difference of the corresponding generators for the two represen-
tations annihilates physical states. This requires that super-Kac-Moody algebra can be
regarded in some sense as a sub-algebra of super-symplectic algebra. For isometries this
would be natural but in the case of holonomies the situation is problematic. The idea has
been that the ordinary realization of Equivalence Principle follows as Einstein’s equations
for fluctuations around vacuum extremals expressing the average energy momentum tensor
for the fluctuations.

(b) The emergence of Einstein’s equations for preferred extremals as additional conditions
[K8, K79] allowing the algebraization of the equations to analogs of minimal surface equa-
tions changes the situation completely. Is there anymore need to realize Equivalence Prin-
ciple at quantum level? If one drops this condition one can imagine very simple option
obtained as tensor product of the super-symplectic and super-Kac-Moody representations.
Of course, coset representations for the symplectic group and its suitable subgroup - say
subgroup defining measurement resolution - can be present but would not nothing to do
with Equivalence Principle.

(c) One can of course argue that one has very naturally to different mass squared operators
and therefore inertial and gravitational masses. Inertial mass squared would be natu-
rally assignable to the representations of the super-symplectic algebra imbedding space
d’Alembertian and gravitational mass squared with the spinor d’Alembertian at string
world sheets at space-time surfaces. Quantum level realization for Equivalence Principle
could mean that these two mass squared operators are identical or something analogous to
this. One can however criticize this idea as un-necessary and also because the signature
of the effective metric defined by the modified Dirac gamma matrices is speculated to be
Euclidian.

4.7.5 Constraints from p-adic mass calculations and ZEO

A further important physical input comes from p-adic thermodynamics forming a core element
of p-adic mass calculations.

(a) The first thing that one can get worried about relates to the extension of conformal sym-
metries. If the conformal symmetries generalize to D = 4, how can one take seriously
the results of p-adic mass calculations based on 2-D conformal invariance? There is no
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reason to worry. The reduction of the conformal invariance to 2-D one for the preferred
extremals takes care of this problem. This however requires that the fermionic contri-
butions assignable to string world sheets and/or partonic 2-surfaces - Super- Kac-Moody
contributions - should dictate the elementary particle masses. For hadrons also symplec-
tic contributions should be present. This is a valuable hint in attempts to identify the
mathematical structure in more detail.

(b) ZEO suggests that all particles, even virtual ones correspond to massless wormhole throats
carrying fermions. As a consequenc, twistor approach would work and the kinematical
constraints to vertices would allow th cancellation of divergences. This would suggest that
the p-adic thermal expectation value is for the longitudinal M2 momentum squared (the
definition of CD selects M1 ⊂ M2 ⊂ M4 as also does number theoretic vision). Also
propagator would be determined by M2 momentum. Lorentz invariance would be obtained
by integration of the moduli for CD including also Lorentz boosts of CD.

(c) In the original approach one allows states with arbitrary large values of L0 as physical states.
Usually one would require that L0 annihilates the states. In the calculations however mass
squared was assumed to be proportional L0 apart from vacuum contribution. This is a
questionable assumption. ZEO suggests that total mass squared vanishes and that one can
decompose mass squared to a sum of longitudinal and transversal parts. If one can do
the same decomposition to longitudinal and transverse parts also for the Super Virasoro
algebra then one can calculate longitudinal mass squared as a p-adic thermal expectation
in the transversal super-Virasoro algebra and only states with L0 = 0 would contribute and
one would have conformal invariance in the standard sense.

(d) In the original approach the assumption motivated by Lorentz invariance has been that mass
squared is replaced with conformal weight in thermodynamics, and that one first calculates
the thermal average of the conformal weight and then equates it with mass squared. This
assumption is somewhat ad hoc. ZEO however suggests an alternative interpretation in
which one has zero energy states for which longitudinal mass squared of positive energy
state derive from p-adic thermodynamics. Thermodynamics - or rather, its square root -
would become part of quantum theory in ZEO. M -matrix is indeed product of hermitian
square root of density matrix multiplied by unitary S-matrix and defines the entanglement
coefficients between positive and negative energy parts of zero energy state.

(e) The crucial constraint is that the number of super-conformal tensor factors is N = 5: this
suggests that thermodynamics applied in Super-Kac-Moody degrees of freedom assignable
to string world sheets is enough, when one is interested in the masses of fermions and
gauge bosons. Super-symplectic degrees of freedom can also contribute and determine the
dominant contribution to baryon masses. Should also this contribution obey p-adic thermo-
dynamics in the case when it is present? Or does the very fact that this contribution need
not be present mean that it is not thermal? The symplectic contribution should correspond
to hadronic p-adic length prime rather the one assignable to (say ) u quark. Hadronic p-
adic mass squared and partonic p-adic mass squared cannot be summed since primes are
different. If one accepts the basic rules [K53], longitudinal energy and momentum are
additive as indeed assumed in perturbative QCD.

(f) Calculations work if the vacuum expectation value of the mass squared must be assumed
to be tachyonic. There are two options depending on whether one whether p-adic thermo-
dynamics gives total mass squared or longitudinal mass squared.

i. One could argue that the total mass squared has naturally tachyonic ground state ex-
pectation since for massless extremals longitudinal momentum is light-like and transver-
sal momentum squared is necessary present and non-vanishing by the localization to
topological light ray of finite thickness of order p-adic length scale. Transversal degrees
of freedom would be modeled with a particle in a box.

ii. If longitudinal mass squared is what is calculated, the condition would require that
transversal momentum squared is negative so that instead of plane wave like behavior
exponential damping would be required. This would conform with the localization in
transversal degrees of freedom.
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(g) What about Equivalence Principle in this framework? A possible quantum counterpart
of Equivalence Principle could be that the longitudinal parts of the imbedding space mass
squared operator for a given massless state equals to that for d’Alembert operator assignable
to the modified Dirac action. The attempts to formulate this in more precise manner
however seem to produce only additional troubles.

4.7.6 The emergence of Yangian symmetry and gauge potentials as
duals of Kac-Moody currents

Yangian symmetry plays a key role in N = 4 super-symmetric gauge theories. What is special in
Yangian symmetry is that the algebra contains also multi-local generators. In TGD framework
multi-locality would naturally correspond to that with respect to partonic 2-surfaces and string
world sheets and the proposal has been that the Super-Kac-Moody algebras assignable to string
worlds sheets could generalize to Yangian.

Witten has written a beautiful exposition of Yangian algebras [B50]. Yangian is generated by
two kinds of generators JA and QA by a repeated formation of commutators. The number of
commutations tells the integer characterizing the multi-locality and provides the Yangian algebra
with grading by natural numbers. Witten describes a 2-dimensional QFT like situation in which
one has 2-D situation and Kac-Moody currents assignable to real axis define the Kac-Moody
charges as integrals in the usual manner. It is also assumed that the gauge potentials defined
by the 1-form associated with the Kac-Moody current define a flat connection:

∂µj
A
ν − ∂νjAν + [jAµ , j

A
ν ] = 0 . (4.7.1)

This condition guarantees that the generators of Yangian are conserved charges. One can how-
ever consider alternative manners to obtain the conservation.

(a) The generators of first kind - call them JA - are just the conserved Kac-Moody charges.
The formula is given by

JA =

∫ ∞
−∞

dxjA0(x, t) . (4.7.2)

(b) The generators of second kind contain bi-local part. They are convolutions of generators
of first kind associated with different points of string described as real axis. In the basic
formula one has integration over the point of real axis.

QA = fABC

∫ ∞
−∞

dx

∫ ∞
x

dyjB0(x, t)jC0(y, t)− 2

∫ ∞
−∞

jAx dx . (4.7.3)

These charges are indeed conserved if the curvature form is vanishing as a little calculation
shows.

How to generalize this to the recent context?

(a) The Kac-Moody charges would be associated with the braid strands connecting two partonic
2-surfaces - Strands would be located either at the space-like 3-surfaces at the ends of the
space-time surface or at light-like 3-surfaces connecting the ends. Modified Dirac equation
would define Super-Kac-Moody charges as standard Noether charges. Super charges would
be obtained by replacing the second quantized spinor field or its conjugate in the fermionic
bilinear by particular mode of the spinor field. By replacing both spinor field and its
conjugate by its mode one would obtain a conserved c-number charge corresponding to
an anti-commutator of two fermionic super-charges. The convolution involving double
integral is however not number theoretically attactive whereas single 1-D integrals might
make sense.
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(b) An encouraging observation is that the Hodge dual of the Kac-Moody current defines the
analog of gauge potential and exponents of the conserved Kac-Moody charges could be iden-
tified as analogs for the non-integrable phase factors for the components of this gauge poten-
tial. This identification is precise only in the approximation that generators commute since
only in this case the ordered integral P (exp(i

∫
Adx)) reduces to P (exp(i

∫
Adx)).Partonic

2-surfaces connected by braid strand would be analogous to nearby points of space-time
in its discretization implying that Abelian approximation works. This conforms with the
vision about finite measurement resolution as discretization in terms partonic 2-surfaces
and braids.

This would make possible a direct identification of Kac-Moody symmetries in terms of
gauge symmetries. For isometries one would obtain color gauge potentials and the analogs
of gauge potentials for graviton field (in TGD framework the contraction with M4 vierbein
would transform tensor field to 4 vector fields). For Kac-Moody generators corresponding
to holonomies one would obtain electroweak gauge potentials. Note that super-charges
would give rise to a collection of spartners of gauge potentials automatically. One would
obtain a badly broken SUSY with very large value of N defined by the number of spinor
modes as indeed speculated earlier [K29].

(c) The condition that the gauge field defined by 1-forms associated with the Kac-Moody
currents are trivial looks unphysical since it would give rise to the analog of topological
QFT with gauge potentials defined by the Kac-Moody charges. For the duals of Kac-
Moody currents defining gauge potentials only covariant divergence vanishes implying that
curvature form is

Fαβ = εαβ [jµ, j
µ] , (4.7.4)

so that the situation does not reduce to topological QFT unless the induced metric is
diagonal. This is not the case in general for string world sheets.

(d) It seems however that there is no need to assume that jµ defines a flat connection. Witten
mentions that although the discretization in the definition of JA does not seem to be
possible, it makes sense for QA in the case of G = SU(N) for any representation of G. For
general G and its general representation there exists no satisfactory definition of Q. For
certain representations, such as the fundamental representation of SU(N), the definition
of QA is especially simple. One just takes the bi-local part of the previous formula:

QA = fABC
∑
i<j

JBi J
C
j . (4.7.5)

What is remarkable that in this formula the summation need not refer to a discretized
point of braid but to braid strands ordered by the label i by requiring that they form a
connected polygon. Therefore the definition of JA could be just as above.

(e) This brings strongly in mind the interpretation in terms of twistor diagrams. Yangian would
be identified as the algebra generated by the logarithms of non-integrable phase factors in
Abelian approximation assigned with pairs of partonic 2-surfaces defined in terms of Kac-
Moody currents assigned with the modified Dirac action. Partonic 2-surfaces connected by
braid strand would be analogous to nearby points of space-time in its discretization. This
would fit nicely with the vision about finite measurement resolution as discretization in
terms partonic 2-surfaces and braids.

The resulting algebra satisfies the basic commutation relations

[
JA, JB

]
= fABC JC ,

[
JA, QB

]
= fABC QC . (4.7.6)

plus the rather complex Serre relations described in [B50].
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4.7.7 Quantum criticality and electro-weak gauge symmetries

Quantum criticality is one of the basic guiding principles of Quantum TGD. What it means
mathematically is however far from clear.

(a) What is obvious is that quantum criticality implies quantization of Kähler coupling strength
as a mathematical analog of critical temperature so that the theory becomes mathematically
unique if only single critical temperature is possible. Physically this means the presence of
long range fluctuations characteristic for criticality and perhaps assignable to the effective
hierarchy of Planck constants having explanation in terms of effective covering spaces of
the imbedding space. This hierarchy follows from the vacuum degeneracy of Kähler action,
which in turn implies 4-D spin-glass degeneracy. It is easy to interpret the degeneracy in
terms of criticality.

(b) At more technical level one would expect criticality to corresponds deformations of a given
preferred extremal defining a vanishing second variation of Kähler action. This is anal-
ogous to the vanishing of also second derivatives of potential function at extremum in
certain directions so that the matrix defined by second derivatives does not have maximum
rank. Entire hierarchy of criticalities is expected and a good finite-dimensional model is
provided by the catastrophe theory of Thom [A149]. Cusp catastrophe [A8] is the simplest
catastrophe one can think of, and here the folds of cusp where discontinuous jump occurs
correspond to criticality with respect to one control variable and the tip to criticality with
respect to both control variables.

(c) I have discussed what criticality could mean for modified Dirac action [K28] and claimed
that it leads to the existence of additional conserved currents defined by the variations which
do not affect the value of Kähler action. These arguments are far from being mathematically
rigorous and the recent view about the solutions of the modified Dirac equation predicting
that the spinor modes are restricted to 2-D string world sheets requires a modification of
these arguments.

In the following these arguments are updated. The unexpected result is that critical deformations
induce conformal scalings of the modified metric and electro-weak gauge transformations of the
induced spinor connection at X2. Therefore holomorphy brings in the Kac-Moody symmetries
associated with isometries ofH (gravitation and color gauge group) and quantum criticality those
associated with the holonomies of H (electro-weak-gauge group) as additional symmetries.

The variation of modes of the induced spinor field in a variation of space-time
surface respecting the preferred extremal property

Consider first the variation of the induced spinor field in a variation of space-time surface respect-
ing the preferred extremal property. The deformation must be such that the deformed modified
Dirac operator D annihilates the modified mode. By writing explicitly the variation of the mod-
ified Dirac action (the action vanishes by modified Dirac equation) one obtains deformations
and requiring its vanishing one obtains

δΨ = D−1(δD)Ψ . (4.7.7)

D−1 is the inverse of the modified Dirac operator defining the analog of Dirac propagator and δD
defines vertex completely analogous to γkδAk in gauge theory context. The functional integral
over preferred extremals can be carried out perturbatively by expressing δD in terms of δhk

and one obtains stringy perturbation theory around X2 associated with the preferred extremal
defining maximum of Kähler function in Euclidian region and extremum of Kähler action in
Minkowskian region (stationary phase approximation).

What one obtains is stringy perturbation theory for calculating n-points functions for fermions
at the ends of braid strands located at partonic 2-surfaces and representing intersections of

http://en.wikipedia.org/wiki/Catastrophe_theory#Cusp_catastrophe
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string world sheets and partonic 2-surfaces at the light-like boundaries of CDs. δD- or more
precisely, its partial derivatives with respect to functional integration variables - appear atthe
vertices located anywhere in the interior of X2 with outcoming fermions at braid ends. Bosonic
propagators are replaced with correlation functions for δhk. Fermionic propagator is defined by
D−1.

After 35 years or hard work this provides for the first time a reasonably explicit formula for
the N-point functions of fermions. This is enough since by bosonic emergence [K58] these N-
point functions define the basic building blocks of the scattering amplitudes. Note that bosonic
emergence states that bosons corresponds to wormhole contacts with fermion and antifermion
at the opposite wormhole throats.

What critical modes could mean for the induced spinor fields?

What critical modes could mean for the induced spinor fields at string world sheets and partonic
2-surfaces. The problematic part seems to be the variation of the modified Dirac operator since
it involves gradient. One cannot require that covariant derivative remains invariant since this
would require that the components of the induced spinor connection remain invariant and this
is quite too restrictive condition. Right handed neutrino solutions delocalized into entire X2

are however an exception since they have no electro-weak gauge couplings and in this case the
condition is obvious: modified gamma matrices suffer a local scaling for critical deformations:

δΓµ = Λ(x)Γµ . (4.7.8)

This guarantees that the modified Dirac operator D is mapped to ΛD and still annihilates the
modes of νR labelled by conformal weight, which thus remain unchanged.

What is the situation for the 2-D modes located at string world sheets? The condition is obvious.
Ψ suffers an electro-weak gauge transformation as does also the induced spinor connection so
that Dµ is not affected at all. Criticality condition states that the deformation of the space-
time surfaces induces a conformal scaling of Γµ at X2. It might be possible to continue this
conformal scaling of the entire space-time sheet but this might be not necessary and this would
mean that all critical deformations induced conformal transformations of the effective metric
of the space-time surface defined by {Γµ,Γν} = 2Gµν . Thus it seems that effective metric is
indeed central concept (recall that if the conjectured quaternionic structure is associated with
the effective metric, it might be possible to avoid problem related to the Minkowskian signature
in an elegant manner).

In fact, one can consider even more general action of critical deformation: the modes of the in-
duced spinor field would be mixed together in the infinitesimal deformation besides infinitesimal
electroweak gauge transformation, which is same for all modes. This would extend electroweak
gauge symmetry. Modified Dirac equation holds true also for these deformations. One might
wonder whether the conjectured dynamically generated gauge symmetries assignable to finite
measurement resolution could be generated in this manner.

The infinitesimal generator of a critical deformation JM can be expressed as tensor product of
matrix AM acting in the space of zero modes and of a generator of infinitemal electro-weak
gauge transformation TM (x) acting in the same manner on all modes: JM = AM ⊗ TM (x). AM
is a spatially constant matrix and TM (x) decomposes to a direct sum of left- and right-handed
SU(2) × U(1) Lie-algebra generators. Left-handed Lie-algebra generator can be regarded as
a quaternion and right handed as a complex number. One can speak of a direct sum of left-
handed local quaternion qM,L and right-handed local complex number cM,R. The commutator
[JM , JN ] is given by [JM , JN ] = [AM , AN ] ⊗ {TM (x), TN (x)} + {AM , AN} ⊗ [TM (x), TN (x)].
One has {TM (x), TN (x)} = {qM,L(x), qN,L(x)} ⊕ {cM,R(x), cN,R(x)} and [TM (x), TN (x)] =
[qM,L(x), qN,L(x)]. The commutators make sense also for more general gauge group but quater-
nion/complex number property might have some deeper role.
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Thus the critical deformations would induce conformal scalings of the effective metric and dy-
namical electro-weak gauge transformations. Electro-weak gauge symmetry would be a dynam-
ical symmetry restricted to string world sheets and partonic 2-surfaces rather than acting at
the entire space-time surface. For 4-D delocalized right-handed neutrino modes the conformal
scalings of the effective metric are analogous to the conformal transformations of M4 for N = 4
SYMs. Also ordinary conformal symmetries of M4 could be present for string world sheets and
could act as symmetries of generalized Feynman graphs since even virtual wormhole throats
are massless. An interesting question is whether the conformal invariance associated with the
effective metric is the analog of dual conformal invariance in N = 4 theories.

Critical deformations of space-time surface are accompanied by conserved fermionic currents.
By using standard Noetherian formulas one can write

Jµi = ΨΓµδiΨ + δiΨΓµΨ . (4.7.9)

Here δΨi denotes derivative of the variation with respect to a group parameter labeled by i. Since
δΨi reduces to an infinitesimal gauge transformation of Ψ induced by deformation, these currents
are the analogs of gauge currents. The integrals of these currents along the braid strands at the
ends of string world sheets define the analogs of gauge charges. The interpretation as Kac-Moody
charges is also very attractive and I have proposed that the 2-D Hodge duals of gauge potentials
could be identified as Kac-Moody currents. If so, the 2-D Hodge duals of J would define the
quantum analogs of dynamical electro-weak gauge fields and Kac-Moody charge could be also
seen as non-integral phase factor associated with the braid strand in Abelian approximation (the
interpretation in terms of finite measurement resolution is discussed earlier).

One can also define super currents by replacing Ψ or Ψ by a particular mode of the induced
spinor field as well as c-number valued currents by performing the replacement for both Ψ or
Ψ. As expected, one obtains a super-conformal algebra with all modes of induced spinor fields
acting as generators of super-symmetries restricted to 2-D surfaces. The number of the charges
which do not annihilate physical states as also the effective number of fermionic modes could be
finite and this would suggest that the integer N for the supersymmetry in question is finite. This
would conform with the earlier proposal inspired by the notion of finite measurement resolution
implying the replacement of the partonic 2-surfaces with collections of braid ends.

Note that Kac-Moody charges might be associated with ”long” braid strands connecting differ-
ent wormhole throats as well as short braid strands connecting opposite throats of wormhole
contacts. Both kinds of charges would appear in the theory.

What is the interpretation of the critical deformations?

Critical deformations bring in an additional gauge symmetry. Certainly not all possible gauge
transformations are induced by the deformations of preferred extremals and a good guess is that
they correspond to holomorphic gauge group elements as in theories with Kac-Moody symmetry.
What is the physical character of this dynamical gauge symmetry?

(a) Do the gauge charges vanish? Do they annihilate the physical states? Do only their
positive energy parts annihilate the states so that one has a situation characteristic for the
representation of Kac-Moody algebras. Or could some of these charges be analogous to the
gauge charges associated with the constant gauge transformations in gauge theories and
be therefore non-vanishing in the absence of confinement. Now one has electro-weak gauge
charges and these should be non-vanishing. Can one assign them to deformations with a
vanishing conformal weight and the remaining deformations to those with non-vanishing
conformal weight and acting like Kac-Moody generators on the physical states?

(b) The simplest option is that the critical Kac-Moody charges/gauge charges with non-vanishing
positive conformal weight annihilate the physical states. Critical degrees of freedom would
not disappear but make their presence known via the states labelled by different gauge
charges assignable to critical deformations with vanishing conformal weight. Note that



4.7. Preferred extremals and solutions of the modified Dirac equation and
super-conformal symmetries 347

constant gauge transformations can be said to break the gauge symmetry also in the ordi-
nary gauge theories unless one has confinement.

(c) The hierarchy of quantum criticalities suggests however entire hierarchy of electro-weak
Kac-Moody algebras. Does this mean a hierarchy of electro-weak symmetries breakings in
which the number of Kac-Moody generators not annihilating the physical states gradually
increases as also modes with a higher value of positive conformal weight fail to annihilate
the physical state?

The only manner to have a hierarchy of algebras is by assuming that only the generators
satisfying n mod N = 0 define the sub-Kac-Moody algebra annihilating the physical states
so that the generators with n mod N 6= 0 would define the analogs of gauge charges. I
have suggested for long time ago the relevance of kind of fractal hierarchy of Kac-Moody
and Super-Virasoro algebras for TGD but failed to imagine any concrete realization.

A stronger condition would be that the algebra reduces to a finite dimensional algebra in
the sense that the actions of generators Qn and Qn+kN are identical. This would corre-
spond to periodic boundary conditions in the space of conformal weights. The notion of
finite measurement resolution suggests that the number of independent fermionic oscillator
operators is proportional to the number of braid ends so that an effective reduction to a
finite algebra is expected.

Whatever the correct interpretation is, this would obviously refine the usual view about
electro-weak symmetry breaking.

These arguments suggests the following overall view. The holomorphy of spinor modes gives
rise to Kac-Moody algebra defined by isometries and includes besides Minkowskian generators
associated with gravitation also SU(3) generators associated with color symmetries. Vanishing
second variations in turn define electro-weak Kac-Moody type algebra.

Note that criticality suggests that one must perform functional integral over WCW by decompos-
ing it to an integral over zero modes for which deformations of X4 induce only an electro-weak
gauge transformation of the induced spinor field and to an integral over moduli corresponding
to the remaining degrees of freedom.

4.7.8 The importance of being light-like

The singular geometric objects associated with the space-time surface have become increasingly
important in TGD framework. In particular, the recent progress has made clear that these
objects might be crucial for the understanding of quantum TGD. The singular objects are
associated not only with the induced metric but also with the effective metric defined by the
anti-commutators of the modified gamma matrices appearing in the modified Dirac equation
and determined by the Kähler action.

The singular objects associated with the induced metric

Consider first the singular objects associated with the induced metric.

(a) At light-like 3-surfaces defined by wormhole throats the signature of the induced metric
changes from Euclidian to Minkowskian so that 4-metric is degenerate. These surfaces are
carriers of elementary particle quantum numbers and the 4-D induced metric degenerates
locally to 3-D one at these surfaces.

(b) Braid strands at light-like 3-surfaces are most naturally light-like curves: this correspond
to the boundary condition for open strings. One can assign fermion number to the braid
strands. Braid strands allow an identification as curves along which the Euclidian signature
of the string world sheet in Euclidian region transforms to Minkowskian one. Number
theoretic interpretation would be as a transformation of complex regions to hyper-complex
regions meaning that imaginary unit i satisfying i2 = −1 becomes hyper-complex unit
e satisfying e2 = 1. The complex coordinates (z, z) become hyper-complex coordinates
(u = t+ ex, v = t− ex) giving the standard light-like coordinates when one puts e = 1.
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The singular objects associated with the effective metric

There are also singular objects assignable to the effective metric. According to the simple argu-
ments already developed, string world sheets and possibly also partonic 2-surfaces are singular
objects with respect to the effective metric defined by the anti-commutators of the modified
gamma matrices rather than induced gamma matrices. Therefore the effective metric seems to
be much more than a mere formal structure.

(a) For instance, quaternionicity of the space-time surface could allow an elegant formulation
in terms of the effective metric avoiding the problems due to the Minkowski signature. This
is achieved if the effective metric has Euclidian signature ε×(1, 1, 1, 1), ε = ±1 or a complex
counterpart of the Minkowskian signature ε(1, 1,−1,−1).

(b) String word sheets and perhaps also partonic 2-surfaces could be understood as singularities
of the effective metric. What happens that the effective metric with Euclidian signature
ε× (1, 1, 1, 1) transforms to the signature ε(1, 1,−1,−1) (say) at string world sheet so that
one would have the degenerate signature ε× (1, 1, 0, 0) at the string world sheet.

What is amazing is that this works also number theoretically. It came as a total surprise
to me that the notion of hyper-quaternions as a closed algebraic structure indeed exists.
The hyper-quaternionic units would be given by (1, I, iJ, iK), where i is a commuting
imaginary unit satisfying i2 = −1. Hyper-quaternionic numbers defined as combinations of
these units with real coefficients do form a closed algebraic structure which however fails
to be a number field just like hyper-complex numbers do. Note that the hyper-quaternions
obtained with real coefficients from the basis (1, iI, iJ, iK) fail to form an algebra since the
product is not hyper-quaternion in this sense but belongs to the algebra of complexified
quaternions. The same problem is encountered in the case of hyper-octonions defined in
this manner. This has been a stone in my shoe since I feel strong disrelish towards Wick
rotation as a trick for moving between different signatures.

(c) Could also partonic 2-surfaces correspond to this kind of singular 2-surfaces? In princi-
ple, 2-D surfaces of 4-D space intersect at discrete points just as string world sheets and
partonic 2-surfaces do so that this might make sense. By complex structure the situation
is algebraically equivalent to the analog of plane with non-flat metric allowing all possible
signatures (ε1, ε2) in various regions. At light-like curve either ε1 or ε2 changes sign and
light-like curves for these two kinds of changes can intersect as one can easily verify by
drawing what happens. At the intersection point the metric is completely degenerate and
simply vanishes.

(d) Replacing real 2-dimensionality with complex 2-dimensionality, one obtains by the univer-
sality of algebraic dimension the same result for partonic 2-surfaces and string world sheets.
The braid ends at partonic 2-surfaces representing the intersection points of 2-surfaces of
this kind would have completely degenerate effective metric so that the modified gamma
matrices would vanish implying that energy momentum tensor vanishes as does also the
induced Kähler field.

(e) The effective metric suffers a local conformal scaling in the critical deformations identified in
the proposed manner. Since ordinary conformal group acts on Minkowski space and leaves
the boundary of light-cone invariant, one has two conformal groups. It is not however
clear whether the M4 conformal transformations can act as symmetries in TGD, where the
presence of the induced metric in Kähler action breaks M4 conformal symmetry. As found,
also in TGD framework the Kac-Moody currents assigned to the braid strands generate
Yangian: this is expected to be true also for the Kac-Moody counterparts of the conformal
algebra associated with quantum criticality. On the other hand, in twistor program one
encounters also two conformal groups and the space in which the second conformal group
acts remains somewhat mysterious object. The Lie algebras for the two conformal groups
generate the conformal Yangian and the integrands of the scattering amplitudes are Yangian
invariants. Twistor approach should apply in TGD if zero energy ontology is right. Does
this mean a deep connection?

What is also intriguing that twistor approach in principle works in strict mathematical sense
only at signatures ε× (1, 1,−1− 1) and the scattering amplitudes in Minkowski signature
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are obtained by analytic continuation. Could the effective metric give rise to the desired
signature? Note that the notion of massless particle does not make sense in the signature
ε× (1, 1, 1, 1).

These arguments provide genuine a support for the notion of quaternionicity and suggest a
connection with the twistor approach.

4.7.9 Realization of large N SUSY in TGD

The generators large N SUSY algebras are obtained by taking fermionic currents for second
quantized fermions and replacing either fermion field or its conjugate with its particular mode.
The resulting super currents are conserved and define super charges. By replacing both fermion
and its conjugate with modes one obtains c number valued currents. Therefore N = ∞ SUSY
- presumably equivalent with super-conformal invariance - or its finite N cutoff is realized in
TGD framework and the challenge is to understand the realization in more detail.

Super-space viz. Grassmann algebra valued fields

Standard SUSY induces super-space extending space-time by adding anti-commuting coordi-
nates as a formal tool. Many mathematicians are not enthusiastic about this approach because
of the purely formal nature of anti-commuting coordinates. Also I regard them as a non-sense
geometrically and there is actually no need to introduce them as the following little argument
shows.

Grassmann parameters (anti-commuting theta parameters) are generators of Grassmann algebra
and the natural object replacing super-space is this Grassmann algebra with coefficients of
Grassmann algebra basis appearing as ordinary real or complex coordinates. This is just an
ordinary space with additional algebraic structure: the mysterious anti-commuting coordinates
are not needed. To me this notion is one of the conceptual monsters created by the over-
pragmatic thinking of theoreticians.

This allows allows to replace field space with super field space, which is completely well-defined
object mathematically, and leave space-time untouched. Linear field space is simply replaced
with its Grassmann algebra. For non-linear field space this replacement does not work. This
allows to formulate the notion of linear super-field just in the same manner as it is done usually.

The generators of super-symmetries in super-space formulation reduce to super translations ,
which anti-commute to translations. The super generators Qα and Qβ̇ of super Poincare algebra
are Weyl spinors commuting with momenta and anti-commuting to momenta:

{Qα, Qβ̇} = 2σµ
αβ̇
Pµ . (4.7.10)

One particular representation of super generators acting on super fields is given by

Dα = i
∂

∂θα
,

Dα̇ = i
∂

∂θα̇
+ θβσµβα̇∂µ (4.7.11)

Here the index raising for 2-spinors is carried out using antisymmetric 2-tensor εαβ . Super-space
interpretation is not necessary since one can interpret this action as an action on Grassmann
algebra valued field mixing components with different fermion numbers.

Chiral superfields are defined as fields annihilated by Dα̇. Chiral fields are of form Ψ(xµ +
iθσµθ, θ). The dependence on θα̇ comes only from its presence in the translated Minkowski
coordinate annihilated by Dα̇. Super-space enthusiast would say that by a translation of M4

coordinates chiral fields reduce to fields, which depend on θ only.
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The space of fermionic Fock states at partonic 2-surface as TGD counterpart of
chiral super field

As already noticed, another manner to realize SUSY in terms of representations the super algebra
of conserved super-charges. In TGD framework these super charges are naturally associated with
the modified Dirac equation, and anti-commuting coordinates and super-fields do not appear
anywhere. One can however ask whether one could identify a mathematical structure replacing
the notion of chiral super field.

In [K29] it was proposed that generalized chiral super-fields could effectively replace induced
spinor fields and that second quantized fermionic oscillator operators define the analog of SUSY
algebra. One would have N = ∞ if all the conformal excitations of the induced spinor field
restricted on 2-surface are present. For right-handed neutrino the modes are labeled by two
integers and delocalized to the interior of Euclidian or Minkowskian regions of space-time sheet.

The obvious guess is that chiral super-field generalizes to the field having as its components
many-fermions states at partonic 2-surfaces with theta parameters and their conjugates in one-
one correspondence with fermionic creation operators and their hermitian conjugates.

(a) Fermionic creation operators - in classical theory corresponding anti-commuting Grassmann
parameters - replace theta parameters. Theta parameters and their conjugates are not in
one-one correspondence with spinor components but with the fermionic creation operators
and their hermitian conjugates. One can say that the super-field in question is defined in
the ”world of classical worlds” (WCW) rather than in space-time. Fermionic Fock state at
the partonic 2-surface is the value of the chiral super field at particular point of WCW.

(b) The matrix defined by the σµ∂µ is replaced with a matrix defined by the modified Dirac
operator D between spinor modes acting in the solution space of the modified Dirac equa-
tion. Since modified Dirac operator annihilates the modes of the induced spinor field, super
covariant derivatives reduce to ordinary derivatives with respect the theta parameters la-
beling the modes. Hence the chiral super field is a field that depends on θm or conjugates
θm only. In second quantization the modes of the chiral super-field are many-fermion states
assigned to partonic 2-surfaces and string world sheets. Note that this is the only possibility
since the notion of super-coordinate does not make sense now.

(c) It would seem that the notion of super-field does not bring anything new. This is not
the case. First of all, the spinor fields are restricted to 2-surfaces. Second point is that
one cannot assign to the fermions of the many-fermion states separate non-parallel or even
parallel four-momenta. The many-fermion state behaves like elementary particle. This has
non-trivial implications for propagators and a simple argument [K29] leads to the proposal
that propagator for N-fermion partonic state is proportional to 1/pN . This would mean
that only the states with fermion number equal to 1 or 2 behave like ordinary elementary
particles.

How the fermionic anti-commutation relations are determined?

Understanding the fermionic anti-commutation relations is not trivial since all fermion fields ex-
cept right-handed neutrino are assumed to be localized at 2-surfaces. Since fermionic conserved
currents must give rise to well-defined charges as 3-D integrals the spinor modes must be propor-
tional to a square root of delta function in normal directions. Furthermore, the modified Dirac
operator must act only in the directions tangential to the 2-surface in order that the modified
Dirac equation can be satisfied.

The square root of delta function can be formally defined by starting from the expansion of delta
function in discrete basis for a particle in 1-D box. The product of two functions in x-space is
convolution of Fourier transforms and the coefficients of Fourier transform of delta function are
apart from a constant multiplier equal to 1: δ(x) = K

∑
n exp(inx/2πL). Therefore the Fourier

transform of square root of delta function is obtained by normalizing the Fourier transform
of delta function by 1/

√
N , where N → ∞ is the number of plane waves. In other words:√

δ(x) =
√

K
N

∑
n

∑
exp(inx/2πL).
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Canonical quantization defines the standard approach to the second quantization of the Dirac
equation.

(a) One restricts the consideration to time=constant slices of space-time surface. Now the
3-surfaces at the ends of CD are natural slices. The intersection of string world sheet
with these surfaces is 1-D whereas partonic 2-surfaces have 2-D Euclidian intersection with
them.

(b) The canonical momentum density is defined by

Πα =
∂L

∂tΨα(x)
= ΓtΨ ,

Γt =
∂LK
∂(∂thk)

. (4.7.12)

LK denotes Kähler action density: consistency requires DµΓµ = 0, and this is guaranteed
only by using the modified gamma matrices defined by Kähler action. Note that Γt contains
also the

√
g4 factor. Induced gamma matrices would require action defined by four-volume.

t is time coordinate varying in direction tangential to 2-surface.

(c) The standard equal time canonical anti-commutation relations state

{Πα,Ψβ} = δ3(x, y)δαβ . (4.7.13)

Can these conditions be applied both at string world sheets and partonic 2-surfaces.

(a) Sttring world sheets do not pose problems. The restriction of the modes to string world
sheets means that the square root of delta function in the normal direction of string world
sheet takes care of the normal dimensions and the dynamical part of anti-commutation
relations is 1-dimensional just as in the case of strings.

(b) Partonic 2-surfaces are problematic. The
√
g4 factor in Γt implies that Γt approaches zero at

partonic 2-surfaces since they belong to light-like wormhole throats at which the signature
of the induced metric changes. Energy momentum tensor appearing in Γt involves to index
raisins by induced metric so that it can grow without limit as one approaches partonic two-
surface. Therefore it is quite possible that the limit is finite and the boundary conditions
defined by the weak form of electric magnetic duality might imply that the limit is finite.
The open question is whether one can apply canonical quantization at partonic 2-surfaces.
One can also ask whether one can define induced spinor fields at wormhole throats only at
the ends of string world sheets so that partonic 2-surface would be effectively discretized.
This cautious conclusion emerged in the earlier study of the modified Dirac equation [K28].

(c) Suppose that one can assume spinor modes at partonic 2-surfaces. 2-D conformal invariance
suggests that the situation reduces to effectively one-dimensional also at the partonic two-
surfaces. If so, one should pose the anti-commutation relations at some 1-D curves of the
partonic 2-surface only. This is the only sensical option. The point is that the action of the
modified Dirac operator is tangential so that also the canonical momentum current must
be tangential and one can fix anti-commutations only at some set of curves of the partonic
2-surface.

One can of course worry what happens at the limit of vacuum extremals. The problem is that
Γt vanishes for space-time surfaces reducing to vacuum extremals at the 2-surfaces carrying
fermions so that the anti-commutations are inconsistent. Should one require - as done earlier-
that the anti-commutation relations make sense at this limit and cannot therefore have the
standard form but involve the scalar magnetic flux formed from the induced Kähler form by
permuting it with the 2-D permutations symbl? The restriction to preferred extremals, which
are always non-vacuum extremals, might allow to avoid this kind of problems automatically.

In the case of right-handed neutrino the situation is genuinely 3-dimensional and in this case
non-vacuum extremal property must hold true in the regions where the modes of νR are non-
vanishing. The same mechanism would save from problems also at the partonic 2-surfaces.
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The dynamics of induced spinor fields must avoid classical vacuum. Could this relate to color
confinement? Could hadrons be surrounded by an insulating layer of Kähler vacuum?

4.8 Generalization of the notion of imbedding space

This section summarizes the the attempt to understand how the hierarchy of Planck constants
is realized at the level of imbedding space and what quantum criticality for phase transitions
changing Planck constant means.

4.8.1 Generalization of the notion of imbedding space

The original idea was that the proposed modification of the imbedding space could explain
naturally phenomena like quantum Hall effect involving fractionization of quantum numbers
like spin and charge. This does not however seem to be the case. Ga × Gb implies just the
opposite if these quantum numbers are assigned with the symmetries of the imbedding space.
For instance, quantization unit for orbital angular momentum becomes na where Zna is the
maximal cyclic subgroup of Ga.

One can however imagine of obtaining fractionization at the level of imbedding space for space-
time sheets, which are analogous to multi-sheeted Riemann surfaces (say Riemann surfaces
associated with z1/n since the rotation by 2π understood as a homotopy of M4 lifted to the
space-time sheet is a non-closed curve. Continuity requirement indeed allows fractionization of
the orbital quantum numbers and color in this kind of situation.

Both covering spaces and factor spaces are possible

The observation above stimulates the question whether it might be possible in some sense to
replace H or its factors by their multiple coverings.

(a) This is certainly not possible for M4, CP2, or H since their fundamental groups are trivial.
On the other hand, the fixing of quantization axes implies a selection of the sub-space
H4 = M2 × S2 ⊂ M4 × CP2, where S2 is a geodesic sphere of CP2. M̂4 = M4\M2

and ĈP 2 = CP2\S2 have fundamental group Z since the codimension of the excluded
sub-manifold is equal to two and homotopically the situation is like that for a punctured
plane. The exclusion of these sub-manifolds defined by the choice of quantization axes
could naturally give rise to the desired situation.

(b) H4 represents a straight cosmic string. Quantum field theory phase corresponds to Jones
inclusions with Jones index M : N < 4. Stringy phase would by previous arguments
correspond to M : N = 4. Also these Jones inclusions are labeled by finite subgroups of
SO(3) and thus by Zn identified as a maximal Abelian subgroup.

One can argue that cosmic strings are not allowed in QFT phase. This would encourage
the replacement M̂4 × ˆCP2 implying that surfaces in M4 × S2 and M2 × CP2 are not
allowed. In particular, cosmic strings and CP2 type extremals with M4 projection in M2

and thus light-like geodesic without zitterwebegung essential for massivation are forbidden.
This brings in mind instability of Higgs=0 phase.

(c) The covering spaces in question would correspond to the Cartesian products M̂4
na× ˆCP2nb

of the covering spaces of M̂4 and ˆCP2 by Zna and Znb with fundamental group is Zna×Znb .
One can also consider extension by replacing M2 and S2 with its orbit under Ga (say
tedrahedral, octahedral, or icosahedral group). The resulting space will be denoted by

M̂4×̂Ga resp. ˆCP2×̂Gb.
(d) One expects the discrete subgroups of SU(2) emerge naturally in this framework if one al-

lows the action of these groups on the singular sub-manifolds M2 or S2. This would replace
the singular manifold with a set of its rotated copies in the case that the subgroups have
genuinely 3-dimensional action (the subgroups which corresponds to exceptional groups
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in the ADE correspondence). For instance, in the case of M2 the quantization axes for
angular momentum would be replaced by the set of quantization axes going through the
vertices of tedrahedron, octahedron, or icosahedron. This would bring non-commutative
homotopy groups into the picture in a natural manner.

(e) Also the orbifolds M̂4/Ga× ˆCP2/Gb can be allowed as also the spaces M̂4/Ga× ( ˆCP2×̂Gb)
and (M̂4×̂Ga)× ˆCP2/Gb. Hence the previous framework would generalize considerably by
the allowance of both coset spaces and covering spaces.

There are several non-trivial questions related to the details of the gluing procedure and phase
transition as motion of partonic 2-surface from one sector of the imbedding space to another
one.

(a) How the gluing of copies of imbedding space at M2×CP2 takes place? It would seem that
the covariant metric of M4 factor proportional to ~2 must be discontinuous at the singular
manifold since only in this manner the idea about different scaling factor of M4 metric
can make sense. This is consistent with the identical vanishing of Chern-Simons action in
M2 × S2.

(b) One might worry whether the phase transition changing Planck constant means an instan-
taneous change of the size of partonic 2-surface in M4 degrees of freedom. This is not the
case. Light-likeness in M2 × S2 makes sense only for surfaces X1 ×D2 ⊂M2 × S2, where
X1 is light-like geodesic. The requirement that the partonic 2-surface X2 moving from one
sector of H to another one is light-like at M2 × S2 irrespective of the value of Planck con-
stant requires that X2 has single point of M2 as M2 projection. Hence no sudden change
of the size X2 occurs.

(c) A natural question is whether the phase transition changing the value of Planck constant
can occur purely classically or whether it is analogous to quantum tunneling. Classical
non-vacuum extremals of Chern-Simons action have two-dimensional CP2 projection to
homologically non-trivial geodesic sphere S2

I . The deformation of the entire S2
I to homo-

logically trivial geodesic sphere S2
II is not possible so that only combinations of partonic

2-surfaces with vanishing total homology charge (Kähler magnetic charge) can in principle
move from sector to another one, and this process involves fusion of these 2-surfaces such
that CP2 projection becomes single homologically trivial 2-surface. A piece of a non-trivial
geodesic sphere S2

I of CP2 can be deformed to that of S2
II using 2-dimensional homotopy

flattening the piece of S2 to curve. If this homotopy cannot be chosen to be light-like, the
phase transitions changing Planck constant take place only via quantum tunneling. Obvi-
ously the notions of light-like homotopies (cobordisms) and classical light-like homotopies
(cobordisms) are very relevant for the understanding of phase transitions changing Planck
constant.

Do factor spaces and coverings correspond to the two kinds of Jones inclusions?

What could be the interpretation of these two kinds of spaces?

(a) Jones inclusions appear in two varieties corresponding to M : N < 4 and M : N = 4
and one can assign a hierarchy of subgroups of SU(2) with both of them. In particular,
their maximal Abelian subgroups Zn label these inclusions. The interpretation of Zn as
invariance group is natural forM : N < 4 and it naturally corresponds to the coset spaces.
For M : N = 4 the interpretation of Zn has remained open. Obviously the interpretation
of Zn as the homology group defining covering would be natural.

(b) M : N = 4 should correspond to the allowance of cosmic strings and other analogous
objects. Does the introduction of the covering spaces bring in cosmic strings in some
controlled manner? Formally the subgroup of SU(2) defining the inclusion is SU(2) would
mean that states are SU(2) singlets which is something non-physical. For covering spaces
one would however obtain the degrees of freedom associated with the discrete fiber and the
degrees of freedom in question would not disappear completely and would be characterized
by the discrete subgroup of SU(2).
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For anyons the non-trivial homotopy of plane brings in non-trivial connection with a flat
curvature and the non-trivial dynamics of topological QFTs. Also now one might expect
similar non-trivial contribution to appear in the spinor connection of M̂2×̂Ga and ĈP 2×̂Gb.
In conformal field theory models non-trivial monodromy would correspond to the presence
of punctures in plane.

(c) For factor spaces the unit for quantum numbers like orbital angular momentum is multiplied
by na resp. nb and for coverings it is divided by this number. These two kind of spaces
are in a well defined sense obtained by multiplying and dividing the factors of Ĥ by Ga
resp. Gb and multiplication and division are expected to relate to Jones inclusions with
M : N < 4 and M : N = 4, which both are labeled by a subset of discrete subgroups of
SU(2).

(d) The discrete subgroups of SU(2) with fixed quantization axes possess a well defined mul-
tiplication with product defined as the group generated by forming all possible products
of group elements as elements of SU(2). This product is commutative and all elements
are idempotent and thus analogous to projectors. Trivial group G1, two-element group
G2 consisting of reflection and identity, the cyclic groups Zp, p prime, and tedrahedral,
octahedral, and icosahedral groups are the generators of this algebra.

By commutativity one can regard this algebra as an 11-dimensional module having natural
numbers as coefficients (”rig”). The trivial group G1, two-element group G2¡ generated by
reflection, and tedrahedral, octahedral, and icosahedral groups define 5 generating elements
for this algebra. The products of groups other than trivial group define 10 units for this
algebra so that there are 11 units altogether. The groups Zp generate a structure analogous
to natural numbers acting as analog of coefficients of this structure. Clearly, one has effec-
tively 11-dimensional commutative algebra in 1-1 correspondence with the 11-dimensional
”half-lattice” N11 (N denotes natural numbers). Leaving away reflections, one obtains N7.
The projector representation suggests a connection with Jones inclusions. An interesting
question concerns the possible Jones inclusions assignable to the subgroups containing in-
finitely manner elements. Reader has of course already asked whether dimensions 11, 7 and
their difference 4 might relate somehow to the mathematical structures of M-theory with 7
compactified dimensions. One could introduce generalized configuration space spinor fields
in the configuration space labeled by sectors of H with given quantization axes. By intro-
ducing Fourier transform in N11 one would formally obtain an infinite-component field in
11-D space.

(e) How do the Planck constants associated with factors and coverings relate? One might argue
that Planck constant defines a homomorphism respecting the multiplication and division
(when possible) by Gi. If so, then Planck constant in units of ~0 would be equal to na/nb for
Ĥ/Ga×Gb option and nb/na for Ĥ×̂(Ga×Gb) with obvious formulas for hybrid cases. This
option would put M4 and CP2 in a very symmetric role and allow much more flexibility in
the identification of symmetries associated with large Planck constant phases.

4.8.2 Phase transitions changing the value of Planck constant

There are two basic kinds of phase transitions changing the value of Planck constant inducing a
leakage between sectors of imbedding space. There are three cases to consider corresponding to

(a) leakage in M4 degrees of freedom changing Ga: the critical manifold is R+ × CP2;

(b) leakage in CP2 degrees of freedom changing Gb: the critical manifold is δM4
+ × S2

II ;

(c) leakage in both degrees of freedom changing both Ga and Gb: the critical manifold is
R+ × S2

II . This is the non-generic case

For transitions of type 2) and 3) X2 must go through vacuum extremal in the classical picture
about transition.

Covering space can also change to a factor space in both degrees of freedom or vice versa and
in this case G can remain unchanged as a group although its interpretation changes.
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The phase transitions satisfy also strong group theoretical constraints. For the transition G1 →
G2 either G1 ⊂ G2 or G2 ⊂ G1 must hold true. For maximal cyclic subgroups Zn associated
with quantization axes this means that n1 must divide n2 or vice versa. Hence a nice number
theoretic view about transitions emerges.

One can classify the points of critical manifold according to the degree of criticality. Obviously
the maximally critical points corresponds to fixed points of Gi that its points z = 0,∞ of the
spheres S2

r and S2
II . In the case of δM4

+ the points z = 0 and ∞ correspond to the light-like
rays R+ in opposite directions. This ray would define the quantization direction of angular
momentum. Quantum phase transitions changing the value of M4 Planck constant could occur
anywhere along this ray (partonic 2-surface would have 1-D projection along this ray). At the
level of cosmology this would bring in a preferred direction. Light-cone dip, the counterpart of
big bang, is the maximally quantum critical point since it remains invariant under entire group
SO(3, 1).

Interesting questions relate to the groups generated by finite discrete subgroups of SO(3). As
noticed the groups generated as products of groups leaving R+ invariant and three genuinely
3-D groups are infinite discrete subgroups of SO(3) and could also define Jones inclusions. In
this case orbifold is replaced with orbifold containing infinite number of rotated versions of R+.
These phases could be important in elementary particle length scales or in early cosmology.

4.8.3 Could the dynamics of Kähler action predict the hierarchy of
Planck constants?

The original justification for the hierarchy of Planck constants came from the indications that
Planck constant could have large values in both astrophysical systems involving dark matter and
also in biology. The realization of the hierarchy in terms of the singular coverings and possibly
also factor spaces of CD and CP2 emerged from consistency conditions. The formula for the
Planck constant involves heuristic guess work and physical plausibility arguments. There are
good arguments in favor of the hypothesis that only coverings are possible. Only a finite number
of pages of the Big Book correspond to a given value of Planck constant, biological evolution
corresponds to a gradual dispersion to the pages of the Big Book with larger Planck constant,
and a connection with the hierarchy of infinite primes and p-adicization program based on the
mathematical realization of finite measurement resolution emerges.

One can however ask whether this hierarchy could emerge directly from the basic quantum
TGD rather than as a separate hypothesis. The following arguments suggest that this might
be possible. One finds also a precise geometric interpretation of preferred extremal property
interpreted as criticality in zero energy ontology.

1-1 correspondence between canonical momentum densities and time derivatives
fails for Kähler action

The basic motivation for the geometrization program was the observation that canonical quan-
tization for TGD fails. To see what is involved let us try to perform a canonical quantization in
zero energy ontology at the 3-D surfaces located at the light-like boundaries of CD × CP2.

(a) In canonical quantization canonical momentum densities π0
k ≡ πk = ∂LK/∂(∂0h

k), where
∂0h

k denotes the time derivative of imbedding space coordinate, are the physically natural
quantities in terms of which to fix the initial values: once their value distribution is fixed
also conserved charges are fixed. Also the weak form of electric-magnetic duality given
by J03√g4 = 4παKJ12 and a mild generalization of this condition to be discussed below
can be interpreted as a manner to fix the values of conserved gauge charges (not Noether
charges) to their quantized values since Kähler magnetic flux equals to the integer giving
the homology class of the (wormhole) throat. This condition alone need not characterize
criticality, which requires an infinite number of deformations of X4 for which the second
variation of the Kähler action vanishes and implies infinite number conserved charges. This
in fact gives hopes of replacing πk with these conserved Noether charges.
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(b) Canonical quantization requires that ∂0h
k in the energy is expressed in terms of πk. The

equation defining πk in terms of ∂0h
k is however highly non-linear although algebraic. By

taking squares the equations reduces to equations for rational functions of ∂0h
k. ∂0h

k

appears in contravariant and covariant metric at most quadratically and in the induced
Kähler electric field linearly and by multplying the equations by det(g4)3 one can transform
the equations to a polynomial form so that in principle ∂0h

k can obtained as a solution of
polynomial equations.

(c) One can always eliminate one half of the coordinates by choosing 4 imbedding space co-
ordinates as the coordinates of the spacetime surface so that the initial value conditions
reduce to those for the canonical momentum densities associated with the remaining four
coordinates. For instance, for space-time surfaces representable as map M4 → CP2 M

4

coordinates are natural and the time derivatives ∂0s
k of CP2 coordinates are multivalued.

One would obtain four polynomial equations with ∂0s
k as unknowns. In regions where CP2

projection is 4-dimensional -in particular for the deformations of CP2 vacuum extremals
the natural coordinates are CP2 coordinates and one can regard ∂0m

k as unknows. For
the deformations of cosmic strings, which are of form X4 = X2×Y 2 ⊂M4×CP2, one can
use coordinates of M2×S2, where S2 is geodesic sphere as natural coordinates and regard
as unknowns E2 coordinates and remaining CP2 coordinates.

(d) One can imagine solving one of the four polynomials equations for time derivaties in terms
of other obtaining N roots. Then one would substitute these roots to the remaining 3
conditions to obtain algebraic equations from which one solves then second variable. Ob-
viously situation is very complex without additional symmetries. The criticality of the
preferred extremals might however give additional conditions allowing simplifications. The
reasons for giving up the canonical quantization program was following. For the vacuum
extremals of Kähler action πk are however identically vanishing and this means that there
is an infinite number of value distributions for ∂0h

k. For small deformations of vacuum
extremals one might however hope a finite number of solutions to the conditions and thus
finite number of space-time surfaces carrying same conserved charges.

If one assumes that physics is characterized by the values of the conserved charges one must treat
the the many-valuedness of ∂0h

k. The most obvious guess is that one should replace the space
of space-like 4-surfaces corresponding to different roots ∂0h

k = F k(πl) with four-surfaces in the
covering space of CD × CP2 corresponding to different branches of the many-valued function
∂0h

k = F (πl) co-inciding at the ends of CD.

Do the coverings forces by the many-valuedness of ∂0h
k correspond to the coverings

associated with the hierarchy of Planck constants?

The obvious question is whether this covering space actually corresponds to the covering spaces
associated with the hierarchy of Planck constants. This would conform with quantum classi-
cal correspondence. The hierarchy of Planck constants and hierarchy of covering spaces was
introduced to cure the failure of the perturbation theory at quantum level. At classical level
the multivaluedness of ∂0h

k means a failure of perturbative canonical quantization and forces
the introduction of the covering spaces. The interpretation would be that when the density of
matter becomes critical the space-time surface splits to several branches so that the density at
each branches is sub-critical. It is of course not at all obvious whether the proposed structure
of the Big Book is really consistent with this hypothesis and one also consider modifications of
this structure if necessary. The manner to proceed is by making questions.

(a) The proposed picture would give only single integer characterizing the covering. Two
integers assignable to CD and CP2 degrees of freedom are however needed. How these two
coverings could emerge?

i. One should fix also the values of πnk = ∂LK/∂h
k
n, where n refers to space-like normal

coordinate at the wormhole throats. If one requires that charges do not flow between
regions with different signatures of the metric the natural condition is πnk = 0 and
allows also multi-valued solution. Since wormhole throats carry magnetic charge and
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since weak form of electric-magnetic duality is assumed, one can assume that CP2

projection is four-dimensional so that one can use CP2 coordinates and regard ∂0m
k

as un-knows. The basic idea about topological condensation in turn suggests that M4

projection can be assumed to be 4-D inside space-like 3-surfaces so that here ∂0s
k are

the unknowns. At partonic 2-surfaces one would have conditions for both π0
k and πnk .

One might hope that the numbers of solutions are finite for preferred extremals because
of their symmetries and given by na for ∂0m

k and by nb for ∂0s
k. The optimistic guess

is that na and nb corresponds to the numbers of sheets for singular coverings of CD
and CP2. The covering could be visualized as replacement of space-time surfaces with
space-time surfaces which have nanb branches. nb branches would degenerate to single
branch at the ends of diagrams of the generaled Feynman graph and na branches would
degenerate to single one at wormhole throats.

ii. This picture is not quite correct yet. The fixing of π0
k and πnk should relate closely to

the effective 2-dimensionality as an additional condition perhaps crucial for criticality.
One could argue that both π0

k and πnk must be fixed at X3 and X3
l in order to effectively

bring in dynamics in two directions so that X3 could be interpreted as a an orbit of
partonic 2-surface in space-like direction and X3

l as its orbit in light-like direction. The
additional conditions could be seen as gauge conditions made possible by symplectic
and Kac-Moody type conformal symmetries. The conditions for πk0 would give nb
branches in CP2 degrees of freedom and the conditions for πnk would split each of these
branches to na branches.

iii. The existence of these two kinds of conserved charges (possibly vanishing for πnk ) could
relate also very closely to the slicing of the space-time sheets by string world sheets
and partonic 2-surfaces.

(b) Should one then treat these branches as separate space-time surfaces or as a single space-
time surface? The treatment as a single surface seems to be the correct thing to do.
Classically the conserved changes would be nanb times larger than for single branch. Kähler
action need not (but could!) be same for different branches but the total action is nanb
times the average action and this effectively corresponds to the replacement of the ~0/g

2
K

factor of the action with ~/g2
K , r ≡ ~/~0 = nanb. Since the conserved quantum charges

are proportional to ~ one could argue that r = nanb tells only that the charge conserved
charge is nanb times larger than without multi-valuedness. ~ would be only effectively nanb
fold. This is of course poor man’s argument but might catch something essential about the
situation.

(c) How could one interpret the condition J03√g4 = 4παKJ12 and its generalization to be dis-
cussed below in this framework? The first observation is that the total Kähler electric charge
is by αK ∝ 1/(nanb) same always. The interpretation would be in terms of charge fraction-
ization meaning that each branch would carry Kähler electric charge QK = ngK/nanb. I
have indeed suggested explanation of charge fractionization and quantum Hall effect based
on this picture.

(d) The vision about the hierarchy of Planck constants involves also assumptions about imbed-
ding space metric. The assumption that the M4 covariant metric is proportional to ~2

follows from the physical idea about ~ scaling of quantum lengths as what Compton length
is. One can always introduce scaled M4 coordinates bringing M4 metric into the standard
form by scaling up the M4 size of CD. It is not clear whether the scaling up of CD size
follows automatically from the proposed scenario. The basic question is why the M4 size
scale of the critical extremals must scale like nanb? This should somehow relate to the weak
self-duality conditions implying that Kähler field at each branch is reduced by a factor 1/r
at each branch. Field equations should posses a dynamical symmetry involving the scaling
of CD by integer k and J0β√g4 and Jnβ

√
g4 by 1/k. The scaling of CD should be due

to the scaling up of the M4 time interval during which the branched light-like 3-surface
returns back to a non-branched one.

(e) The proposed view about hierarchy of Planck constants is that the singular coverings reduce
to single-sheeted coverings at M2 ⊂ M4 for CD and to S2 ⊂ CP2 for CP2. Here S2 is
any homologically trivial geodesic sphere of CP2 and has vanishing Kähler form. Weak
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self-duality condition is indeed consistent with any value of ~ and impies that the vacuum
property for the partonic 2-surface implies vacuum property for the entire space-time sheet
as holography indeed requires. This condition however generalizes. In weak self-duality
conditions the value of ~ is free for any 2-D Lagrangian sub-manifold of CP2.

The branching along M2 would mean that the branches of preferred extremals always
collapse to single branch when their M4 projection belongs to M2. Magnetically charged
light-light-like throats cannot have M4 projection in M2 so that self-duality conditions
for different values of ~ do not lead to inconsistencies. For spacelike 3-surfaces at the
boundaries of CD the condition would mean that the M4 projection becomes light-like
geodesic. Straight cosmic strings would have M2 as M4 projection. Also CP2 type vacuum
extremals for which the random light-like projection in M4 belongs to M2 would represent
this of situation. One can ask whether the degeneration of branches actually takes place
along any string like object X2 × Y 2, where X2 defines a minimal surface in M4. For
these the weak self-duality condition would imply ~ = ∞ at the ends of the string. It is
very plausible that string like objects feed their magnetic fluxes to larger space-times sheets
through wormhole contacts so that these conditions are not encountered.

Connection with the criticality of preferred extremals

Also a connection with quantum criticality and the criticality of the preferred extremals suggests
itself. Criticality for the preferred extremals must be a property of space-like 3-surfaces and
light-like 3-surfaces with degenerate 4-metric and the degeneration of the nanb branches of the
space-time surface at the its ends and at wormhole throats is exactly what happens at criticality.
For instance, in catastrophe theory roots of the polynomial equation giving extrema of a potential
as function of control parameters co-incide at criticality. If this picture is correct the hierarchy
of Planck constants would be an outcome of criticality and of preferred extremal property and
preferred extremals would be just those multi-branched space-time surfaces for which branches
co-incide at the the boundaries of CD × CP2 and at the throats.



Chapter 5

Construction of Quantum
Theory: M-matrix

5.1 Introduction

During years I have spent a lot of time and effort in attempts to imagine various options for
the construction of S-matrix, and it seems that there are quite many strong constraints, which
might lead to a more or less unique final result if some young analytically blessed brain decided
to transform these assumptions to concrete calculational recipes.

The realization that configuration space spinors correspond to von Neumann algebras known as
hyper-finite factors of type II1 meant [K86, K27] a turning point also in the attempts to construct
S-matrix. A sequence of trials and errors led rapidly to the generalization of the quantum
measurement theory and re-interpretation of S-matrix elements as entanglement coefficients of
zero energy states in accordance with the zero energy ontology applied already earlier in TGD
inspired cosmology [K22] . Zero energy ontology motivated the replacement of the term ’S-
matrix’ with ’M -matrix’. This led to the discovery that rather stringy formulas for M -matrix
elements emerge in TGD framework.

The purpose of this chapter is to collect to single chapter various general ideas about the con-
struction of M -matrix scattered in the chapters of books about TGD and often drowned into
details and plagued by side tracks. My hope is that this chapter might provide a kind of bird’s
eye of view and help the reader to realize how fascinating and profound and near to physics the
mathematics of hyper-finite factors is. I do not pretend of having handle about the huge tech-
nical complexities and can only recommend the works of von Neumann [A91, A142, A124, A86]
, Tomita [A138] , [B41, B66, B31] , the work of Powers and Araki and Woods which served as
starting point for the work of Connes [A78, A77] , the work of Jones [A105] , and other leading
figures in the field. What is may main contribution is fresh physical interpretation of this math-
ematics which also helps to make mathematical conjectures. The book of Connes [A78] available
in web provides an excellent overall view about von Neumann algebras and non-commutative
geometry.

5.1.1 The recent progress in Quantum TGD and identification of M-
matrix

My original intention was to summarize the basic principles of Quantum TGD first. The problem
is however where to start from since everything is so tightly interwoven that linear representation
proceeding from principles to consequences seems impossible. Therefore it might be a good idea
to try to give a summary with emphasis on what has happened during the few months in turn of
2008 to 2009 assuming that the reader is familiar with the basic concepts discussed in previous
chapters. This summary gives also a bird’s eye of view about what I believe M -matrix to be.
Later this picture is used to answer the questions raised in the earlier version of this chapter.

359
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Zero energy ontology

One of the key notions underlying the recent developments is zero energy ontology.

(a) Zero energy ontology leads naturally to the identification of light-like 3-surfaces interpreted
as a generalization of Feynman diagrams as the most natural dynamical objects (equivalent
with space-like 3-surface by holography).

(b) The fractal hierarchy of causal diamonds (CD) with light like boundaries of CD interpreted
as carriers of positive and negative energy parts of zero energy state emerges naturally. If the
scales of CDs come as powers of 2, p-adic length scale hypothesis follows as a consequence.

(c) The identification of M -matrix as time-like entanglement coefficients between zero energy
states identified as the product of positive square root of the density matrix and unitary
S-matrix emerges naturally and leads to the unification of thermodynamics and quantum
theory.

(d) The identification of M -matrix in terms of Connes tensor product means that the included
algebra N ⊂ M acts effectively like complex numbers and does not affect the physical
state. The interpretation is that N corresponds to zero energy states in size scales smaller
than the measurement resolution and thus the insertion of this kind of zero energy state
should not have any observable effects. The uniqueness of Connes tensor product gives
excellent hopes that the M -matrix could be unique apart from the square root of of density
matrix.

(e) The unitary U -matrix between zero energy states assignable to quantum jump has nothing
to do with S-matrix measured in particle physics experiments. A possible interpretation
is in terms of consciousness theory. For instance, U -matrix could make sense even for p-
adic-to-real transitions interpreted as transformations of intentions to actions making sense
since zero energy state is generated (’Everything is creatable from vacuum’ is the basic
principle of zero energy ontology) [K46] . One can express U -matrix as a collection of M -
matrices labeled by zero energy states and unitaritity conditions for U -matrix boil down
to orthogonality conditions for the zero energy states defined by M -matrices.

The notion of finite measurement resolution

The notion of finite measurement resolution as a basic dynamical principle of quantum TGD
might be seen by a philosophically minded reader as the epistemological counterpart of zero
energy ontology.

(a) As far as length scale resolution is considered, finite measurement resolution implies that
only CDs above some size scale are allowed. This is not an approximation but a property
of zero energy state so that zero energy states realize finite measurement resolution in their
structure. One might perhaps say that quantum states represent only the information that
we can becomes conscious of.

(b) In the case of angle resolution the hierarchy of Planck constants accompanied by a hierarchy
of algebraic extensions of rationals by roots of unity, and realized in terms of the book like
structures assigned with CD and CP2, is a natural outcome of this thinking.

(c) Number theoretic braids implying discretization at parton level can be seen as a space-
time correlate for the finite measurement resolution. Zero energy states should contain in
their construction only information assignable to the points of the braids. Note however
that there is also information about tangent space of space-time surface at these points so
that the theory does not reduce to a genuinely discrete theory. Each choice of M2 and
geodesic spheres defines a selection of quantization axis and different choice of the number
theoretic braid. Hence discreteness does not reduce to that resulting from the assumption
that space-time as the arena of dynamics is discrete but reflects the limits to what we can
measure, perceive, and cognize in continuous space-time. Zero energy state corresponds
to wave-function in the space of these choices realized as the union of copies of the page
CD×CP2. Quantum measurement must induce a localization to single point in this space
unless one is ready to take seriously the notion of quantum multiverse.
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(d) Finite measurement resolution allows a realization in terms of inclusions N ⊂M of hyper-
finite factors of type II1 (HFFs) about which the configuration space Clifford algebra
provides standard example. Also the factor spaces M/N are suggestive and should cor-
respond to quantum variants of HFFs with a finite quantum dimension. p-Adic coupling
constant evolution can be understood in this framework and corresponds to the inclusions
of HFFs realized as inclusions of spaces of zero energy states with two different scale cutoffs.

Number theoretical compactification and M8 −H duality

The closely related notions of number theoretical compactification and M8 − H duality have
had a decisive impact on the understanding of the mathematical structure of quantum TGD.

(a) The hypothesis is that TGD allows two equivalent descriptions using either M8- the space of
hyper-octonions- or H = M4×CP2 as imbedding space so that standard model symmetries
have a number theoretic interpretation. The underlying philosophy is that the world of
classical worlds and thus H is unique so that the symmetries of H should be something
very special. Number theoretical symmetries indeed fulfil this criterion.

(b) InM8 description space-time surfaces decompose to hyper-quaternionic and co-hyperquaternionic
regions. The map assigning to X4 ⊂ M8 the image in X4 ⊂ H must be a isometry and
also preserve the induced Kähler form so that the Kähler action has same value in the two
spaces. The isometry groups of E4 and CP2 are different, and the interpretation is that the
low energy description of hadrons in terms of SO(4) symmetry and high energy description
in terms of SU(3) gauge group reflect this duality.

(c) Number theoretic compactification implies very detailed conjectures about the preferred
extremals of Kähler action implying dual slicings of the M4 projection of space-time surface
to string world sheets Y 2 and partonic 2-surfaces X2 for Minkowskian signature of induced
metric. This occurs for the known extremals of Kähler action of this kind [K8] . These
slicings allow to understand how Equivalence Principle emerges via its stringy variant in
TGD framework through dimensional reduction. The tangent spaces of Y 2 and X2 define
local planes of physical and un-physical polarizations and M2 defines also the plane for
the four-momentum assignable to the braid strand so that gauge symmetries are purely
number theoretical interpretation.

(d) Also a slicing of X4(X3
l ) to light-like 3-surfaces Y 3

l parallel to X3
l giving equivalent space-

time representations of partonic dynamics is predicted. This implies holography meaning
an effective reduction of space-like 3-surfaces to 2-D surfaces. Number theoretical compact-
ification leads also to a dramatic progress in the construction of quantum TGD in terms of
the second quantized induced spinor fields. The holography seems however to be not quite
simple as one might think first. Kac-Moody symmetries respecting the light-likeness of X3

l

and leaving X2 fixed act as gauge transformations and all light-like 3-surfaces with fixed
ends and related by Kac-Moody symmetries would be geometrically equivalent in the sense
that configuration space Kähler metric is identical for them. These transformations would
also act as zero modes of Kähler action.

(e) A physically attractive realization of the braids - and more generally- of slicings of space-
time surface by 3-surfaces and string world sheets, is discussed in [K37] by starting from the
observation that TGD defines an almost topological QFT of braids, braid cobordisms, and
2-knots. The boundaries of the string world sheets at the space-like 3-surfaces at boundaries
of CDs and wormhole throats would define space-like and time-like braids uniquely.

The idea relies on a rather direct translation of the notions of singular surfaces and surface
operators used in gauge theory approach to knots [A147] to TGD framework. It leads
to the identification of slicing by three-surfaces as that induced by the inverse images of
r = constant surfaces of CP2, where r is U(2) invariant radial coordinate of CP2 playing the
role of Higgs field vacuum expectation value in gauge theories. r =∞ surfaces correspond
to geodesic spheres and define analogs of fractionally magnetically charged Dirac strings
identifiable as preferred string world sheets. The union of these sheets labelled by subgroups
U(2) ⊂ SU(3) would define the slicing of space-time surface by string world sheets. The
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choice of U(2) relates directly to the choice of quantization axes for color quantum numbers
characterizing CD and would have the choice of braids and string world sheets as a space-
time correlate.

Configuration space spinor structure

The construction of configuration space spinor structure in terms of second quantized induced
spinor fields is certainly the most important step made hitherto towards explicit formulas for
M -matrix elements.

(a) Number theoretical compactification (M8−H duality) states that space-time surfaces can
be equivalently regarded as 4-dimensional surfaces of either H = M4 × CP2 or of 8-D
Minkowski space M8, and consisting of hyper-quaternionic and co-hyper-quaternionic re-
gions identified as regions with Minkowskian and Euclidian signatures of induced metric.
Duality preserves induced metric and Kähler form. This duality poses very strong con-
straints on the geometry of the preferred extremals of Kähler action implying dual slicings
of the space-time surface by string worlds sheets and partonic 2-surfaces as also by light-like
1-surfaces and light-like 3-surfaces. These predictions are consistent what is known about
the extremals of Kähler action. The predictions of number theoretical compactification
lead to dramatic progress in the construction of configurations space spinor structure and
geometry. One consequence is dimensional reduction of space-time surface to string world
sheet allowing to understand how the space-time correlate for Equivalence Principle is re-
alized in TGD framework (its quantum counterpart emerges from coset construction for
super-symplectic and super Kac-Moody algebras).

(b) The construction of configuration space geometry and spinor structure in terms of induced
spinor fields leads to the conclusion that finite measurement resolution is an intrinsic prop-
erty of quantum states basically due to the vacuum degeneracy of Kähler action. This
gives a justification for the notion of number theoretic braid effectively replacing light-like
3-surfaces. Hence the infinite-dimensional configuration space is replaced with a finite-
dimensional space (δM4

±×CP2)n/Sn. A possible interpretation is that the finite fermionic
oscillator algebra for given partonic 2-surface X2 represents the factor spaceM/N identifi-
able as quantum variant of Clifford algebra. (δM4

±×CP2)n/Sn would represent its bosonic
analog.

(c) The isometries of the configuration space corresponds to X2 local symplectic transforma-
tions δM4

± × CP2 depending only on the value of the invariant εµνJµν , where Jµν can
correspond to the Kähler form induced from δM4

± or CP2. This group parameterizes quan-
tum fluctuating degrees of freedom. Zero modes correspond to coordinates which cannot
be made complex, in particular to the values of the induced symplectic form which thus
behaves as a classical field so that configuration space allows a slicing by the classical field
patterns Jµν(x) representing zero modes.

(d) By the effective 2-dimensionality of light-like 3-surfaces X3
l (holography) the interiors of

light-like 3-surfaces are analogous to gauge degrees of freedom and partially parameter-
ized by Kac-Moody group respecting the light-likeness of 3-surfaces. Quantum classical
correspondence suggests that gauge fixing in Kac-Moody degrees of freedom takes place
and implies correlation between the quantum numbers of the physical state and X3

l or
equivalently any light-like 3-surface Y 3

l parallel to X3
l . There would be no path integral

over X3
l and only functional integral defined by configuration space geometry over partonic

2-surfaces.

(e) The condition that the Noether currents assignable to the modified Dirac equation are con-
served requires that space-time surfaces correspond to extremals for which second variation
of Kähler action vanishes. A milder condition is that the rank of the matrix defined by the
second variation of Kähler action is less than maximal. Preferred extremals of Kähler ac-
tion can be identified as this kind of 4-surface and the interpretation is in terms of quantum
criticality.
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(f) The inverse of the modified Dirac operator does not define stringy propagator since it does
not depend on the quantum numbers of the state of super-conformal representation. The
solution of the problem is provided by the addition of measurement interaction term to the
modified Dirac action and assignable to wormhole throats or equivalently any light-like 3-
surface parallel to them int the slicing of space-time sheet: this condition defines additional
symmetry modifying Kähler function and Kähler action in such a manner that Kähler
metric is not affected. Measurement interaction term implies that the preferred extremals of
Kähler action depend on quantum numbers of the states of super-conformal representations
as quantum classical correspondence requires. The coupling constants appearing in the
measurement interaction term are fixed by the condition that Kähler function transforms
only by a real part of a holomorphic function of complex coordinates of WCW depending
also on zero modes so that Kähler metric of WCW remains unchanged. This realizes also
the effective 2-dimensionality of space-like 3-surfaces but only in finite regions where the
slicing by light-like 3-surfaces makes sense.

Hierarchy of Planck constants

The hierarchy of Planck constants realized as a replacement of CD and CP2 of CD × CP2

with book like structures labeled by finite subgroups of SU(2) assignable to Jones inclusions is
now relatively well understood as also its connection to dark matter, charge fractionization, and
anyons [K27, K59] .

(a) This notion leads also to a unique identification of number theoretical braids as intersections
of CD (CP2) projection of X3

l and the back M2 (the backs S2
I and S2

II) of M4 (CP2) book.
The spheres S2

I and S2
IIare geodesic spheres of CP2 orthogonal to each other).

(b) The formulation of M -matrix should involve the local data from the points of number
theoretic braids at partonic 2-surfaces. This data involves information about tangent space
of X4(X3) so that the theory does not reduce to 2-D theory. The hierarchy of CDs within
CDs means that the improvement of measurement resolution brings in new CDs with
smaller size.

(c) The points of number theoretical braids are by definition quantum critical with respect
to the phase transitions changing Planck constant and meaning leakage between different
pages of the books in question. This quantum criticality need not be equivalent with the
quantum criticality in the sense of the degeneracy of the matrix like entity defined by the
second variation of Kähler action. Note that the entire partonic 2-surface at the boundary of
CD cannot be quantum critical unless it corresponds to vacuum state with only topological
degrees of freedom excited (that is have as its CD (CP2) projection at the back of CD
(CP2) book or both) since Planck constant would be ill-defined in this kind of situation.

Super-conformal symmetries

There have been a considerable progress also in the understanding of super-conformal symmetries
[K15, K20] .

(a) Super Kac-Moody and super-symplectic symmetries correspond to the dual slicings of
X4(X3

l ) to string world sheets Y 2 and partonic 2-surfaces X2. The duality is realized
for Super Virasoro algebras in terms of coset construction meaning that the differences of
Super Virasoro generators annihilate physical states. The four-momenta assignable to the
two representations correspond to gravitational and inertial four-momenta and Equivalence
Principle in microscopic form follows.

(b) Neither Super Kac-Moody nor super-symplectic Super-Virasoro generators annihilate the
states separately and this gives justification for p-adic thermodynamics as thermodynamics
of conformal weight with thermal expectation identified as mass squared.

(c) A further step of progress relates to the understanding of the fusion rules of symplectic field
theory [K13] . These fusion rules makes sense only if one allows discretization that is number
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theoretic braids. An infinite hierarchy of symplectic fusion algebras can be identified with
nice number theoretic properties (only roots of unity appear in structure constants). Hence
there are good hopes that symplecto-conformal N-point functions defining the vertices of
generalized Feynman diagrams can be constructed exactly.

(d) The possible reduction of the fermionic Clifford algebra to a finite-dimensional one means
that super-conformal algebras must have a cutoff in conformal weights. These algebras
must reduce to finite dimensional ones and the replacement of integers with finite field is
what comes first in mind.

(e) The conserved fermionic currents implied by vanishing second variations of Kähler action
for preferred extremal define a hierarchy of super-conformal algebras assignable to zero
modes. These currents are appear in the expression of measurement interactions added
to the modified Dirac action in order to obtain stringy propagators and the coding of
super-conformal quantum numbers to space-time geometry.

5.1.2 Various inputs to the construction of M-matrix

It is perhaps wise to summarize briefly the vision about M -matrix.

Zero energy ontology and interpretation of light-like 3-surfaces as generalized Feyn-
man diagrams

(a) Zero energy ontology is the cornerstone of the construction. Zero energy states have van-
ishing net quantum numbers and consist of positive and negative energy parts, which can
be thought of as being localized at the boundaries of light-like 3-surface X3

l connecting the
light-like boundaries of a causal diamond CD identified as intersection of future and past
directed light-cones. There is entire hierarchy of CDs, whose scales are suggested to come
as powers of 2. A more general proposal is that prime powers of fundamental size scale are
possible and would conform with the most general form of p-adic length scale hypothesis.
The hierarchy of size scales assignable to CDs corresponds to a hierarchy of length scales
and code for a hierarchy of radiative corrections to generalized Feynman diagrams.

(b) Light-like 3-surfaces are the basic dynamical objects of quantum TGD and have interpre-
tation as generalized Feynman diagrams having light-like 3-surfaces as lines glued together
along their ends defining vertices as 2-surfaces. By effective 2-dimensionality (holography)
of light-like 3-surfaces the interiors of light-like 3-surfaces are analogous to gauge degrees
of freedom and partially parameterized by Kac-Moody group respecting the light-likeness
of 3-surfaces. This picture differs dramatically from that of string models since light-like
3-surfaces replacing stringy diagrams are singular as manifolds whereas 2-surfaces repre-
senting vertices are not.

Identification of TGD counterpart of S-matrix as time-like entanglement coefficients

(a) The TGD counterpart of S-matrix -call it M -matrix- defines time-like entanglement co-
efficients between positive and negative energy parts of zero energy state located at the
light-like boundaries of CD. One can also assign to quantum jump between zero energy
states a matrix- call it U -matrix - which is unitary and assumed to be expressible in terms
of M -matrices. M -matrix need not be unitary unlike the U -matrix characterizing the uni-
tary process forming part of quantum jump. There are several good arguments suggesting
that that M -matrix cannot be unitary but can be regarded as thermal S-matrix so that
thermodynamics would become an essential part of quantum theory. In fact, M -matrix
can be decomposed to a product of positive diagonal matrix identifiable as square root of
density matrix and unitary matrix so that quantum theory would be kind of square root
of thermodynamics. Path integral formalism is given up although functional integral over
the 3-surfaces is present.

(b) In the general case only thermal M -matrix defines a normalizable zero energy state so that
thermodynamics becomes part of quantum theory. One can assign to M -matrix a complex
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parameter whose real part has interpretation as interaction time and imaginary part as the
inverse temperature.

Hyper-finite factors and M-matrix

HFFs of type III1 provide a general vision about M-matrix.

(a) The factors of type III allow unique modular automorphism ∆it (fixed apart from unitary
inner automorphism). This raises the question whether the modular automorphism could
be used to define the M-matrix of quantum TGD. This is not the case as is obvious already
from the fact that unitary time evolution is not a sensible concept in zero energy ontology.

(b) Concerning the identification of M-matrix the notion of state as it is used in theory of
factors is a more appropriate starting point than the notion modular automorphism but as a
generalization of thermodynamical state is certainly not enough for the purposes of quantum
TGD and quantum field theories (algebraic quantum field theorists might disagree!). Zero
energy ontology requires that the notion of thermodynamical state should be replaced with
its ”complex square root” abstracting the idea about M-matrix as a product of positive
square root of a diagonal density matrix and a unitary S-matrix. This generalization of
thermodynamical state -if it exists- would provide a firm mathematical basis for the notion
of M-matrix and for the fuzzy notion of path integral.

(c) The existence of the modular automorphisms relies on Tomita-Takesaki theorem, which
assumes that the Hilbert space in which HFF acts allows cyclic and separable vector serv-
ing as ground state for both HFF and its commutant. The translation to the language of
physicists states that the vacuum is a tensor product of two vacua annihilated by annihila-
tion oscillator type algebra elements of HFF and creation operator type algebra elements
of its commutant isomorphic to it. Note however that these algebras commute so that the
two algebras are not hermitian conjugates of each other. This kind of situation is exactly
what emerges in zero energy ontology: the two vacua can be assigned with the positive and
negative energy parts of the zero energy states entangled by M-matrix.

(d) There exists infinite number of thermodynamical states related by modular automorphisms.
This must be true also for their possibly existing ”complex square roots”. Physically they
would correspond to different measurement interactions giving rise to Kähler functions of
WCW differing only by a real part of holomorphic function of complex coordinates of WCW
and arbitrary function of zero mode coordinates and giving rise to the same Kähler metric
of WCW.

Connes tensor product as a realization of finite measurement resolution

The inclusions N ⊂M of factors allow an attractive mathematical description of finite measure-
ment resolution in terms of Connes tensor product but do not fix M-matrix as was the original
optimistic belief.

(a) In zero energy ontology N would create states experimentally indistinguishable from the
original one. Therefore N takes the role of complex numbers in non-commutative quan-
tum theory. The space M/N would correspond to the operators creating physical states
modulo measurement resolution and has typically fractal dimension given as the index of
the inclusion. The corresponding spinor spaces have an identification as quantum spaces
with non-commutative N -valued coordinates.

(b) This leads to an elegant description of finite measurement resolution. Suppose that a uni-
versal M-matrix describing the situation for an ideal measurement resolution exists as the
idea about square root of state encourages to think. Finite measurement resolution forces
to replace the probabilities defined by the M-matrix with their N ”averaged” counterparts.
The ”averaging” would be in terms of the complex square root of N -state and a direct
analog of functionally or path integral over the degrees of freedom below measurement
resolution defined by (say) length scale cutoff.
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(c) One can construct also directly M-matrices satisfying the measurement resolution con-
straint. The condition that N acts like complex numbers on M-matrix elements as far as
N -”averaged” probabilities are considered is satisfied if M-matrix is a tensor product of
M-matrix inM(N interpreted as finite-dimensional space with a projection operator to N .
The condition that N averaging in terms of a complex square root of N state produces
this kind of M-matrix poses a very strong constraint on M-matrix if it is assumed to be
universal (apart from variants corresponding to different measurement interactions).

Conformal symmetries and stringy diagrammatics

The modified Dirac equation has rich super-conformal symmetries helping to achieve concrete
vision about the structure of M -matrix in terms of generalized Feynman diagrammatics

(a) Both super-conformal symmetries, the slicing of space-time surface by string worlds sheets,
and the reduction of space-time sheet to string world sheet as a consequence of finite
measurement resolution suggest that the generalized Feynman diagrams have as vertices N -
point functions of a conformal field theory assignable to the partonic 2-surfaces at which the
lines of Feynman diagram meet. Finite measurement resolution means that this conformal
theory is defined in the discrete set defined by the number theoretic braid. The presence
of symplectic invariants in turn suggest a symplectic variant of conformal field theory
leading to a concrete construction of symplectic fusion rules relying in crucial manner to
discretization.

(b) The effective 3-dimensionality implied by the modified Dirac operator associated with
Kähler action plays crucial role in the construction of both configuration space geome-
try (Kähler function is identified as Dirac determinant assignable to the modified Dirac
operator) and of M -matrix. By effective 3-dimensionality the propagators reduce to the
propagators assignable the light-like 3-surfaces. This does not give stringy propagators and
massive stringy excitations would not appear at all in propagators. This does not conform
with what p-adic mass calculations and conformal symmetries suggest.

(c) The solution of the problem is provided by the already described addition of measurement
interaction term to the modified Dirac action and assignable to wormhole throats or equiv-
alently any light-like 3-surface parallel to them int the slicing of space-time sheet: this
condition defines additional symmetry.

TGD as almost topological QFT

The idea that TGD could be regarded as almost topological QFT has been very fruitful although
the hypothesis that Chern-Simons term for induced Kähler gauge potential assignable to light-
like 3-surfaces identified as regions of space-time where the Euclidian signature of induced metric
assignable to the interior or generalized Feynman diagram changes to Minkowskian one turned
out to be too strong. The reduction of configuration space and its Clifford algebra to finite
dimensional structures due to finite measurement resolution however realizes this idea but in
different manner.

(a) There is functional integral over the small deformations of Feynman cobordisms correspond-
ing to the maxima of Kähler function which is finite-dimensional if finite measurement res-
olution is taken into account. Almost topological QFT property of quantum suggests the
identification of M -matrix as a functor from the category of generalized Feynman cobor-
disms (generalized Feynman diagrams) to the category of operators mapping the Hilbert
space of positive energy states to that for negative energy states: these Hilbert spaces are
assignable to partonic 2-surfaces.

(b) The limit at which momenta vanish is well-defined for M-matrix since the modified Dirac
action contains measurement interaction term and at this limit one indeed obtains topo-
logical QFT.
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(c) Almost TQFT property suggests that braiding S-matrices should have important role in the
construction. It is indeed possible to assign the with the lines of the generalized Feynman
diagram. The reduction of quantum TGD to topological QFT should occur at quantum
criticality with respect to the change of Planck constant since in this situation the M -
matrix should not depend at all on Planck constant. Factoring QFTs in 1+1 dimensions
give examples of this kind of theories.

Bosonic emergence

The construction of QFT limit of quantum TGD based on the notion of bosonic emergence led
to the most concrete picture about M-matrix achieved hitherto.

(a) An ”almost stringy” fermion propagator arises as one adds to the modified Dirac action a
term coupling the charges in a Cartan algebra of the isometry group of H = M4 × CP2

to conserved fermionic currents (there are several of them). Also more general observables
allow this kind of coupling and the interpretation in terms of measurement interaction.
This term also realizes quantum classical correspondence by feeding information about
quantum numbers of partons to the geometry of space-time sheet so that quantum numbers
entangle with the geometry of space-time sheet as holography requires. This measurement
interaction was the last piece in the puzzle ”What are the basic equations of quantum TGD”
and unified several visions about the physics predicted by quantum TGD. ”Almost stringy”
means that the on mass shell fermions obey stringy mass formulas dictated by super-
conformal symmetry but that propagator itself -although it depends on four-momentum-
is not the inverse of super-Virasoro generator G0 as it would be in string models.

(b) The identification of bosons as wormhole contacts means that bosonic propagation reduces
to a propagation of fermion and antifermion at opposite throats of the wormhole throat.
In this framework bosonic n-vertex would correspond to the decay of bosons to fermion-
antifermion pairs in the loop. Purely bosonic gauge boson couplings would be generated
radiatively from triangle and box diagrams involving only fermion-boson couplings. In
particular, bosonic propagator would be generated as a self-energy loop: bosons would
propagate by decaying to fermion-antifermion pair and then fusing back to the boson. TGD
counterpart for gauge theory dynamics would be emergent and bosonic couplings would
have form factors with IR and UV behaviors allowing finiteness of the loops constructed
from them since the constraint that virtual fermion pair corresponds to wormhole contact
poses strong constraint on virtual momenta of fermion and antifermion.

This picture leads to generalized Feynman rules for M-matrix. The QFT limit based on this
picture is able to reproduce the p-adic length scale evolution of various gauge coupling strengths
with simple cutoffs on mass squared and hyperbolic angle characterizing the state of fermion in
the rest system of virtual boson. The presence of these cutoffs is dictated by geometric picture
about loops provided by zero energy ontology. The condition that the bosonic N > 3-vertices
vanish when incoming states are on mass shell gives an infinite number of conditions which could
fix the cutoffs uniquely.

Heuristic picture about generalized Feynman rules

Concerning the understanding of the relationship between HFFs and M -matrix the basic impli-
cations are following.

(a) General visions do not allow to provide explicit expressions for M-matrix elements. There-
fore one must be humble and try to feed in all understanding about quantum TGD and from
the quantum field theoretic picture. In particular, the dependence of M -matrix on Planck
constant should be such that the addition of loop corrections as sub-CDs corresponds to
an expansion in powers of 1/~ as in quantum field theory whereas for tree diagrams there
is no dependence on ~.
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(b) The vacuum degeneracy of Kähler action and the identification of Kähler function as Dirac
determinant strongly suggest that fermionic oscillator operators define what could be in-
terpreted as a finite quantum-dimensional Clifford algebra identifiable as a factor space
M/N , N ⊂ M. One must be however very cautious since also an alternative option in
which excitations of labeled by conformal weight are present cannot be excluded. Finite-
dimensionality would mean an enormous simplification, and together with the unique iden-
tification of number theoretic braids as orbits of the end points of string world sheets this
means that the dynamics is finite-quantum-dimensional conforming with the fact effective
finite-dimensionality is the defining property of HFFs. Physical states would realize finite
measurement resolution in their structure so that approximation would cease to be an
approximation.

(c) An interesting question is whether this means that M -matrix must be replaced with quan-
tum M -matrix with operator valued matrix elements and whether the probabilities should
be determined by taking traces of these operators having interpretation as averaging over
N defining the degrees of freedom below measurement resolution. This kind of picture
would conform with the basic properties of HFFs.

(d) To the strands of number theoretic braids one would attach fermionic propagators. Since
bosons correspond to fermion pairs at the throats of wormhole contact, all propagators
reduce to fermionic ones. As found, the addition of measurement interaction term fixes
fermionic propagator completely and gives it a stringy character.

(e) Similar correlation function in configuration space degrees of freedom would be given in
lowest order -and perhaps exact - approximation in terms of the contravariant metric of the
configuration space proportional to g2

K . Besides this the exponent of Kähler action would
be involved. For elementary particles it would be the exponent of Kähler action for CP2

type vacuum extremal. In this manner something combinatorially very similar to standard
perturbation theory would result and there are excellent hopes that p-adic coupling constant
evolution in powers of 2 is consistent with the standard coupling constant evolution.

(f) Vertices correspond to n-point functions. The contribution depending on fermionic fields
defines the quantum number dependent part of the vertices and comes from the fermion
field and their conjugats attached to the ends of propagator lines identified as braid strands.
Besides this there is a symplecto-conformal contribution to the vertex.

The expansion of M-matrix in powers of ~

One should understand how the proportionality of gauge couplings to g2
K emerges and how loops

give rise to powers of αK . In zero energy ontology one does not calculate M -matrix but tries to
construct zero energy state in the hope that QFT wisdom yields cold help to construct Connes
tensor product correctly.

(a) The basic rule of quantum field theory is that each loop gives α = g2/4π and thus 1/~
factor whereas in tree diagrams only g2 appears so that they correspond to the semiclassical
approximation.

(b) This rule is obtained if one assumes loops correspond to a hierarchy of sub-CDs and that
in loop one can distinguish one line as ”base line” and other lines as radiative corrections.
To each internal line one must one must assign the factor r−1/2 = (~0/~)1/2 and factor g2

K

except to the portion of base line appearing in loop since otherwise double counting would
result. This dictates the expansion of M -matrix in powers of r−1/2. It would not be too
surprising to have this kind of expansion.

(c) g2
K factor comes from the functional integral over the partonic 2-surface selected by station-

ary phase approximation using the exponent of Kähler action. The functional integral over
the configuration space degrees of freedom is carried out using contravariant Kähler metric
as a propagator and this gives g2

K factor in the lowest non-trivial order since one must
develop a perturbation theory with respect to the deformations at the partonic 2-surfaces
at the ends of line. If the analogs of radiative corrections to this functional integral van-
ish -as suggested by quantum criticality and required by number theoretic universality -
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the resulting dependence on g2
K is exact and completely analogous to the free field theory

propagator. The numerical factors give the appropriate gauge coupling squared.

(d) Besides this one must assign to the ends of the propagator line positive and negative en-
ergy parts of quantum state representing the particle in question. These give a contribution
which is zeroth order in ~. For instance, gauge bosons correspond to fermionic bilinears.
Essentially fermion currents formed from spinor fields at the two light-like wormhole throats
of the wormhole contact at which the signature of the induced metric changes are in ques-
tion. Correct dimension requires the presence of 1/~ factor in boson state and 1/

√
~ factor

in fermion state. The correlators between fermionic fields at the end points of the line are
proportional to ~ so that normalization factors cancel the ~ dependence. Besides this one
would expect N-points function of symplecto-conformal QFT with N = Nin +Nout having
no dependence on ~.

5.1.3 Topics of the chapter

The goal is to sketch an overall view about the ideas which have led to the recent view about
the construction of M -matrix. First the basic philosophical ideas are discussed. These include
the basic ideas behind TGD inspired theory of consciousness [K75] , the identification of p-adic
physics as physics of cognition and intentionality forcing the central idea of number theoretic
universality, quantum classical correspondence, and the crucial notion of zero energy ontology.

5.2 Basic philosophical ideas

The ontology of quantum TGD differs dramatically from that of standard quantum field theories
and these differences play a key role in the proposed approach to the construction of M -matrix.

5.2.1 Zero energy ontology

Zero energy ontology has changed profoundly the views about the construction of S-matrix and
forced to introduce the separate notions of M -matrix and U -matrix. M -matrix generalizes the
notion of S-matrix as used in particle physics. The unitary U -matrix is something new having
a natural place in TGD inspired theory of consciousness. Therefore it it best to begin the
discussion with a brief summary of zero energy ontology.

Motivations for zero energy ontology

Zero energy ontology was first forced by the finding that the imbeddings of Robertson-Walker
cosmologies to M4×CP2 are vacuum extremals. The interpretation is that positive and negative
energy parts of states compensate each other so that all quantum states have vanishing net
quantum numbers. One can however assign to state quantum numbers as those of the positive
energy part of the state. At space-time level zero energy state can be visualized as having
positive energy part in geometric past and negative energy part in geometric future. In time
scales shorter than the temporal distance between states positive energy ontology works. In
longer time scales the state is analogous to a quantum fluctuation.

Zero energy ontology gives rise to a profound distinction between TGD and standard QFT.
Physical states are identified as states with vanishing net quantum numbers, in particular en-
ergy. Everything is creatable from vacuum - and one could add- by intentional action so that
zero energy ontology is profoundly Eastern. Positive resp. negative energy parts of states can be
identified as states associated with 2-D partonic surfaces at the boundaries of future resp. past
directed light-cones, whose tips correspond to the arguments of n-point functions. Each incom-
ing/outgoing particle would define a mini-cosmology corresponding to not so big bang/crunch. If
the time scale of perception is much shorter than time interval between positive and zero energy
states, the ontology looks like the Western positive energy ontology. Bras and kets correspond
naturally to the positive and negative energy states and phase conjugation for laser photons
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making them indeed something which seems to travel in opposite time direction is counterpart
for bra-ket duality.

The notions of U-matrix and M-matrix

Zero energy ontology implies two kinds of matrices relevant for physics: U - and M . U -matrix
characterizes the unitary process associated with the quantum jump and is universal. M -matrix
has interpretation in terms of time-like entanglement coefficients between positive and negative
energy parts of zero energy state and seems to characterize quantum states rather than the
universal quantum dynamics. Unitarity conditions can be weakened so that thermodynamic
becomes part of quantum theory in the sense that M -matrix is expressible as a product of
positive square root of density matrix and unitary S-matrix analogous to thermal S-matrix
assignable formally to a complex time parameter. U - and M -matrix differ in many respects.

(a) M -matrix defines entanglement between positive and negative energy parts of zero energy
state. This entanglement does not make sense between different number fields since the
light-like 3-surface defining Feynmann cobordism connecting p-adic and real partonic 2-
surfaces at boundaries of CD does not make sense. Hence M -matrix is diagonal with
respect to number field.

(b) If algebraic universality is accepted in its strongest form, U -matrix elements must be alge-
braic numbers so that in zero energy ontology U -matrix between zero energy states can have
elements between different number fields. Note that the vanishing of conserved quantum
numbers is absolutely essential for this. This suggests a description of intentional action as
p-adic-to-real transitions in terms of U -matrix. Algebraic Universality in this sense might
be too strong a condition since it becomes questionable whether one can speak at all about
real and p-adic physics as distinct disciplines. A weaker form of number theoretic uni-
versality is that the real and p-adic Universes relate to the algebraic Universes based on
algebraic extensions of rationals in the same manner as reals and p-adic number fields and
their extensions relate to rationals and algebraics. Also in this case transitions are possible
but only between the states which live in rational or algebraic sub-Universes. One might
say that real and p-adic universes are like pages of a book and algebraic universes are like
the back of the book making it possible for zero energy states to leak between the pages.

(c) Both options makes possible to assign U -matrix to quantum jumps transforming intention
to action. The original hypothesis motivated by the stability of sensorily perceived world
was that U -matrix is almost trivial but there is actually no need for this assumption. The
stability of sensory perception can be understood if the ensembles formed by CDs in various
scales are nearly thermal so that sensory experience which involves statistical averaging and
becomes stable.

(d) From the point of view of consciousness theory the natural statement is that M -matrix
corresponds to the passive aspects of conscious experience, that is perception which reduces
to quantum measurement and state function reduction at the fundamental level. U -matrix
would in turn correspond to active aspects of conscious experience, including volitional acts
and transformations of intentions to actions.

2. How U - and M -matrices relate to each other?

The obvious objection against zero energy ontology is that the universality of S-matrix in the
sense of particle physics is lost since M -matrix characterizes the time-like entanglement of zero
energy state and seems therefore to be highly state dependent. It would seem that one must
give up the greatest dream of theoretician. The situation is not so bad.

(a) The notion of measurement resolution realized in terms of Jones inclusions requires that
the included sub-factor N ⊂ M representing the degrees of freedom below measurement
resolution acts effectively like complex numbers on positive and negative energy parts of
the zero energy state. This requires that time-like entanglement is given in terms of highly
unique Connes tensor product. M -matrix decomposes to a product of the positive square
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root of density matrix and unitary S-matrix and one might hope that S-matrix is essentially
unique for CD with a given scale.

(b) There might be also a connection between M -matrix and universal U -matrix. U -matrix
between zero energy states could reduce to a tensor product of possibly universal S-matrix
and its Hermitian conjugate associated with M -matrices: the first one between positive
energy parts and second one between negative energy parts of zero energy states in question.
If this is the case, the same S-matrix would apply both U -process and state function
reduction. One might argue that this connection is necessary since without it there would
be no manner to deduce any information about U -matrix experimentally. Note that density
matrix part of M -matrix can be unit matrix only for hyper-finite factors of type II1 are in
question since only in this case the trace of S†S = Id equals to 1 as the normalization of
zero energy states requires.

(c) M -matrices associated with different size scales for CDs coming as powers of two would also
have a natural fractal structure. The matrices associated with two CDs would differ only by
the effects caused by p-adic coupling constant evolution. Two subsequent M -matrices in the
hierarchy would differ only by the effects caused by a change in measurement resolution (the
scales defining smallest sub-CDs contributing to the calculation of M would be different).
The infinite sequence of Jones inclusions for hyperfinite type II1 factors isomorphic as von
Neumann algebras could express this fractal character algebraically.

The relationship between U-matrix and M-matrix

The following represents the latest result concerning the relationship between the notions of
U -matrix and M -matrix and probably provides answer to some of the questions posed in the
chapter. What is highly satisfactory that U -matrix dictates M -matrix completely via unitarity
conditions. A more detailed discussion can be [K46] discussing Negentropy Maximization Prin-
ciple, which is the basic dynamical principle of TGD inspired theory of consciousness and states
that the information content of conscious experience is maximal.

If the state function reduction associated with time-like entanglement leads always to a product
of positive and negative energy states (so that there is no counterpart of bound state entangle-
ment and negentropic entanglement possible for zero energy states: these notions are discussed
below) U -matrix and can be regarded as a collection of M -matrices

Um+n−,r+,s− = M(m+, n−)r+,s− (5.2.1)

labeled by the pairs (m+, n−) labelling zero energy states assumed to reduced to pairs of positive
and negative energy states. M -matrix element is the counterpart of S-matrix element Sr,s in
positive energy ontology. Unitarity conditions for U -matrix read as

(UU†)m+n−,r+s− =
∑
k+,l−

M(m+, n−)k+,l−M(r+, s−)k+,l− = δm+r+,n−s− ,

(U†U)m+n−,r+s− =
∑
k+,l−

M(k+, l−)m+,n−M(k+, l−)r+,s− = δm+r+,n−s− .

(5.2.2)

The conditions state that the zero energy states associated with different labels are orthogonal
as zero energy states and also that the zero energy states defined by the dual M -matrix

M†(m+, n−)k+,l− ≡M(k+l−)m+,n− (5.2.3)
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-perhaps identifiable as phase conjugate states- define an orthonormal basis of zero energy states.

When time-like binding and negentropic entanglement are allowed also zero energy states with a
label not implying a decomposition to a product state are involved with the unitarity condition
but this does not affect the situation dramatically. As a matter fact, the situation is mathemat-
ically the same as for ordinary S-matrix in the presence of bound states. Here time-like bound
states are analogous to space-like bound states and by definition are unable to decay to product
states (free states). Negentropic entanglement makes sense only for entanglement probabilities,
which are rationals or belong to their algebraic extensions. This is possible in what might be
called the intersection of real and p-adic worlds (partonic surfaces in question have representa-
tion making sense for both real and p-adic numbers). Number theoretic entropy is obtained by
replacing in the Shannon entropy the logarithms of probabilities with the logarithms of their
p-adic norms. They satisfy the same defining conditions as ordinary Shannon entropy but can
be also negative. One can always find prime p for which the entropy is maximally negative.
The interpretation of negentropic entanglement is in terms of formations of rule or association.
Schrödinger cat knows that it is better to not open the bottle: open bottle-dead cat, closed
bottle-living cat and negentropic entanglement measures this information.

How the new ontology relates to the existing world view?

In the new rather Buddhistic ontology zero energy states are identified as experienced events
and objective reality in the conventional sense becomes only an illusion. Before the new view
can be taken seriously one must demonstrate how the illusion about positive energy reality is
created and why it is so stable.

1. How the arrow of geometric time emerges?

Before one can consider this question one must have an idea about how the arrow of geometric
time emerges in TGD Universe.

(a) Conscious entity- self- can be compared to a person sitting in a movie theater with an
ability to put the film run in either direction. This person is curious and forces the film to
run. Once she has chosen the direction she keeps it as it is since the interesting things are
the things not yet known, and are contained by the part of film not yet seen. It might be
also easier to run the film in another direction. Translating this to the language of quantum
TGD one obtains the following description.

(b) Self has as its imbedding space correlate causal diamond CD, the basic geometric structure
of zero energy ontology. The light-like space-time surfaces inside CD×CP2 define the basic
unit for the ”world of classical worlds” (WCW), and one can say that self corresponds to
one particular sub-WCW. Geometric time is naturally assigned with CD. CD does not
move anywhere in the 8-D imbedding space as the standard view about arrow of geometric
time would suggest. Rather, self can be compared to the movie theater plus its conscious
audience.

(c) Self is curious to know what is in the geometric past and future. Since self can induce
quantum jumps shifting the quantum superposition of the space-time surfaces to either
direction of the geometric time, she does it. Since the contents of consciousness are about
the region of space-time surface inside CD at particular moment of subjective time, cor-
relation between the arrows of subjective time and geometric time results. The experience
about the flow of geometric time can be regarded as an illusion analogous to train illusion
in which a person sitting in a stationary train has an experience of motion induced by the
motion of another train which has began to move.

(d) Once a preferred direction for the arrow is chosen, geometric past corresponds to what is
already known and future to the unknown so that the direction of the arrow is stabilized.
The CP -breaking predicted by TGD at fundamental level [K15] might favor a preferred
direction for the arrow. The generation of global arrow could involve a competition between
selves, and a domino effect in the sense that the arrow for self induces that for sub-selves.
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Phase conjugate laser beams and self assembly in living matter seem to represent non-
standard arrow of geometric time and might have interpretation in terms of local deviations
from the standard arrow at some level of the scale hierarchy.

(e) One must also understand why the contents of conscious experience seem to represent
time=constant snapshot of the universe. Sub-CDs are correlates for sub-selves identified
as mental images. They tend to concentrate at near the light-like boundaries of CD, where
the most interesting events are and generate mental images. This explains why the contents
of conscious experience of self is about a narrow interval of geometric time rather than the
entire 4-volume of CD.

(f) The defender of the standard view might wonder whether the self is forced to sit for all her
life in the same movie theater? Does self really correspond to single CD (sub-WCW) or
should one speak about a wave function in the space of CDs? CD is partially characterized
by the position of the lower tip of CD in H. Also the size of CD matters as well as the
choice of quantization axes. In the case of color gauge group SU(3) the space for choices
of quantization axes is flag-manifold, which pops up in a mysterious looking manner in the
model of honeybee dance developed by topologist Barbara Shipman [A134] . Could this
wave function in the space of sub-WCWs correspond to a kind of wave packet moving in
H so that the direction of geometric time could emerge also in more standard manner? Or
could could self expand its consciousness by growing -that is by performing quantum jumps
in which the size of the CD characterizing self is scaled up but the lower tip of CD moves
nowhere. Since the scales of CDs come in powers of 2, this means a testable predictions
about the time scales of conscious experience [K68] .

2. How the stability of perceived reality can be understood?

Consider what the perceived stability of positive energy states, or equivalently that of zero
energy states means.

(a) What we perceive consciously are time-like state function reductions for events defined
by zero energy states. Quantum jumps replace zero energy states with new ones all the
subjective time (this corresponds to active aspect of conscious experience) and one can ask
whether this makes impossible to experience any stable Universe.

(b) Stability under quantum jumps is implied if there are statistical ensembles of CDs and cor-
responding zero energy states (fixed to a high degree by Connes tensor product property of
time-like entanglement) in various time scales associated with CDs in H. Self experiences
its sub-selves as mental images and the mental image defined by sub-self corresponds to
an ensemble average over sub-selves of sub-self. Hence the stability of experienced world
would reflect the stability of thermal ensemble of events guaranteed by second law of ther-
modynamics for zero energy states. This allows also to re-interpret the standard trick made
in deducing the rates for particle reactions from S-matrix elements. The problem is that
|Sm,n|2 is proportional to a square of delta function expressing energy-momentum conser-
vation. The trick is to interpret second delta function as space-time volume so that one
ends up with the replacement of probability for a reaction with probability per four-volume
interpreted as a reaction rate per volume. The density of events (CDs) per four-volume is
the natural interpretation in zero energy ontology.

(c) An alternative explanation for the stability of positive energy states is due to that the
U -matrix characterizing quantum jumps between zero energy states is almost trivial. This
would mean that the effects of volitional action on zero energy state are very small. The
event pairs would be extremely stable once they are generated (how they are generated is
an unavoidable question to be addressed below). Infinite sequences of transition between
states with same positive energies and same initial energies occur. What is nice that this
makes it possible to test the predictions of the theory by experiencing the transition again
and again.

3. Statistical physics for zero energy states
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The statistical physics for zero energy states was already mentioned in the above argument. This
need not be equivalent with statistical physics assignable to the zero energy states themselves
and defined by the density matrix defined by M -matrix.

(a) It is natural to speak about statistical physics for an an ensemble consisting of zero energy
states |m+n−〉 including also their time reversals |n+,m−〉. In the usual kinetics one
deduces equilibrium values for various particle densities as ratios for the rates for transitions
m+ → n+ and their reversals n+ → m+ so that the densities are given by n(n+)/n(m+) =∑
n+

Γ(m+ → n+)/
∑
n+

Γ/(n+ → m+). In the recent situation the same formula can
be used to define the particle number densities in kinetic equilibrium using the proposed
identification of the transition probabilities.

(b) Because of the stability of the zero energy states, one can construct many particle systems
consisting of zero energy states and can speak about the density of zero energy states per
volume. Also the densities n+,i (n−,i) of initial (final) states of given type can be defined
and n+,i can be identified as densities of positive energy states. Also the densities for
particles contained by these states can be defined. It would seem that the new ontology
can reproduce the standard ontology as something which is not necessary but to which we
are accustomed and which does not produce too much harm.

(c) The sequence of quantum jumps between zero energy states defines also a sequence between
initial (final) states of quantum jump. Ordinary scattering experiment involves the mea-
surement of the quantum numbers of particles in initial and final states. In the zero energy
ontology one can perform separate quantum measurements for the observables associated
with positive and negative energy components of zero energy states. This measurement
would give rise to the scattering event.

5. How does the quantum measurement theory generalize?

There are also important questions related to the quantum measurement theory. The zero
modes associated with the interior degrees of freedom of space-time surface represent classical
observables entangled with partonic observables and this entanglement is reduced in quantum
jump. Negentropy Maximization Principle [K46] is the TGD based proposal for the variational
principle governing the statistical dynamics of quantum jumps. NMP states that entanglement
negentropy tends to be maximized in the reduction of entanglement. Number theoretic variants
of Shannon entropy making sense for rationally or even algebraically entangled states can be
positive so that NMP can also lead to generation of this kind of entanglement and gives rise to
a highly stable bound state entanglement.

6. Is the direct creation of zero energy states from vacuum possible?

In principle generation of zero energy states from vacuum is possible. At the first glimpse this
option does not seem to be consistent with the assumption that U -matrix between zero energy
states is induced by S-matrices between positive and negative energy parts of zero energy states.
Should we accept that we are passive spectators who just observe the already existing zero energy
states. It seems that this is not necessary.

(a) Zero energy states are superpositions of state pairs with different values of conserved quan-
tum numbers which sum up to vanishing net quantum numbers. In particular, zero energy
states can contain also a part for which positive and negative energy parts have vanishing
quantum numbers. Hence zero energy states can be created also from vacuum for both
positive and negative energy parts of the state.

(b) There is also a correlation between positive and negative energy parts of the state meaning
that also quantum numbers are correlated and conservation laws do not apply locally
anymore so that zero energy state is creatable from vacuum.

(c) One can also ask whether the creation of zero energy state means a creation of entire CD
or activation of CD from pure vacuum state. Or could it be that the wave function in the
degrees of freedom characterizing position, size, and quantization axes characterizing of
CD changes in quantum jump so that the final state wave function becomes non-vanishing
in a new region of H?
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The creation of zero energy states from vacuum might take place also through intentional action.

(a) The mechanism generating p-adic zero energy states as representations of intentions would
be same as for the creation of genuine zero energy states. As far as quantum numbers are
considered there seems to be no problems of principle involved. One can however wonder
whether the notion of conserved classical quantities assignable to Kähler action makes sense
p-adically since the notion of definite integral is not well-defined p-adically. A way out of
the difficulty is that real and p-adic surfaces involved have same functional form in terms
of algebraic functions so that real conserved quantities can be interpreted as p-adic ones
when they reduce to algebraic numbers.

(b) For zero energy states, p-adic-to-real transitions and vice versa are in principle possible and
I have in fact proposed a general quantum model for how intentions might be transformed
to actions in this manner [K86] . In the second direction the process corresponds to a
formation of cognitive representation of a zero energy physical state. The only thing that
is required is that the zero energy states in question can be regarded as those possible
for some algebraic extension of rationals so that they make sense both in real and p-adic
context with appropriate algebraic extension of p-adic numbers.

(c) In the degrees of freedom corresponding to configuration space spinors situation is very
much like for reals. Rational, and more generally algebraic number based physics applies
in both cases. p-Adic space-time sheets however differ dramatically from their real coun-
terparts since they have only rational (algebraic) points in common with real space-time
sheets and p-adic transcendentals are infinite as real numbers. The algebraic valued U -
matrix elements for p-adic-to-real transitions can be formulated using n-point functions
restricted to these rational points common to matter and mind stuff. If this picture is not
terribly wrong, it would be possible to generate zero energy states from vacuum and the
construction of quantum computer programs would be basically a long and tedious process
involving very many intentional acts.

(d) Real-to-p-adic transitions would represent transformation of reality to cognition and would
be also possible. The characteristic and perhaps the defining feature of living matter could
be its highly developed ability to reconstruct reality by performing p-adic-to-real transitions
and their reversals.

(e) Here an interesting aspect of the p-adic conservation laws might have some role. p-Adic
integration constants are pseudo constants in the sense that a quantity having vanishing
(say) time derivative can depend on a finite number of pinary digits tn of the time coordinate
t =

∑
n tnp

n. Could one think that quantum jumps can generate from vacuum exact
vacuum states as vacuum tensor factors of the configuration space spinor, and that in
subsequent quantum jumps p-adic U -matrix conserving quantum numbers only in p-adic
sense transforms this state into a non-trivial zero energy state which then transforms to a
real state in intentional action? Note that if conserved quantum numbers are integers they
are automatically pseudo constants. p-Adic conservation laws could allow also the p-adic
zero energy states to pop up directly from vacuum.

5.2.2 The anatomy of the quantum jump

In TGD framework quantum transitions correspond to a quantum jump between two different
quantum histories rather than to a non-deterministic behavior of a single quantum history
(understood as an evolution of Schrödinger equation). Therefore U -matrix relates to each other
two quantum histories rather than the initial and final states of a single quantum history and
this leads to a resolution of the basic paradox of quantum measurement theory.

To understand the philosophy behind the construction of U -matrix it is useful to notice that
in TGD framework there is actually a ’holy trinity’ of time developments instead of single time
development encountered in ordinary quantum field theories.

(a) The classical time development is coded by the preferred extremal of Kähler action inside
each causal diamond CD defining a hierarchy of time scales comings as powers of 2.
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(b) The unitary ”time development” defined by U associated with each quantum jump

Ψi → UΨi → Ψf ,

and defining U -matrix. One cannot however assign to the U -matrix an interpretation as
a unitary time-translation operator. There is a hierarchy of time scales associated with
U -matrices. U -matrices are between zero energy states and do not correspond directly to
the S-matrix of particle physics, which in zero energy ontology corresponds to the matrix
M defining time-like entanglement coefficients between positive and negative energy parts
of zero energy state.

(c) The time development of subjective experiences by quantum jumps is identified as sequence
of moments of consciousness. The value of geometric time associated with a given quantum
jump is determined by the space-time locus for the contents of consciousness of the observer.
The understanding of psychological time and its arrow and of the dynamics of subjective
time development requires the construction of theory of consciousness [K75, K4] . A crucial
role is played by zero energy ontology and by the classical non-determinism of Kähler
action implying that the non-determinism of quantum jump and hence also the contents of
conscious experience can be concentrated into a finite volume of the imbedding space.

Unitary process

U is informational ”time development” operator, which is unitary like the S-matrix character-
izing the unitary time evolution in standard quantum mechanics. U -process is however only
formally analogous to Schrödinger time evolution of infinite duration since there is no real time
evolution or translation involved.

Macro-temporal quantum coherence suggests strongly a fractal hierarchy of U -matrices defined
for periods of macro-temporal quantum coherence consisting of sequences of quantum jumps
defining selves. The hierarchy of these unitary S-matrices would not be only an approximation
but provide exact descriptions consistent with the limitations of conscious experience. The du-
ration of the macro-temporal quantum coherence would correspond to the time interval defining
unitary time development. Also p-adic length scales would define similar hierarchy of U -matrices.
The realization of zero energy ontology in terms of fractal hierarchy of causal diamonds (CDs)
justifies of this expectation since one can assign to each CD U -process.

State function reduction

The selection of quantization axes, the fact that the perceived world looks classical, and the
correlation of outcome of measurement with classical observables should have first level expla-
nation if quantum measurement theory is to be more more than ad hoc construct justifying the
basic rules.

1. Imbedding space correlate for the choice of the quantization axes

The requirement that quantum jump corresponds to a measurement in the sense of quantum field
theories implies that each quantum jump involves localization in zero modes which parameterize
also the possible choices of the quantization axes. Thus the selection of the quantization axes
performed by the Cartesian outsider becomes a part of quantum theory.

If one takes seriously the proposed hierarchy of Planck constants and the generalization of the
imbedding space to a book like structure implied by it, the selection of quantization axes has also
imbedding space correlate which means also breaking of fundamental symmetries at the level of
given CD since quantization axes define physically preferred directions. Each CD would would
be replaced by a union of its copies with different selection of quantization axes to guarantee
symmetries at fundamental level and quantum jump would involve localization to single choice
unless one is willing to accept multi-verse picture for conscious experience.

2. The outcome of the state function reduction must look classical
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Quantum classical correlation requires that quantum states have classical correlates. This means
that the final states of quantum jump correspond to quantum superpositions of 3-surfaces which
are macroscopically equivalent so that the world of conscious experience looks classical. ”Macro-
scopically equivalent” translates ”indistinguishable in the measurement resolution available” in
the recent formulation of quantum TGD.

The finiteness of the measurement resolution is a precise quantitative prediction of quantum
TGD proper in its recent form and essentially due to the vacuum degeneracy of Kähler actions
responsible also for the classical non-determinism. The point is that the induced spinor fields
allow only finite number of zero modes for given light-like 3-surface so that anti-commutation
relates can be satisfied for a finite set of points only identified as intersection of partonic 2-surface
and number theoretic braid. The resulting effective discretization is much more than one might
have expected but emerges very naturally in terms of zero energy ontology. The inclusions of
hyper-finite factors of type II1 (HFFs) allow a mathematical formulation of this picture in terms
of quantum counterparts of configuration space Clifford algebras.

A way out of the problems caused by the lack of appropriate p-adic integration measure could
be that p-adic configuration space spinor fields are localized to discrete subsets of the p-adic
configuration space. Finite measurement resolution realized in terms of number theoretic braids
implies that not only effective configuration space Clifford algebra has finite quantum dimension
but also the effective configuration space itself. Vacuum functional identified as the exponent
of Kähler function can be defined in terms of eigenvalues of the modified Dirac operator also in
p-adic context and one can consider the possibility that these eigenvalues serve as coordinates
for the p-adic configuration space and p-adic configuration space spinor fields are localized to
discrete subsets of this space. Much depends also on the representation of 3-surfaces. For
instance, the representation in terms of polynomials means that the coefficients of polynomials
with some additional algebraic conditions characterize the point of the p-adic configuration space
and one can forget the surface itself. Algebraization in terms of quantum coordinates for p-adic
configuration space might also help.

State preparation

TGD inspired theory of consciousness inspires the hypothesis that the standard quantum mea-
surement is followed by a self measurement inside self, which reduces entanglement between
some subsystem and its complement in quantum fluctuating degrees of freedom. Again a mea-
surement of the density matrix is in question. Self measurements are repeated until a completely
unentangled (within measurement resolution) product state of self results: the process is equiv-
alent with the state preparation process, which is a purely phenomenological part of standard
quantum measurement theory. In well defined sense state preparation corresponds to an analysis
or decay process respecting only bound state entanglement.

The dynamics of self measurement is governed by Negentropy Maximization Principle (NMP,
[K46] ), which specifies which subsystems are subject to quantum measurement in a given
quantum jump. NMP can be regarded as a basic law for the dynamics of quantum jumps and
states that the information content of conscious experience is maximized. In p-adic context
NMP would dictate the dynamics of cognition. In real context, self measurement makes possible
for the system to fight against thermalization by self-repair at quantum level, and might be a
crucial additional element besides the many-sheeted space-time concept needed to understand
how bio-systems manage to be macroscopic quantum systems.

The hypothesis that bound state entanglement coefficients are in the hierarchy of extensions
of rational numbers allows to use number theoretic definition of entanglement entropy. This
allows to have also negative entropies and in this case NMP does not imply the reduction of
entanglement in quantum jump so that there is no need to separately postulate the bound state
entanglement is stable against NMP.
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Classical space-time correlates for the basic steps of quantum jump

The classical space-time correlates for the basic notions of quantum measurement theory should
be of crucial help in the construction of the M -matrix. The natural first expectation is that these
correlates are encountered only at the level of space-time surfaces. Zero energy ontology and
the generalization of the imbedding space forced by the hierarchy of Planck constants led to the
conclusion that this kind of correlates emerge also at the level of imbedding space. CDs serve as
correlates for selves and the fractal hierarchy of CDs allows to characterize finite measurement
resolution and treat also the implications of the non-determinism of Kähler action.

1. Correlates at the level of space-time

Consider first space-time correlates for the basic steps of the quantum jump.

(a) Space-time sheets correspond to coherence regions for various classical fields obtained by
inducing various geometric structures of the imbedding space to the space-time surface.
They correspond also to the coherence regions of the induced spinor fields. The classical
non-determinism of Kähler action and of corresponding super-symmetrically related Dirac
equation makes possible to have space-time correlates for the non-determinism of quantum
jump sequence leading to de-coherence. One must be however cautious with what one
really means with this notion.

i. The first guess is that de-coherence at space-time level means simply the decomposition
of a space-like 3-surface into pieces during its evolution: emission of on mass shell
photon by charged elementary particle is the simplest possible example here. Non-
determinism must be involved in an essential manner.

ii. At particle level M -matrices are associated with light-like 3-surfaces connecting the
light-like boundaries of CD and representing generalized Feynman diagram with ver-
tices identified as partonic 2-surfaces along with the lines represented by light-like
3-surfaces are glued together. At vertices 3-surfaces and also space-time surfaces are lit-
erally branched. State function reduction happens for the zero energy state assignable
to this Feynman diagram like 3-surface. In this picture the coherence regions would
correspond to connected parts of light-like 3-surfaces and the scale of the smallest CD
in the hierarchy would characterize coherence length and time. De-coherence could be
seen as the presence of sub-CDs and corresponding non-deterministic details of space-
time surface which serve as a correlate for non-determinism of quantum jumps. At the
level of M -matrix sub-CDs can be assigned to loop corrections in powers of ~.

(b) As already explained, the classical non-determinism of the Kähler action allows to represent
state function reduction at classical level via stationary phase approximation. Double slit
experiment serves as a good example of what could happen.

i. Before the decision to measure which slit the particle propagates through, the space-
time surface representing the particle is branched (in the sense of string diagram rather
than Feynman diagram) to two parts going through the slits and both branches contain
classical spinor field.

ii. As the decision is made, p-adic space-time sheet representing the intention to make the
measurement is transformed in quantum jump to real space-time sheets, most naturally
negative energy topological light rays propagating to the geometric past and interacting
with the spinor field and in such a manner that spinor field propagates only along the
second branch of the space-time sheet.

iii. This is achieved if the interaction of negative energy topological light ray transforms
space-time sheet to vacuum extremal for which also spinorial energy momentum tensor
and various currents vanish identically. Presumably the absorption of negative energy
nullifies the energy otherwise propagating along the branch in question. Conservation
of various currents implies that the total probability defined by the spinor field goes to
the second space-time branch.

(c) Also state preparation and NMP should have space-time correlate.
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i. During state preparation process generation of de-coherence continues and involves
maximal de-entanglement in quantum fluctuating degrees of freedom with the for-
mation of bound states being exception. If join along boundaries bonds (realized in
terms of magnetic flux tubes say) serve as correlates for the entanglement, the process
should correspond at space-time level to the splitting of join along boundaries bonds
connecting 3-sheets. 3-surface would quite literally decompose into pieces.

ii. Negentropy maximization should thus imply a non-deterministic splitting of 3-surface
into pieces if standard expression for entanglement entropy is used. Generation of
sub-CD:s would be equivalent correlate.

iii. If number theoretic variant of entanglement entropy is allow NMP could force formation
of join along boundaries bonds. In [K16] I have considered the possibility that Kähler
action indeed has an information theoretic interpretation. The non-determinism of
NMP would has as a space-time correlate the non-determinism of Kähler action.

The three non-determinisms

Besides the non-determinism of quantum jump, TGD allows two other kinds of non-determinisms:
the classical non-determinism basically due the vacuum degeneracy of the Kähler action and
p-adic non-determinism of p-adic differential equations due to the fact that functions with van-
ishing p-adic derivative correspond to piecewise constant functions.

To achieve classical determinism in a generalized sense, one must generalize the definition of
the 3-surfaces Y 3 (belonging to light cone boundary) by allowing also ”association sequences”,
that is 3-surfaces which have, besides the component belonging to the light cone boundary, also
disjoint components which do not belong to the light cone boundary and have mutual time
like separations. This means the introduction of additional, one might hope typically discrete,
degrees of freedom (consider non-determinism based on bifurcations as an example). It is even
possible to have quantum entanglement between the states corresponding to different values of
time.

The explicit quantitative realization of this vision is provided by the fractal hierarchy of CDs
within CDs. To specify the zero energy state one must characterize it for all CDs with scale
above measurement resolution scale. Finite resolution scale is not an approximation to reality
but a basic property of zero energy states forced by the quantization of the induced spinor fields.

Without the classical and p-adic non-determinisms general coordinate invariance would reduce
the theory to the light cone boundary and this would mean essentially the loss of time which
occurs also in the quantization of general relativity as a consequence of general coordinate
invariance. Classical and p-adic non-determinisms imply that one can have quantum jumps
with non-determinism (in conventional sense) located to a finite time interval. If quantum jumps
correspond to moments of consciousness, and if the contents of consciousness are determined
by the locus of the non-determinism, then these quantum jumps must give rise to a conscious
experience with contents located in a finite time interval.

Also p-adic space-time sheets obey their own quantum physics and are identifiable as seats of
cognitive representations. p-Adic non-determinism might be the basic prerequisite for imagina-
tion and simulation.

5.3 Zero energy ontology and conformal invariance

In the following some aspects of the role of zero energy ontology and conformal invariance in the
construction of M -matrix are discussed. The emphasis is on the long standing difficulties related
to the realization of the analog of stringy picture about M -matrix. The general vision that
emerged much after the writing the first version of this section is that vertices correspond to n-
point functions of a symplecto-conformal field theory at partonic 2-surfaces. The basic deviation
from string models are due to the presence of symplectic n-point functions (discussed in [K13]
and due to the discretization caused by the notion of number theoretic braid. Propagators
reduce to fermionic correlators assignable to the lines of the generalized Feynman diagram and
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the naive expectation supported by QFT like picture and effective 3-dimensionality of space-time
is that the inverse of the longitudinal part of the modified Dirac operator DK , rather than DK

itself, is in question. The problem is to understand how the analog of the stringy propagator as
inverse of super Virasoro generator G is obtained. The solution of the problem is that different
-one might say fundamental- representation of 1/G determined as the propagator associated
with the longitudinal part of DK contains a sum over virtual states labeled by integer valued
conformal weights rather than only on mass shell state with ground state conformal weight just
as the QFT propagator contains sum over virtual momenta.

5.3.1 M-matrix as characterizer of time-like entanglement between
positive and negative energy components of zero energy state

The idea about giving up the notion of unitary S-matrix in the standard sense of the word
might seem too radical and there is actually no fundamental reason forcing this in the con-
ceptual framework provided by hyper-finite factors of type II1. Just the opposite, the freedom
to construct zero energy states rather freely could be restricted by the unitarity of the matrix
determined by the entanglement coefficients. There are however both mathematical and phys-
ical reasons to believe that entanglement coefficients give rise to a thermal S-matrix which is
counterpart of ordinary S-matrix but for complex time parameter.

Before continuing, it must be added that M -matrix identified as entanglement coefficients be-
tween positive and negative energy parts of zero energy states would characterize zero energy
states and could be something totally different from the U -matrix describing unitary process
associated with the quantum jump. If one however assumes that U -matrix reduces to a tensor
product of S-matrix parts of M -matrix and its conjugate between positive energy parts and
between negative energy parts of zero energy state, situation changes.

Unitarity in zero energy ontology

Quantum classical correspondence combined with the number theoretical view about conformal
invariance could fix highly uniquely the dependence of M -matrix on cm degrees of freedom and
on net momenta and color quantum numbers. The corner stone of the interpretation is zero
energy ontology applied already earlier in classical TGD.

Unitary M -matrix is possible for zero energy ontology in case of HFFs of type II1. The inter-
pretation of the condition Tr(SS†) = Tr(Id) = 1 as a normalization condition stimulates the
hope that the entanglement between positive and negative energy states in zero energy states
is coded by a unitary M -matrix in the conceptual framework provided by hyper-finite type II1

factors so that states would represent dynamics in their structure.

It must be however emphasized that unitarity is by no means obvious or necessary in zero energy
ontology.

(a) What can be measured are basically the ratios of scattering rates since one must always
use a clock and clock corresponds to some standard scattering occurring with rate defining
the time unit used.

(b) If one gives up unitary and allows the interpretation of M†M as density, thermodynam-
ics becomes part of quantum theory. In particular, p-adic thermodynamics crucial for
understanding of particle massivation could emerge in this manner.

(c) It is not obvious whether unitarity is even possible in 4-dimensional context. For TQFTs
with S-matrix identified as a functor from category of ordinary cobordisms, unitary S-
matrix is assignable only to trivial cobordisms for D < 4 [K13] , [A60] The situation might
be same also for Feynman cobordisms. The whole point of holography is however that
space-time is effectively 3-dimensional due to the constraint that virtual states appearing
in the lines of Feynman diagram are only virtual in 3-D sense and correspond to zero modes
of the modified Dirac operator in 4-D sense.
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(d) There is a further strong argument in favor of identification of M -matrix as the analog of
thermal S-matrix. It is quite possible that HFF of type II1 is replaced with II∞ factor
which is a tensor product factors of type II1 and type I. In the case of configuration
degrees of freedom super-conformal symmetry might guarantee that HFF of type II1 is in
question. Imbedding space degrees of freedom however seem to give rise to factor of type I
via the representations of Poincare group and color partial waves and there seems to be no
natural manner to avoid this. Only thermal M -matrix would define a normalizable state
so that thermodynamical states would be genuine quantum states rather than only a useful
fiction of theorist.

(e) One can hope that M -matrix as analog of thermal matrix exists for general Feynman cobor-
disms meaning that thermodynamics and p-adic thermodynamics follow from fundamental
principles somewhat like black hole temperature emerges as a property of black hole hori-
zon. Note that for U -matrix the unitarity is necessary and U -matrix could be expressed in
terms of the S-matrices associated with M -matrix.

Finite measurement resolution and the procedure leading from M-matrix to scat-
tering rates

In standard QFT the procedure leading from from S-matrix to scattering rates breaks all rules of
mathematical aesthetics. The ugliest step in this procedure involves the identification of the 4-
dimensional momentum space delta function δ4(0) as a 4-D reaction volume. Encouragingly, zero
energy ontology allows to get rid of this feature and also provides a clear physical interpretation
for it.

(a) In standard positive energy ontology the conservation of energy does not allow localization
in time direction so that in time direction the reaction volume is necessarily infinite. In
zero energy ontology causal diamonds CD define naturally finite reaction volumes. If their
scales come as powers of 2 -as suggested by the geometry of CD- one can deduce p-adic
length scale hypothesis from this picture in turn supported by the success of p-adic mass
calculations. Additional scale hierarchy corresponds to scaled values of Planck constants so
that all rational multiples of fundamental scale defined by CP2 size are in principle possible.

(b) p-Adic length scale hierarchy assignable to the hierarchy of CDs within CDs is a good
candidate for a hierarchy of Jones inclusions with increasing value of p defining an improved
momentum resolution. This leads also to a vision about how p-adic coupling constant
evolution for M -matrix is realized in terms of cutoff characterizing the size of the smallest
sub-CD possible.

(c) In the framework of zero energy ontology one can say that there is an ensemble of CDs in
M4 × CP2 representing scattering events and reaction rates are obtained by multiplying
the density of CDs with the finite reaction probabilities determined by the M -matrix.
Reaction probabilities are finite since the conservation of four-momentum is a property of
states in zero energy ontology and momentum space delta functions can emerge only in
the restriction of the four-momentum of positive energy states to a precise value. By the
finite size of CD is is however not possible to make this kind of restriction in zero energy
ontology. Only in the idealization that the four-momentum of the initial state is precisely
determined the square of δ4(0) would appear and a similar limiting procedure as in the
usual case would be needed but would have a clear physical interpretation.

(d) Finite length scale resolution suggests at the level of super conformal algebras to a cutoff ncr
for the values of conformal weight and thus mass squared. The finite number of fermionic
oscillator operators indeed leads to a cutoff of conformal weight of super-conformal algebras
and the replacement of integers with finite field as values of conformal weights is suggestive.
The finite truncations of super conformal algebras obtained by replacing the integers n
labeling the states with integers in Z/kZ would be mathematically natural and define also
physically natural Jones inclusions. Prime values of k would correspond to the replacement
of Z with finite field G(k). p-Adic mass calculations suggests that the value of conformal
weight for which the mass of the state becomes equal to Hagedorn temperature fixes ncr
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and predicts ncr ∼ log2(p) [K53] . Combining this with p-adic length scale hypothesis
(p ' 2k, k integer with primes favored) would encourage the hypothesis ncr = k.

5.3.2 Feynman rules in configuration space degrees of freedom

The construction of the theory in fermionic degrees of freedom looks relatively straightforward.
In configuration space degrees of freedom the situation seems extremely complicated and I have
not been able to find elegant formulation although a reduction to to finite-quantum-dimensional
configuration space is suggestive, and should reflect the fact that all points of 2-surface except the
points of braid are below measurement resolution. The elegant solution could be a formulation
in terms of quantize M2 and CP2 coordinates allowing to calculate n-point functions and here
conformal field theories with string reduced to a discrete set of points representing braid is the
most plausible first guess.

Configuration space degrees of freedom

Configuration space degrees of freedom can be decomposed to center of mass degrees of freedom,
zero modes, and quantum fluctuating degrees of freedom contributing to the configuration space
metric including modular degrees of freedom.

(a) Cm degrees of freedom correspond to the position of partonic 2-surface, the definition of
which should be specified precisely, perhaps as a selection of preferred braid strand. It is
not sensible to assign separate four momenta to the braid strands since they are constrained
to move parallel.

(b) M -matrix should reduce essentially to a Fourier transform of the N-point function assigned
to the incoming and outgoing partonic two-surfaces. The decomposition M4 = M2(x) ×
E2(x) implied by number theoretic compactification and known extremals of field equations
with Minkowskian signature of the induced metric suggests that four-momentum should
be in the plane M2(x) so that a correlation between space-time geometry and quantum
numbers would result.

(c) Quantum field theory analogy would suggest the association of four-momenta to the propa-
gator lines. This can be done by the introduction of Fourier transform of various correlation
functions. The restriction inside CD implies small breaking of momentum conservation also
induced by the restriction to the points of braids.

(d) There are also center of mass degrees of freedom associated with CP2 and here color
partial waves are necessary. Color partial waves can be assigned with partonic 2-surfaces
and propagators should give correlators conserving color quantum numbers.

(e) For partonic 2-surface modular degrees of freedom characterizing the conformal equivalence
class of 2-surface in the induced metric is expected to be of special importance and TGD
based explanation of family replication phenomenon relies on the notion of elementary par-
ticle vacuum functional in these degrees of freedom. Therefore the reduction of the partonic
2-surface to a discrete set of points would mean the loss of crucially important information.
At least the global data about topology and complex structure of X2 must be preserved.
Elementary particle vacuum functionals in modular degrees of freedom labeling the complex
structures of X2, or perhaps punctured X2 would bring in the needed additional structure.
Modular spaces have complex structure so that configuration space Kähler metric could be
non-trivial in these degrees of freedom. Induced Kähler form is the most important zero
mode and excellent candidate for information that should not be lost in discretization.

Configuration space functional integral

About configuration space functional integral one make only some general statements.
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(a) If only braid points are specified, there is a functional integral over a huge number of 2-
surfaces meaning sum of perturbative contributions from very large number of partonic
2-surfaces selected as maxima of Kähler function or by stationary phase approximation.
This kind of non-perturbative contribution makes it very difficult to understand what is
involved so that it seems that some restrictions must be posed. Also all information about
crucial vacuum degeneracy of Kähler action would be lost as a non-local information.

(b) Induced Kähler form represents perhaps the most fundamental zero modes since it remains
invariant under symplectic transformations acting as isometries of the configuration space.
Therefore it seems natural organize configuration space integral in such a manner that
each choice of the induced Kähler form represents its own quantized theory and functional
integral is only over deformations leaving induced Kähler form invariant.

(c) One can ask whether also the induced Kähler form of the light-cone boundary should
be kept fixed so that the deformations of the partonic 2-surfaces would leave invariant
both the induced areas and magnetic fluxes. The the symplectic orbits of the partonic
2-surfaces (and 3-surfaces) would therefore define a slicing of the configuration space with
separate quantization for each slice. It is not clear whether this restriction is consistent
with conformal field theory picture.

(d) The functional integral would be over the symplectic group of CP2 and over M4 degrees of
freedom -perhaps also in this case over the symplectic group of δM4

+ - a rather well-defined
mathematical structure. Symplectic transformations of CP2 affect only the CP2 part of the
induced metric so that a nice separation of degrees of freedom results and the functional
integral can be assigned solely to the gravitational degrees of freedom in accordance with the
idea that fundamental quantum fluctuating bosonic degrees of freedom are gravitational.

(e) The configuration space integration around a partonic 2-surface for which the Kähler func-
tion is maximum (it could be also selected by a stationary phase approximation) should
give only tree diagrams with propagator factors proportional to g2

K if loop corrections to the
configuration space integral vanish. One could hope that there exist preferred S2 and CP2

coordinates such that vertex factors involving finite polynomials of S2 and CP2 coordinates
reduce to a finite number of diagrams just as in free field theory.

Symplectic QFT

Also the symplectically invariant degrees of freedom must be treated and this leads to the notion
of symplectic QFT. The explicit construction of symplectic fusion rules has been discussed
in [K13] . These rules make sense only as discretized version. Discreteness can be understood
also as a manifestation of finite measurement resolution: at this time it is associated with the
impossibility to know the induced Kähler form at each point of partonic 2-surface. What one can
measure is the Kähler flux associated with a triangle and the density of triangulation determines
the measurement accuracy. The discrete set of points associated with the symplectic algebra
characterizes the measurement resolution and there is an infinite hierarchy of symplectic fusion
algebras corresponding to gradually increasing measurement resolution in classical sense.

An interesting question is whether the symplectic triangulation could be used to represent a
hierarchy of cutoffs of super conformal algebras by introducing additional fermionic oscillators
at the points of the triangulation. The M4 coordinates at the points of symplectic triangulation
of S2

i , i = I, II projection and CP2 coordinates at the points of symplectic triangulation of
S2 could define discrete version of quantized conformal fields. The functional integral over
symplectic group would mean integral over symplectic triangulations. Note that M2 number
theoretic braid is trivial as symplectic triangulation.

Fusion algebra structure constants are equal to products of three roots of unity assignable to each
point of braid strand. An open question is whether these phase factors should be identified as
counterparts of plane waves factors. Momentum conservation would be replaced in this approach
by a weaker condition that the product of these factors equals to unity at each vertex.

In the original variant of symplectic triangulation the exact form of triangulation was left free.
It would be however nice if symplectic triangulation could be fixed purely physically by the



384 Chapter 5. Construction of Quantum Theory: M-matrix

properties of the induced Kähler form since also the number of fermionic oscillator modes and
number theoretical braids is fixed by the dynamics of Kähler action.

(a) A symplectically invariant manner to fix the nodes of the triangulation could be in terms
of extrema of the symplectic invariant εαβJαβ . The maxima of the magnitude of Kähler
magnetic field are indeed natural observables.

(b) It is not clear whether the precise specification of the edges of the triangulation is needed or
has any physical meaning. One might consider the possibility of of extremizing the fluxes
but it turns out impossible to formulate this in terms of a local variational principle. The
situation is analogous to finding an extremum of function in a situation when the extremum
happens to be at the end of the interval so that the vanishing of derivative cannot be taken as
criterion. In the recent situation one can expect that the extrema correspond to ”triangles”
for which symplectic area vanishes or to regions inside which εαβJαβ has a fixed sign.

How string model type quantization could emerge from configuration space func-
tional integral?

Conformal invariance suggests that n-point functions of conformal field theory result from the
integration over configuration space degrees of freedom. This means quantization of M4 and CP2

coordinates. The quantum variant of configuration space is natural if also configuration space
degrees of freedom form hyper-finite factor of type II1 as super-conformal symmetry suggests,
and could be realized through quantization of the imbedding space coordinates.

(a) There are reasons to expect that the conformal field theory in question is rational. Also
number theoretic universality favors this option. The vertex operators of rational conformal
field theories are constructible in terms of the vertex operators : exp(iα ·m) : plus factors
for internal quantum numbers. The M4 coordinate m is quantized using rules of string
theory.

(b) In the recent case α could correspond to four-momenta assignable to the internal lines
emerging from the partonic 2-surface providing a close correspondence with quantum field
theory. The dynamical Kac-Moody symmetry in transversal degrees of freedom indeed sug-
gests that this kind of factors should be included. The transversal plane to which quantized
m would be restricted could be identified as the plane E2 defined by the decomposition
M4 = M2 × E2 characterizing given CD. The well-known tachyonity of the ground state
(α ·α = −2)) required by vertex operator construction would not be a catastrophe if α cor-
responds to transversal four-momentum. The points of braid are arranged along a closed
curve in X2 in string model but in the recent case it is not clear whether the ordering
remains intact.

(c) The M4 projections of the points of number theoretic M2 braid at X2 can vary along
light-like ray. The problem is that the variations in transversal degrees of freedom for
the arguments of n-point function of M4 coordinates vanish. The problem disappears if
S2
i ⊂ CP2 braids are also needed. M2 braids would allow the description of CP2 quantum

fluctuations and CP2 braids the description of M4 quantum fluctuations.

(d) Also CP2 coordinates must be quantized and the first guess is CP2 WZW model in the
point set defined by M2 braid consisting of point at light-like ray and M4 string model
in the point set defined by CP2 braid. These two models could allow to calculate the
n-point functions for M4 and CP2 coordinates by performing functional integral over the
symplectic group of δM4

± × CP2.

(e) There are also factors coming from CP2 color partial waves and S2 × CP2 Hamiltonians
depending of center of mass coordinates. The quantized M4 coordinates would contain
these degrees of freedom as center of mass term in the representations of rational conformal
field as an ordered exponential. Same trick should work for CP2 = SU(3)/U(2) coordinates
for braid points.
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5.3.3 Rational conformal field theories and stringy scattering ampli-
tudes

Rational conformal field theories lead to stringy scattering amplitudes as N-point functions so
that there are reasons to expect that they emerge from quantum TGD.

General assumptions

Let us list first the general assumptions leading to stringy scattering amplitudes.

(a) Quantum criticality of TGD would suggest that, as far as conformal invariance is considered,
all details about the microscopic dynamics can be forgotten and the amplitudes for the
generation of zero energy states from vacuum can be expressed as vacuum expectation
values of the products of primary fields of a rational conformal field theory at partonic
2-surfaces. The primary fields in question do not directly correspond to the M4 local
versions of fundamental super-conformal algebras creating states at the intersections of
partonic causal determinants with δM4

+ × CP2. Rather, they would describe the states
created by these operators and possessing conformal weights consistent with rationality.
Hence one can completely forget the detailed anatomy of these states and only the values
of c and α = ∆mn matters.

(b) Since the conformal weights of primary fields are non-negative, mass squared identified as
conformal weight using CP2 mass as unit is non-negative and no problems with tachyons
are encountered. The deeper reason for the non-negativity of conformal weights would
be that the super-symplectic and Kac-Moody contributions to conformal weight sum up
to a non-negative net result. It is important to notice that the vertex operators V (z)
representing Kac-Moody generators used to construct stringy scattering amplitudes have
positive conformal weight ∆ = mm′ for c 6= 0 case and, as is clear on basis of Sugawara
representation, they would correspond to a negative mass squared in stringy models. This
would correspond to the conventionm2 = kL0, k < 0 rather than k > 0, in TGD framework.
It must be added that TGD mass formula is definitely not consistent with that of string
models.

(c) The first guess is that the expressions for the amplitudes for creating zero energy state
generalize as such an could be expressed in terms of the vacuum expectation values of
n-point functions for the primary fields of rational conformal field theories. Stringy form
would be obtained by the integration of the arguments over a circle of the partonic 2-surface
and by using standard arguments one could fix 3 of the arguments zi to z = 0, 1,∞ in case
of sphere. Apart from the normalization constant the resulting amplitude would have the
general form

A(α1, ..., αn) =

∫ n∏
i=4

dzi〈φα1(0), φα2(1), φα3(∞)φα4(z4).....φαn(zn)〉 ,∑
n

αn = 0 . (5.3.1)

Note that the conformal weights of negative energy particles are negative.

Free field representation of rational conformal field theories gives stringy amplitudes

Rational conformal field theories allow a representation of the primary fields in terms of expo-
nentials of massless free fields X(z) [A71] with the energy momentum tensor

T (z) = −1

4
: [∂X(z)]

2
: (5.3.2)
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The correlation functions of X(z) and ∂X(z) are

〈X(z)X(ζ)〉 = −2log(z − ζ) ,

〈∂X(z)∂X(ζ)〉 = − 2

(z − ζ)2
. (5.3.3)

X(z) has the stringy expansion

X(z) =
√

2
(
q − ip× log(z) + i

∑ an
n
zn
)

,

[q, p] = i , [an, am] = nδn+m,0 . (5.3.4)

There is of course no need to assume that strings are the underlying dynamical objects and z
corresponds to the complex coordinate of the partonic 2-surface in TGD context.

The normal order exponentials of the free field

Vα(z) = : exp(iαX(z) :

= exp(i
√

2αq)exp(i
√

2αp)exp

(
√

2α
∑
n>0

a−n
n
zn

)
exp

(
−
√

2α
∑
n>0

an
n
zn

)
.

(5.3.5)

are also primary fields of conformal weight α2. All primary fields of minimal models can be
represented in this manner apart from possible factors relating to internal quantum numbers.
For α2 = 1 one obtains representation for the charged generators of ADE type Kac-Moody
Lie-algebras in this manner.

The n-point function for these fields can be deduced by using Campbell-Hausdorf formula

: exp(iαX(z)) :: exp(iαX(ζ)) := (z − ζ)2αβ : exp(iαX(z) + iβX(ζ)) : ,

(5.3.6)

and is given by

〈Vα1
(z1)Vα2

(z2)....φα(zn)〉 =
∏
i<j

(zi − zj)2αiαj (5.3.7)

for
∑
αi = 0 and vanishes otherwise. Thus conformal invariance of zero energy states follows

from mere internal consistency. Thus rational CFT:s and obviously also (c = h = 0) case, would
give the basic stringy expression for the amplitudes for creating zero energy states from vacuum.

Consider now whether and how four-momenta could appear in this formula.

(a) The number theoretic M4 = M2×E2 decomposition and quantum classical correspondence
are in accordance with the assignment of Kac-Moody generators with E2 degrees of free-
dom. The physical interpretation would be in terms of deformations of partonic 2-surface
restricted to δM4

± with one light-like coordinate so that only two degrees of freedom remain
since light-like direction corresponds to Super Virasoro symmetries in the construction of
configuration space geometry. The generator of Kac-Moody algebra with zero norm would
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naturally correspond to the light-like direction along M4
+ for super-symplectic algebra and

along light-like partonic surface for Kac-Moody algebra.

One could wonder whether both of these zero norm generators could be included to the

extended Dynkin diagram so that twisted affine Lie-algebra would result (A
(2)
2 , A

(2)
2l with

l ≥ 2, A
(2)
2l−1 with l ≥ 3, D

(2)
l+1 with l ≥ 2, and E

(2)
6 are possible [A71]).

(b) Suppose therefore that the formula generalizes to 4-D case simply by assigning to each
component pk of four-momentum its own quantized M4 coordinate Xk such that oscillator
operator contribution is absent in M2 degrees of freedom, and requiring pkpk = αkαk = α2

in suitable units: α2 is the conformal weight of the primary field. The identification of the
mass squared value as conformal weight would follow automatically using this ansatz. The
interpretation would differ from that adopted in string models since only the counterparts
of tachyonic scattering amplitudes would be allowed as is indeed natural in zero energy
ontology.

(c) If CP2 mass is the unit of quantization the mass unit would be about 10−4 Planck masses.
This mass scale should apply to the fundamental representations associated with the sym-
metries of the imbedding spaces. Physical intuition would suggest that p-adic mass squared
defines the natural unit of quantization and that hadronic mass squared could be quantized
in this manner. This quantization might occur for the secondary Kac-Moody representa-
tions defined by ADE series in the case of q 6= 1 Jones inclusions and extended ADE
series in the case of q = 1 Jones inclusions suggested in [K27] to occur for large values
of ~. The generation of multiplets of ADE quantum groups and ADE Kac Moody alge-
bra could be made possible by the multiple coverings of M4 defined by the space-time
sheets for which points covering given point of M4 are related by a discrete subgroup of
Ga×Gb ⊂ SL(2, C)×SU(2) (where one has SU(2) ⊂ SU(3)) defining the Jones inclusion.
Thus one could say that TGD universal in the sense of being able to represent the quantum
dynamics associated with any ADE type quantum group or Kac-Moody group.

p-Adicization favors rational values for central extension parameter and vacuum
conformal weights

p-Adicization strongly suggests that the vacuum conformal weights and central extension pa-
rameter are rational numbers. Also algebraic numbers could in principle considered too: this
would not give any conditions if square root allowing algebraic extension of p-adic numbers are
used.

1. N = 0 case

For ordinary conformal algebra the null states are characterized by the conditions

∆mm′ = ∆0 +
1

4
(α+m+ α−m

′)2 , m , m′ ≥ 1 ,

N = mm′ ,

∆0 =
1

24
(c− 1) ,

α± =

√
1− c±

√
25− c√

24
. (5.3.8)

Thus arbitrarily high conformal weights N are possible in the construction. For c ∈ (1, 25) the
conformal weights are complex.

For ordinary conformal algebra rationality implies that the ground state conformal weight sat-
isfies

∆mm′ =
(mp′ −m′p)2 − (p′ − p)2

4pp′
, 0 < m < p , 0 < m′ < p′ . (5.3.9)
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A more elegant expression for the central charge and weights reads as

c = 1− 6

Q(Q+ 1)
,

∆mm′ =
1

4Q(Q+ 1)

[
(Q(m−m′ +m)2 − 1

]
,

Q =
p

p′ − p
. (5.3.10)

These conditions also imply also that the fusion rules close for a finite number of primary fields
in the corresponding conformal field theory.

For p′ = p+ 1 the minimal model is unitary. In this case one has Q = p is integer n ≥ 3. This
range of integers characterizes also the allowed values of quantum phase characterizing Jones
inclusions. Furthermore, Q is related to Kac-Moody central extension in SU(2)k theories by
Q = k + 2.

The ground state conformal weight corresponds to m = m′ = 1 and vanishes. The null norm
state however possesses the conformal weight mm′ ≥ 1 and is therefore massive. The tachyon
of string theories with conformal weight 1 is transformed in TGD framework to the absence
of massless states in full accordance with the breaking of conformal invariance. Q = p = n
corresponds naturally to the integer labeling Jones inclusion defining both UV and IR cutoffs
with respect to conformal weight. For c = 0 representation without breaking of conformal
invariance all states are null norm states and the spectrum contains also massless particles.
These representations correspond to n = ∞ case for Jones inclusions and to full Kac-Moody
symmetry and ordinary string theory in accordance with the general picture.

Since minimal conformal field theories are in question, the number of primary fields is restricted
by the conditions 0 < m < p and 0 < m′ < p′ = p+ 1. By the symmetry ∆mm′ = ∆p−m,p′−m′ .
If corresponding primary fields can be identified, one has 0 < m < m′ < p′(= p + 1) and
0 < m < p.

2. Rationality for N = 1, 2 super-conformal algebras

The previous considerations apply on Virasoro algebra. These considerations generalize to the
case of Kac-Moody algebra and also to corresponding Super algebras. In case of Super Virasoro
algebra rationality requirement gives rise to different conditions on the values of c and ∆mn

depending in the value of N . N = 1 super-conformal algebra corresponds to one real super
charge and one real super field and is non-physical in TGD framework. N = 2 case corresponds to
single complex super charge and one complex super-field. In this case the Super Virasoro algebra
involves also U(1) Kac-Moody algebra as inherent algebra. If these algebras are important in
TGD framework, it would be natural to assign these algebras to quark and lepton type gamma
matrices.

The values of the central extension parameter and conformal weights for N = 0, 1, 2 for unitary
rational field theories at sphere are summarized by the following table [A71].

ck 1− 6
(k+2)(k+3)

3
2 (1− 8

(k+2)(k+4) ) 3(1− 2
k+2 )

∆mm′
[(k+2)m−(k+1)m′]

2−1

4(k+2)(k+3)

[(k+4)m−(k+2)m′]
2−4

8(k+2)(k+4)
m(m+2)−m′2

4(k+2)

(q = mm′

k+2

m,m′ 1 ≤ m ≤ k + 1 1 ≤ m ≤ k + 2 0 ≤ m ≤ k
1 ≤ m′ ≤ k + 2 1 ≤ m′ ≤ k + 4 −m ≤ m′ ≤ m

(5.3.11)

It must be stressed that the conformal weights assignable to zero energy states are given by
∆m,m′ +mm′ whereas in conformal field theories physical states have conformal weights ∆m,m′ .
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For partonic 2-surfaces with handles modular invariance poses additional constraints since pri-
mary fields must form a closed set also under modular transformations [A71]. In the table above
q = m′/(k + 2) corresponds to U(1) charge.

3. Rationality for N = 4 SCA

Large N = 4 super-conformal symmetry with SU(2)+ × SU(2)− × U(1) inherent Kac-Moody
symmetry defines the fundamental partonic super-conformal symmetry in TGD framework. In
the case of SKM algebra the groups would act on induced spinors with SU(2)+ representing
spin rotations and SU(2)− × U(1) = U(2)ew electro-weak rotations. In super-symplectic sector
the action would be geometric: SU(2)+ would act as rotations on light-cone boundary and U(2)
as color rotations leaving invariant a preferred CP2 point.

A concise discussion of this symmetry with explicit expressions of commutation and anticommu-
tation relations can be found in [A123] . The representations of SCA are characterized by three
central extension parameters for Kac-Moody algebras but only two of them are independent and
given by

k± ≡ k(SU(2)±) ,

k1 ≡ k(U(1)) = k+ + k− . (5.3.12)

The central extension parameter c is given as

c =
6k+k−
k+ + k−

. (5.3.13)

and is rational valued as required.

A much studied N = 4 SCA corresponds to the special case

k− = 1 , k+ = k + 1 , k1 = k + 2 ,

c =
6(k + 1)

k + 2
. (5.3.14)

c = 0 would correspond to k+ = 0, k− = 1, k1 = 1. Central extension would be trivial in
rotational degrees of freedom but non-trivial in U(2)ew. For k+ > 0 one has k1 = k+ +k− 6= k+.
A possible interpretation is in terms of electro-weak symmetry breaking with k+ > 0 signalling
for the massivation of electro-weak gauge bosons.

A conjecture consistent with the general vision about the quantization of Planck constants is
that k+ and k− relate directly to the integers na and nb characterizing the values of M4

± and CP2

Planck constants via the formulas na = k+ + 2 and nb = k− + 2. This would require k± ≥ 1 for
Gi a finite subgroup of SU(2) (”anyonic” phases). In stringy phases with Gi = SU(2) for i = a
or i = b or for both, ki could also vanish so that also ni = 2 corresponding to A2 ADE diagram
and SU(2) Kac-Moody algebra becomes possible. In the super-symplectic sector k+ = 0 would
mean massless gluons and k− = k1 that U(2) ⊂ SU(3) and possibly entire SU(3) represents an
unbroken symmetry.

5.3.4 Objection against zero energy ontology and quantum classical
correspondence

The motivation for requiring geometry and topology of space-time as correlates for quantum
states is the belief that quantum measurement theory requires the representability of the outcome
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of quantum measurement in terms of classical physics -and if one believes in geometrization- one
ends up with generalization of Einstein’s vision.

There is however a counter argument against this view and second one against zero energy
ontology in which one assigns eigenstates of four-momentum with causal diamonds (CDs).

(a) One can argue that momentum eigenstates for which particle regarded as a topological
inhomogenuity of space-time surface, which is non-localized cannot allow a space-time
correlate.

(b) Even worse, CDs have finite size so that strict four-momentum eigenstates strictly are not
possible.

On the other hand, the paradoxical fact is that we are able to perceive momentum eigenstates
and they look localized to us. This cannot be understood in the framework of standard Poincare
symmetry.

The resolution of the objections and of the apparent paradox could rely on conformal symmetry
assignable to light-like 3-surfaces implying a generalization of Poincare symmetry and other
symmetries with their Kac-Moody variants for which symmetry transformations become local.

(a) Poincare group is replaced by its Kac-Moody variant so that all non-constant translations
act as gauge symmetries. Translations which are constant in the interior of CD and trivial
at the boundaries of CDs are physically equivalent with constant translations. Hence the
latter objection can be circumvented.

(b) The same argument allows also a localization of momentum eigenstates at the boundaries
of CD. In the interior the state is non-local. Classically the momentum eigenstate assigned
with the partonic 2-surface is characterized by its 4-D tangent space data coding for mo-
mentum classically. The modified Dirac equation and Kähhler action indeed contain and
additional term representing coupling to four-momenta of particles. Formally this corre-
sponds only to a gauge transform linear in momentum but Kahler gauge potential has
U(1) gauge symmetry only as a spin glass like degenary, not as a gauge symmetry so that
space-time surface depends on momenta.

(c) Conscious observer corresponds in TGD inspired theory of consciousness to CD and the
sensory data of the observer come from partonic 2-surfaces at the boundaries of CD and its
sub-CDs. This implies classicality of sensory experience and momentum eigenstates look
classical for conscious perceiver.

The usual argument resolving the paradox is based on the notion of wave packet and also this
notion could be involved. The notion of finite measurement resolution is key notion of TGD
and it is quite possible that one can require the localization of momentum eigenstates at the
boundaries of CDs only modulo finite measurement resolution for the position of the partonic
2-surfaces.

5.3.5 Issues related to Lorentz symmetry

Lorentz invariance fixes the critical dimension of target space in super string models: 26 for
bosonic string model and 10 for super-string model. This is strong argument for the claim that
super string models have something to do with reality. Also in TGD framework one can ask
whether Lorentz symmetric and even more- Poincare symmetric - theory is achieved.

Evidence for the breaking of Lorentz and color symmetries in TGD framework

There are several reasons suggesting that spontaneous breaking of Poincare symmetries is un-
avoidable in TGD and has concrete physical meaning in TGD framework.

(a) The realization of the hierarchy of Planck constants involves selection of preferred plane
M2 ⊂ M4 and geodesic sphere S2

i ⊂ CP2 implying breaking of Lorentz invariance. The
interpretation is that the fixing of quantization axes forces breaking of Poincare and color
symmetries at the level of imbedding space.
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(b) Number theoretical vision implies the hierarchy M2 ⊂ M4 ⊂ M8 interpreted as inclusion
hierarchy hypercomplex numbers-hyperquaternions-hyper-octonions. Number theoretical
compactification is responsible for most of the progress in the understanding of quantum
TGD. This hierarchy has also local variant at space-time level and this hierarchy is abso-
lutely essential for M8−H duality. The physical interpretation is in terms of the selection
of local polarization plane and plane of four-momentum at space-level. The notion of num-
ber theoretic braid can be defined uniquely in terms of M4 and CP2 projections of partonic
2-surfaces.

(c) One could interpret M4 →M2 ×E2 symmetry breaking as a vanishing of the Kac-Moody
central charge k in M2 factor so that un-broken gauge invariance results. This conforms
with the fact that factorizing S-matrices in M2 correspond to finite-dimensional represen-
tations of loop group. Also the fact that only transversal degrees of freedom are quantum
fluctuating degrees of freedom and contribute to configuration space metric correlates with
this.

(d) An interesting question is whether the breaking of Lorentz symmetry is already encountered
in the hadronic scattering in quark model description, which involves the reduction of
Lorentz group to SO(1, 1)×SO(2) corresponding to longitudinal and transverse momenta.
The selection of quantization axis in astrophysical length scales together with gigantic value
of gravitational Planck constant is an especially fascinating possibility whose implications
have been discussed in [K66] .

The breaking of fundamental symmetries would not take place at the level of the entire configura-
tion space if the union of copies of CDs corresponding to different selections of the quantization
axes is allowed and configuration space spinor fields are delocalized in the space labeling the
choices of quantization axes before the decision to make the experiment. In quantum measure-
ment a localization to fixed CD would occur unless one wants to believe to multiverse in the
sense of conscious experience.

The fact that one can assign to each sector of generalized imbedding space a preferred quantiza-
tion axis suggests thatM -matrix identified as entanglement coefficients breaks Lorentz symmetry
and color symmetry. This symmetry breaking would be interpreted as a space-time correlate for
the selection of the Cartan sub-algebra of the isometry group in quantum measurement situa-
tion and would thus represent an inherent property of quantum theory, something much deeper
than a trouble produced by a gauge choice as in string models. Since the interior degrees of
freedom of the space-time sheets correspond to those assignable to the measurement apparatus,
the breaking of Lorentz and color symmetries at space-time level would provide a space-time
correlate for this symmetry breaking.

There are several instances where the spontaneous symmetry breaking makes itself manifest also
at classical level.

(a) The possibility to assign almost topological quantum numbers to M4 and CP2 degrees of
freedom (see the appendix of the book or [K40] ) involves a selection of Cartan sub-algebra
of the isometry group.

(b) A very general solution ansatz for the field equations based on Hamilton-Jacobi coordinates
discussed in [K8] involves a local M2 × E2 decomposition of M4.

(c) The Abelian holonomy for the classical color fields could be interpreted in terms of the
reduction of color symmetries to Cartan algebra.

Also momentum space discretization requires breaking of Lorentz invariance. Here however an
interesting possibility arises. If only the phase factors defined by plane waves are observable,
the explicit breaking of Lorentz and Poincare invariance is avoided. This argument generalizes
also to spin and color quantum numbers since also these correspond to phase factors. Number
theoretic universality implies number theoretical variant of Uncertainty Principle in the sense
that if plane wave factor is algebraic number then both momentum and position cannot be
simultaneously algebraic numbers as required if only algebraic extensions of rationals and p-adic
numbers are allowed. Number theoretic universality allows only roots of unity as possible values
of the plane wave phase, which takes the role of observable instead of position or momentum in



392 Chapter 5. Construction of Quantum Theory: M-matrix

short scales where the effects of unavoidable discretization are largest. The structure constants
of symplectic fusion algebras are products of three phase factors, which are roots of unity and
are assigned to the vertices of symplectic triangulation defining arguments of symplectic fields.
The interpretation as plane wave factors is suggestive. Note that the 3-dimensionality of 3-space
would correlate with the fact that structure constants of symplectic fusion algebra involve three
algebra elements.

Is CPT breaking possible in zero energy ontology?

CPT breaking [B3] requires the breaking of Lorentz invariance. Zero energy ontology could
therefore allow a spontaneous breaking of CP and CPT. This might imply matter antimatter
asymmetry at the level of given CD.

There is some evidence that the mixing matrices for neutrinos and antineutrinos are different
in the experimental situations considered [C5, C9]. This would require CPT breaking in the
standard QFT framework. In TGD p-adic length scale hypothesis allowing neutrinos to reside
in several p-adic mass scales. Hence one could have apparent CPT breaking if the measurement
arrangements for neutrinos and antineutrinos select different p-adic length scales for them [K47]
.

The measurement interaction term of Chern-Simons Dirac action contains a term proportional
to four-momentum but this does not imply breaking of CP and CPT since the term involves a
contraction of four-momentum with the gradient of M4 coordinates and is therefore PT even.
In standard QFT framework Chern-Simons term breaks CP but in TGD framework one must
distinguish between space-time coordinates and imbedding space coordinates. CP breaking
occurs at the imbedding space level and instanton term and Chern-Simons term are odd under
P and T only at the space-time level and thus distinguish between different orientations of
space-time surface.

Breaking of Lorentz invariance and N = 4 super-conformal symmetry

For c = 0 representations of N = 4 SCA critical dimension D = 4 + 4 should guarantee Lorentz
invariance: this is indeed expected since the situation corresponds to Jones inclusion with trivial
group G. One cannot however exclude the breaking of the full Lorentz and color symmetries for
c 6= 0 representations of N = 4 SCA, which at the level of Jones inclusion means a change of
the geometry and topology of the imbedding space and space-time.

The loss of Lorentz invariance would not be a catastrophe since M -matrix is a property of
state rather than that of Universe in TGD framework. As already explained, the interpretation
would be in terms of quantum measurement theory selecting a preferred Cartan subgroup for
observables. This kind of breaking of course happens in the realistic experimental situation and
if state describes also the measurement situation, the breaking is expected. For the scattering
of zero energy states Lorentz invariance is obtained in a statistical sense.

This relates interestingly to the claimed uniqueness of super-string model if one requires unitarity
and Lorentz invariance. Super string theorists might be right: only 10-D super strings might give
rise to a unitary and Lorentz invariant S-matrix in perturbative sense although the perturbation
series does not converge. They might be wrong in their belief that S-matrix is property of the
Universe.

Whether Lorentz invariance is achieved for the stringy S-matrix characterizing entanglement
between positive and negative energy states, depends on the assumptions one is ready to make
about states and about what happens in state function reduction. The light cone quantization
of string models involves M2 × E2 decomposition interpreted now as a gauge choice and the
scattering amplitudes are Lorentz invariant in the critical dimension. Due to the selection of
preferred quantization axes the sectors of the configuration space are not Lorentz invariant. If
zero energy states are identified as Lorentz invariant superposition of Lorentz transforms of a
state in a given sector Lorentz invariance is achieved. Without this assumption it is not clear
whether Lorentz invariance is achieved since zero energy ontology implies that the net Poincare
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quantum numbers assignable to the M -matrix elements vanish but does not imply Lorentz
invariance. Similar conclusions apply in case of color quantum numbers.

A light hearted conjecture about relationship to super-strings and M-theory

N = 4 topological QFT can be considered as a possible candidate for the theory describing
purely topological aspects of quantum TGD quantum criticality with respect to phase transitions
changing Planck constant. This is just a guess to be shown wrong. The experience has taught
that this kind of conjectures usually wrong: the real progress has come from understanding of
TGD itself.

The (4,4) signature characterizing N = 4 SCA topological field theory need not be a problem
since in TGD framework the target space becomes a fictive concept defined by the Cartan
algebra. Both M4 × CP2 decomposition of the imbedding space and space-time dimension are
crucial for the 2 + 2 + 2 + 2 structure of the Cartan algebra, which together with the notions
of the configuration space and generalized coset representation formed from super Kac-Moody
and super-symplectic algebras guarantees N = 4 super-conformal invariance.

Including the 2 gauge degrees of freedom associated with M2 factor of M4 = M2×E2 the critical
dimension becomes D = 10 and and including the radial degree of light-cone boundary the
critical dimension becomes D = 11 of M-theory. Hence the fictive target space associated with
the vertex operator construction corresponds to a flat background of super-string theory and flat
background of M-theory with one light-like direction. From TGD point view the difficulties of
these approaches are due to the un-necessary assumption that the fictive target space defined by
the Cartan algebra corresponds to the physical imbedding space. The flatness of the fictive target
space forces to introduce the notion of spontaneous compactification and dynamical imbedding
space and this in turn leads to the notion of landscape.

5.4 Are both symplectic and conformal field theories needed?

Symplectic (or canonical as I have called them) symmetries of δM4
+×CP2 (light-cone boundary

briefly) act as isometries of the ”world of classical worlds”. One can see these symmetries as
analogs of Kac-Moody type symmetries with symplectic transformations of S2 × CP2, where
S2 is rM = constant sphere of lightcone boundary, made local with respect to the light-like
radial coordinate rM taking the role of complex coordinate. Thus finite-dimensional Lie group
G is replaced with infinite-dimensional group of symplectic transformations. This inspires the
question whether a symplectic analog of conformal field theory at δM4

+×CP2 could be relevant for
the construction of n-point functions in quantum TGD and what general properties these n-point
functions would have. This section appears already in the previous chapter about symmetries of
quantum TGD [K20] but because the results of the section provide the first concrete construction
recipe of M -matrix in zero energy ontology, it is included also in this chapter.

5.4.1 Symplectic QFT at sphere

Actually the notion of symplectic QFT emerged as I tried to understand the properties of
cosmic microwave background which comes from the sphere of last scattering which corresponds
roughly to the age of 5× 105 years [K57] . In this situation vacuum extremals of Kähler action
around almost unique critical Robertson-Walker cosmology imbeddable in M4×S2, where there
is homologically trivial geodesic sphere of CP2. Vacuum extremal property is satisfied for any
space-time surface which is surface in M4 × Y 2, Y 2 a Lagrangian sub-manifold of CP2 with
vanishing induced Kähler form. Symplectic transformations of CP2 and general coordinate
transformations of M4 are dynamical symmetries of the vacuum extremals so that the idea of
symplectic QFT emerges natural. Therefore I shall consider first symplectic QFT at the sphere
S2 of last scattering with temperature fluctution ∆T/T proportional to the fluctuation of the
metric component gaa in Robertson-Walker coordinates.
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(a) In quantum TGD the symplectic transformation of the light-cone boundary would induce
action in the ”world of classical worlds” (light-like 3-surfaces). In the recent situation
it is convenient to regard perturbations of CP2 coordinates as fields at the sphere of last
scattering (call it S2) so that symplectic transformations of CP2 would act in the field space
whereas those of S2 would act in the coordinate space just like conformal transformations.
The deformation of the metric would be a symplectic field in S2. The symplectic dimension
would be induced by the tensor properties of R-W metric in R-W coordinates: every S2

coordinate index would correspond to one unit of symplectic dimension. The symplectic
invariance in CP2 degrees of freedom is guaranteed if the integration measure over the
vacuum deformations is symplectic invariant. This symmetry does not play any role in the
sequel.

(b) For a symplectic scalar field n ≥ 3-point functions with a vanishing anomalous dimension
would be functions of the symplectic invariants defined by the areas of geodesic polygons
defined by subsets of the arguments as points of S2. Since n-polygon can be constructed
from 3-polygons these invariants can be expressed as sums of the areas of 3-polygons ex-
pressible in terms of symplectic form. n-point functions would be constant if arguments
are along geodesic circle since the areas of all sub-polygons would vanish in this case. The
decomposition of n-polygon to 3-polygons brings in mind the decomposition of the n-point
function of conformal field theory to products of 2-point functions by using the fusion al-
gebra of conformal fields (very symbolically ΦkΦl = cmklΦm). This intuition seems to be
correct.

(c) Fusion rules stating the associativity of the products of fields at different points should
generalize. In the recent case it is natural to assume a non-local form of fusion rules given
in the case of symplectic scalars by the equation

Φk(s1)Φl(s2) =

∫
cmklf(A(s1, s2, s3))Φm(s)dµs . (5.4.1)

Here the coefficients cmkl are constants and A(s1, s2, s3) is the area of the geodesic triangle of
S2 defined by the sympletic measure and integration is over S2 with symplectically invariant
measure dµs defined by symplectic form of S2. Fusion rules pose powerful conditions on
n-point functions and one can hope that the coefficients are fixed completely.

(d) The application of fusion rules gives at the last step an expectation value of 1-point function
of the product of the fields involves unit operator term

∫
cklf(A(s1, s2, s))Iddµs so that

one has

〈Φk(s1)Φl(s2)〉 =

∫
cklf(A(s1, s2, s))dµs . (5.4.2)

Hence 2-point function is average of a 3-point function over the third argument. The
absence of non-trivial symplectic invariants for 1-point function means that n = 1- an are
constant, most naturally vanishing, unless some kind of spontaneous symmetry breaking
occurs. Since the function f(A(s1, s2, s3)) is arbitrary, 2-point correlation function can
have both signs. 2-point correlation function is invariant under rotations and reflections.

5.4.2 Symplectic QFT with spontaneous breaking of rotational and
reflection symmetries

CMB data suggest breaking of rotational and reflection symmetries of S2. A possible mecha-
nism of spontaneous symmetry breaking is based on the observation that in TGD framework the
hierarchy of Planck constants assigns to each sector of the generalized imbedding space a pre-
ferred quantization axes. The selection of the quantization axis is coded also to the geometry of
”world of classical worlds”, and to the quantum fluctuations of the metric in particular. Clearly,
symplectic QFT with spontaneous symmetry breaking would provide the sought-for really deep
reason for the quantization of Planck constant in the proposed manner.
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(a) The coding of angular momentum quantization axis to the generalized imbedding space
geometry allows to select South and North poles as preferred points of S2. To the three
arguments s1, s2, s3 of the 3-point function one can assign two squares with the added point
being either North or South pole. The difference

∆A(s1, s2, s3) ≡ A(s1, s2, s3, N)−A(s1, s2, s3, S) (5.4.3)

of the corresponding areas defines a simple symplectic invariant breaking the reflection
symmetry with respect to the equatorial plane. Note that ∆A vanishes if arguments lie
along a geodesic line or if any two arguments co-incide. Quite generally, symplectic QFT
differs from conformal QFT in that correlation functions do not possess singularities.

(b) The reduction to 2-point correlation function gives a consistency conditions on the 3-point
functions

〈(Φk(s1)Φl(s2))Φm(s3)〉 = crkl

∫
f(∆A(s1, s2, s))〈Φr(s)Φm(s3)〉dµs

= (5.4.4)

crklcrm

∫
f(∆A(s1, s2, s))f(∆A(s, s3, t))dµsdµt . (5.4.5)

Associativity requires that this expression equals to 〈Φk(s1)(Φl(s2)Φm(s3))〉 and this gives
additional conditions. Associativity conditions apply to f(∆A) and could fix it highly
uniquely.

(c) 2-point correlation function would be given by

〈Φk(s1)Φl(s2)〉 = ckl

∫
f(∆A(s1, s2, s))dµs (5.4.6)

(d) There is a clear difference between n > 3 and n = 3 cases: for n > 3 also non-convex
polygons are possible: this means that the interior angle associated with some vertices of
the polygon is larger than π. n = 4 theory is certainly well-defined, but one can argue
that so are also n > 4 theories and skeptic would argue that this leads to an inflation of
theories. TGD however allows only finite number of preferred points and fusion rules could
eliminate the hierarchy of theories.

(e) To sum up, the general predictions are following. Quite generally, for f(0) = 0 n-point cor-
relation functions vanish if any two arguments co-incide which conforms with the spectrum
of temperature fluctuations. It also implies that symplectic QFT is free of the usual singu-
larities. For symmetry breaking scenario 3-point functions and thus also 2-point functions
vanish also if s1 and s2 are at equator. All these are testable predictions using ensemble of
CMB spectra.

5.4.3 Generalization to quantum TGD

Since number theoretic braids are the basic objects of quantum TGD, one can hope that the
n-point functions assignable to them could code the properties of ground states and that one
could separate from n-point functions the parts which correspond to the symplectic degrees
of freedom acting as symmetries of vacuum extremals and isometries of the ’world of classical
worlds’.

(a) This approach indeed seems to generalize also to quantum TGD proper and the n-point
functions associated with partonic 2-surfaces can be decomposed in such a manner that
one obtains coefficients which are symplectic invariants associated with both S2 and CP2

Kähler form.
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(b) Fusion rules imply that the gauge fluxes of respective Kähler forms over geodesic triangles
associated with the S2 and CP2 projections of the arguments of 3-point function serve basic
building blocks of the correlation functions. The North and South poles of S2 and three
poles of CP2 can be used to construct symmetry breaking n-point functions as symplectic
invariants. Non-trivial 1-point functions vanish also now.

(c) The important implication is that n-point functions vanish when some of the arguments
co-incide. This might play a crucial role in taming of the singularities: the basic general
prediction of TGD is that standard infinities of local field theories should be absent and
this mechanism might realize this expectation.

Next some more technical but elementary first guesses about what might be involved.

(a) It is natural to introduce the moduli space for n-tuples of points of the symplectic manifold
as the space of symplectic equivalence classes of n-tuples. In the case of sphere S2 convex n-
polygon allows n+1 3-sub-polygons and the areas of these provide symplectically invariant
coordinates for the moduli space of symplectic equivalence classes of n-polygons (2n-D space
of polygons is reduced to n + 1-D space). For non-convex polygons the number of 3-sub-
polygons is reduced so that they seem to correspond to lower-dimensional sub-space. In the
case of CP2 n-polygon allows besides the areas of 3-polygons also 4-volumes of 5-polygons as
fundamental symplectic invariants. The number of independent 5-polygons for n-polygon
can be obtained by using induction: once the numbers N(k, n) of independent k ≤ n-
simplices are known for n-simplex, the numbers of k ≤ n+1-simplices for n+1-polygon are
obtained by adding one vertex so that by little visual gymnastics the numbers N(k, n+ 1)
are given by N(k, n + 1) = N(k − 1, n) + N(k, n). In the case of CP2 the allowance of 3
analogs {N,S, T} of North and South poles of S2 means that besides the areas of polygons
(s1, s2, s3), (s1, s2, s3, X), (s1, s2, s3, X, Y ), and (s1, s2, s3, N, S, T ) also the 4-volumes of
5-polygons (s1, s2, s3, X, Y ), and of 6-polygon (s1, s2, s3, N, S, T ), X,Y ∈ {N,S, T} can
appear as additional arguments in the definition of 3-point function.

(b) What one really means with symplectic tensor is not clear since the naive first guess for
the n-point function of tensor fields is not manifestly general coordinate invariant. For
instance, in the model of CMB, the components of the metric deformation involving S2

indices would be symplectic tensors. Tensorial n-point functions could be reduced to those
for scalars obtained as inner products of tensors with Killing vector fields of SO(3) at S2.
Again a preferred choice of quantization axis would be introduced and special points would
correspond to the singularities of the Killing vector fields.

The decomposition of Hamiltonians of the ”world of classical worlds” expressible in terms of
Hamiltonians of S2×CP2 to irreps of SO(3) and SU(3) could define the notion of symplectic
tensor as the analog of spherical harmonic at the level of configuration space. Spin and gluon
color would have natural interpretation as symplectic spin and color. The infinitesimal
action of various Hamiltonians on n-point functions defined by Hamiltonians and their
super counterparts is well-defined and group theoretical arguments allow to deduce general
form of n-point functions in terms of symplectic invariants.

(c) The need to unify p-adic and real physics by requiring them to be completions of rational
physics, and the notion of finite measurement resolution suggest that discretization of also
fusion algebra is necessary. The set of points appearing as arguments of n-point functions
could be finite in a given resolution so that the p-adically troublesome integrals in the for-
mulas for the fusion rules would be replaced with sums. Perhaps rational/algebraic variants
of S2 × CP2 = SO(3)/SO(2)× SU(3)/U(2) obtained by replacing these groups with their
rational/algebraic variants are involved. Tedrahedra, octahedra, and dodecahedra suggest
themselves as simplest candidates for these discretized spaces. Also the symplectic moduli
space would be discretized to contain only n-tuples for which the symplectic invariants are
numbers in the allowed algebraic extension of rationals. This would provide an abstract
looking but actually very concrete operational approach to the discretization involving only
areas of n-tuples as internal coordinates of symplectic equivalence classes of n-tuples. The
best that one could achieve would be a formulation involving nothing below measurement
resolution.
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(d) This picture based on elementary geometry might make sense also in the case of conformal
symmetries. The angles associated with the vertices of the S2 projection of n-polygon
could define conformal invariants appearing in n-point functions and the algebraization
of the corresponding phases would be an operational manner to introduce the space-time
correlates for the roots of unity introduced at quantum level. In CP2 degrees of freedom the
projections of n-tuples to the homologically trivial geodesic sphere S2 associated with the
particular sector of CH would allow to define similar conformal invariants. This framework
gives dimensionless areas (unit sphere is considered). p-Adic length scale hypothesis and
hierarchy of Planck constants would bring in the fundamental units of length and time in
terms of CP2 length.

The recent view about M -matrix described is something almost unique determined by Connes
tensor product providing a formal realization for the statement that complex rays of state space
are replaced with N rays where N defines the hyper-finite sub-factor of type II1 defining the
measurement resolution. M -matrix defines time-like entanglement coefficients between positive
and negative energy parts of the zero energy state and need not be unitary. It is identified as
square root of density matrix with real expressible as product of of real and positive square
root and unitary S-matrix. This S-matrix is what is measured in laboratory. There is also a
general vision about how vertices are realized: they correspond to light-like partonic 3-surfaces
obtained by gluing incoming and outgoing partonic 3-surfaces along their ends together just like
lines of Feynman diagrams. Note that in string models string world sheets are non-singular as
2-manifolds whereas 1-dimensional vertices are singular as 1-manifolds. These ingredients we
should be able to fuse together. So we try once again!

(a) Iteration starting from vertices and propagators is the basic approach in the construction
of n-point function in standard QFT. This approach does not work in quantum TGD.
Symplectic and conformal field theories suggest that recursion replaces iteration in the
construction. One starts from an n-point function and reduces it step by step to a vacuum
expectation value of a 2-point function using fusion rules. Associativity becomes the fun-
damental dynamical principle in this process. Associativity in the sense of classical number
fields has already shown its power and led to a hyper-octoninic formulation of quantum
TGD promising a unification of various visions about quantum TGD [K74] .

(b) Let us start from the representation of a zero energy state in terms of a causal diamond
defined by future and past directed light-cones. Zero energy state corresponds to a quantum
superposition of light-like partonic 3-surfaces each of them representing possible particle
reaction. These 3-surfaces are very much like generalized Feynman diagrams with lines
replaced by light-like 3-surfaces coming from the upper and lower light-cone boundaries and
glued together along their ends at smooth 2-dimensional surfaces defining the generalized
vertices.

(c) It must be emphasized that the generalization of ordinary Feynman diagrammatics arises
and conformal and symplectic QFTs appear only in the calculation of single generalized
Feynman diagram. Therefore one could still worry about loop corrections. The fact that no
integration over loop momenta is involved and there is always finite cutoff due to discretiza-
tion together with recursive instead of iterative approach gives however good hopes that
everything works. Note that this picture is in conflict with one of the earlier approaches
based on positive energy ontology in which the hope was that only single generalized Feyn-
man diagram could define the U -matrix thought to correspond to physical S-matrix at that
time.

(d) One can actually simplify things by identifying generalized Feynman diagrams as maxima
of Kähler function with functional integration carried over perturbations around it. Thus
one would have conformal field theory in both fermionic and configuration space degrees
of freedom. The light-like time coordinate along light-like 3-surface is analogous to the
complex coordinate of conformal field theories restricted to some curve. If it is possible
continue the light-like time coordinate to a hyper-complex coordinate in the interior of 4-D
space-time sheet, the correspondence with conformal field theories becomes rather concrete.
Same applies to the light-like radial coordinates associated with the light-cone boundaries.
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At light-cone boundaries one can apply fusion rules of a symplectic QFT to the remaining
coordinates. Conformal fusion rules are applied only to point pairs which are at differ-
ent ends of the partonic surface and there are no conformal singularities since arguments
of n-point functions do not co-incide. By applying the conformal and symplectic fusion
rules one can eventually reduce the n-point function defined by the various fermionic and
bosonic operators appearing at the ends of the generalized Feynman diagram to something
calculable.

(e) Finite measurement resolution defining the Connes tensor product is realized by the dis-
cretization applied to the choice of the arguments of n-point functions so that discretion is
not only a space-time correlate of finite resolution but actually defines it. No explicit re-
alization of the measurement resolution algebra N seems to be needed. Everything should
boil down to the fusion rules and integration measure over different 3-surfaces defined by
exponent of Kähler function and by imaginary exponent of Chern-Simons action. The
continuation of the configuration space Clifford algebra for 3-surfaces with cm degrees of
freedom fixed to a hyper-octonionic variant of gamma matrix field of super-string models
defined in M8 (hyper-octonionic space) and M8 ↔ M4 × CP2 duality leads to a unique
choice of the points, which can contribute to n-point functions as intersection of M4 sub-
space of M8 with the counterparts of partonic 2-surfaces at the boundaries of light-cones of
M8. Therefore there are hopes that the resulting theory is highly unique. Symplectic fusion
algebra reduces to a finite algebra for each space-time surface if this picture is correct.

(f) Consider next some of the details of how the light-like 3-surface codes for the fusion rules
associated with it. The intermediate partonic 2- surfaces must be involved since otherwise
the construction would carry no information about the properties of the light-like 3-surface,
and one would not obtain perturbation series in terms of the relevant coupling constants.
The natural assumption is that partonic 2-surfaces belong to future/past directed light-
cone boundary depending on whether they are on lower/upper half of the causal diamond.
Hyper-octonionic conformal field approach fixes the nint points at intermediate partonic
two-sphere for a given light-like 3-surface representing generalized Feynman diagram, and
this means that the contribution is just N -point function with N = nout + nint + nin
calculable by the basic fusion rules. Coupling constant strengths would emerge through the
fusion coefficients, and at least in the case of gauge interactions they must be proportional
to Kähler coupling strength since n-point functions are obtained by averaging over small
deformations with vacuum functional given by the exponent of Kähler function. The first
guess is that one can identify the spheres S2 ⊂ δM4

± associated with initial, final and, and
intermediate states so that symplectic n-points functions could be calculated using single
sphere.

These findings raise the hope that quantum TGD is indeed a solvable theory. Even if one is
not willing to swallow any bit of TGD, the classification of the symplectic QFTs remains a
fascinating mathematical challenge in itself. A further challenge is the fusion of conformal QFT
and symplectic QFT in the construction of n-point functions. One might hope that conformal
and symplectic fusion rules can be treated separately. This separation indeed happens since
conformal degrees of freedom correspond to quantum fluctuations contributing to the configura-
tion space metric and affecting the induced metric whereas symplectic invariants correspond to
non-quantum fluctuating zero modes defining the part of quantum state not affected by quan-
tum fluctuations parameterized by the symplectic group of δM4

± × CP2. Also the dream about
symplectic fusion rules have been realized. An explicit construction of symplectic fusion algebras
is represented in [K13] .

5.5 Weak form of electric-magnetic duality and fermionic
propagator

The ideas about what generalized Feynman diagrams could be have developed rather slowly and
basically through trial and mostly error. Bosonic emergence implies that fermionic propagator
is the fundamental object and its identification has become one of the basic challenges of TGD.
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For long time the belief was that a straightforward generalization of stringy propagators could
make sense but it turned out that TGD requires something more orginal. The weak form of
electric-magnetic duality meant a decisive step of progress also in the understanding of fermionic
propagator. In the following the implications of weak form of electric-magnetic duality for TGD
are explained by starting from classical theory and ending up with fermionic propagator.

5.5.1 Could Quantum TGD reduce to almost topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD re-
duces to almost topological quantum theory in the sense that the counterpart of Chern-Simons
action assigned with the wormhole throats somehow dictates the dynamics. This proposal can
be formulated also for the modified Dirac action action. I gave up this proposal but the follow-
ing argument shows that Kähler action with weak form of electric-magnetic duality effectively
reduces to Chern-Simons action plus Coulomb term.

(a) Kähler action density can be written as a 4-dimensional integral of the Coulomb term jαKAα
plus and integral of the boundary term JnβAβ

√
g4 over the wormhole throats and of the

quantity J0βAβ
√
g4 over the ends of the 3-surface.

(b) If the self-duality conditions generalize to Jnβ = 4παKε
nβγδJγδ at throats and to J0β =

4παKε
0βγδJγδ at the ends, the Kähler function reduces to the counterpart of Chern-Simons

action evaluated at the ends and throats. It would have same value for each branch and the
replacement ~0 → r~0 would effectively describe this. Boundary conditions would however
give 1/r factor so that ~ would disappear from the Kähler function! The original attempt to
realize quantum TGD as an almost topological QFT was in terms of Chern-Simons action
but was given up. It is somewhat surprising that Kähler action gives Chern-Simons action
in the vacuum sector defined as sector for which Kähler current is light-like or vanishes.

Holography encourages to ask whether also the Coulomb interaction terms could vanish. This
kind of dimensional reduction would mean an enormous simplification since TGD would reduce
to an almost topological QFT. The attribute ”almost” would come from the fact that one
has non-vanishing classical Noether charges defined by Kähler action and non-trivial quantum
dynamics in M4 degrees of freedom. One could also assign to space-time surfaces conserved four-
momenta which is not possible in topological QFTs. For this reason the conditions guaranteeing
the vanishing of Coulomb interaction term deserve a detailed analysis.

(a) For the known extremals jαK either vanishes or is light-like (”massless extremals” for which
weak self-duality condition does not make sense [K8] ) so that the Coulombic term vanishes
identically in the gauge used. The addition of a gradient to A induces terms located at the
ends and wormhole throats of the space-time surface but this term must be cancelled by
the other boundary terms by gauge invariance of Kähler action. This implies that the M4

part of WCW metric vanishes in this case. Therefore massless extremals as such are not
physically realistic: wormhole throats representing particles are needed.

(b) The original naive conclusion was that since Chern-Simons action depends on CP2 coor-
dinates only, its variation with respect to Minkowski coordinates must vanish so that the
WCW metric would be trivial in M4 degrees of freedom. This conclusion is in conflict with
quantum classical correspondence and was indeed too hasty. The point is that the allowed
variations of Kähler function must respect the weak electro-magnetic duality which relates
Kähler electric field depending on the induced 4-metric at 3-surface to the Kähler magnetic
field. Therefore the dependence on M4 coordinates creeps via a Lagrange multiplier term

∫
Λα(Jnα −KεnαβγJβγ)

√
g4d

3x . (5.5.1)

The (1,1) part of second variation contributing to M4 metric comes from this term.
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(c) This erratic conclusion about the vanishing of M4 part WCW metric raised the question
about how to achieve a non-trivial metric in M4 degrees of freedom. The proposal was
a modification of the weak form of electric-magnetic duality. Besides CP2 Kähler form
there would be the Kähler form assignable to the light-cone boundary reducing to that
for rM = constant sphere - call it J1. The generalization of the weak form of self-duality
would be Jnβ = εnβγδK(Jγδ + εJ1

γδ). This form implies that the boundary term gives a

non-trivial contribution to the M4 part of the WCW metric even without the constraint
from electric-magnetic duality. Kähler charge is not affected unless the partonic 2-surface
contains the tip of CD in its interior. In this case the value of Kähler charge is shifted by a
topological contribution. Whether this term can survive depends on whether the resulting
vacuum extremals are consistent with the basic facts about classical gravitation.

(d) The Coulombic interaction term is not invariant under gauge transformations. The good
news is that this might allow to find a gauge in which the Coulomb term vanishes. The
vanishing condition fixing the gauge transformation φ is

jαK∂αφ = −jαAα . (5.5.2)

This differential equation can be reduced to an ordinary differential equation along the flow
lines jK by using dxα/dt = jαK . Global solution is obtained only if one can combine the flow
parameter t with three other coordinates- say those at the either end of CD to form space-
time coordinates. The condition is that the parameter defining the coordinate differential
is proportional to the covariant form of Kähler current: dt = φjK . This condition in turn
implies d2t = d(φjK) = d(φjK) = dφ ∧ jK + φdjK = 0 implying jK ∧ djK = 0 or more
concretely,

εαβγδjKβ ∂γj
K
δ = 0 . (5.5.3)

jK is a four-dimensional counterpart of Beltrami field [B52] and could be called generalized
Beltrami field.

The integrability conditions follow also from the construction of the extremals of Kähler
action [K8] . The conjecture was that for the extremals the 4-dimensional Lorentz force
vanishes (no dissipation): this requires jK ∧ J = 0. One manner to guarantee this is
the topologization of the Kähler current meaning that it is proportional to the instanton
current: jK = φjI , where jI = ∗(J ∧ A) is the instanton current, which is not conserved
for 4-D CP2 projection. The conservation of jK implies the condition jαI ∂αφ = ∂αj

αφ
and from this φ can be integrated if the integrability condition jI ∧ djI = 0 holds true
implying the same condition for jK . By introducing at least 3 or CP2 coordinates as space-
time coordinates, one finds that the contravariant form of jI is purely topological so that
the integrability condition fixes the dependence on M4 coordinates and this selection is
coded into the scalar function φ. These functions define families of conserved currents jαKφ
and jαI φ and could be also interpreted as conserved currents associated with the critical
deformations of the space-time surface.

(e) There are gauge transformations respecting the vanishing of the Coulomb term. The van-
ishing condition for the Coulomb term is gauge invariant only under the gauge transforma-
tions A → A + ∇φ for which the scalar function the integral

∫
jαK∂αφ reduces to a total

divergence a giving an integral over various 3-surfaces at the ends of CD and at throats
vanishes. This is satisfied if the allowed gauge transformations define conserved currents

Dα(jαφ) = 0 . (5.5.4)

As a consequence Coulomb term reduces to a difference of the conserved charges Qeφ =∫
j0φ
√
g4d

3x at the ends of the CD vanishing identically. The change of the imons type
term is trivial if the total weighted Kähler magnetic flux Qmφ =

∑∫
JφdA over wormhole

throats is conserved. The existence of an infinite number of conserved weighted magnetic



5.5. Weak form of electric-magnetic duality and fermionic propagator 401

fluxes is in accordance with the electric-magnetic duality. How these fluxes relate to the
flux Hamiltonians central for WCW geometry is not quite clear.

(f) The gauge transformations respecting the reduction to almost topological QFT should have
some special physical meaning. The measurement interaction term in the modified Dirac
interaction corresponds to a critical deformation of the space-time sheet and is realized as
an addition of a gauge part to the Kähler gauge potential of CP2. It would be natural to
identify this gauge transformation giving rise to a conserved charge so that the conserved
charges would provide a representation for the charges associated with the infinitesimal
critical deformations not affecting Kähler action. The gauge transformed Kähler potential
couples to the modified Dirac equation and its effect could be visible in the value of Kähler
function and therefore also in the properties of the preferred extremal. The effect on
WCW metric would however vanish since K would transform only by an addition of a
real part of a holomorphic function. Kähler function is identified as a Dirac determinant
for Chern-Simons Dirac action and the spectrum of this operator should not be invariant
under these gauge transformations if this picture is correct. This is is achieved if the
gauge transformation is carried only in the Dirac action corresponding to the Chern-Simons
term: this assumption is motivated by the breaking of time reversal invariance induced by
quantum measurements. The modification of Kähler action can be guessed to correspond
just to the Chern-Simons contribution from the instanton term.

(g) A reasonable looking guess for the explicit realization of the quantum classical correspon-
dence between quantum numbers and space-time geometry is that the deformation of the
preferred extremal due to the addition of the measurement interaction term is induced by
a U(1) gauge transformation induced by a transformation of δCD × CP2 generating the
gauge transformation represented by φ. This interpretation makes sense if the fluxes de-
fined by Qmφ and corresponding Hamiltonians affect only zero modes rather than quantum
fluctuating degrees of freedom.

To sum up, one could understand the basic properties of WCW metric in this framework.
Effective 2-dimensionality would result from the existence of an infinite number of conserved
charges in two different time directions (genuine conservation laws plus gauge fixing). The
infinite-dimensional symmetric space for given values of zero modes corresponds to the Cartesian
product of the WCWs associated with the partonic 2-surfaces at both ends of CD and the
generalized Chern-Simons term decomposes into a sum of terms from the ends giving single
particle Kähler functions and to the terms from light-like wormhole throats giving interaction
term between positive and negative energy parts of the state. Hence Kähler function could be
calculated without any knowledge about the interior of the space-time sheets and TGD would
reduce to almost topological QFT as speculated earlier. Needless to say this would have immense
boost to the program of constructing WCW Kähler geometry.

5.5.2 A general solution ansatz based on almost topological QFT prop-
erty

The basic vision behind the ansatz is the reduction of quantum TGD to almost topological
field theory. This requires that the flow parameters associated with the flow lines of isometry
currents and Kähler current extend to global coordinates. This leads to integrability conditions
implying generalized Beltrami flow and Kähler action for the preferred extremals reduces to
Chern-Simons action when weak electro-weak duality is applied as boundary conditions. The
strongest form of the hydrodynamical interpretation requires that all conserved currents are
parallel to Kähler current. In the more general case one would have several hydrodynamic flows.
Also the braidings (several of them for the most general ansatz) assigned with the light-like 3-
surfaces are naturally defined by the flow lines of conserved currents. The independent behavior
of particles at different flow lines can be seen as a realization of the complete integrability of the
theory. In free quantum field theories on mass shell Fourier components are in a similar role but
the geometric interpretation in terms of flow is of course lacking. This picture should generalize
also to the solution of the modified Dirac equation.
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Basic field equations

Consider first the equations at general level.

(a) The breaking of the Poincare symmetry due to the presence of monopole field occurs and
leads to the isometry group T×SO(3)×SU(3) corresponding to time translations, rotations,
and color group. The Cartan algebra is four-dimensional and field equations reduce to the
conservation laws of energy E, angular momentum J , color isospin I3, and color hypercharge
Y .

(b) Quite generally, one can write the field equations as conservation laws for I, J, I3, and Y .

Dα

[
Dβ(JαβHA)− jαKHA + TαβjlAhkl∂βh

l
]

= 0 . (5.5.5)

The first term gives a contraction of the symmetric Ricci tensor with antisymmetric Kähler
form and vanishes so that one has

Dα

[
jαKH

A − TαβjkAhkl∂βhl
]

= 0 . (5.5.6)

For energy one has HA = 1 and energy current associated with the flow lines is proportional
to the Kähler current. Its divergence vanishes identically.

(c) One can express the divergence of the term involving energy momentum tensor as as sum of
terms involving jαKJαβ and contraction of second fundamental form with energy momentum
tensor so that one obtains

jαKDαH
A = jαKJ

β
α jAβ + TαβHk

αβj
A
k . (5.5.7)

Hydrodynamical solution ansatz

The characteristic feature of the solution ansatz would be the reduction of the dynamics to
hydrodynamics analogous to that for a continuous distribution of particles initially at the end
of X3 of the light-like 3-surface moving along flow lines defined by currents jA satisfying the
integrability condition jA ∧ djA = 0. Field theory would reduce effectively to particle mechanics
along flow lines with conserved charges defined by various isometry currents. The strongest
condition is that all isometry currents jA and also Kähler current jK are proportional to the
same current j. The more general option corresponds to multi-hydrodynamics.

Conserved currents are analogous to hydrodynamical currents in the sense that the flow pa-
rameter along flow lines extends to a global space-time coordinate. The conserved current is
proportional to the gradient ∇Φ of the coordinate varying along the flow lines: J = Ψ∇Φ and
by a proper choice of Ψ one can allow to have conservation. The initial values of Ψ and Φ can
be selected freely along the flow lines beginning from either the end of the space-time surface or
from wormhole throats.

If one requires hydrodynamics also for Chern-Simons action (effective 2-dimensionality is re-
quired for preferred extremals), the initial values of scalar functions can be chosen freely only at
the partonic 2-surfaces. The freedom to chose the initial values of the charges conserved along
flow lines at the partonic 2-surfaces means the existence of an infinite number of conserved
charges so that the theory would be integrable and even in two different coordinate directions.
The basic difference as compared to ordinary conservation laws is that the conserved currents
are parallel and their flow parameter extends to a global coordinate.

(a) The most general assumption is that the conserved isometry currents

JαA = jαKH
A − TαβjkAhkl∂βhl (5.5.8)

and Kähler current are integrable in the sense that JA∧JA = 0 and jK ∧ jK = 0 hold true.
One could imagine the possibility that the currents are not parallel.
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(b) The integrability condition dJA ∧ JA = 0 is satisfied if one one has

JA = ΨAdΦA . (5.5.9)

The conservation of JA gives

d ∗ (ΨAdΦA) = 0 . (5.5.10)

This would mean separate hydrodynamics for each of the currents involved. In principle
there is not need to assume any further conditions and one can imagine infinite basis
of scalar function pairs (ΨA,ΦA) since criticality implies infinite number deformations
implying conserved Noether currents.

(c) The conservation condition reduces to d’Alembert equation in the induced metric if one
assumes that ∇ΨA is orthogonal with every dΦA.

d ∗ dΦA = 0 , dΨA · dΦA = 0 . (5.5.11)

Taking x = ΦA as a coordinate the orthogonality condition states gxj∂jΨA = 0 and in the
general case one cannot solve the condition by simply assuming that ΨA depends on the
coordinates transversal to ΦA only. These conditions bring in mind p · p = 0 and p · e con-
dition for massless modes of Maxwell field having fixed momentum and polarization. dΦA
would correspond to p and dΨA to polarization. The condition that each isometry current
corresponds its own pair (ΨA,ΦA) would mean that each isometry current corresponds to
independent light-like momentum and polarization. Ordinary free quantum field theory
would support this view whereas hydrodynamics and QFT limit of TGD would support
single flow.

These are the most general hydrodynamical conditions that one can assume. One can consider
also more restricted scenarios.

(a) The strongest ansatz is inspired by the hydrodynamical picture in which all conserved
isometry charges flow along same flow lines so that one would have

JA = ΨAdΦ . (5.5.12)

In this case same Φ would satisfy simultaneously the d’Alembert type equations.

d ∗ dΦ = 0 , dΨA · dΦ = 0. (5.5.13)

This would mean that the massless modes associated with isometry currents move in parallel
manner but can have different polarizations. The spinor modes associated with light-light
like 3-surfaces carry parallel four-momenta, which suggest that this option is correct. This
allows a very general family of solutions and one can have a complete 3-dimensional basis
of functions ΨA with gradient orthogonal to dΦ.

(b) Isometry invariance under T × SO(3) × SU(3) allows to consider the possibility that one
has

JA = kAΨAdΦG(A) , d ∗ (dΦG(A)) = 0 , dΨA · dΦG(A)) = 0 . (5.5.14)

where G(A) is T for energy current, SO(3) for angular momentum currents and SU(3) for
color currents. Energy would thus flow along its own flux lines, angular momentum along
its own flow lines, and color quantum numbers along their own flow lines. For instance,
color currents would differ from each other only by a numerical constant. The replacement
of ΨA with ΨG(A) would be too strong a condition since Killing vector fields are not related
by a constant factor.
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To sum up, the most general option is that each conserved current JA defines its own integrable
flow lines defined by the scalar function pair (ΨA,ΦA). A complete basis of scalar functions
satisfying the d’Alembert type equation guaranteeing current conservation could be imagined
with restrictions coming from the effective 2-dimensionality reducing the scalar function basis
effectively to the partonic 2-surface. The diametrically opposite option corresponds to the basis
obtained by assuming that only single Φ is involved.

The proposed solution ansatz can be compared to the earlier ansatz [K36] stating that Kähler
current is topologized in the sense that for D(CP2) = 3 it is proportional to the identically
conserved instanton current (so that 4-D Lorentz force vanishes) and vanishes for D(CP2) = 4
(Maxwell phase). This hypothesis requires that instanton current is Beltrami field for D(CP2) =
3. In the recent case the assumption that also instanton current satisfies the Beltrami hypothesis
in strong sense (single function Φ) generalizes the topologization hypothesis for D(CP2) = 3. As
a matter fact, the topologization hypothesis applies to isometry currents also for D(CP2) = 4
although instanton current is not conserved anymore.

Can one require the extremal property in the case of Chern-Simons action?

Effective 2-dimensionality is achieved if the ends and wormhole throats are extremals of Chern-
Simons action. The strongest condition would be that space-time surfaces allow orthogonal
slicings by 3-surfaces which are extremals of Chern-Simons action.

Also in this case one can require that the flow parameter associated with the flow lines of the
isometry currents extends to a global coordinate. Kähler magnetic field B = ∗J defines a
conserved current so that all conserved currents would flow along the field lines of B and one
would have 3-D Beltrami flow. Note that in magnetohydrodynamics the standard assumption
is that currents flow along the field lines of the magnetic field.

For wormhole throats light-likeness causes some complications since the induced metric is de-
generate and the contravariant metric must be restricted to the complement of the light-like
direction. This means that d’Alembert equation reduces to 2-dimensional Laplace equation. For
space-like 3-surfaces one obtains the counterpart of Laplace equation with partonic 2-surfaces
serving as sources. The interpretation in terms of analogs of Coulomb potentials created by 2-D
charge distributions would be natural.

5.5.3 Hydrodynamic picture in fermionic sector

Super-symmetry inspires the conjecture that the hydrodynamical picture applies also to the
solutions of the modified Dirac equation.

4-dimensional modified Dirac equation and hydrodynamical picture

Consider first the solutions of of the induced spinor field in the interior of space-time surface.

(a) The local inner products of the modes of the induced spinor fields define conserved currents

DαJ
α
mn = 0 ,

Jαmn = umΓ̂αun ,

Γ̂α =
∂LK

∂(∂αhk)
Γk . (5.5.15)

The conjecture is that the flow parameters of also these currents extend to a global coor-
dinate so that one would have in the completely general case the condition

Jαmn = ΦmndΨmn ,

d ∗ (dΦmn) = 0 , ∇Ψmn · Φmn = 0 . (5.5.16)



5.5. Weak form of electric-magnetic duality and fermionic propagator 405

The condition Φmn = Φ would mean that the massless modes propagate in parallel manner
and along the flow lines of Kähler current. The conservation condition along the flow line
implies tht the current component Jmn is constant along it. Everything would reduce to
initial values at the ends of the space-time sheet boundaries of CD and 3-D modified Dirac
equation would reduce everything to initial values at partonic 2-surfaces.

(b) One might hope that the conservation of these super currents for all modes is equivalent
with the modified Dirac equation. The modes un appearing in Ψ in quantized theory would
be kind of ”square roots” of the basis Φmn and the challenge would be to deduce the modes
from the conservation laws.

(c) The quantization of the induced spinor field in 4-D sense would be fixed by those at 3-D
space-like ends by the fact that the oscillator operators are carried along the flow lines as
such so that the anti-commutator of the induced spinor field at the opposite ends of the
flow lines at the light-like boundaries of CD is in principle fixed by the anti-commutations
at the either end. The anti-commutations at 3-D surfaces cannot be fixed freely since one
has 3-D Chern-Simons flow reducing the anti-commutations to those at partonic 2-surfaces.

The following argument suggests that induced spinor fields are in a suitable gauge simply con-
stant along the flow lines of the Kähler current just as massless spinor modes are constant along
the geodesic in the direction of momentum.

(a) The modified gamma matrices are of form Tαk Γk, Tαk = ∂LK/∂(∂αh
k). The H-vectors Tαk

can be expressed as linear combinations of a subset of Killing vector fields jkA spanning
the tangent space of H. For CP2 the natural choice are the 4 Lie-algebra generators in
the complement of U(2) sub-algebra. For CD one can used generator time translation and
three generators of rotation group SO(3). The completeness of the basis defined by the
subset of Killing vector fields gives completeness relation hkl = jAkjAk. This implies Tαk =
TαkjAk j

k
A = TαAjkA. One can defined gamma matrices ΓA as Γkj

k
A to get Tαk Γk = TαAΓA.

(b) This together with the condition that all isometry currents are proportional to the Kähler
current (or if this vanishes to same conserved current- say energy current) satisfying Bel-
trami flow property implies that one can reduce the modified Dirac equation to an ordinary
differential equation along flow lines. The quantities T tA are constant along the flow lines
and one obtains

T tAjADtΨ = 0 . (5.5.17)

By choosing the gauge suitably the spinors are just constant along flow lines so that the
spinor basis reduces by effective 2-dimensionality to a complete spinor basis at partonic
2-surfaces.

Generalized eigen modes for the modified Chern-Simons Dirac equation and hydro-
dynamical picture

Hydrodynamical picture helps to understand also the construction of generalized eigen modes
of 3-D Chern-Simons Dirac equation.

1. The general form of generalized eigenvalue equation for Chern-Simons Dirac action

Consider first the the general form and interpretation of the generalized eigenvalue equation
assigned with the modified Dirac equation for Chern-Simons action [K15] . This is of course
only an approximation since an additional contribution to the modified gamma matrices from
the Lagrangian multiplier term guaranteing the weak form of electric-magnetic duality must be
included.

(a) The modified Dirac equation for Ψ is consistent with that for its conjugate if the coefficient
of the instanton term is real and one uses the Dirac action Ψ(D→−D←)Ψ giving modified
Dirac equation as
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DC−SΨ +
1

2
(DαΓ̂αC−S)Ψ = 0 . (5.5.18)

As noticed, the divergence DαΓ̂αC−S does not contain second derivatives in the case of
Chern-Simons action. In the case of Kähler action they occur unless field equations equiva-
lent with the vanishing of the divergence term are satisfied. The extremals of Chern-Simons
action provide a natural manner to define effective 2-dimensionality.

Also the fermionic current is conserved in this case, which conforms with the idea that
fermions flow along the light-like 3-surfaces. If one uses the action ΨD→Ψ, Ψ does not
satisfy the Dirac equation following from the variational principle and fermion current is
not conserved.

(b) The generalized eigen modes of DC−S should be such that one obtains the counterpart of
Dirac propagator which is purely algebraic and does not therefore depend on the coordinates
of the throat. This is satisfied if the generalized eigenvalues are expressible in terms of
covariantly constant combinations of gamma matrices and here only M4 gamma matrices
are possible. Therefore the eigenvalue equation would read as

DΨ = λkγkΨ , D = DC−S +
1

2
DαΓ̂αC−S , DC−S = Γ̂αC−SDα .

(5.5.19)

Here the covariant derivatives Dα contain the measurement interaction term as an apparent
gauge term. For extremals one has

D = DC−S . (5.5.20)

Covariant constancy allows to take the square of this equation and one has

(D2 +
[
D,λkγk

]
)Ψ = λkλkΨ . (5.5.21)

The commutator term is analogous to magnetic moment interaction.

(c) The generalized eigenvalues correspond to λ =
√
λkλk and Dirac determinant is defined as a

product of the eigenvalues and conjecture to give the exponent of Kähler action reducing to
Chern-Simons term. λ is completely analogous to mass. λk cannot be however interpreted
as ordinary four-momentum: for instance, number theoretic arguments suggest that λk
must be restricted to the preferred plane M2 ⊂ M4 interpreted as a commuting hyper-
complex plane of complexified quaternions. For incoming lines this mass would vanish so
that all incoming particles irrespective their actual quantum numbers would be massless in
this sense and the propagator is indeed that for a massless particle. Note that the eigen-
modes define the boundary values for the solutions of DKΨ = 0 so that the values of λ
indeed define the counterpart of the momentum space.

This transmutation of massive particles to effectively massless ones might make possible
the application of the twistor formalism as such in TGD framework [K85] . N = 4 SUSY
is one of the very few gauge theory which might be UV finite but it is definitely unphysical
due to the masslessness of the basic quanta. Could the resolution of the interpretational
problems be that the four-momenta appearing in this theory do not directly correspond to
the observed four-momenta?

2. Inclusion of the constraint term

As already noticed one must include also the constraint term due to the weak form of electric-
magnetic duality and this changes somewhat the above simple picture.
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(a) At the 3-dimensional ends of the space-time sheet and at wormhole throats the 3-dimensionality
allows to introduce a coordinate varying along the flow lines of Kähler magnetic field
B = ∗J . In this case the integrability conditions state that the flow is Beltrami flow.
Note that the value of Bα along the flow line defining magnetic flux appearing in anti-
commutation relations is constant. This suggests that the generalized eigenvalue equation
for the Chern-Simons action reduces to a collection of ordinary apparently independent
differential equations associated with the flow lines beginning from the partonic 2-surface.
This indeed happens when the CP2 projection is 2-dimensional. In this case it however
seems that the basis un is not of much help.

(b) The conclusion is wrong: the variations of Chern-Simons action are subject to the constraint
that electric-magnetic duality holds true expressible in terms of Lagrange multiplier term

∫
Λα(Jnα −KεnαβγJβγ)

√
g4d

3x . (5.5.22)

This gives a constraint force to the field equations and also a dependence on the induced
4-metric so that one has only almost topological QFT. This term also guarantees the M4

part of WCW Kähler metric is non-trivial. The condition that the ends of space-time sheet
and wormhole throats are extrema of Chern-Simons action subject to the electric-magnetic
duality constraint is strongly suggested by the effective 2-dimensionality. Without the
constraint term Chern-Simons action would vanish for its extremals so that Kähler function
would be identically zero.

This term implies also an additional contribution to the modified gamma matrices besides
the contribution coming from Chern-Simons action so tht the first guess for the modified
Dirac operator would not be quite correct. This contribution is of exactly of the same
general form as the contribution for any general general coordinate invariant action. The
dependence of the induced metric on M4 degrees of freedom guarantees that also M4

gamma matrices are present. In the following this term will not be considered.

(c) When the contribution of the constraint term to the modifield gamma matrices is neglected,
the explicit expression of the modified Dirac operator DC−S associated with the Chern-
Simons term is given by

D = Γ̂µDµ +
1

2
DµΓ̂µ ,

Γ̂µ =
∂LC−S
∂µhk

Γk = εµαβ
[
2Jkl∂αh

lAβ + JαβAk
]

ΓkDµ ,

DµΓ̂µ = BαK(Jkα + ∂αAk) ,

BαK = εαβγJβγ , Jkα = Jkl∂αs
l , ε̂αβγ = εαβγ

√
g3 . (5.5.23)

For the extremals of Chern-Simons action one has DαΓ̂α = 0. Analogous condition holds
true when the constraing contriabution to the modified gamma matrices is added.

3. Generalized eigenvalue equation for Chern-Simons Dirac action

Consider now the Chern-Simons Dirac equation in more detail assuming that the inclusion of
the constraint contribution to the modified gamma matrices does not induce any complications.
Assume also extremal property for Chern-Simons action with constraint term and Beltrami flow
property.

(a) For the extremals the Chern-Simons Dirac operator (constraint term not included) reduces
to a one-dimensional Dirac operator

DC−S = ε̂rαβ [2JkαAβ + JαβAk] ΓkDr . (5.5.24)
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Constraint term implies only a modification of the modified gamma matrices but the form
of the operator remains otherwise same when extrema are in question so that one has
DαΓ̂α = 0.

(b) For the extremals of Chern-Simons action the general solution of the modified Chern-Simons
Dirac equation (λk = 0) is covariantly constant with respect to the coordinate r:

DrΨ = 0 . (5.5.25)

The solution to this condition can be written immediately in terms of a non-integrable
phase factor Pexp(i

∫
Ardr), where integration is along curve with constant transversal co-

ordinates. If Γ̂v is light-like vector field also Γ̂vΨ0 defines a solution of DC−S . This solution
corresponds to a zero mode for DC−S and does not contribute to the Dirac determinant
(suggested to give rise to the exponent of Kähler function identified as Kähler action).
Note that the dependence of these solutions on transversal coordinates of X3

l is arbitrary
which conforms with the hydrodynamic picture. The solutions of Chern-Simons-Dirac are
obtained by similar integration procedure also when extremals are not in question.

The formal solution associated with a general eigenvalue λ can be constructed by integrating
the eigenvalue equation separately along all coordinate curves. This makes sense if r indeed
assigned to possibly light-like flow lines of Bα or more general Beltrami field possible induced by
the constraint term. There are very strong consistency conditions coming from the conditions
that Ψ in the interior is constant along the flow lines of Kähler current and continuous at the
ends and throats (call them collectively boundaries), where Ψ has a non-trivial variation along
the flow lines of Bα.

(a) This makes sense only if the flow lines of the Kähler current are transversal to the boundaries
so that the spinor modes at boundaries dictate the modes of the spinor field in the interior.
Effective 2-dimensionality means that the spinor modes in the interior can be calculated
either by starting from the throats or from the ends so that the data at either upper of
lower partonic 2-surfaces dictates everything in accordance with zero energy ontology.

(b) This gives an infinite number of commuting diagrams stating that the flow-line time evo-
lution along flow lines along wormhole throats from lower partonic 2-surface to the upper
one is equivalent with the flow-line time evolution along the lower end of space-time sur-
face to interior, then along interior to the upper end of the space-time surface and then
back to the upper partonic 2-surface. If the space-time surface allows a slicing by partonic
2-surfaces these conditions can be assumed for any pair of partonic 2-surfaces connected
by Chern-Simons flow evolution.

(c) Since the time evolution along interior keeps the spinor field as constant in the proper
gauge and since the flow evolutions at the lower and upper ends are in a reverse direction,
there is a strong atemptation to assume that the spinor field at the ends of the of the
flow lines of Kähler magnetic field are identical apart from a gauge transformation. This
leads to a particle-in-box quantizaton of the values of the pseudo-mass (periodic boundary
conditions). These conditions will be assumed in the sequel.

These assumptions lead to the following picture about the generalized eigen modes.

(a) By choosing the gauge so that covariant derivative reduces to ordinary derivative and using
the constancy of Γ̂r, the solution of the generalized eigenvalue equation can be written as

Ψ = exp(iL(r)Γ̂rλkΓk)Ψ0 ,

L(r) =

∫ r

0

1√
ĝrr

dr . (5.5.26)

L(r) can be regarded as the along flux line as defined by the effective metric defined by
modified gamma matrices. If λk is linear combination of Γ0 and ΓrM it anti-commutes
with Γr which contains only CP2 gamma matrices so that the pseudo-momentum is a
priori arbitrary.
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(b) When the constraint term taking care of the electric-magnetric duality is included, also
M4 gamma matrices are present. If they are in the orthogonal complement of a preferred
plane M2 ⊂M4, anti-commutativity is achieved. This assumption cannot be fully justified
yet but conforms with the general physical vision. There is an obvious analogy with the
condition that polarizations are in a plane orthogonal to M2. The condition indeed states
that only transversal deformations define quantum fluctuating WCW degrees of freedom
contributing to the WCW Kähler metric. In M8 − H duality the preferred plane M2 is
interpreted as a hyper-complex plane belonging to the tangent space of the space-time sur-
face and defines the plane of non-physical polarizations. Also a generalization of this plane
to an integrable distribution of planes M2(x) has been proposed and one must consider
also now the possibility of a varying plane M2(x) for the pseudo-momenta. The scalar
function Φ appearing in the general solution ansatz for the field equations satisfies massless
d’Alembert equation and its gradient defines a local light-like direction at space-time-level
and hence a 2-D plane of the tangent space. Maybe the projection of this plane to M4

could define the preferred M2. The minimum condition is that these planes are defined
only at the ends of space-time surface and at wormhole throats.

(c) If one accepts this hypothesis, one can write

Ψ =
[
cos(L(r)λ) + isin(λ(r))Γ̂rλkΓk)

]
Ψ0 ,

λ =
√
λkλk . (5.5.27)

(d) Boundary conditions should fix the spectrum of masses. If the the flow lines of Kähler
current coincide with the flow lines of Kähler magnetic field or more general Beltrami
current at wormhole throats one ends up with difficulties since the induced spinor fields
must be constant along flow lines and only trivial eigenvalues are possible. Hence it seems
that the two Beltrami fields must be transversal. This requires that at the partonic 2-
surfaces the value of the induced spinor mode in the interior coincides with its value at the
throat. Since the induced spinor fields in interior are constant along flow lines, one must
have

exp(iλL(max)) = 1 . (5.5.28)

This implies that one has essentially particle in a box with size defined by the effective
metric

λn =
n2π

L(rmax)
. (5.5.29)

(e) This condition cannot however hold true simultaneously for all points of the partonic 2-
surfaces since L(rmax) depends on the point of the surface. In the most general case one
can consider only a subset consisting of the points for which the values of L(rmax) are
rational multiples of the value of L(rmax) at one of the points -call it L0. This implies
the notion of number theoretical braid. Induced spinor fields are localized to the points
of the braid defined by the flow lines of the Kähler magnetic field (or equivalently, any
conserved current- this resolves the longstanding issue about the identification of number
theoretical braids). The number of the included points depends on measurement resolution
characterized somehow by the number rationals which are allowed. Only finite number of
harmonics and sub-harmonics of L0 are possible so that for integer multiples the number
of points is finite. If nmaxL0 and L0/nmin are the largest and smallest lengths involved,
one can argue that the rationals nmax/n, n = 1, ..., nmax and n/nmin, n = 1, ..., nmin are
the natural ones.

(f) One can consider also algebraic extensions for which L0 is scaled from its reference value
by an algebraic number so that the mass scale m must be scaled up in similar manner. The
spectrum comes also now in integer multiples. p-Adic mass calculations predicts mass scales
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to the inverses of square roots of prime and this raises the expectation that
√
n harmonics

and sub-harmonics of L0 might be necessary. Notice however that pseudo-momentum
spectrum is in question so that this argument is on shaky grounds.

There is also the question about the allowed values of (λ0, λ3) for a given value of λ. This issue
will be discussed in the next section devoted to the attempt to calculate the Dirac determinant
assignable to this spectrum: suffice it to say that integer valued spectrum is the first guess
implying that the pseudo-momenta satisfy n2

0−n2
3 = n2 and therefore correspond to Pythagorean

triangles. What is remarkable that the notion of number theoretic braid pops up automatically
from the Beltrami flow hypothesis.

5.5.4 Hyper-octonionic primes

Before detailed discussion of the hyper-octonionic option it is good to consider the basic prop-
erties of hyper-octonionic primes.

(a) Hyper-octonionic primes are of form

Πp = (n0, n3, n1, n2, ..., n7) , Π2
p = n2

0 −
∑
i

n2
i = p or p2 . (5.5.30)

(b) Hyper-octonionic primes have a standard representation as hyper-complex primes. The
Minkowski norm squared factorizes into a product as

n2
0 − n2

3 = (n0 + n3)(n0 − n3) . (5.5.31)

If one has n3 6= 0, the prime property implies n0 − n3 = 1 so that one obtains n0 = n3 + 1
and 2n3 + 1 = p giving

(n0, n3) = ((p+ 1)/2, (p− 1)/2) .

(5.5.32)

Note that one has (p + 1)/2 odd for p mod 4 = 1) and (p + 1)/2 even for p mod 4 = 3).
The difference n0 − n3 = 1 characterizes prime property.

If n3 vanishes the prime prime property implies equivalence with ordinary prime and one
has n2

3 = p2. These hyper-octonionic primes represent particles at rest.

(c) The action of a discrete subgroup G(p) of the octonionic automorphism group G2 gen-
erates form hyper-complex primes with n3 6= 0 further hyper-octonionic primes Π(p, k)
corresponding to the same value of n0 and p and for these the integer valued projection
to M2 satisfies n2

0 − n2
3 = n > p. It is also possible to have a state representing the

system at rest with (n0, n3) = ((p + 1)/2, 0) so that the pseudo-mass varies in the range
[
√
p, (p+ 1)/2]. The subgroup G(n0, n3) ⊂ SU(3) leaving invariant the projection (n0, n3)

generates the hyper-octonionic primes corresponding to the same value of mass for hyper-
octonionic primes with same Minkowskian length p and pseudo-mass λ = n ≥ √p.

(d) One obtains two kinds of primes corresponding to the lengths of pseudo-momenta equal to
p or

√
p. The first kind of particles are always at rest whereas the second kind of particles

can be brought at rest only if one interprets the pseudo-momentum as M2 projection. This
brings in mind the secondary p-adic length scales assigned to causal diamonds (CDs) and
the primary p-adic lengths scales assigned to particles.

If the M2 projections of hyper-octonionic primes with length
√
p characterize the allowed basic

momenta, ζD is sum of zeta functions associated with various projections which must be in the
limits dictated by the geometry of the orbit of the partonic surface giving upper and lower bounds
Lmax and Lmin on the length L. Lmin is scaled up to

√
n2

0 − n2
3Lmin for a given projection
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(n0, n3). In general a given M2 projection (n0, n3) corresponds to several hyper-octonionic
primes since SU(3) rotations give a new hyper-octonionic prime with the same M2 projection.
This leads to an inconsistency unless one has a good explanation for why some basic momentum
can appear several times. One might argue that the spinor mode is degenerate due to the
possibility to perform discrete color rotations of the state. For hyper complex representatives
there is no such problem and it seems favored. In any case, one can look how the degeneracy
factors for given projection can be calculated.

(a) To calculate the degeneracy factor D(n associated with given pseudo-mass value λ = n one
must find all hyper-octonionic primes Π, which can have projection in M2 with length n
and sum up the degeneracy factors D(n, p) associated with them:

D(n) =
∑
p

D(n, p) ,

D(n, p) =
∑

n2
0−n2

3=p

D(p, n0, n3) ,

n2
0 − n2

3 = n , Π2
p(n0, n3) = n2

0 − n2
3 −

∑
i

n2
i = n−

∑
i

n2
i = p . (5.5.33)

(b) The condition n2
0−n2

3 = n allows only Pythagorean triangles and one must find the discrete
subgroup G(n0, n3) ⊂ SU(3) producing hyper-octonions with integer valued components
with length p and components (n0, n3). The points at the orbit satisfy the condition

∑
n2
i = p− n . (5.5.34)

The degeneracy factor D(p, n0, n3) associated with given mass value n is the number of
elements of in the coset space G(n0, n3, p)/H(n0, n3, p), where H(n0, n3, p) is the isotropy
group of given hyper-octonionic prime obtained in this manner. For n2

0−n2
3 = p2 D(n0, n3, p)

obviously equals to unity.

5.5.5 Three basic options for the pseudo-momentum spectrum

The calculation of the scaling factor of the Kähler function requires the knowledge of the degen-
eracies of the mass squared eigen values. There are three options to consider.

First option: all pseudo-momenta are allowed

If the degeneracy for pseudo-momenta in M2 is same for all mass values- and formally character-
izable by a number N telling how many 2-D pseudo-momenta reside on mass shell n2

0−n2
3 = m2.

In this case zeta function would be proportional to a sum of Riemann Zetas with scaled argu-
ments corresponding to scalings of the basic mass m to m/q.

ζD(s) = N
∑
q

ζ(log(qx)s) , x =
Lmin
R

. (5.5.35)

This option provides no idea about the possible values of 1 ≤ q ≤ Lmax/Lmin. The number N
is given by the integral of relativistic density of states

∫
dk/2

√
k2 +m2 over the hyperbola and

is logarithmically divergent so that the normalization factor N of the Kähler function would be
infinite.
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Second option: All integer valued pseudomomenta are allowed

Second option is inspired by number theoretic vision and assumes integer valued components for
the momenta using mmax = 2π/Lmin as mass unit. p-Adicization motivates also the assumption
that momentum components using mmax as mass scale are integers. This would restrict the
choice of the number theoretical braids.

Integer valuedness together with masses coming as integer multiples of mmax implies (λ0, λ3) =
(n0, n3) with on mass shell condition n2

0 − n2
3 = n2. Note that the condition is invariant under

scaling. These integers correspond to Pythagorean triangles plus the degenerate situation with
n3 = 0. There exists a finite number of pairs (n0, n3) satisfying this condition as one finds by
expressing n0 as n0 = n3 +k giving 2n3k+k2 = p2 giving n3 < n2/2,n0 < n2/2 + 1. This would
be enough to have a finite degeneracy D(n) ≥ 1 for a given value of mass squared and ζD would
be well defined. ζD would be a modification of Riemann zeta given by

ζD =
∑
q

ζ1(log(qx)s) , x =
Lmin
R

,

ζ1(s) =
∑

gnn
−s , gn ≥ 1 . (5.5.36)

For generalized Feynman diagrams this option allows conservation of pseudo-momentum and
for loops no divergences are possible since the integral over two-dimensional virtual momenta is
replaced with a sum over discrete mass shells containing only a finite number of points. This
option looks thus attractive but requires a regularization. On the other hand, the appearance
of a zeta function having a strong resemblance with Riemann zeta could explain the finding
that Riemann zeta is closely related to the description of critical systems. This point will be
discussed later.

Third option: Infinite primes code for the allowed mass scales

According to the proposal of [K72] , [L11] the hyper-complex parts of hyper-octonionic primes
appearing in their infinite counterparts correspond to the M2 projections of real four-momenta.
This hypothesis suggests a very detailed map between infinite primes and standard model quan-
tum numbers and predicts a universal mass spectrum [K72] . Since pseudo-momenta are auto-
matically restricted to the plane M2, one cannot avoid the question whether they could actually
correspond to the hyper-octonionic primes defining the infinite prime. These interpretations
need not of course exclude each other. This option allows several variants and at this stage it is
not possible to exclude any of these options.

(a) One must choose between two alternatives for which pseudo-momentum corresponds to
hyper-complex prime serving as a canonical representative of a hyper-octonionic prime or
a projection of hyper-octonionic prime to M2.

(b) One must decide whether one allows a) only the momenta corresponding to hyper-complex
primes, b) also their powers (p-adic fractality), or c) all their integer multiples (”Riemann
option”).

One must also decide what hyper-octonionic primes are allowed.

(a) The first guess is that all hyper-complex/hyper-octonionic primes defining length scale√
pLmin ≤ Lmax or pLmin ≤ Lmax are allowed. p-Adic fractality suggests that also the

higher p-adic length scales pn/2Lmin < Lmax and pnLmin < Lmax, n ≥ 1, are possible.

It can however happen that no primes are allowed by this criterion. This would mean
vanishing Kähler function which is of course also possible since Kähler action can vanish
(for instance, for massless extremals). It seems therefore safer to allow also the scale
corresponding to the trivial prime (n0, n3) = (1, 0) (1 is formally prime because it is not
divisible by any prime different from 1) so that at least Lmin is possible. This option also



5.6. How to define generalized Feynman diagrams? 413

allows only rather small primes unless the partonic 2-surface contains vacuum regions in
which case Lmax is infinite: in this case all primes would be allowed and the exponent of
Kähler function would vanish.

(b) The hypothesis that only the hyper-complex or hyper-octonionic primes appearing in the
infinite hyper-octonionic prime are possible looks more reasonable since large values of p
would be possible and could be identified in terms of the p-adic length scale hypothesis. All
hyper-octonionic primes appearing in infinite prime would be possible and the geometry
of the orbit of the partonic 2-surface would define an infinite prime. This would also give
a concrete physical interpretation for the earlier hypothesis that hyper-octonionic primes
appearing in the infinite prime characterize partonic 2-surfaces geometrically. One can also
identify the fermionic and purely bosonic primes appearing in the infinite prime as braid
strands carrying fermion number and purely bosonic quantum numbers. This option will
be assumed in the following.

5.6 How to define generalized Feynman diagrams?

S-matrix codes to a high degree the predictions of quantum theories. The longstanding challenge
of TGD has been to construct or at least demonstrate the mathematical existence of S-matrix-
or actually M-matrix which generalizes this notion in zero energy ontology (ZEO) [K63] . This
work has led to the notion of generalized Feynman diagram and the challenge is to give a precise
mathematical meaning for this object. The attempt to understand the counterpart of twistors
in TGD framework [K85] has inspired several key ideas in this respect but it turned out that
twistors themselves need not be absolutely necessary in TGD framework.

(a) The notion of generalized Feyman diagram defined by replacing lines of ordinary Feyn-
man diagram with light-like 3-surfaces (elementary particle sized wormhole contacts with
throats carrying quantum numbers) and vertices identified as their 2-D ends - I call them
partonic 2-surfaces is central. Speaking somewhat loosely, generalized Feynman diagrams
(plus background space-time sheets) define the ”world of classical worlds” (WCW). These
diagrams involve the analogs of stringy diagrams but the interpretation is different: the
analogs of stringy loop diagrams have interpretation in terms of particle propagating via
two different routes simultaneously (as in the classical double slit experiment) rather than
as a decay of particle to two particles. For stringy diagrams the counterparts of vertices
are singular as manifolds whereas the entire diagrams are smooth. For generalized Feyn-
man diagrams vertices are smooth but entire diagrams represent singular manifolds just
like ordinary Feynman diagrams do. String like objects however emerge in TGD and even
ordinary elementary particles are predicted to be magnetic flux tubes of length of order
weak gauge boson Compton length with monopoles at their ends as shown in accompanying
article. This stringy character should become visible at LHC energies.

(b) Zero energy ontology (ZEO) and causal diamonds (intersections of future and past directed
lightcones) is second key ingredient. The crucial observation is that in ZEO it is possible
to identify off mass shell particles as pairs of on mass shell particles at throats of wormhole
contact since both positive and negative signs of energy are possible. The propagator
defined by modified Dirac action does not diverge (except for incoming lines) although
the fermions at throats are on mass shell. In other words, the generalized eigenvalue of
the modified Dirac operator containing a term linear in momentum is non-vanishing and
propagator reduces to G = i/λγ, where γ is so called modified gamma matrix in the
direction of stringy coordinate [K15] . This means opening of the black box of the off mass
shell particle-something which for some reason has not occurred to anyone fighting with
the divergences of quantum field theories.

(c) A powerful constraint is number theoretic universality requiring the existence of Feynman
amplitudes in all number fields when one allows suitable algebraic extensions: roots of
unity are certainly required in order to realize p-adic counter parts of plane waves. Also
imbedding space, partonic 2-surfaces and WCW must exist in all number fields and their
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extensions. These constraints are enormously powerful and the attempts to realize this
vision have dominated quantum TGD for last two decades.

(d) Representation of 8-D gamma matrices in terms of octonionic units and 2-D sigma ma-
trices is a further important element as far as twistors are considered [K85] . Modified
gamma matrices at space-time surfaces are quaternionic/associative and allow a genuine
matrix representation. As a matter fact, TGD and WCW can be formulated as study
of associative local sub-algebras of the local Clifford algebra of 8-D imbedding space pa-
rameterized by quaternionic space-time surfaces. Central conjecture is that quaternionic
4-surfaces correspond to preferred extremals of Kähler action [K15] identified as critical
ones (second variation of Kähler action vanishes for infinite number of deformations defin-
ing super-conformal algebra) and allow a slicing to string worldsheets parametrized by
points of partonic 2-surfaces.

(e) As far as twistors are considered, the first key element is the reduction of the octonionic
twistor structure to quaternionic one at space-time surfaces and giving effectively 4-D spinor
and twistor structure for quaternionic surfaces.

Quite recently quite a dramatic progress took place in this approach [K28, K85] .

(a) The progress was stimulated by the simple observation that on mass shell property puts
enormously strong kinematic restrictions on the loop integrations. With mild restrictions
on the number of parallel fermion lines appearing in vertices (there can be several since
fermionic oscillator operator algebra defining SUSY algebra generates the parton states)-
all loops are manifestly finite and if particles has always mass -say small p-adic thermal
mass also in case of massless particles and due to IR cutoff due to the presence largest CD-
the number of diagrams is finite. Unitarity reduces to Cutkosky rules [B34] automatically
satisfied as in the case of ordinary Feynman diagrams.

(b) Ironically, twistors which stimulated all these development do not seem to be absolutely
necessary in this approach although they are of course possible. Situation changes if one
does not assume small p-adically thermal mass due to the presence of massless particles
and one must sum infinite number of diagrams. Here a potential problem is whether the
infinite sum respects the algebraic extension in question.

This is about fermionic and momentum space aspects of Feynman diagrams but not yet about
the functional (not path-) integral over small deformations of the partonic 2-surfaces. The basic
challenges are following.

(a) One should perform the functional integral over WCW degrees of freedom for fixed values
of on mass shell momenta appearing in the internal lines. After this one must perform
integral or summation over loop momenta. Note that the order is important since the
space-time surface assigned to the line carries information about the quantum numbers
associated with the line by quantum classical correspondence realized in terms of modified
Dirac operator.

(b) One must define the functional integral also in the p-adic context. p-Adic Fourier analysis
relying on algebraic continuation raises hopes in this respect. p-Adicity suggests strongly
that the loop momenta are discretized and ZEO predicts this kind of discretization natu-
rally.

It indeed seems that the functional integrals over WCW could be carried out at general level
both in real and p-adic context. This is due to the symmetric space property (maximal number
of isometries) of WCW required by the mere mathematical existence of Kähler geometry [K36]
in infinite-dimensional context already in the case of much simpler loop spaces [A94] .

(a) The p-adic generalization of Fourier analysis allows to algebraize integration- the horrible
looking technical challenge of p-adic physics- for symmetric spaces for functions allowing
the analog of discrete Fourier decomposion. Symmetric space property is indeed essential
also for the existence of Kähler geometry for infinite-D spaces as was learned already from
the case of loop spaces. Plane waves and exponential functions expressible as roots of unity
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and powers of p multiplied by the direct analogs of corresponding exponent functions are
the basic building bricks and key functions in harmonic analysis in symmetric spaces. The
physically unavoidable finite measurement resolution corresponds to algebraically unavoid-
able finite algebraic dimension of algebraic extension of p-adics (at least some roots of
unity are needed). The cutoff in roots of unity is very reminiscent to that occurring for the
representations of quantum groups and is certainly very closely related to these as also to
the inclusions of hyper-finite factors of type II¡sub¿1¡/sub¿ defining the finite measurement
resolution.

(b) WCW geometrization reduces to that for a single line of the generalized Feynman diagram
defining the basic building brick for WCW. Kähler function decomposes to a sum of ”ki-
netic” terms associated with its ends and interaction term associated with the line itself.
p-Adicization boils down to the condition that Kähler function, matrix elements of Kähler
form, WCW Hamiltonians and their super counterparts, are rational functions of complex
WCW coordinates just as they are for those symmetric spaces that I know of. This allows
straightforward continuation to p-adic context.

(c) As far as diagrams are considered, everything is manifestly finite as the general arguments
(non-locality of Kähler function as functional of 3-surface) developed two decades ago in-
deed allow to expect. General conditions on the holomorphy properties of the generalized
eigenvalues λ of the modified Dirac operator can be deduced from the conditions that prop-
agator decomposes to a sum of products of harmonics associated with the ends of the line
and that similar decomposition takes place for exponent of Kähler action identified as Dirac
determinant. This guarantees that the convolutions of propagators and vertices give rise to
products of harmonic functions which can be Glebsch-Gordanized to harmonics and only
the singlet contributes to the WCW integral in given vertex. The still unproven central
conjecture is that Dirac determinant equals the exponent of Kähler function.

In the following this vision about generalized Feynman diagrams is discussed in more detail.

5.6.1 Questions

The goal is a proposal for how to perform the integral over WCW for generalized Feynman
digrams and the best manner to proceed to to this goal is by making questions.

What does finite measurement resolution mean?

The first question is what finite measurement resolution means.

(a) One expects that the algebraic continuation makes sense only for a finite measurement
resolution in which case one obtains only finite sums of what one might hope to be algebraic
functions. The finiteness of the algebraic extension would be in fact equivalent with the
finite measurement resolution.

(b) Finite measurement resolution means a discretization in terms of number theoretic braids.
p-Adicization condition suggests that that one must allow only the number theoretic braids.
For these the ends of braid at boundary of CD are algebraic points of the imbedding space.
This would be true at least in the intersection of real and p-adic worlds.

(c) The question is whether one can localize the points of the braid. The necessity to use
momentum eigenstates to achieve quantum classical correspondence in the modified Dirac
action [K15] suggests however a delocalization of braid points, that is wave function in
space of braid points. In real context one could allow all possible choices for braid points
but in p-adic context only algebraic points are possible if one wants to replace integrals
with sums. This implies finite measurement resolution analogous to that in lattice. This is
also the only possibility in the intersection of real and p-adic worlds.

A non-trivial prediction giving a strong correlation between the geometry of the partonic 2-
surface and quantum numbers is that the total number nF+nF of fermions and antifermions
is bounded above by the number nalg of algebraic points for a given partonic 2-surface:
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nF + nF ≤ nalg. Outside the intersection of real and p-adic worlds the problematic aspect
of this definition is that small deformations of the partonic 2-surface can radically change
the number of algebraic points unless one assumes that the finite measurement resolution
means restriction of WCW to a sub-space of algebraic partonic surfaces.

(d) One has also a discretization of loop momenta if one assumes that virtual particle momen-
tum corresponds to ZEO defining rest frame for it and from the discretization of the relative
position of the second tip of CD at the hyperboloid isometric with mass shell. Only the
number of braid points and their momenta would matter, not their positions. The mea-
surement interaction term in the modified Dirac action gives coupling to the space-time
geometry and Kähler function through generalized eigenvalues of the modified Dirac op-
erator with measurement interaction term linear in momentum and in the color quantum
numbers assignable to fermions [K15] .

How to define integration in WCW degrees of freedom?

The basic question is how to define the integration over WCW degrees of freedom.

(a) What comes mind first is Gaussian perturbation theory around the maxima of Kähler func-
tion. Gaussian and metric determinants cancel each other and only algebraic expressions
remain. Finiteness is not a problem since the Kähler function is non-local functional of
3-surface so that no local interaction vertices are present. One should however assume the
vanishing of loops required also by algebraic universality and this assumption look unreal-
istic when one considers more general functional integrals than that of vacuum functional
since free field theory is not in question. The construction of the inverse of the WCW met-
ric defining the propagator is also a very difficult challenge. Duistermaat-Hecke theorem
states that something like this known as localization might be possible and one can also
argue that something analogous to localization results from a generalization of mean value
theorem.

(b) Symmetric space property is more promising since it might reduce the integrations to group
theory using the generalization of Fourier analysis for group representations so that there
would be no need for perturbation theory in the proposed sense. In finite measurement
resolution the symmetric spaces involved would be finite-dimensional. Symmetric space
structure of WCW could also allow to define p-adic integration in terms of p-adic Fourier
analysis for symmetric spaces. Essentially algebraic continuation of the integration from
the real case would be in question with additional constraints coming from the fact that
only phase factors corresponding to finite algebraic extensions of rationals are used. Cutoff
would emerge automatically from the cutoff for the dimension of the algebraic extension.

How to define generalized Feynman diagrams?

Integration in symmetric spaces could serve as a model at the level of WCW and allow both the
understanding of WCW integration and p-adicization as algebraic continuation. In order to get
a more realistic view about the problem one must define more precisely what the calculation of
the generalized Feynman diagrams means.

(a) WCW integration must be carried out separately for all values of the momenta associated
with the internal lines. The reason is that the spectrum of eigenvalues λi of the modified
Dirac operator D depends on the momentum of line and momentum conservation in vertices
translates to a correlation of the spectra of D at internal lines.

(b) For tree diagrams algebraic continuation to the p-adic context if the expression involves
only the replacement of the generalized eigenvalues of D as functions of momenta with
their p-adic counterparts besides vertices. If these functions are algebraically universal and
expressible in terms of harmonics of symmetric space , there should be no problems.

(c) If loops are involved, one must integrate/sum over loop momenta. In p-adic context diffi-
culties are encountered if the spectrum of the momenta is continuous. The integration over
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on mass shell loop momenta is analogous to the integration over sub-CDs, which suggests
that internal line corresponds to a sub − CD in which it is at rest. There are excellent
reasons to believe that the moduli space for the positions of the upper tip is a discrete
subset of hyperboloid of future light-cone. If this is the case, the loop integration indeed
reduces to a sum over discrete positions of the tip. p-Adizication would thus give a further
good reason why for zero energy ontology.

(d) Propagator is expressible in terms of the inverse of generalized eigenvalue and there is a
sum over these for each propagator line. At vertices one has products of WCW harmon-
ics assignable to the incoming lines. The product must have vanishing quantum numbers
associated with the phase angle variables of WCW. Non-trivial quantum numbers of the
WCW harmonic correspond to WCW quantum numbers assignable to excitations of ordi-
nary elementary particles. WCW harmonics are products of functions depending on the
”radial” coordinates and phase factors and the integral over the angles leaves the product
of the first ones analogous to Legendre polynomials Pl,m, These functions are expected to
be rational functions or at least algebraic functions involving only square roots.

(e) In ordinary QFT incoming and outgoing lines correspond to propagator poles. In the recent
case this would mean that the generalized eigenvalues λ = 0 characterize them. Internal
lines coming as pairs of throats of wormhole contacts would be on mass shell with respect
to momentum but off shell with respect to λ.

5.6.2 Generalized Feynman diagrams at fermionic and momentum
space level

Negative energy ontology has already led to the idea of interpreting the virtual particles as
pairs of positive and negative energy wormhole throats. Hitherto I have taken it as granted
that ordinary Feynman diagrammatics generalizes more or less as such. It is however far from
clear what really happens in the verties of the generalized Feynmann diagrams. The safest
approach relies on the requirement that unitarity realized in terms of Cutkosky rules in ordinary
Feynman diagrammatics allows a generalization. This requires loop diagrams. In particular,
photon-photon scattering can take place only via a fermionic square loop so that it seems that
loops must be present at least in the topological sense.

One must be however ready for the possibility that something unexpectedly simple might emerge.
For instance, the vision about algebraic physics allows naturally only finite sums for diagrams
and does not favor infinite perturbative expansions. Hence the true believer on algebraic physics
might dream about finite number of diagrams for a given reaction type. For simplicity generalized
Feynman diagrams without the complications brought by the magnetic confinement since by the
previous arguments the generalization need not bring in anything essentially new.

The basic idea of duality in early hadronic models was that the lines of the dual diagram
representing particles are only re-arranged in the vertices. This however does not allow to get
rid of off mass shell momenta. Zero energy ontology encourages to consider a stronger form of
this principle in the sense that the virtual momenta of particles could correspond to pairs of on
mass shell momenta of particles. If also interacting fermions are pairs of positive and negative
energy throats in the interaction region the idea about reducing the construction of Feynman
diagrams to some kind of lego rules might work.

Virtual particles as pairs of on mass shell particles in ZEO

The first thing is to try to define more precisely what generalized Feynman diagrams are. The
direct generalization of Feynman diagrams implies that both wormhole throats and wormhole
contacts join at vertices.

(a) A simple intuitive picture about what happens is provided by diagrams obtained by replac-
ing the points of Feynman diagrams (wormhole contacts) with short lines and imagining
that the throats correspond to the ends of the line. At vertices where the lines meet the
incoming on mass shell quantum numbers would sum up to zero. This approach leads to
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a straightforward generalization of Feynman diagrams with virtual particles replaced with
pairs of on mass shell throat states of type ++, −−, and +−. Incoming lines correspond to
++ type lines and outgoing ones to −− type lines. The first two line pairs allow only time
like net momenta whereas +− line pairs allow also space-like virtual momenta. The sign
assigned to a given throat is dictated by the the sign of the on mass shell momentum on
the line. The condition that Cutkosky rules generalize as such requires ++ and −− type
virtual lines since the cut of the diagram in Cutkosky rules corresponds to on mass shell
outgoing or incoming states and must therefore correspond to ++ or −− type lines.

(b) The basic difference as compared to the ordinary Feynman diagrammatics is that loop
integrals are integrals over mass shell momenta and that all throats carry on mass shell
momenta. In each vertex of the loop mass incoming on mass shell momenta must sum
up to on mass shell momentum. These constraints improve the behavior of loop integrals
dramatically and give excellent hopes about finiteness. It does not however seem that only
a finite number of diagrams contribute to the scattering amplitude besides tree diagrams.
The point is that if a the reactions N1 → N2 and N2 → N3,, where Ni denote particle
numbers, are possible in a common kinematical region for N2-particle states then also the
diagrams N1 → N2 → N2 → N3 are possible. The virtual states N2 include all all states
in the intersection of kinematically allow regions for N1 → N2 and N2 → N3. Hence the
dream about finite number possible diagrams is not fulfilled if one allows massless particles.
If all particles are massive then the particle number N2 for given N1 is limited from above
and the dream is realized.

(c) For instance, loops are not possible in the massless case or are highly singular (bringing in
mind twistor diagrams) since the conservation laws at vertices imply that the momenta are
parallel. In the massive case and allowing mass spectrum the situation is not so simple.
As a first example one can consider a loop with three vertices and thus three internal lines.
Three on mass shell conditions are present so that the four-momentum can vary in 1-D
subspace only. For a loop involving four vertices there are four internal lines and four mass
shell conditions so that loop integrals would reduce to discrete sums. Loops involving more
than four vertices are expected to be impossible.

(d) The proposed replacement of the elementary fermions with bound states of elementary
fermions and monopoles X± brings in the analog of stringy diagrammatics. The 2-particle
wave functions in the momentum degrees of freedom of fermiona and X± migh allow more
flexibility and allow more loops. Note however that there are excellent hopes about the
finiteness of the theory also in this case.

Loop integrals are manifestly finite

One can make also more detailed observations about loops.

(a) The simplest situation is obtained if only 3-vertices are allowed. In this case conservation of
momentum however allows only collinear momenta although the signs of energy need not be
the same. Particle creation and annihilation is possible and momentum exchange is possible
but is always light-like in the massless case. The scattering matrices of supersymmetric
YM theories would suggest something less trivial and this raises the question whether
something is missing. Magnetic monopoles are an essential element of also these theories
as also massivation and symmetry breaking and this encourages to think that the formation
of massive states as fermion X± pairs is needed. Of course, in TGD framework one has
also high mass excitations of the massless states making the scattering matrix non-trivial.

(b) In YM theories on mass shell lines would be singular. In TGD framework this is not the
case since the propagator is defined as the inverse of the 3-D dimensional reduction of the
modified Dirac operator D containing also coupling to four-momentum (this is required by
quantum classical correspondence and guarantees stringy propagators),

D = iΓ̂αpα + Γ̂αDα ,

pα = pk∂αh
k . (5.6.1)
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The propagator does not diverge for on mass shell massless momenta and the propagator
lines are well-defined. This is of course of essential importance also in general case. Only
for the incoming lines one can consider the possibility that 3-D Dirac operator annihilates
the induced spinor fields. All lines correspond to generalized eigenstates of the propagator
in the sense that one has D3Ψ = λγΨ, where γ is modified gamma matrix in the direction
of the stringy coordinate emanating from light-like surface and D3 is the 3-dimensional
dimensional reduction of the 4-D modified Dirac operator. The eigenvalue λ is analogous
to energy. Note that the eigenvalue spectrum depends on 4-momentum as a parameter.

(c) Massless incoming momenta can decay to massless momenta with both signs of energy.
The integration measure d2k/2E reduces to dx/x where x ≥ 0 is the scaling factor of
massless momentum. Only light-like momentum exchanges are however possible and scat-
tering matrix is essentially trivial. The loop integrals are finite apart from the possible
delicacies related to poles since the loop integrands for given massless wormhole contact
are proportional to dx/x3 for large values of x.

(d) Irrrespective of whether the particles are massless or not, the divergences are obtained
only if one allows too high vertices as self energy loops for which the number of momentum
degrees of freedom is 3N−4 for N -vertex. The construction of SUSY limit of TGD in [K29]
led to the conclusion that the parallelly propagating N fermions for given wormhole throat
correspond to a product of N fermion propagators with same four-momentum so that for
fermions and ordinary bosons one has the standard behavior but for N > 2 non-standard
so that these excitations are not seen as ordinary particles. Higher vertices are finite only
if the total number NF of fermions propagating in the loop satisfies NF > 3N − 4. For
instance, a 4-vertex from which N = 2 states emanate is finite.

Taking into account magnetic confinement

What has been said above is not quite enough. The weak form of electric-magnetic duality [B11]
leads to the picture about elementary particles as pairs of magnetic monopoles inspiring the
notions of weak confinement based on magnetic monopole force. Also color confinement would
have magnetic counterpart. This means that elementary particles would behave like string like
objects in weak boson length scale. Therefore one must also consider the stringy case with
wormhole throats replaced with fermion-X± pairs (X± is electromagnetically neutral and ±
refers to the sign of the weak isospin opposite to that of fermion) and their super partners.

(a) The simplest assumption in the stringy case is that fermion-X± pairs behave as coherent
objects, that is scatter elastically. In more general case only their higher excitations identi-
fiable in terms of stringy degrees of freedom would be created in vertices. The massivation
of these states makes possible non-collinear vertices. An open question is how the massi-
vation fermion-X± pairs relates to the existing TGD based description of massivation in
terms of Higgs mechanism and modified Dirac operator.

(b) Mass renormalization could come from self energy loops with negative energy lines as also
vertex normalization. By very general arguments supersymmetry implies the cancellation
of the self energy loops but would allow non-trivial vertex renormalization [K29] .

(c) If only 3-vertices are allowed, the loops containing only positive energy lines are possible if
on mass shell fermion-X± pair (or its superpartner) can decay to a pair of positive energy
pair particles of same kind. Whether this is possible depends on the masses involved. For
ordinary particles these decays are not kinematically possible below intermediate boson
mass scale (the decays F1 → F2 + γ are forbidden kinematically or by the absence of flavor
changing neutral currents whereas intermediate gauge bosons can decay to on mass shell
fermion-antifermion pair).

(d) The introduction of IR cutoff for 3-momentum in the rest system associated with the largest
CD (causal diamond) looks natural as scale parameter of coupling constant evolution and
p-adic length scale hypothesis favors the inverse of the size scale of CD coming in powers of
two. This parameter would define the momentum resolution as a discrete parameter of the
p-adic coupling constant evolution. This scale does not have any counterpart in standard
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physics. For electron, d quark, and u quark the proper time distance between the tips of
CD corresponds to frequency of 10 Hz, 1280 Hz, and 160 Hz: all these frequencies define
fundamental bio-rhythms [K24] .

These considerations have left completely untouched one important aspect of generalized Feyn-
man diagrams: the necessity to perform a functional integral over the deformations of the
partonic 2-surfaces at the ends of the lines- that is integration over WCW. Number theoreti-
cal universality requires that WCW and these integrals make sense also p-adically and in the
following these aspects of generalized Feynman diagrams are discussed.

5.6.3 Harmonic analysis in WCW as a manner to calculate WCW
functional integrals

Previous examples suggest that symmetric space property, Kähler and symplectic structure
and the use of symplectic coordinates consisting of canonically conjugate pairs of phase angles
and corresponding ”radial” coordinates are essential for WCW integration and p-adicization.
Kähler function, the components of the metric, and therefore also metric determinant and Kähler
function depend on the ”radial” coordinates only and the possible generalization involves the
identification the counterparts of the ”radial” coordinates in the case of WCW.

Conditions guaranteing the reduction to harmonic analysis

The basic idea is that harmonic analysis in symmetric space allows to calculate the functional
integral over WCW.

(a) Each propagator line corresponds to a symmetric space defined as a coset space G/H
of the symplectic group and Kac-Moody group and one might hope that the proposed
p-adicization works for it- at least when one considers the hierarchy of measurement res-
olutions forced by the finiteness of algebraic extensions. This coset space is as a manifold
Cartesian product (G/H)× (G/H) of symmetric spaces G/H associated with ends of the
line. Kähler metric contains also an interaction term between the factors of the Cartesian
product so that Kähler function can be said to reduce to a sum of ”kinetic” terms and
interaction term.

(b) Effective 2-dimensionality and ZEO allow to treat the ends of the propagator line indepen-
dently. This means an enormous simplification. Each line contributes besides propagator
a piece to the exponent of Kähler action identifiable as interaction term in action and de-
pending on the propagator momentum. This contribution should be expressible in terms of
generalized spherical harmonics. Essentially a sum over the products of pairs of harmonics
associated with the ends of the line multiplied by coefficients analogous to 1/(p2 −m2) in
the case of the ordinary propagator would be in question. The optimal situation is that
the pairs are harmonics and their conjugates appear so that one has invariance under G
analogous to momentum conservation for the lines of ordinary Feynman diagrams.

(c) Momentum conservation correlates the eigenvalue spectra of the modified Dirac operator
D at propagator lines [K15] . G-invariance at vertex dictates the vertex as the singlet
part of the product of WCW harmonics associated with the vertex and one sums over the
harmonics for each internal line. p-Adicization means only the algebraic continuation to
real formulas to p-adic context.

(d) The exponent of Kähler function depends on both ends of the line and this means that
the geometries at the ends are correlated in the sense that that Kähler form contains
interaction terms between the line ends. It is however not quite clear whether it contains
separate ”kinetic” or self interaction terms assignable to the line ends. For Kähler function
the kinetic and interaction terms should have the following general expressions as functions
of complex WCW coordinates:
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Kkin,i =
∑
n

fi,n(Zi)fi,n(Zi) + c.c ,

Kint =
∑
n

g1,n(Z1)g2,n(Z2) + c.c , i = 1, 2 . (5.6.2)

Here Kkin,i define ”kinetic” terms and Kint defines interaction term. One would have
what might be called holomorphic factorization suggesting a connection with conformal
field theories.

Symmetric space property -that is isometry invariance- suggests that one has

fi,n = f2,n ≡ fn , g1,n = g2,n ≡ gn (5.6.3)

such that the products are invariant under the group H appearing in G/H and therefore
have opposite H quantum numbers. The exponent of Kähler function does not factorize
although the terms in its Taylor expansion factorize to products whose factors are products
of holomorphic and antihilomorphic functions.

(e) If one assumes that the exponent of Kähler function reduces to a product of eigenvalues of
the modified Dirac operator eigenvalues must have the decomposition

λk =
∏
i=1,2

exp

[∑
n

ck,ngn(Zi)gn(Zi) + c.c

]
× exp

[∑
n

dk,ngn(Z1)gn(Z2) + c.c

]
.(5.6.4)

Hence also the eigenvalues coming from the Dirac propagators have also expansion in terms
of G/H harmonics so that in principle WCW integration would reduce to Fourier analysis
in symmetric space.

Generalization of WCW Hamiltonians

This picture requires a generalization of the view about configuration space Hamiltonians since
also the interaction term between the ends of the line is present not taken into account in the
previous approach.

(a) The proposed representation of WCW Hamiltonians as flux Hamiltonians [K17, K15]

Q(HA) =

∫
HA(1 +K)Jd2x ,

J = εαβJαβ , J03√g4 = KJ12 . (5.6.5)

works for the kinetic terms only since J cannot be the same at the ends of the line. The
formula defining K assumes weak form of self-duality (03 refers to the coordinates in the
complement of X2 tangent plane in the 4-D tangent plane). K is assumed to be symplectic
invariant and constant for given X2. The condition that the flux of F 03 = (~/gK)J03

defining the counterpart of Kähler electric field equals to the Kähler charge gK gives the
condition K = g2

K/~, where gK is Kähler coupling constant. Within experimental uncer-

tainties one has αK = g
/
K4π~0 = αem ' 1/137, where αem is finite structure constant in

electron length scale and ~0 is the standard value of Planck constant.

The assumption that Poisson bracket of WCW Hamiltonians reduces to the level of imbed-
ding space - in other words {Q(HA), Q(HB} = Q({HA, HB}) - can be justified. One starts
from the representation in terms of say flux Hamiltonians Q(HA) and defines JA,B as
JA,B ≡ Q({HA, HB}). One has ∂HA/∂tB = {HB , HA}, where tB is the parameter associ-
ated with the exponentiation of HB . The inverse JAB of JA,B = ∂HB/∂tA is expressible
as JA,B = ∂tA/∂HB . From these formulas one can deduce by using chain rule that the
bracket {Q(HA), Q(HB} = ∂tCQ(HA)JCD∂tDQ(HB) of flux Hamiltonians equals to the
flux Hamiltonian Q({HA, HB}).
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(b) One should be able to assign to WCW Hamiltonians also a part corresponding to the
interaction term. The symplectic conjugation associated with the interaction term permutes
the WCW coordinates assignable to the ends of the line. One should reduce this apparently
non-local symplectic conjugation (if one thinks the ends of line as separate objects) to a non-
local symplectic conjugation for δCD × CP2 by identifying the points of lower and upper
end of CD related by time reflection and assuming that conjugation corresponds to time
reflection. Formally this gives a well defined generalization of the local Poisson brackets
between time reflected points at the boundaries of CD. The connection of Hermitian
conjugation and time reflection in quantum field theories is is in accordance with this
picture.

(c) The only manner to proceed is to assign to the flux Hamiltonian also a part obtained by
the replacement of the flux integral over X2 with an integral over the projection of X2 to
a sphere S2 assignable to the light-cone boundary or to a geodesic sphere of CP2, which
come as two varieties corresponding to homologically trivial and non-trivial spheres. The
projection is defined as by the geodesic line orthogonal to S2 and going through the point
of X2. The hierarchy of Planck constants assigns to CD a preferred geodesic sphere of
CP2 as well as a unique sphere S2 as a sphere for which the radial coordinate rM or the
light-cone boundary defined uniquely is constant: this radial coordinate corresponds to
spherical coordinate in the rest system defined by the time-like vector connecting the tips
of CD. Either spheres or possibly both of them could be relevant.

Recall that also the construction of number theoretic braids and symplectic QFT [K19]
led to the proposal that braid diagrams and symplectic triangulations could be defined in
terms of projections of braid strands to one of these spheres. One could also consider a
weakening for the condition that the points of the number theoretic braid are algebraic
by requiring only that the S2 coordinates of the projection are algebraic and that these
coordinates correspond to the discretization of S2 in terms of the phase angles associated
with θ and φ.

This gives for the corresponding contribution of the WCW Hamiltonian the expression

Q(HA)int =

∫
S2
±

HAXδ
2(s+, s−)d2s± =

∫
P (X2

+)∩P (X2
−)

∂(s1, s2)

∂(x1
±, x

2
±)
d2x± . (5.6.6)

Here the Poisson brackets between ends of the line using the rules involve delta function
δ2(s+, s−) at S2 and the resulting Hamiltonians can be expressed as a similar integral
of H[A,B] over the upper or lower end since the integral is over the intersection of S2

projections.

The expression must vanish when the induced Kähler form vanishes for either end. This is
achieved by identifying the scalar X in the following manner:

X = Jkl+ J
−
kl ,

Jkl± = (1 +K±)∂αs
k∂βs

lJαβ± . (5.6.7)

The tensors are lifts of the induced Kähler form of X2
± to S2 (not CP2).

(d) One could of course ask why these Hamiltonians could not contribute also to the kinetic
terms and why the brackets with flux Hamiltonians should vanish. This relate to how one
defines the Kähler form. It was shown above that in case of flux Hamiltonians the definition
of Kähler form as brackets gives the basic formula {Q(HA), Q(HB)} = Q({HA, HB} and
same should hold true now. In the recent case JA,B would contain an interaction term
defined in terms of flux Hamiltonians and the previous argument should go through also
now by identifying Hamiltonians as sums of two contributions and by introducing the
doubling of the coordinates tA.

(e) The quantization of the modified Dirac operator must be reconsidered. It would seem that
one must add to the super-Hamiltonian completely analogous term obtained by replacing
(1+K)J withX∂(s1, s2)/∂(x1

±, x
2
±). Besides the anticommutation relations defining correct
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anticommutators to flux Hamiltonians, one should pose anticommutation relations consis-
tent with the anticommutation relations of super Hamiltonians. In these anticommutation
relations (1 +K)Jδ2(x, y) would be replaced with Xδ2(s+, s−). This would guarantee that
the oscillator operators at the ends of the line are not independent and that the resulting
Hamiltonian reduces to integral over either end for H[A,B].

(f) In the case of CP2 the Hamiltonians generating isometries are rational functions. This
should hold true also now so that p-adic variants of Hamiltonians as functions in WCW
would make sense. This in turn would imply that the components of the WCW Kähler
form are rational functions. Also the exponentiation of Hamiltonians make sense p-adically
if one allows the exponents of group parameters to be functions Expp(t).

Does the expansion in terms of partial harmonics converge?

The individual terms in the partial wave expansion seem to be finite but it is not at all clear
whether the expansion in powers of K actually converges.

(a) In the proposed scenario one performs the expansion of the vacuum functional exp(K)
in powers of K and therefore in negative powers of αK . In principle an infinite number
of terms can be present. This is analogous to the perturbative expansion based on using
magnetic monopoles as basic objects whereas the expansion using the contravariant Kähler
metric as a propagator would be in positive powers of αK and analogous to the expansion
in terms of magnetically bound states of wormhole throats with vanishing net value of
magnetic charge. At this moment one can only suggest various approaches to how one
could understand the situation.

(b) Weak form of self-duality and magnetic confinement could change the sitution. Performing
the perturbation around magnetic flux tubes together with the assumed slicing of the space-
time sheet by stringy world sheets and partonic 2-surfaces could mean that the perturbation
corresponds to the action assignable to the electric part of Kähler form proportional to αK
by the weak self-duality. Hence by K = 4παK relating Kähler electric field to Kähler
magnetic field the expansion would come in powers of a term containing sum of terms
proportional to α0

K and αK . This would leave to the scattering amplitudes the exponents
of Kähler function at the maximum of Kähler function so that the non-analytic dependence
on αK would not disappear.

A further reason to be worried about is that the expansion containing infinite number of terms
proportional to α0

K could fail to converge.

(a) This could be also seen as a reason for why magnetic singlets are unavoidable except perhaps
for ~ < ~0. By the holomorphic factorization the powers of the interaction part of Kähler
action in powers of 1/αK would naturally correspond to increasing and opposite net values
of the quantum numbers assignable to the WCW phase coordinates at the ends of the
propagator line. The magnetic bound states could have similar expansion in powers of αK
as pairs of states with arbitrarily high but opposite values of quantum numbers. In the
functional integral these quantum numbers would compensate each other. The functional
integral would leave only an expansion containing powers of αK starting from some finite
possibly negative (unless one assumes the weak form of self-duality) power. Various gauge
coupling strengths are expected to be proportional to αK and these expansions should
reduce to those in powers of αK .

(b) Since the number of terms in the fermionic propagator expansion is finite, one might hope
on basis of super-symmetry that the same is true in the case of the functional integral expan-
sion. By the holomorpic factorization the expansion in powers of K means the appearance
of terms with increasingly higher quantum numbers. Quantum number conservation at
vertices would leave only a finite number of terms to tree diagrams. In the case of loop
diagrams pairs of particles with opposite and arbitrarily high values of quantum numbers
could be generated at the vertex and magnetic confinement might be necessary to guarantee
the convergence. Also super-symmetry could imply cancellations in loops.
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Could one do without flux Hamiltonians?

The fact that the Kähler functions associated with the propagator lines can be regarded as
interaction terms inspires the question whether the Kähler function could contain only the
interaction terms so that Kähler form and Kähler metric would have components only between
the ends of the lines.

(a) The basic objection is that flux Hamiltonians too beautiful objects to be left without any
role in the theory. One could also argue that the WCW metric would not be positive definite
if only the non-diagonal interaction term is present. The simplest example is Hermitian
2× 2-matrix with vanishing diagonal for which eigenvalues are real but of opposite sign.

(b) One could of course argue that the expansions of exp(K) and λk give in the general powers
(fnfn)m analogous to diverging tadpole diagrams of quantum field theories due to local
interaction vertices. These terms do not produce divergences now but the possibility that
the exponential series of this kind of terms could diverge cannot be excluded. The absence
of the kinetic terms would allow to get rid of these terms and might be argued to be the
symmetric space counterpart for the vanishing of loops in WCW integral.

(c) In zero energy ontology this idea does not look completely non-sensical since physical states
are pairs of positive and negative energy states. Note also that in quantum theory only
creation operators are used to create positive energy states. The manifest non-locality of
the interaction terms and absence of the counterparts of kinetic terms would provide a
trivial manner to get rid of infinities due to the presence of local interactions. The safest
option is however to keep both terms.

Summary

The discussion suggests that one must treat the entire Feynman graph as single geometric
object with Kähler geometry in which the symmetric space is defined as product of what could
be regarded as analogs of symmetric spaces with interaction terms of the metric coming from
the propagator lines. The exponent of Kähler function would be the product of exponents
associated with all lines and contributions to lines depend on quantum numbers (momentum and
color quantum numbers) propagating in line via the coupling to the modified Dirac operator.
The conformal factorization would allow the reduction of integrations to Fourier analysis in
symmetric space. What is of decisive importance is that the entire Feynman diagrammatics at
WCW level would reduce to the construction of WCW geometry for a single propagator line as
a function of quantum numbers propagating on the line.



Chapter 6

Construction of Quantum
Theory: More about Matrices

6.1 Introduction

This chapter is a second part of chapter representing material related to the construction of U-,
M, and S-matrices. The general philosophy is discussed in the first part of the chapter and I
will not repeate the discussion. The

The views about M -matrix as a characterizer of time-like entanglement and M -matrix as a func-
tor are analyzed. The role of hyper-finite factors in the construction of M -matrix is considered.
One section is devoted to the possibility that Connes tensor product could define fundamental
vertices. The last section is devoted to the construction of unitary U -matrix characterizing the
unitary process forming part of quantum jump.

The last section is about the anatomy of quantum jump. The first part of the chapter began
with a similar piece of text. This reflects the fact that the ideas are developing all the time so
that the vision about the matrices is by no means top-down view beginning from precisely state
assumption and proceeding to conclusions.

The reader wishing for a brief summary of TGD might find the three articles about TGD,
TGD inspired theory of consciousness, and TGD based view about quantum biology helpful
[L8, L6, L5] .

6.2 The latest vision about the role of HFFs in TGD

It is clear that at least the hyper-finite factors of type II1 assignable to WCW spinors must have
a profound role in TGD. Whether also HFFS of type III1 appearing also in relativistic quantum
field theories emerge when WCW spinors are replaced with spinor fields is not completely clear.
I have proposed several ideas about the role of hyper-finite factors in TGD framework. In par-
ticular, Connes tensor product is an excellent candidate for defining the notion of measurement
resolution.

In the following this topic is discussed from the perspective made possible by zero energy ontology
and the recent advances in the understanding of M-matrix using the notion of bosonic emergence.
The conclusion is that the notion of state as it appears in the theory of factors is not enough
for the purposes of quantum TGD. The reason is that state in this sense is essentially the
counterpart of thermodynamical state. The construction of M-matrix might be understood in
the framework of factors if one replaces state with its ”complex square root” natural if quantum
theory is regarded as a ”complex square root” of thermodynamics. It is also found that the
idea that Connes tensor product could fix M-matrix is too optimistic but an elegant formulation
in terms of partial trace for the notion of M-matrix modulo measurement resolution exists and
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Connes tensor product allows interpretation as entanglement between sub-spaces consisting of
states not distinguishable in the measurement resolution used. The partial trace also gives rise
to non-pure states naturally.

6.2.1 Basic facts about factors

In this section basic facts about factors are discussed. My hope that the discussion is more ma-
ture than or at least complementary to the summary that I could afford when I started the work
with factors for more than half decade ago. I of course admit that this just a humble attempt
of a physicist to express physical vision in terms of only superficially understood mathematical
notions.

Basic notions

First some standard notations. Let B(H) denote the algebra of linear operators of Hilbert space
H bounded in the norm topology with norm defined by the supremum of for the length of the
image of a point of unit sphere H. This algebra has a lot of common with complex numbers in
that the counterparts of complex conjugation, order structure and metric structure determined
by the algebraic structure exist. This means the existence involution -that is *- algebra property.
The order structure determined by algebraic structure means following: A ≥ 0 defined as the
condition (Aξ, ξ) ≥ 0 is equivalent with A = B∗B. The algebra has also metric structure
||AB|| ≤ ||A||||B| (Banach algebra property) determined by the algebraic structure. The algebra
is also C∗ algebra: ||A∗A|| = ||A||2 meaning that the norm is algebraically like that for complex
numbers.

A von Neumann algebra M [A52] is defined as a weakly closed non-degenerate *-subalgebra of
B(H) and has therefore all the above mentioned properties. From the point of view of physicist
it is important that a sub-algebra is in question.

In order to define factors one must introduce additional structure.

(a) LetM be subalgebra of B(H) and denote byM′ its commutant defined as the sub-algebra
of B(H) commuting with it and allowing to express B(H) as B(H) =M∨M′.

(b) A factor is defined as a von Neumann algebra satisfyingM′′ =MM is called factor. The
equality of double commutant with the original algebra is thus the defining condition so
that also the commutant is a factor. An equivalent definition for factor is as the condition
that the intersection of the algebra and its commutant reduces to a complex line spanned
by a unit operator. The condition that the only operator commuting with all operators of
the factor is unit operator corresponds to irreducibility in representation theory.

(c) Some further basic definitions are needed. Ω ∈ H is cyclic if the closure of MΩ is H and
separating if the only element of M annihilating Ω is zero. Ω is cyclic for M if and only
if it is separating for its commutant. In so called standard representation Ω is both cyclic
and separating.

(d) For hyperfinite factors an inclusion hierarchy of finite-dimensional algebras whose union is
dense in the factor exists. This roughly means that one can approximate the algebra in
arbitrary accuracy with a finite-dimensional sub-algebra.

The definition of the factor might look somewhat artificial unless one is aware of the underlying
physical motivations. The motivating question is what the decomposition of a physical system
to non-interacting sub-systems could mean. The decomposition of B(H) to ∨ product realizes
this decomposition.

(a) Tensor product H = H1 ⊗ H2 is the decomposition according to the standard quantum
measurement theory and means the decomposition of operators in B(H) to tensor products
of mutually commuting operators inM = B(H1) andM′ = B(H2). The information about
M can be coded in terms of projection operators. In this case projection operators project-
ing to a complex ray of Hilbert space exist and arbitrary compact operator can be expressed
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as a sum of these projectors. For factors of type I minimal projectors exist. Factors of type
In correspond to sub-algebras of B(H) associated with infinite-dimensional Hilbert space
and I∞ to B(H) itself. These factors appear in the standard quantum measurement theory
where state function reduction can lead to a ray of Hilbert space.

(b) For factors of type II no minimal projectors exists whereas finite projectors exist. For
factors of type II1 all projectors have trace not larger than one and the trace varies in the
range (0, 1]. In this case cyclic vectors Ω exist. State function reduction can lead only
to an infinite-dimensional subspace characterized by a projector with trace smaller than 1
but larger than zero. The natural interpretation would be in terms of finite measurement
resolution. The tensor product of II1 factor and I∞ is II∞ factor for which the trace for a
projector can have arbitrarily large values. II1 factor has a unique finite tracial state and
the set of traces of projections spans unit interval. There is uncountable number of factors
of type II but hyper-finite factors of type II1 are the exceptional ones and physically most
interesting.

(c) Factors of type III correspond to an extreme situation. In this case the projection operators
E spanning the factor have either infinite or vanishing trace and there exists an isometry
mapping EH to H meaning that the projection operator spans almost all of H. All pro-
jectors are also related to each other by isometry. Factors of type III are smallest if the
factors are regarded as sub-algebras of a fixed B(H) where H corresponds to isomorphism
class of Hilbert spaces. Situation changes when one speaks about concrete representations.
Also now hyper-finite factors are exceptional.

(d) Von Neumann algebras define a non-commutative measure theory. Commutative von Neu-
mann algebras indeed reduce to L∞(X) for some measure space (X,µ) and vice versa.

Weights, states and traces

The notions of weight, state, and trace are standard notions in the theory of von Neumann
algebras.

(a) A weight of von Neumann algebra is a linear map from the set of positive elements (those
of form a∗a) to non-negative reals.

(b) A positive linear functional is weight with ω(1) finite.

(c) A state is a weight with ω(1) = 1.

(d) A trace is a weight with ω(aa∗) = ω(a∗a) for all a.

(e) A tracial state is a weight with ω(1) = 1.

A factor has a trace such that the trace of a non-zero projector is non-zero and the trace of
projection is infinite only if the projection is infinite. The trace is unique up to a rescaling. For
factors that are separable or finite, two projections are equivalent if and only if they have the
same trace. Factors of type In the values of trace are equal to multiples of 1/n. For a factor of
type I∞ the value of trace are 0, 1, 2, .... For factors of type II1 the values span the range [0, 1]
and for factors of type II∞ n the range [0,∞). For factors of type III the values of the trace are
0, and ∞.

Tomita-Takesaki theory

Tomita-Takesaki theory is a vital part of the theory of factors. First some definitions.

(a) Let ω(x) be a faithful state of von Neumann algebra so that one has ω(xx∗) > 0 for
x > 0. Assume by Riesz lemma the representation of ω as a vacuum expectation value:
ω = (·Ω,Ω), where Ω is cyclic and separating state.

(b) Let

L∞(M) ≡M , L2(M) = H , L1(M) =M∗ , (6.2.1)

where M∗ is the pre-dual of M defined by linear functionals in M. One has M ∗
∗ =M.
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(c) The conjugation x → x∗ is isometric in M and defines a map M→ L2(M) via x → xΩ.
The map S0;xΩ→ x∗Ω is however non-isometric.

(d) Denote by S the closure of the anti-linear operator S0 and by S = J∆1/2 its polar de-
composition analogous that for complex number and generalizing polar decomposition of
linear operators by replacing (almost) unitary operator with anti-unitary J . Therefore
∆ = S∗S > 0 is positive self-adjoint and J an anti-unitary involution. The non-triviality
of ∆ reflects the fact that the state is not trace so that hermitian conjugation represented
by S in the state space brings in additional factor ∆1/2.

(e) What x can be is puzzling to physicists. The restriction fermionic Fock space and thus to
creation operators would imply that ∆ would act non-trivially only vacuum state so that
∆ > 0 condition would not hold true. The resolution of puzzle is the allowance of tensor
product of Fock spaces for which vacua are conjugates: only this gives cyclic and separating
state. This is natural in zero energy ontology.

The basic results of Tomita-Takesaki theory are following.

(a) The basic result can be summarized through the following formulas

∆itM∆−it =M , JMJ =M′ .

(b) The latter formula implies that M and M′ are isomorphic algebras. The first formula
implies that a one parameter group of modular automorphisms characterizes partially the
factor. The physical meaning of modular automorphisms is discussed in [A83, A148] ∆
is Hermitian and positive definite so that the eigenvalues of log(∆) are real but can be
negative. ∆it is however not unitary for factors of type II and III. Physically the non-
unitarity must relate to the fact that the flow is contracting so that hermiticity as a local
condition is not enough to guarantee unitarity.

(c) ω → σωt = Ad∆it defines a canonical evolution -modular automorphism- associated with ω
and depending on it. The ∆:s associated with different ω:s are related by a unitary inner
automorphism so that their equivalence classes define an invariant of the factor.

Tomita-Takesaki theory gives rise to a non-commutative measure theory which is highly non-
trivial. In particular the spectrum of ∆ can be used to classify the factors of type II and III.

Modular automorphisms

Modular automorphisms of factors are central for their classification.

(a) One can divide the automorphisms to inner and outer ones. Inner automorphisms corre-
spond to unitary operators obtained by exponentiating Hermitian Hamiltonian belonging
to the factor and connected to identity by a flow. Outer automorphisms do not allow a
representation as a unitary transformations although log(∆) is formally a Hermitian oper-
ator.

(b) The fundamental group of the type II1 factor defined as fundamental group group of cor-
responding II∞ factor characterizes partially a factor of type II1. This group consists real
numbers λ such that there is an automorphism scaling the trace by λ. Fundamental group
typically contains all reals but it can be also discrete and even trivial.

(c) Factors of type III allow a one-parameter group of modular automorphisms, which can be
used to achieve a partial classification of these factors. These automorphisms define a flow
in the center of the factor known as flow of weights. The set of parameter values λ for which
ω is mapped to itself and the center of the factor defined by the identity operator (projector
to the factor as a sub-algebra of B(H)) is mapped to itself in the modular automorphism
defines the Connes spectrum of the factor. For factors of type IIIλ this set consists of
powers of λ < 1. For factors of type III0 this set contains only identity automorphism
so that there is no periodicity. For factors of type III1 Connes spectrum contains all real
numbers so that the automorphisms do not affect the identity operator of the factor at all.
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The modules over a factor correspond to separable Hilbert spaces that the factor acts on. These
modules can be characterized by M-dimension. The idea is roughly that complex rays are
replaced by the sub-spaces defined by the action of M as basic units. M-dimension is not
integer valued in general. The so called standard module has a cyclic separating vector and each
factor has a standard representation possessing antilinear involution J such that M′ = JMJ
holds true (note that J changes the order of the operators in conjugation). The inclusions of
factors define modules having interpretation in terms of a finite measurement resolution defined
by M.

Crossed product as a manner to construct factors of type III

By using so called crossed product [A11] for a groupG acting in algebra A one can obtain new von
Neumann algebras. One ends up with crossed product by a two-step generalization by starting
from the semidirect product G / H for groups defined as (g1, h1)(g2, h2) = (g1h1(g2), h1h2)
(note that Poincare group has interpretation as a semidirect product M4 / SO(3, 1) of Lorentz
and translation groups). At the first step one replaces the group H with its group algebra.
At the second step the the group algebra is replaced with a more general algebra. What is
formed is the semidirect product A / G which is sum of algebras Ag. The product is given
by (a1, g1)(a2, g2) = (a1g1(a2), g1g2). This construction works for both locally compact groups
and quantum groups. A not too highly educated guess is that the construction in the case of
quantum groups gives the factorM as a crossed product of the included factor N and quantum
group defined by the factor space M/N .

The construction allows to express factors of type III as crossed products of factors of type
II∞ and the 1-parameter group G of modular automorphisms assignable to any vector which is
cyclic for both factor and its commutant. The ergodic flow θλ scales the trace of projector in
II∞ factor by λ > 0. The dual flow defined by G restricted to the center of II∞ factor does not
depend on the choice of cyclic vector.

The Connes spectrum - a closed subgroup of positive reals - is obtained as the exponent of the
kernel of the dual flow defined as set of values of flow parameter λ for which the flow in the
center is trivial. Kernel equals to {0} for III0, contains numbers of form log(λ)Z for factors of
type IIIλ and contains all real numbers for factors of type III1 meaning that the flow does not
affect the center.

6.2.2 Inclusions and Connes tensor product

Inclusions N ⊂ M of von Neumann algebras have physical interpretation as a mathematical
description for sub-system-system relation. In [K86] there is more extensive TGD colored de-
scription of inclusions and their role in TGD. Here only basic facts are listed and the Connes
tensor product is explained.

For type I algebras the inclusions are trivial and tensor product description applies as such. For
factors of II1 and III the inclusions are highly non-trivial. The inclusion of type II1 factors
were understood by Vaughan Jones [A5] and those of factors of type III by Alain Connes [A77]
.

Formally sub-factor N of M is defined as a closed ∗-stable C-subalgebra of M. Let N be a
sub-factor of type II1 factor M. Jones index M : N for the inclusion N ⊂ M can be defined
asM : N = dimN (L2(M)) = TrN ′(idL2(M)). One can say that the dimension of completion of
M as N module is in question.

Basic findings about inclusions

What makes the inclusions non-trivial is that the position of N in M matters. This position
is characterized in case of hyper-finite II1 factors by index M : N which can be said to the
dimension of M as N module and also as the inverse of the dimension defined by the trace of
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the projector from M to N . It is important to notice that M : N does not characterize either
M or M, only the imbedding.

The basic facts proved by Jones are following [A5] .

(a) For pairs N ⊂M with a finite principal graph the values of M : N are given by

a) M : N = 4cos2(π/h) , h ≥ 3 ,

b) M : N ≥ 4 .
(6.2.2)

the numbers at right hand side are known as Beraha numbers [A129] . The comments
below give a rough idea about what finiteness of principal graph means.

(b) As explained in [B44] , forM : N < 4 one can assign to the inclusion Dynkin graph of ADE
type Lie-algebra g with h equal to the Coxeter number h of the Lie algebra given in terms
of its dimension and dimension r of Cartan algebra r as h = (dimg(g) − r)/r. The Lie
algebras of SU(n), E7 and D2n+1 are however not allowed. For M : N = 4 one can assign
to the inclusion an extended Dynkin graph of type ADE characterizing Kac Moody algebra.
Extended ADE diagrams characterize also the subgroups of SU(2) and the interpretation
proposed in [A106] is following. The ADE diagrams are associated with the n = ∞ case
having M : N ≥ 4. There are diagrams corresponding to infinite subgroups: SU(2) itself,
circle group U(1), and infinite dihedral groups (generated by a rotation by a non-rational
angle and reflection. The diagrams corresponding to finite subgroups are extension of An
for cyclic groups, of Dn dihedral groups, and of En with n=6,7,8 for tedrahedron, cube,
dodecahedron. For M : N < 4 ordinary Dynkin graphs of D2n and E6, E8 are allowed.

Connes tensor product

The inclusions The basic idea of Connes tensor product is that a sub-space generated sub-factor
N takes the role of the complex ray of Hilbert space. The physical interpretation is in terms
of finite measurement resolution: it is not possible to distinguish between states obtained by
applying elements of N .

Intuitively it is clear that it should be possible to decompose M to a tensor product of factor
space M/N and N :

M = M/N ⊗N . (6.2.3)

One could regard the factor space M/N as a non-commutative space in which each point
corresponds to a particular representative in the equivalence class of points defined by N . The
connections between quantum groups and Jones inclusions suggest that this space closely relates
to quantum groups. An alternative interpretation is as an ordinary linear space obtained by
mapping N rays to ordinary complex rays. These spaces appear in the representations of
quantum groups. Similar procedure makes sense also for the Hilbert spaces in which M acts.

Connes tensor product can be defined in the space M⊗M as entanglement which effectively
reduces to entanglement between N sub-spaces. This is achieved if N multiplication from right
is equivalent with N multiplication from left so that N acts like complex numbers on states.
One can imagine variants of the Connes tensor product and in TGD framework one particular
variant appears naturally as will be found.

In the finite-dimensional case Connes tensor product of Hilbert spaces has a rather simple
representation. If the matrix algebra N of n × n matrices acts on V from right, V can be
regarded as a space formed by m × n matrices for some value of m. If N acts from left on W ,
W can be regarded as space of n× r matrices.
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(a) In the first representation the Connes tensor product of spaces V and W consists of m× r
matrices and Connes tensor product is represented as the product VW of matrices as
(VW )mre

mr. In this representation the information about N disappears completely as the
interpretation in terms of measurement resolution suggests. The sum over intermediate
states defined by N brings in mind path integral.

(b) An alternative and more physical representation is as a state∑
n

VmnWnre
mn ⊗ enr

in the tensor product V ⊗W .

(c) One can also consider two spaces V and W in which N acts from right and define Connes
tensor product for A† ⊗N B or its tensor product counterpart. This case corresponds
to the modification of the Connes tensor product of positive and negative energy states.
Since Hermitian conjugation is involved, matrix product does not define the Connes tensor
product now. For m = r case entanglement coefficients should define a unitary matrix
commuting with the action of the Hermitian matrices of N and interpretation would be in
terms of symmetry. HFF property would encourage to think that this representation has
an analog in the case of HFFs of type II1.

(d) Also type In factors are possible and for them Connes tensor product makes sense if one
can assign the inclusion of finite-D matrix algebras to a measurement resolution.

6.2.3 Factors in quantum field theory and thermodynamics

Factors arise in thermodynamics and in quantum field theories [A114, A83, A148] . There are
good arguments showing that in HFFS of III1 appear are relativistic quantum field theories. In
non-relativistic QFTs the factors of type I appear so that the non-compactness of Lorentz group
is essential. Factors of type III1 and IIIλ appear also in relativistic thermodynamics.

The geometric picture about factors is based on open subsets of Minkowski space. The basic
intuitive view is that for two subsets of M4, which cannot be connected by a classical signal
moving with at most light velocity, the von Neumann algebras commute with each other so that
∨ product should make sense.

Some basic mathematical results of algebraic quantum field theory [A148] deserve to be listed
since they are suggestive also from the point of view of TGD.

(a) Let O be a bounded region of R4 and define the region of M4 as a union ∪|x|<ε(O + x)
where (O+x) is the translate of O and |x| denotes Minkowski norm. Then every projection
E ∈M(O) can be written as WW ∗ with W ∈M(Oε) and W ∗W = 1. Note that the union
is not a bounded set of M4. This almost establishes the type III property.

(b) Both the complement of light-cone and double light-cone define HFF of type III1. Lorentz
boosts induce modular automorphisms.

(c) The so called split property suggested by the description of two systems of this kind as a
tensor product in relativistic QFTs is believed to hold true. This means that the HFFs
of type III1 associated with causally disjoint regions are sub-factors of factor of type I∞.
This means

M1 ⊂ B(H1)× 1 , M2 ⊂ 1⊗ B(H2) .

An infinite hierarchy of inclusions of HFFS of type III1s is induced by set theoretic inclu-
sions.

6.2.4 TGD and factors

The following vision about TGD and factors relies heavily on zero energy ontology, TGD inspired
quantum measurement theory, basic vision about quantum TGD, and bosonic emergence.
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The problems

Concerning the role of factors in TGD framework there are several problems of both conceptual
and technical character.

1. Conceptual problems

It is safest to start from the conceptual problems and take a role of skeptic.

(a) Under what conditions the assumptions of Tomita-Takesaki formula stating the existence
of modular automorphism and isomorphy of the factor and its commutant hold true? What
is the physical interpretation of the formulaM′ = JMJ relating factor and its commutant
in TGD framework?

(b) Is the identification M = ∆it sensible is quantum TGD and zero energy ontology, where
M-matrix is ”complex square root” of exponent of Hamiltonian defining thermodynamical
state and the notion of unitary time evolution is given up? The notion of state ω leading
to ∆ is essentially thermodynamical and one can wonder whether one should take also a
”complex square root” of ω to get M-matrix giving rise to a genuine quantum theory.

(c) TGD based quantum measurement theory involves both quantum fluctuating degrees of
freedom assignable to light-like 3-surfaces and zero modes identifiable as classical degrees
of freedom assignable to interior of the space-time sheet. Zero modes have also fermionic
counterparts. State preparation should generate entanglement between the quantal and
classical states. What this means at the level of von Neumann algebras?

(d) What is the TGD counterpart for causal disjointness. At space-time level different space-
time sheets could correspond to such regions whereas at imbedding space level causally
disjoint CDs would represent such regions.

2. Technical problems

There are also more technical questions.

(a) What is the von Neumann algebra needed in TGD framework? Does one have a a direct
integral over factors? Which factors appear in it? Can one construct the factor as a crossed
product of some group G with direct physical interpretation and of naturally appearing
factor A? Is A a HFF of type II∞? assignable to a fixed CD? What is the natural Hilbert
space H in which A acts?

(b) What are the geometric transformations inducing modular automorphisms of II∞ inducing
the scaling down of the trace? Is the action of G induced by the boosts in Lorentz group.
Could also translations and scalings induce the action? What is the factor associated with
the union of Poincare transforms of CD? log(∆) is Hermitian algebraically: what does the
non-unitarity of exp(log(∆)it) mean physically?

(c) Could Ω correspond to a vacuum which in conformal degrees of freedom depends on the
choice of the sphere S2 defining the radial coordinate playing the role of complex variable in
the case of the radial conformal algebra. Does ∗-operation in M correspond to Hermitian
conjugation for fermionic oscillator operators and change of sign of super conformal weights?

The exponent of the modified Dirac action gives rise to the exponent of Kähler function as Dirac
determinant and fermionic inner product defined by fermionic Feynman rules. It is implausible
that this exponent could as such correspond to ω or ∆it having conceptual roots in thermody-
namics rather than QFT. If one assumes that the exponent of the modified Dirac action defines
a ”complex square root” of ω the situation changes. This raises technical questions relating to
the notion of square root of ω.

(a) Does the complex square root of ω have a polar decomposition to a product of positive
definite matrix (square root of the density matrix) and unitary matrix and does ω1/2

correspond to the modulus in the decomposition? Does the square root of ∆ have similar
decomposition with modulus equal equal to ∆1/2 in standard picture so that modular
automorphism, which is inherent property of von Neumann algebra, would not be affected?
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(b) ∆it or rather its generalization is defined modulo a unitary operator defined by some
Hamiltonian and is therefore highly non-unique as such. This non-uniqueness applies also
to |∆|. Could this non-uniqueness correspond to the thermodynamical degrees of freedom?

Zero energy ontology and factors

The first question concerns the identification of the Hilbert space associated with the factors in
zero energy ontology. As the positive or negative energy part of the zero energy state space or
as the entire space of zero energy states? The latter option would look more natural physically
and is forced by the condition that the vacuum state is cyclic and separating.

(a) The commutant of HFF given asM′ = JMJ , where J is involution transforming fermionic
oscillator operators and bosonic vector fields to their Hermitian conjugates. Also conformal
weights would change sign in the map which conforms with the view that the light-like
boundaries of CD are analogous to upper and lower hemispheres of S2 in conformal field
theory. The presence of J representing essentially Hermitian conjugation would suggest
that positive and zero energy parts of zero energy states are related by this formula so
that state space decomposes to a tensor product of positive and negative energy states and
M -matrix can be regarded as a map between these two sub-spaces.

(b) The fact that HFF of type II1 has the algebra of fermionic oscillator operators as a canon-
ical representation makes the situation puzzling for a novice. The assumption that the
vacuum is cyclic and separating means that neither creation nor annihilation operators
can annihilate it. Therefore Fermionic Fock space cannot appear as the Hilbert space in
the Tomita-Takesaki theorem. The paradox is circumvented if the action of ∗ transforms
creation operators acting on the positive energy part of the state to annihilation operators
acting on negative energy part of the state. If J permutes the two Fock vacuums in their
tensor product, the action of S indeed maps permutes the tensor factors associated with
M and M′.

It is far from obvious whether the identification M = ∆it makes sense in zero energy ontology.

(a) In zero energy ontology M -matrix defines time-like entanglement coefficients between pos-
itive and negative energy parts of the state. M -matrix is essentially ”complex square root”
of the density matrix and quantum theory similar square root of thermodynamics. The
notion of state as it appears in the theory of HFFS is however essentially thermodynamical.
Therefore it is good to ask whether the ”complex square root of state” could make sense
in the theory of factors.

(b) Quantum field theory suggests an obvious proposal concerning the meaning of the square
root: one replaces exponent of Hamiltonian with imaginary exponential of action at T → 0
limit. In quantum TGD the exponent of modified Dirac action giving exponent of Kähler
function as real exponent could be the manner to take this complex square root. Modified
Dirac action can therefore be regarded as a ”square root” of Kähler action.

(c) The identification M = ∆it relies on the idea of unitary time evolution which is given
up in zero energy ontology based on CDs? Is the reduction of the quantum dynamics to
a flow a realistic idea? As will be found this automorphism could correspond to a time
translation or scaling for either upper or lower light-cone defining CD and can ask whether
∆it corresponds to the exponent of scaling operator L0 defining single particle propagator
as one integrates over t. Its complex square root would correspond to fermionic propagator.

(d) In this framework J∆it would map the positive energy and negative energy sectors to
each other. If the positive and negative energy state spaces can identified by isometry then
M = J∆it identification can be considered but seems unrealistic. S = J∆1/2 maps positive
and negative energy states to each other: could S or its generalization appear in M -matrix
as a part which gives thermodynamics? The exponent of the modified Dirac action does
not seem to provide thermodynamical aspect and p-adic thermodynamics suggests strongly
the presence exponent of exp(−L0/Tp) with Tp chose in such manner that consistency with
p-adic thermodynamics is obtained. Could the generalization of J∆n/2 with ∆ replaced
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with its ”square root” give rise to padic thermodynamics and also ordinary thermodynam-
ics at the level of density matrix? The minimal option would be that power of ∆it which
imaginary value of t is responsible for thermodynamical degrees of freedom whereas every-
thing else is dictated by the unitary S-matrix appearing as phase of the ”square root” of
ω.

Zero modes and factors

The presence of zero modes justifies quantum measurement theory in TGD framework and the
relationship between zero modes and HFFS involves further conceptual problems.

(a) The presence of zero modes means that one has a direct integral over HFFs labeled by
zero modes which by definition do not contribute to the configuration space line element.
The realization of quantum criticality in terms of modified Dirac action [K15] suggests
that also fermionic zero mode degrees of freedom are present and correspond to conserved
charges assignable to the critical deformations of the pace-time sheets. Induced Kähler
form characterizes the values of zero modes for a given space-time sheet and the symplectic
group of light-cone boundary characterizes the quantum fluctuating degrees of freedom.
The entanglement between zero modes and quantum fluctuating degrees of freedom is
essential for quantum measurement theory. One should understand this entanglement.

(b) Physical intuition suggests that classical observables should correspond to longer length
scale than quantal ones. Hence it would seem that the interior degrees of freedom outside
CD should correspond to classical degrees of freedom correlating with quantum fluctuating
degrees of freedom of CD.

(c) Quantum criticality means that modified Dirac action allows an infinite number of con-
served charges which correspond to deformations leaving metric invariant and therefore
act on zero modes. Does this super-conformal algebra commute with the super-conformal
algebra associated with quantum fluctuating degrees of freedom? Could the restriction
of elements of quantum fluctuating currents to 3-D light-like 3-surfaces actually imply
this commutativity. Quantum holography would suggest a duality between these algebras.
Quantum measurement theory suggests even 1-1 correspondence between the elements of
the two super-conformal algebras. The entanglement between classical and quantum de-
grees of freedom would mean that prepared quantum states are created by operators for
which the operators in the two algebras are entangled in diagonal manner.

(d) The notion of finite measurement resolution has become key element of quantum TGD and
one should understand how finite measurement resolution is realized in terms of inclusions
of hyper-finite factors for which sub-factor defines the resolution in the sense that its action
creates states not distinguishable from each other in the resolution used. The notion of finite
measurement resolution suggests that one should speak about entanglement between sub-
factors and corresponding sub-spaces rather than between states. Connes tensor product
would code for the idea that the action of sub-factors is analogous to that of complex
numbers and tracing over sub-factor realizes this idea.

(e) Just for fun one can ask whether the duality between zero modes and quantum fluctuating
degrees of freedom representing quantum holography could correspond to M′ = JMJ?
This interpretation must be consistent with the interpretation forced by zero energy ontol-
ogy. If this crazy guess is correct (very probably not!), both positive and negative energy
states would be observed in quantum measurement but in totally different manner. Since
this identity would simplify enormously the structure of the theory, it deserves therefore to
be shown wrong.

Crossed product construction in TGD framework

The identification of the von Neumann algebra by crossed product construction is the basic chal-
lenge. Consider first the question how HFFs of type II∞ emerge, how modular automorphisms
act on them, and how one can understand the non-unitary character of the ∆it in an apparent
conflict with the hermiticity and positivity of ∆.
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(a) The Clifford algebra at a given point of WCW(CD) (light-like 3-surfaces with ends at the
boundaries of CD) defines HFF of type II1 or possibly a direct integral of them. For a
given CD having compact isotropy group SO(3) leaving the rest frame defined by the tips
of CD invariant the factor defined by Clifford algebra valued fields in WCW(CD) is most
naturally HFF of type II∞. The Hilbert space in which this Clifford algebra acts, consists
of spinor fields in WCW(CD). Also the symplectic transformations of light-cone boundary
leaving light-like 3-surfaces inside CD can be included to G. In fact all conformal algebras
leaving CD invariant could be included in CD.

(b) The downwards scalings of the radial coordinate rM of the light-cone boundary applied
to the basis of WCW (CD) spinor fields could induce modular automorphism. These
scalings reduce the size of the portion of light-cone in which the WCW spinor fields are
non-vanishing and effectively scale down the size of CD. exp(iL0) as algebraic operator acts
as a phase multiplication on eigen states of conformal weight and therefore as apparently
unitary operator. The geometric flow however contracts the CD so that the interpretation
of exp(itL0) as a unitary modular automorphism is not possible. The scaling down of CD
reduces the value of the trace if it involves integral over the boundary of CD. A similar
reduction is implied by the downward shift of the upper boundary of CD so that also time
translations would induce modular automorphism. These shifts seem to be necessary to
define rest energies of positive and negative energy parts of the zero energy state.

(c) The non-triviality of the modular automorphisms of II∞ factor reflects different choices
of ω. The degeneracy of ω could be due to the non-uniqueness of conformal vacuum
which is part of the definition of ω. The radial Virasoro algebra of light-cone boundary
is generated by Ln = L∗−n, n 6= 0 and L0 = L∗0 and negative and positive frequencies are
in asymmetric position. The conformal gauge is fixed by the choice of SO(3) subgroup
of Lorentz group defining the slicing of light-cone boundary by spheres and the tips of
CD fix SO(3) uniquely. One can however consider also alternative choices of SO(3) and
each corresponds to a slicing of the light-cone boundary by spheres but in general the
sphere defining the intersection of the two light-cone does not belong to the slicing. Hence
the action of Lorentz transformation inducing different choice of SO(3) can lead out from
the preferred state space so that its representation must be non-unitary unless Virasoro
generators annihilate the physical states. The non-vanishing of the conformal central charge
c and vacuum weight h seems to be necessary and indeed can take place for super-symplectic
algebra and Super Kac-Moody algebra since only the differences of the algebra elements
are assumed to annihilate physical states.

Modular automorphism of HFFs type III1 can be induced by several geometric transforma-
tions for HFFs of type III1 obtained using the crossed product construction from II∞ factor by
extending CD to a union of its Lorentz transforms.

(a) The crossed product would correspond to an extension of II∞ by allowing a union of some
geometric transforms of CD. If one assumes that only CDs for which the distance between
tips is quantized in powers of 2, then scalings of either upper or lower boundary of CD
cannot correspond to these transformations. Same applies to time translations acting on
either boundary but not to ordinary translations. As found, the modular automorphisms
reducing the size of CD could act in HFF of type II∞.

(b) The geometric counterparts of the modular transformations would most naturally corre-
spond to any non-compact one parameter sub-group of Lorentz group as also QFT suggests.
The Lorentz boosts would replace the radial coordinate rM of the light-cone boundary as-
sociated with the radial Virasoro algebra with a new one so that the slicing of light-cone
boundary with spheres would be affected and one could speak of a new conformal gauge.
The temporal distance between tips of CD in the rest frame would not be affected. The
effect would seem to be however unitary because the transformation does not only modify
the states but also transforms CD.

(c) Since Lorentz boosts affect the isotropy group SO(3) of CD and thus also the conformal
gauge defining the radial coordinate of the light-cone boundary, they affect also the defi-
nition of the conformal vacuum so that also ω is affected so that the interpretation as a
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modular automorphism makes sense. The simplistic intuition of the novice suggests that
if one allows wave functions in the space of Lorentz transforms of CD, unitarity of ∆it is
possible. Note that the hierarchy of Planck constants assigns to CD preferred M2 and thus
direction of quantization axes of angular momentum and boosts in this direction would be
in preferred role.

(d) One can also consider the HFF of type IIIλ if the radial scalings by negative powers of
2 correspond to the automorphism group of II∞ factor as the vision about allowed CDs
suggests. λ = 1/2 would naturally hold true for the factor obtained by allowing only the
radial scalings. Lorentz boosts would expand the factor to HFF of type III1. Why scalings
by powers of 2 would give rise to periodicity should be understood.

The identification of M -matrix as modular automorphism ∆it, where t is complex number having
as its real part the temporal distance between tips of CD quantized as 2n and temperature as
imaginary part, looks at first highly attractive, since it would mean that M -matrix indeed
exists mathematically. The proposed interpretations of modular automorphisms do not support
the idea that they could define the S-matrix of the theory. In any case, the identification as
modular automorphism would not lead to a magic universal formula since arbitrary unitary
transformation is involved.

6.2.5 Can one identify M-matrix from physical arguments?

Consider next the identification of M -matrix from physical arguments.

Basic physical picture

The following physical picture could help in the attempt to guess what the complex square root
of ω is and also whether this idea makes sense at all. Consider first quantum TGD proper.

(a) The exponent of Kähler function identified as Kähler action for preferred extremals defines
the bosonic vacuum functional appearing in the functional integral over WCW(CD). The
exponent of Kähler function depends on the real part of t identified as Minkowski distance
between the tips of CD. This dependence is not consistent with the dependence of ∆it

on t and the natural interpretation is that the vacuum functional can be included in the
definition of the inner product for spinors fields of WCW . More formally, the exponent of
Kähler function defines ω in bosonic degrees of freedom.

(b) One can assign to the modified Dirac action Dirac determinant identified tentatively as the
exponent of Kähler function. This determinant is defined as the product of the generalized
eigenvalues of a 3-dimensional modified Dirac operator assignable to light-like 3-surfaces.
The definition relies on quantum holography involving the slicing of space-time surface both
by light-like 3-surfaces and by string world sheets. Hence also Kähler coupling strength
follows as a prediction so that the theory involves therefore no free coupling parameters.
Kähler function is defined only apart from an additive term which is sum of holomorphic and
anti-holomorphic functions of the configuration space and this would naturally correspond
to the effect of the modular automorphism. I have proposed that the choices of a particular
light-like 3-surface in the slicing of X4 by light-like 3-surfaces at which vacuum functional is
defined as Dirac determinant can differ by this kind of term having therefore interpretation
also as a modular automorphism for a factor of type II∞.

(c) Quantum criticality -implied by the condition that the modified Dirac action gives rise
to conserved currents assignable to the deformations of the space-time surface - means
the vanishing of the second variation of Kähler action for these deformations. Preferred
extremals correspond to these 4-surfaces and M8 −M4 × CP2 duality allows to identify
them also as hyper-quaternionic space-time surfaces.

(d) Second quantized spinor fields are the only quantum fields appearing at the space-time
level. This justifies to the notion of bosonic emergence [K58] , which means that gauge
bosons and possible counterpart of Higgs particle are identified as bound states of fermion
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and antifermion at opposite light-like throats of wormhole contact. This suggests that the
M -matrix should allow a formulation solely in terms of the modified Dirac action.

HFFs and the definition of Dirac determinant

The definition of the Dirac determinant -call it det(D)- discussed in [K15] involves two assump-
tions. First, finite measurement resolution is assumed to correspond to a replacement of light-like
3-surfaces with braids whose strands carry fermion number. Secondly, the quantum holography
justifies the assumption about dimensional reduction to a determinant assignable to 3-D Dirac
operator.

(a) The finiteness of the trace for HFF of type II1 indeed encourages the question whether one
could define det(D) as the exponent of the trace of the logarithm of 3-D Dirac operator D3

even without the assumption of finite measurement resolution. The trace would be induced
from the trace of the tensor product of hyper-finite factor of type II1 and factor of type I.

(b) One might wonder whether holography could allow to define det(D) also in terms of the
4-D modified Dirac operator. The basic problem is of course that only the spinor fields
satisfying D4Ψ = 0 are allowed and eigenvalue equation in standard sense breaks baryon
and lepton number conservation. The critical deformation representing zero modes might
however allow to circumvent this difficulty. The modified Dirac equation DΨ = 0 holding
true for the 4-surfaces obtained as critical deformations can be written in the form D0Ψ =
D0δΨ = −δDΨ, where the subscript 0 refers to the non-deformed surface and one has
δΨ = OΨ0 which involves propagator defined by D4. Maybe one could define det(D) as
the determinant of the operator −δD by identifying it as the exponent of the trace of
the operator log(−δD). This would require a division by the deformation parameter δt at
both sides of the modified Dirac equation and means only the elimination of an infinite
proportionality factor from the determinant.

Bosonic emergence and QFT limit of TGD

The QFT limit of TGD gives further valuable hints about the formulation of quantum TGD
proper. In QFT limit Dirac action coupled to gauge potentials (and possibly the TGD coun-
terpart of Higgs) defines the theory and bosonic propagators and vertices involving bosons as
external particles emerge as radiative corrections [K58] . There are no free coupling constants
in the theory.

(a) The construction involves at the first step the coupling of spinor fields Ψ to fermionic sources
ξ leading to an expression of the effective action as a functional of gauge potentials and ξ
containing the counterpart of YM action in the purely bosonic sector plus interaction terms
representing N-boson vertices. Bosonic dynamics is therefore generated purely radiatively
in accordance with the emergence idea. At the next step the coupling to external YM
currents leads to Feynman rules in the standard manner.

(b) The inverse of the bosonic propagator and N-boson vertices correspond to fermionic loops
and coupling constants are predicted completely in terms of them provided one can define
the loop integrals uniquely.

(c) Fermionic loops do not make sense without cutoff in both mass squared and hyperbolic
angle defining the maximum Lorentz boost which can be applied to a virtual fermion in
the rest system of the virtual gauge boson. Zero energy ontology realized in terms of a
hierarchy of CDs provides a physical justification for the hierarchy of hyperbolic cutoffs.
p-Adic length scale hypothesis (the sizes of CDs come in powers of 2) allows to decompose
momentum space to shells corresponding to mass squared intervals [n, n + 1) using CP2

mass squared as a unit. The hyperbolic cutoff can depend on p-adic mass scale and can
differ for time-like and space-like momenta: the relationship between these cutoffs is fixed
from the condition that gauge bosons do not generate mass radiatively. One can find a
simple ansatz for the hyperbolic cutoff consistent with the coupling constant evolution in
standard model. The vanishing of all on-mass-shell N > 2-boson vertices defined by the
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fermionic loops states their irreducibility to lower vertices and serves as a candidate for the
condition fixing the hyperbolic cutoff as a function of the p-adic mass scale.

A proposal for M-matrix

This picture can be taken as a template as one tries to to imagine how the construction of
M -matrix could proceed in quantum TGD proper.

(a) Modified Dirac action should replace the ordinary Dirac action and define the theory.
The linear couplings of spinors to fermionic external currents are needed. Also bosons
represented as bound states of fermion and antifermion to the analogs of gauge currents
are needed to construct the M -matrix and would correspond to an addition of quantum
part to induced spinor connection. One can consider also the addition of quantum parts to
the induced metric and induced gamma matrices.

(b) The couplings of the induced spinor fields to external sources would be given as contractions
of the fermionic sources with conformal super-currents. Conformal currents would couple
to bosonic external currents analogous to external YM currents and M -matrix would result
via the usual procedure leading to generalized Feynman diagrams for which sub-CDs would
contain vertices.

One cannot however argue that everything would be crystal clear.

(a) There are two kinds of super-conformal algebras corresponding to quantum fluctuating de-
grees of freedom and zero modes. The super-conformal algebra associated with the zero
modes follows from quantum criticality guaranteing the conservation of these currents.
These currents are defined in the interior of the space-time surface. By quantum hologra-
phy the quantum fluctuating super-conformal algebra is assigned with light-like 3-surfaces.
Both these algebras form a hierarchy of inclusions identifiable as counterparts for inclusions
of HFFs. Which of the two super-conformal algebras one should use? Does quantum holog-
raphy - interpreted as possibility of 1-1 entanglement between the two kinds of conformal
currents for prepared states- mean that one can use either of them to construct M -matrix?
How the dimensional reduction could be understood in terms of this duality?

(b) The bosonic conserved currents in the interior ofX4 implied by quantum criticality involve a
purely local pairing of the induced spinor field and its conjugate. The problem is that gauge
bosons as wormhole throats appearing in the dimensionally reduced description correspond
to a non-local (in CP2 scale) pairing of spinor field and its conjugate at opposite wormhole
throats. Should one accept as a fact that dimensionally reduced quantum fluctuating
counterparts for the purely local zero mode currents are bi-local?

(c) Only few days after posing these questions a plausible answer to them came through a
resolution of several problems related to the formulation of quantum TGD (see the section
”Handful of problems with a common resolution” of [K20] ). One important outcome of
the formulation allowing to understand how stringy fermionic propagators emerge from
the theory was that gravitational coupling vanishes for purely local composites of fermion
and antifermion represented by Kac-Moody algebra and super-conformal algebra associated
with critical deformations. Hence the only sensible identification of bosons seems to be as
wormhole throats.

(d) The construction of the bosonic propagators in terms of fermionic loops [K58] as functionals
integral over Grassmann variables generalizes. Fermionic loops correspond geometrically
to wormhole contacts having fermion and anti-fermion at their opposite light-like throats.
This implies a cutoff for momentum squared and hyperbolic angle of the virtual fermion
in the rest system of boson crucial for the absence of loop divergences. Hence bosonic
propagation is emergent as is also fermionic propagation which can be seen as induced by
the measurement interaction for momentum. This justifies the cutoffs due to the finite
measurement resolution.
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(e) It is essential that one first functionally integrates over the fermionic degrees of freedom and
over the small deformations of light-like 3-surfaces and only after that constructs diagrams
from tree diagrams with bosonic and fermionic lines by using generalized Cutkosky rules.
Here the generalization of twistors to 8-D context allowing to regard massive particles
as massless particles in 8-D framework is expected to be a crucial technical tool possibly
allowing to achieve summations over large classes of generalized Feynman diagrams. Also
the hierarchy of CDs is expected to be crucial in the construction.

The key idea is the addition of measurement interaction term to the modified Dirac action
coupling to the conserved currents defined by quantum critical deformations for which the sec-
ond variation of Kähler action vanishes. There remains a considerable freedom in choosing the
precise form of the measurement interaction but there is a long list of arguments supporting
the identification of the measurement interaction as the one defined by 3-D Chern-Simons term
assignable with wormhole throats so that the dynamics in the interior of space-time sheet is not
affected. This means that 3-D light-like wormhole throats carry induced spinor field which can
be regarded as independent degrees of freedom having the spinor fields at partonic 2-surfaces
as sources and acting as 3-D sources for the 4-D induced spinor field. The most general mea-
surement interaction would involve the corresponding coupling also for Kähler action but is
not physically motivated. Here are the arguments in favor of Chern-Simons Dirac action and
corresponding measurement interaction.

(a) A correlation between 4-D geometry of space-time sheet and quantum numbers is achieved
by the identification of exponent of Kähler function as Dirac determinant making possible
the entanglement of classical degrees of freedom in the interior of space-time sheet with
quantum numbers.

(b) Cartan algebra plays a key role not only at quantum level but also at the level of space-time
geometry since quantum critical conserved currents vanish for Cartan algebra of isometries
and the measurement interaction terms giving rise to conserved currents are possible only
for Cartan algebras. Furthermore, modified Dirac equation makes sense only for eigen
states of Cartan algebra generators. The hierarchy of Planck constants realized in terms
of the book like structure of the generalized imbedding space assigns to each CD (causal
diamond) preferred Cartan algebra: in case of Poincare algebra there are two of them
corresponding to linear and cylindrical M4 coordinates.

(c) Quantum holography and dimensional reduction hierarchy in which partonic 2-surface de-
fined fermionic sources for 3-D fermionic fields at light-like 3-surfaces Y 3

l in turn defining
fermionic sources for 4-D spinors find an elegant realization. Effective 2-dimensionality is
achieved if the replacement of light-like wormhole throat X3

l with light-like 3-surface Y 3
l

”parallel” with it in the definition of Dirac determinant corresponds to the U(1) gauge
transformation K → K + f + f for Kähler function of WCW so that WCW Kähler met-
ric is not affected. Here f is holomorphic function of WCW (”world of classical worlds”)
complex coordinates and arbitrary function of zero mode coordinates.

(d) An elegant description of the interaction between super-conformal representations realized
at partonic 2-surfaces and dynamics of space-time surfaces is achieved since the values of
Cartan charges are feeded to the 3-D Dirac equation which also receives mass term at
the same time. Almost topological QFT at wormhole throats results at the limit when
four-momenta vanish: this is in accordance with the original vision about TGD as almost
topological QFT.

(e) A detailed view about the physical role of quantum criticality results. Quantum criticality
fixes the values of Kähler coupling strength as the analog of critical temperature. Quantum
criticality implies that second variation of Kähler action vanishes for critical deformations
and the existence of conserved current except in the case of Cartan algebra of isometries.
Quantum criticality allows to fix the values of couplings appearing in the measurement
interaction by using the condition K → K + f + f . p-Adic coupling constant evolution
can be understood also and corresponds to scale hierarchy for the sizes of causal diamonds
(CDs). To achieve internal consistency the quantum critical deformations for Kähler action
must be also quantum critical for Chern-Simons action which implies that the deformations
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are orthogonal to Kähler magnetic field at each light-like 3-surface in the slicing of space-
time sheet by light-like 3-surfaces.

(f) CP breaking, irreversibility and the space-time description of dissipation are closely re-
lated. Also the interpretation of preferred extremals of Kähler action in regions where
[DC−S , DC−S,int] = 0 as asymptotic self organization patterns makes sense. Here DC−S de-
notes the 3-D modified Dirac operator associated with Chern-Simons action and DC−S,int
to the corresponding measurement interaction term expressible as superposition of cou-
plings to various observables to critical conserved currents.

(g) A radically new view about matter antimatter asymmetry based on zero energy ontology
emerges and one could understand the experimental absence of antimatter as being due to
the fact antimatter corresponds to negative energy states. The identification of bosons as
wormhole contacts is the only possible option in this framework.

(h) Almost stringy propagators and a consistency with the identification of wormhole throats
as lines of generalized Feynman diagrams is achieved. The notion of bosonic emergence
leads to a long sought general master formula for the M -matrix elements. The counterpart
for fermionic loop defining bosonic inverse propagator at QFT limit is wormhole contact
with fermion and cutoffs in mass squared and hyperbolic angle for loop momenta of fermion
and antifermion in the rest system of emitting boson have precise geometric counterpart.

On basis of above considerations it seems that the idea about ”complex square root” of ω
might make sense in quantum TGD and that different measurement interactions correspond to
various choices of ω. Also the modular automorphism would make sense and because of its non-
uniqueness ∆ could bring in the flexibility needed one wants thermodynamics. Stringy picture
forces to ask whether ∆ could in some situation be proportional exp(L0), where L0 represents
as the infinitesimal scaling generator of either super-symplectic algebra or super Kac-Moody
algebra (the choice does not matter since the differences of the generators annihilate physical
states in coset construction). This would allow to reproduce real thermodynamics consistent
with p-adic thermodynamics.

In string models exp(iL0τ) is identified as the time evolution operator at single particle level
whose integral over τ defines the propagator. The quantization for the sizes of CDs does not
however allow integration over t in this sense. Could the integration over projectors with traces
differing by scalings parameterized by t correspond to this integral? Or should one give up this
idea since modified Dirac operator defines a propagator in any case?

6.2.6 Finite measurement resolution and HFFs

The finite resolution of quantum measurement leads in TGD framework naturally to the notion
of quantum M -matrix for which elements have values in sub-factor N of HFF rather than being
complex numbers. M-matrix in the factor space M/N is obtained by tracing over N . The
condition that N acts like complex numbers in the tracing implies that M-matrix elements are
proportional to maximal projectors to N so that M-matrix is effectively a matrix in M/N and
situation becomes finite-dimensional. It is still possible to satisfy generalized unitarity conditions
but in general case tracing gives a weighted sum of unitary M-matrices defining what can be
regarded as a square root of density matrix.

About the notion of observable in zero energy ontology

Some clarifications concerning the notion of observable in zero energy ontology are in order.

(a) As in standard quantum theory observables correspond to hermitian operators acting on
either positive or negative energy part of the state. One can indeed define hermitian
conjugation for positive and negative energy parts of the states in standard manner.

(b) Also the conjugation A → JAJ is analogous to hermitian conjugation. It exchanges the
positive and negative energy parts of the states also maps the light-like 3-surfaces at the
upper boundary of CD to the lower boundary and vice versa. The map is induced by
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time reflection in the rest frame of CD with respect to the origin at the center of CD and
has a well defined action on light-like 3-surfaces and space-time surfaces. This operation
cannot correspond to the sought for hermitian conjugation since JAJ and A commute. The
formulation of quantum TGD in terms of the modified Dirac action requires the addition of
CP and T breaking fermionic counterpart of instanton term to the modified Dirac action.
An interesting question is what this term means from the point of view of the conjugation.

(c) Zero energy ontology gives Cartan sub-algebra of the Lie algebra of symmetries a special
status. Only Cartan algebra acting on either positive or negative states respects the zero
energy property but this is enough to define quantum numbers of the state. In absence of
symmetry breaking positive and negative energy parts of the state combine to form a state
in a singlet representation of group. Since only the net quantum numbers must vanish zero
energy ontology allows a symmetry breaking respecting a chosen Cartan algebra.

(d) In order to speak about four-momenta for positive and negative energy parts of the states
one must be able to define how the translations act on CDs. The most natural action is a
shift of the upper (lower) tip of CD. In the scale of entire CD this transformation induced
Lorentz boost fixing the other tip. The value of mass squared is identified as proportional
to the average of conformal weight in p-adic thermodynamics for the scaling generator L0

for either super-symplectic or Super Kac-Moody algebra.

Inclusion of HFFS as characterizer of finite measurement resolution at the level of
S-matrix

The inclusion N ⊂ M of factors characterizes naturally finite measurement resolution. This
means following things.

(a) Complex rays of state space resulting usually in an ideal state function reduction are re-
placed by N -rays since N defines the measurement resolution and takes the role of complex
numbers in ordinary quantum theory so that non-commutative quantum theory results.
Non-commutativity corresponds to a finite measurement resolution rather than something
exotic occurring in Planck length scales. The quantum Clifford algebraM/N creates phys-
ical states modulo resolution. The fact that N takes the role of gauge algebra suggests that
it might be necessary to fix a gauge by assigning to each element of M/N a unique ele-
ment of M. Quantum Clifford algebra with fractal dimension β =M : N creates physical
states having interpretation as quantum spinors of fractal dimension d =

√
β. Hence direct

connection with quantum groups emerges.

(b) The notions of unitarity, hermiticity, and eigenvalue generalize. The elements of unitary
and hermitian matrices and N -valued. Eigenvalues are Hermitian elements of N and
thus correspond entire spectra of Hermitian operators. The mutual non-commutativity
of eigenvalues guarantees that it is possible to speak about state function reduction for
quantum spinors. In the simplest case of a 2-component quantum spinor this means that
second component of quantum spinor vanishes in the sense that second component of spinor
annihilates physical state and second acts as element of N on it. The non-commutativity of
spinor components implies correlations between then and thus fractal dimension is smaller
than 2.

(c) The intuition about ordinary tensor products suggests that one can decompose Tr inM as

TrM(X) = TrM/N × TrN (X) . (6.2.4)

Suppose one has fixed gauge by selecting basis |rk〉 forM/N . In this case one expects that
operator in M defines an operator in M/N by a projection to the preferred elements of
M.

〈r1|X|r2〉 = 〈r1|TrN (X)|r2〉 . (6.2.5)
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(d) Scattering probabilities in the resolution defined byN are obtained in the following manner.
The scattering probability between states |r1〉 and |r2〉 is obtained by summing over the final
states obtained by the action of N from |r2〉 and taking the analog of spin average over the
states created in the similar from |r1〉. N average requires a division by Tr(PN ) = 1/M : N
defining fractal dimension of N . This gives

p(r1 → r2) = M : N × 〈r1|TrN (SPNS
†)|r2〉 . (6.2.6)

This formula is consistent with probability conservation since one has

∑
r2

p(r1 → r2) = M : N × TrN (SS†) =M : N × Tr(PN ) = 1 . (6.2.7)

(e) Unitarity at the level of M/N can be achieved if the unit operator Id for M can be
decomposed into an analog of tensor product for the unit operators ofM/N and N and M
decomposes to a tensor product of unitary M-matrices inM/N and N . For HFFs of type
II projection operators of N with varying traces are present and one expects a weighted
sum of unitary M-matrices to result from the tracing having interpretation in terms of
square root of thermodynamics.

(f) This argument assumes that N is HFF of type II1 with finite trace. For HFFs of type III1

this assumption must be given up. This might be possible if one compensates the trace
over N by dividing with the trace of the infinite trace of the projection operator to N .
This probably requires a limiting procedure which indeed makes sense for HFFs.

Quantum M-matrix

The description of finite measurement resolution in terms of inclusion N ⊂ M seems to boil
down to a simple rule. Replace ordinary quantum mechanics in complex number field C with
that in N . This means that the notions of unitarity, hermiticity, Hilbert space ray, etc.. are
replaced with their N counterparts.

The full M -matrix in M should be reducible to a finite-dimensional quantum M -matrix in the
state space generated by quantum Clifford algebra M/N which can be regarded as a finite-
dimensional matrix algebra with non-commuting N -valued matrix elements. This suggests that
full M -matrix can be expressed as M -matrix with N -valued elements satisfying N -unitarity
conditions.

Physical intuition also suggests that the transition probabilities defined by quantum S-matrix
must be commuting hermitian N -valued operators inside every row and column. The traces
of these operators give N -averaged transition probabilities. The eigenvalue spectrum of these
Hermitian matrices gives more detailed information about details below experimental resolution.
N -hermicity and commutativity pose powerful additional restrictions on the M -matrix.

Quantum M -matrix definesN -valued entanglement coefficients between quantum states withN -
valued coefficients. How this affects the situation? The non-commutativity of quantum spinors
has a natural interpretation in terms of fuzzy state function reduction meaning that quantum
spinor corresponds effectively to a statistical ensemble which cannot correspond to pure state.
Does this mean that predictions for transition probabilities must be averaged over the ensemble
defined by ”quantum quantum states”?

Quantum fluctuations and inclusions

Inclusions N ⊂ M of factors provide also a first principle description of quantum fluctuations
since quantum fluctuations are by definition quantum dynamics below the measurement resolu-
tion. This gives hopes for articulating precisely what the important phrase ”long range quantum
fluctuations around quantum criticality” really means mathematically.
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(a) Phase transitions involve a change of symmetry. One might hope that the change of the
symmetry group Ga×Gb could universally code this aspect of phase transitions. This need
not always mean a change of Planck constant but it means always a leakage between sectors
of imbedding space. At quantum criticality 3-surfaces would have regions belonging to at
least two sectors of H.

(b) The long range of quantum fluctuations would naturally relate to a partial or total leakage
of the 3-surface to a sector of imbedding space with larger Planck constant meaning zooming
up of various quantal lengths.

(c) For M -matrix inM/N regarded as calN module quantum criticality would mean a special
kind of eigen state for the transition probability operator defined by the M -matrix. The
properties of the number theoretic braids contributing to the M -matrix should characterize
this state. The strands of the critical braids would correspond to fixed points for Ga ×Gb
or its subgroup.

M-matrix in finite measurement resolution

The following arguments relying on the proposed identification of the space of zero energy states
give a precise formulation for M -matrix in finite measurement resolution and the Connes tensor
product involved. The original expectation that Connes tensor product could lead to a unique
M-matrix is wrong. The replacement of ω with its complex square root could lead to a unique
hierarchy of M-matrices with finite measurement resolution and allow completely finite theory
despite the fact that projectors have infinite trace for HFFs of type III1.

(a) In zero energy ontology the counterpart of Hermitian conjugation for operator is replaced
with M → JMJ permuting the factors. Therefore N ∈ N acting to positive (negative)
energy part of state corresponds to N → N ′ = JNJ acting on negative (positive) energy
part of the state.

(b) The allowed elements of N much be such that zero energy state remains zero energy state.
The superposition of zero energy states involved can however change. Hence one must have
that the counterparts of complex numbers are of form N = JN1J ∨N2, where N1 and N2

have same quantum numbers. A superposition of terms of this kind with varying quantum
numbers for positive energy part of the state is possible.

(c) The condition that N1i and N2i act like complex numbers in N -trace means that the effect
of JN1iJ∨N2i and JN2iJi∨N1i to the trace are identical and correspond to a multiplication
by a constant. If N is HFF of type II1 this follows from the decompositionM =M/N ⊗N
and from Tr(AB) = Tr(BA) assuming that M is of form M = MM/N × PN . Contrary
to the original hopes that Connes tensor product could fix the M-matrix there are no
conditions on MM/N which would give rise to a finite-dimensional M-matrix for Jones
inclusions. One can replaced the projector PN with a more general state if one takes this
into account in ∗ operation.

(d) In the case of HFFs of type III1 the trace is infinite so that the replacement of TrN with
a state ωN in the sense of factors looks more natural. This means that the counterpart of
∗ operation exchanging N1 and N2 represented as SAΩ = A∗Ω involves ∆ via S = J∆1/2.
The exchange of N1 and N2 gives altogether ∆. In this case the KMS condition ωN (AB) =
ωN∆A) guarantees the effective complex number property [A23] .

(e) Quantum TGD more or less requires the replacement of ω with its ”complex square root”
so that also a unitary matrix U multiplying ∆ is expected to appear in the formula for S
and guarantee the symmetry. One could speak of a square root of KMS condition [A23] in
this case. The QFT counterpart would be a cutoff involving path integral over the degrees
of freedom below the measurement resolution. In TGD framework it would mean a cutoff
in the functional integral over WCW and for the modes of the second quantized induced
spinor fields and also cutoff in sizes of causal diamonds. Discretization in terms of braids
replacing light-like 3-surfaces should be the counterpart for the cutoff.

(f) If one has M -matrix inM expressible as a sum of M -matrices of form MM/N ×MN with
coefficients which correspond to the square roots of probabilities defining density matrix
the tracing operation gives rise to square root of density matrix in M .
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Is universal M-matrix possible?

The realization of the finite measurement resolution could apply only to transition probabilities
in which N -trace or its generalization in terms of state ωN is needed. One might however dream
of something more.

(a) Maybe there exists a universal M-matrix in the sense that the same M-matrix gives the
M-matrices in finite measurement resolution for all inclusions N ⊂ M. This would mean
that one can write

M = MM/N ⊗MN (6.2.8)

for any physically reasonable choice of N . This would formally express the idea that M is
as near as possible to M-matrix of free theory. Also fractality suggests itself in the sense
that MN is essentially the same as MM in the same sense as N is same as M. It might
be that the trivial solution M = 1 is the only possible solution to the condition.

(b) MM/N would be obtained by the analog of TrN or ωN operation involving the ”complex
square root” of the state ω in case of HFFs of type III1. The QFT counterpart would be
path integration over the degrees of freedom below cutoff to get effective action.

(c) Universality probably requires assumptions about the thermodynamical part of the univer-
sal M-matrix. A possible alternative form of the condition is that it holds true only for
canonical choice of ”complex square root” of ω or for the S-matrix part of M :

S = SM/N ⊗ SN (6.2.9)

for any physically reasonable choice N .

(d) In TGD framework the condition would say that the M-matrix defined by the modified Dirac
action gives M-matrices in finite measurement resolution via the counterpart of integration
over the degrees of freedom below the measurement resolution.

An obvious counter argument against the universality is that if the M-matrix is ”complex square
root of state” cannot be unique and there are infinitely many choices related by a unitary
transformation induced by the flows representing modular automorphism giving rise to new
choices. This would actually be a well-come result and make possible quantum measurement
theory. In the section ”Handful of problems with a common resolution” it was found that
one must add to the modified Dirac action a measurement interaction term characterizing the
measured observables. This implies stringy propagation as well as space-time correlates for
quantum numbers characterizing the partonic states. These different modified Dirac actions
would give rise to different Kähler functions. The corresponding Kähler metrics would not
however differ if the real parts of the Kähler functions associated with the two choices differ by
a term f(Z) + f(Z), where Z denotes complex coordinates of WCW, the Kähler metric remains
the same. The function f can depend also on zero modes. If this is the case then one can allow
in given CD superpositions of WCW spinor fields for which the measurement interactions are
different.

Connes tensor product and space-like entanglement

Ordinary linear Connes tensor product makes sense also in positive/negative energy sector and
also now it makes sense to speak about measurement resolution. Hence one can ask whether
Connes tensor product should be posed as a constraint on space-like entanglement. The inter-
pretation could be in terms of the formation of bound states. The reducibility of HFFs and
inclusions means that the tensor product is not uniquely fixed and ordinary entanglement could
correspond to this kind of entanglement.

Also the counterpart of p-adic coupling constant evolution would makes sense. The interpre-
tation of Connes tensor product would be as the variance of the states with respect to some
subgroup of U(n) associated with the measurement resolution: the analog of color confinement
would be in question.
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2-vector spaces and entanglement modulo measurement resolution

John Baez and collaborators [A58] are playing with very formal looking formal structures ob-
tained by replacing vectors with vector spaces. Direct sum and tensor product serve as the basic
arithmetic operations for the vector spaces and one can define category of n-tuples of vectors
spaces with morphisms defined by linear maps between vectors spaces of the tuple. n-tuples
allow also element-wise product and sum. They obtain results which make them happy. For in-
stance, the category of linear representations of a given group forms 2-vector spaces since direct
sums and tensor products of representations as well as n-tuples make sense. The 2-vector space
however looks more or less trivial from the point of physics.

The situation could become more interesting in quantum measurement theory with finite mea-
surement resolution described in terms of inclusions of hyper-finite factors of type II1. The
reason is that Connes tensor product replaces ordinary tensor product and brings in interac-
tions via irreducible entanglement as a representation of finite measurement resolution. The
category in question could give Connes tensor products of quantum state spaces and describing
interactions. For instance, one could multiply M -matrices via Connes tensor product to obtain
category of M -matrices having also the structure of 2-operator algebra.

(a) The included algebra represents measurement resolution and this means that the infinite-
D sub-Hilbert spaces obtained by the action of this algebra replace the rays. Sub-factor
takes the role of complex numbers in generalized QM so that one obtains non-commutative
quantum mechanics. For instance, quantum entanglement for two systems of this kind
would not be between rays but between infinite-D subspaces corresponding to sub-factors.
One could build a generalization of QM by replacing rays with sub-spaces and it would
seem that quantum group concept does more or less this: the states in representations of
quantum groups could be seen as infinite-dimensional Hilbert spaces.

(b) One could speak about both operator algebras and corresponding state spaces modulo fi-
nite measurement resolution as quantum operator algebras and quantum state spaces with
fractal dimension defined as factor space like entities obtained from HFF by dividing with
the action of included HFF. Possible values of the fractal dimension are fixed completely for
Jones inclusions. Maybe these quantum state spaces could define the notions of quantum
2-Hilbert space and 2-operator algebra via direct sum and tensor production operations.
Fractal dimensions would make the situation interesting both mathematically and physi-
cally.

Suppose one takes the fractal factor spaces as the basic structures and keeps the information
about inclusion.

(a) Direct sums for quantum vectors spaces would be just ordinary direct sums with HFF
containing included algebras replaced with direct sum of included HFFs.

(b) The tensor products for quantum state spaces and quantum operator algebras are not
anymore trivial. The condition that measurement algebras act effectively like complex
numbers would require Connes tensor product involving irreducible entanglement between
elements belonging to the two HFFs. This would have direct physical relevance since this
entanglement cannot be reduced in state function reduction. The category would defined
interactions in terms of Connes tensor product and finite measurement resolution.

(c) The sequences of super-conformal symmetry breakings identifiable in terms of inclusions of
super-conformal algebras and corresponding HFFs could have a natural description using
the 2-Hilbert spaces and quantum 2-operator algebras.

6.2.7 Questions about quantum measurement theory in zero energy
ontology

Fractal hierarchy of state function reductions

In accordance with fractality, the conditions for the Connes tensor product at a given time
scale imply the conditions at shorter time scales. On the other hand, in shorter time scales the
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inclusion would be deeper and would give rise to a larger reducibility of the representation of N
in M. Formally, as N approaches to a trivial algebra, one would have a square root of density
matrix and trivial S-matrix in accordance with the idea about asymptotic freedom.

M -matrix would give rise to a matrix of probabilities via the expression P (P+ → P−) =
Tr[P+M

†P−M ], where P+ and P− are projectors to positive and negative energy energy N -
rays. The projectors give rise to the averaging over the initial and final states inside N ray.
The reduction could continue step by step to shorter length scales so that one would obtain a
sequence of inclusions. If the U -process of the next quantum jump can return the M -matrix
associated with M or some larger HFF, U process would be kind of reversal for state function
reduction.

Analytic thinking proceeding from vision to details; human life cycle proceeding from dreams
and wild actions to the age when most decisions relate to the routine daily activities; the progress
of science from macroscopic to microscopic scales; even biological decay processes: all these have
an intriguing resemblance to the fractal state function reduction process proceeding to to shorter
and shorter time scales. Since this means increasing thermality of M -matrix, U process as a
reversal of state function reduction might break the second law of thermodynamics.

The conservative option would be that only the transformation of intentions to action by U
process giving rise to new zero energy states can bring in something new and is responsible for
evolution. The non-conservative option is that the biological death is the U -process of the next
quantum jump leading to a new life cycle. Breathing would become a universal metaphor for
what happens in quantum Universe. The 4-D body would be lived again and again.

How quantum classical correspondence is realized at parton level?

Quantum classical correspondence must assign to a given quantum state the most probable
space-time sheet depending on its quantum numbers. The space-time sheet X4(X3) defined by
the Kähler function depends however only on the partonic 3-surface X3, and one must be able
to assign to a given quantum state the most probable X3 - call it X3

max - depending on its
quantum numbers.

X4(X3
max) should carry the gauge fields created by classical gauge charges associated with the

Cartan algebra of the gauge group (color isospin and hypercharge and electromagnetic and Z0

charge) as well as classical gravitational fields created by the partons. This picture is very
similar to that of quantum field theories relying on path integral except that the path integral
is restricted to 3-surfaces X3 with exponent of Kähler function bringing in genuine convergence
and that 4-D dynamics is deterministic apart from the delicacies due to the 4-D spin glass type
vacuum degeneracy of Kähler action.

Stationary phase approximation selects X3
max if the quantum state contains a phase factor

depending not only on X3 but also on the quantum numbers of the state. A good guess is that
the needed phase factor corresponds to either Chern-Simons type action or an action describing
the interaction of the induced gauge field with the charges associated with the braid strand.
This action would be defined for the induced gauge fields. YM action seems to be excluded since
it is singular for light-like 3-surfaces associated with the light-like wormhole throats (not only√
det(g3) but also

√
det(g4) vanishes).

The challenge is to show that this is enough to guarantee that X4(X3
max) carries correct gauge

charges. Kind of electric-magnetic duality should relate the normal components Fni of the
gauge fields in X4(X3

max) to the gauge fields Fij induced at X3. An alternative interpretation
is in terms of quantum gravitational holography. The difference between Chern-Simons action
characterizing quantum state and the fundamental Chern-Simons type factor associated with
the Kähler form would be that the latter emerges as the phase of the Dirac determinant.

One is forced to introduce gauge couplings and also electro-weak symmetry breaking via the
phase factor. This is in apparent conflict with the idea that all couplings are predictable. The
essential uniqueness of M -matrix in the case of HFFs of type II1 (at least) however means that
their values as a function of measurement resolution time scale are fixed by internal consistency.
Also quantum criticality leads to the same conclusion. Obviously a kind of bootstrap approach
suggests itself.
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6.2.8 How p-adic coupling constant evolution and p-adic length scale
hypothesis emerge from quantum TGD proper?

What p-adic coupling constant evolution really means has remained for a long time more or less
open. The progress made in the understanding of the M -matrix of theory has however changed
the situation dramatically.

M-matrix and coupling constant evolution

The final breakthrough in the understanding of p-adic coupling constant evolution came through
the understanding of the M -matrix defining entanglement coefficients between positive and
negative energy parts of zero energy states in zero energy ontology. M -matrix has interpretation
as a ”complex square root” of density matrix and thus provides a unification of thermodynamics
and quantum theory. S-matrix is analogous to the phase of Schrödinger amplitude multiplying
positive and real square root of density matrix analogous to modulus of Schrödinger amplitude.

The notion of finite measurement resolution realized in terms of inclusions of von Neumann
algebras allows to demonstrate that the irreducible components of M -matrix are unique and
possesses huge symmetries in the sense that the hermitian elements of included factor N ⊂M
defining the measurement resolution act as symmetries of M -matrix, which suggests a connection
with integrable quantum field theories.

It is also possible to understand coupling constant evolution as a discretized evolution associated
with time scales Tn, which come as octaves of a fundamental time scale: Tn = 2nT0. Number
theoretic universality requires that renormalized coupling constants are rational or at most
algebraic numbers and this is achieved by this discretization since the logarithms of discretized
mass scale appearing in the expressions of renormalized coupling constants reduce to the form
log(2n) = nlog(2) and with a proper choice of the coefficient of logarithm log(2) dependence
disappears so that rational number results. A weaker condition would be Tp = pT0, p prime,
and would assign all p-adic time scales to the size scale hierarchy of CDs.

p-Adic coupling constant evolution

An attractive conjecture is that the coupling constant evolution associated with CDs in powers
of 2 implying time scale hierarchy Tn = 2nT0 induces p-adic coupling constant evolution and
explain why p-adic length scales correspond to Lp ∝

√
pR, p ' 2k, R CP2 length scale? This

looks attractive but there seems to be a problem. p-Adic length scales come as powers of
√

2
rather than 2 and the strongly favored values of k are primes and thus odd so that n = k/2
would be half odd integer. This problem can be solved.

(a) The observation that the distance traveled by a Brownian particle during time t satisfies
r2 = Dt suggests a solution to the problem. p-Adic thermodynamics applies because the
partonic 3-surfaces X2 are as 2-D dynamical systems random apart from light-likeness
of their orbit. For CP2 type vacuum extremals the situation reduces to that for a one-
dimensional random light-like curve in M4. The orbits of Brownian particle would now
correspond to light-like geodesics γ3 at X3. The projection of γ3 to a time=constant
section X2 ⊂ X3 would define the 2-D path γ2 of the Brownian particle. The M4 distance
r between the end points of γ2 would be given r2 = Dt. The favored values of t would
correspond to Tn = 2nT0 (the full light-like geodesic). p-Adic length scales would result
as L2(k) = DT (k) = D2kT0 for D = R2/T0. Since only CP2 scale is available as a
fundamental scale, one would have T0 = R and D = R and L2(k) = T (k)R.

(b) p-Adic primes near powers of 2 would be in preferred position. p-Adic time scale would
not relate to the p-adic length scale via Tp = Lp/c as assumed implicitly earlier but via
Tp = L2

p/R0 =
√
pLp, which corresponds to secondary p-adic length scale. For instance,

in the case of electron with p = M127 one would have T127 = .1 second which defines a
fundamental biological rhythm. Neutrinos with mass around .1 eV would correspond to
L(169) ' 5 µm (size of a small cell) and T (169) ' 1. × 104 years. A deep connection
between elementary particle physics and biology becomes highly suggestive.
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(c) In the proposed picture the p-adic prime p ' 2k would characterize the thermodynamics
of the random motion of light-like geodesics of X3 so that p-adic prime p would indeed be
an inherent property of X3. For the weaker condition would be Tp = pT0, p prime, p ' 2n

could be seen as an outcome of some kind of ”natural selection”.

(d) The fundamental role of 2-adicity suggests that the fundamental coupling constant evolu-
tion and p-adic mass calculations could be formulated also in terms of 2-adic thermody-
namics. With a suitable definition of the canonical identification used to map 2-adic mass
squared values to real numbers this is possible, and the differences between 2-adic and p-
adic thermodynamics are extremely small for large values of for p ' 2k. 2-adic temperature
must be chosen to be T2 = 1/k whereas p-adic temperature is Tp = 1 for fermions. If the
canonical identification is defined as

∑
n≥0

bn2n →
∑
m≥1

2−m+1
∑

(k−1)m≤n<km

bn2n ,

it maps all 2-adic integers n < 2k to themselves and the predictions are essentially same
as for p-adic thermodynamics. For large values of p ' 2k 2-adic real thermodynamics with
TR = 1/k gives essentially the same results as the 2-adic one in the lowest order so that
the interpretation in terms of effective 2-adic/p-adic topology is possible.

6.3 Number theoretic criticality and M-matrix

Number theoretic universality has been one of the basic guide lines in the construction of quan-
tum TGD. There are two forms of the principle.

(a) The strong form of number theoretical universality states that physics for any system
should effectively reduce to a physics in algebraic extension of rational numbers at the level
of M -matrix so that an interpretation in both real and p-adic sense (allowing a suitable
algebraic extension of p-adics) is possible. One can however worry whether this principle
only means that physics is algebraic so that there would be no need to talk about real
and p-adic physics at the level of M -matrix elements. It is not possible to get rid of real
and p-adic numbers at the level of classical physics since calculus is a prerequisite for the
basic variational principles used to formulate the theory. For this option the possibility of
completion is what poses conditions on M -matrix.

(b) The weak form of principle requires only that both real and p-adic variants of physics make
sense and that the intersection of these physics consist of physics associated with various
algebraic extensions of rational numbers. In this rational physics would be like rational
numbers allowing infinite number of algebraic extensions and real numbers and p-adic
number fields as its completions. Real and p-adic physics would be completions of rational
physics. In this framework criticality with respect to phase transitions changing number
field becomes a viable concept. This form of principle allows also purely p-adic phenomena
such as p-adic pseudo non-determinism assigned to imagination and cognition. Genuinely
p-adic physics does not however allow definition of notions like conserved quantities since
the notion of definite integral is lacking and only the purely local form of real physics allows
p-adic counterpart.

Experience has taught that it is better to avoid too strong statements and perhaps the weak
form of the principle is enough. It is however clear that number theoretical criticality could
provide important insights to quantum TGD: p-adic thermodynamics is excellent example of
this. In consciousness theory the transitions transforming intentions to actions and actions
to cognitions would be key applications. Needless to say, zero energy ontology is absolutely
essential: otherwise this kind of transitions would not make sense. The considerations in the
sequel could be seen as being about conditions of number theoretical criticality if the weak form
of principle is adopted.
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6.3.1 Number theoretic constraints on M-matrix

Number theoretic constraints on M -matrix are non-trivial even for weaker notion of number
theoretical universality.

Number theoretic criticality

Number theoretical criticality (or number theoretical universality in strong sense) requires that
M -matrix elements are algebraic numbers. This is achieved naturally if the definition of M -
matrix elements involves only the data associated with the number theoretic braid. Note that
this data is non-local since it involves information about tangent space of X4 at the point so
that discretization happens in geometric sense but not in information theoretic sense. Note also
that for algebraic surfaces finite number of points of surface allows to deduce the parameters of
the polynomials involved and thus to deduce the entire surface.

If quantum version of configuration space is adopted one must perform quantization for E2 ⊂M4

coordinates of points S2
i braid and CP2 coordinates of M2 braid. In this kind of situation it

becomes unclear whether one can speak about braiding anymore. This might make sense if each
braid topology corresponds to its own quantization containing information about the fact that
deformations of X3

l respect the braiding topology.

The partonic vertices appearing in M -matrix elements should be expressible in terms of N-point
functions of some rational super-conformal field theory but with the p-adically questionable N-
fold integrals over string appearing in the definition of n-point functions. The most elegant man-
ner to proceed is to replace them with their explicit expressions if they are algebraic functions-
quite generally or in number theoretical criticality. Spin chain type string discretization is an
alternative, not so elegant option.

Propagators, that is correlations between partonic 2-surfaces, would be due to the interior dy-
namics of space-time sheets which means a deviation from super string theory. Another function
of interior degrees of freedom is to provide zero modes of metric of WCW identifiable as classical
degrees of freedom of quantum measurement theory entangling with quantal degrees of freedom
at partonic 3-surfaces.

Number theoretical criticality poses very strong conditions on the theory.

(a) The p-adic variants of 4-D field equations associated with Kähler action make sense. Also
the notion of preferred extremal makes sense in p-adic context if it corresponds to quan-
tum criticality in the sense that second variation of Kähler action vanishes for dynamical
symmetries. A natural further condition is that the surface is representable in terms of
algebraic equations involving only rational or algebraic coefficients and thus making sense
both in real and p-adic sense. In this case also Kähler action and classical charges could
exist in some algebraic extension of p-adic numbers.

(b) Also modified Dirac equation makes sense p-adically. The exponent of Kähler function
defining vacuum functional is well-defined notion p-adically if the identification as product
of finite number of eigenvalues of the modified Dirac operator is accepted and eigenvalues are
algebraic. Also the notion of configuration space metric expressible in terms of derivatives
of the eigenvalues with respect to complex coordinates of configuration space makes sense.

(c) The functional integral over configuration space can be defined only as an algebraic ex-
tension of real functional integral around maximum of Kähler function if the theory is
integrable and gives as a result an algebraic number. One might hope that algebraic p-
adicization makes sense for the maxima of Kähler function. The basic requirement is that
the inverse of the matrix defined by the Kähler metric defining propagator is algebraic func-
tion of the complex coordinate of configuration space. If the eigen-values of the modified
Dirac operator satisfy this condition this is indeed the case.

(d) Ordinary perturbation series based on Feynman diagrams makes sense also in p-adic sense
since the presence of cutoff for the size of CD implies that the number of terms if finite.
One must be however cautious with momentum integrations which should reduce to finite
sum due to the presence of both IR and UV cutoff implied by the finite size of CD. The
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formulation in terms of number theoretic braids whose intersections with partonic 2-surfaces
consist of finite number of points supports the possibility of number theoretic universality.

The identification of number theoretic braids

To specify number theoretical criticality one must specify some physically preferred coordinates
for M4×CP2 or at least δM4

±×CP2. Number theoretical criticality requires that braid belongs
to the algebraic intersection of real and p-adic variants of the partonic 2-surface so that number
theoretical criticality reduces to a finite number of conditions. This is however not strong enough
condition and one must specify further physical conditions.

1. What are the preferred coordinates for H?

What are the preferred coordinates of M4 and CP2 in which algebraicity of the points is required
is not completely clear. The isometries of these spaces must be involved in the identification
as well as the choice of quantization axes for given CD. In [K51] I have discussed the natural
preferred coordinates of M4 and CP2.

(a) For M4 linear M4 coordinates chosen in such manner that M2 × E2 decomposition fixing
quantization axes is respected are very natural. This restricts the allowed Lorentz trans-
formations to Lorentz boosts in M2 and rotations in E2 and the identification of M2 as
hyper-complex plane fixes time coordinate uniquely. E2 coordinates are fixed apart from
the action of SO(2) rotation. The rationalization of trigonometric functions of angle vari-
ables allows angles associated with Pythagorean triangles as number theoretically simplest
ones.

(b) The case of CP2 is not so easy. The most obvious guess in the case of CP2 the coordinates
corresponds to complex coordinates of CP2 transforming linearly under U(2). The condi-
tion that color isospin rotations act as phase multiplications fixes the complex coordinates
uniquely. Also the complex coordinates transforming linearly under SO(3) rotations are
natural choice for S2 (rM = constant sphere at δM4

±).

(c) Another manner to deal with CP2 is to apply number M8 − H duality. In M8 CP2

corresponds to E4 and the situation reduces to linear one and SO(4) isometries help to
fix preferred coordinate axis by decomposing E4 as E4 = E2 × E2. Coordinates are fixed
apart the action of the commuting SO(2) sub-groups acting in the planes E2. It is not
clear whether the images of algebraic points of E4 at space-time surface are mapped to
algebraic points of CP2.

2. The identification of number theoretic braids

It took some years to end up with a unique identification of number theoretic braids [K15, K59]
. As a matter fact, there are several alternative identifications and it seems that all of them are
needed. Consider first just braids without the attribute ’number theoretical’.

(a) Braids can be identified as lifts of the projections of X3
l to the quantum critical sub-

manifolds M2 or S2
I , i = I, II, and in the generic case consist of 1-dimensional strands in

X3
l These sub-manifolds are obviously in the same role as the plane to which the braid is

projected to obtain a braid diagram.

(b) Braid points are always quantum critical against the change of Planck constant so that
TQFT like theory characterizes the freedom remaining intact at quantum criticality. Quan-
tum criticality in this sense need not have anything to do with the quantum criticality in the
sense that the second variation of Kähler action vanishes -at least for the variations repre-
senting dynamical symmetries in the sense that only the inner product

∫
(∂LD/∂h

k
α)δhkd4x

(LD denotes modified Dirac Lagrangian) without the vanishing of the integrand. This
criticality leads to a generalization of the conceptual framework of Thom’s catastrophe
theory [K15] .
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(c) It is not clear whether these three braids form some kind of trinity so that one of them
is enough to formulate the theory or whether all of them are needed. Note also that one
has quantum superposition over CDs corresponding to different choices of M2 and the
pair formed by S2

I and S2
II (note that the spheres are not independent if both appear).

Quantum measurement however selects one of these choices since it defines the choice of
quantization axes.

(d) One can consider also more general definition. The extrema of Kähler magnetic field
strength εαβJαβ at X2 define in natural manner a discrete set of points defining the nodes
of symplectic triangulation. This set of extremals is same for all deformations of X3

l allowed
in the functional integral over symplectic group although the positions of points change.
For preferred symplectically invariant light-like coordinate of X3

l braid results. Also now
geodesic spheres and M2 would define the counterpart of the plane to which the braids are
projected.

Number theoretic braids would be braids which are number theoretically critical. This means
that the points of braid in preferred coordinates are algebraic points so that they can be regarded
as being shared by real partonic 2-surface and its p-adic counterpart obeying same algebraic
equations. The phase transitions between number fields would mean leakage via these 2-surfaces
playing the role of back of a book along which real and p-adic physics representing the pages
of a book are glued together. The transformation of intention to action would represent basic
example of this kind of leakage and number theoretic criticality could be decisive feature of living
matter. For number theoretic braids at X3

l whose real and p-adic variants obey same algebraic
equations, only subset of algebraic points is common to real and p-adic pages of the book so
that discretization of braid strand is unavoidable.

6.3.2 Physical representations of Galois groups

It would be highly desirable to have concrete physical realizations for the action of finite Galois
groups. TGD indeed provides two kinds of realizations of this kind. For both options there are
good hopes about the unification of number theoretical and geometric Galois programs obtained
by replacing permutations with braiding homotopies and by a discretization of the continuous
situation to a finite number theoretic braids having finite Galois groups as automorphisms.

Number theoretical braids and the representations of finite Galois groups as outer
automorphisms of braid group algebra

Number theoretical braids [K20, K73] are in a central role in the formulation of quantum TGD
based on general philosophical ideas which might apply to both physics and mathematical cog-
nition and, one might hope, also to a good mathematics.

An attractive idea inspired by the notion of the number theoretical braid is that the symmetric
group Sn might act on roots of a polynomial represented by the strands of braid and could thus
be replaced by braid group Bn.

The basic philosophy underlying quantum TGD is the notion of finite resolution, both the finite
resolution of quantum measurement and finite cognitive resolution [K20] . The basic implication
is discretization at space-time level and finite-dimensionality of all mathematical structures which
can be represented in the physical world. At space-time level the discretization means that the
data involved with the definition ofM -matrix comes from a subset of a discrete set of points in the
intersection of real and p-adic variants of partonic 2-surface obeying same algebraic equations.
Note that a finite number of braids could be enough to code for the information needed to
reconstruct the entire partonic 2-surface if it is given by polynomial or rational function having
coefficients as algebraic numbers. Entire configuration space of 3-surfaces would be discretized
in this picture. Also the reduction of the infinite braid to a finite one would conform with
the spontaneous symmetry breaking S∞ to diagonally imbedded finite Galois group imbedded
diagonally.

1. Two objections
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Langlands correspondence assumes the existence of finite-dimensional representations ofGal(Q/Q).
In the recent situation this encourages the idea that the restrictions of mathematical cognition
allow to realize only the representations of Gal(Q/Q) reducing in some sense to representations
for finite Galois groups. There are two counter arguments against the idea.

(a) It is good to start from a simple abelian situation. The abelianization of G(A/Q) must give
rise to multiplicative group of adeles defined as Ẑ =

∏
p Z
×
p where Z×p corresponds to the

multiplicative group of invertible p-adic integers consisting of p-adic integers having p-adic
norm equal to one. This group results as the inverse limit containing the information about
subgroup inclusion hierarchies resulting as sequences Z×/(1 + pZ)× ⊂ Z×/(1 + p2Z)× ⊂ ..
and expressed in terms factor groups of multiplicative group of invertible p-adic integers.
Z∞/A∞ must give the group

∏
p Z
×
p as maximal abelian subgroup of Galois group. All

smaller abelian subgroups of S∞ would correspond to the products of subgroups of Ẑ×

coming as Z×p /(1+pnZ)×. Representations of finite cyclic Galois groups would be obtained

by representing trivially the product of a commutator group with a subgroup of Ẑ. Thus
one would obtain finite subgroups of the maximal abelian Galois group at the level of
representations as effective Galois groups. The representations would be of course one-
dimensional.

One might hope that the representations of finite Galois groups could result by a reduc-
tion of the representations of S∞ to G = S∞/H where H is normal subgroup of S∞.
Schreier-Ulam theorem [A120] however implies that the only normal subgroup of S∞ is the
alternating subgroup A∞. Since the braid group B∞ as a special case reduces to S∞ there
is no hope of obtaining finite-dimensional representations except abelian ones.

(b) The identification of Gal(Q/Q) = S∞ is not consistent with the finite-dimensionality in
the case of complex representations. The irreducible unitary representations of Sn are in
one-one correspondence with partitions of n objects. The direct numerical inspection based
on the formula for the dimension of the irreducible representation of Sn in terms of Yang
tableau [A53] suggests that the partitions for which the number r of summands differs
from r = 1 or r = n (1-dimensional representations) quite generally have dimensions which
are at least of order n. If d-dimensional representations corresponds to representations in
GL(d,C), this means that important representations correspond to dimensions d→∞ for
S∞.

Both these arguments would suggest that Langlands program is consistent with the identification
Gal(F , F ) = S∞ only if the representations of Gal(Q,Q) reduce to those for finite Galois
subgroups via some kind of symmetry breaking.

2. Diagonal imbedding of finite Galois group to S∞ as a solution of problems

The idea is to imbed the Galois group acting as inner automorphisms diagonally to the m-fold
Cartesian power of Sn imbedded to S∞. The limit m → ∞ gives rise to outer automorphic
action since the resulting group would not be contained in S∞. Physicist might prefer to speak
about number theoretic symmetry breaking Gal(Q/Q) → G implying that the representations
are irreducible only in finite Galois subgroups of Gal(Q/Q). The action of finite Galois group G
is indeed analogous to that of global gauge transformation group which belongs to the completion
of the group of local gauge transformations. Note that G is necessarily finite.

Representation of finite Galois groups as outer automorphism groups of HFFs

Any finite group G has a representation as outer automorphisms of a hyper-finite factor of type
II1 (briefly HFF in the sequel) and this automorphism defines sub-factor N ⊂M with a finite
value of index M : N [A90] . Hence a promising idea is that finite Galois groups act as outer
automorphisms of the associated hyper-finite factor of type II1.

More precisely, sub-factors (containing Jones inclusions as a special case) N ⊂ M are char-
acterized by finite groups G acting on elements of M as outer automorphisms and leave the
elements of N invariant whereas finite Galois group associated with the field extension K/L act
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as automorphisms of K and leave elements of L invariant. For finite groups the action as outer
automorphisms is unique apart from a conjugation in von Neumann algebra. Hence the natural
idea is that the finite subgroups of Gal(Q/Q) have outer automorphism action in group algebra
of Gal(Q/Q) and that the hierarchies of inclusions provide a representation for the hierarchies
of algebraic extensions. Amusingly, the notion of Jones inclusion was originally inspired by the
analogy with field extensions [A90] !

It must be emphasized that the groups defining sub-factors can be extremely general and can
represent much more than number theoretical information understood in the narrow sense of
the word. Even if one requires that the inclusion is determined by outer automorphism action
of group G uniquely, one finds that any amenable, in particular compact [A3] , group defines a
unique sub-factor by outer action [A90] . It seems that practically any group works if uniqueness
condition is given up.

The TGD inspired physical interpretation is that compact groups would serve as effective gauge
groups defining measurement resolution by determining the measured quantum numbers. Hence
the physical states differing by the action of N elements which are G singlets would not be
indistinguishable from each other in the resolution used. The physical states would transform
according to the finite-dimensional representations in the resolution defined by G.

The possibility of Lie groups as groups defining inclusions raises the question whether hyper-
finite factors of type II1 could mimic any gauge theory and one might think of interpreting
gauge groups as Galois groups of the algebraic structure of this kind of theories. Also Kac-
Moody algebras emerge naturally in this framework as will be discussed, and could also have an
interpretation as Galois algebras for number theoretical dynamical systems obeying dynamics
dictated by conformal field theory. The infinite hierarchy of infinite rationals in turn suggests
a hierarchy of groups S∞ so that even algebraic variants of Lie groups could be interpreted as
Galois groups. These arguments would suggest that HFFs might be kind of Universal Math
Machines able to mimic any respectable mathematical structure.

Lifting the action of Galois group to braid action in the case of number theoretic
braids

The various definitions of braids were already discussed. At number theoretic quantum criticality
the points of braids are obtained as solutions of polynomial equation and thus one can assign to
them a Galois group permuting the points of the braid.

To make the notion of number theoretic braid more concrete, let us introduce complex coordinate
w of δM4

± (assignable to the geodesic sphere S2 and transforming by a phase rotation under
SO(2)), the standard radial light-like coordinate r of δM4

±, and Eguchi-Hanson coordinates ξi,
i = 1, 2 of CP2 and corresponding complex coordinate of the geodesic sphere S2

i represented as

ξ1 = ξ2 resp. ξ1 = ξ
2
.

Assume that partonic 2-surface is expressible as a solution of polynomial equations

P1(r, w, ξ1, ξ2) , P2(r, w, ξ1, ξ2) , P3(r, w, ξ1, ξ2) = 0 , (6.3.1)

where P1 and P2 are complex valued polynomials and P3 a real valued polynomial with coeffi-
cients which are rational numbers. The additional two conditions defining the points of number

theoretic braid are w = 0, ξ1 = ξ2, or ξ1 = ξ
2

corresponding to 3 different number theoretic
braids. Since the points of the intersection of braid with X2 satisfy algebraic equations, their
solutions are algebraic numbers and number theoretic braid results.

The solutions of these equations correspond to simultaneous roots of four polynomials each
characterized by its own Galois group and the points of the number theoretic braid thus provide
a geometric representation for the product of these Galois groups. By the 2-dimensionality of
the geodesic spheres, it is natural to consider the replacement of the permutations representing
the action of Galois group with braid group action so that a projective representation of Galois
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group is obtained. The action of braid group elements on induced spinor fields can be non-trivial
and would induce action on physical states.

An alternative representation is based on use of ξ2 or ξ1 as a coordinate for X2. Assume that
X2 can be represented locally as a graph of a map from S2

i and use the notation ξ = ξ1 to avoid
confusion

r = P1(ξ) , w = P2(ξ) , ξ2 = P3(ξ) , (6.3.2)

The braid is defined by the additional equation ξ1 = ξ2 or ξ1=ξ
2
. The resulting equations are

very similar to that in previous case.

The conditions for extremum of εαβJαβ in the case of CP2 Kähler form read as

∂Jξξ
∂ξ = 0 ,
∂Jξξ
∂ξ

= 0 ,

Jξξ = 2J
ξ1ξ

1 + J
ξ1ξ

2
∂P3

∂ξ
+ J

ξ2ξ
1
∂P3

∂ξ + 2J
ξ2ξ

2
∂P3

∂ξ

∂P3

∂ξ .

(6.3.3)

Analogous equations are obtained for the induced Kähler form J(δM4
±) of δM4

± (or S2). These
equations are algebraic equations since the expressions for the components of the Kähler form in
the complex coordinates of CP2 and S2 are rational functions. Hence also the extrema of Kähler
magnetic fields could define number theoretic braids. What would be nice that in this case the
Galois group would correspond to Galois groups of the polynomials defined by the derivatives
of J and would depend on X2 via P3. For the option situation is more complex but it seems
possible to speak about Galois groups also now.

Can one imagine a genuine physical representation of braid group analogous to that induced by
the braiding defined by X3

l ?

(a) One such representation is obtained if the partonic 2-surfaces at the ends of X3
l are identical

so that the braiding induces a unique permutation of the points. This kind of assumption
looks however artificial.

(b) One can consider also braidings induced by the closed paths in the spaces labeling different
choices M2 and S2

i . In this case braid group action would permute the roots in the general
case. For instance, 2π rotations in Lorentz and color group rotating quantization axes could
induce non-trivial braiding permutation of the roots. This kind of rotation for subsystem
containing CD in question could induce this kind of braid group action.

(c) Also the closed paths in the symplectic group of δM4
± × CP2 would induce braiding ac-

tions and also braided Galois actions. This action is especially natural for the number
theoretic braids defined by extreme of εαβJαβ since functional integral reduces to integral
over symplectic group leaving the number and values of extrema invariant but changing
the positions and therefore inducing braiding. Also closed paths in the space of coefficients
of polynomials define Galois actions but in this case the rotations in general affect induced
Kähler form.

Does DNA replication have counterpart at the level of fundamental physics?

The fundamental question is what happens in the vertices represented by the partonic 2-surface?
The study of the 3-vertex forces to ask whether the incoming braid is replicated in a manner very
much analogous to the replication of DNA. Could braid replication make it possible to make
copies of classical representations of number theoretic information. Quantum representation of
information by irreducible representations of Galois group would not be replicable since each
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incoming braid would correspond to its own irreducible representation and the choice of these
representations would not be a fully deterministic process.

It seems however that this replication is too strong an assumption since the fermionic oscillator
operators associated with positive energy strands need not anticommute with those associated
with negative energy strands. Therefore the n-point function can be non-trivial even if the ends
of strands do not meet each other. Symplectic QFT actually predicts that this is not the case.
The braid structure would however mean that partons/elementary particles might be much more
complex objects than they are though to be.

In [K84] DNA has been proposed to act as a topological quantum computer using braids. Both
time-like braidings (dance metaphor is good here) and their space-like counterparts induced
by the braiding of threads connecting to each other braid strands (the analog is the situation
in which the feet of dancers connected by threads) are involved and these braidings are dual.
Similar duality - in fact first suggested by the model of DNA as topological quantum computer -
holds true at the fundamental level since the stringy curves connecting braid strands and braids
strands define dual braidings related in the same manner. This duality is analogous to the
duality of string diagrams of hadronic string model.

Maybe even elementary particles could be seen as a kind of quantum computers and their
”genome” would code at least the initial data for for the topological quantum computation
program. Information processing involves besides computation also copying of data and its
transfer. Particle interaction vertices would realize the copying of data and particle exchanges
its communication whereas quantum computation would be carried by parton with quantum
program identified with its execution (light-like 3-surfaces can be regarded either as states or
processes).

Rather amazing outcome of this line of though was the discovery [K35, L3] that the states of
dark nuclei in nuclear string model can be naturally associated to three kinds of groups with
dimensions 64, 64, and 20: numbers of DNA codons, RNA codons, and aminoacids. Even more:
there is natural realization of the analog of the genetic code with exactly the same numbers of
DNAs coding for a given aminoacid as for the vertebrate genetic code. The assumptions of the
model are very general which suggests that the genetic code might be realized at nuclear level
and that biochemistry could provide only one particular representation of the code.

Fusion rules number theoretically

The idea that partonic 2-surfaces decompose into regions, one for each number theoretic braid,
and that the number theoretic braids define representations of Galois groups permuting the
strands of the braid as automorphisms in HFFs of type II1 suggests a fresh approach to the
understanding of vertices. Kind of fusion rules would certainly be in question and the the
interpretation as representations of Galois groups might allow to deduce information about the
fusion rules using symmetry arguments.

The first thing to notice is that in the vertex the number theoretic braids coincide so that
the Galois groups G associated with incoming and outgoing braids are identical. Only in the
situation in which polynomial defining G becomes reducible it might occur that some of incoming
lines corresponds to a group which is product of subgroups of G but this situation is not expected
to be generic.

Suppose that the number theoretic braids define irreducible projective representations of the
Galois group G associated with the braid in HFF of type II1 as outer automorphisms via
diagonal imbedding of G. In vertex one expects that fusion rules for these representations mean
extraction of singlet from the tensor product of these representations. This suggest a picture
very similar to the fusion of representations of SU(2)q in the fusion rules of WZW theory which
also can be understood in terms of braiding. If one accepts generalized McKay correspondence
suggested [A24] , then the fusion rules for Galois group could have representation in terms of
fusion groups for Lie group associated with it by generalized McKay correspondence.
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6.4 What can one say about the braiding part of M-matrix?

M -matrix should reduce to pure braiding matrix in CD resp. CP2 degrees of freedom at quantum
criticality against change of Planck constant and this allows to say something non-trivial about
this part of M -matrix.

6.4.1 Are factorizable QFT in M2 and topological QFT in S2 associated
with quantum criticality?

Planck constant depends on the sector of the generalized imbedding space and is ill-defined
for partonic 2-surfaces in quantum critical sub-manifolds M2 ×C P2 and M4 × S2

i , i = I, II.
Maximal quantum criticality corresponds to M2 × S2

i . S2
I corresponds to vacuum extremal

so that quantum critical partonic 2-surfaces represent vacuum extremals of Kähler action. It
depends on assumptions that one is willing to make whether homologically non-trivial geodesic
sphere S2

II can be allowed and whether the pure gauge part of Kähler gauge potential can have
M4 part [K59] .

The natural question is what happens at criticality. Is M -matrix completely trivial or do topo-
logical degrees of freedom remain. 2-D QFTs in M2 known as factorizing QFTs are almost
trivial [B35, B53] , and generalize the topological QFTs associated with braids. Also topological
QFTs at sphere with pictures - defined by braid points- are possible. The S-matrix of these
theories does not depend on Planck constant [B35, B53] . Hence it is quite possible that these
theories describe the situation at quantum criticality.

As explained, number theoretical braids come in 3 variants corresponding to the projections
of X3

l to M2, S2
I , and S2

II carrying the analogs of braid diagram obtained as a projection of
braid to plane so that braid points are always quantum critical. It is not clear whether these
alternatives provide trinity of descriptions or whether all of them are needed. The dynamics in
M4 resp. CP2 degrees of freedom should reduce to this kind of QFT in M2 resp. S2

I and to
both for M2 × S2

I .

This would mean in particular, that the S-matrix -or more generally M -matrix- does not de-
pend on the value of ~. Since partons are 2-dimensional, one would have for M2×S2

i essentially
light-like geodesics as allowed solutions of field equations and thus classical theory of free mass-
less particles. Hence factorizing QFT would be a natural description for the quantum critical
dynamics at quantum criticality. This M -matrix should appear also in the full M -matrix as a
factor.

6.4.2 Factorizing 2-D S-matrices and scattering at quantum criticality

In this subsection the view that the scattering in imbedding space degrees of freedom at quantum
criticality could be described using a tensor product of 2-D factorizing S-matrices associated with
the plane M2 and geodesic spheres S2

i of CP2 defining quantization axes for a given CD and
serving as critical manifolds for the phase transitions changing Planck constant realized as a
leakage between different pages of CD and/or CP2 book.

Factorizing S-matrix in M2 as a building block of the full U-matrix

1. Why factorizability?

The known exact S-matrices in 1+1-dimensional space time are factorizing. According to [B35]
there exists a strong evidence that all exact S-matrices in 1+1 dimensions are factorizing, do not
allow particle production, and that the sets of the initial and final state momenta are identical.

Exactness certainly follows from infinite number of conservation laws associated with integrable
systems but also finite number of them is enough. Infinite number of conservation laws are
expected also in TGD since Kac Moody type symmetries are present. The conserved charges of
form
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Qna = exp(nθi)Qa , (6.4.1)

where n is Lorentz spin completely analogous to conformal weight imply the factorizability [A71].
These charges have interpretation as loop group generators of conformal weight n in the defining
representation (where these generators are proportional to mn) evaluated at the ray ηi of M2

representing momenta as the positions for tips of light-cones. In the case of E2 one obtains
exp(iφn) where φn represent directions of momenta classically.

2. Yang-Baxter equations and Zamolodchikov algebra

Arranging the scattering particles in M2 with respect to rapidities ηi (hyperbolic angles) such
that the fastest particle is leftmost and slowest one rightmost (this is possible by the crossing
symmetry and by assuming Yang-Baxter equations), the scattering can be described as a se-
quence of events in which particles pass by each other and can be therefore interpreted as a
braiding like process with the additional feature that particles move with different velocities.

The pass-by event is described by a 2-particle S-matrix depending only on the difference η12 =
η1−η2 of their rapidities. By Uncertainty Principle, the position of the particle world line should
not matter so that the world line of any particle can be shifted parallel to itself without affecting
the S-matrix. This however affects the braiding. This symmetry gives rise to the celebrated
Yang-Baxter equations

S(η12)S(η13)S(η23) = S(η23)S(η13)S(η12) . (6.4.2)

N-particle S-matrix reduces to braiding S-matrix expressible in terms of S-matrices describing
2- particle scattering.

One can abstract the conditions on S-matrix algebraically to give what is known as Zamolod-
chikov algebra [A71] so that S-matrix describes the pass-by process as a generalization of the
exchange operation in braiding. Posing the conditions that 2-particle S-matrix approaches unit
matrix at the limit η12 → 0, unitarity stating S(η)S(−η) = 1, real analyticity S†(η) = S(−η)

and crossing symmetry Sklij (η) = Sik
jl

(iπ− η), one achieves axiomatization for the algebra. Sine-

Gordon theory provides a basic example of an integrable system whose S-matrix satisfying these
constraints.

If one poses the restriction that light cone tips belong to M1 situation simplifies still since all
particles defined by the contents of light cones would be at rest relative to each other and the
S-matrix reduces to a trivial braiding matrix obtained by putting ηij = 0 in above equation.
The limit ηij → ±∞ when taken in a somewhat delicate manner gives rise to the standard form
of the non-unitary braiding matrix appearing in quantum group representations as shown by
Jimbo [A71].

3. Could factorizing S-matrix as tensor factor of full S-matrix make sense in TGD framework?

In a genuinely 2-D context this kind of system is of course physically somewhat uninteresting. In
TGD framework the situation is different if factorizing S-matrices are interpreted as describing
scattering at criticality with respect to phase transitions changing Planck constant and assignable
to time like braiding since M2 is analogous to the plane to which braid strands are projected.
The basic condition is that the S-matrix elements have not dependence on Planck constant and
this condition is indeed satisfied. The most general manner to satisfy this condition is by the
vanishing of loop corrections to the scattering amplitudes so that only tree diagrams contribute.

By quantum classical correspondence the rapidities could be interpreted as M2 projections of
the 4-momenta of the particles created in the vertex. Since each light-cone can contain arbitrary
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many partons, the rapidities could be interpreted as M2 projections of four-momenta assignable
to braid strands.

The scattering matrix associated with time-like braiding would thus be almost trivial in longitu-
dinal momentum projections but would not depend on the transversal momenta at all. The inte-
gration over all possible choices of M2 plane would guarantee Lorentz invariance might destroy
unitarity. Also the triviality in longitudinal momentum degrees for freedom looks non-physical.

Factorization of S-matrix in CP2 degrees of freedom

The backs of CP2 book correspond to the geodesic spheres S2
i so that at quantum criticality one

has braiding with braid projection to S2
i , i = I or i = II.

Center of mass degrees of freedom are unavoidable also in CP2 degrees of freedom since Jones
inclusions defined by the subgroups G ⊂ SU(2) ⊂ SU(3) select preferred origin with respect to
which U(2) sub-group defining quantization axis acts linearly so that the choice of quantization
axes means also a choice of preferred point of CP2.

One can ask whether the complex CP2 coordinates should be replaced with a quaternionic
coordinate in such manner that the restriction to a geodesic sphere S2

i of CP2, i = I, II or
both would be the Euclidian analog of the restriction to M2 meaning restriction to scattering in
compactified complex plane and commutativity of generalized n-point functions. This was the
question that I posed for years ago and the quantization of Planck constants gives an affirmative
answer to this question but from quite different philosophy.

Finite measurement resolution implies the replacement of the configuration space Clifford algebra
with its finite-quantum-dimensional variant. Same applies to confifuration space itself and one
should understand what this means.

(a) There seems to be no need for making configuration space coordinates non-commutative.
Rather, configuration space would be reduced to effectively finite-dimensional space ob-
tained by replacing 2-surfaces with intersections of number theoretic braids with X2. This
would mean that the configuration space Hamiltonians - representable as integrals involving
the Hamiltonians of δM4

± × CP2 and representing coordinates of configuration space - are
replaced with expressions involving sums over points of the braid instead of integrals [K15]
.

(b) Quantum groups should thus emerge via braidings. The observation that CP2 parameter-
izes braiding matrices and that S2 commutative braiding matrices - to be discussed below-
might mean that CP2 points represented as braiding matrices become non-commutative
and that this forces the restriction of M4 and CP2 projections to geodesic spheres. This
non-commutativity is of course something quite different from the non-commutativity in
the sense of quantum groups.

(c) This non-commutativity could reflect itself in the braiding of number theoretic braids. In
the case of M2 braids the braiding tensor product of the matrices parameterized by the
points of S2 ⊂ δM4

± and CP2, i = I or II, could define the braiding as a local operation. In
the case of S2

i braid the braiding matrix could be the tensor product of braiding matrices
parameterized by the point of S2

i+1 and M4 point, presumably through its S2 coordinates
only. For M2 braids the appearance of CP2 braiding matrices would mean that the over-all
braiding matrix obtained as a product of elementary braiding matrices depends on their
order. In the case of Quantum Hall effect this means that non-Abelian anyons would be in
question.

That this can be done is also suggested by an intriguing observations. The observation that for
six-vertex model the solutions of Yang-Baxter equation are parameterized by CP2 [A71] was one
of the first intriguing observations [K84] leading to the evolution of ideas the role of quantum
groups and von Neumann algebras in TGD.

1. CP2 parameterizes R-matrices
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In six-vertex model the R-matrices (counterparts of S-matrices above) have slightly different
form than the S-matrices. For weak (or color) isospin 1/2 case which is fundamental also now,
R-matrix is parameterized by 3 complex parameters

R(a, b, c) =


a

b c
c b

a

 . (6.4.3)

The matrices differing by a complex scaling are physically equivalent so that a, b and c can
be interpreted as complex components of fundamental representation of SU(3). c can be fixed
to c = isin(γ), where exp(iγ) can in fact be identified as the quantum phase q = exp(iπ/n)
and a and b can be identified as complex CP2 coordinates (ξ2, ξ2) transforming linearly under
U(2) ⊂ SU(3).

The restriction of a an b to represent points of a geodesic sphere of CP2 going through origin
implies that the matrices R(a, b, c) commute. The condition for commutativity reads as

∆(a, b, c) = ∆(a′, b′, c′) ,

∆ =
a2 + b2 − c2

2ab
. (6.4.4)

The solution of Yang-Baxter equation for three R-matrices reduces to the condition

∆(a, b, c) = ∆(a′, b′, c′) = ∆(a′′, b′′, c′′) . (6.4.5)

Commutativity (in the sense of S-matrices rather than with respect to the product appearing
in Yang-Baxter equations) means that the three points of CP2 belong to the geodesic sphere
identifiable also as a maximal commuting sub-manifold of CP2 interpreted as a space obtained by
gluing together three copies of quaternionic space H along sphere S2 representing compactified
complex plane for the second quaternionic space glued together just like S2 is obtained by gluing
together two complex planes along real line compactified to circle.

A canonical parametrization satisfying the commutativity conditions is given by

a(u) = sinh(u+ iγ) ,

b(u) = sinh(u) ,

c(u) = isin(γ) , (6.4.6)

where u is a complex coordinate. Using u as coordinate the Yang-Baxter equations have the
same additive form as in case of M4. In other words, one has u′′ = u′−u. Unitarity is achieved
when u is real.

These observations made already earlier [K84] suggest that the construction for M2 generalizes
to CP2 degrees of freedom representing its Euclidian version obtained by the replacement M2 ⊂
M4 → S2

i ⊂ CP2. The commutativity of R-matrices in the case of S2 would have interpretation
in terms of space-like metric whereas in the case of M4 Minkowski signature implies correlations
and non-commutativity.

The commutativity of R-matrices at the geodesic sphere is an intriguing result. The notion
of finite measurement resolution suggests that configuration space Clifford algebra and config-
uration space itself must replaced by their finite-quantum-dimensional quantum variants. For
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configuration space Hamiltonians this might mean the replacement of CP2 coordinates with their
quantum counterparts. Could one imagine that R-matrices labeled by CP2 points could serve as
quantum representatives of CP2 points and commutativity condition forces the restriction CP2

projection to the braid points to S2
i ?

2. Factorizing S-matrix associated with a geodesic sphere of CP2

Quantum classical correspondence can be applied also now as a guide line. Before continuing it is
however useful to restate some facts about CP2 and introduce notations. Assume for definiteness
that CP2 is identified as the space of right cosets gU(2) of SU(3) so that the natural action
of SU(3) is left action. The orbits of SU(2)L and U(2)L are homologically non-trivial geodesic
spheres S2 and the double coset space SU(3)/SU(2)L×SU(2)R of these spheres is 2-dimensional.

Also the geodesic circles S1
⊥ orthogonal to a given point of S2 are interesting as analogs of M1

in M1 × S2 decomposition. By the symmetry of SU(3)/SU(2)L × SU(2)R the actions of both
SU(3)L and SU(3)R in this space are well defined, and the natural idea is that U(1)R action
defines the geodesic circles S1

⊥ so that electro-weak symmetry group would have a geometric
counterpart.

Both SU(2)L ⊂ SU(3) and weak SU(2)L are represented by 4×4-dimensional R-matrices acting
on fundamental fermions. The coordinate u parameterizing commuting R-matrices corresponds
to the geodesic sphere S2 ⊂ CP2.

(a) SU(2)L ⊂ SU(3) quantum numbers replace M2 momentum. Indeed, color is in TGD
framework not a spin like quantum number but completely analogous to four-momentum
and orbital angular momentum.

(b) The complex coordinates ξi, i = 1, 2, of CP2 have a phase exp[i(±φ+ψ)/2] with φ assignable
to isospin and ψ to hypercharge. ξ2 = 0 geodesic sphere thus represents I3 + Y rotation.
The classical representation for the quantization of angular momentum suggests that the
direction of the total I3 + Y associated with a particular δM4

+ ×CP2 defines a point at S2

parameterized in standard manner by (θ, φ). This fixes the value of θ via the condition

cos(θ) =
I3 + Y√

I(I + 1) + Y 2
(6.4.7)

when ξ2 = 0 is selected as the representative geodesic sphere.

(c) The angle φ is the Euclidian counterpart of rapidity η so that that the classical model for
the scattering would be in terms of particles rotating with different velocities along the
circumference of circle. The momenta would be replaced with isospins (I3 + Y )k ordered
from left to right along the circumference such that one has (I3 + Y )1 ≥ (I3 + Y )2..... ≥
(I3 + Y )n having φ1 ≤ φ2.... ≤ φn. Unitarity requires that the parameter u is real and
γi = φ identification is suggestive.

i. In the case of M2 the values of rapidities can be fixed by four-momenta but in the
recent case there are no four-momenta and Uncertainty Principle does not encourage
the fixing of the phases so that one must simply integrate over all possible values.
Most naturally the convolution of the scattering amplitude with color partial waves for
center of mass degrees of freedom defines this integration naturally.

ii. On the other hand, the existence of phases in algebraic extension of p-adic numbers
would suggest that φi can come only as multiples of the angle π/n defining the quan-
tum phase q so that circle would be discretized to a circular lattice. The values of
color isospin J would be restricted to J ≤ n/2 for even n since for J and J + n the
wave functions differ only by a sign. For odd n one has J ≤ n. This conforms with the
fact that for the finite-dimensional representations of quantum groups associated with
q = exp(iπ/n) the action of raising and lowering operators Jn± reduces to a multipli-
cation by a complex number [A71], which can also vanish so that cyclic or semicyclic
representations besides counterparts of ordinary finite-dimensional representations are
obtained. Also the possibility of only j ≤ n/2 representations of Kac Moody group
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fits with this picture. The groups G ⊂ SU(2) for which n is the order of the maximal
cyclic subgroup would naturally define as their orbits discrete analogs of the geodesic
sphere allowing p-adicization and discrete versions of spherical harmonics. Physically
the appearance of finite subgroups of SU(2) would be a direct analog for the presence
of discrete subgroups of translation groups in solid state physics.

(d) This construction would allow to fix the dependence of S-matrix on the center of mass
coordinates and on total color quantum numbers and the integration over the orbifold
SU(3)/SU(2)L×SU(2)R of geodesic spheres of CP2 would restore the exact color invariance
broken by Jones inclusion.

(e) Just as the M4 coordinates of the arguments of n-point function can be restricted to M1,
their CP2 coordinates can be restricted to geodesic circle S1 ⊂ S2 ⊂ CP2 implying the
reduction of S-matrix to braiding S-matrix.

What about Yang-Baxter type scattering in transversal degrees of freedom?

One could also consider construction of a Yang-Baxter type scattering matrix in transversal
degrees of freedom. This S-matrix cannot give rise to momentum transfers. One could argue
that this is not in spirit with the basic number theoretic idea. One could however modify the
idea. E2 as the complement of hyper-complex plane in hyper-quaternionic space (z = xiJ+yiK)
can be mapped to complex plane by z → iJz = x + yI) and one can construct S-matrix for
scattering in this plane. Similar argument applies in CP2 degrees of freedom.

1. Factorizable S-matrix E2 degrees of freedom

It is straightforward to modify the construction for CP2 to construct S-matrix in transversal
degrees of freedom. The angles φi characterizing the directions of transversal momenta would
replace rapidities and particles could be ordered with respect to these angles and the intersections
of projections of orbits to E2 would define the interaction vertices. The commuting S-matrices
applied in case of CP2 parameterized by the values of u and γ could be used to define S-matrix.
The values of φ coming as multiples of quantum angle π/n suggest themselves in p-adic context
as intersections of p-adic E2 with real one.

2. Factorizable S-matrix in S1 ⊥ S2 degrees of freedom

If one allows pass-by events in E2, one must allow them also for the counterpart of E2 in CP2.
Only the geodesic sub-manifolds representing commuting sub-algebra of quaternions and orbit
of subgroup of color group are possible. This leaves only geodesic circles of CP2 orthogonal
to geodesic sphere S2 into consideration. The reduction would be completely analogous to
M1 × S2 decomposition in the case of M4. As noticed, the action of U(1)R groups in the
space of geodesic spheres is well defined and generates these geodesic circles. The reduction of
SU(2)L × SU(2)R ⊂ SU(3) to SU(2)L × U(1)R obviously correlates with the structure of the
electro-weak gauge group.

The four-fold decomposition of H is analogous to the decomposition of 8-D spinors to four-fold
tensor product of 2-D spinors. M2 (E2) represents classically hyperbolic (ordinary) rotations.
ξ2 = 0 geodesic sphere S2 represents I3 +Y rotations and S1

⊥ represents I3−Y rotations. Every
commuting isometry charge of SO(3, 1)×SU(3) would thus correspond to its own tensor factor
in the factorizing S-matrix.

Factorization for Kac-Moody representations

An interesting question relates to whether one should use finite-dimensional or infinite-dimensional
representations of quantum Kac-Moody algebra to construct S-matrix as braiding matrix in
Kac-Moody algebra. In both cases the counterpart of complex coordinate z restricted to unit
circle (hyper-quaternionic M2 coordinate restricted to m ·m = 1 hyperboloid) brings in angle
(rapidity) variable.
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(a) Finite-dimensional representations are obtained from those of quantum group and have van-
ishing central charge k = 0 and appear naturally in integrable 1+1-dimensional quantum
theories so that the Yang-Baxter matrices are finite-dimensional, typically 2 × 2 matrices
acting on quantum spinors. The infinite number of conservation laws have a natural in-
terpretation in terms of elements of this algebra. Since Lorentz invariance in longitudinal
degrees of freedom should not be broken by the central extension, one might argue that
finite-dimensional representations are natural in this case. Also the idea that Connes tensor
product makes the situation finite-dimensional fits with this interpretation. On the other
hand, the breaking of Lorentz invariance might be a property of zero energy states and
reflect the measurement situation as will be found and one must be cautious here.

(b) The braiding matrix for infinite-dimensional Kac-Moody representations was found by Drin-
feld [A71] and has exponential form bringing in mind an exponent of Hamiltonian. The
representation involves also Virasoro generator L0. Presumably the generalization to the
case of super Kac-Moody algebras exist. Neither the Kac-Moody- or quantum group R-
matrix is unitary. I do not know whether a unitary R- matrix for Kac-Moody algebras is
exclude by some deep reason.

The following arguments support the view that only finite-dimensional representations appear in
S-matrices between zero energy states which seem to be the only possibility in TGD framework.

(a) The universality of the R-matrix for affine algebras encourages the guess non-unitarity is a
universal property of Kac-Moody R-matrices containing only single continuous parameter
and that unitary and thus trivial R-matrix is possible only in q = 1 case. This would
conform with the fact that q = 1 also corresponds to extended ADE diagrams for Jones
inclusions assignable to Kac-Moody representations.

Notice however that the non-unitary braiding R-matrix
q

1 q − q−1

1
q


follows by a delicate limiting process from a unitary factorizing S-matrix at the limit
η12 → ±∞ as shown by Jimbo [A71]. Could the Kac-Moody R-matrix follow by a lim-
iting procedure from a unitary R-matrix by allowing an additional continuous parameter
analogous to rapidity to approach some limit?

(b) The invariance under isometries requires that central extension must vanish in center of
mass degrees of freedom so that only finite-dimensional representations are possible.

(c) Only a finite number of degrees of freedom are observable in the sense that they appear in
the S-matrix between zero energy states and this requires M→M/N reduction for Kac-
Moody algebra leading to finite-dimensional Kac-Moody/quantum group representations.

What the reduction to braid group representations means physically?

One could choose also M1 × S2 decomposition instead of M2 × E2. M1 × S2 option gives
ordinary braid group representations as the limit ηij = 0 meaning that the tips of light cones
are at rest relative to each other. There is no convincing argument forbidding the braid group
representations and they would be absolutely essential for topological quantum computation
utilizing braiding S-matrices [K84] .

For CP2 the two options correspond to (S1, S2) and (S2, S1) decompositions and are equivalent
and SU(2)L×U(1)R ⊂ SU(3)L×SU(3)R reduction. A reduction to braid group representation
occurs always in U(1)R factor and is accompanied by a similar reduction in electro-weak degrees
of freedom.

The geodesic circle S1 ⊂ S2 with θ = π/2 implies (I3 + Y )/
√
I(I + 1) + Y 2 = 0 meaning the

absence of I3 + Y color rotation. The second color quantum number I3 − Y is represented
by a geodesic circle S1

⊥ orthogonal to S2 and should vanish by the same argument. Quantum
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classical correspondence predicts that physical states correspond to (I3, Y ) = (0, 0) states of
color multiplets: the interpretation is as a weak form of color confinement. The vanishing of I3
and Y implied by the weak form of color confinement means a reduction to U(1)L × U(1)R ⊂
SU(3)L × SU(3)R so that S-matrix reduces to a braiding S-matrix in both S1

⊥ and S2 factors
and also for electro-weak sector.

The relationship with Jones inclusions

The factorization of S-matrix to four factorizing tensor factors suggest similar structure for
Jones inclusions.

1. The four basic basic types of Jones inclusions

Four kinds of Jones inclusions can be assigned with the pairs (M2, E2) and (S2, S1). Same
applies in case of (M1, S2) and (S1, S1) in TGD framework.

(a) In M2 × E2 case the discrete subgroups of O(1, 1) and O(2) would characterize Jones
inclusions. For E2 only G = An or D2n are possible. For M2 the subgroups generated
by powers of Lorentz boost and reflection are possible. The infinite order for these groups
strongly suggests β = 4. The quantum phase q = exp(iπ/n) would emerge naturally if the
action of Lorentz boosts on configuration space spinor fields is unitary and reduces to a
cyclic action represented by An−1. This would be very much analogous to the reduction of
the quantum group representations to finite-dimensional ones as q becomes a root of unity.

(b) M1 × S2 option allows also G = E6, E8 (tetrahedral and icosahedral groups) and SU(2).

(c) For CP2 all groups G ⊂ SU(2)L and An ⊂ U(1)R could define Jones inclusions. For color
confined states only GL = AnL and GR = AnR are possible.

2. The type of braiding correlates with the type of Jones inclusion

Jones inclusions come in two very different types corresponding to β < 4 defined by the subgroups
G ⊂ SU(2) and β = 4 defined by G = SU(2) or infinite subgroups of SU(2). The two kinds of
S-matrices could correspond to the two types of Jones inclusions as following arguments suggest.

(a) Constant Yang-Baxter matrices defining braid group representations emerge as intertwiners
of quantum versions of Lie algebras whereas more general Yang-Baxter matrices emerge
as intertwiners for the representations of quantum versions of Kac Moody algebras [A71].
Thus M2 resp. S2 would correspond to a representation of quantum Kac-Moody algebra
whereas M1 resp. S1 would represent a degeneration to a purely topological braid group
representation in the case of SU(2).

(b) According to the arguments of [K27] β < 4 corresponds to quantum group representations
characterized by finite sub-groups G ⊂ SU(2) whereas β = 4 representations corresponds
to Kac Moody representations with monodromies of n-point functions characterized by the
quantum phase q. It would seem that an equivalent characterization is as representations
of quantum Kac Moody algebras.

3. Consistency with the TGD based explanation for McKay correspondence

These observations relate also interestingly to the proposal that TGD physics is universal in the
sense of being able to mimic almost any physics obeying Kac Moody symmetry [K27] .

(a) McKay correspondence states that the finite subgroups G ⊂ SU(2) characterizing β < 4
inclusions are labeled by ADE diagrams (An, D2n, E6 and E8 are allowed). A concrete
proposal was made for constructing the representations of the corresponding Kac-Moody
algebras from these data by utilizing the new discrete degrees of freedom implied by the fact
that space-time sheets define n(G)-fold coverings of M4 (of CP2 for SU(2) ⊂ SL(2, C)).
The group algebra ofG associated with multiple coverings ofM4 or CP2 gave the multiplets.
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The degeneration of the S-matrix to braiding S-matrix does not kill this conjecture. The
point is that n ≥ 3 condition for quantum phase excludes the Jones inclusion correspond-
ing to A2 (two-element subgroup of SU(2)). It would be just the representation of SU(2)
realized in terms of quantum spinors which would degenerate to the braid group represen-
tation whereas other representations for which spin like degrees of freedom are represented
in terms of group algebra of G are not lost.

(b) For β = 4 one obtains all extended ADE diagrams as characterizers of Jones inclusions, and
an analogous construction of corresponding Kac Moody representations was proposed with
quantum phase assigned with a non-trivial monodromy for n-point functions in S2/G, S2 a
non-trivial geodesic sphere of CP2. The natural identification would be as representations
of quantum Kac-Moody algebra. All extended ADE diagrams are allowed which conforms
with the fact that now SU(2) can be realized using quantum spinors. The representations
of D2n+1 and E7 should involve both quantum spinors and the n(G)-fold covering of S2/G
defining the monodromy.

(c) These proposals do not seem so speculative when one realizes that the finite dimensional
representations of quantum groups can be regarded also as representations of quantum Kac-
Moody algebras [A71]. As found, the generators in defining representations appear also as
conserved charges in the quantum field theory models giving rise to factorizing S-matrices.

(d) According to the construction for β < 4 the dimension of CP2 projection of the partonic
2-surface can be smaller than two: this excludes homological non-triviality. For β = 4 CP2

projection would be homologically non-trivial geodesic sphere. This is in harmony with
the assumption that geodesic circle S1 and homologically non-trivial geodesic sphere S2

characterize the sub-manifold of CP2 to which the arguments of n-point functions belong
for these representations.

6.4.3 Are unitarity and Lorentz invariance consistent for the quantum
critical M-matrix constructed from factorizing S-matrices?

Factorizable M2 S-matrices do not allow particle creation and the sets of initial and final state
momenta are identical. The possibility to exchange internal quantum numbers possible in equal
mass case could make possible momentum exchange in a very limited sense.

The extension to TGD framework brings in additional problems since the decomposition M4 =
M2 × E2 breaks manifest Lorentz invariance. Also color invariance is broken. The question is
how to achieve unitarity and Lorentz invariance simultaneously. The loss of these symmetries in
case of U -matrix which characterizes universe rather than quantum state would be a catastrophe.
This problem can be however circumvented.

U -matrix constructible using the proposed decompositionM2, E2, S2, S1
⊥ or its variant (M1, S2), (S1, S1

⊥)
should be unitary. Unitarity is trivial to achieve if one just restricts to a given decomposition.
Since Jones inclusions have a concrete effect on imbedding space geometry and topology, one
could argue that this decomposition indeed reduces Lorentz symmetry to SO(1, 1)×SO(2) and
color symmetry to U(2) or U(1).

There is a way out of the problem. One can extend the U -matrix by introducing a complete or-
thogonal basis of wave functions in the projective sphere P 2 labeling the choices M4 = M2×E2
and in the space of geodesic spheres S2 ⊂ CP2. The extended U -matrix is obtained by convo-
luting the factorizing S-matrix with this function basis. Completeness and orthonormalization
of the basis reduce unitarity conditions for those of U -matrix for a fixed choice of (M2, E2) and
(S2, S1

⊥) pairs.

This is not a trick but corresponds to the possibility to choose the quantization axes and the wave
function in question corresponds to a wave function in the space of sub-CDs and corresponding
sub-WCWs defined by the different choices of quantization axes.
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6.5 What can one say about U-matrix?

For some time I thought that U -matrix could be constructed using as building bricks S-matrices
of factorizing QFTs but in turned out that these S-matrices can be assigned to the scattering
at quantum criticality against change of Planck constant because they have no dependence on
Planck constant. The realization that U -matrix could reduce to a tensor product of S-matrices
associated with M -matrices characterizing zero energy states changed the situation and it seems
that this is indeed the correct interpretation. The additional nice aspect of this assumption is
that U -matrix can in principle be measured experimentally.

6.5.1 U-matrix as a tensor product of S-matrix part of M-matrix and
its Hermitian conjugate?

U -matrix describes scattering of zero energy states and since zero energy states can be illustrated
in terms of Feynman diagrams one can say that scattering of Feynman diagrams is in question.
The initial and final states of the scattering are superpositions of Feynman diagrams charac-
terizing the corresponding M -matrices which contain also the positive square root of density
matrix as a factor.

The hypothesis that U -matrix is the tensor product of S-matrix part of M -matrix and its
Hermitian conjugate would make U -matrix an object deducible by physical measurements. One
cannot of course exclude that something totally new emerges. For instance, the description of
quantum jumps creating zero energy state from vacuum might require that U -matrix does not
reduce in this manner (this point was discussed already earlier). One can assign to the U -matrix
a square like structure with S-matrix and its Hermitian conjugate assigned with the opposite
sides of a square.

One can imagine of constructing higher level physical states as composites of zero energy states
by replacing the S-matrix with M -matrix in the square like structure. These states would
provide a physical representation of U -matrix. One could define U -matrix for these states in
a similar manner. This kind of hierarchy could be continued indefinitely and the hierarchy of
higher level U and M -matrices would be labeled by a hierarchy of n-cubes, n = 1, 2,... TGD
inspired theory of consciousness suggests that this hierarchy can be interpreted as a hierarchy
of abstractions represented in terms of physical states. This hierarchy brings strongly in mind
also the hierarchies of n-algebras and n-groups and this forces to consider the possibility that
something genuinely new emerges at each step of the hierarchy. A connection with the hierarchies
of infinite primes [K72] and Jones inclusions are suggestive. Below the possibility of this kind
of hierarchy for Jones inclusions is considered. The discussion relates only loosely to the recent
view about M -matrix and U -matrix since it was written much before the recent view about
M -matrix emerged.

6.5.2 The unitarity conditions of U-matrix for HFFs of type II1?

Zero energy ontology forced to give up the original hope the ordinary unitary S-matrix could
directly correspond to U -matrix. For HFFs U -matrix could however decompose to a tensor
product of unitary S-matrices acting between positive resp. negative parts of zero energy states.
If these S-matrices are those assigned with the M -matrix for zero energy states, M -matrix would
code information about U -matrix and be therefore measurable.

In the following U -matrix for HFF of type II1 is formally treated as a matrix with discrete
indices. A rigorous treatment would be by replacing indices representing 1-D projections by
projections to infinite-dimensional sub-factors having non-vanishing trace.

The unitarity conditions for the scattering of zero energy states read formally as

∑
m̂+n̂−

Um+n−→m̂+n̂−U
∗
r+s−→m̂+n̂− = δm+,r+δn−,s− . (6.5.1)
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The sum over the final zero energy states can be also written as a trace for the product of
matrices labeled by incoming zero energy states.

Tr(Um+n−U
∗
r+s−) = δm+,r+δn−,s− . (6.5.2)

One can put s− = n− on both sides and perform the sum over n− to get

∑
n−

Tr(Um+n−U
∗
r+n−) = δm+,r+

∑
n−

δn−,n− . (6.5.3)

This can be written as

1

Tr(Id)

∑
n−

Tr(Um+n−U
∗
r+n−) = δm+,r+ . (6.5.4)

For HFFs of type II1 the sum
∑
n−
δn−,n− is equal to the trace Tr(Id) = 1 of the identity matrix

so that one obtains

∑
n−

Tr(Um+n−U
∗
r+n−) = δm+,r+ . (6.5.5)

This could be interpreted as a unitarity condition for positive and negative energy parts of the
zero energy state are interpreted as incoming and outgoing state.

This result allows to consider the possibility that U -matrix between zero energy states could
define also M -matrix for HFFs of type II1. The almost triviality of U -matrix however suggests
that this is not a good idea. The construction of M -matrix as time-like entanglement coefficients
allowing to understand thermodynamics as part of quantum theory provides further support for
this belief.

The interpretation of the result would be as a thermal expectation value of the unitarity condition
in the sense of hyper-finite factors of type II1. This averaging is necessary if one does not have
any control over the scattering between zero energy states: this scattering is just a means to
become conscious about the existence of the state we usually interpret as change of state.

6.5.3 U-matrix can have elements between different number fields

The argument for the number theoretical universality applies as such only to the matrix elements
of U -matrix between different number fields. One can quite well consider the possibility that
U matrix in the general case is non-algebraic since one can restrict the 3-surfaces contributing
to this kind of transitions in such a manner that only algebraic numbers appear in the matrix
elements of U . Unless this is the case, one could argue that physics reduces to purely algebraic
physics so that one can forget both reals and p-adics.

This picture would conform with the idea that only those light-like 3-surfaces for which ”physics
is algebraic” are associated with the transitions between different number fields. One can say
that these 3-surfaces would define a back of book along which leakage between different number
fields occurs. For configuration space spinor fields in sectors corresponding to different number
fields the ”overlap integral” defining U -matrix elements would involve only the 3-surfaces in the
back of the book. These surfaces would be in exactly the same role as rationals and algebraic
numbers in number theory. The transitions between different number fields would represent a
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critical phenomenon in complete analogy with the criticality against phase transitions changing
the value of Planck constant. Therefore the quantum criticality of TGD Universe would have
very many facets. An interesting conjecture is that these surfaces are labeled by infinite rationals
and algebraics so that the analogy with number theory would be much deeper [K72] .

What the statement ”physics is algebraic” means is not quite obvious.

(a) Both the field equations associated with extremals of Kähler action and modified Dirac
equation represents a p-adically sensible statement. The anticommutation relations for the
finite number of eigenmodes of modified Dirac operator are algebraic. The eigenvalues of
the modified Dirac operator defined by Kähler action should be algebraic for the preferred
surfaces so that also the Dirac determinant defining the vacuum functional would be al-
gebraic. Vacuum functional is conjecture to be equal to the exponent of Kähler function
identifiable as Kähler action for the preferred extremal identified as 4-surface for which the
second variation of Kähler action vanishes for the dynamical symmetries at least. Also
these conditions are purely algebraic.

(b) The strongest condition would be that the values of classical charges and quantum numbers
are well-defined and same for the positive and negative energy parts of quantum states
assignable to given 3-surface which contribute to the transition and that real and p-adic
space-time surfaces obey same algebraic equations but interpreted in different number fields.
The classical conserved quantities associated with Kähler action could be defined also in p-
adic case in this kind of situation and would be identical with corresponding real quantities
if they are algebraic numbers.

(c) The algebraic points common to real and p-adic space-time surfaces would provide the data
appearing in U so that these points much corresponds to the points of number theoretic
braids which must therefore have algebraic coordinate values in preferred coordinates for
M4 and CP2.

6.5.4 Feynman diagrams as higher level particles and their scattering
as dynamics of self consciousness

The hierarchy of inclusions of hyper-finite factors of II1 as counterpart for many-sheeted space-
time lead inevitably to the idea that this hierarchy corresponds to a hierarchy of generalized
Feynman diagrams for which Feynman diagrams at a given level become particles at the next
level. Accepting this idea, one is led to ask what kind of quantum states these Feynman diagrams
correspond, how one could describe interactions of these higher level particles, what is the
interpretation for these higher level states, and whether they can be detected.

Jones inclusions as analogs of space-time surfaces

The idea about space-time as a 4-surface replicates itself at the level of operator algebra and
state space in the sense that Jones inclusion can be seen as a representation of the operator
algebra N as infinite-dimensional linear sub-space (surface) of the operator algebra M. This
encourages to think that generalized Feynman diagrams could correspond to image surfaces in
II1 factor having identification as kind of quantum space-time surfaces.

Suppose that the modular S-matrices are representable as the inner automorphisms ∆(Mit
k

assigned to the external lines of Feynman diagrams. This would mean that N ⊂ Mk moves
inside calMk along a geodesic line determined by the inner automorphism. At the vertex the
factors calMk to fuse along N to form a Connes tensor product. Hence the copies of N move
inside Mk like incoming 3-surfaces in H and fuse together at the vertex. Since all Mk are
isomorphic to a universal factor M, many-sheeted space-time would have a kind of quantum
image inside II1 factor consisting of pieces which are d = M : N/2-dimensional quantum
spaces according to the identification of the quantum space as subspace of quantum group to be
discussed later. In the case of partonic Clifford algebras the dimension would be indeed d ≤ 2.
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The hierarchy of Jones inclusions defines a hierarchy of S-matrices

It is possible to assign to a given Jones inclusion N ⊂M an entire hierarchy of Jones inclusions
M0 ⊂ M1 ⊂ M2..., M0 = N , M1 = M . A possible interpretation for these inclusions would
be as a sequence of topological condensations.

This sequence also defines a hierarchy of Feynman diagrams inside Feynman diagrams. The
factorM containing the Feynman diagram having as its lines the unitary orbits of N under ∆M
becomes a parton in M1 and its unitary orbits under ∆M1

define lines of Feynman diagrams
in M1. The concrete representation for M -matrix or projection of it to some subspace as
entanglement coefficients of partons at the ends of a braid assignable to the space-like 3-surface
representing a vertex of a higher level Feynman diagram. In this manner quantum dynamics
would be coded and simulated by quantum states.

The outcome can be said to be a hierarchy of Feynman diagrams within Feynman diagrams,
a fractal structure for which many particle scattering events at a given level become particles
at the next level. The particles at the next level represent dynamics at the lower level: they
have the property of ”being about” representing perhaps the most crucial element of conscious
experience. Since net conserved quantum numbers can vanish for a system in TGD Universe,
this kind of hierarchy indeed allows a realization as zero energy states. Crossing symmetry can
be understood in terms of this picture.

One might perhaps say that quantum space-time corresponds to a double inclusion and that
further inclusions bring in N -parameter families of space-time surfaces.

Higher level Feynman diagrams

The lines of Feynman diagram inMn+1 are geodesic lines representing orbits ofMn and this kind
of lines meet at vertex and scatter. The evolution along lines is determined by ∆Mn+1 . These
lines contain within themselvesMn Feynman diagrams with similar structure and the hierarchy
continues down to the lowest level at which ordinary elementary particles are encountered.

For instance, the generalized Feynman diagrams at the second level are ribbon diagrams obtained
by thickening the ordinary diagrams in the new time direction. The interpretation as ribbon
diagrams crucial for topological quantum computation and suggested to be realizable in terms
of zero energy states in [K84] is natural. At each level a new time parameter is introduced so
that the dimension of the diagram can be arbitrarily high. The dynamics is not that of ordinary
surfaces but the dynamics induced by the ∆Mn

.

Quantum states defined by higher level Feynman diagrams

The intuitive picture is that higher level quantum states corresponds to the self reflective aspect
of existence and must provide representations for the quantum dynamics of lower levels in their
own structure. This dynamics is characterized by M -matrix whose elements have representation
in terms of Feynman diagrams.

(a) These states correspond to zero energy states in which initial states have ”positive energies”
and final states have ”negative energies”. The net conserved quantum numbers of initial
and final state partons compensate each other. Gravitational energies, and more generally
gravitational quantum numbers defined as absolute values of the net quantum numbers of
initial and final states do not vanish. One can say that thoughts have gravitational mass
but no inertial mass.

(b) States in sub-spaces of positive and negative energy states are entangled with entanglement
coefficients given by M -matrix at the level below.

To make this more concrete, consider first the simplest non-trivial case. In this case the particles
can be characterized as ordinary Feynman diagrams, or more precisely as scattering events so
that the state is characterized by Ŝ = PinSPout, where S is S-matrix and Pin resp. Pout is the
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projection to a subspace of initial resp. final states. An entangled state with the projection of
S-matrix giving the entanglement coefficients is in question.

The larger the domains of projectors Pin and Pout, the higher the representative capacity of the
state. The norm of the non-normalized state Ŝ is Tr(ŜŜ†) ≤ 1 for II1 factors, and at the limit
Ŝ = S the norm equals to 1. Hence, by II1 property, the state always entangles infinite number
of states, and can in principle code the entire S-matrix to entanglement coefficients.

The states in which positive and negative energy states are entangled by a projection of S-matrix
might define only a particular instance of states for which conserved quantum numbers vanish.
The model for the interaction of Feynman diagrams discussed below applies also to these more
general states.

The interaction of Mn Feynman diagrams at the second level of hierarchy

What constraints can one pose to the higher level reactions? How Feynman diagrams interact?
Consider first the scattering at the second level of hierarchy (M1), the first level M0 being
assigned to the interactions of the ordinary matter.

(a) Conservation laws pose constraints on the scattering at level M1. The Feynman diagrams
can transform to new Feynman diagrams only in such a manner that the net quantum
numbers are conserved separately for the initial positive energy states and final negative
energy states of the diagram. The simplest assumption is that positive energy matter
and negative energy matter know nothing about each other and effectively live in separate
worlds. The scattering matrix form Feynman diagram like states would thus be simply the
tensor product S ⊗S†, where S is the S-matrix characterizing the lowest level interactions
and identifiable as unitary factor of M -matrix for zero energy states. Reductionism would
be realized in the sense that, apart from the new elements brought in by ∆Mn

defining single
particle free dynamics, the lowest level would determine in principle everything occurring
at the higher level providing representations about representations about... for what occurs
at the basic level. The lowest level would represent the physical world and higher levels
the theory about it.

(b) The description of hadronic reactions in terms of partons serves as a guide line when one
tries to understand higher level Feynman diagrams. The fusion of hadronic space-time
sheets corresponds to the verticesM1. In the vertex the analog of parton plasma is formed
by a process known as parton fragmentation. This means that the partonic Feynman
diagrams belonging to disjoint copies of M0 find themselves inside the same copy of M0.
The standard description would apply to the scattering of the initial resp. final state
partons.

(c) After the scattering of partons hadronization takes place. The analog of hadronization in
the recent case is the organization of the initial and final state partons to groups Ii and Fi
such that the net conserved quantum numbers are same for Ii and Fi. These conditions can
be satisfied if the interactions in the plasma phase occur only between particles belonging
to the clusters labeled by the index i. Otherwise only single particle states inM1 would be
produced in the reactions in the generic case. The cluster decomposition of S-matrix to a
direct sum of terms corresponding to partitions of the initial state particles to clusters which
do not interact with each other obviously corresponds to the ”hadronization”. Therefore
no new dynamics need to be introduced.

(d) One cannot avoid the question whether the parton picture about hadrons indeed corre-
sponds to a higher level physics of this kind. This would require that hadronic space-time
sheets carry the net quantum numbers of hadrons. The net quantum numbers associated
with the initial state partons would be naturally identical with the net quantum numbers
of hadron. Partons and they negative energy conjugates would provide in this picture a
representation of hadron about hadron. This kind of interpretation of partons would make
understandable why they cannot be observed directly. A possible objection is that the net
gravitational mass of hadron would be three times the gravitational mass deduced from
the inertial mass of hadron if partons feed their gravitational fluxes to the space-time sheet
carrying Earth’s gravitational field.
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(e) This picture could also relate to the suggested duality between string and parton pictures
[K74] . In parton picture hadron is formed from partons represented by space-like 2-surfaces
X2
i connected by join along boundaries bonds. In string picture partonic 2-surfaces are

replaced with string orbits. If one puts positive and negative energy particles at the ends of
string diagram one indeed obtains a higher level representation of hadron. If these pictures
are dual then also in parton picture positive and negative energies should compensate each
other. Interestingly, light-like 3-D causal determinants identified as orbits of partons could
be interpreted as orbits of light like string word sheets with ”time” coordinate varying in
space-like direction.

Scattering of Feynman diagrams at the higher levels of hierarchy

This picture generalizes to the description of higher level Feynman diagrams.

(a) Assume that higher level vertices have recursive structure allowing to reduce the Feynman
diagrams to ordinary Feynman diagrams by a procedure consisting of finite steps.

(b) The lines of diagrams are classified as incoming or outgoing lines according to whether the
time orientation of the line is positive or negative. The time orientation is associated with
the time parameter tn characterizing the automorphism ∆itn

M\ . The incoming and outgoing

net quantum numbers compensate each other. These quantum numbers are basically the
quantum numbers of the state at the lowest level of the hierarchy.

(c) In the vertices the Mn+1 particles fuse and Mn particles form the analog of quark gluon
plasma. The initial and final state particles ofMn Feynman diagram scatter independently
and the S-matrix Sn+1 describing the process is tensor product Sn⊗S†n. By the clustering
property of S-matrix, this scattering occurs only for groups formed by partons formed by
the incoming and outgoing particles Mn particles and each outgoing Mn+1 line contains
and irreducible Mn diagram. By continuing the recursion one finally ends down with
ordinary Feynman diagrams.

6.6 The master formula for the U-matrix finally found?

In zero energy ontology U-matrix replaces S-matrix as the fundamental object characterizing
the predictions of the theory. U-matrix is defined between zero energy states and its orthogonal
rows define what I call M-matrices, which are analogous to thermal S-matrices of thermal QFTs.
M-matrix defines the time-like entanglement coefficients between positive and negative energy
parts of the zero energy state.

A dramatic development of ideas related to the construction of U-matrix has taken place during
the last year. In particular, twistorialization becomes possible in zero energy ontology and leads
to the generalization of the Yangian symmetry of N = 4 SUSY to TGD framework with the
replacement of finite-dimensional super-conformal group of M4 with infinite-D super-conformal
group assignable to partonic 2-surfaces. What is so beautiful is that the physical IR cutoff due
to the formation of bound states of massless wormhole throats resolves the infrared divergence
problem whereas UV divergences are solved by on mass shell propagation of wormhole throats
for virtual particles. This also guarantees that Yangian invariance is not lost. There are excellent
reasons to expect that the twistorial constructions generalize.

Recently quite dramatic further developments have taken place in the understanding of the
notions of U-matrix, M-matrix and S-matrix- a trinity of matrices replacing in zero energy
ontology the notion of S-matrix of positive energy ontology. Also twistorialization reduces to
pure group theory-albeit infinite-dimensional: zero energy states define Yangian algebra. In
the following I summarize these developments. It is however good to summarize first various
loosely related ideas developed during years which converge to a tight pattern in in the resulting
conceptual framework.
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(a) The realization that the hermitian square roots of density matrices form infinite-D unitary
algebra and that their commutativity with universal S-matrix implies that zero energy
states define the generalization of Kac-Moody algebra became only after I had realized the
possibility to construct U-matrix. It is this observation which reduces the construction of
U-matrix (or matrices if they form algebra) to that for S is expected to correspond directly
to the ordinary S-matrix. A possible interpretation of the Kac-Moody type algebra of U -
matrices is in terms of scales of CDs coming as positive integer powers of two. Another
possibility more in line with the usual interpretation of S-matrix as time evolution operator
is that scales of CDs come as integers and these integers correspond to powers of S.

What is most fascinating is that zero energy states themselves define the symmetry algebra
of the theory and that this algebra can be interpreted as a generalization of Yangian respon-
sible for the successes of Grassmannian twistor approach by replacing finite-dimensional
conformal group of Minkowski space with infinite-dimensional super-conformal algebras as-
sociated with partonic 2-surfaces in accordance with the replacement of point-like particles
with surfaces. The basic characteristic of Yangian algebra is the multilocality of its gen-
erators and zero energy states are indeed multilocal since they involve partonic surfaces
at both light-like boundaries of CD. Quantum TGD reduces to pure group theory! Note
only states but also dynamics is coded completely by symmetries since M-matrices code
for quantum dynamics! This aspect of zero energy ontology I have not realized before.

(b) In ordinary QFT Feynman diagrams are purely algebraic objects. In TGD framework they
reduce to space-time topology and geometry with Euclidian regions of space-time surfaces
having interpretation as generalized Feynman diagrams. At the vertices of generalized
Feynman diagrams in coming partonic 2-surfaces meet just like in ordinary Feynman dia-
grams which means deep difference from string theory. A more general assumption is that
entire 4-D lines of generalized Feynman diagram meet at vertices. This could apply to the
Euclidian regions only.

There is also a second kind of branching involved with the hierarchy of Planck constants
[K27] . In Minkowskian regions similar meeting would take place for the branches of space-
time sheets with same values of canonical momentum densities of Kähler action at the
ends of CDs and have interpretation in terms of fractionization and hierarchy of Planck
constants. The value of Planck constant for single branch would be effectively and integer
multiple of the ordinary one. For the entire multi-sheeted structure describable naturally
in terms of singular covering space of M4 × CP2 it would be just the ordinary value.

(c) Zero energy ontology with massless external wormhole wormholes implies as such twistori-
alization of the theory [K87] although external wormhole momenta must be assumed to be
massive bounds states of massless throats. This also guarantees exact Yangian symmetry
and the absence of IR divergences. If also virtual wormhole throats are massless, twisto-
rialization takes place in strong sense. This is possible only in zero energy ontology and
accepting the identification of wormhole throats as basic building blocks of particles.

(d) The notion of bosonic emergence [K58] means that bosonic propagators emerge as radia-
tive loops for wormhole contacts. The emergence generalizes to all states associated with
wormhole contacts and also to flux tubes having wormhole contacts at their ends. What
is nice that coupling constants emerge as normalization factors of propagators. Note that
for single wormhole throat as opposed to wormhole contact having two throats bosonic
propagator would result as a product of two collinear fermionic propagators and have the
standard form. For states with higher total number of fermions and ant-ifermions the prop-
agator of wormhole throat behaves as pn, n > 2. Here however p is replaced with what I
call pseudo-momentum.

(e) Number theoretical universality based on the extension of physics to p-adic number fields
[K73] suggest that at given level (CD) only finite sum of diagrams appears: otherwise there
is danger that one obtains sum of rational functions which is not rational anymore. This
gives strong constraints on generalized Feynman diagrams at the lowest level of the hierar-
chy. This follows naturally if twistor diagrams are identified as sums of Feynman diagrams
which are irreducible in the sense that they do not represent two subsequence scatterings.
Only these diagrams contribute to twistor diagram and the number of these diagrams is

http://tgd.wippiespace.com/public_html/tgdquant/tgdquant.html#Planck
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http://tgd.wippiespace.com/public_html/tgdnumber/tgdnumber.html#visiona
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finite if all particles have small mass (even photon which would eat the remaining Higgs
component).

(f) Category theoretical approach [K13] based on planar operad proposed for few years ago
fits nicely with the twistorial construction of amplitudes interpreting radiative corrections
in terms of CDs within CDs picture. The generalized Feynman diagrams with radiative
corrections define the analog of planar operad with disk containing within itself disks con-
taining.... replaced with causal diamond containing causal diamonds containing....

6.6.1 What is the master formula for the U-matrix?

The basic challenge is however still there and boils down to a simple question represented in
the title. This master formula should be something extremely simple and should generalize
the formula for S-matrix defined between positive energy states and identified formally as the
exponential of Hamiltonian operator. In TGD framework the notion of unitary time development
is given up so that something else is required and this something else should be manifestly Lorentz
invariant and characterize the interactions.

Thinking the problem from this point of view allows only one answer: replace the time evolution
operator defined by the Hamiltonian with the exponent for the action containing both bosonic
and fermionic term. Bosonic term is the action for preferred extremal of Kähler action, which
is indeed the unique Lorentz invariant defining interactions! Fermionic term would given by
Chern-Simons Dirac action associated with light-like three surfaces and space-like 3-surfaces at
the ends of CDs. The formula is as simple as it is obvious and still I had to use 32 years to
discover it!

It took however one day to realize that the situation is not so simple as one might think first.
The question is whether this action should be interpreted as the counterpart of action or effective
action obtained by performing path integral in presence of external sources in QFT framework.
Since one restricts space-time surfaces to preferred extremals so that there is no path integral,
the only possible interpretation as the effective action. Also the condition that one obtains
fermionic propagators correctly allows only this interpretation. For the Chern-Simons Dirac
action the propagator would be the inverse of the correct propagator which obviously makes
no sense. For the corresponding effective action the kinetic term is replaced with propagator
and correct fermionic Feynman rules result when spinor basis selected to represent generalized
eigenstates of the Chern-Simons Dirac operator.

The action interpreted as a counterpart of QFT effective action reduces to the sum of fermionic
and bosonic terms. To make the representation more fluent I will mean with 3-surfaces in the
following either the light-like orbits of wormhole throats at which the signature of the induced
metric changes or the ends of space-time sheets at the boundaries of CDs. Note that it is possible
to have CDs within CDs and these give rise to loop corrections having interpretation as zero
energy states in shorter length scale. Finite measurement resolution means that one integrates
over these degrees of freedom below the resolution scale. This gives rise to discrete variant of
gauge coupling evolution based on scalings by factor two for CDs.

The next unpleasant question was whether this U -matrix is actually only the S-matrix appearing
in the expression of a given M -matrix as a product of a hermitian square root of density matrix
and unitary S-matrix having interpretation as the TGD counterpart of the ordinary S-matrix.
The physical picture suggests this strongly. This observation led to a realization that the square
roots of density matrices can be identified as generators of infinite-dimensional Lie-algebra of
unitary matrices. Unit norm requires that hyper-finite factor of type II1 is in question. The
construction reduces to that for unitary S-matrix.

6.6.2 Universal formula for the hermitian square roots of density ma-
trix

Zero energy ontology replaces S-matrix with M-matrix and groups M-matrices to rows of U-
matrix. S-matrix appears as factor in the decomposition of M-matrix to a product of hermitian
square root of density matrix and unitary S-matrix interpreted in standard sense.

http://tgd.wippiespace.com/public_html/tgdquant/tgdquant.html#categorynew
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Mi = ρ
1/2
i S .

Note that one cannot drop the S-matrix factor from M-matrix since M-matrix is neither unitary
nor hermitian and the dropping of S would make it hermitian. The analog of the decomposition
of M-matrix to the decomposition of Schrödinger amplitude to a product of its modulus and of
phase is obvious.

The interpretation is in terms of square root of thermodynamics. This interpretation should
give the analogs of the Feynman rules ordinary quantum theory producing unitary matrix when
one has pure quantum states so that density matrix is projector in 1-D sub-space of state space
(for hyper-finite factors of type II1 something more complex is required).

This is the case. M-matrices are in this case just the projections of S-matrix to 1-D subspaces
defined by the rows of S-matrix. The state basis is naturally such that the positive energy states
at the lower boundary of CD have well-defined quantum numbers and superposition of zero
energy states does not contain different quantum numbers for the positive energy states. The
state at the upper boundary of CD is the state resulting in the interaction of the particles of
the initial state. Unitary of the resulting U-matrix reduces to that for S-matrix.

A more general situation allows square roots of density matrices which are diagonalizable her-
mitian matrices satisfying the orthogonality condition that the traces

Tr(ρ
1/2
i ρ

1/2
j ) = δij .

The matrices span the Lie algebra of infinite-dimensional unitary group. The hermitian square
roots of M-matrices would reduce to the Lie algebra of infinite-D unitary group. This does not
hold true for zero energy states.

If one however assumes that S commutes with the algebra spanned by the square roots of density
matrices and allows powers of S one obtains a larger algebra complely analogous to Kac-Moody
algebra in the sense that powers of S takes the role of powers of exp(inφ) in Kac-Moody algebra
generators. The commutativity of S and density matrices means that the square roots of density
matrices span symmetry algebra of S. The Hermitian sub-Lie-algebra commuting with S is large:
for SU(N) it would correspond to SU(N − 1) × U(1) so that the symmetry algebra is huge in
infinite-D case.

A possible interpretation for the sub-space spanned by M -matrices proportional to Sn is in
terms of the hierarchy of CDs. If one assumes that the size scales of CDs come as octaves 2m

of a fundamental scale then one would have m = n. Second possibility is that scales of CDs
come as integer multiples of the CP2 scale: in this case the interpretation of n would be as this
integer: this interpretation conforms with the intuitive picture about S as TGD counterpart of
time evolution operator. This interpretation could also make sense for the M-matrice associated
with the hierarchy of dark matter for which the scales of CDs indeed come as integers multiples
of the basic scale.

If the square roots of density matrices are required to have only non-negative eigenvalues -as
I have carelessly proposed in some contexts,- only projection operators are possible for Cartan
algebra so that only pure states are possible. If one allows both signs one can have more
interesting density matrices and this is the only manner to obtain square root of thermodynamics.
Note that the standard representation for the Cartan algebra of finite-dimensional Lie group
corresponds to non-pure state. For ρ = Id one obtains M = S defining the ordinary S-matrix.
The orthogonality of this zero energy state with respect to other ones requires

Tr(ρ
1/2
i ) = 0

stating that SU(N =∞) Lie algebra element is in question.

The reduction of the construction of U to that of S is an enormous simplification and reduces
to the problem of finding the TGD counterpart of S-matrix. Note that the finiteness of the
norm of SS† = Id requires that hyper-finite factor of type II1 is in question with the definining
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property that the infinite-dimensional unit matrix has unit norm. This means that state function
reduction is always possible only into an infinite-dimensional subspace only [K86] .

The natural guess is that the Lie algebra generated by zero energy states is just the generalization
of the Yangian symmetry algebra (see this) ofN = 4 SUSY postulated to be a symmetry algebra
of TGD . The characteristic feature of the Yangian algebra is the multi-locality of its generators.
The generators of the zero energy algebra are zero energy states and indeed form a hierarchy
of multi-local objects defined by partonic 2-surfaces at upper and lower light-like boundaries of
causal diamonds. Zero energy states themselves would define the symmetry algebra of the theory
and the construction of quantum TGD also at the level of dynamics -not only quantum states
in sense of positive energy ontology- would reduce to the construction of infinite-dimensional
Lie-algebra! It is hard to imagine anything simpler!

6.6.3 Bosonic part of the action

Consider now the bosonic part of the action in detail.

(a) The first term is the exponent of Kähler action which is purely classical quantity defining
vacuum functional as the exponent of the modified Dirac action for the interior. Since
there is no path integral over 4-surfaces, the only possible interpretation for Kähler action
is as the counterpart of the effective action of quantum field theories to which one can
indeed assign unique field pattern one the boundary values are fixed. For the preferred
extremals with boundary conditions satisfying the weak form of electric-magnetic duality
Kähler action reduces to Chern-Simons term with a constraint guaranteing the weak form
of electric-magnetic duality. This constraint implies that the theory does not reduce to
topological QFT. One must perform functional integral over 3-surfaces.

(b) What is interesting that the Kähler action reduces to Chern-Simons action with constraint
term. Could one replace exponent of real Kähler action with the imaginary one so that
the situation would resemble very strongly ordinary QFT? Note however that one can
also consider the replacement of imaginary unit with real unit in Chern-Simons action
exponential and that in Abelian case the quantization argument for the coefficient of Chern-
Simons action does not apply: the coefficient is however fixed by the weak form of electric-
magnetic duality. In fact unitarity does not allow imaginary exponent: a simpler example
is function space endowed with inner product defined by integration with weighting by
exponent of some function. Unitarity requires real exponent.

(c) Bosonic term involves also measurement interaction term which formally reduces to an
addition of gauge part to Kähler gauge potential linear in momentum, color isospin and
hyper charge, and possible other measured quantum numbers. This term couples space-time
geometry to conserved quantum numbers and in this manner guarantees quantum classical
correspondence. This term is added either to interior or with opposite sign to 3-surfaces
but not both and therefore does not reduce to gauge transform. This term induces to
Chern-Simons term at boundary an effective gauge term as addition to the induced Kähler
gauge potential appearing in the Chern-Simons Dirac action. There it is not necessary add
this term separately as done earlier.

6.6.4 Fermionic part of the action

It took some time to understand the identification of the fermionic term of the action.

(a) By holography the fermionic term should reduce to modified Chern-Simons Dirac action
with kinetic term replaced with its inverse. Otherwise kinetic term would replace propa-
gator in the perturbative expansion. This replacement is new as compared to the earlier
work.

(b) The assumption familiar already from earlier work [K28] is that spinors are generalized
eigen modes of Chern-Simons Dirac operator with eigenvalues given by λkγk, where λk
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having only M4 components is what I have called pseudo-momentum having region mo-
mentum as in Grassmannian approach to twistorialization. This gives the analog of massless
propagator.

The natural assumption is that pseudo-momenta relate to the massless incoming and out-
going momenta propagating along wormhole lines via twistorial formula: in other words,
the difference of pseudomomenta in the vertex of polygon to which external particle line is
attached equals to the incoming real massless momentum. This allows to identify virtual
particles as composites of massless wormhole throats. Incoming particles consists also of
massless wormhole throats but are bound states so that their mass is quantized. The pre-
cise relationship between pseudo-momenta and real massless momenta in loops remains to
be understood.

(c) One could postulate the form of the fermionic effective action directly. It is also possible
to obtain it by interpreting Chern-Simons Dirac action as being associated with primary
spinor field and the spinor fields associated with the interior as the analog of external
spinor source. These fields can be coupled to each other in standard manner by the term
ΨΦ + ΦΨ, which couples quark and lepton chiralities but does not lead to the breaking
of baryon and lepton number conservation in perturbation theory as terms of form ΨΨ
and ΦΦ would lead. The Grassmannian path integral over Φ gives the fermionic effective
action as the integral of ΨD−1

CSDΨ over 3-surface with D−1 identified as the propagator for
Chern-Simons Dirac action. The assumption that spinors are generalized eigenmodes of D
at the 3-surface implies the reduction of propagator to 1/λkγk in the basis of generalized
eigen modes.

(d) In the spirit of holography the resulting fermionic effective action reduces to the terms
assignable to 3-surfaces (as defined above) since in the interior Kähler Dirac equation is
satisfied. Although Kähler Dirac action vanishes, its function of Kähler Dirac equation is
highly non-trivial in holography since it correlates the modes of the induced spinor fields
at different wormhole throats. One ask whether one should add to the fermionic effective
action also measurement interaction term. Since this term correspond formally to a gauge
term in Kähler gauge potential and is already induced by the corresponding bosonic term,
the addition of this term seems un-necessary.

(e) The explicit expression of the interaction term is obtained by expressing the second quan-
tized induced spinor fields in terms of the fermionic oscillator operators. The quantization
in these degrees of freedom has been discussed in [K28] . Therefore the action of the
exponential is completely well-defined and gives rise to a perturbation series in terms of
massless pseudo-momentum propagators. The triviality of the perturbation series comes
from the fact vertices are topological defined by partonic two-surfaces at which the lines of
generalized Feynman diagrams meet.

6.6.5 Definition of U-matrix

The definition of U-matrix would be shockingly simple once the reduction to the construction of
S-matrix is accepted. Just the exponential effective Chern-Simons Dirac action besides Kähler
action reducing to Chern-Simons term and defining the weight for the functional integral over
3-surface. What is encouraging that the resulting U -matrix would be more or less the same as
the one expected on basis of heuristic considerations.

(a) The basis for bare zero energy states is obtained by using pairs of positive and negative
energy states assigned to the boundaries of CD and having opposite quantum numbers. The
action of the exponent of Kähler action and Chern-Simons Dirac effective action generates
from these states ”dressed” states and U-matrix is defined between these stressed states
and bare states. M-matrix in turn is defined by the action of L on given bare zero energy
states as entanglement coefficients.

(b) U-matrix is automatically unitary in the fermionic degrees of freedom since the effective
Chern-Simons Dirac action with the inverse of the usual kinetic term on the role of kinetic
term is Hermitian operator. In bosonic degrees of freedom one expects unitarity by the
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analogy with finite dimensional function space endowed with inner product with vacuum
functional defining the weighting. This would mean a beautiful solution to the long standing
problem of how to achieve unitarity.

(c) There are strong reasons to believe that a duality prevails in the sense that one can restrict
the interior part of action to either the Euclidian regions of space-time surfaces defining 4-D
Feynman diagram or to their Minkowskian exterior. Number theoretic vision [K74] suggests
this duality and the recent considerations [K28] support the same conclusion. Obviously
this duality brings in mind Wick rotation of quantum field theories.

(d) The fermionic action corresponds formally to free action so that there are no explicit inter-
action vertices: the situation in the geometric formulation of string theory is same. There
is however no need for non-linear interaction terms which are also responsible for the di-
vergences of quantum field theories. The interaction terms are replaced with topological
interaction vertex at which the light-like 3-surfaces associated defining the orbits of partonic
2-surfaces (wormhole throats) meet like lines of the ordinary Feynman diagram.

Note that this vertex distinguishes between TGD and string models where trouser vertex
is a typical vertex: in TGD framework this kind of geometric decay does not correspond to
particle decay but to the propagation of particle along different paths. The conservation of
quantum numbers is required at the vertices. Also massless-ness property for the particles
propagating along the lines is natural in zero energy ontology and makes possible twisto-
rialization with the constraint that physical particles are massive bound states of massless
wormhole throats.

(e) The non-trivial propagation of state with total number n of fermions and antifermions is
possible only if n contractions of the propagator appears along the line (otherwise one
would obtain only quark lepton contractions forbidden by conservation laws). This implies
the proportionality 1/pn of the propagator so that only total fermion number n = 1, 2
is possible for non-vacuum wormhole throat. This proportionality was earlier deduced
from the SUSY limit of TGD based on a generalization of SUSY algebra [K29] . As a
consequence, wormhole contact having two throats can carry at most spin 2 and the large
SUSY defined by the fermionic oscillator operators is badly broken and effectively reduced
to that generated by the right-handed neutrino which is also broken.

(f) The assumption that all particles have non-vanishing mass means that given state can
decay only to a virtual state with finite number of particles. This together with massless
propagation along virtual lines simplifies enormously the perturbation series and is expected
to imply finiteness.

(g) The integration over WCW could spoil the unitarity. Although the exponent of Kähler
action is positive it could give rise to divergent integral if the Kähler action has definite sign.
The reduction to Chern-Simons term does not make obvious the positivity. If one believes
on Minkowskian-Euclidian duality in the sense that one can define vacuum functional either
as the exponent of Kähler action for the Minkowskian or Euclidian regions, one obtains
definite sign for the Kähler function since for the Euclidian signature Kähler action indeed
has definite sign.

What is remarkable that in Chern-Simons term the non-analytic 1/g2
K dependence on

Kähler coupling strength disappears by the the weak form of electric-magnetic duality so
that perturbation series with respect to the small parameter g2

K should make sense. One
expects that this expansion gives small contributions to coupling constants determined in
lowest order by bosonic emergence and involving fermionic loops.

(h) The resulting generalized Feynman diagrammatics differs from the standard one in many
respects. The lines of Feynman diagrams are replaced with 3-surfaces in the sense specified
above. Only a very restricted subset of loops are allowed classically by preferred extremals.
The massless on mass shell property for wormhole throat momenta indeed allows very re-
stricted phase space for loops. If all particles are massive bound states of massless wormhole
throats intermediate virtual particles states with positive energies can contain only a finite
number of particles so that the situation simplifies dramatically. The already mentioned
collinear many-fermion states with propagator behaving like 1/pn, n > 2 are also present.
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Hence on can ask whether a more appropriate identification of generalized Feynman dia-
grams might be as counterparts of twistor diagrams.

6.6.6 What is the relationship of generalized Feynman diagrams to
twistor diagrams?

The general idea about the construction of U-matrix gives strong support for the existing heuris-
tics and provides a connection with category theoretical ideas (planar operads and generalized
Feynman diagramatics [K13] ) and also suggests a generalization of twistor diagrammatics. Many
questions of course remain unanswered. The basic question is the relationship of generalized
Feynman diagrams with twistor diagrams. There are arguments favoring also the interpretation
as direct counterparts of twistor diagrams. The following series of arguments however favors
Feynman diagram interpretation and leads to a precise connection between the two diagram-
matics. The arguments rely on following general ideas which deserve to be restated.

What is the correct identification of pseudo-momenta

The modified Dirac equation gives as generalized eigenvalues the quantities λkγk. I have christen
λ as f pseudo-momentum and proposed number theoretic quantization rules for the values of
pseudo-momenta [K28] The physical interpretation of pseudo-momenta is still open as is also
their relationship to massless on mass shell momenta propagating in wormhole throats associated
with virtual particles. It is convenient to consider wormhole contact with two wormhole throats
as a representation of incoming or virtual particle. The questions are following.

(a) Is there a summation over pseudo-momenta for wormhole throats such that the sum of
pseudo-momenta equals to the total exchanged real momentum associated with the worm-
hole contact. The real momenta on virtual line would be massless and give strong kinematic
conditions on phase space allowed in loops.

Physical propagators from wormhole contacts would result as self energy loops for pseudo-
momenta and there is the danger of getting divergences unless one uses the number theoretic
conditions to reduce the summation as proposed. This picture would realize the idea about
the emergence of bosonic propagators as fermionic radiative corrections and also more gen-
eral propagators. Coupling constants would be predicted and appear in the normalization
of bosonic propagators. Note that also the integration over WCW degrees of freedom affects
the values of coupling constants.

The question is how strong additional conditions the number theoretic quantization of
pseudo-momenta poses on the exchanged massless real momenta depends on the strength
of number theoretical conditions. Are these conditions sensible?

(b) Can one really identify pseudo-momenta really identifiable as region momenta of the twistor
approach as I have cautiously suggested? The above line of arguments does not encourage
this interpretation. Whether the identification makes sense can be tested immediately by
looking for the dependence of Grassmannian twistor amplitudes on pseudo-momenta. If it
is of standard propagator form one can consider this interpretation.

Connection between generalized Feynman diagrams and generalized twistor dia-
grams

The connection between generalized Feynman diagrams and generalized twistor diagrams should
be understood.

(a) The natural manner to identify twistor diagrams for a given CD without radiative correc-
tions given by the addition of sub-CDs would be as the diagrams obtained by connecting
the points or upper and lower boundaries of CD to form a polygon. There are several man-
ners to do this. The differences of region-momenta would give the massless momenta for
each external wormhole throat. Region momenta would have nothing to do with pseudo-
momenta.
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(b) Twistor diagrams would represent sum for a subset of allowed generalized Feynman dia-
grams with massless particles in internal lines. On mass shell condition for massless worm-
hole throats restricts dramatically the number of contributing diagrams and the assumption
that all particles have at least small mass means that particle numbers in intermediate states
are finite. One however obtains infinite number of diagrams obtained as series of allowed
diagrams. The problem is that although individual diagrams give rational functions, an in-
finite sum of them leads out from the algebraic extensions of p-adic numbers and rationals.
This does not conform with number theoretic universality.

Therefore only irreducible diagrams not decomposing to series of allowed scatterings are
allowed. As a consequence only finite number of diagrams are possible. The sum of these
diagrams would correspond to a given basic twistor diagram. One could consider also the
condition that at given length scaled determined by CD only tree diagrams are allowed.
but this option looks ad hoc.

The addition of sub-CD:s would give radiative corrections from shorter length scales and
the depth of the hierarchy of CDs within CDs hierarchy defines the IR and UV cutoffs
and measurement resolution. If one accepts the assumption that the sizes of CD come
as octaves of CP2 time scale, there would be natural IR and UV cutoffs on the values of
pseudo-momenta from p-adic length scale hypothesis so that the amplitudes should remain
finite and there would no fear about the loss of number theoretic universality. Note that
in zero energy ontology cutoffs would characterize physical states themselves rather than
restrictions of physicist only.

Diagrammatics based on gluing of twistor amplitudes

Radiative corrections n shorter scales than that of CD would result from the gluing of basic
amplitudes for CDs within CDs.

(a) Radiative corrections could be organized in terms of twistor diagrams. The rule transform-
ing twistor polygons to simplest Feynman diagrams is standard duality replacing polygon
with external lines at vertices with a bundle of lines obtained by connecting external lines to
same point in the interior of the polygon. For triangle this gives three vertex. For n-polygon
this would give n-vertex which corresponds to tree diagram as a Feynman diagram.

For instance, one can understand self energy corrections in this framework in terms of
two twistorial triangles with two edges of both connected by two lines. Again on mass
shell massless holds true for the throats. Vertex correction corresponds to triangle triangle
within triangle with vertices of the inner triangle connected to the vertices of the outer
triangle.. One obtains radiative corrections from this picture.

(b) Also now one can have loops obtained as a closed ring of polygons connected to each other.
There are also much more complex configurations of polygons. Unless one allow splitting
of wormhole contacts the wormhole lines associated with a given wormhole throat end up
to single CD.

(c) For an outgoing pair of wormhole lines from given CD the wormhole throats should have
same sign of energy: this would mean that only time-like momenta can propagate between
CDs so that space-like loop momenta would be possible only for the fundamental radiative
corrections. This would a further strong restriction on the amplitudes and space-like mo-
mentum exchanges would come from the fundamental level involving only a finite number
of diagrams.

Is this good or bad? If bad, should one be ready to assign independent CDs with the two
wormhole throats? Or should the interpretation be that the wormhole contact is split and
wormhole throats propagate in two different time directions? But is it possible to speak
about single space-like momentum exchange if the wormhole contact is split. Note that
pseudo-momentum propagator for wormhole throat would still make sense. This line of
thought does not look attractive.

(d) Massless particles assigned with wormhole lines connecting the polygons and net pseudo-
momenta are not on mass shell. Apart from time-likeness of net momenta, the rules for
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the propagators seem exactly the same as for polygons. These rules would summarize how
radiative corrections from shorter scales are obtained.

The generalization of the recursion formula to TGD framework

The great victory of twistor approach is the recursion formula for the amplitudes [B38] (see
also the representation in TGD framework [K87] ) applying to all planar diagrams of N = 4
SYM becoming an exact formula at the large N limit for gauge group SU(N). In the recent
case the infinite-dimensional character of the Yangian symmetry algebra of S-matrix could be
correlate for large N limit so that the planar limit should make sense. Also the fact that string
worlds sheets are an essential aspect of TGD approach suggests that stringy picture deduced
by t’Hooft for gauge theories at this limit implies planarity. What is relevant in the recent case
is the general structure of the reduction formula, not the details which as such are of course
extremely interesting also in TGD framework since Grassmannian amplitudes are claimed to
provide a universal representation of Yangian invariants.

The recursive formula expresses scattering amplitude with n external particles with k negative
helicities up to l loops is expressible as a sum of two terms. The first term-referred to as classical
contribution- involves a fusion of twistor amplitudes with smaller number of particles and with
the number of loops not larger than l by a procedure used already for tree diagrams. Second
term - called quantum contribution- involves l loops and is irreducible in the sense that it is
not expressible as a fusion of lower amplitudes and is obtained from n+ 2 particle by a process
eliminating two particles. The identification of the TGD counterparts of these terms is obvious.
The ”classical” term corresponds to the proposed fusion of the lower level amplitudes associated
with polygons for sub-CDs. The ”quantum” term corresponds to the contribution appearing at
the level of CD itself and involves genuine loops in Feynman sense but only a finite number of
them.

Since zero energy states correspond to generators of Yangian algebra or rather- its Kac-Moody
variant with integer power of phase factor identified as integer power of S, the recursion formula
might allow an interpretation as a direct counterpart for the recursive definition of Yangian
algebra in terms of relations allowing the construction of generators labeled by non-negative
integers.

TGD counterpart for the duality of Feynman diagrams for twistors and Wilson
loops for momentum twistors

One of the fascinating discoveries of twistor Grassmannian approach is that conformal invariance
and its dual correspond in twistor approach to descriptions in terms of twistors in ordinary
Minkowski space by starting from Feynman diagrams and in terms of momentum twistors in its
dual by starting from Wilson loops. Also this duality has counterpart in TGD.

String world sheets are an essential part of quantum TGD and the translation of Witten’s
work with knots to TGD context led to a precise identification of string world sheets and a
deep connection between TGD and the theory of knots, braids, braid cobordisms, and 2-knots
emerges [K37] .

Amusingly, the basic idea of this connection emerged from the model of DNA as topological
quantum computer [K26] developed for few years ago. The braiding defining the quantum
computation is time-like and can be illustrated using dance metaphor: the world lines of dancers
define the running topological computation program. If you connect the feet of dancers to a
wall with threads (dancers are lipids at cell membrane forming 2-D liquid, wall is represented
by DNA nucleotide sequence, and threads are magnetic flux tubes), the threads entangle during
dance and give rise to a space-like braiding and code the computer program to memory: a
fundamental mechanism of memory. These braidings are clearly dual and this duality relates
closely to the duality just to the duality between Feynman graphs and Wilson loops! The time
evolution of this space-like braiding defines braid cobordism and also a 2-knot.

The natural implication of strong form of holography made possible by preferred extremal (Bohr
orbit in generalized sense) property of space-time surfaces is that the descriptions in terms of

http://tgd.wippiespace.com/public_html/genememe/genememe.html#dnatqc
http://tgd.wippiespace.com/public_html/genememe/genememe.html#dnatqc
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string world sheets and partonic 2-surfaces are dual. The twistorial representation of this duality
is as the duality of descriptions in terms of Feynman diagrammatics in ordinary space-time and
Wilson sheets-rather than loops- in the dual space-time assigned with region momenta.

6.6.7 Generalized twistor diagrams and planar operads

The resulting diagrams would have very close resemblance to structures known as planar oper-
ads [A35, A84] associated with both topological quantum field theories and subfactors of von
Neumann algebras. Planar operads provide a graphic representation of these structures. Since
TGD corresponds to almost topological QFT and since WCW (”world of classical worlds”)
Clifford algebras correspond to von Neumann algebras known as hyper-finite factors of type
II1 [K86] , the natural expectation is that generalized Feynman diagrams correspond to planar
operads. This is indeed what I proposed for three years ago in [K13] but with disks replaced
with CDs so that a the recent view unifies several earlier visions.

An additional motivation for the operad picture came from the notion of super-symplectic analog
of super-conformal field theory motivated by the assumption that the symplectic transformations
of δM4

± ×CP2 act as isometries of WCW. The fusion rules of super-symplectic QFT lead to an
infinite hierarchy of algebras forming an operad.

The basic structure of planar operad is very much reminiscent of generalized twistor diagrams.

(a) One has essentially disks within disks connected by lines. The modification is obvious.
Replace disks within disks disks with CDs within CDs and assign to the upper resp.
lower boundaries of CDs positive resp. negative energy states. Many-sheeted space-time
allows locally two CDs above each other corresponding to the identification of particles as
wormhole contacts.

(b) The planarity of the operad would be an obvious correlate for the absence of non-planar
loops in twistor approach to N = 4 SUSY making it problematic. Stringy picture actu-
ally suggests the absence of non-planar diagrams. The proposed generalization of twistor
diagrammatics allowing arbitrary polygons within polygons structure might be enough to
compensate for the absence of non-planar diagrams.

To sum up, the recent view generalizes considerably twistor diagrammatics and gives a connec-
tion with hyper-finite factors of type II1 and with planar operads. The identification of virtual
states as composites of massless states is extremely natural in this framework. The construction
is also consistent with the heuristic picture about generalized Feynman diagrams and with the
earlier proposal about role of the planar operad. For these reasons I dare to expect that a big
step towards precise form of the rules has been made

6.7 Anatomy of quantum jump in zero energy ontology

Consider now the anatomy of quantum jump identified as a moment of consciousness in the
framework of ZEO [K46].

(a) Quantum jump begins with unitary process U described by unitary matrix assigning to a
given zero energy state a quantum superposition of zero energy states. This would represent
the creative aspect of quantum jump - generation of superposition of alternatives.

(b) The next step is a cascade of state function reductions proceeding from long to short scales.
It starts from some CD and proceeds downwards to sub-CDs to their sub-CDs to ...... At a
given step it induces a measurement of the quantum numbers of either positive or negative
energy part of the quantum state. This step would represent the measurement aspect of
quantum jump - selection among alternatives.

(c) The basic variational principle is Negentropy Maximization Principle (NMP) [K46] stating
that the reduction of entanglement entropy in given quantum jump between two subsystems
of CD assigned to sub-CDs is maximal. Mathematically NMP is very similar to the
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second law although states just the opposite but for individual quantum system rather
than ensemble. NMP actually implies second law at the level of ensembles as a trivial
consequence of the fact that the outcome of quantum jump is not deterministic.

For ordinary definition of entanglement entropy this leads to a pure state resulting in the
measurement of the density matrix assignable to the pair of CDs. For hyper-finite factors
of type II1 (HFFs) state function reduction cannot give rise to a pure state and in this case
one can speak about quantum states defined modulo finite measurement resolution and the
notion of quantum spinor emerges naturally. One can assign a number theoretic entangle-
ment entropy to entanglement characterized by rational (or even algebraic) entanglement
probabilities and this entropy can be negative. Negentropic entanglement can be stable
and even more negentropic entanglement can be generated in the state function reduction
cascade.

The irreversibility is realized as a property of zero energy states (for ordinary positive energy
ontology it is realized at the level of dynamics) and is necessary in order to obtain non-trivial
U-matrix. State function reduction should involve several parts. First of all it should select the
density matrix or rather its Hermitian square root. After this choice it should lead to a state
which prepared either at the upper or lower boundary of CD but not both since this would be
in conflict with the counterpart for the determinism of quantum time evolution.

6.7.1 Generalization of S-matrix

ZEO forces the generalization of S-matrix with a triplet formed by U-matrix, M-matrix, and
S-matrix. The basic vision is that quantum theory is at mathematical level a complex square
roots of thermodynamics. What happens in quantum jump was already discussed.

(a) U-matrix as has its rows M-matrices , which are matrices between positive and negative
energy parts of the zero energy state and correspond to the ordinary S-matrix. M-matrix is
a product of a hermitian square root - call it H - of density matrix ρ and universal S-matrix
S commuting with H: [S,H] = 0. There is infinite number of different Hermitian square
roots Hi of density matrices which are assumed to define orthogonal matrices with respect
to the inner product defined by the trace: Tr(HiHj) = 0. Also the columns of U-matrix
are orthogonal. One can interpret square roots of the density matrices as a Lie algebra
acting as symmetries of the S-matrix.

(b) One can consider generalization of M-matrices so that they would be analogous to the
elements of Kac-Moody algebra. These M-matrices would involve all powers of S.

i. The orthogonality with respect to the inner product defined by 〈A|B〉 = Tr(AB)
requires the conditions Tr(H1H2S

n) = 0 for n 6= 0 and Hi are Hermitian matrices
appearing as square root of density matrix. H1H2 is hermitian if the commutator
[H1, H2] vanishes. It would be natural to assign n:th power of S to the CD for which
the scale is n times the CP2 scale.

ii. Trace - possibly quantum trace for hyper-finite factors of type II1) is the analog
of integration and the formula would be a non-commutative analog of the identity∫
S1 exp(inφ)dφ = 0 and pose an additional condition to the algebra of M-matrices.

SinceH = H1H2 commutes with S-matrix the trace can be expressed as sum
∑
i,j hisj(i) =∑

i,j hi(j)sj of products of correspondence eigenvalues and the simplest condition is
that one has either

∑
j sj(i) = 0 for each i or

∑
i hi(j) = 0 for each j.

iii. It might be that one must restrict M-matrices to a Cartan algebra for a given U-matrix
and also this choice would be a process analogous to state function reduction. Since
density matrix becomes an observable in TGD Universe, this choice could be seen as
a direct counterpart for the choice of a maximal number of commuting observables
which would be now hermitian square roots of density matrices. Therefore ZEO gives
good hopes of reducing basic quantum measurement theory to infinite-dimensional
Lie-algebra.
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6.7.2 A concise description of quantum jump

In the following a minimalistic view about quantum jump is described. Both U-process and state
preparation reduce to state function reductions to two basis for zero energy states characterized
by opposite arrows of geometric time.

Unitary process and choice of the density matrix

The basic question concerning U process is which of the following two options U-process corre-
sponds to.

(a) U-process occurs for zero energy states. U-matrix would be defined in the space of zero
energy states and would represent kind of higher order scattering whereas M-matrix and
S-matrix as time-like entanglement coefficients would describe what happens in a scattering
experiment. This kind of possibility can be certainly considered since one can form zero
energy states using zero energy states as building bricks. Entire hierarchy of zero energy
states could be constructed in this manner.

(b) U-process can be said to occur for either positive or negative energy parts of zero energy
states. This option is definitely minimal and in this case U-process for positive (negative)
energy part of the state is dual to state function reduction for the negative (positive) energy
part of the state. Furthermore, state function reduction is dual to state preparation. For
this reason this option deserves to be called minimalistic.

During years I have considered both options without clearly distinguishing between them. The
notion of time is very difficult concept: we do not have brain for time. Below I will consider
only the minimalistic option in the hope that Nature would prefer minimalism also at this time.
There is no need to emphasize how speculative these considerations are.

Consider first unitary process followed by the choice of the density matrix for the minimalistic
option.

(a) There are two natural state basis for zero energy states. The states of these state basis are
prepared at the upper or lower boundary of CD respectively and correspond to various M-
matrices M+

K and M−L . U-process is simply a change of state basis meaning a representation
of the zero energy state M±K in zero energy basis M∓K followed by a state preparation to
zero energy state M±K with the state at second end fixed in turn followed by a reduction to
M∓L to its time reverse, which is of same type as the initial zero energy state.

The state function reduction to a given M-matrix M±K produces a state for the state is
superposition of states which are prepared at either lower or upper boundary of CD. It
does not yet produce a prepared state on the ordinary sense since it only selects the density
matrix.

(b) The matrix elements of U-matrix are obtained by acting with the representation of identity
matrix in the space of zero energy states as

I =
∑
K

|K+〉〈K+|

on the zero energy state |K−〉 (the action on |K+〉 is trivial!) and gives

U+
KL = Tr(M+

KM
+
L ) .

In the similar manner one has

U−KL = (U+†)KL = Tr(M−LM
−
K) = U+

LK .

These matrices are Hermitian conjugates of each other as matrices between states labelled
by positive or negative energy states. The interpretation is that two unitary processes are
possible and are time reversals of each other. The unitary process produces a new state only
if its time arrow is different from that for the initial state. The probabilities for transitions
|K+〉 → |K−〉 are given by pmn = |Tr(M+

KM
+
L )|2.
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State function preparation

Consider next the counterparts of the ordinary state preparation process.

(a) The ordinary state function process can act either at the upper or lower boundary of CD
and its action is thus on positive or negative energy part of the zero energy state. At the
lower boundary of CD this process selects one particular prepared states. At the upper
boundary it selects one particular final state of the scattering process.

(b) Restrict for definiteness the consideration to the lower boundary of CD. Denote also MK

by M . At the lower boundary of CD the selection of prepared state - that is preparation
process- means the reduction∑

m+n−

M±m+n− |m
+〉|n−〉 →

∑
n−

M±m+n− |m
+〉|n−〉 .

The reduction probability is given by

pm =
∑
n−

|Mm+n− |2 = ρm+m+ .

For this state the lower boundary carries a prepared state with the quantum numbers of
state |m+〉. For density matrix which is unit matrix (this option giving pure state might
not be possible) one has pm = 1.

State function reduction process

The process which is the analog of measuring the final state of the scattering process is also
needed and would mean state function reduction at the upper end of CD - to state |n−〉 now.

(a) It is impossible to reduce to arbitrary state |m+〉|n−〉 and the reduction must at the upper
end of CD must mean a loss of preparation at the lower end of CD so that one would have
kind of time flip-flop!

(b) The reduction probability for the process

|m+ ≡
∑
n−

Mm+n− |m+〉|n−〉 → n− =
∑
m+

Mm+n− |m+〉|n−〉

would be

pmn = |M2
mn| .

This is just what one would expect. The final outcome would be therefore a state of type
|n−〉 and - this is very important- of the same type as the state from which the process
began so that the next process is also of type U+ and one can say that a definite arrow of
time prevails.

(c) Both the preparation and reduction process involves also a cascade of state function re-
ductions leading to a choice of state basis corresponding to eigenstates of density matrices
between subsystems.

6.7.3 Questions and answers

Answering to question is the best possible manner to develop ideas in more comprehensible form.
In this respect the questions of Hamed at my blog have been especially useful. Many questions
below are made by him and inspired the objections, many of them discussed also in previous
discussions.

Question: The minimalistic option suggests very strongly that our sensory perception can be
identified as quantum measurement assignable to state function reductions for upper or lower
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boundaries of our personal CD. Our sensory perception does not however jump between future
and past boundaries of our personal CD (containing sub-CDS in turn containing)! Why?

Possible answer: If our sensory perception is about CD which is much bigger than personal
CD the problem disappears. We perceive from day to day the -say- positive energy part of
a state assignable to this very big CD. The world looks rather stable. Question: Could our

sensory perception actually do this jumping so that sensory inputs are alternatively about upper
and lower boundaries of personal CD? Could sleep-awake cycle correspond to this flip flop?

Possible answer: The geometric time span for quantum jumps in question would correspond to
the geometric time scale for our personal CD. In wake-up state we are performing state function
reduction at the upper boundary of our personal CD and sensory mental images as sub-CDs are
concentrated there. When we are asleep, same happens at lower boundary of CD and sensory
mental images are there (dreams,).

Question: What is the time scale assignable to my personal CD: the typical wake-up cycle: 24
hours? Or of the order of life span. Or perhaps shorter? Why we do not remember practically
anything about sensory perceptions during sleep period? (Note that we forget actively dream
experiences). Does the return to childhood at old age relate with this time flip-flop in the scale
of life span: do we re-incarnate in biologically death at opposite end of CD with scale of life
span?

Possible answer: These are interesting possibilities. The explanation would be that for some
reason we do not have many memories about dream time existence? We certainly forget very
rapidly dream experiences. Is this process active and is it purpose to avoid the mixing of two
realities? Or is it due to the fact that the required communications to geometric past are over
so long time interval that the attempts to remember fail? Could dream memories represent
memories about the period in which our sensory percepts correspond to past boundary of CD?
If this boundary corresponds to time scale of life cycle, the memories would be about childhood.
Dreams are often located to the past and childhood.

Question: How the arrow of geometric time at space-time level emerges from the arrow of
geometric time for zero energy states? Why do we experience that we move along space-time
sheets to geometric future or equivalently: space-time sheets move with respect to us to geometric
past?

Possible answer: The proposal (one of the many, see [K4]), which can be easily ridiculed, is that
the state function reductions performed by sub-selves assignable to sub-CDs at the boundary of
personal CD and representing mental images induce small time translations of space-time sheet
tending to shift it as a whole to past: this induces the arrow of geometric time. Space-time
sheet is like film which the curious audience in the movie theatre shifts to a preferred direction.
I have described this movie theatre metaphor in more detail in [K4].

The sub-selves representing sensory mental images are tiny conscious entities and would be very
curious! News are in the geometric future assignable to the space-time sheet and they want to
know what is there and they use their volitional resources to induce a small shift to geometric
past.

Why selves would be ”curious”? Could this be understood in terms of Negentropy Maximization
Principle (NMP) [K46] stating that the information gain in quantum jump is maximal or by
postulating a generalization of NMP Selves would be hungry information eaters. As a matter
fact, according to TGD inspired quantum biology our endless hunting of metabolic energy would
not be about getting energy but negentropy associated with the entanglement [K39].

Question: Can the arrow of time change?

Possible answer: A highly interesting question is what happens if the first state preparation
leading to a state |k+〉 is followed by a U-process of type U− rather than by the state function
reduction process |k+〉 → |l−〉. Does this mean that the arrow of geometric time changes?
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Could this change of the arrow of geometric time take place in living matter? Could processes
like molecular self assembly be entropy producing processes but with non-standard arrow of
geometric time? Or are they processes in which negentropy increases by the fusion of negentropic
parts to larger ones? Could the variability relate to sleep-awake cycle and to the fact that during
dreams we are often in our childhood and youth. Old people are often said to return to their
childhood. Could this have more than a metaphoric meaning? Could biological death mean
return to childhood at the level of conscious experience? I have explained the recent views
about the arrow of time in [K4].

One can consider also other views for the generation of arrow of time. Instead of the time
coordinate for space-time surface one can also consider time coordinate for imbedding space or
rather CD. For instance, one can ask how the arrow of cosmic time identifiable as lightcone
proper time assignable to CD could be generated. sub-CDs have localization inside bigger CD
containing them and one can quite well imagine that sub-CDs within CD drift towards geometric
future of CD quantum jump by quantum jump and this gives rise to the experience of the time
flow based on clock defined by changing environment. This drifting could occur towards or away
from boundaries of CD and would be in opposite directions at the two boundaries. Various
possibilities are discussed in [K4].

One can also imagine that the experience about flow of geometric time corresponds to a state
function reduction cascae at upper boundaries of sub-CDs proceeding from the lower boundary
to upper boundary of CD containing them. The preferred direction for the cascae would be
dictated by the arrow of time assignable to the zero energy states associated with CD.

To sum up, there are several candidates for the mechanism behind the arrow of geometric time
and it would be too early to select any mechanism as the mechanism.

6.7.4 More about the anatomy of state function reduction

In a comment to previous posting Ulla gave a link to an interesting article by George Svetlichny
[J4] describing an attempt to understand free will in terms of quantum measurement. After
reading of the article I found myself explaining once again to myself what state function reduction
in TGD framework really means.

The proposal of Svetlichny

The basic objection against assigning free will to state function reduction in the sense of wave
mechanics is that state function reduction from the point of view of outsider is like playing dice.
One can of course argue that for an outsider any form of free will looks like throwing a dice
since causally effective experience of free will is accompanied by non-determinism. We simply
do cannot know what is the experience possibly associated with the state function reduction.
The lesson is that we must carefully distinguish between two levels: the single particle level and
ensemble level - subjective and objective. When we can say that something is random, we are
talking about ensembles, not about single member of ensemble.

The author takes the objection seriously and notices that quantum measurement means a di-
vision of system to three parts: measured system, measuring system and external world and
argues that in some cases this division might not be unique. The choice of this division would
have interpretation as an act of free will. I leave it to the reader can decide whether this proposal
is plausible or not.

TGD view about state function reduction

What can one say about the situation in TGD framework? There are several differences as
compared to the standard measurement ”theory”, which is just certain ad hoc rules combined
with Born rule, which applies naturally also in TGD framework and which I do not regard as
adhoc in infinite-D context.

In the sequel I will discuss the possible anatomy of the state function reduction part of the
quantum jump.

http://matpitka.blogspot.com/2012/02/views-about-free-will.html
http://arxiv.org/abs/1202.2007
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(a) TGD ontology differs from the standard one. Space-time surfaces and quantum states as
such are zombies in TGD Universe: consciousness is in the quantum jump. Conscious
experience is in the change of the state of the brain, brain state as such is not conscious.
Self means integration of quantum jumps to higher level quantum jumps and the hierarchy
of quantum jumps and hierarchy of selves can be identified in ZEO . It has the hierarchy of
CDs and space-time sheets as geometrical correlates. In TGD Universe brain and body are
not conscious: rather, conscious experience is about brain and body and this leads to the
illusion caused by the assimilation with the target of sensory input: I am what I perceive.

(b) In TGD framework one does not assume the division of the system to a product of measured
system, measuring system, and external world before the measurement. Rather, this kind of
divisions are outcomes of state function reduction which is part of quantum jump involving
also the unitary process. Note that standard measurement theory is not able to say anything
about the dynamics giving rise to this kind of divisions.

(c) State function reduction cascade as a part of quantum jump - this holistic view is one
new element - proceeds in zero energy ontology (ZEO) from long to short length scales
CD → sub− CDs→ ..., and stops when Negentropy Maximization Principle (NMP [K46]
defining the variational principle of consciousness is also something new) does not allow to
reduce entanglement entropy for any subsystem pair of subsystem un-entangled with the
external world. This is the case if the sub-system in question is such that all divisions to
two parts are negentropically entangled or form an entangled bound state.

An interesting possibility is that negentropic entanglement does not correspond to bound
state entanglement. The negentropically entangled particles would remain correlated by
NMP rather than being in the jail defined by the interaction potential. I have proposed
that this analog of love marriage could be fundamental for understanding living matter and
that high energy phosphate bond central for ADP-ATP process could involve negentropic
entanglement [K39].

For a given subsystem occurring in the cascade the splitting into an unentangled pair of
measured and measuring system can take place if the entanglement between these subsys-
tems is entropic. The splitting takes place for a pair with largest entanglement entropy and
defines measuring and measured system.

Who measures whom? This seems to be a matter of taste and one should not talk about
measuring system as conscious entity in TGD Universe, where consciousness is in quantum
jump.

(d) The factorization of integer to primes is a rather precise number theoretical analogy for
what happens, and the analogy might actually have a deeper mathematical meaning since
Hilbert spaces with prime dimension cannot be decomposed into tensor products. Any
factorization of integer to a product of primes corresponds to a cascade of state function
reductions. At the first step division takes place to two integers and several alternative
divisions are possible. The pair for which the reduction of entanglement entropy is largest,
is preferred. The resulting two integers can be further factorized to two integers, and
the process continues and eventually stops when all factors are primes and no further
factorization is possible.

One could even assign to any decomposition n = rs the analogs of entanglement proba-
bilities as p1 = log(r)/log(n) and p2 = log(s)/log(n). NMP would favor the divisions to
factors r and s which are as near as possible to n/2.

Negentropically entangled system is like prime. Note however that these systems can still
make an analog of state function reduction which does not split them but increases the
negentropy for all splittings of system to two parts. This would be possible only in the
intersection of real and p-adic worlds, that is for living matter. My cautious proposal is
that just this kind of systems - living systems - can experience free will: either in the analog
of state function reduction process increasing their negentropy or in state function process
reducing their entanglement with environment.

(e) In standard measurement theory observer chooses the measured observables and the theory
says nothing about this process. In TGD the measured observable is the density matrix for
a pair formed by any two entangled parts of sub-system division for which negentropy gain



6.7. Anatomy of quantum jump in zero energy ontology 487

is maximal in quantum measurement defines the pair. Therefore both the measurement
axis and the pair representing the target of measurement and measurer are selected in
quantum jump.

(f) Quantum measurement theory assumes that measurement correlates classical long range
degrees of freedom with quantal degrees of freedom. One could say that the direction
of the pointer of the measurement apparatus correlates faithfully with the value of the
measured microscopic observable. This requires that the entanglement is reduced between
microscopic and macroscopic systems .

I have identified the ”classical” degrees of freedom in TGD framework as zero modes which
by definition do not contribute to the line-element of WCW although the WCW metric
depends on zero modes as external parameters. The induced Kähler field represents an
infinite number of zero modes whereas the Hamiltonians of the boundaries of CD define
quantum fluctuating degrees of freedom.

The reduction of the entanglement between zero modes and quantum fluctuating degrees
of freedom is an essential part of quantum measurement process. Also state function
reductions between microscopic degrees of freedom are predicted to occur and this kind
of reductions lead to decoherence so that one can apply quantum statistical description
and derive Boltzmann equations. Also state function reductions between different values
of zero modes are possible are possible and one could perhaps assign ”telepathic” effects
with them.

The differences with respect to the standard quantum measurement theory are that several
kinds of state function reductions are possible and that the division to classical and quantum
fluctuating degrees of freedom has a purely geometric meaning in TGD framework.

(g) One can even imagine quantum parallel state function reduction cascades. This would
make possible quantum parallel dissipation, which would be something new. My original
proposal was that in hadronic physics this could make possible a state function reduction
cascade proceeding in quark scales while hadronic scales would remain entangled so that
one could apply statistical description to quarks as parts of a system, which is quantum
coherent in hadronic length scale.

This looks nice but...! It is a pity that eventually an objection pops up against every
idea irrespective how cute it looks like. The p-adic primes associated with light quarks are
larger than that associated with hadron so that quarks - or rather, their magnetic bodies are
larger than that hadron’s magnetic body. This looks strange at first but actually conforms
with Uncertainty Principle and the observation that the charge radius of proton is slightly
smaller than predicted (see this, [K48]), gives support for this picture. Geometrically the
situation might change if quarks are highly relativistic and color magnetic fields of quarks
are dipoled fields compressed to cigar like shape: Lorentz contraction could reduce the size
scale of their magnetic bodies in the direction of their motion. [Note that p-adic length
scale hypothesis applies in the rest system of the particle so that Lorentz contraction is in
conflict with it]. Situation remains unsettled.

Further questions

There are many other interesting issues about which my understanding could be much better.

(a) In ZEO the choice of the quantization axes and would fix the moduli of the causal diamond
CD: the preferred time direction defined by the line connecting the tips of CD, the spin
quantization axis, etc.. This choice certainly occurs. Does it reduce to the measurement
of a density matrix for some decomposition of some subsystem to a pair? Or should one
simply assume state function reductions also at this level meaning localization to a sector
of WCW corresponding to given CD. This would involve localization in the moduli space
of CDs selecting some boost of a CD with fixed quantized proper time distance between
it tips, fixed spin directions for positive and negative energy parts of zero energy states
defined by light-like geodesics at its light-like boundary. Preferred complex coordinates for
CP2, etc...

http://matpitka.blogspot.com/2010/07/incredibly-shrinking-proton.htm
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(b) Zero energy states are characterized by arrow of geometric time in the sense that either
positive or negative energy parts of states have well defined particles numbers and single
particle numbers but not both. State function reduction is possible only for positive or
negative energy part of the state but not both. This should relate very closely to the fact
that our sensory percepts defined by state function reductions are mostly about the upper
or lower boundary of CD, or to the fact that we do not remember the percepts made from
the other boundary during sleeping period.

(c) In ZEO also quantum jumps can also lead to generation of new sub-Universes, sub-CDs car-
rying zero energy states. Quantum jumps can also involve phase transitions changing p-adic
space-time sheets to real ones and these could serve as quantum correlates for intentional
actions. Also the reverse process changing matter to thoughts is possible. These possibili-
ties are totally unimaginable in the quantum measurement theory for systems describable
by wave mechanics.

(d) There is also the notion of finite measurement resolution described in terms of inclusions
of hyperfinite factors at quantum level and in terms of braids at space-time level.

To summarize, a lot of theory building is needed in order to fuse all new elements to a coherent
framework. In this framework standard quantum measurement theory is only a collection of ad
hoc rules and can catch only a small part of what really happens. Certainly, standard quantum
measurement theory is is far from being enough for the purposes of consciousness theorist.



Chapter 7

Category Theory and Quantum
TGD

7.1 Introduction

TGD predicts several hierarchical structures involving a lot of new physics. These structures
look frustratingly complex and category theoretical thinking might help to build a bird’s eye
view about the situation. I have already earlier considered the question how category theory
might be applied in TGD [K19, K14] . Besides the far from complete understanding of the basic
mathematical structure of TGD also my own limited understanding of category theoretical ideas
have been a serious limitation. During last years considerable progress in the understanding of
quantum TGD proper has taken place and the recent formulation of TGD is in terms of light-like
3-surfaces, zero energy ontology and number theoretic braids [K83, K81] . There exist also rather
detailed formulations for the fusion of p-adic and real physics and for the dark matter hierarchy.
This motivates a fresh look to how category theory might help to understand quantum TGD.

The fusion rules for the symplectic variant of conformal field theory, whose existence is strongly
suggested by quantum TGD, allow rather precise description using the basic notions of category
theory and one can identify a series of finite-dimensional nilpotent algebras as discretized versions
of field algebras defined by the fusion rules. These primitive fusion algebras can be used to
construct more complex algebras by replacing any algebra element by a primitive fusion algebra.
Trees with arbitrary numbers of branches in any node characterize the resulting collection of
fusion algebras forming an operad. One can say that an exact solution of symplectic scalar field
theory is obtained.

Conformal fields and symplectic scalar field can be combined to form symplecto-formal fields.
The combination of symplectic operad and Feynman graph operad leads to a construction of
Feynman diagrams in terms of n-point functions of conformal field theory. M-matrix elements
with a finite measurement resolution are expressed in terms of a hierarchy of symplecto-conformal
n-point functions such that the improvement of measurement resolution corresponds to an alge-
bra homomorphism mapping conformal fields in given resolution to composite conformal fields in
improved resolution. This expresses the idea that composites behave as independent conformal
fields. Also other applications are briefly discussed.

7.2 S-matrix as a functor

John Baez’s [A61] discusses in a physicist friendly manner the possible application of category
theory to physics. The lessons obtained from the construction of topological quantum field
theories (TQFTs) suggest that category theoretical thinking might be very useful in attempts
to construct theories of quantum gravitation.

489
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The point is that the Hilbert spaces associated with the initial and final state n-1-manifold of
n-cobordism indeed form in a natural manner category. Morphisms of Hilb in turn are unitary
or possibly more general maps between Hilbert spaces. TQFT itself is a functor assigning to
a cobordism the counterpart of S-matrix between the Hilbert spaces associated with the initial
and final n-1-manifold. The surprising result is that for n ≤ 4 the S-matrix can be unitary
S-matrix only if the cobordism is trivial. This should lead even string theorist to raise some
worried questions.

In the hope of feeding some category theoretic thinking into my spine, I briefly summarize some
of the category theoretical ideas discussed in the article and relate it to the TGD vision, and
after that discuss the worried questions from TGD perspective. That space-time makes sense
only relative to imbedding space would conform with category theoretic thinking.

7.2.1 The *-category of Hilbert spaces

Baez considers first the category of Hilbert spaces. Intuitively the definition of this category
looks obvious: take linear spaces as objects in category Set, introduce inner product as additional
structure and identify morphisms as maps preserving this inner product. In finite-D case the
category with inner product is however identical to the linear category so that the inner product
does not seem to be absolutely essential. Baez argues that in infinite-D case the morphisms need
not be restricted to unitary transformations: one can consider also bounded linear operators as
morphisms since they play key role in quantum theory (consider only observables as Hermitian
operators). For hyper-finite factors of type II1 inclusions define very important morphisms which
are not unitary transformations but very similar to them. This challenges the belief about the
fundamental role of unitarity and raises the question about how to weaken the unitarity condition
without losing everything.

The existence of the inner product is essential only for the metric topology of the Hilbert
space. Can one do without inner product as an inherent property of state space and reduce it
to a morphism? One can indeed express inner product in terms of morphisms from complex
numbers to Hilbert space and their conjugates. For any state Ψ of Hilbert space there is a
unique morphisms TΨ from C to Hilbert space satisfying TΨ(1) = Ψ. If one assumes that these
morphisms have conjugates T ∗Ψ mapping Hilbert space to C, inner products can be defined as
morphisms T ∗ΦTΨ. The Hermitian conjugates of operators can be defined with respect to this
inner product so that one obtains *-category. Reader has probably realized that TΨ and its
conjugate correspond to ket and bra in Dirac’s formalism.

Note that in TGD framework based on hyper-finite factors of type II1 (HFFs) the inclusions of
complex rays might be replaced with inclusions of HFFs with included factor representing the
finite measurement resolution. Note also the analogy of inner product with the representation
of space-times as 4-surfaces of the imbedding space in TGD.

7.2.2 The monoidal *-category of Hilbert spaces and its counterpart
at the level of nCob

One can give the category of Hilbert spaces a structure of monoid by introducing explicitly the
tensor products of Hilbert spaces. The interpretation is obvious for physicist. Baez describes the
details of this identification, which are far from trivial and in the theory of quantum groups very
interesting things happen. A non-commutative quantum version of the tensor product implying
braiding is possible and associativity condition leads to the celebrated Yang-Baxter equations:
inclusions of HFFs lead to quantum groups too.

At the level of nCob the counterpart of the tensor product is disjoint union of n-1-manifolds.
This unavoidably creates the feeling of cosmic loneliness. Am I really a disjoint 3-surface in
emptiness which is not vacuum even in the geometric sense? Cannot be true!

This horrifying sensation disappears if n-1-manifolds are n-1-surfaces in some higher-dimensional
imbedding space so that there would be at least something between them. I can emit a little
baby manifold moving somewhere perhaps being received by some-one somewhere and I can
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receive radiation from some-one at some distance and in some direction as small baby manifolds
making gentle tosses on my face!

This consoling feeling could be seen as one of the deep justifications for identifying fundamental
objects as light-like partonic 3-surfaces in TGD framework. Their ends correspond to 2-D
partonic surfaces at the boundaries of future or past directed light-cones (states of positive and
negative energy respectively) and are indeed disjoint but not in the desperately existential sense
as 3-geometries of General Relativity.

This disjointness has also positive aspect in TGD framework. One can identify the color degrees
of freedom of partons as those associated with CP2 degrees of freedom. For instance, SU(3)
analogs for rotational states of rigid body become possible. 4-D space-time surfaces as preferred
extremals of Kähler action connect the partonic 3-surfaces and bring in classical representation
of correlations and thus of interactions. The representation as sub-manifolds makes it also
possible to speak about positions of these sub-Universes and about distances between them.
The habitants of TGD Universe are maximally free but not completely alone.

7.2.3 TQFT as a functor

The category theoretic formulation of TQFT relies on a very elegant and general idea. Quantum
transition has as a space-time correlate an n-dimensional surface having initial final states as
its n-1-dimensional ends. One assigns Hilbert spaces of states to the ends and S-matrix would
be a unitary morphism between the ends. This is expressed in terms of the category theoretic
language by introducing the category nCob with objects identified as n-1-manifolds and mor-
phisms as cobordisms and *-category Hilb consisting of Hilbert spaces with inner product and
morphisms which are bounded linear operators which do not however preserve the unitarity.
Note that the morphisms of nCob cannot anymore be identified as maps between n-1-manifolds
interpreted as sets with additional structure so that in this case category theory is more powerful
than set theory.

TQFT is identified as a functor nCob → Hilb assigning to n-1-manifolds Hilbert spaces, and
to cobordisms unitary S-matrices in the category Hilb. This looks nice but the surprise is that
for n ≤ 4 unitary S-matrix exists only if the cobordism is trivial so that topology changing
transitions are not possible unless one gives up unitarity.

This raises several worried questions.

(a) Does this result mean that in TQFT sense unitary S-matrix for topology changing transi-
tions from a state containing ni closed strings to a state containing nf 6= ni strings does
not exist? Could the situation be same also for more general non-topological stringy S-
matrices? Could the non-converging perturbation series for S-matrix with finite individual
terms matrix fail to no non-perturbative counterpart? Could it be that M-theory is doomed
to remain a dream with no hope of being fulfilled?

(b) Should one give up the unitarity condition and require that the theory predicts only the
relative probabilities of transitions rather than absolute rates? What the proper general-
ization of the S-matrix could be?

(c) What is the relevance of this result for quantum TGD?

7.2.4 The situation is in TGD framework

The result about the non-existence of unitary S-matrix for topology changing cobordisms allows
new insights about the meaning of the departures of TGD from string models.

Cobordism cannot give interesting selection rules

When I started to work with TGD for more than 28 years ago, one of the first ideas was that
one could identify the selection rules of quantum transitions as topological selection rules for
cobordisms. Within week or two came the great disappointment: there were practically no
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selection rules. Could one revive this naive idea? Could the existence of unitary S-matrix
force the topological selection rules after all? I am skeptic. If I have understood correctly
the discussion of what happens in 4-D case [A127] only the exotic diffeo-structures modify the
situation in 4-D case.

Light-like 3-surfaces allow cobordism

In the physically interesting GRT like situation one would expect the cobordism to be medi-
ated by a space-time surface possessing Lorentz signature. This brings in metric and temporal
distance. This means complications since one must leave the pure TQFT context. Also the clas-
sical dynamics of quantum gravitation brings in strong selection rules related to the dynamics in
metric degrees of freedom so that TQFT approach is not expected to be useful from the point of
view of quantum gravity and certainly not the limit of a realistic theory of quantum gravitation.

In TGD framework situation is different. 4-D space-time sheets can have Euclidian signature
of the induced metric so that Lorentz signature does not pose conditions. The counterparts of
cobordisms correspond at fundamental level to light-like 3-surfaces, which are arbitrarily except
for the light-likeness condition (the effective 2-dimensionality implies generalized conformal in-
variance and analogy with 3-D black-holes since 3-D vacuum Einstein equations are satisfied).
Field equations defined by the Chern-Simons action imply that CP2 projection is at most 2-D
but this condition holds true only for the extremals and one has functional integral over all light-
like 3-surfaces. The temporal distance between points along light-like 3-surface vanishes. The
constraints from light-likeness bring in metric degrees of freedom but in a very gentle manner
and just to make the theory physically interesting.

Feynmann cobordism as opposed to ordinary cobordism

In string model context the discouraging results from TQFT hold true in the category of nCob,
which corresponds to trouser diagrams for closed strings or for their open string counterparts. In
TGD framework these diagrams are replaced with a direct generalization of Feynman diagrams
for which 3-D light-like partonic 3-surfaces meet along their 2-D ends at the vertices. In honor
of Feynman one could perhaps speak of Feynman cobordisms. These surfaces are singular as
3-manifolds but vertices are nice 2-manifolds. I contrast to this, in string models diagrams are
nice 2-manifolds but vertices are singular as 1-manifolds (say eye-glass type configurations for
closed strings).

This picture gains a strong support for the interpretation of fermions as light-like throats asso-
ciated with connected sums of CP2 type extremals with space-time sheets with Minkowski sig-
nature and of bosons as pairs of light-like wormhole throats associated with CP2 type extremal
connecting two space-time sheets with Minkowski signature of induced metric. The space-time
sheets have opposite time orientations so that also zero energy ontology emerges unavoidably.
There is also consistency TGD based explanation of the family replication phenomenon in terms
of genus of light-like partonic 2-surfaces.

One can wonder what the 4-D space-time sheets associated with the generalized Feynman dia-
grams could look like? One can try to gain some idea about this by trying to assign 2-D surfaces
to ordinary Feynman diagrams having a subset of lines as boundaries. In the case of 2→2 re-
action open string is pinched to a point at vertex. 1→2 vertex, and quite generally, vertices
with odd number of lines, are impossible. The reason is that 1-D manifolds of finite size can
have either 0 or 2 ends whereas in higher-D the number of boundary components is arbitrary.
What one expects to happen in TGD context is that wormhole throats which are at distance
characterized by CP2 fuse together in the vertex so that some kind of pinches appear also now.

Zero energy ontology

Zero energy ontology gives rise to a second profound distinction between TGD and standard
QFT. Physical states are identified as states with vanishing net quantum numbers, in particular
energy. Everything is creatable from vacuum - and one could add- by intentional action so
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that zero energy ontology is profoundly Eastern. Positive resp. negative energy parts of states
can be identified as states associated with 2-D partonic surfaces at the boundaries of future
resp. past directed light-cones, whose tips correspond to the arguments of n-point functions.
Each incoming/outgoing particle would define a mini-cosmology corresponding to not so big
bang/crunch. If the time scale of perception is much shorter than time interval between positive
and zero energy states, the ontology looks like the Western positive energy ontology. Bras and
kets correspond naturally to the positive and negative energy states and phase conjugation for
laser photons making them indeed something which seems to travel in opposite time direction
is counterpart for bra-ket duality.

The new element would be quantum measurements performed separately for observables assignable
to positive and negative energy states. These measurements would be characterized in terms of
Jones inclusions. The state function reduction for the negative energy states could be interpreted
as a detection of a particle reaction.

Finite temperature S-matrix defines genuine quantum state in zero energy ontology

In TGD framework one encounters two S-matrix like operators.

(a) There is U-matrix between zero energy states. This is expected to be rather trivial but
very important from the point of view of description of intentional actions as transitions
transforming p-adic partonic 3-surfaces to their real counterparts.

(b) The S-matrix like operator describing what happens in laboratory corresponds to the time-
like entanglement coefficients between positive and negative energy parts of the state. Mea-
surement of reaction rates would be a measurement of observables reducing time like entan-
glement and very much analogous to an ordinary quantum measurement reducing space-like
entanglement. There is a finite measurement resolution described by inclusion of HFFs and
this means that situation reduces effectively to a finite-dimensional one.

p-Adic thermodynamics strengthened with p-adic length scale hypothesis predicts particle masses
with an amazing success. At first the thermodynamical approach seems to be in contradiction
with the idea that elementary particles are quantal objects. Unitarity is however not necessary
if one accepts that only relative probabilities for reductions to pairs of initial and final states
interpreted as particle reactions can be measured.

The beneficial implications of unitarity are not lost if one replaces QFT with thermal QFT.
Category theoretically this would mean that the time-like entanglement matrix associated with
the product of cobordisms is a product of these matrices for the factors. The time parameter in
S-matrix would be replaced with a complex time parameter with the imaginary part identified
as inverse temperature. Hence the interpretation in terms of time evolution is not lost.

In the theory of hyper-finite factors of type III1 the partition function for thermal equilibrium
states and S-matrix can be neatly fused to a thermal S-matrix for zero energy states and one
could introduce p-adic thermodynamics at the level of quantum states. It seems that this picture
applies to HFFs by restriction. Therefore the loss of unitarity S-matrix might after all turn to
a victory by more or less forcing both zero energy ontology and p-adic thermodynamics. Note
that also the presence of factor of type I coming from imbedding space degrees of freedom forces
thermal S-matrix.

Time-like entanglement coefficients as a square root of density matrix?

All quantum states do not correspond to thermal states and one can wonder what might be
the most general identification of the quantum state in zero energy ontology. Density matrix
formalism defines a very general formulation of quantum theory. Since the quantum states in zero
energy ontology are analogous to operators, the idea that time-like entanglement coefficients in
some sense define a square root of density matrix is rather natural. This would give the defining
conditions
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ρ+ = SS† , ρ− = S†S ,

Tr(ρ±) = 1 . (7.2.1)

ρ± would define density matrix for positive/negative energy states. In the case HFFs of type II1
one obtains unitary S-matrix and also the analogs of pure quantum states are possible for factors
of type I. The numbers p+

m,n = |S2
m,n|/ρ+

m,m and p−m,n = |S2
n,m|/ρ−m,m give the counterparts of

the usual scattering probabilities.

A physically well-motivated hypothesis would be that S has expression S =
√
ρS0 such that

S0 is a universal unitary S-matrix, and
√
ρ is square root of a state dependent density matrix.

Note that in general S is not diagonalizable in the algebraic extension involved so that it is not
possible to reduce the scattering to a mere phase change by a suitable choice of state basis.

What makes this kind of hypothesis aesthetically attractive is the unification of two fundamental
matrices of quantum theory to single one. This unification is completely analogous to the
combination of modulus squared and phase of complex number to a single complex number:
complex valued Schrödinger amplitude is replaced with operator valued one.

S-matrix as a functor and the groupoid structure formed by S-matrices

In zero energy ontology S-matrix can be seen as a functor from the category of Feynman cobor-
disms to the category of operators. S-matrix can be identified as a ”square root” of the positive

energy density matrix S = ρ
1/2
+ S0, where S0 is a unitary matrix and ρ+ is the density matrix

for positive energy part of the zero energy state. Obviously one has SS† = ρ+. S†S = ρ−
gives the density matrix for negative energy part of zero energy state. Clearly, S-matrix can be
seen as matrix valued generalization of Schrö;dinger amplitude. Note that the ”indices” of the
S-matrices correspond to configuration space spinors (fermions and their bound states giving
rise to gauge bosons and gravitons) and to configuration space degrees of freedom (world of
classical worlds). For hyper-finite factor of II1 it is not strictly speaking possible to speak about
indices since the matrix elements are traces of the S-matrix multiplied by projection operators
to infinite-dimensional subspaces from right and left.

The functor property of S-matrices implies that they form a multiplicative structure analogous
but not identical to groupoid [A18] . Recall that groupoid has associative product and there
exist always right and left inverses and identity in the sense that ff−1 and f−1f are always
defined but not identical and one has fgg−1 = f and f−1fg = g.

The reason for the groupoid like property is that S-matrix is a map between state spaces asso-
ciated with initial and final sets of partonic surfaces and these state spaces are different so that
inverse must be replaced with right and left inverse. The defining conditions for groupoid are
replaced with more general ones. Also now associativity holds but the role of inverse is taken
by hermitian conjugate. Thus one has the conditions fgg† = fρg,+ and f†fg = ρf,−g, and the
conditions ff† = ρ+ and f†f = ρ− are satisfied. Here ρ± is density matrix associated with
positive/negative energy parts of zero energy state. If the inverses of the density matrices exist,
groupoid axioms hold true since f−1

L = f†ρ−1
f,+ satisfies ff−1

L = Id+ and f−1
R = ρ−1

f,−f
† satisfies

f−1
R f = Id−.

There are good reasons to believe that also tensor product of its appropriate generalization to
the analog of co-product makes sense with non-triviality characterizing the interaction between
the systems of the tensor product. If so, the S-matrices would form very beautiful mathematical
structure bringing in mind the corresponding structures for 2-tangles and N-tangles. Knowing
how incredibly powerful the group like structures have been in physics one has good reasons to
hope that groupoid like structure might help to deduce a lot of information about the quantum
dynamics of TGD.

A word about nomenclature is in order. S has strong associations to unitarity and it might be
appropriate to replace S with some other letter. The interpretation of S-matrix as a generalized
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Schrödinger amplitude would suggest Ψ-matrix. Since the interaction with Kea’s M-theory blog
at http://kea-monad.blogspot.com/ (M denotes Monad or Motif in this context) was led ot the
realization of the connection with density matrix, also M -matrix might be considered. S-matrix
as a functor from the category of Feynman cobordisms in turn suggests C or F. Or could just
Matrix denoted by M in formulas be enough? Certainly it would inspire feeling of awe!

7.3 Further ideas

The work of John Baez and students has inspired also the following ideas about the role of
category theory in TGD.

7.3.1 Operads, number theoretical braids, and inclusions of HFFs

The description of braids leads naturally to category theory and quantum groups when the
braiding operation, which can be regarded as a functor, is not a mere permutation. Discreteness
is a natural notion in the category theoretical context. To me the most natural manner to
interpret discreteness is - not something emerging in Planck scale- but as a correlate for a finite
measurement resolution and quantum measurement theory with finite measurement resolution
leads naturally to number theoretical braids as fundamental discrete structures so that category
theoretic approach becomes well-motivated. Discreteness is also implied by the number theoretic
approach to quantum TGD from number theoretic associativity condition [L9] central also for
category theoretical thinking as well as from the realization of number theoretical universality
by the fusion of real and p-adic physics to single coherent whole.

Operads are formally single object multi-categories [A31, A133] . This object consist of an
infinite sequence of sets of n-ary operations. These operations can be composed and the com-
positions are associative (operations themselves need not be associative) in the sense that the
is natural isomorphism (symmetries) mapping differently bracketed compositions to each other.
The coherence laws for operads formulate the effect of permutations and bracketing (association)
as functors acting as natural isomorphisms. A simple manner to visualize the composition is as
an addition of n1, ...nk leaves to the leaves 1, ..., k of k-leaved tree.

An interesting example of operad is the braid operad formulating the combinatorics for a hier-
archy of braids formed from braids by grouping subsets of braids having n1, ...nk strands and
defining the strands of a k-braid. In TGD framework this grouping can be identified in terms
of the formation bound states of particles topologically condensed at larger space-time sheet
and coherence laws allow to deduce information about scattering amplitudes. In conformal the-
ories braided categories indeed allow to understand duality of stringy amplitudes in terms of
associativity condition.

Planar operads [A84] define an especially interesting class of operads. The reason is that the
inclusions of HFFs give rise to a special kind of planar operad [A35] . The object of this multi-
category [A29] consists of planar k-tangles. Planar operads are accompanied by planar algebras.
It will be found that planar operads allow a generalization which could provide a description
for the combinatorics of the generalized Feynman diagrams and also rigorous formulation for
how the arrow of time emerges in TGD framework and related heuristic ideas challenging the
standard views.

7.3.2 Generalized Feynman diagram as category?

John Baez has proposed a category theoretical formulation of quantum field theory as a functor
from the category of n-cobordisms to the category of Hilbert spaces [A61, A60] . The attempt
to generalize this formulation looks well motivated in TGD framework because TGD can be
regarded as almost topological quantum field theory in a well defined sense and braids appear
as fundamental structures. It however seems that formulation as a functor from nCob to Hilb
is not general enough.
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In zero energy ontology events of ordinary ontology become quantum states with positive and
negative energy parts of quantum states localizable to the upper and lower light-like boundaries
of causal diamond (CD).

(a) Generalized Feynman diagrams associated with a given CD involve quantum superposition
of light-like 3-surfaces corresponding to given generalized Feynman diagram. These super-
positions could be seen as categories with 3-D light-like surfaces containing braids as arrows
and 2-D vertices as objects. Zero energy states would represent quantum superposition of
categories (different topologies of generalized Feynman diagram) and M-matrix defined as
Connes tensor product would define a functor from this category to the Hilbert space of
zero energy states for given CD (tensor product defines quite generally a functor).

(b) What is new from the point of view of physics that the sequences of generalized lines would
define compositions of arrows and morphisms having identification in terms of braids which
replicate in vertices. The possible interpretation of the replication is in terms of copying
of information in classical sense so that even elementary particles would be information
carrying and processing structures. This structure would be more general than the proposal
of John Baez that S-matrix corresponds to a function from the category of n-dimensional
cobordisms to the category Hilb.

(c) p-Adic length scale hypothesis follows if the temporal distance between the tips of CD
measured as light-cone proper time comes as an octave of CP2 time scale: T = 2nT0.
This assumption implies that the p-adic length scale resolution interpreted in terms of a
hierarchy of increasing measurement resolutions comes as octaves of time scale. A weaker
condition would be Tp = pT0, p prime, and would assign all p-adic time scales to the size
scale hierarchy of CDs.

This preliminary picture is of course not far complete since it applies only to single CD. There
are several questions. Can one allow CDs within CDs and is every vertex of generalized Feynman
diagram surrounded by this kind of CD. Can one form unions of CDs freely?

(a) Since light-like 3-surfaces in 8-D imbedding space have no intersections in the generic posi-
tion, one could argue that the overlap must be allowed and makes possible the interaction
of between zero energy states belonging to different CDs. This interaction would be some-
thing new and present also for sub-CDs of a given CD.

(b) The simplest guess is that the unrestricted union of CDs defines the counterpart of tensor
product at geometric level and that extended M-matrix is a functor from this category to
the tensor product of zero energy state spaces. For non-overlapping CDs ordinary tensor
product could be in question and for overlapping CDs tensor product would be non-trivial.
One could interpret this M-matrix as an arrow between M-matrices of zero energy states at
different CDs: the analog of natural transformation mapping two functors to each other.
This hierarchy could be continued ad infinitum and would correspond to the hierarchy of
n-categories.

This rough heuristics represents of course only one possibility among many since the notion of
category is extremely general and the only limits are posed by the imagination of the mathe-
matician. Also the view about zero energy states is still rather primitive.

7.4 Planar operads, the notion of finite measurement res-
olution, and arrow of geometric time

In the sequel the idea that planar operads or their appropriate generalization might allow to
formulate generalized Feynman diagrammatics in zero energy ontology will be considered. Also
a description of measurement resolution and arrow of geometric time in terms of operads is
discussed.
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7.4.1 Zeroth order heuristics about zero energy states

Consider now the existing heuristic picture about the zero energy states and coupling constant
evolution provided by CDs.

(a) The tentative description for the increase of the measurement resolution in terms CDs is
that one inserts to the upper and/or lower light-like boundary of CD smaller CDs by gluing
them along light-like radial ray from the tip of CD. It is also possible that the vertices
of generalized Feynman diagrams belong inside smaller CD:s and it turns out that these
CD:s must be allowed.

(b) The considerations related to the arrow of geometric time suggest that there is asymme-
try between upper and lower boundaries of CD. The minimum requirement is that the
measurement resolution is better at upper light-like boundary.

(c) In zero energy ontology communications to the direction of geometric past are possible and
phase conjugate laser photons represent one example of this.

(d) Second law of thermodynamics must be generalized in such a manner that it holds with
respect to subjective time identified as sequence of quantum jumps. The arrow of geometric
time can however vary so that apparent breaking of second law is possible in shorter time
scales at least. One must however understand why second law holds true in so good an
approximation.

(e) One must understand also why the contents of sensory experience is concentrated around a
narrow time interval whereas the time scale of memories and anticipation are much longer.
The proposed mechanism is that the resolution of conscious experience is higher at the
upper boundary of CD. Since zero energy states correspond to light-like 3-surfaces, this
could be a result of self-organization rather than a fundamental physical law.

i. CDs define the perceptive field for self. Selves are curious about the space-time sheets
outside their perceptive field in the geometric future of the imbedding space and per-
form quantum jumps tending to shift the superposition of the space-time sheets to
the direction of geometric past (past defined as the direction of shift!). This creates
the illusion that there is a time=snapshot front of consciousness moving to geometric
future in fixed background space-time as an analog of train illusion.

ii. The fact that news come from the upper boundary of CD implies that self concentrates
its attention to this region and improves the resolutions of sensory experience and
quantum measurement here. The sub-CD:s generated in this manner correspond to
mental images with contents about this region. As a consequence, the contents of
conscious experience, in particular sensory experience, tend to be about the region
near the upper boundary.

iii. This mechanism in principle allows the arrow of the geometric time to vary and depend
on p-adic length scale and the level of dark matter hierarchy. The occurrence of phase
transitions forcing the arrow of geometric time to be same everywhere are however
plausible for the reason that the lower and upper boundaries of given CD must possess
the same arrow of geometric time.

iv. If this is the mechanism behind the arrow of time, planar operads can provide a de-
scription of the arrow of time but not its explanation.

This picture is certainly not general enough, can be wrong at the level of details, and at best
relates to the the whole like single particle wave mechanics to quantum field theory.

7.4.2 Planar operads

The geometric definition of planar operads [A37, A31, A35, A84] without using the category
theoretical jargon goes as follows.

(a) There is an external disk and some internal disks and a collection of disjoint lines connecting
disk boundaries.
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(b) To each disk one attaches a non-negative integer k, called the color of disk. The disk with
color k has k points at each boundary with the labeling 1, 2, ...k running clockwise and
starting from a distinguished marked point, decorated by ’*’. A more restrictive definition is
that disk colors are correspond to even numbers so that there are k = 2n points lines leaving
the disk boundary boundary. The planar tangles with k = 2n correspond to inclusions of
HFFs.

(c) Each curve is either closed (no common points with disk boundaries) or joins a marked
point to another marked point. Each marked point is the end point of exactly one curve.

(d) The picture is planar meaning that the curves cannot intersect and diks cannot overlap.

(e) Disks differing by isotopies preserving *’s are equivalent.

Given a planar k-tangle-one of whose internal disks has color ki- and a ki-tangle S, one can
define the tangle T ◦i S by isotoping S so that its boundary, together with the marked points
and the ’*’s co-indices with that of Di and after that erase the boundary of Di. The collection
of planar tangle together with the the composition defined in this manner- is called the colored
operad of planar tangles.

One can consider also generalizations of planar operads.

(a) The composition law is not affected if the lines of operads branch outside the disks. Branch-
ing could be allowed even at the boundaries of the disks although this does not correspond
to a generic situation. One might call these operads branched operads.

(b) The composition law could be generalized to allow additional lines connecting the points
at the boundary of the added disk so that each composition would bring in something
genuinely new. Zero energy insertion could correspond to this kind of insertions.

(c) TGD picture suggests also the replacement of lines with braids. In category theoretical
terms this means that besides association one allows also permutations of the points at the
boundaries of the disks.

The question is whether planar operads or their appropriate generalizations could allow a char-
acterization of the generalized Feynman diagrams representing the combinatorics of zero energy
states in zero energy ontology and whether also the emergence of arrow of time could be described
(but probably not explained) in this framework.

7.4.3 Planar operads and zero energy states

Are planar operads sufficiently powerful to code the vision about the geometric correlates for
the increase of the measurement resolution and coupling constant evolution formulated in terms
of CDs? Or perhaps more realistically, could one improve this formulation by assuming that
zero energy states correspond to wave functions in the space of planar tangles or of appropriate
modifications of them? It seems that the answer to the first question is almost affirmative.

(a) Disks are analogous to the white regions of a map whose details are not visible in the
measurement resolution used. Disks correspond to causal diamonds (CDs) in zero energy
ontology. Physically the white regions relate to the vertices of the generalized Feynman
diagrams and possibly also to the initial and final states (strictly speaking, the initial and
final states correspond to the legs of generalized Feynman diagrams rather than their ends).

(b) The composition of tangles means addition of previously unknown details to a given white
region of the map and thus to an increase of the measurement resolution. This conforms
with the interpretation of inclusions of HFFs as a characterization of finite measurement
resolution and raises the hope that planar operads or their appropriate generalization could
provide the proper language to describe coupling constant evolution and their perhaps even
generalized Feynman diagrams.
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(c) For planar operad there is an asymmetry between the outer disk and inner disks. One might
hope that this asymmetry could explain or at least allow to describe the arrow of time. This
is not the case. If the disks correspond to causal diamonds (CDs) carrying positive resp.
negative energy part of zero energy state at upper resp. lower light-cone boundary, the TGD
counterpart of the planar tangle is CD containing smaller CD:s inside it. The smaller CD:s
contain negative energy particles at their upper boundary and positive energy particles at
their lower boundary. In the ideal resolution vertices represented 2-dimensional partonic at
which light-like 3-surfaces meet become visible. There is no inherent asymmetry between
positive and negative energies and no inherent arrow of geometric time at the fundamental
level. It is however possible to model the arrow of time by the distribution of sub-CD:s.
By previous arguments self-organization of selves can lead to zero energy states for which
the measurement resolution is better near the upper boundary of the CD.

(d) If the lines carry fermion or anti-fermion number, the number of lines entering to a given
CD must be even as in the case of planar operads as the following argument shows.

i. In TGD framework elementary fermions correspond to single wormhole throat associ-
ated with topologically condensed CP2 type extremal and the signature of the induced
metric changes at the throat.

ii. Elementary bosons correspond to pairs of wormhole throats associated with wormhole
contacts connecting two space-time sheets of opposite time orientation and modellable
as a piece of CP2 type extremal. Each boson therefore corresponds to 2 lines within
CP2 radius.

iii. As a consequence the total number of lines associated with given CD is even and the
generalized Feynman diagrams can correspond to a planar algebra associated with an
inclusion of HFFs.

(e) This picture does not yet describe zero energy insertions.

i. The addition of zero energy insertions corresponds intuitively to the allowance of new
lines inside the smaller CD:s not coming from the exterior. The addition of lines
connecting points at the boundary of disk is possible without losing the basic geometric
composition of operads. In particular one does not lose the possibility to color the added
tangle using two colors (colors correspond to two groups G and H which characterize
an inclusion of HFFs [A84] ).

ii. There is however a problem. One cannot remove the boundaries of sub-CD after
the composition of CDs since this would give lines beginning from and ending to the
interior of disk and they are invisible only in the original resolution. Physically this is
of course what one wants but the inclusion of planar tangles is expected to fail in its
original form, and one must generalize the composition of tangles to that of CD:s so
that the boundaries of sub-CD:s are not thrown away in the process.

iii. It is easy to see that zero energy insertions are inconsistent with the composition of
planar tangles. In the inclusion defining the composition of tangles both sub-tangle and
tangle induce a color to a given segment of the inner disk. If these colors are identical,
one can forget the presence of the boundary of the added tangle. When zero energy
insertions are allowed, situation changes as is easy to see by adding a line connecting
points in a segment of given color at the boundary of the included tangle. There exists
no consistent coloring of the resulting structure by using only two colors. Coloring
is however possible using four colors, which by four-color theorem is the minimum
number of colors needed for a coloring of planar map: this however requires that the
color can change as one moves through the boundary of the included disk - this is in
accordance with the physical picture.

iv. Physical intuition suggests that zero energy insertion as an improvement of measure-
ment resolution maps to an improved color resolution and that the composition of
tangles generalizes by requiring that the included disk is colored by using new nuances
of the original colors. The role of groups in the definition of inclusions of HFFs is
consistent with idea that G and H describe color resolution in the sense that the colors
obtained by their action cannot be resolved. If so, the improved resolution means that
G and H are replaced by their subgroups G1 ⊂ G and H1 ⊂ H. Since the elements
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of a subgroup have interpretation as elements of group, there are good hopes that
by representing the inclusion of tangles as inclusion of groups, one can generalize the
composition of tangles.

(f) Also CD:s glued along light-like ray to the upper and lower boundaries of CD are possible
in principle and -according the original proposal- correspond to zero energy insertions
according. These CD:s might be associated with the phase transitions changing the value of
~ leading to different pages of the book like structure defined by the generalized imbedding
space.

(g) p-Adic length scale hypothesis is realized if the hierarchy of CDs corresponds to a hierarchy
of temporal distances between tips of CDs given as a = Tn = 2−nT0 using light-cone proper
time.

(h) How this description relates to braiding? Each line corresponds to an orbit of a partonic
boundary component and in principle one must allow internal states containing arbitrarily
high fermion and antifermion numbers. Thus the lines decompose into braids and one
must allow also braids of braids hierarchy so that each line corresponds to a braid operad
in improved resolution.

7.4.4 Relationship to ordinary Feynman diagrammatics

The proposed description is not equivalent with the description based on ordinary Feynman
diagrams.

(a) In standard physics framework the resolution scale at the level of vertices of Feynman
diagrams is something which one is forced to pose in practical calculations but cannot pose
at will as opposed to the measurement resolution. Light-like 3-surfaces can be however
regarded only locally orbits of partonic 2-surfaces since generalized conformal invariance is
true only in 3-D patches of the light-like 3-surface. This means that light-like 3-surfaces are
in principle the fundamental objects so that zero energy states can be regarded only locally
as a time evolutions. Therefore measurement resolution can be applied also to the distances
between vertices of generalized Feynman diagrams and calculational resolution corresponds
to physical resolution. Also the resolution can be better towards upper boundary of CD
so that the arrow of geometric time can be understood. This is a definite prediction which
can in principle kill the proposed scenario.

(b) A further counter argument is that generalized Feynman diagrams are identified as light-
like 3-surfaces for which Kähler function defined by a preferred extremal of Kähler action
is maximum. Therefore one cannot pose any ad hoc rules on the positions of the vertices.
One can of course insist that maximum of Kähler function with the constraint posed by
Tn = 2nT0 (or Tp = pT0) hierarchy is in question.

It would be too optimistic to believe that the details of the proposal are correct. However, if the
proposal is on correct track, zero energy states could be seen as wave functions in the operad of
generalized tangles (zero energy insertions and braiding) as far as combinatorics is involved and
the coherence rules for these operads would give strong constraints on the zero energy state and
fix the general structure of coupling constant evolution.

7.5 Category theory and symplectic QFT

Besides the counterpart of the ordinary Kac-Moody invariance quantum TGD possesses so called
super-symplectic conformal invariance. This symmetry leads to the proposal that a symplectic
variant of conformal field theory should exist. The n-point functions of this theory defined
in S2 should be expressible in terms of symplectic areas of triangles assignable to a set of n-
points and satisfy the duality rules of conformal field theories guaranteing associativity. The
crucial prediction is that symplectic n-point functions vanish whenever two arguments co-incide.
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This provides a mechanism guaranteing the finiteness of quantum TGD implied by very general
arguments relying on non-locality of the theory at the level of 3-D surfaces.

The classical picture suggests that the generators of the fusion algebra formed by fields at differ-
ent point of S2 have this point as a continuous index. Finite quantum measurement resolution
and category theoretic thinking in turn suggest that only the points of S2 corresponding the
strands of number theoretic braids are involved. It turns out that the category theoretic option
works and leads to an explicit hierarchy of fusion algebras forming a good candidate for so called
little disk operad whereas the first option has difficulties.

7.5.1 Fusion rules

Symplectic fusion rules are non-local and express the product of fields at two points sk an sl of
S2 as an integral over fields at point sr, where integral can be taken over entire S2 or possibly
also over a 1-D curve which is symplectic invariant in some sense. Also discretized version of
fusion rules makes sense and is expected serve as a correlate for finite measurement resolution.

By using the fusion rules one can reduce n-point functions to convolutions of 3-point functions
involving a sequence of triangles such that two subsequent triangles have one vertex in common.
For instance, 4-point function reduces to an expression in which one integrates over the positions
of the common vertex of two triangles whose other vertices have fixed. For n-point functions one
has n-3 freely varying intermediate points in the representation in terms of 3-point functions.

The application of fusion rules assigns to a line segment connecting the two points sk and sl a
triangle spanned by sk, sl and sr. This triangle should be symplectic invariant in some sense
and its symplectic area Aklm would define the basic variable in terms of which the fusion rule
could be expressed as Cklm = f(Aklm), where f is fixed by some constraints. Note that Aklm
has also interpretations as solid angle and magnetic flux.

7.5.2 What conditions could fix the symplectic triangles?

The basic question is how to identify the symplectic triangles. The basic criterion is certainly
the symplectic invariance: if one has found N-D symplectic algebra, symplectic transformations
of S2 must provide a new one. This is guaranteed if the areas of the symplectic triangles remain
invariant under symplectic transformations. The questions are how to realize this condition and
whether it might be replaced with a weaker one. There are two approaches to the problem.

Physics inspired approach

In the first approach inspired by classical physics symplectic invariance for the edges is inter-
preted in the sense that they correspond to the orbits of a charged particle in a magnetic field
defined by the Kähler form. Symplectic transformation induces only a U(1) gauge transforma-
tion and leaves the orbit of the charged particle invariant if the vertices are not affected since
symplectic transformations are not allowed to act on the orbit directly in this approach. The
general functional form of the structure constants Cklm as a function f(Aklm) of the symplectic
area should guarantee fusion rules.

If the action of the symplectic transformations does not affect the areas of the symplectic tri-
angles, the construction is invariant under general symplectic transformations. In the case of
uncharged particle this is not the case since the edges are pieces of geodesics: in this case however
fusion algebra however trivializes so that one cannot conclude anything. In the case of charged
particle one might hope that the area remains invariant under general symplectic transforma-
tions whose action is induced from the action on vertices. The equations of motion for a charged
particle involve a Kähler metric determined by the symplectic structure and one might hope
that this is enough to achieve this miracle. If this is not the case - as it might well be - one
might hope that although the areas of the triangles are not preserved, the triangles are mapped
to each other in such a manner that the fusion algebra rules remain intact with a proper choice
of the function f(Aklm). One could also consider the possibility that the function f(Aklm) is
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dictated from the condition that the it remains invariant under symplectic transformations. It
however turns that this approach does not work as such.

Category theoretical approach

The second realization is guided by the basic idea of category theoretic thinking: the properties
of an object are determined its relationships to other objects. Rather than postulating that
the symplectic triangle is something which depends solely on the three points involved via some
geometric notion like that of geodesic line of orbit of charged particle in magnetic field, one
assumes that the symplectic triangle reflects the properties of the fusion algebra, that is the
relations of the symplectic triangle to other symplectic triangles. Thus one must assign to each
triplet (s1, s2, s3) of points of S2 a triangle just from the requirement that braided associativity
holds true for the fusion algebra.

All symplectic transformations leaving the N points fixed and thus generated by Hamiltonians
vanishing at these points would give new gauge equivalent realizations of the fusion algebra
and deform the edges of the symplectic triangles without affecting their area. One could even
say that symplectic triangulation defines a new kind geometric structure in S2. The quantum
fluctuating degrees of freedom are parameterized by the symplectic group of S2 ×CP2 in TGD
so that symplectic the geometric representation of the triangulation changes but its inherent
properties remain invariant.

The elegant feature of category theoretical approach is that one can in principle construct the
fusion algebra without any reference to its geometric realization just from the braided associativ-
ity and nilpotency conditions and after that search for the geometric realizations. Fusion algebra
has also a hierarchy of discrete variants in which the integral over intermediate points in fusion is
replaced by a sum over a fixed discrete set of points and this variant is what finite measurement
resolution implies. In this case it is relatively easy to see if the geometric realization of a given
abstract fusion algebra is possible.

The notion of number theoretical braid

Braids -not necessary number theoretical- provide a realization discretization as a space-time
correlate for the finite measurement resolution. The notion of braid was inspired by the idea
about quantum TGD as almost topological quantum field theory. Although the original form
of this idea has been buried, the notion of braid has survived: in the decomposition of space-
time sheets to string world sheets, the ends of strings define representatives for braid strands at
light-like 3-surfaces.

The notion of number theoretic universality inspired the much more restrictive notion of number
theoretic braid requiring that the points in the intersection of the braid with the partonic 2-
surface correspond to rational or at most algebraic points of H in preferred coordinates fixed by
symmetry considerations. The challenge has been to find a unique identification of the number
theoretic braid or at least of the end points of the braid. The following consideration suggest
that the number theoretic braids are not a useful notion in the generic case but make sense and
are needed in the intersection of real and p-adic worlds which is in crucial role in TGD based
vision about living matter [K46] .

It is only the braiding that matters in topological quantum field theories used to classify braids.
Hence braid should require only the fixing of the end points of the braids at the intersection
of the braid at the light-like boundaries of CDs and the braiding equivalence class of the braid
itself. Therefore it is enough is to specify the topology of the braid and the end points of the
braid in accordance with the attribute ”number theoretic”. Of course, the condition that all
points of the strand of the number theoretic braid are algebraic is impossible to satisfy.

The situation in which the equations defining X2 make sense both in real sense and p-adic sense
using appropriate algebraic extension of p-adic number field is central in the TGD based vision
about living matter [K46] . The reason is that in this case the notion of number entanglement
theoretic entropy having negative values makes sense and entanglement becomes information
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carrying. This motivates the identification of life as something in the intersection of real and
p-adic worlds. In this situation the identification of the ends of the number theoretic braid
as points belonging to the intersection of real and p-adic worlds is natural. These points -call
them briefly algebraic points- belong to the algebraic extension of rationals needed to define
the algebraic extension of p-adic numbers. This definition however makes sense also when the
equations defining the partonic 2-surfaces fail to make sense in both real and p-adic sense. In
the generic case the set of points satisfying the conditions is discrete. For instance, according
to Fermat’s theorem the set of rational points satisfying Xn + Y n = Zn reduces to the point
(0, 0, 0) for n = 3, 4, .... Hence the constraint might be quite enough in the intersection of real
and p-adic worlds where the choice of the algebraic extension is unique.

One can however criticize this proposal.

(a) One must fix the the number of points of the braid and outside the intersection and the non-
uniquencess of the algebraic extension makes the situation problematic. Physical intuition
suggests that the points of braid define carriers of quantum numbers assignable to second
quantized induced spinor fields so that the total number of fermions antifermions would
define the number of braids. In the intersection the highly non-trivial implication is that
this number cannot exceed the number of algebraic points.

(b) In the generic case one expects that even the smallest deformation of the partonic 2-surface
can change the number of algebraic points and also the character of the algebraic extension
of rational numbers needed. The restriction to rational points is not expected to help in
the generic case. If the notion of number theoretical braid is meant to be practical, must be
able to decompose WCW to open sets inside which the numbers of algebraic points of braid
at its ends are constant. For real topology this is expected to be impossible and it does
not make sense to use p-adic topology for WCW whose points do not allow interpretation
as p-adic partonic surfaces.

(c) In the intersection of real and p-adic worlds which corresponds to a discrete subset of WCW,
the situation is different. Since the coefficients of polynomials involved with the definition
of the partonic 2-surface must be rational or at most algebraic, continuous deformations
are not possible so that one avoids the problem.

(d) This forces to ask the reason why for the number theoretic braids. In the generic case they
seem to produce only troubles. In the intersection of real and p-adic worlds they could
however allow the construction of the elements of M -matrix describing quantum transitions
changing p-adic to real surfaces and vice versa as realizations of intentions and generation
of cognitions. In this the case it is natural that only the data from the intersection of the
two worlds are used. In [K46] I have sketched the idea about number theoretic quantum
field theory as a description of intentional action and cognition.

There is also the the problem of fixing the interior points of the braid modulo deformations not
affecting the topology of the braid.

(a) Infinite number of non-equivalent braidings are possible. Should one allow all possible
braidings for a fixed light-like 3-surface and say that their existence is what makes the
dynamics essentially three-dimensional even in the topological sense? In this case there
would be no problems with the condition that the points at both ends of braid are algebraic.

(b) Or should one try to characterize the braiding uniquely for a given partonic 2-surfaces
and corresponding 4-D tangent space distributions? The slicing of the space-time sheet
by partonic 2-surfaces and string word sheets suggests that the ends of string world sheets
could define the braid strands in the generic context when there is no algebraicity condition
involved. This could be taken as a very natural manner to fix the topology of braid but
leave the freedom to choose the representative for the braid. In the intersection of real
and p-adic worlds there is no good reason for the end points of strands in this case to be
algebraic at both ends of the string world sheet. One can however start from the braid
defined by the end points of string world sheets, restrict the end points to be algebraic at
the end with a smaller number of algebraic points and and then perform a topologically
non-trivial deformation of the braid so that also the points at the other end are algebraic?
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Non-trivial deformations need not be possible for all possible choices of algebraic braid
points at the other end of braid and different choices of the set of algebraic points would
give rise to different braidings. A further constraint is that only the algebraic points at
which one has assign fermion or antifermion are used so that the number of braid points is
not always maximal.

(c) One can also ask whether one should perform the gauge fixing for the strands of the number
theoretic braid using algebraic functions making sense both in real and p-adic context. This
question does not seem terribly relevant since since it is only the topology of the braid that
matters.

Symplectic triangulations and braids

The identification of the edges of the symplectic triangulation as the end points of the braid
is favored by conceptual economy. The nodes of the symplectic triangulation would naturally
correspond to the points in the intersection of the braid with the light-like boundaries of CD
carrying fermion or antifermion number. The number of these points could be arbitrarily large
in the generic case but in the intersection of real and p-adic worlds these points correspond to
subset of algebraic points belonging to the algebraic extension of rationals associated with the
definition of partonic 2-surfaces so that the sum of fermion and antifermion numbers would be
bounded above. The presence of fermions in the nodes would be the physical prerequisite for
measuring the phase factors defined by the magnetic fluxes. This could be understood in terms
of gauge invariance forcing to assign to a pair of points of triangulation the non-integrable phase
factor defined by the Kähler gauge potential.

The remaining problem is how uniquely the edges of the triangulation can be determined.

(a) The allowance of all possible choices for edges would bring in an infinite number of degrees
of freedom. These curves would be analogous to freely vibrating strings. This option is not
attractive. One should be able to pose conditions on edges and whatever the manner to
specify the edges might be, it must make sense also in the intersection of real and p-adic
worlds. In this case the total phase factor must be a root of unity in the algebraic extension
of rationals involved and this poses quantization rules analogous to those for magnetic flux.
The strongest condition is that the edges are such that the non-integrable phase factor is a
root of unity for each edge. It will be found that similar quantization is implied also by the
associativity conditions and this justifies the interpretation of phase factors defining the
fusion algebra in terms of the Kähler magnetic fluxes. This would pose strong constraints
on the choice of edges but would not fix completely the phase factors, and it seems that one
must allow all possible triangulations consistent with this condition and the associativity
conditions so that physical state is a quantum superposition over all possible symplectic
triangulations characterized by the fusion algebras.

(b) In the real context one would have an infinite hierarchy of symplectic triangulations and
fusion algebras satisfying the associativity conditions with the number of edges equal to the
total number N of fermions and antifermions. Encouragingly, this hierarchy corresponds
also to a hierarchy of N = N SUSY algebras [K29] (large values of N are not a catastrophe
in TGD framework since the physical content of SUSY symmetry is not the same as that
in the standard approach). In the intersection of real and p-adic worlds the value of N
would be bounded by the total number of algebraic points. Hence the notion of finite
measurement resolution, cutoff in N and bound on the total fermion number would make
physics very simple in the intersection of real and p-adic worlds.

Two kinds of symplectic triangulations are possible since one can use the symplectic forms
associated with CP2 and rM = constant sphere S2 of light-cone boundary. For a given collection
of nodes the choices of edges could be different for these two kinds of triangulations. Physical
state would be proportional to the product of the phase factors assigned to these triangulations.
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7.5.3 Associativity conditions and braiding

The generalized fusion rules follow from the associativity condition for n-point functions modulo
phase factor if one requires that the factor assignable to n-point function has interpretation as
n-point function. Without this condition associativity would be trivially satisfied by using a
product of various bracketing structures for the n fields appearing in the n-point function. In
conformal field theories the phase factor defining the associator is expressible in terms of the
phase factor associated with permutations represented as braidings and the same is expected to
be true also now.

(a) Already in the case of 4-point function there are three different choices corresponding
to the 4 possibilities to connect the fixed points sk and the varying point sr by lines.
The options are (1-2, 3-4), (1-3,2-4), and (1-4,2-3) and graphically they correspond to s-,
t-, and u-channels in string diagrams satisfying also this kind of fusion rules. The basic
condition would be that same amplitude results irrespective of the choice made. The duality
conditions guarantee associativity in the formation of the n-point amplitudes without any
further assumptions. The reason is that the writing explicitly the expression for a particular
bracketing of n-point function always leads to some bracketing of one particular 4-point
function and if duality conditions hold true, the associativity holds true in general. To be
precise, in quantum theory associativity must hold true only in projective sense, that is
only modulo a phase factor.

(b) This framework encourages category theoretic approach. Besides different bracketing there
are different permutations of the vertices of the triangle. These permutations can induce
a phase factor to the amplitude so that braid group representations are enough. If one
has representation for the basic braiding operation as a quantum phase q = exp(i2π/N),
the phase factors relating different bracketings reduce to a product of these phase factors
since (AB)C is obtained from A(BC) by a cyclic permutation involving to permutations
represented as a braiding. Yang-Baxter equations express the reduction of associator to
braidings. In the general category theoretical setting associators and braidings correspond
to natural isomorphisms leaving category theoretical structure invariant.

(c) By combining the duality rules with the condition that 4-point amplitude vanishes, when
any two points co-incide, one obtains from sk = sl and sm = sn the condition stating that
the sum (or integral in possibly existing continuum version) of U2(Aklm)|f |2(xkmr) over the
third point sr vanishes. This requires that the phase factor U is non-trivial so that Q must
be non-vanishing if one accepts the identification of the phase factor as Bohm-Aharonov
phase.

(d) Braiding operation gives naturally rise to a quantum phase. A good guess is that braiding
operation maps triangle to its complement since only in this manner orientation is preserved
so that area is Aklm is mapped to Aklm − 4π. If the f is proportional to the exponent
exp(−AklmQ), braiding operation induces a complex phase factor q = exp(−i4πQ).

(e) For half-integer values of Q the algebra is commutative. For Q = M/N , where M and N
have no common factors, only braided commutativity holds true for N ≥ 3 just as for quan-
tum groups characterizing also Jones inclusions of HFFs. For N = 4 anti-commutativity
and associativity hold true. Charge fractionization would correspond to non-trivial braid-
ing and presumably to non-standard values of Planck constant and coverings of M4 or CP2

depending on whether S2 corresponds to a sphere of light-cone boundary or homologically
trivial geodesic sphere of CP2.

7.5.4 Finite-dimensional version of the fusion algebra

Algebraic discretization due to a finite measurement resolution is an essential part of quantum
TGD. In this kind of situation the symplectic fields would be defined in a discrete set of N points
of S2: natural candidates are subsets of points of p-adic variants of S2. Rational variant of S2 has
as its points points for which trigonometric functions of θ and φ have rational values and there
exists an entire hierarchy of algebraic extensions. The interpretation for the resulting breaking
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of the rotational symmetry would be a geometric correlate for the choice of quantization axes
in quantum measurement and the book like structure of the imbedding space would be direct
correlate for this symmetry breaking. This approach gives strong support for the category theory
inspired philosophy in which the symplectic triangles are dictated by fusion rules.

General observations about the finite-dimensional fusion algebra

(a) In this kind of situation one has an algebraic structure with a finite number of field values
with integration over intermediate points in fusion rules replaced with a sum. The most
natural option is that the sum is over all points involved. Associativity conditions reduce
in this case to conditions for a finite set of structure constants vanishing when two indices
are identical. The number M(N) of non-vanishing structure constants is obtained from the
recursion formula M(N) = (N−1)M(N−1)+(N−2)M(N−2)+...+3M(3) = NM(N−1),
M(3) = 1 given M(4) = 4, M(5) = 20, M(6) = 120,... With a proper choice of the set of
points associativity might be achieved. The structure constants are necessarily complex so
that also the complex conjugate of the algebra makes sense.

(b) These algebras resemble nilpotent algebras (xn = 0 for some n) and Grassmann algebras
(x2 = 0 always) in the sense that also the products of the generating elements satisfy
x2 = 0 as one can find by using duality conditions on the square of a product x = yz of
two generating elements. Also the products of more than N generating elements necessary
vanish by braided commutativity so that nilpotency holds true. The interpretation in
terms of measurement resolution is that partonic states and vertices can involve at most N
fermions in this measurement resolution. Elements anti-commute for q = −1 and commute
for q = 1 and the possibility to express the product of two generating elements as a sum
of generating elements distinguishes these algebras from Grassman algebras. For q = −1
these algebras resemble Lie-algebras with the difference that associativity holds true in this
particular case.

(c) I have not been able to find whether this kind of hierarchy of algebras corresponds to
some well-known algebraic structure with commutativity and associativity possibly replaced
with their braided counterparts. Certainly these algebras would be category theoretical
generalization of ordinary algebras for which commutativity and associativity hold true in
strict sense.

(d) One could forget the representation of structure constants in terms of triangles and think
these algebras as abstract algebras. The defining equations are x2

i = 0 for generators plus
braided commutativity and associativity. Probably there exists solutions to these condi-
tions. One can also hope that one can construct braided algebras from commutative and
associative algebras allowing matrix representations. Note that the solution the conditions
allow scalings of form Cklm → λkλlλmCklm as symmetries.

Formulation and explicit solution of duality conditions in terms of inner product

Duality conditions can be formulated in terms of an inner product in the function space associ-
ated with N points and this allows to find explicit solutions to the conditions.

(a) The idea is to interpret the structure constants Cklm as wave functions Ckl in a discrete
space consisting of N points with the standard inner product

〈Ckl, Cmn〉 =
∑
r CklrCmnr . (7.5.1)

(b) The associativity conditions for a trivial braiding can be written in terms of the inner
product as

〈Ckl, Cmn〉 = 〈Ckm, Cln〉 = 〈Ckn, Cml〉 . (7.5.2)
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(c) Irrespective of whether the braiding is trivial or not, one obtains for k = m the orthogonality
conditions

〈Ckl, Ckn〉 = 0 . (7.5.3)

For each k one has basis of N − 1 wave functions labeled by l 6= k, and the conditions state
that the elements of basis and conjugate basis are orthogonal so that conjugate basis is the
dual of the basis. The condition that complex conjugation maps basis to a dual basis is
very special and is expected to determine the structure constants highly uniquely.

(d) One can also find explicit solutions to the conditions. The most obvious trial is based on
orthogonality of function basis of circle providing representation for ZN−2 and is following:

Cklm = Eklm × exp(iφk + φl + φm) , φm = n(m)2π
N−2 . (7.5.4)

Here Eklm is non-vanishing only if the indices have different values. The ansatz reduces
the conditions to the form

∑
r EklrEmnrexp(i2φr) =

∑
r EkmrElnrexp(i2φr) =

∑
r EknrEmlrexp(i2φr) .(7.5.5)

In the case of braiding one can allow overall phase factors. Orthogonality conditions reduce
to

∑
r EklrEknrexp(i2φr) = 0 . (7.5.6)

If the integers n(m), m 6= k, l span the range (0, N−3) ortogonality conditions are satisfied
if one has Eklr = 1 when the indices are different. This guarantees also duality conditions
since the inner products involving k, l,m, n reduce to the same expression

∑
r 6=k,l,m,n exp(i2φr) . (7.5.7)

(e) For a more general choice of phases the coefficients Eklm must have values differing from
unity and it is not clear whether the duality conditions can be satisfied in this case.

Do fusion algebras form little disk operad?

The improvement of measurement resolution means that one adds further points to an existing
set of points defining a discrete fusion algebra so that a small disk surrounding a point is
replaced with a little disk containing several points. Hence the hierarchy of fusion algebras
might be regarded as a realization of a little disk operad [A25] and there would be a hierarchy of
homomorphisms of fusion algebras induced by the fusion. The inclusion homomorphism should
map the algebra elements of the added points to the algebra element at the center of the little
disk.

A more precise prescription goes as follows.

(a) The replacement of a point with a collection of points in the little disk around it replaces
the original algebra element φk0 by a number of new algebra elements φK besides already
existing elements φk and brings in new structure constants CKLM , CKLk for k 6= k0, and
CKlm.

(b) The notion of improved measurement resolution allows to conclude

CKLk = 0 , k 6= k0 , CKlm = Ck0lm . (7.5.8)
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(c) In the homomorphism of new algebra to the original one the new algebra elements and
their products should be mapped as follows:

φK → φk0 ,
φKφL → φ2

k0
= 0 , φKφl → φk0φl .

(7.5.9)

Expressing the products in terms of structure constants gives the conditions

∑
M CKLM = 0 ,

∑
r CKlr =

∑
r Ck0lr = 0 . (7.5.10)

The general ansatz for the structure constants based on roots of unity guarantees that the
conditions hold true.

(d) Note that the resulting algebra is more general than that given by the basic ansatz since
the improvement of the measurement resolution at a given point can correspond to different
value of N as that for the original algebra given by the basic ansatz. Therefore the original
ansatz gives only the basic building bricks of more general fusion algebras. By repeated local
improvements of the measurement resolution one obtains an infinite hierarchy of algebras
labeled by trees in which each improvement of measurement resolution means the splitting
of the branch with arbitrary number N of branches. The number of improvements of the
measurement resolution defining the height of the tree is one invariant of these algebras.
The fusion algebra operad has a fractal structure since each point can be replaced by any
fusion algebra.

How to construct geometric representation of the discrete fusion algebra?

Assuming that solutions to the fusion conditions are found, one could try to find whether they
allow geometric representations. Here the category theoretical philosophy shows its power.

(a) Geometric representations for Cklm would result as functions f(Aklm) of the symplectic
area for the symplectic triangles assignable to a set of N points of S2.

(b) If the symplectic triangles can be chosen freely apart from the area constraint as the cate-
gory theoretic philosophy implies, it should be relatively easy to check whether the fusion
conditions can be satisfied. The phases of Cklm dictate the areas Aklm rather uniquely if
one uses Bohm-Aharonov ansatz for a fixed the value of Q. The selection of the points sk
would be rather free for phases near unity since the area of the symplectic triangle asso-
ciated with a given triplet of points can be made arbitrarily small. Only for the phases
far from unity the points sk cannot be too close to each other unless Q is very large. The
freedom to chose the points rather freely conforms with the general view about the finite
measurement resolution as the origin of discretization.

(c) The remaining conditions are on the moduli |f(Aklm)|. In the discrete situation it is rather
easy to satisfy the conditions just by fixing the values of f for the particular triangles
involved: |f(Aklm)| = |Cklm|. For the exact solution to the fusion conditions |f(Aklm)| = 1
holds true.

(d) Constraints on the functional form of |f(Aklm)| for a fixed value of Q can be deduced from
the correlation between the modulus and phase of Cklm without any reference to geometric
representations. For the exact solution of fusion conditions there is no correlation.

(e) If the phase of Cklm has Aklm as its argument, the decomposition of the phase factor to a
sum of phase factors means that the Aklm is sum of contributions labeled by the vertices.
Also the symplectic area defined as a magnetic flux over the triangle is expressible as sum
of the quantities

∫
Aµdx

µ associated with the edges of the triangle. These fluxes should
correspond to the fluxes assigned to the vertices deduced from the phase factors of Ψ(sk).
The fact that vertices are ordered suggest that the phase of Ψ(sj) fixes the value of

∫
Aµdx

µ

for an edge of the triangle starting from sk and ending to the next vertex in the ordering.
One must find edges giving a closed triangle and this should be possible. The option for
which edges correspond to geodesics or to solutions of equations of motion for a charged
particle in magnetic field is not flexible enough to achieve this purpose.
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(f) The quantization of the phase angles as multiples of 2π/(N−2) in the case of N -dimensional
fusion algebra has a beautiful geometric correlate as a quantization of symplecto-magnetic
fluxes identifiable as symplectic areas of triangles defining solid angles as multiples of
2π/(N − 2). The generalization of the fusion algebra to p-adic case exists if one al-
lows algebraic extensions containing the phase factors involved. This requires the al-
lowance of phase factors exp(i2π/p), p a prime dividing N − 2. Only the exponents
exp(i

∫
Aµdx

µ) = exp(in2π/(N − 2)) exist p-adically. The p-adic counterpart of the curve
defining the edge of triangle exists if the curve can be defined purely algebraically (say as
a solution of polynomial equations with rational coefficients) so that p-adic variant of the
curve satisfies same equations.

Does a generalization to the continuous case exist?

The idea that a continuous fusion algebra could result as a limit of its discrete version does not
seem plausible. The reason is that the spatial variation of the phase of the structure constants
increases as the spatial resolution increases so that the phases exp(iφ(s) cannot be continuous
at continuum limit. Also the condition Eklm = 1 for k 6= l 6= m satisfied by the explicit solutions
to fusion rules fails to have direct generalization to continuum case.

To see whether the continuous variant of fusion algebra can exist, one can consider an approx-
imate generalization of the explicit construction for the discrete version of the fusion algebra
by the effective replacement of points sk with small disks which are not allowed to intersect.
This would mean that the counterpart E(sk, sl, sm) vanishes whenever the distance between two
arguments is below a cutoff a small radius d. Puncturing corresponds physically to the cutoff
implied by the finite measurement resolution.

(a) The ansatz for Cklm is obtained by a direct generalization of the finite-dimensional ansatz:

Cklm = κsk,sl,smΨ(sk)Ψ(sl)Ψ(sm) . (7.5.11)

where κsk,sl,sm vanishes whenever the distance of any two arguments is below the cutoff
distance and is otherwise equal to 1.

(b) Orthogonality conditions read as

Ψ(sk)Ψ(sl)

∫
κsk,sl,srκsk,sn,srΨ

2(sm)dµ(sr) = Ψ(sk)Ψ(sl)

∫
S2(sk,sl,sn)

Ψ2(sr)dµ(sr) = 0 .(7.5.12)

The resulting condition reads as

∫
S2(sk,sl,sn)

Ψ2(sr)dµ(sr) = 0 (7.5.13)

This condition holds true for any pair sk, sl and this might lead to difficulties.

(c) The general duality conditions are formally satisfied since the expression for all fusion
products reduces to

Ψ(sk)Ψ(sl)Ψ(sm)Ψ(sn)X ,

X =

∫
S2

κsk,sl,sm,snΨ(sr)dµ(sr)

=

∫
S2(sk,sl,sm,sn)

Ψ(sm)dµ(sr)

= −
∫
D2(si)

Ψ2(sr)dµ(sr) , i = k, l, s,m . (7.5.14)
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These conditions state that the integral of Ψ2 any disk of fixed radius d is same: this result
follows also from the orthogonality condition. This condition might be difficult to satisfy
exactly and the notion of finite measurement resolution might be needed. For instance,
it might be necessary to restrict the consideration to a discrete lattice of points which
would lead back to a discretized version of algebra. Thus it seems that the continuum
generalization of the proposed solution to fusion rules does not work.

7.6 Could operads allow the formulation of the generalized
Feynman rules?

The previous discussion of symplectic fusion rules leaves open many questions.

(a) How to combine symplectic and conformal fields to what might be called symplecto-
conformal fields?

(b) The previous discussion applies only in super-symplectic degrees of freedom and the ques-
tion is how to generalize the discussion to super Kac-Moody degrees of freedom.

(c) How four-momentum and its conservation in the limits of measurement resolution enters
this picture?

(d) At least two operads related to measurement resolution seem to be present: the operads
formed by the symplecto-conformal fields and by generalized Feynman diagrams. For gen-
eralized Feynman diagrams causal diamond (CD) is the basic object whereas disks of S2

are the basic objects in the case of symplecto-conformal QFT with a finite measurement
resolution. These two different views about finite measurement resolution should be more
or less equivalent and one should understand this equivalence at the level of details.

(e) Is it possible to formulate generalized Feynman diagrammatics and improved measurement
resolution algebraically?

7.6.1 How to combine conformal fields with symplectic fields?

The conformal fields of conformal field theory should be somehow combined with symplectic
scalar field to form what might be called symplecto-conformal fields.

(a) The simplest thing to do is to multiply ordinary conformal fields by a symplectic scalar field
so that the fields would be restricted to a discrete set of points for a given realization of
N-dimensional fusion algebra. The products of these symplecto-conformal fields at different
points would define a finite-dimensional algebra and the products of these fields at same
point could be assumed to vanish.

(b) There is a continuum of geometric realizations of the symplectic fusion algebra since the
edges of symplectic triangles can be selected rather freely. The integrations over the coordi-
nates zk (most naturally the complex coordinate of S2 transforming linearly under rotations
around quantization axes of angular momentum) restricted to the circle appearing in the
definition of simplest stringy amplitudes would thus correspond to the integration over
various geometric realizations of a given N -dimensional symplectic algebra.

Fusion algebra realizes the notion of finite measurement resolution. One implication is that all
n-point functions vanish for n > N . Second implication could be that the points appearing in the
geometric realizations of N -dimensional symplectic fusion algebra have some minimal distance.
This would imply a cutoff to the multiple integrals over complex coordinates zk varying along
circle giving the analogs of stringy amplitudes. This cutoff is not absolutely necessary since the
integrals defining stringy amplitudes are well-defined despite the singular behavior of n-point
functions. One can also ask whether it is wise to introduce a cutoff that is not necessary and
whether fusion algebra provides only a justification for the 1+ iε prescription to avoid poles used
to obtain finite integrals.
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The fixed values for the quantities
∫
Aµdx

µ along the edges of the symplectic triangles could
indeed pose a lower limit on the distance between the vertices of symplectic triangles. Whether
this occurs depends on what one precisely means with symplectic triangle.

(a) The conformally invariant condition that the angles between the edges at vertices are
smaller than π for triangle and larger than π for its conjugate is not enough to exclude loopy
edges and one would obtain ordinary stringy amplitudes multiplied by the symplectic phase
factors. The outcome would be an integral over arguments z1, z2, ..zn for standard stringy
n-point amplitude multiplied by a symplectic phase factor which is piecewise constant in
the integration domain.

(b) The condition that the points at different edges of the symplectic triangle can be connected
by a geodesic segment belonging to the interior of the triangle is much stronger and would
induce a length scale cutoff since loops cannot be used to create large enough value of∫
Aµdx

µ for a given side of triangle. Symplectic invariance would be obtained for small
enough symplectic transformations. How to realize this cutoff at the level of calculations is
not clear. One could argue that this problem need not have any nice solution and since fi-
nite measurement resolution requires only finite calculational resolution, the approximation
allowing loopy edges is acceptable.

(c) The restriction of the edges of the symplectic triangle within a tubular neighborhood of a
geodesic -more more generally an orbit of charged particle - with thickness determined by
the length scale resolution in S2 would also introduce the length scale cutoff with symplectic
invariance within measurement resolution.

Symplecto-conformal should form an operad. This means that the improvement of measure-
ment resolution should correspond also to an algebra homomorphism in which super-symplectic
symplecto-conformal fields in the original resolution are mapped by algebra homomorphism into
fields which contain sum over products of conformal fields at different points: for the symplectic
parts of field the products reduces always to a sum over the values of field. For instance, if the
field at point s is mapped to an average of fields at points sk, nilpotency condition x2 = 0 is
satisfied.

7.6.2 Symplecto-conformal fields in Super-Kac-Moody sector

The picture described above is an over-simplification since it applies only in super-symplectic
degrees of freedom. The vertices of generalized Feynman diagrams are absent from the descrip-
tion and CP2 Kähler form induced to space-time surface which is absolutely essential part of
quantum TGD is nowhere visible in the treatment.

How should one bring in Super Kac-Moody (SKM) algebra representing the stringy degrees of
freedom in the conventional sense of the world? The condition that the basic building bricks are
same for the treatment of these degrees of freedom is a valuable guideline.

(a) In the transition from super-symplectic to SKM degrees of freedom the light-cone boundary
is replaced with the light-like 3-surface X3 representing the light-like random orbit of parton
and serving as the basic dynamical object of quantum TGD. The sphere S2 of light-cone
boundary is in turn replaced with a partonic 2-surface X2. This suggests how to proceed.

(b) In the case of SKM algebra the symplectic fusion algebra is represented geometrically as
points of partonic 2-surface X2 by replacing the symplectic form of S2 with the induced CP2

symplectic form at the partonic 2-surface and defining U(1) gauge field. This gives similar
hierarchy of symplecto-conformal fields as in the super-symplectic case. This also realizes
the crucial aspects of the classical dynamics defined by Kähler action. In particular, for
vacuum 2-surfaces symplectic fusion algebra trivializes since Kähler magnetic fluxes vanish
identically and 2-surfaces near vacua require a large value of N for the dimension of the
fusion algebra since the available Kähler magnetic fluxes are small.

(c) In super-symplectic case the projection along light-like ray allows to map the points at the
light-cone boundaries of CD to points of same sphere S2. In the case of light-like 3-surfaces
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light-like geodesics representing braid strands allow to map the points of the partonic two-
surfaces at the future and past light-cone boundaries to the partonic 2-surface representing
the vertex. The earlier proposal was that the ends of strands meet at the partonic 2-surface
so that braids would replicate at vertices. The properties of symplectic fields would however
force identical vanishing of the vertices if this were the case. There is actually no reason
to assume this condition and with this assumption vertices involving total number N of
incoming and outgoing strands correspond to symplecto-conformal N -point function as is
indeed natural. Also now Kähler magnetic flux induces cutoff distance.

(d) SKM braids reside at light-like 3-surfaces representing lines of generalized Feynman di-
agrams. If super-symplectic braids are needed at all, they must be assigned to the two
light-like boundaries of CD meeting each other at the sphere S2 at which future and past
directed light-cones meet.

7.6.3 The treatment of four-momentum and other quantum numbers

Four-momentum enjoys a special role in super-symplectic and SKM representations in that
it does not correspond to a quantum number assignable to the generators of these algebras.
It would be nice if the somewhat mysterious phase factors associated with the representation
of the symplectic algebra could code for the four-momentum - or rather the analogs of plane
waves representing eigenstates of four-momentum at the points associated with the geometric
representation of the symplectic fusion algebra. The situation is more complex as the following
considerations show.

The representation of longitudinal momentum in terms of phase factors

(a) The generalized coset representation for super-symplectic and SKM algebras implies Equiv-
alence Principle in the generalized sense that the differences of the generators of two super
Virasoro algebras annihilate the physical states. In particular, the four-momenta associated
with super-symplectic resp. SKM degrees of freedom are identified as inertial resp. gravi-
tational four- momenta and are equal by Equivalence Principle. The question is whether
four-momentum could be coded in both algebras in terms of non-integrable phase factors
appearing in the representations of the symplectic fusion algebras.

(b) Four different phase factors are needed if all components of four-momentum are to be coded.
Both number theoretical vision about quantum TGD and the realization of the hierarchy
of Planck constants assign to each point of space-time surface the same plane M2 ⊂ M4

having as the plane of non-physical polarizations. This condition allows to assign to a given
light-like partonic 3-surface unique extremal of Kähler action defining the Kähler function
as the value of Kähler action. Also p-adic mass calculations support the view that the
physical states correspond to eigen states for the components of longitudinal momentum
only (also the parton model for hadrons assumes this). This encourages to think that only
M2 part of four-momentum is coded by the phase factors. Transversal momentum squared
would be a well defined quantum number and determined from mass shell conditions for
the representations of super-symplectic (or equivalently SKM) conformal algebra much like
in string model.

(c) The phase factors associated with the symplectic fusion algebra mean a deviation from
conformal n-point functions, and the innocent question is whether these phase factors
could be identified as plane-wave phase factors associated with the transversal part of the
four-momentum so that the n-point functions would be strictly analogous with stringy
amplitudes. In fact, the identification of the phase factors exp(i

∫
Aµdx

µ/~) along a path
as a phase factors exp(ipL,k∆mk) defined by the ends of the path and associated with
the longitudinal part of four-momentum would correspond to an integral form of covariant
constancy condition dxµ

ds (∂µ − iAµ)Ψ = 0 along the edge of the symplectic triangle of more
general path. Second phase factor would come from the integral along the (most naturally)
light-like curve defining braid strand associated with the point in question. A geometric
representation for the two projections of the gravitational four-momentum would thus result
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in SKM degrees of freedom and apart from the non-uniqueness related to the multiples of
2π the components of M2 momentum could be deduced from the phase factors. If one is
satisfied with the projection of momentum in M2, this is enough.

(d) The phase factors assignable to CP2 Kähler gauge potential are Lorentz invariant unlike the
phase factors assignable to four-momentum. One can try to resolve the problem by noticing
an important delicacy involved with the formulation of quantum TGD as almost topological
QFT. In order to have a non-vanishing four-momentum it is necessary to assume that CP2

Kähler form has Kähler gauge potential having M4 projection, which is Lorentz invariant
constant vector in the direction of the vector field defined by light-cone proper time. One
cannot eliminate this part of Kähler gauge potential by a gauge transformation since the
symplectic transformations of CP2 do not induce genuine gauge transformations but only
symmetries of vacuum extremals of Kähler action. The presence of the M4 projection is
necessary for having a non-vanishing gravitational mass in the fundamental theory relying
on Chern-Simons action for light-like 3-surface and the magnitude of this vector brings
gravitational constant into TGD as a fundamental constant and its value is dictated by
quantum criticality.

(e) Since the phase of the time-like phase factor is proportional to the increment of the proper
time coordinate of light-cone, it is also Lorentz invariant! Since the selection of S2 fixes
a rest frame, one can however argue that the representation in terms of phases is only for
the rest energy in the case of massive particle. Also number theoretic approach selects a
preferred rest frame by assigning time direction to the hyper-quaternionic real unit. In
the case of massless particle this interpretation does not work since the vanishing of the
rest mass implies that light-like 3-surface is piece of light-cone boundary and thus vacuum
extremal. p-Adic thermodynamics predicting small mass even for massless particles can
save the situation. Second possibility is that the phase factor defined by Kähler gauge
potential is proportional to the Kähler charge of the particle and vanishes for massless
particles.

(f) This picture would mean that the phase factors assignable to the symplectic triangles
have nothing to do with momentum. Because the space-like phase factor exp(iSz∆φ/~)
associated with the edge of the symplectic triangle is completely analogous to that for
momentum, one can argue that the symplectic triangulation should define a kind of spin
network utilized in discretized approaches to quantum gravity. The interpretation raises
the question about the interpretation of the quantum numbers assignable to the Lorentz
invariant phase factors defined by the CP2 part of CP2 Kähler gauge potential.

(g) By generalized Equivalence Principle one should have two phase factors also in super-
symplectic degrees of freedom in order to characterize inertial four-momentum and spin.
The inclusion of the phase factor defined by the radial integral along light-like radial direc-
tion of the light-cone boundary gives an additional phase factor if the gauge potential of the
symplectic form of the light-cone boundary contains a gradient of the radial coordinate rM
varying along light-rays. Gravitational constant would characterize the scale of the ”gauge
parts” of Kähler gauge potentials both in M4 and CP2 degrees of freedom. The identity
of inertial and gravitational four-momenta means that super-symplectic and SKM algebras
represent one and same symplectic field in S2 and X2.

(h) Equivalence Principle in the generalized form requires that also the super-symplectic rep-
resentation allows two additional Lorentz invariant phase factors. These phase factors are
obtained if the Kähler gauge potential of the light-cone boundary has a gauge part also in
CP2. The invariance under U(2) ⊂ SU(3) fixes the choice the gauge part to be proportional
to the gradient of the U(2) invariant radial distance from the origin of CP2 characterizing
the radii of 3-spheres around the origin. Thus M4×CP2 would deviate from a pure Carte-
sian product in a very delicate manner making possible to talk about almost topological
QFT instead of only topological QFT.
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The quantum numbers associated with phase factors for CP2 parts of Kähler gauge
potentials

Suppose that it is possible to assign two independent and different phase factors to the same
geometric representation, in other words have two independent symplectic fields with the same
geometric representation. The product of two symplectic fields indeed makes sense and satisfies
the defining conditions. One can define prime symplectic algebras and decompose symplectic
algebras to prime factors. Since one can allow permutations of elements in the products it be-
comes possible to detect the presence of product structure experimentally by detecting different
combinations for products of phases caused by permutations realized as different combinations
of quantum numbers assigned with the factors. The geometric representation for the product
of n symplectic fields would correspond to the assignment of n edges to any pair of points. The
question concerns the interpretation of the phase factors assignable to the CP2 parts of Kähler
gauge potentials of S2 and CP” Kähler form.

(a) The only reasonable interpretation for the two additional phase factors would be in terms
of two quantum numbers having both gravitational and inertial variants and identical by
Equivalence Principle. These quantum numbers should be Lorentz invariant since they are
associated with the CP2 projection of the Kähler gauge potential of CP2 Kähler form.

(b) Color hyper charge and isospin are mathematically completely analogous to the components
of four-momentum so that a possible identification of the phase factors is as a represen-
tation of these quantum numbers. The representation of plane waves as phase factors
exp(ipk∆mk/~) generalizes to the representation exp(iQA∆ΦA/~), where ΦA are the an-
gle variables conjugate to the Hamiltonians representing color hyper charge and isospin.
This representation depends on end points only so that the crucial symplectic invariance
with respect to the symplectic transformations respecting the end points of the edge is not
lost (U(1) gauge transformation is induced by the scalar jkAk, where jk is the symplectic
vector field in question).

(c) One must be cautious with the interpretation of the phase factors as a representation for
color hyper charge and isospin since a breaking of color gauge symmetry would result since
the phase factors associated with different values of color isospin and hypercharge would be
different and could not correspond to same edge of symplectic triangle. This is questionable
since color group itself represents symplectic transformations. The construction of CP2 as a
coset space SU(3)/U(2) identifies U(2) as the holonomy group of spinor connection having
interpretation as electro-weak group. Therefore also the interpretation of the phase factors
in terms of em charge and weak charge can be considered. In TGD framework electro-
weak gauge potential indeed suffer a non-trivial gauge transformation under color rotations
so that the correlation between electro-weak quantum numbers and non-integrable phase
factors in Cartan algebra of the color group could make sense. Electro-weak symmetry
breaking would have a geometric correlate in the sense that different values of weak isospin
cannot correspond to paths with same values of phase angles ∆ΦA between end points.

(d) If the phase factors associated with the M4 and CP2 are assumed to be identical, the
existence of geometric representation is guaranteed. This however gives constraints between
rest mass, spin, and color (or electro-weak) quantum numbers.

Some general comments

Some further comments about phase factors are in order.

(a) By number theoretical universality the plane wave factors associated with four-momentum
must have values coming as roots of unity (just as for a particle in box consisting of discrete
lattice of points). At light-like boundary the quantization conditions reduce to the condition
that the value of light-like coordinate is rational of form m/N , if N :th roots of unity are
allowed.

(b) In accordance with the finite measurement resolution of four-momentum, four-momentum
conservation is replaced by a weaker condition stating that the products of phase factors
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representing incoming and outgoing four-momenta are identical. This means that positive
and negative energy states at opposite boundaries of CD would correspond to complex con-
jugate representations of the fusion algebra. In particular, the product of phase factors in
the decomposition of the conformal field to a product of conformal fields should correspond
to the original field value. This would give constraints on the trees physically possible in the
operad formed by the fusion algebras. Quite generally, the phases expressible as products
of phases exp(inπ/p), where p ≤ N is prime must be allowed in a given resolution and this
suggests that the hierarchy of p-adic primes is involved. At the limit of very large N exact
momentum conservation should emerge.

(c) Super-conformal invariance gives rise to mass shell conditions relating longitudinal and
transversal momentum squared. The massivation of massless particles by Higgs mechanism
and p-adic thermodynamics pose additional constraints to these phase factors.

7.6.4 What does the improvement of measurement resolution really
mean?

To proceed one must give a more precise meaning for the notion of measurement resolution.
Two different views about the improvement of measurement resolution emerge. The first one
relies on the replacement of braid strands with braids applies in SKM degrees of freedom and
the homomorphism maps symplectic fields into their products. The homomorphism based on
the averaging of symplectic fields over added points consistent with the extension of fusion
algebra described in previous section is very natural in super-symplectic degrees of freedom.
The directions of these two algebra homomorphisms are different. The question is whether both
can be involved with both super-symplectic and SKM case. Since the end points of SKM braid
strands correspond to both super-symplectic and SKM degrees of freedom, it seems that division
of labor is the only reasonable option.

(a) Quantum classical correspondence requires that measurement resolution has a purely geo-
metric meaning. A purely geometric manner to interpret the increase of the measurement
resolution is as a replacement of a braid strand with a braid in the improved resolution. If
one assigns the phase factor assigned with the fusion algebra element with four-momentum,
the conservation of the phase factor in the associated homomorphism is a natural constraint.
The mapping of a fusion algebra element (strand) to a product of fusion algebra elements
(braid) allows to realize this condition. Similar mapping of field value to a product of
field values should hold true for conformal parts of the fields. There exists a large number
equivalent geometric representations for a given symplectic field value so that one obtains
automatically an averaging in conformal degrees of freedom. This interpretation for the im-
provement of measurement resolution looks especially natural for SKM degrees of freedom
for which braids emerge naturally.

(b) One can also consider the replacement of symplecto-conformal field with an average over the
points becoming visible in the improved resolution. In super-symplectic degrees of freedom
this looks especially natural since the assignment of a braid with light-cone boundary is not
so natural as with light-like 3-surface. This map does not conserve the phase factor but this
could be interpreted as reflecting the fact that the values of the light-like radial coordinate
are different for points involved. The proposed extension of the symplectic algebra proposed
in the previous section conforms with this interpretation.

(c) In the super-symplectic case the improvement of measurement resolution means improve-
ment of angular resolution at sphere S2. In SKM sector it means improved resolution
for the position at partonic 2-surface. For SKM algebra the increase of the measurement
resolution related to the braiding takes place inside light-like 3-surface. This operation
corresponds naturally to an addition of sub-CD inside which braid strands are replaced
with braids. This is like looking with a microscope a particular part of line of generalized
Feynman graph inside CD and corresponds to a genuine physical process inside parton. In
super-symplectic case the replacement of a braid strand with braid (at light-cone bound-
ary) is induced by the replacement of the projection of a point of a partonic 2-surface to
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S2 with a a collection of points coming from several partonic 2-surfaces. This replaces the
point s of S2 associated with CD with a set of points sk of S2 associated with sub-CD.
Note that the solid angle spanned by these points can be rather larger so that zoom-up is
in question.

(d) The improved measurement resolution means that a point of S2 (X2) at boundary of CD
is replaced with a point set of S2 (X2) assignable to sub-CD. The task is to map the point
set to a small disk around the point. Light-like geodesics along light-like X3 defines this
map naturally in both cases. In super-symplectic case this map means scaling down of the
solid angle spanned by the points of S2 associated with sub-CD.

7.6.5 How do the operads formed by generalized Feynman diagrams
and symplecto-conformal fields relate?

The discussion above leads to following overall view about the situation. The basic operation for
both symplectic and Feynman graph operads corresponds to an improvement of measurement
resolution. In the case of planar disk operad this means to a replacement of a white region
of a map with smaller white regions. In the case of Feynman graph operad this means better
space-time resolution leading to a replacement of generalized Feynman graph with a new one
containing new sub-CD bringing new vertices into daylight. For braid operad the basic operation
means looking a braid strand with a microscope so that it can resolve into a braid: braid becomes
a braid of braids. The latter two views are equivalent if sub-CD contains the braid of braids.

The disks D2 of the planar disk operad has natural counterparts in both super-symplectic and
SKM sector.

(a) For the geometric representations of the symplectic algebra the image points vary in con-
tinuous regions of S2 (X2) since the symplectic area of the symplectic triangle is a highly
flexible constraint. Posing the condition that any point at the edges of symplectic triangle
can be connected to any another edge excludes symplectic triangles with loopy sides so
that constraint becomes non-trivial. In fact, since two different elements of the symplectic
algebra cannot correspond to the same point for a given geometric representation, each
element must correspond to a connected region of S2 (X2). This allows a huge number of
representations related by the symplectic transformations S2 in super-symplectic case and
by the symplectic transformations of CP2 in SKM case. In the case of planar disk operad
different representations are related by isotopies of plane.

This decomposition to disjoint regions naturally correspond to the decomposition of the disk
to disjoint regions in the case of planar disk operad and Feynman graph operad (allowing
zero energy insertions). Perhaps one might say that N -dimensional elementary symplectic
algebra defines an N -coloring of S2 (S2) which is however not the same thing as the 2-
coloring possible for the planar operad. TGD based view about Higgs mechanism leads to
a decomposition of partonic 2-surface X2 (its light-like orbit X3) into conformal patches.
Since also these decompositions correspond to effective discretizations of X2 (X3), these
two decompositions would naturally correspond to each other.

(b) In SKM sector disk D2 of the planar disk operad is replaced with the partonic 2-surface X2

and since measurement resolution is a local notion, the topology of X2 does not matter.
The improvement of measurement resolution corresponds to the replacement of braid strand
with braid and homomorphism is to the direction of improved spatial resolution.

(c) In super-symplectic case D2 is replaced with the sphere S2 of light-cone boundary. The
improvement of measurement resolution corresponds to introducing points near the origi-
nal point and the homomorphism maps field to its average. For the operad of generalized
Feynman diagrams CD defined by future and past directed light-cones is the basic ob-
ject. Given CD can be indeed mapped to sphere S2 in a natural manner. The light-like
boundaries of CDs are metrically spheres S2. The points of light-cone boundaries can be
projected to any sphere at light-cone boundary. Since the symplectic area of the sphere
corresponds to solid angle, the choice of the representative for S2 does not matter. The
sphere defined by the intersection of future and past light-cones of CD however provides
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a natural identification of points associated with positive and negative energy parts of the
state as points of the same sphere. The points of S2 appearing in n-point function are
replaced by point sets in a small disks around the n points.

(d) In both super-symplectic and SKM sectors light-like geodesic along X3 mediate the analog
of the map gluing smaller disk to a hole of a disk in the case of planar disk operad defining
the decomposition of planar tangles. In super-symplectic sector the set of points at the
sphere corresponding to a sub-CD is mapped by SKM braid to the larger CD and for a
typical braid corresponds to a larger angular span at sub-CD. This corresponds to the
gluing of D2 along its boundaries to a hole in D2 in disk operad. A scaling transformation
allowed by the conformal invariance is in question. This scaling can have a non-trivial effect
if the conformal fields have anomalous scaling dimensions.

(e) Homomorphisms between the algebraic structures assignable to the basic structures of the
operad (say tangles in the case of planar tangle operad) are an essential part of the power of
the operad. These homomorphisms associated with super-symplectic and SKM sector code
for two views about improvement of measurement resolution and might lead to a highly
unique construction of M-matrix elements.

The operad picture gives good hopes of understanding how M-matrices corresponding to a
hierarchy of measurement resolutions can be constructed using only discrete data.

(a) In this process the n-point function defining M-matrix element is replaced with a super-
position of n-point functions for which the number of points is larger: n →

∑
k=1,...,m nk.

The numbers nk vary in the superposition. The points are also obtained by downwards
scaling from those of smaller S2. Similar scaling accompanies the composition of tangles in
the case of planar disk operad. Algebra homomorphism property gives constraints on the
compositeness and should govern to a high degree how the improved measurement resolu-
tion affects the amplitude. In the lowest order approximation the M-matrix element is just
an n-point function for conformal fields of positive and negative energy parts of the state
at this sphere and one would obtain ordinary stringy amplitude in this approximation.

(b) Zero energy ontology means also that each addition in principle brings in a new zero energy
insertion as the resolution is improved. Zero energy insertions describe actual physical
processes in shorter scales in principle affecting the outcome of the experiment in longer
time scales. Since zero energy states can interact with positive (negative) energy particles,
zero energy insertions are not completely analogous to vacuum bubbles and cannot be
neglected. In an idealized experiment these zero energy states can be assumed to be
absent. The homomorphism property must hold true also in the presence of the zero
energy insertions. Note that the Feynman graph operad reduces to planar disk operad in
absence of zero energy insertions.

7.7 Possible other applications of category theory

It is not difficult to imagine also other applications of category theory in TGD framework.

7.7.1 Categorification and finite measurement resolution

I read a very stimulating article by John Baez with title Categorification [A59] about the basic
ideas behind a process called categorification. The process starts from sets consisting of elements.
In the following I describe the basic ideas and propose how categorification could be applied to
realize the notion of finite measurement resolution in TGD framework.

What categorification is?

In categorification sets are replaced with categories and elements of sets are replaced with ob-
jects. Equations between elements are replaced with isomorphisms between objects: the right

http://arxiv.org/pdf/math/9802029v1
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and left hand sides of equations are not the same thing but only related by an isomorphism
so that they are not tautologies anymore. Functions between sets are replaced with functors
between categories taking objects to objects and morphisms to morphisms and respecting the
composition of morphisms. Equations between functions are replaced with natural isomorphisms
between functors, which must satisfy certain coherence laws representable in terms of commuting
diagrams expressing conditions such as commutativity and associativity.

The isomorphism between objects represents equation between elements of set replaces identity.
What about isomorphisms themselves? Should also these be defined only up to an isomorphism
of isomorphism? And what about functors? Should one continue this replacement ad infinitum
to obtain a hierarchy of what might be called n-categories, for which the process stops after n:th
level. This rather fuzzy buisiness is what mathematicians like John Baez are actually doing.

Why categorification?

There are good motivations for the categofication. Consider the fact that natural numbers.
Mathematically oriented person would think number ’3’ in terms of an abstract set theoretic
axiomatization of natural numbers. One could also identify numbers as a series of digits. In the
real life the representations of three-ness are more concrete involving many kinds of associations.
For a child ’3’ could correspond to three fingers. For a mystic it could correspond to holy trinity.
For a Christian ”faith,hope,love”. All these representations are isomorphic representation of
threeness but as real life objects three sheeps and three cows are not identical.

We have however performed what might be called decategorification: that is forgitten that the
isomorphic objects are not equal. Decatecorification was of course a stroke of mathematical
genius with enormous practical implications: our information society represents all kinds of
things in terms of numbers and simulates successfully the real world using only bit sequences.
The dark side is that treating people as mere numbers can lead to a rather cold society.

Equally brilliant stroke of mathematical genius is the realization that isomorphic objects are
not equal. Decategorization means a loss of information. Categorification brings back this
information by bringing in consistency conditions known as coherence laws and finding these
laws is the hard part of categorization meaning discovery of new mathematics. For instance,
for braid groups commutativity modulo isomorphisms defines a highly non-trivial coherence
law leading to an extremely powerful notion of quantum group having among other things
applications in topological quantum compuatation.

The so called associahedrons [A74] emerging in n-category theory could replace space-time and
space as fundamental objects. Associahedrons are polygons used to represent geometrically
associativity or its weaker form modulo isomorphism for the products of n objects bracketed
in all possible manners. The polygon defines a hierarchy containing sub-polygons as its edges
containing.... Associativity states the isomorphy of these polygons. Associahedrons and related
geometric representations oaf category theoretical arrow complexes in terms or simplexes allow
a beautiful geometric realization of the coherence laws. One could perhaps say that categories
as discrete structures are not enough: only by introducing the continuum allowing geometric
representations of the coherence laws things become simple.

No-one would have proposed categorification unless it were demanded by practical needs of
mathematics. In many mathematical applications it is obvious that isomorphism does not mean
identity. For instance, in homotopy theory all paths deformable to each other in continuous
manner are homotopy equivalent but not identical. Isomorphism is now homotopy. These paths
can be connected and form a groupoid. The outcome of the groupoid operation is determined up
to homotopy. The deformations of closed path starting from a given point modulo homotopies
form homotopy group and one can interpret the elements of homotopy group as copies of the
point which are isomorphic. The replacement of the space with its universal covering makes
this distinction explicit. One can form homotopies of homotopies and continue this process ad
infinitum and obtain in this manner homotopy groups as characterizes of the topology of the
space.

http://www.ams.org/samplings/feature-column/fcarc-associahedra
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Cateforification as a manner to describe finite measurement resolution?

In quantum physics gauge equivalence represents a standard example about equivalence modulo
isomorphisms which are now gauge transformations. There is a practical strategy to treat the
situation: perform a gauge choice by picking up one representative amongst infinitely many
isomorphic objects. At the level of natural numbers a very convenient gauge fixing would
correspond the representation of natural number as a sequence of decimal digits rather than
image of three cows.

In TGD framework a excellent motivation for categorification is the need to find an elegant
mathematical realization for the notion of finite measurement resolution. Finite measurement
resolutions (or cognitive resolutions) at various levels of information transfer hierarchy imply
accumulation of uncertainties. Consider as a concrete example uncertainty in the determination
of basic parameters of a mathematical model. This uncertainty is reflected to final outcome
as via a long sequence of mathematical maps and additional uncertainties are produced by the
approximations at each step of this process.

How could onbe describe the finite measurement resolution elegantly in TGD Universe? Cat-
egorification suggests a natural method. The points equivalent with measurement resolution
are isomorphic with each other. A natural guess inspired by gauge theories is that one should
perform a gauge choice as an analog of decategorification. This allows also to avoid continuum of
objects connected by arrows not n spirit with the discreteness of category theoretical approach.

(a) At space-time level gauge choice means discretization of partonic 2-surfaces replacing them
with a discrete set points serving as representatives of equivalence classes of points equiv-
alent under finite measurement resolution. An especially interesting choice of points is
as rational points or algebraic numbers and emerges naturally in p-adicization process.
One can also introduce what I have called symplectic triangulation of partonic 2-surfaces
with the nodes of the triangulation representing the discretization and carrying quantum
numbers of various kinds.

(b) At the level of ”world classical worlds” (WCW) this means the replacement of the sub-group
if the symplectic group of δM4 × CP2 -call it G - permuting the points of the symplectic
triangulation with its discrete subgroup obtained as a factor group G/H , where H is the
normal subgroup of G leaving the points of the symplectic triangulation fixed. One can
also consider subgroups of the permutation group for the points of the triangulation. One
can also consider flows with these properties to get braided variant of G/H. It would seem
that one cannot regard the points of triangulation as isomorphic in the category theoretical
sense. This because, one can have quantum superpositions of states located at these points
and the factor group acts as the analog of isometry group. One can also have many-particle
states with quantum numbers at several points. The possibility to assign quantum numbers
to a given point becomes the physical counterpart for the axiom of choice.

The finite measurement resolution leads to a replacement of the infinite-dimensional world
of classical points with a discrete structure. Therefore operation like integration over entire
”world of classical worlds” is replaced with a discrete sum.

(c) What suggests itself strongly is a hierarchy of n-categories as a proper description for the
finite measurement resolution. The increase of measurement resolution means increase for
the number of braid points. One has also braids of braids of braids structure implied by the
possibility to map infinite primes, integers, and rationals to rational functions of several
variables and the conjecture possibility to represent the hierarchy of Galois groups involved
as symplectic flows. If so the hierarchy of n-categories would correspond to the hierarchy
of infinite primes having also interpretation in terms of repeated second quantization of an
arithmetic SUSY such that many particle states of previous level become single particle
states of the next level.

The finite measurement resolution has also a representation in terms of inclusions of hyperfinite
factors of type II1 defined by the Clifford algebra generated by the gamma matrices of WCW
[K86]
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(a) The included algebra represents finite measurement resolution in the sense that its action
generates states which are cannot be distinguished from each other within measurement
resolution used. The natural conjecture is that this indistuinguishability corresponds to
a gauge invariance for some gauge group and that TGD Universe is analogous to Turing
machine in that almost any gauge group can be represented in terms of finite measurement
resolution.

(b) Second natural conjecture inspired by the fact that symplectic groups have enormous rep-
resentabive power is that these gauge symmetries allow representation as subgroups of the
symplectic group of δM4 × CP2. A nice article about universality of symplectic groups is
the article The symplectification of science by Mark. J. Gotay [A47].

(c) An interesting question is whether there exists a finite-dimensional space, whose symplecto-
morphisms would allow a representation of any gauge group (or of all possible Galois groups
as factor groups) and whether δM4 × CP2 could be a space of this kind with the smallest
possible dimension.

7.7.2 Inclusions of HFFs and planar tangles

Finite index inclusions of HFFs are characterized by non-branched planar algebras for which
only an even number of lines can emanate from a given disk. This makes possible a consistent
coloring of the k-tangle by black and white by painting the regions separated by a curve using
opposite colors. For more general algebras, also for possibly existing branched tangle algebras,
the minimum number of colors is four by four-color theorem. For the description of zero energy
states the 2-color assumption is not needed so that the necessity to have general branched planar
algebras is internally consistent. The idea about the inclusion of positive energy state space into
the space of negative energy states might be consistent with branched planar algebras and the
requirement of four colors since this inclusion involves also conjugation and is thus not direct.

In [A37] if was proposed that planar operads are associated with conformal field theories at
sphere possessing defect lines separating regions with different color. In TGD framework and
for branched planar algebras these defect lines would correspond to light-like 3-surfaces. For
fermions one has single wormhole throat associated with topologically condensed CP2 type
extremal and the signature of the induced metric changes at the throat. Bosons correspond to
pairs of wormhole throats associated with wormhole contacts connecting two space-time sheets
modellable as a piece of CP2 type extremal. Each boson thus corresponds to 2 lines within CP2

radius so that in purely bosonic case the planar algebra can correspond to that associated with
an inclusion of HFFs.

7.7.3 2-plectic structures and TGD

Chris Rogers and Alex Hoffnung have demonstrated [A126] that the notion of symplectic struc-
ture generalizes to n-plectic structure and in n = 2 case leads to a categorification of Lie algebra
to 2-Lie-algebra. In this case the generalization replaces the closed symplectic 2-form with a
closed 3-form ω and assigns to a subset of one-forms defining generalized Hamiltonians vector
fields leaving the 3-form invariant.

There are two equivalent definitions of the Poisson bracket in the sense that these Poisson brack-
ets differ only by a gradient, which does not affect the vector field assignable to the Hamiltonian
one-form. The first bracket is simply the Lie-derivate of Hamiltonian one form G with respect
to vector field assigned to F . Second bracket is contraction of Hamiltonian one-forms with the
three-form ω. For the first variant Jacobi identities hold true but Poisson bracket is antisym-
metric only modulo gradient. For the second variant Jacobi identities hold true only modulo
gradient but Poisson bracket is antisymmetric. This modulo property is in accordance with
category theoretic thinking in which commutativity, associativity, antisymmetry,... hold true
only up to isomorphism.

For 3-dimensional manifolds n=2-plectic structure has the very nice property that all one-forms
give rise to Hamiltonian vector field. In this case any 3-form is automatically closed so that

http://www.pims.math.ca/~gotay/Symplectization(E).pdf
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a large variety of 2-plectic structures exists. In TGD framework the natural choice for the 3-
form ω is as Chern-Simons 3-form defined by the projection of the Kähler gauge potential to
the light-like 3-surface. Despite the fact the induced metric is degenerate, one can deduce the
Hamiltonian vector field associated with the one-form using the general defining conditions

ivF ω = dF (7.7.1)

since the vanishing of the metric determinant appearing in the formal definition cancels out in
the expression of the Hamiltonian vector field.

The explicit formula is obtained by writing ω as

ω = Kεαβγ × εµνδAµJνδ
√
g = εαβγ × C − S ,

C − S = KEαβγAαJβγ .
(7.7.2)

Here Eαβγ = εαβγ holds true numerically and metric determinant, which vanishes for light-like
3-surfaces, has disappeared.

The Hamiltonian vector field is the curl of F divided by the Chern-Simons action density C−S:

vαF = 1
2 ×

εαβγ(∂βFγ−∂γFβ)
√
g

C−S√g = 1
2 ×

Eαβγ(∂βFγ−∂γFβ)
C−S . (7.7.3)

The Hamiltonian vector field multiplied by the dual of 3-form multiplied by the metric determi-
nant has a vanishing divergence and is analogous to a vector field generating volume preserving
flow. and the value of Chern Simons 3-form defines the analog of the metric determinant for
light-like 3-surfaces. The generalized Poisson bracket for Hamiltonian 1-forms defined in terms of
the action of Hamiltonian vector field on Hamiltonian as Jβ1 DβF2α− Jβ2 DβH2α is Hamiltonian
1-form. Here Ji denotes the Hamiltonian vector field associated with Fi. The bracked unique
apart from gradient. The corresponding vector field is the commutator of the Hamiltonian vector
fields.

The objection is that gauge invariance is broken since the expression for the vector field assigned
to the Hamiltonian one-form depends on gauge. In TGD framework there is no need to worry
since Kähler gauge potential has unique natural expression and the U(1) gauge transformations
of Kähler gauge potential induced by symplectic transformations of CP2 are not genuine gauge
transformations but dynamical symmetries since the induced metric changes and space-time
surface is deformed. Another important point is that Kähler gauge potential for a given CD has
M4 part which is ”pure gauge” constant Lorentz invariant vector and proportional to the inverse
of gravitational constant G. Its ratio to CP2 radius squared is determined from electron mass
by p-adic mass calculations and mathematically by quantum criticality fixing also the value of
Kähler coupling strength.

7.7.4 TGD variant for the category nCob

John Baez has suggested that quantum field theories could be formulated as functors from the
category of n-cobordisms to the category of Hilbert spaces [A61, A60] . In TGD framework
light-like 3-surfaces containing the number theoretical braids define the analogs of 3-cobordisms
and surface property brings in new structure. The motion of topological condensed 3-surfaces
along 4-D space-time sheets brings in non-trivial topology analogous to braiding and not present
in category nCob.

Intuitively it seems possible to speak about one-dimensional orbits of wormhole throats and
-contacts (fermions and bosons) in background space-time (homological dimension). In this
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case linking or knotting are not possible since knotting is co-dimension 2 phenomenon and only
objects whose homological dimensions sum up to D − 1 can get linked in dimension D. String
like objects could topologically condense along wormhole contact which is string like object.
The orbits of closed string like objects are homologically co-dimension 2 objects and could get
knotted if one does not allow space-time sheets describing un-knotting. The simplest examples
are ordinary knots which are not allowed to evolve by forming self intersections. The orbits
of point like wormhole contact and closed string like wormhole contact can get linked: a point
particle moving through a closed string is basic dynamical example. There is no good reason
preventing unknotting and unlinking in absolute sense.

7.7.5 Number theoretical universality and category theory

Category theory might be also a useful tool to formulate rigorously the idea of number theoretical
universality and ideas about cognition. What comes into mind first are functors real to p-adic
physics and vice versa. They would be obtained by composition of functors from real to rational
physics and back to p-adic physics or vice versa. The functors from real to p-adic physics would
provide cognitive representations and the reverse functors would correspond to the realization
of intentional action. The functor mapping real 3-surface to p-adic 3-surfaces would be simple:
interpret the equations of 3-surface in terms of rational functions with coefficients in some
algebraic extension of rationals as equations in arbitrary number field. Whether this description
applies or is needed for 4-D space-time surface is not clear.

At the Hilbert space level the realization of these functors would be quantum jump in which
quantum state localized to p-adic sector tunnels to real sector or vice versa. In zero energy
ontology this process is allowed by conservation laws even in the case that one cannot assign
classical conserved quantities to p-adic states (their definition as integrals of conserved currents
does not make sense since definite integral is not a well-defined concept in p-adic physics). The
interpretation would be in terms of generalized M-matrix applying to cognition and intention-
ality. This M-matrix would have values in the field of rationals or some algebraic extension of
rationals. Again a generalization of Connes tensor product is suggestive.

7.7.6 Category theory and fermionic parts of zero energy states as
logical deductions

Category theory has natural applications to quantum and classical logic and theory of compu-
tation [A60] . In TGD framework these applications are very closely related to quantum TGD
itself since it is possible to identify the positive and negative energy pieces of fermionic part of
the zero energy state as a pair of Boolean statements connected by a logical deduction, or rather-
quantum superposition of them. An alternative interpretation is as rules for the behavior of the
Universe coded by the quantum state of Universe itself. A further interpretation is as structures
analogous to quantum computation programs with internal lines of Feynman diagram would rep-
resent communication and vertices computational steps and replication of classical information
coded by number theoretical braids.

7.7.7 Category theory and hierarchy of Planck constants

Category theory might help to characterize more precisely the proposed geometric realization of
the hierarchy of Planck constants explaining dark matter as phases with non-standard value of
Planck constant. The situation is topologically very similar to that encountered for generalized
Feynman diagrams. Singular coverings and factor spaces of M4 and CP2 are glued together
along 2-D manifolds playing the role of object and space-time sheets at different vertices could
be interpreted as arrows going through this object.
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Chapter 8

Twistors, N = 4 Super-Conformal
Symmetry, and Quantum TGD

8.1 Introduction

Twistors - a notion discovered by Penrose [B63] - have provided a fresh approach to the construc-
tion of perturbative scattering amplitudes in Yang-Mills theories and in N = 4 supersymmetric
Yang-Mills theory. This approach was pioneered by Witten [B72] . The latest step in the
progress was the proposal by Nima Arkani-Hamed and collaborators [B60] that super Yang
Mills and super gravity amplitudes might be formulated in 8-D twistor space possessing real
metric signature (4, 4). The questions considered below are following.

(a) Could twistor space provide a natural realization of N = 4 super-conformal theory requiring
critical dimension D = 8 and signature metric (4, 4)? Could string like objects in TGD
sense be understood as strings in twistor space? More concretely, could one in some sense
lift quantum TGD from M4 × CP2 to 8-D twistor space T so that one would have three
equivalent descriptions of quantum TGD.

(b) Could one construct the preferred extremals of Kähler action in terms of twistors -may be
by mimicking the construction of hyper-quaternionic resp. co-hyper-quaternionic surfaces
in M8 as surfaces having hyper-quaternionic tangent space resp. normal space at each point
with the additional property that one can assign to each point x a plane M2(x) ⊂ M4 as
sub-space or as sub-space defined by light-like tangent vector in M4. Could one mimic this
construction by assigning to each point of X4 regarded as a 4-surface in T a 4-D plane of
twistor space satisfying some conditions making possible the interpretation as a tangent
plane and guaranteing the existence of a map of X4 to a surface in M4 × CP2. Could
twistor formalism help to resolve the integrability conditions involved?

(c) Could one define 8-D counterpart of twistors in order to avoid the problems posed by
the description of massive states by regarding them as massless states in 8-D context.
Could the octonionic realization of 8-D gamma matrices allow to define twistors in 8-
D framework? Could associativity constraint reducing twistors to quaternionic twistors
locally imply effective reduction to four-dimensional twistors.

(d) Are 8-D counterparts of twistors needed at all? Could the reduction of the dynamics to
that for 4-D surfaces and effective 2-dimensionality have twistorial counterparts in the
sense that 4-D twistors or their suitable generalization or even 2-D twistors could make
sense at the fundamental level? Number theoretical vision based on the requirement of
not only associativity but also of commutativity would suggest a reduction to M2-valued
momenta having description in terms of 2-D twistors. The preferred M2 ⊂ M4 identified
as hyper-complex plane plays also a key role in the realization of the zero energy ontology
and hierarchy of Planck constants.

525
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The arguments of this chapter suggest that some these questions might have affirmative answers.
It must be of course emphasized that all considerations are highly speculative first thoughts of
an innocent novice. The proposals to be discussed do not form a single coherent picture but
are just alternatives between which one might choose in the lack of anything better. In the
next chapter [K87] a proposal for the realization of twistor program inspired by the Yangian
symmetry [A54] to the twistor Grasmannian program [B38] and looks much more realistic. I
have however decided to keep this chapter as a document about the development of ideas.

8.1.1 Twistors and classical TGD

Consider first the twistorialization at the classical space-time level.

(a) One can assign twistors to only 4-D Minkowski space (also to other than Lorentzian sig-
nature). One of the challenges of the twistor program is how to define twistors in the case
of a general curved space-time. In TGD framework the structure of the imbedding space
allows to circumvent this problem.

(b) The lifting of classical TGD to twistor space level is a natural idea. Consider space-time
surfaces representable as graphs of maps M4 → CP2. At classical level the Hamilton-Jacobi
structure [K8] required by the number theoretic compactification means dual slicings of the
M4 projection of the space-time surface X4 by stringy word sheets and partonic two-
surfaces. Stringy slicing allows to assign to each point of the projection of X4 two light-like
tangent vectors U and V parallel to light-like Hamilton-Jacobi coordinate curves. These
vectors define components µ̃ and λ of a projective twistor, and twistor equation assigns to
this pair a point m of M4. The conjecture is that for preferred extremals of Kähler action
this point corresponds to the M4 projection of the point in the natural M4 coordinates
associated with the upper or lower tip of causal diamond CD. If this conjecture is correct
one can lift the M4 projection of the space-time surface in CD × CP2 ⊂ M4 × CP2 to
a surface in PT × CP2, where CP3 is projective twistor space PT = CP3. Also induced
spinor fields and induced gauge fields can be lifted to twistor space.

(c) If one can fix the scales of the tangent vectors U and V and fix the phase of spinor λ one
can consider also the lifting to 8-D twistor space T rather than 6-D projective twistor space
PT . Kind of symmetry breaking would be in question. The proposal for how to achieve
this relies on the notion of finite measurement resolution. The scale of V at partonic 2-
surface X2 ⊂ δCD×X3

l would naturally correlate with the energy of the massless particle
assignable to the light-like curve beginning from that point and thus fix the scale of V
coordinate. Symplectic triangulation discussed in [K13] in turn allows to assign a phase
factor to each strand of the number theoretic braid as the Kähler magnetic flux associated
with the triangle having the point at its center. This allows to lift the stringy world sheets
associated with number theoretic braids to their twistor variants but not the entire space-
time surface. String model in twistor space is obtained in accordance with the fact that
N = 4 super-conformal invariance is realized as a string model in a target space with (4, 4)
signature of metric. Note however that CP2 defines additional degrees of freedom for the
target space so that 12-D space is actually in question.

(d) One can consider also a more general problem of identifying the counterparts for the pre-
ferred extremals of Kähler action with arbitrary dimensions of M4 and CP2 projections
in 10-D space PT × CP2. The key idea is the reduction of field equations to holomor-
phy as in Penrose’s twistor representation of solutions of positive and negative frequency
parts of free fields in M4. A very helpful observation is that CP2 as a sub-manifold of PT
corresponds to the 2-D space of null rays of the complexified Minkowski space M4

c . For
the 5-D space N ⊂ PT of null twistors this 2-D space contains 1-dimensional light ray in
M4 so that N parameterizes the light-rays of M4. The idea is to consider holomorphic
surfaces in PT±×CP2 (± correlates with positive and negative energy parts of zero energy
state) having dimensions D = 6, 8, 10; restrict them to N × CP2, select a sub-manifold of
light-rays from N , and select from each light-ray subset of points which can be discrete or
portion of the light-ray in order to get a 4-D space-time surface. If integrability conditions
for the resulting distribution of light-like vectors U and V can be satisfied (in other words
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they are gradients), a good candidate for a preferred extremal of Kähler action is obtained.
Note that this construction raises light-rays to a role of fundamental geometric object.

8.1.2 Twistors and Feynman diagrams

The recent successes of twistor concept in the understanding of 4-D gauge theories and N = 4
SYM motivate the question of how twistorialization could help to understand construction of
M -matrix in terms of Feynman diagrammatics or its generalization.

(a) One of the basic problems of twistor program is how to treat massive particles. Massive
four-momentum can be described in terms of two twistors but their choice is uniquely only
modulo SO(3) rotation. This is ugly and one can consider several cures to the situation.

i. Number theoretic compactification and hierarchy of Planck constants leading to a
generalization of the notion of imbedding space assign to each sector of configuration
space defined by a particular CD a unique plane M2 ⊂M4 defining quantization axes.
The line connecting the tips of the CD selects also unique rest frame (time axis). The
representation of a light-like four-momentum as a sum of four-momentum in this plane
and second light-like momentum is unique and same is true for the spinors λ apart
from the phase factors (the spinor associated with M2 corresponds to spin up or spin
down eigen state).

ii. The tangent vectors of braid strands define light-like vectors in H and their M4 projec-
tion is time-like vector allowing a representation as a combination of U and V . Could
also massive momenta be represented as unique combinations of U and V ?

iii. One can consider also the possibility to represent massive particles as bound states of
massless particles.

It will be found that one can lift ordinary Feynman diagrams to spinor diagrams and
integrations over loop momenta correspond to integrations over the spinors characterizing
the momentum.

(b) One assign to ordinary momentum eigen states spinor λ but it is not clear how to identify
the spinor µ̃ needed for a twistor.

i. Could one assign µ̃ to spin polarization or perhaps to the spinor defined by the light-
like M2 part of the massive momentum? Or could λ and µ̃ correspond to the vectors
proportional to V and U needed to represent massive momentum?

ii. Or is something more profound needed? The notion of light-ray is central for the pro-
posed construction of preferred extremals. Should momentum eigen states be replaced
with light ray momentum eigen states with a complete localization in degrees of free-
dom transversal to light-like momentum? This concept is favored both by the notion
of number theoretic braid and by the massless extremals (MEs) representing ”topo-
logical light rays” as analogs of laser beams and serving as space-time correlates for
photons represented as wormhole contacts connecting two parallel MEs. The transver-
sal position of the light ray would bring in µ̃. This would require a modification of
the perturbation theory and the introduction of the ray analog of Feynman propa-
gator. This generalization would be M4 counterpart for the highly successful twistor
diagrammatics relying on twistor Fourier transform but making sense only for the (2,2)
signature of Minkowski space.

8.1.3 Massive particles and the generalization of twistors to 8-D case

The basic problem of the twistor approach is that one cannot represent massive momenta in
terms of twistors in elegant manner. This problem might be circumvented.

(a) In quantum TGD massive states in M4 can be regarded as massless states in M8 and CP2

(recall M8 −H duality), and one can map any massive M4 momentum to a light-like M8

momentum and hope that this association could be made in a unique manner.
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(b) One should assign to a massless 8-momentum an 8-dimensional spinor of fixed chirality.
The spinor assigned with the light-like four-momentum is not unique without additional
conditions. The existence of covariantly constant right-handed neutrino in CP2 degrees
generating the super-conformal symmetries could allow to eliminate the non-uniqueness.
8-dimensional twistor in M8 would be a pair of this kind of spinors fixing the momentum
of massless particle and the point through which the corresponding light-geodesic goes
through: the set of these points forms 8-D light-cone and one can assign to each point a
spinor. In M4 × CP2 definitions makes also in the case of M4 × CP2 and twistor space
would also now be a lifting of the space of light-like geodesics.

(c) The possibility to interpret M8 as hyperoctonionic space suggests also the possibility to
define the 8-D counterparts of sigma matrices to hyperoctonions to obtain a representation
of sigma matrix algebra which is not a matrix representation. The mapping of gamma
matrices to this representation allows to define a notion of hyper-quaternionicity in terms
of the modified gamma matrices both inM8 andH. In this case however hyper-quaternionic
4-plane associated with a given point of X4 is not tangent plane in the general case. This
approach allows to deduce an ansatz to the modified Dirac equation working also in the
general case.

8.1.4 Twistors and electric-magnetic duality

The vision involves the notions of bosonic emergence, the identification of virtual states as pairs
of on mass shell states assignable to wormhole throats inspired by zero energy ontology and
the associated realization of Cutkosky rules in terms of manifestly finite Feynman diagrammat-
ics, and as the latest and most important piece the weak form of electric-magnetic duality and
the notion of M2-valued pseudo-momentum associated with the generalized eigen states of the
Chern-Simons Dirac operator. There must be a correlation between pseudo-momenta and real
momenta and the identification of the difference of pseudo-momenta of wormhole throats repre-
senting virtual particle as the difference of corresponding on-mass-shell momenta is what gives
a connection between ordinary virtual momenta and pseudo-momenta. One would obtain not
only 4-D twistors but much simpler 2-D twistors with a discrete pseudo-momentum spectrum
containing possibly only a finite number of momenta.

To sum up, the ideas about twistors are just ideas and it takes years to transform them to a
genuine theory. At this moment the simplest and most promising approach is the one inspired
by zero energy ontology combined with the implications of electric-magnetic duality and the
combination of this approach with the twistor Grassmannian program discussed in the next
chapter looks much more realistic than the considerations of this chapter.

8.2 Could the target space be identified in terms of twistors?

The problem of quantum theory in (2, 2) signature and corresponding real twistors is that a
spacetime with this metric signature does not conform with the standard view about causal-
ity. The challenge is to find a physical interpretation consistent with the metric signature of
Minkowski space: somehow M4 or at least light-cone boundary should be lifted to twistor space.
The (2,2) resp. (4,4) signature of the metric of the target space is a problem of also N = 2
resp. N = 4 super-conformal string theories, and N = 4 super-conformal string theory could
be relevant for quantum TGD since TGD has N = 4 superconformal symmetries as broken
symmetries. The identification of the target space of N = 4 theory as twistor space T looks
natural.

Number theoretical compactification implies dual slicings of the space-time surface to string
world sheets and partonic 2-surfaces. Finite measurement resolution reduces light-like 3-surfaces
to braids defining boundaries of string world sheets. String model in T is obtained if one can
lift the string world sheets from CD × CP2 to T . It turns out that this is possible and one can
also find an interpretation for the phases associated with the spinors defining the twistor.
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A physically attractive realization of the braids - and more generally- of slicings of space-time
surface by 3-surfaces and string world sheets, is discussed in [K37] by starting from the obser-
vation that TGD defines an almost topological QFT of braids, braid cobordisms, and 2-knots.
The boundaries of the string world sheets at the space-like 3-surfaces at boundaries of CDs and
wormhole throats would define space-like and time-like braids uniquely.

The idea relies on a rather direct translation of the notions of singular surfaces and surface
operators used in gauge theory approach to knots [A147] to TGD framework. It leads to the
identification of slicing by three-surfaces as that induced by the inverse images of r = constant
surfaces of CP2, where r is U(2) invariant radial coordinate of CP2 playing the role of Higgs field
vacuum expectation value in gauge theories. r =∞ surfaces correspond to geodesic spheres and
define analogs of fractionally magnetically charged Dirac strings identifiable as preferred string
world sheets. The union of these sheets labelled by subgroups U(2) ⊂ SU(3) would define the
slicing of space-time surface by string world sheets. The choice of U(2) relates directly to the
choice of quantization axes for color quantum numbers characterizing CD and would have the
choice of braids and string world sheets as a space-time correlate.

8.2.1 General remarks

Some remarks are in order before considering a detailed proposal for how to achieve the above
described goal.

(a) Penrose ends up with the notion of twistor by expressing Pauli-Lubanski vector and four-
momentum vector of massless particle in terms of two spinors and their conjugates. Twistor
ZA consists of a pair (µ̃ȧ, λa) of spinors in representations (1/2, 0) and (0, 1/2) of Lorentz
group. The antisymmetric tensor εab defines Kähler form in the space of 2-spinors and iεab

defines Kähler metric which reduces to the (1, 1,−1,−1) diagonal form in real representa-
tion. The hermitian matrix defined by the tensor product of λȧ and its conjugate character-
izes the four-momentum of massless particle in the representation paσa using Pauli’s sigma
matrices. In Penrose’s original approach µ̃ȧ characterizes the angular angular momentum
of the particle: spin is given by s = ZαZα. The representation is not unique since λa is
fixed only apart from a phase factor, which might be called ”twist”. The phases of two
spinors are completely correlated.

(b) This interpretation is not equivalent with that discussed mostly in [B72] and [B60] . Scat-
tering amplitudes are not functions of momenta and polarizations but of a spinor, its conju-
gate defining light-like momentum, and helicity having values ±1. In Minkowski space with
Lorentz signature the momentum as kinematic variable is replaced with spinor and its con-
jugate and spinor is defined apart from a phase factor. In the latter article the signature of
Minkowski space is taken to be (2,2) so that the situation changes dramatically. Light rays
assignable to twistors are 2-D light-like light-like surfaces and the spinor associated with
light-like point decomposes to two independent real spinors replacing light-like momentum
as a kinematic variable. The phase factor as an additional kinematic variable is replaced
by a real scaling factors t and 1/t for the two spinors. Fourier transform with respect to
the real spinor or its conjugate is possible and gives scattering amplitude as a function of
a twistor variable. In Lorentz signature the twistor Fourier transform in this sense is not
possible so one cannot replace spinor and its conjugate by a twistor.

(c) The space of 2-spinors has a Hermitian metric with real signature (2,2) since the Lorentz
invariant Hermitian metric iεab has diagonal form (1,−1) in complex coordinates. Twistors
consist of two spinors and the 8-D twistor space -call it T - has Kähler metric with complex
metric signature (2,2) and real metric signature (4,4), and could correspond to the target
space of N = 4 super-conformally symmetric theory and might define the target space of
N = 4 super-conformally symmetric string theory with strings identified as T lifts of the
string world sheets having braid strands at their ends. The minimum requirement is that
one can assign to each point of string world sheet a twistor.
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8.2.2 What twistor Fourier transform could mean in TGD framework?

For the existence of twistor Fourier transform the reality and independence of the spinors λ and
µ̃ is essential and are satisfied for (2,2) signature. In Lorentzian signature these conditions fail.
The question is whether TGD framework could allow to construct twistor amplitudes.

(a) From Witten’s paper [B72] one learns that twistor-space scattering amplitudes obtained as
Fourier-transforms with respect to the real conjugate spinor in Minkowski space with (2,2)
signature correspond to incoming and outgoing states for which the wave functions are not
plane waves but are located to 2-D sub-spaces of Minkowski space defined by the equation

µ̃ȧ + xȧaλ
a = 0 . (8.2.1)

In a more familiar notation one has xµσµλ = µ̃. This condition follows directly from twistor
Fourier transform.

(b) In Lorentz signature similar equation is obtained from Penrose transform relating the solu-
tions of free wave equations for various spins to the elements of sheaf cohomology assignable
to projective twistor space (see the appendix of [B72] ). In this case the solution is unique
apart from the shift xµ → xµ + kpµ, where pµ is the light-like momentum associated with
λ identified as a solution of massless Dirac equation. Hence twistor corresponds to a wave
function localized at light ray.

(c) If the equivalent of twistor Fourier transform exists in some sense in Lorentz signature,
the geometric interpretation would be as a decomposition of massless plane wave to a
superposition of wave functions localized to light-like rays in the direction of momentum.
Uncertainty Principle does not deny the existence of this kind of wave functions. These
highly singular wave functions would be labeled by momentum and one point at the light
ray or equivalently (apart from the phase factor) by λa and µ̃ȧ defining the twistor. The
wave functions would be constant at the rays and thus wave functions in a 3-dimensional
sub-manifold of M4 labeling the light rays. This sub-manifold could be taken light-cone
boundary as is easy to see so that the overlap of wave function with different direction of
3-momentum would take place only at the tip of the light-cone. Fields in twistor space
would be fields in the space of light-rays characterized by a wave vector.

(d) Light-likeness fixes x and µ for given λ uniquely if one assumes that µ is in the plane M2

defined by λ and thus light-like dual of the momentum vector satisfying x ·p = −1. Clearly,
momentum conservation gives to conservation of x and one can interpret x as a geomet-
ric representation of momentum analogous to the representation momentum increment in
X-ray scattering at ”heavenly sphere”. Quantum classical correspondence encourages to
consider at least half seriously this kind of coding of momentum to a position of braid point
at light-cone boundary. Since twistor Fourier transform does not work, one must invent
some other manner to introduce these wave functions. Here the lifting of space-time surface
to twistor space suggests itself.

(e) The basic challenge is to assign to space-time surface or to each point of space-time surface
a momentum like quantity. If this is achieved one can can assign to the point also λ and µ̃.

i. One can assign to space-time sheet a conserved four-momentum identifiable by quan-
tum classical correspondence as its quantal variant. This option would fix λ to be same
at each point of the space-time surface about from a possible phase factor depending
on space-time point. The resulting surfaces in twistor space would be rather boring.

ii. Hamilton-Jacobi coordinates [K8] suggest the possibility of defining λ as a quantity
depending on space-time point. The two light-like M4 coordinates u, v define preferred
coordinates for the string world sheets Y 2 appearing in the slicing of X4(X3

l ), and the
light-like tangent vectors U and V of these curves define a pair (λ, µ̃) of spinors defining
twistor Z. The vector V defining the tangent vector of the braid strand is analogous
to four-momentum. Twistor equation defines a point m of M4 apart from a shift
along the light ray defined by V and the consistency implying that the construction
is not mere triviality is that m corresponds to the projection of space-time point to
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M4 in coordinates having origin at the tip of CD. One could distinguish between
negative and positive energy extremals according to whether the tip is upper or lower
one. One can assign to λ and µ̃ also two polarization vectors by a standard procedure
[B72] to be discussed later having identification as tangent vectors of coordinate curves
of transversal Hamilton-Jacobi coordinates. This would give additional consistency
conditions.

(f) In this manner space-time surface representable as a graph of a map from M4 to CP2

would be mapped to a 4-surface in twistor space apart from the non-uniqueness related
to the phase factor of λ. Also various field quantities, in particular induced spinor fields
at space-time surface, could be lifted to fields restricted to a 4-dimensional surface of the
twistor space so that the classical dynamics in twistor space would be induced from that
in imbedding space.

(g) This mapping would induce also a mapping of the string world sheets Y 2 ⊂ PM4(X4(X3
l ))

to twistor space. V would determine λ and U -taking the role of light-cone point m - would
determine µ̃ in terms of the twistor equation. 2-surfaces in twistor space would be defined
as images of the 2-D string world sheets if the integrability of the distribution for (U, V )
pairs implies the integrability of (λ, µ̃) pairs.

(h) Twistor scattering amplitude would describe the scattering of a set of incoming light-rays to
a set of outgoing light-rays so that the non-locality of interactions is obvious. Discretization
of partonic 2-surfaces to discrete point sets would indeed suggest wave functions localized
at light-like rays going through the braid points at the ends of X3

l as a proper basis so
that problems with Uncertainty Principle would be overcome. The incoming and outgoing
twistor braid points would be determined by M4 projections of the braid points at the
ends of X3

l . By quantum classical correspondence the conservation law of classical four-
momentum would apply to the total classical four-momentum although for individual braid
strands classical four-momenta would not conserved. The interpretation would be in terms
of interactions. The orbits of stringy curves connecting braid points wold give string like
objects in T required by N = 4 super-conformal field theory.

8.2.3 Could one define the phase factor of the twistor uniquely?

The proposed construction says nothing about the phase of the spinors assigned to the tangent
vectors V and U . One can consider two possible interpretations.

(a) Since the tangent vectors U and V are determined only apart from over all scaling the phase
indeterminacy could be interpreted by saying that projective twistors are in question.

(b) If one can fix the absolute magnitude of U and V -say by fixing the scale of Hamilton
Jacobi coordinates by some physical argument- then the map is to twistors and one should
be able to fix the phase.

It turns out that the twistor formulation of field equations taking into account also CP2 degrees
of freedom to be discussed latter favors the first option. The reason why the following argument
deserves a consideration is that it would force braid picture and thus replacement of space-time
sheets by string world sheets in twistor formulation.

(a) The phase of the spinor λa associated with the light-like four-momentum and light-like
point of δM4

± should represent genuine physical information giving the twistor its ”twist”.
Algebraically twist corresponds to a U(1) rotation along closed orbit with a physical signif-
icance, possibly a gauge rotation. Since the induced CP2 Kähler form plays a central role
in the construction of quantum TGD, the ”twist” could correspond to the non-integrable
phase factor defined as the exponent of Kähler magnetic flux (to achieve symplectic in-
variance and thus zero mode property) through an area bounded by some closed curve
assignable with the point of braid strand at X2. Both CP2 and δM4

± Kähler forms define
fluxes of this kind so that two kinds of phase factors are available but CP2 Kähler flux
looks more natural.
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(b) The symplectic triangulation defined by CP2 Kähler form allows to identify the closed curve
as the triangle defined by the nearest three vertices to which the braid point is connected
by edges. Since each point of X4(X3

l ) belongs to a unique partonic 2-surface X2, this
identification can be made for the braid strands contained by any light-like 3-surface Y 3

l

parallel to X3
l so that phase factors can be assigned to all points of string world sheets

having braid strands as their ends. One cannot assign phases to all points of X4(X3
l ). The

exponent of this phase factor is proportional to the coupling of Kähler gauge potential to
fermion and distinguishes between quarks and leptons.

(c) The phase factor associated with the light-like four-momentum defined by V could be
identified as the non-integrable phase factor defined by -say- CP2 Kähler form. The basic
condition would fix the phase of µ̃. The phases could be permuted but the assignment of
δM4
± Kähler form with m is natural. Note that the phases of the twistors are symplectic

invariants and not subject to quantum fluctuations in the sense that they would contribute
to the line element of the metric of the world of classical worlds. This conforms with the
interpretation as kinematical variables.

(d) Rather remarkably, this construction can assign the non-integrable phase factor only to the
points of the number theoretic braid for each Y 3

l parallel to X3
l so that one obtains only

a union of string world sheets in T rather than lifting of the entire X4(X3
l ) to T 2. The

phases of the twistors would code for non-local information about space-time surface coded
by the tangent space of X4(X3

l ) at the points of stringy curves.

8.3 Could one regard space-time surfaces as surfaces in
twistor space?

Twistors are used to construct solutions of free wave equations with given spin and self-dual
solutions of both YM theories and Einstein’s equations [B63] . Twistor analyticity plays a key
role in the construction of construction of solutions of free field equations. In General Relativity
the problem of the twistor approach is that twistor space does not make sense for a general space-
time metric [B63] . In TGD framework this problem disappears and one can ask how twistors
could possibly help to construct preferred extremals. In particular, one can ask whether it might
be possible to interpret space-time surfaces as surfaces - not necessarily four-dimensional - in
twistor space.

8.3.1 How M4 × CP2 emerges in twistor context?

The finding that CP2 emerges naturally in twistor space considerations is rather encouraging.

(a) Twistor space allows two kinds of 2-planes in complexified M4 known as α- and β-planes
and assigned to twistor and its dual [B63] . This reflects the fundamental duality of the
twistor geometry stating that the points Z of PT label also complex planes (CP2) of PT
via the condition

ZaW
a = 0 . (8.3.1)

To the twistor Z one can assign via twistor equation complex α-plane, which contains only
null vectors and correspond to the plane defined by the twistors intersecting at Z.

For null twistors (5-D sub-space N of PT ) satisfying ZaZ̃a = 0 and identifiable as the
space of light-like geodesics of M4 α-plane contains single real light-ray. β-planes in turn
correspond to dual twistors which define 2-D null plane CP2 in twistor space via the
equation ZaW

a = 0 and containing the point W = Z̃. Since all lines CP1 of CP2 intersect,
also they parameterize a 2-D null plane of complexified M4. The β-planes defined by the
duals of null twistors Z contain single real light-like geodesic and intersection of two CP2:s
defined by two points of line of N define CP1 coding for a point of M4.
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(b) The natural appearance of CP2 in twistor context suggests a concrete conjecture concerning
the solutions of field equations. Light rays of M4 are in 1-1 correspondence with the 5-D
space N ⊂ P of null twistors. Compactified M4 corresponds to the real projective space
PN . The dual of the null twistor Z defines 2-plane CP2 of PT .

(c) This suggests the interpretation of the counterpart of M4×CP2 as a bundle like structure
with total space consisting of complex 2-planes CP2 determined by the points of N . Fiber
would be CP2 and base space 5-D space of light-rays of M4. The fact that N does not
allow holomorphic structure suggests that one should extend the construction to PT and
restrict it to N . The twistor counterparts of space-time surfaces in T would be holomorphic
surfaces of PT×CP2 or possibly of PT± (twistor analogs of lower and upper complex plane
and assignable to positive and negative frequency parts of classical and quantum fields)
restricted to N × CP2.

8.3.2 How to identify twistorial surfaces in PT ×CP2 and how to map
them to M4 × CP2?

The question is whether and how one could construct the correspondence between the points of
M4 and CP2 defining space-time surface from a holomorphic correspondence between points of
PT and CP2 restricted to N .

(a) The basic constraints are that space-time surfaces with varying values for dimensions of M4

and CP2 projections are possible and that these surfaces should result by a restriction from
PT × CP2 to N × CP2 followed by a map from N to M4 either by selecting some points
from the light ray or by identifying entire light rays or their portions as sub-manifolds of
X4.

(b) Quantum classical correspondence would suggest that surfaces holomorphic only in PT+

or PT− should be used so that one could say that positive and negative energy states have
space-time correlates. This would mean an analogy with the construction of positive and
negative energy solutions of free massless fields. The corresponding space-time surfaces
would emerge from the lower and upper light-like boundaries of the causal diamond CD.

(c) A rather general approach is based on an assignment of a sub-manifold of CP2 to each light
ray in PT± in holomorphic manner that is by n equations of form

Fi(ξ
1, ξ2, Z) = 0 , i = 1, ..., n ≤ 2 . (8.3.2)

The dimension of this kind of surface in PT × CP2 is D = 10 − 2n and equals to 6, 8 or
10 so that a connection or at least analogy with M-theory and branes is suggestive. For
n = 0 entire CP2 is assigned with the point Z (CP2 type vacuum extremals with constant
M4 coordinates): this is obviously a trivial case. For n = 1 8-D manifold is obtained. In
the case that Z is expressible as a function of CP2 coordinates, one could obtain CP2 type
vacuum extremals or their deformations. Cosmic strings could be obtained in the case that
there is no Z dependence. For n = 4 discrete set of points of CP2 are assigned with Z
and this would correspond to field theory limit, in particular massless extremals. If the
dimension of CP2 projection for fixed Z is n, one must construct 4− n-dimensional subset
of M4 for given point of CP2.

(d) If one selects a discrete subset of points from each light ray, one must consider a 4 − n-
dimensional subset of light rays. The selection of points of M4 must be carried out in a
smooth manner in this set. The light rays of M4 with given direction can be parameterized
by the points of light-cone boundary having a possible interpretation as a surface from
which the light rays emerge (boundary of CD).

(e) One could also select entire light rays of portions of them. In this case a 4−n−1-dimensional
subset of light rays must be selected. This option could be relevant for the simplest massless
extremals representing propagation along light-like geodesics (in a more general case the
first option must be considered). The selection of the subset of light rays could correspond
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to a choice of 4−n−1-dimensional sub-manifold of light-cone boundary identifiable as part
of the boundary of CD in this case. In this case one could worry about the intersections
of selected light rays. Generically the intersections occur in a discrete set of points of H so
that this problem does not seem to be acute. The lines of generalized Feynman diagrams
interpreted as space-time surfaces meet at 3-D vertex surfaces and in this case one must
pose the condition that CP2 projections at the 3-D vertices are identical.

(f) The use of light rays as the basic building bricks in the construction of space-time surfaces
would be the space-time counterpart for the idea that light ray momentum eigen states are
more fundamental than momentum eigen states.

M8 −H duality is Kähler isometry in the sense that both induced metric and induced Kähler
form are identical in M8 and M4×CP2 representations of the space-time surface. In the recent
case this would mean that the metric induced to the space-time surface by the selection of the
subset of light-rays in N and subsets of points at them has the same property. This might be
true trivially in the recent case.

8.3.3 How to code the basic parameters of preferred extremals in
terms of twistors?

One can proceed by trying to code what is known about preferred extremals to the twistor
language.

(a) A very large class of preferred extremals assigns to a given point of X4 two light-like
vectors U and V of M4 and two polarization vectors defining the tangent vectors of the
coordinate lines of Hamilton-Jacobi coordinates of M4 [K8] . As already noticed, given
null-twistor defines via λ and µ̃ two light-like directions V and U and twistor equation
defines M4 coordinate m apart from a shift in the direction of V . The polarization vectors
εi in turn can be defined in terms of U and V . λ = µ corresponds to a degenerate case in
which U and V are conjugate light-like vectors in plane M2 and polarization vector is also
light-like. This could correspond to the situation for CP2 type vacuum extremals. For the
simplest massless extremals light-like vector U is constant and the solution depends on U
and transverse polarization ε vector only. More generally, massless extremals depend only
on two M4 coordinates defined by U coordinate and the coordinate varying in the direction
of local polarization vector ε.

(b) Integrable distribution of these light-like vectors and polarization vectors required. This
means that these vectors are gradients of corresponding Hamilton-Jacobi coordinate vari-
ables. This poses conditions on the selection of the subset of light rays and the selection of
M4 points at them. Hyper-quaternionic and co-hyper-quaternionic surfaces of M8 are also
defined by fixing an integrable distribution of 4-D tangent planes, which are parameterized
by points of CP2 provided one can assign to the tangent plane M2(x) either as a sub-space
or via the assignment of light-like tangent vector of x.

(c) Positive (negative) helicity polarization vector [B72] can be constructed by taking besides
λ arbitrary spinor µa and defining

εaȧ =
λaµ̃ȧ[
λ̃, µ̃

] ,
[
λ̃, µ̃

]
≡ εȧḃλ

ȧµḃ (8.3.3)

for negative helicity and

εaȧ =
µaλ̃ȧ
〈λ, µ〉

, 〈λ, µ〉 ≡ εabµaλb (8.3.4)

for positive helicity. Real polarization vectors correspond to sums and differences of these
vectors. In the recent case a natural identification of µ would be as the second light-like
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vector defining point of m. One should select one light-like vector and one real polarization
vector at each point and find the corresponding Hamilton-Jacobi coordinates. These vectors
could also code for directions of tangents of coordinate curves in transversal degrees of
freedom.

The proposed construction seems to be consistent with the proposed lifting of preferred extremals
representable as a graph of some map M4 → CP2 to surfaces in twistor space. What was done
in one variant of the construction was to assign to the light-like tangent vectors U and V spinors
µ̃ and λ assuming that twistor equation gives the M4 projection m of the point of X4(X3

l ).
This is the inverse of the process carried out in the recent construction and would give CP2

coordinates as functions of the twistor variable in a 4-D subset of N determined by the lifting
of the space-time surface. The facts that tangent vectors U and V are determined only apart
from overall scaling factor and the fact that twistor is determined up to a phase, imply that
projective twistor space PT is in question. This excludes the interpretation of the phase of the
twistor as a local Kähler magnetic flux. The next steps would be extension to entire N and a
further continuation to holomorphic field in PT or PT±.

To summarize, although these arguments are far from final or convincing and are bound to
reflect my own rather meager understanding of twistors, they encourage to think that twistors
are indeed natural approach in TGD framework. If the recent picture is correct, they code only
for a distribution of tangent vectors of M4 projection and one must select both a subset of light
rays and a set of M4 points from each light-ray in order to construct the space-time surface.
What remains open is how to solve the integrability conditions and show that solutions of field
equations are in question. The possibility to characterize preferred extremal property in terms
of holomorphy and integrability conditions would mean analogy with both free field equations
in M4 and minimal surfaces. For known extremals holomorphy in fact guarantees the extremal
property.

8.3.4 Hyper-quaternionic and co-hyper-quaternionic surfaces and twistor
duality

In TGD framework space-time surface decomposes into two kinds of regions corresponding to
hyper-quaternionic and co-hyper-quaternionic regions of the space-time surface in M8 (hyper-
quaternionic regions were considered in preceding arguments). The regions of space-time with
M4 (Euclidian) signature of metric are identified tentatively as the counterparts of hyper-
quaternionic (co-hyper-quaternionic) space-time regions. Pieces CP2 type vacuum extremals
representing generalized Feynman diagrams and having light-like random curve as M4 projec-
tion represent the basic example here. Also these space-time regions should have any twistorial
counterpart and one can indeed assign to M4 projection of CP2 type vacuum extremal a spinor
λ as its tangent vector and spinor µ via twistor equation once M4 projection is known.

The first guess would the correspondence hyper-quaternionic ↔ α and co-hyper-quaternionic
↔ β. Previous arguments in turn suggest that hyper-quaternionic space-time surfaces are
mapped to surfaces for which two null twistors are assigned with given point of M4 whereas co-
hyper-quaternionic space-time surfaces are mapped to the surfaces for which only single twistor
corresponds to a given M4 point.

8.4 Could one lift Feynman diagrams to twistor space?

In [B60] the possibility of twistor diagrammatics is considered and it is interesting to look this
from TGD perspective where standard beliefs about what quantum theory is must be given up.

(a) The arguments start from ordinary momentum space perturbation theory. The amplitudes
for the scattering of massless particles are expressed in terms of twistors after which one
performs twistor Fourier transform obtaining amazingly simple expressions for the ampli-
tudes. For instance, the 4-point one loop amplitude in N=4 SYM is extremely simple
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in twistor space having only values ’1’ and ’0’ in twistor space and vanishes for generic
momenta.

(b) Also IR divergences are absent in twistor transform of the scattering amplitude but are
generated by the transform to the momentum space. Since plane waves are replaced with
light rays, it is not surprising that the IR divergences coming from transversal degrees
of freedom are absent. Interestingly, TGD description of massless particles as wormhole
throats connecting two massless extremals extends ideal light-ray to massless extremal
having finite transversal thickness so that IR cutoff emerges purely dynamically.

(c) This approach fails at the level of loops unless one just uses the already calculated loops.
The challenge would be a generalization of the ordinary perturbation theory so that loops
could be calculated in twistor space formulation.

The vision about lifting TGD from 8-D M4×CP2 to 8-D twistor space suggests that it should be
possible to lift also ordinary M4 propagators to propagators to twistor space. The first problem is
that the momenta of massive virtual particles do not allow any obvious unique representation in
terms of twistors. Second problem relates to massive incoming momenta necessarily encountered
in stringy picture even if one forgets massivation of light states by p-adic thermodynamics.

8.4.1 The treatment of massive case in terms of twistors

Massive incoming momenta and loop momenta are problematic from the point of view of twistor
description. TGD suggests two alternative approaches two the problem.

(a) One can express arbitrary four-momentum as a sum of two light-like momenta. What makes
this representation inelegant is its non-uniqueness. For time-like momentum the two light-
like momenta in opposite directions can have any direction so that sphere SO(3)/SO(2) =
S2 labels the degeneracy and for space-like case the degeneracy corresponds to the hyper-
boloid SL(2, R)/SO(2) of M3. This degeneracy has no obvious physical meaning unless
virtual momentum corresponds physically to a pair of light-like momenta which can have
also opposite signs of energy. This would however mean effectively introduction of two
light-like loop momenta instead of one and therefore doubling of the loop. A possible
interpretation would be as an introduction of an additional braid strand.

(b) Also massive particles should be treated in practical approach. The existence of preferred
M2 ⊂ M4 forced both by the number theoretic compactification and by the hierarchy
of Planck constants would allow to express massive four-momenta uniquely as sums of
two light-like momenta, with second momentum in the plane M2. This would bring in two
twistors with second twistor corresponding to a spin ±1/2 spinor depending on the direction
of the momentum. Whether it is possible to interpret the momentum in terms of a genuine
composition to a state of two massless particles with second particle moving in the preferred
plane M2 remains an open question. This would allow also to treat massive particles by
assuming that loop momenta are on shell momenta. For both stringy excitations and
particles receiving their mass by p-adic thermodynamics this might be an appropriate
approach.

(c) From the twistor point of view a more satisfactory description would be the identification
of the massive states as bound states of massless fermions associated with braid strands.
If braid strands carry light-like momenta which are not parallel, one can obtain massive
off mass shell momenta. For conformal excitations it would be natural to assign the action
of the Kac-Moody generators and corresponding Virasoro generators creating the state to
separate braid strands. In QCD description of hadrons in terms of massless partons this
kind of description is of course already applied.

(d) A further possibility making sense in massless theories is the restriction of the momenta
rotating in loops to be light-like. This idea turned out to be short lived but led to a first
quantitatively precise proposal for how QFT like Feyman diagrammatics could emerge from
TGD framework.
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8.4.2 Purely twistorial formulation of Feynman graphs

In the following twistorial formulation of Feynman diagrammatics in TGD framework is consid-
ered. If only light-like loop momenta are allowed one can lift the 3-dimensional integral d3k/2E
appearing in the propagators to an integral over twistor variables, which means that complete
twistorialization of Feynman diagrams is possible if the loop integrals involve only light-like mo-
menta. This formulation generalizes to the case when loop momenta are massive but requires
the introduction of an auxiliary twistor corresponding to momenta restricted to the preferred
plane M2 ⊂ M4predicted by the number theoretical compactification and hierarchy of Planck
constants.

(a) It is convenient to introduce double cylindrical coordinates λi = ρiexp(i(φ±ψ)) in twistor
space. The integration over overall phase φ gives only a 2π factor since ordinary Feynman
amplitude has no dependence on this variable so that the non-redundant variables are
ρ1, ρ2, ψ.

(b) The condition is that the integral measure d4uX of the spinor space with a suitable weight
function X is equivalent with the measure d3k/2E in cylindrical coordinates. This gives

d4uX = dφ
d3k

2E
(8.4.1)

when the integrand does not depend on φ.

(c) In cylindrical coordinates this gives

2ρ1ρ2dρ1dρ2dψXδ(U − kz)δ(V − kx)δ(W − ky) = 1 ,

U =
ρ21−ρ

2
2

2 , V = ρ1ρ2cos(ψ)
2 , W = ρ1ρ2sin(ψ)

2 .

(8.4.2)

Here the functions U , V , and W are obtained form the representations of kz, kx, ky in terms
of spinor and its conjugate.

(d) Taking U, V,W as integration variables one has

2ρ1ρ2
∂(ρ1, ρ2, ψ)

∂(U, V,W )
X = 1 .

(8.4.3)

(e) The calculation of the Jacobian gives X = (ρ2
1+ρ2

2)/4 = E/2 so that one has the equivalence

1

4π
d4u↔ d3k

2E
. (8.4.4)

(f) Similar lifting can be carried out for the integration measure defined at light-cone boundary
in M4. If the integrations in generalized Feynman diagrams are over amplitudes depending
on light-like momenta and coordinates of the light-like boundaries of CDs in given length
scales coming as Tn = 2nT0 or Tp = pT0 the integrals of momentum space and light-one
can be transformed to integrals over twistor space in given length scale. Twistorialization
requirement obviously gives a justification for the basic assumption of zero ontology that
all transition amplitudes can be formulated in terms of data at the intersections of light-like
3-surfaces with the boundaries of CDs.

(g) It should be emphasized that there is no need to keep the phase angle φ as a redundant
variable is the interpretation as Kähler magnetic flux is accepted. In fact, Kähler magnetic
fluxes are expected to appear as zero modes define external parameters in the amplitudes.
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One can carry out similar calculation for d4k assuming the representation of p as a sum of
two light-like momenta k1 and k2 with another one lying in the preferred plane M2. The
representation is unique and given by

p = k1 + k ,

k1 = (|pT |cosh(η), |pT |sinh(η), pT ) , k = |k|(1, ε, 0, 0) , ε = ±1 ,

exp(η) = [
|pT |

p0 − εpz
]ε ,

|k| = p0 − |pT |cosh(η) .

(8.4.5)

Both signs of ε = k0
2/k

z
2 are needed and correspond to spin up and spin down spinor µ with an

indefinite phase whereas k1 corresponds to λ as in previous example. The 6-dimensional volume
element in the space of the spinors is

dV = ρ1ρ2ρ3dρ1dρ2dρ3dΨdΦ1dΦ2 . (8.4.6)

Φ1 and Φ2 represent the phases of the spinors λ and µ and are redundant variables in the
momentum integration. The expression for d4k in terms of spinor variables reads as

d4k =
1

16π2

[
ρ2

1(1− ε) + ρ2
2(1 + ε)

]
× dV . (8.4.7)

Here the redundant integral over dΦi is included. The integration measure does not have so nice
structure as in the case of light-cone. Whether one might combine the spinors to single twistor
is an interesting question: conformal invariance does not encourage this. Second option is to
combine spinors and their complex conjugates to twistors.

8.4.3 What could be the propagator in twistor space?

The mere lifting of Feynman diagrams is probably not enough since the propagator in momentum
space corresponds to momentum eigen states whereas in TGD framework a more natural notion
is the propagator in the space of light-rays, which correspond to states totally localized in the
direction of light-like momentum and thus could be seen as superpositions of momentum eigen
states with virtual momentum components in transversal directions so that all momenta would
be actually space-like in standard sense. Topological light rays (massless extremals) are the
direct space-time correlate for this picture and also braid picture and direct physical intuition
about what particles are support the idea about ray propagator.

What could propagation mean assuming that one allows only the propagation of light-like mo-
menta in loops in order to achieve an elegant expression of loop diagrams in terms of spinors
λ?

(a) The points of M4 are effectively replaced with parallel light-rays for given four-momentum
and so that it does not make sense to speak about propagation in the direction of light-like
four-momentum. Rather, the propagation would be in the space defined by transversal
degrees of freedom which can be parameterized by the points of light-cone. x is fixed
uniquely if one assumes it to lie in the plane defined by p as dual of p and conservation
p gives rise to conservation of x with the already suggests interpretation as a geometric
representation of momentum. One could construct oscillator operators basis creating light-
ray states. The task is to guess an expression for the commutators [a†(p1,m1), a(p2,m2)].
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If one accepts the parametrization of the space of parallel light rays in terms of points m1

and m2 of light-cone, one can argue that only the complete overlap of light rays occurring
for m1 = m2 should contribute to the commutator. This would give

[a†(p1,m1), a(p2,m2)] = i2E1 × 2|m0
1| × δ3(p1 − p2)δ3(m1 −m2) .

This picture is consistent with the classical intuitive picture and also with the idea that
signals propagate only along light-rays. In twistor space this would give commutation
relations which are completely local and there would be no propagation. Note the complete
symmetry between momentum space and x-space.

(b) This would give for the counterpart of massless scalar propagator G− allowing only the
propagation of light-like virtual momenta the expression

G−(p1, p2,m1,m2) = iδ3(p1 − p2)δ3(m1 −m2)4E1 × |m0
1| . (8.4.8)

(c) From this one can construct the counterpart of G− in the twistor space. This would give

G−(λ1, µ̃1, λ2, µ̃2) = iδ(λ1λ̃1 − λ2λ̃2)δ(µ1µ̃1 − µ2µ̃2)× 4E|m0
1| . (8.4.9)

Note that m1 and therefore also m0
1 can be fixed uniquely from the basic twistor equation

by using the constraint that m1 ≡ x is light-like so that one has xaḃ = µaµ̃ḃ if µaλ
a = 1 is

satisfied.

(d) One can express the momentum conserving delta function in terms of delta function δ4(λ1−
λ2) if one assumes that the irrelevant phase exp(iφ) of λ (as far as ordinary Feynman
diagrams are considered) is conserved. The alternative is the the propagator does not
depend at all on the phase difference φ1 − φ2. The proposed interpretation of the phase in
terms of Kähler magnetic flux which can be interpreted as non-quantum fluctuating zero
mode given for all points of braids as classical variable would suggest that it does not make
sense to speak about correlation function for φ in quantal sense. Going to the cylindrical
coordinates (ρ1, ρ2, ψ, φ) repeating the calculation of the Jacobian for the transformations
λ → (ρ1, ρ2, ψ, φ) → (k1, k2, k3, φ) and its variant for m coordinate, one obtains that for
massless virtual states the propagator for the two options is apart from normalization
constants equal to

G−(λ1, µ̃1, λ2, µ̃2) = i
δ4(λ1 − λ2)

δ(φ1 − φ2)

δ4(µ̃1 − µ̃2)

δ(φ1 − φ2)
.

(8.4.10)

The division by δ(φ1 − φ2) symbolizes the assumption of that φ is not quantum fluctuating
variable.

Consider next the twistor counterpart of Feynman propagator

GF (p1, p2) = iδ4(p1 − p2)
1

p2
1 + iε

. (8.4.11)

p1 can be expressed as a sum of p1 = p1a + p1b of light-like momenta expressible in terms of λ1a

and λ2a. One can assign to p1a and p1b also light-cone points m1a and m1b as their duals and
thus also µ̃1ȧ and µ2ȧ. Note that the momentum defined by m would be conserved and provide
a geometric space-time representation for the real momentum.

It is however not clear whether twistor space counterpart of Feynman propagator makes sense.
Should one assume that the two light-like momenta propagate independently so that the ray
propagator would be proportional to the product of delta functions δ(m1a −m2a)δ(m1b −m2b)
and δ(p1a−p2a)δ(p1b−p2b)? These expressions could be translated to delta functions in twistor
degrees of freedom just as above and the only difference would be the presence of 1/p2

1 factor.
One could perhaps say that effectively the off mass shell particle is a state of two massless
particles with correlation between them characterized by the 1/p2

1 factor.
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8.4.4 What to do with the perturbation theory?

The basic question is whether one should replace the perturbation theory based on momentum
eigenstates with a perturbation theory relying on ray momentum eigen states completely local-
ized in transverse degrees of freedom and allowing only light-like loop momenta or just restrict
the loop momenta of ordinary Feynman diagrams to be light-like? Depending on answer to this
question one ends up with different scenarios raising further questions.

(a) Suppose that one uses ordinary momentum eigen states. The minimum option of the ordi-
nary perturbation theory or of its stringy variant in TGD framework means the replacement
of loop momenta with light-like momenta using G− instead of GF . In this approach spinors
λ are enough and one can do without µ and m. One could of course introduce them but m
would be simply the light-like dual of p in the minimal scenario and completely constrained.

(b) If one introduces ray eigen states, then also m and µ̃ emerge naturally. In TGD based
perturbation theory m can be assumed to reside at light-cone boundary (at δCD). Since
braid points at X2 vary it seems that one must allow m to be dynamical so that µ is
also dynamical. If m and p are duals then braid points come representatives of momenta
and m and µ disappear again from the theory. This hypothesis is however ad hoc and
un-necessary. For this option the naive generalization of Feynman diagrammatics is not
enough. A possible guess for the generalization has been already proposed.

8.5 Could one generalize the notion of twistor to 8-D case?

The basic problem of the twistor approach is that one cannot represent massive momenta in
terms of twistors in elegant manner. I have proposed a possible representation of massive states
based on the existence of preferred plane of M2 in the basic definition of theory allowing to
express four-momentum as some of two light-like momenta allowing twistor description. One
could however ask whether some more elegant representation of massive M4 momenta might be
possible by generalizing the notion of twistor -perhaps by starting from the number theoretic
vision.

The basic idea is obvious: in quantum TGD massive states in M4 can be regarded as massless
states in M8 and CP2 (recall M8 − H duality). One can therefore map any massive M4 mo-
mentum to a light-like M8 momentum and hope that this association could be made in a unique
manner. One should assign to a massless 8-momentum an 8-dimensional spinor of fixed chiral-
ity. The spinor assigned with the light-like four-momentum is not unique without additional
conditions. The existence of covariantly constant right-handed neutrino in CP2 degrees generat-
ing the super-conformal symmetries could allow to eliminate the non-uniqueness. 8-dimensional
twistor in M8 would be a pair of this kind of spinors fixing the momentum of massless particle
and the point through which the corresponding light-geodesic goes through: the set of these
points forms 8-D light-cone and one can assign to each point a spinor. In M4 ×CP2 definitions
makes also in the case of M4 × CP2 and twistor space would also now be a lifting of the space
of light-like geodesics.

The possibility to interpret M8 as hyperoctonionic space suggests also the possibility to define
the 8-D counterparts of sigma matrices to hyperoctonions to obtain a representation of sigma
matrix algebra which is not a matrix representation. The mapping of gamma matrices to this
representation allows to define a notion of hyper-quaternionicity in terms of the modified gamma
matrices both in M8 and H.

8.5.1 Octo-twistors defined in terms of ordinary spinors

It is possible to define octo-twistors in terms of ordinary spinors of M8 or H.

(a) The condition for the octo-twistor makes sense also for ordinary spinors and the explicit
representation can be obtained by using triality. The ansatz is pk = ΨγkΨ. The condition
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pkpk = 0 gives Dirac equation pkγkΨ = 0 and its conjugate solved by Ψ = pkγkΨ0. The
expression of pk in turn gives the normalization condition Ψ0γ

kpkΨ0 = 1/2.

(b) Without further conditions almost any Ψ0 not annihilated by γkpk is possible solution. One
can map the spinor basis to hyper-octonion basis and assume Ψ0 → 1 = σ0. This would
give octo-twistor spinors as Ψ = pkγkΨ0 and its conjugate and there would be natural
mapping to pkσk so that Ψ and pk would correspond to each other in 1-1 manner apart
from the phase factor of Ψ.

(c) A highly unique choice for Ψ0 is the covariantly constant (with respect to CP2 coordinates)
right-handed neutrino spinor of M4 × CP2 since the Dirac operators of M8, H, and X4

reduce to free Dirac operator when acting on it in both M8 and H and giving also rise
to super-conformal symmetry. The choice is unique apart from SO(3) rotation but the
condition that spin eigen state is in question for the choice of quantization axis fixed by
the choice of hyper-octonion units and also by the definition of the hierarchy of Planck
constants fixes Ψ0 apart from the sign of the spin if reality is assumed. When pkγkΨ0 = 0
holds true for fixed Ψ0, the ansatz fails so that the gauge choice is not global. There are
two gauge patches corresponding to the two signs of the spin of Ψ0. Right handed neutrino
spinor reflects directly the homological magnetic monopole character of the Kähler form of
CP2 so that the monopole property is in well defined sense transferred from CP2 to M4.
Note that this argument fails for quark spinors which do not allow any covariantly constant
spinor.

(d) For ordinary twistors the existence of the antisymmetric tensor ε acting as Kähler form in
the space of spinors is what allows to define second spinor and these spinors together form
twistor. Ordinary twistors are pairs of spinors and also in the recent case one would have
pairs of octo-spinors. The geometric interpretation would be as a light-like geodesic of M8

or tangent vector of light-like geodesic of M4 × CP2 and the two spinors would code for
the momentum associated with the ray and the transverse position of the ray expressible
in terms of a light-like vector. This would double the dimension to D=16 which happens
to be the dimension of complexified octonions. The standard definition of twistors would
suggest that one has 2 triplets of this kind so that Dirac equation and above argument
would reduce the situation to 16-dimensional one. Twistors space would be C8 and 14-D
projective twistor space would correspond to CP7.

(e) 2-D spinor and its conjugate as independent representations of Lorentz group define twistor.
In an analogous manner M8 vector, M8-spinor, and its conjugate define a triplet as in-
dependent representations. One can therefore ask whether a triplet of these independent
representations could define octo-twistor so that two triplets would not be needed. To-
gether they would form an entity with 24 components when the overall complex phase is
eliminated and if no gauge choice fixing Ψ0 is made apart from the assumption Ψ0 has real
components. If the overall phase is allowed, the number of components is 26 (the momen-
tum constraint of course reduces the number of degrees of freedom to 8). It seems that
the magic dimensions of string models are unavoidable! Perhaps it might be a possible to
reduce 26-D string theory to 8-D theory by posing triality symmetry and additional gauge
symmetry. The problem of this identification is that one does not geometric interpretation
as a lifting of the space of light-like geodesics. One could of course define octo-twistors as a
pair of triplets with the members of triplet obtained from each other via triality symmetry.

8.5.2 Could right handed neutrino spinor modes define octo-twistors?

There is no absolute need to interpret induced spinor fields as parts of octo-twistors. One can
however ask whether this might make sense for the solutions of the modified Dirac equation
DΨ = 0 representing right-handed neutrino and expressible as Ψ = DΨ0.

(a) In the modified Dirac equation gamma matrices are replaced by the modified gamma matri-
ces defined by the variation of Kähler action and the massless momentum pkσk is replaced
with the modified Dirac operator D. In plane wave basis the derivatives in D reduce to an
algebraic multiplication operators in the case of right handed neutrino since right-handed
neutrino has no gauge couplings.
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(b) A non-trivial consistency condition comes from the condition D2Ψ0 = 0 giving sum of two
terms.

i. The first term is the analog of scalar d’Alembertian and given by

GµνDµDνΨ0 , Gµν = hklT
µkT νl , Tµk = ∂LK

∂hkα
,

and has quantum numbers of right handed neutrino as it should.

ii. Second term is given by

TµkDµT
νlΣklDνΨ0 ,

and in the general case contains charged components. Only electromagnetically neutral
CP2 sigma matrices having right handed neutrino as eigen state are allowed if one wants
twistor interpretation. This is not be true in the general case but might be implied by
the preferred extremal property.

iii. This property would allow to choose the induced spinor fields to be eigenstates of
electromagnetic charge globally and would be therefore physically very attractive. After
all, one of the basic interpretational problems has been the fact that classical W fields
seems to induce mixing of quarks and leptons with different electro-magnetic charges.
If this is the case one could assign to each point of the space-time surface octo-twistor
like abstract entity as the triplet (Ψ0D,D,DΨ0). This would map space-time sheet to
a 4-D surface (in real sense) in the space of 8-D (in complex sense) leptonic spinors.

8.5.3 Octo-twistors and modified Dirac equation

Classical number fields define one vision about quantum TGD. This vision about quantum TGD
has evolved gradually and involves several speculative ideas.

(a) The hard core of the vision is that space-time surfaces as preferred extremals of Kähler
action can be identified as what I have called hyper-quaternionic surfaces of M8 or M4 ×
CP2. This requires only the mapping of the modified gamma matrices to octonions or to
a basis of subspace of complexified octonions. This means also the mapping of spinors
to octonionic spinors. There is no need to assume that imbedding space-coordinates are
octonionic.

(b) I have considered also the idea that quantum TGD might emerge from the mere associa-
tivity.

i. Consider Clifford algebra of WCW. Treat ”vibrational” degrees of freedom in terms
second quantized spinor fields and add center of mass degrees of freedom by replacing
8-D gamma matrices with their octonionic counterparts - which can be constructed
as tensor products of octonions providing alternative representation for the basis of
7-D Euclidian gamma matrix algebra - and of 2-D sigma matrices. Spinor components
correspond to tensor products of octonions with 2-spinors: different spin states for
these spinors correspond to leptons and baryons.

ii. Construct a local Clifford algebra by considering Clifford algebra elements depend-
ing on point of M8 or H. The octonionic 8-D Clifford algebra and its local variant
are non-accociative. Associative sub-algebra of 8-D Clifford algebra is obtained by
restricting the elements so any quaternionic 4-plane. Doing the same for the local
algebra means restriction of the Clifford algebra valued functions to any 4-D hyper-
quaternionic sub-manifold of M8 or H which means that the gamma matrices span
complexified quaternionic algebra at each point of space-time surface. Also spinors
must be quaternionic.

iii. The assignment of the 4-D gamma matrix sub-algebra at each point of space-time
surface can be done in many manners. If the gamma matrices correspond to the
tangent space of space-time surface, one obtains just induced gamma matrices and
the standard definition of quaternionic sub-manifold. In this case induced 4-volume is
taken as the action principle. If Kähler action defines the space-time dynamics, the
modified gamma matrices do not span the tangent space in general.
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iv. An important additional element is involved. If the M4 projection of the space-time
surface contains a preferred subspace M2 at each point, the quaternionic planes are
labeled by points of CP2 and one can equivalently regard the surfaces of M8 as surfaces
of M4 × CP2 (number-theoretical ”compactification”). This generalizes: M2 can be
replaced with a distribution of planes of M4 which integrates to a 2-D surface of M4 (for
instance, for string like objects this is necessarily true). The presence of the preferred
local plane M2 corresponds to the fact that octonionic spin matrices ΣAB span 14-
D Lie-algebra of G2 ⊂ SO(7) rather than that 28-D Lie-algebra of SO(7, 1) whereas
octonionic imaginary units provide 7-D fundamental representation of G2. Also spinors
must be quaternionic and this is achieved if they are created by the Clifford algebra
defined by induced gamma matrices from two preferred spinors defined by real and
preferred imaginary octonionic unit. Therefore the preferred plane M3 ⊂ M4 and
its local variant has direct counterpart at the level of induced gamma matrices and
spinors.

v. This framework implies the basic structures of TGD and therefore leads to the notion
of world of classical worlds (WCW) and from this one ends up with the notion WCW
spinor field and WCW Clifford algebra and also hyper-finite factors of type II1 and III1.
Note that M8 is exceptional: in other dimensions there is no reason for the restriction
of the local Clifford algebra to lower-dimensional sub-manifold to obtain associative
algebra.

The above line of ideas leads naturally to (hyper-)quaternionic sub-manifolds and to basic quan-
tum TGD (note that the ”hyper” is un-necessary if one accepts just the notion of quaternionic
sub-manifold formulated in terms of modified gamma matrices). One can pose some further
questions.

(a) Quantum TGD reduces basically to the second quantization of the induced spinor fields.
Could it be that the theory is integrable only for 4-D hyper-quaternionic space-time surfaces
in M8 (equivalently in M4 × CP2) in the sense than one can solve the modified Dirac
equation exactly only in these cases?

(b) The construction of quantum TGD -including the construction of vacuum functional as
exponent of Kähler function reducing to Kähler action for a preferred extremal - should
reduce to the modified Dirac equation defined by Kähler action. Could it be that the
modified Dirac equation can be solved exactly only for Kähler action.

(c) Is it possible to solve the modified Dirac equation for the octonionic gamma matrices and
octonionic spinors and map the solution as such to the real context by replacing gamma
matrices and sigma matrices with their standard counterparts? Could the associativity
conditions for octospinors and modified Dirac equation allow to pin down the form of
solutions to such a high degree that the solution can be constructed explicitly?

(d) Octonionic gamma matrices provide also a non-associative representation for 8-D version of
Pauli sigma matrices and encourage the identification of 8-D twistors as pairs of octonionic
spinors conjectured to be highly relevant also for quantum TGD. Does the quaternionicity
condition imply that octo-twistors reduce to something closely related to ordinary twistors
as the fact that 2-D sigma matrices provide a matrix representation of quaternions suggests?

In the following I will try to answer these questions by developing a detailed view about the
octonionic counterpart of the modified Dirac equation and proposing explicit solution ansätze
for the modes of the modified Dirac equation.

The replacement of SO(7, 1) with G2

The basic implication of octonionization is the replacement of SO(7, 1) as the structure group
of spinor connection with G2. This has some rather unexpected consequences.

1. Octonionic representation of 8-D gamma matrices
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Consider first the representation of 8-D gamma matrices in terms of tensor products of 7-D
gamma matrices and 2-D Pauli sigma matrices.

(a) The gamma matrices are given by

γ0 = 1× σ1 , γi = γi ⊗ σ2 , i = 1, .., 7 . (8.5.1)

7-D gamma matrices in turn can be expressed in terms of 6-D gamma matrices by expressing
γ7 as

γ
7)
i+1 = γ

6)
i , i = 1, ..., 6 , γ

7)
1 = γ

6)
7 =

6∏
i=1

γ
6)
i . (8.5.2)

(b) The octonionic representation is obtained as

γ0 = 1× σ1 , γi = ei ⊗ σ2 . (8.5.3)

where ei are the octonionic units. e2
i = −1 guarantees that the M4 signature of the metric

comes out correctly. Note that γ7 =
∏
γi is the counterpart for choosing the preferred

octonionic unit and plane M2.

(c) The octonionic sigma matrices are obtained as commutators of gamma matrices:

Σ0i = ei × σ3 , Σij = f k
ij ek ⊗ 1 . (8.5.4)

These matrices span G2 algebra having dimension 14 and rank 2 and having imaginary
octonion units and their conjugates as the fundamental representation and its conjugate.
The Cartan algebra for the sigma matrices can be chosen to be Σ01 and Σ23 and belong to
a quaternionic sub-algebra.

(d) The lower dimension of the G2 algebra means that some combinations of sigma matrices
vanish. All left or right handed generators of the algebra are mapped to zero: this explains
why the dimension is halved from 28 to 14. From the octonionic triangle expressing the
multiplication rules for octonion units [A30] one finds e4e5 = e1 and e6e7 = −e1 and
analogous expressions for the cyclic permutations of e4, e5, e6, e7. From the expression
of the left handed sigma matrix I3

L = σ23 + σ30 representing left handed weak isospin
(see the Appendix about the geometry of CP2 [L1] , [L1] ) one can conclude that this
particular sigma matrix and left handed sigma matrices in general are mapped to zero.
The quaternionic sub-algebra SU(2)L × SU(2)R is mapped to that for the rotation group
SO(3) since in the case of Lorentz group one cannot speak of a decomposition to left and
right handed subgroups. The elements of the complement of the quaternionic sub-algebra
are expressible in terms of Σij in the quaternionic sub-algebra.

2. Some physical implications of SO(7, 1)→ G2 reduction

This has interesting physical implications if one believes that the octonionic description is equiv-
alent with the standard one.

(a) If SU(2)L is mapped to zero only the right-handed parts of electro-weak gauge field survive
octonization. The right handed part is neutral containing only photon and Z0 so that
the gauge field becomes Abelian. Z0 and photon fields become proportional to each other
(Z0 → sin2(θW )γ) so that classical Z0 field disappears from the dynamics, and one would
obtain just electrodynamics. This might provide a deeper reason for why electrodynamics
is an excellent description of low energy physics and of classical physics. This is consistent
with the fact that CP2 coordinates define 4 field degrees of freedom so that single Abelian
gauge field should be enough to describe classical physics. This would remove also the
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interpretational problems caused by the transitions changing the charge state of fermion
induced by the classical W boson fields.

Also the realization of M8 −H duality led to the conclusion M8 spinor connection should
have only neutral components. The isospin matrix associated with the electromagnetic
charge is e1 × 1 and represents the preferred imaginary octonionic unit so that that the
image of the electro-weak gauge algebra respects associativity condition. An open question
is whether octonionization is part of M8-H duality or defines a completely independent
duality. The objection is that information is lost in the mapping so that it becomes ques-
tionable whether the same solutions to the modified Dirac equation can work as a solution
for ordinary Clifford algebra.

(b) If SU(2)R were mapped to zero only left handed parts of the gauge fields would remain. All
classical gauge fields would remain in the spectrum so that information would not be lost.
The identification of the electro-weak gauge fields as three covariantly constant quaternionic
units would be possible in the case of M8 allowing Hyper-Kähler structure [A19] , which
has been speculated to be a hidden symmetry of quantum TGD at the level of WCW. This
option would lead to difficulties with associativity since the action of the charged gauge
potentials would lead out from the local quaternionic subspace defined by the octonionic
spinor.

(c) The gauge potentials and gauge fields defined by CP2 spinor connection are mapped to
fields in SO(2) ⊂ SU(2) × U(1) in quaternionic sub-algebra which in a well-defined sense
corresponds to M4 degrees of freedom! Since the resulting interactions are of gravitational
character, one might say that electro-weak interactions are mapped to manifestly gravita-
tional interactions. Since SU(2) corresponds to rotational group one cannot say that spinor
connection would give rise only to left or right handed couplings, which would be obviously
a disaster.

3. Octo-spinors and their relation to ordinary imbedding space spinors

Octo-spinors are identified as octonion valued 2-spinors with basis

ΨL,i = ei

(
1
0

)
,

Ψq,i = ei

(
0
1

)
. (8.5.5)

One obtains quark and lepton spinors and conjugation for the spinors transforms quarks to
leptons. Note that octospinors can be seen as 2-dimensional spinors with components which
have values in the space of complexified octonions.

The leptonic spinor corresponding to real unit and preferred imaginary unit e1 corresponds
naturally to the two spin states of the right handed neutrino. In quark sector this would mean
that right handed U quark corresponds to the real unit. The octonions decompose as 1+1+3+3
as representations of SU(3) ⊂ G2. The concrete representations are given by

{1± ie1} , eR and νR with spin 1/2 ,
{e2 ± ie3} , eR and νL with spin -1/2 ,
{e4 ± ie5} eL and νL with spin 1/2 ,
{e6 ± ie7} eL and νL with spin 1/2 .

(8.5.6)

Instead of spin one could consider helicity. All these spinors are eigenstates of e1 (and thus of the
corresponding sigma matrix) with opposite values for the sign factor ε = ±. The interpretation
is in terms of vectorial isospin. States with ε = 1 can be interpreted as charged leptons and D
type quarks and those with ε = −1 as neutrinos and U type quarks. The interpretation would be
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that the states with vanishing color isospin correspond to right handed fermions and the states
with non-vanishing SU(3) isospin (to be not confused with QCD color isospin) and those with
non-vanishing SU(3) isospin to left handed fermions. The only difference between quarks and
leptons is that the induced Kähler gauge potentials couple to them differently.

The importance of this identification is that it allows a unique map of the candidates for the
solutions of the octonionic modified Dirac equation to those of ordinary one. There are some
delicacies involved due to the possibility to chose the preferred unit e1 so that the preferred
subspace M2 can corresponds to a sub-manifold M2 ⊂M4.

Octonionic counterpart of the modified Dirac equation

The solution ansatz for the octonionic counterpart of the modified Dirac equation discussed
below makes sense also for ordinary modified Dirac equation which raises the hope that the
same ansatz, and even same solution could provide a solution in both cases.

1. The general structure of the modified Dirac equation

In accordance with quantum holography and the notion of generalized Feynman diagram, the
modified Dirac equation involves two equations which must be consistent with each other.

(a) There is 3-dimensional generalized eigenvalue equation for which the modified gamma ma-
trices are defined by Chern-Simons action defined by the sum Jtot = J+J1 of Kähler forms
of S2 and CP2 [K15, K28] .

D3Ψ = [DC−S +QC−S ] Ψ = λkγkΨ ,

QC−S = QαΓ̂αC−S , Qα = QAg
ABjBα .

(8.5.7)

The gamma matrices γk are M4 gamma matrices in standard Minkowski coordinates and
thus constant. Given eigenvalue λk defines pseudo momentum which is some function of the
genuine momenta pk and other quantum numbers via the boundary conditions associated
with the generalized eigenvalue equation.

The charges QA correspond to real four-momentum and charges in color Cartan algebra.
The term Q can be rather general since it provides a representation for the measurement
interaction by mapping observables to Cartan algebra of isometry group and to the infinite
hierarchy of conserved currents implied by quantum criticality. The operator O charac-
terizes the quantum critical conserved current. The surface Y 3

l can be chosen to be any
light-like 3-surface ”parallel” to the wormhole throat in the slicing of X4: this means an
additional symmetry. Formally the measurement interaction term can be regarded as an
addition of a gauge term to the Kähler gauge potential associated with the Kähler form
Jtot of S2 × CP2.

The square of the equation gives the spinor analog of d’Alembert equation and generalized
eigenvalue as the analog of mass squared. The propagator associated with the wormhole
throats is formally massless Dirac propagator so that standard twistor formalism applies
also without the octonionic representation of the gamma matrices although the physical
particles propagating along the opposite wormhole throats are massive on mass shell par-
ticles with both signs of energy [K28] .

(b) Second equation is the 4-D modified Dirac equation defined by Kähler action.

DKΨ = 0 . (8.5.8)

The dimensional reduction of this operator to a sum corresponding to DK,3 acting on light-
like 3-surfaces and 1-D operator DK,1 acting on the coordinate labeling the 3-D light-like
3-surfaces in the slicing would allow to assign eigenvalues to DK,3 as analogs of energy
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eigenvalues for ordinary Schrödinger equation. One proposal has been that Dirac determi-
nant could be identified as the product of these eigen values. Another and more plausible
identification is as the product of pseudo masses assignable to D3 defined by Chern-Simons
action [B2] . It must be however made clear that the identification of the exponent of
the Kähler function to Chern-Simons term makes the identification as Dirac determinant
un-necessary.

(c) There are two options depending on whether one requires that the eigenvalue equation
applies only on the wormhole throats and at the ends of the space-time surface or for all
3-surfaces in the slicing of the space-time surface by light-like 3-surfaces. In the latter
case the condition that the pseudo four-momentum is same for all the light-like 3-surfaces
in the slicing gives a consistency condition stating that the commutator of the two Dirac
operators vanishes for the solutions in the case of preferred extremals, which depend on
the momentum and color quantum numbers also:

[DK , D3] Ψ = 0 . (8.5.9)

This condition is quite strong and there is no deep reason for it since λk does not correspond
to the physical conserved momentum so that its spectrum could depend on the light-like
3-surface in the slicing. On the other hand, if the eigenvalues of D3 belong to the preferred
hyper-complex plane M2, D3 effectively reduces to a 2-dimensional algebraic Dirac operator
λkγk commuting with DK : the values of λk cannot depend on slice since this would mean
that DK does not commute with D3.

2. About the hyper-octonionic variant of the modified Dirac equation

What gives excellent hopes that the octonionic variant of modified Dirac equation could lead
to a provide precise information about the solution spectrum of modified Dirac equation is the
condition that everything in the equation should be associative. Hence the terms which are by
there nature non-associative should vanish automatically.

(a) The first implication is that the besides octonionic gamma matrices also octonionic spinors
should belong to the local quaternionic plane at each point of the space-time surface.
Spinors are also generated by quaternionic Clifford algebra from two preferred spinors
defining a preferred plane in the space of spinors. Hence spinorial dynamics seems to
mimic very closely the space-time dynamics and one might even hope that the solutions of
the modified Dirac action could be seen as maps of the space-time surface to surfaces of
the spinor space. The reduction to quaternionic sub-algebra suggest that some variant of
ordinary twistors emerges in this manner in matrix representation.

(b) The octonionic sigma matrices span G2 where as ordinary sigma matrices define SO(7, 1).
On the other hand, the holonomies are identical in the two cases if right-handed charge
matrices are mapped to zero so that there are indeed hopes that the solutions of the
octonionic Dirac equation cannot be mapped to those of ordinary Dirac equation. If left-
handed charge matrices are mapped to zero, the resulting theory is essentially the analog
of electrodynamics coupled to gravitation at classical level but it is not clear whether this
physically acceptable. It is not clear whether associativity condition leaves only this option
under consideration.

(c) The solution ansatz to the modified Dirac equation is expected to be of the form Ψ =
DK(Ψ0u0 + Ψ1u1), where u0 and u1 are constant spinors representing real unit and the
preferred unit e1. Hence constant spinors associated with right handed electron and neu-
trino and right-handed d and u quark would appear in Ψ and Ψi could correspond to scalar
coefficients of spinors with different charge. This ansatz would reduce the modified Dirac
equation to D2

KΨi = 0 since there are no charged couplings present. The reduction of a
d’Alembert type equation for single scalar function coupling to U(1) gauge potential and
U(1) ”gravitation” would obviously mean a dramatic simplification raising hopes about
integrable theory.
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(d) The condition D2
KΨ = 0 involves products of three octonions and involves derivatives of

the modified gamma matrices which might belong to the complement of the quaternionic
sub-space. The restriction of Ψ to the preferred hyper-complex plane M2 simplifies the
situation dramatically but (D2

K)DKΨ = DK(D2
K)Ψ = 0 could still fail. The problem is

that the action of DK is not algebraic so that one cannot treat reduce the associativity
condition to (AA)A = A(AA).

Could the notion of octo-twistor make sense?

Twistors have led to dramatic successes in the understanding of Feynman diagrammatics of
gauge theories, N = 4 SUSYs, and N = 8 supergravity [B63, B72, B60] . This motivated the
question whether they might be applied in TGD framework too [K85] - at least in the description
of the QFT limit. The basic problem of the twistor program is how to overcome the difficulties
caused by particle massivation and TGD framework suggests possible clues in this respect.

(a) In TGD it is natural to regard particles as massless particles in 8-D sense and to introduce 8-
D counterpart of twistors by relying on the geometric picture in which twistors correspond
to a pair of spinors characterizing light-like momentum ray and a point of M8 through
which the ray traverses. Twistors would consist of a pair of spinors and quark and lepton
spinors define the natural candidate for the spinors in question. This approach would allow
to handle massive on-mass-shell states but cannot cope with virtual momenta massive in
8-D sense.

(b) The emergence of pseudo momentum λk from the generalized eigenvalue equation for DC−S
suggest a dramatically simpler solution to the problem. Since propagators are effectively
massless propagators for pseudo momenta, which are functions of physical on shell momenta
(with both signs of energy in zero energy ontology) and of other quantum numbers, twistor
formalism can be applied in its standard form. An attractive assumption is that also λk

are conserved in the vertices but a good argument justifying this is lacking. One can
ask whether also N = 4 SUSY, N = 8 super-gravity, and even QCD could have similar
interpretation.

This picture should apply also in the case of octotwistors with minor modifications and one
might hope that octotwistors could provide new insights about what happens in the real case.

(a) In the case of ordinary Clifford algebra unit matrix and six-dimensional gamma matrices
γi, i = 1, ..., 6 and γ7 =

∏
i γi would define the variant of Pauli sigma matrices as σ0 = 1,

σk = γk, k = 1, .., 7 The problem is that masslessness condition does not correspond to the
vanishing of the determinant for the matrix pkσ

k.

(b) In the case of octo-twistors Pauli sigma matrices σk would correspond to hyper-octonion
units {σ0, σk} = {1, iek} and one could assign to pkσ

k a matrix by the linear map defined
by the multiplication with P = pkσ

k. The matrix is of form Pmn = pkfkmn, where fkmn
are the structure constants characterizing multiplication by hyper-octonion. The norm
squared for octonion is the fourth root for the determinant of this matrix. Since pkσ

k

maps its octonionic conjugate to zero so that the determinant must vanish (as is easy to
see directly by reducing the situation to that for hyper-complex numbers by considering
the hyper-complex plane defined by P ).

(c) Associativity condition for the octotwistors requires that the gamma matrix basis appearing
in the generalized eigenvalue equation for Chern-Simons Dirac operator must differs by a
local G2 rotation from the standard hyper-quaternionic gamma matrix for M4 so that it
is always in the local hyper-quaternionic plane. This suggests that octo-twistor can be
mapped to an ordinary twistor by mapping the basis of hyper-quaternions to Pauli sigma
matrices. A stronger condition guaranteing the commutativity of D3 with λkγk is that
λk belongs to a preferred hyper-complex plane M2 assignable to a given CD. Also the
two spinors should belong to this plane for the proposed solution ansatz for the modified
Dirac equation. Quaternionization would also allow to assign momentum to the spinors in
standard manner.



8.5. Could one generalize the notion of twistor to 8-D case? 549

The spectrum of pseudo-momenta would be 2-dimensional (continuum at worst) and this
should certainly improve dramatically the convergence properties for the sum over the non-
conserved pseudo-momenta in propagators which in the worst possible of worlds might
destroy the manifest finiteness of the theory based on the generalized Feynman diagrams
with the throats of wormholes carrying always on mass shell momenta. This effective
2-dimensionality should apply also in the real case and would have no catastrophic conse-
quences since pseudo momenta are in question.

As a matter fact, the assumption the decomposition of quark momenta to longitudinal
and transversal parts in perturbative QCD might have interpretation in terms of pseudo-
momenta if they are conserved.

(d) M8−H duality suggests a possible interpretation of the pseudo-momenta as M8 momenta
which by purely number theoretical reasons must be commutative and thus belong to
M2 hyper-complex plane. One ends up with the similar outcome as one constructs a
representation for the quantum states defined by WCW spinor fields as superpositions of
real units constructed as ratios of infinite hyper-octonionic integers with precisely defined
number theoretic anatomy and transformation properties under standard model symmetries
having number theoretic interpretation [K72] .

8.5.4 What one really means with a virtual particle?

Massive particles are the basic problem of the twistor program. The twistorialization of massive
particles does not seem to be a problem in TGD framework thanks to the possibility to interpret
them as massless particles in 8-D sense but the situation is unsatisfactory for virtual particles.

The ideas possibly allowing to circumvent this problem emerged from a totally unexpected
direction. The inspiration came from the finding of Martin Grusenick [E8] who discovered that
a Mickelson-Morley interferometer rotating in plane gives rise a non-trivial interference pattern
when the plane is orthogonal to the Earth’s surface but no effect when parallel to the Earth’s
surface. The effect could be due to a contraction of the system in the vertical direction caused
by the own weight of the system and would thus involve no new physics. If not, then one must
try to find General Relativistic explanation for it. Schwartschild metric predicts this kind of
effect but it is by a factor 10−4 too small.

In TGD framework one can however consider an explanation of the effect [K79] .

(a) By relaxing the empty space assumption to the assumption that only the energy density
(that is Gtt) vanishes but the other diagonal components of Einstein tensor in Schwartschild
coordinates can be non-vanishing allows to explain the effect in terms of the deviation of
the radial component grr of the metric from Schwartschild metric. The predicted deviation
decreases as 1/r and does not affect planetary orbits appreciably even if present for all
astrophysical objects. The value of G determined from radial acceleration at the surface of
Earth is predicted to deviate from the actual value as a consequence. The deviation of the
metric from empty space metric could also explain the known surprisingly large variation
in the measured values of G since nearby gravitational fields are involved.

(b) The Einstein tensor in regions with vanishing energy density would obviously correspond
to a tachyonic matter. This led to a series of ideas allowing to sharpen the physical
meaning of Einstein’s equations in TGD framework. The basic result would be the extension
of quantum classical correspondence. The Einstein tensor in matter free regions would
describe the presence of virtual particles and would fail to satisfy causality constraint since
it corresponds to the space-like momentum exchange of the system with the external world
(space-likeness follows if the scattering is elastic).

(c) It is difficult to understand how the energy momentum tensor of matter could behave like
Gαβ does if the latter describes tachyons. The resolution of the problem could be very sim-
ple in zero energy ontology. In zero energy ontology bosons (and their super counterparts)
correspond to wormhole contacts carrying fermion and antifermion numbers at the light-
like wormhole throats and having opposite signs of energy. This allows the possibility that
the fermions at the throats are on mass shell and the sum of their momenta gives rise to
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off mass shell momentum which can be also space-like. In zero energy ontology Gαβ would
naturally correspond to the sum of on mass shell energy energy momentum tensors Tαβ±
associated with positive and negative energy fermions and their super-counterparts. Note
that for the energy momentum tensor Tαβ = (ρ + p)uαuβ − pgαβ of fluid with uαuα = 1
constraint stating on mass shell condition the allowance of virtual particles would mean
giving up the condition uαuα = 1 for the velocity field.

Could virtual particles be regarded as pairs of on mass shell particles with opposite
energies?

This identification suggests a concrete identification of virtual particle as pairs of positive and
negative energy on mass shell particles allowing an elegant formulation of the twistor program
in the case of virtual particles [K85, K29] .

(a) The basic idea is that massive on mass shell states can be regarded as massless states in
8-dimensional sense so that twistor program generalizes to the case of massive on mass shell
states associated with the representations of super-conformal algebras. One has however
allow now also off mass shell states, in particular those with space-like momenta, and the
question is how to describe them in terms of generalized twistors. In the case of wormhole
contacts the answer looks obvious. Bosons and their super partners could correspond to
pairs of positive and negative energy on mass shell states and could be described using a
pair of twistors associated with composite momenta massless in 8-D sense.

(b) It took some time to realize that the most elegant identification of the on mass shall bosons
would be as wormhole contacts for which both throats have either positive or negative
energy. This would imply automatically on-mass shell property. The basic objection against
this has been that one cannot construct massless spin 1 states in this manner. Dirac
equation in M4 implies that the momenta are parallel and for fermion and antifermion the
helicities are therefore opposite and only longitudinal polarization representing pure gauge
degree of freedom is possible. It is amazing how long time it required to realize that I had
swallowed this objection completely uncritically. After all, the first thing that I learned
from the Dirac equation for massless induced spinors is that it mixes unavoidably M4

chiralities except for very special vacuum extremals like canonically imbedded M4. Same
applies to the modified Dirac equation. Therefore there is no problem! Of course, also the
p-adic mass calculations involve imbedding spaced spinors for which M4 helicities are mixed
strongly since only covariantly constant right handed neutrino is massless and possesses a
well defined M4 helicity. At space-time level a pair of massless extremals (topological light
rays) with same (opposite) energies and connected by wormhole contacts could serve as a
space-time correlate for on (off) mass shell boson.

(c) How can one then identify virtual fermions and their super-counterparts? These particles
have been assumed to consist of single wormhole throat associated with a deformation of
CP2 vacuum extremal so that the proposed definition would allow only on mass shell states.
A possible resolution of the problem is the identification of also virtual fermions and their
super-counterparts as wormhole contacts in the sense that the second wormhole throats
is fermionic Fock vacuum carrying purely bosonic quantum numbers and corresponds to a
state generated by purely bosonic generators of the super-symplectic algebra whose elements
are in 1-1 correspondence with Hamiltonians of δM4

±×CP2. Thus the distinction between
on mass shell and of mass shell states would be purely topological for fermions and their
super partners.

(d) The concrete physical interpretation would be that particle scattering event involves at least
two parallel space-time sheets. Incoming (outgoing) fermion is topologically condensed at
positive energy (negative energy) sheet and corresponds to single throat. In the interac-
tion region fermionic spaced-time sheet touches with a high probably the large space-time
sheet sheet since the distance between sheets is about 104 Planck lengths. The touching
(topological sum) generates a second wormhole throat with a spherical topology and car-
rying no fermion number but having on mass shell momentum. Virtual fermions would be
interacting fermions. Since only topological sum contacts are formed, also virtual fermions
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are labeled by the genus g of the 2-D wormhole throat whereas bosons are labeled by the
pair (g1, g2) of the genera of two wormhole throats. This classification is consistent with
the mechanism giving rise to virtual bosons.

The proposed identification of virtual and on mass shell particles is beautiful but it is of course
far from obvious whether it really make sense. Bosonic emergence means that the fundamental
loop integrals are for fermionic loops. One could in principle get rid of bosonic loop integrals by
using generalized Cutkosky rules [K58, K29] but it would be highly satisfying to have a concrete
physical interpretation for the loops. It interesting to see whether the proposed picture picture
works in practice. Bosonic emergence means that one path integrates first over fermions to get
bosonic action as radiative corrections. Only 3-vertices (or rather, 3 momenta are associated
with the vertex [K29] ) are involved at the fermion level whereas at the bosonic level arbitrary
high vertiecs appear.

How to treat the new degrees of freedom?

The identification of off mass shell states as on mass shell states of positive and negative energy
throats brings in new degrees of freedom. Let us first look what happens if the momenta of the
two throats of wormhole contact are completely uncorrelated apart from the condition p1−p2 = p
coming from the energy conservation in the 3-vertex. Here p1 (−p2) is the momentum of on
mass shell positive (negative) energy throat and p is the momentum of outgoing (incoming)
wormhole contact. On mass shell conditions eliminate two degrees of freedom so that in absence
of correlations the 4-D integral over loop momenta should be extended to a 6-D integral. For
a given time-like virtual momentum p these degrees of freedom corresponds to 2-dimensional
sphere as one finds by looking the situation in the rest system of p (the direction of p1 = −p2 is
arbitrary) so that additional loop integration is finite. For light-like p the additional degrees of
freedom correspond to 2-D light-cone boundary δM3

+ defined by the condition t2 − x2 − y2 = 0:
δM3

+ SO(1, 2) invariant 2-volume does not exist. This is not a catastrophe since massless
momenta define lower-dimensional sub-manifold of the momentum space. For space-like p one
has hyperboloid t2 − x2 − y2 = −1 and the 2-D loop integral would be infinite in absence of
additional constraints.

A 2-dimensional integral appears at each line of Feynman diagram and if the only constraint
comes from p1−p2 = p one obtains new divergences for space-like momenta p. One can imagine
several approaches to the problem.

(a) The most conservative approach assumes that the freedom to select the decomposition
p = p1+p2 is completely analogous to a gauge symmetry. This is the case if the propagators
are just the usual ones. Although this decomposition would take place it would not have
any physical consequences since scattering amplitudes do not depend on the choices of
these decompositions. For each line the integral over the decompositions normalized by the
volume of S2 or hyperboloid would give the same result as an arbitrary gauge choice fixing
the decompositions.

(b) For the second option the new degrees of freedom would be present for each line of the
generalized Feynman diagram in a non-trivial manner, and the dependence of the emission
vertices on the decompositions should allow to avoid the infinities for space-like p. The
vertices would depend on Lorentz invariant quantities such as k · ·p1 and k · ·p2, where k
denotes the momentum of any line coming to the vertex, and in an optimist mood one
could ask whether this dependence could allow to smooth out also the standard loop diver-
gences by bringing in the effective momentum cutoff through the new momentum degrees
of freedom. In twistorial description this kind of dependence could allow especially elegant
realization. Note that also a sum over mass shells is involved and can cause divergences.

(c) For the third option the new degrees of freedom would be eliminated by some physical
mechanism fixing the direction of the projection of p1 (and p2) in the hyperplane normal to
p. The minimum option would eliminate the additional 2-dimensional integral but would
not pose conditions on the loop momenta p1 and p2. One should be able to fix the direction
of the projection of p1 in the hyperplane P (p) whose normal is p by some rule having a
physical justification. As a matter fact, this option would be special case of the first one.
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Bosonic sector (with super partners included) poses additional conditions. N-boson vertices are
defined by fermionic loops and N-boson vertices with arbitrary large value of N are possible.
Bosonic propagators emerge as inverses of 2-boson vertices defined by fermionic loops. Let
pB = p1 + p2 denote the sought for decomposition to on mass shell momenta. For the first and
second options there are no obvious problems in the bosonic sector. For the third option there
is a serious difficulty involvedthe decompositions pB = p1 + p2 defined by the vertices at the
opposite ends of the boson line are not in general consistent. This kind of conditions lead to a
hopelessly clumsy formalism.

Could additional degrees of freedom allow natural cutoff in loop integrals?

Second option involving two new degrees of freedom for each internal line deserves a more detailed
discussion. The masses assignable to on mass shell throats define an inherent momentum cutoff
allowing to get rid of infinities without giving up conformal invariance. Of course, mass squared
cutoff comes also from the breakdown of the QFT limit at CP2 length scale but one might hope
that this cutoff is not actually needed.

(a) To see what is involved, consider a BFF vertex with the fermionic momenta p1 = p11 + p12

and p2 = p21 + p22, and bosonic momentum p3 = p31 + p32. As a concrete example,
one might consider the calculation of bosonic propagator as the inverse of the bosonic 2-
vertex involving fermion loop for which a model was discussed in [K58] . For definiteness
restrict the consideration to the decomposition of the fermionic momentum p1. The natural
direction in the orthogonal complement P (p1) of p1 is defined by p2 (equivalently by p3).
The corresponding momentum projections

Pi1 = pi −
pi · p1p1

p2
1

, i = 2, 3

are the same. Pi1 in general diverges for p2
1 = 0.

(b) Conformal invariance allows only dimensionless Lorentz invariants constructed from the
momenta. Strong form of the conformal invariance does not allow dependence on the
masses of the throats. For time-like (space-like) p1 the dimensionless variable

c12 ≡
p11 · P21√
p2

11

√
P 2

21

= c13

describes the cosine (hyperbolic cosine) of the angle (hyperbolic angle) between p11 and
P21. The corresponding sine (hyperbolic sine) si,i+1 vanishes when p11 is parallel to the
projection of p2 (p3) in P (p1). Similar variables can be assigned to p2 and p3. Together
with the three analogous variables

ci,i =
pi1 · pi√
p2
i1

√
p2
i

measuring the hyperbolic angle between between pi1 and pi, one has 6 variables. p2
i1 and p2

i

can have both signs and also vanish and this might lead difficulties if one wants Gaussians
and analyticity.

(c) The on mass shell property for throats allows to consider a milder form of conformal
invariance for which one has variables

C12 ≡
p11 · P21

m1m2
= C13 ,

where mi, i = 1, 2 denote that throat masses. This introduces a cutoff in P21 when p1 is
space-like. These variables have infinite values for massless throats so that massless throats
cannot appear as building bricks of the virtual particles. The assumption that on mass-shell
bosons involve massless wormhole throat would distinguish them from virtual bosons in a
unique manner.
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(d) One can also identify dimensionless quantities formed from the loop momenta. Strong form
of conformal invariance allows only

dij =
pi · pj√
p2
i

√
p2
j

possible also for ordinary loops. These variables give hope about cutoff with respect to
Lorentz boost for pi in the rest system of pj but again the signs are problematic. The
weaker form of conformal invariance allows also the variables

Dij =
pi · pj
mimj

not plagued by the sign problems and giving hopes also about mass squared cutoff. Indeed,
if on mass shell throats are present they should take a key role in the physics of the virtual
particles.

The following two simple examples give an idea about what might be involved.

(a) Consider first a vertex factor which is a Gaussian of form exp(−
∑
ij S

2
ij) = exp(−2

∑
i(Si,i+1)2−∑

i S
2
i,i) suppressing the the momenta pi1 for which the projections in P (pi) are not par-

allel to those of pj and also large boosts of pi1 in the rest system of pi. Massless throats
would not appear at all in internal lines. The additional 2-D integrals together with the
correlation between pk and pi1 do not probably smooth out the standard loop divergences
in momentum squared and hyperbolic angle. The replacement of Sij with sij together with
analyticity leads to difficulties since sij does not have a definite sign.

(b) The exponential exp(−
∑
i 6=j D

2
ij) forces the decoupling of massless throats from virtual

states, is free of the sign difficulties, and allowes a stronger hyperbolic cutoff as well as mass
scale cutoff. The replacement of Dij with dij leads to the same problems as encountered
in the first example. The simple model for the hyperbolic cutoff discussed in [K58] could
allow a more refined formulation in this framework. It is however important to realize that
this kind of cutoffs look rather adhoc for the generalization of supersymmetric action for
fermions [K29] . They might be present in the radiatively generated bosonic action.

Could quantum classical correspondence fix the correct option?

Concerning the dynamics in the new degrees of freedom the above argument lead two options
under consideration. The first option assumes M2 gauge invariance and can be criticized as
being somewhat ad hoc unless one can find a convincing interpretation for the restriction of
the momenta p1 and p2 to M2 ∩ P (p), where M2 denotes a sub-space of M4 defining the space
of non-physical polarizations and P (p) is the orthogonal complement of p = p1 + p2. For both
options one can argue that the decomposition p = p1 +p2 should have same space-time correlate.

(a) Preferred extremals of Kähler action are characterized by a local choice of M2(x) ⊂M4 in
such a manner that the subspaces M2(x) integrate to a 2-D surface in M4. M2(x) has a
physical interpretation as the sub-space of non-physical polarizations. Number theoretical
interpretation is as a hyper-complex plane of complexified octonions. In the generalized
Feynman diagrammatics only the choice of M2(x) at the 2-D partonic 2-surfaces X2 iden-
tified as the ends the 3-D light-like wormhole throats X3

l matters. For a given line one
can also restrict the consideration to single point x of X2 since fermion numbers is car-
ried by a light-like curve along X3

l : the is an integral over possible choices of course. The
additional degrees of freedom would therefore have a concrete interpretation in terms of
space-time surfaces. The effective two-dimensionality states that M -matrix depends only
the partonic 2-surfaces and their 4-D tangent spaces containing M2(x) at the ends of the
lines of generalized Feynman diagrams.
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(b) The first option would mean a complete independence on M2(x) at partonic 2-surface
implied by the first option would mean actual 2-dimensionality instead of only effective
one. This is not quite in spirit of quantum TGD although it might make sense at QFT
limit.

(c) For the second option preferred extremals would reflect in their properties the decomposi-
tion p = p1 + p2 for the internal lines and the dependence of vertices on the decomposition
could correspond to the value of the vacuum functional for a given distribution of the planes
M2(x). The locality of the choice M2(x) would mean that p1 and p2 are not separately
conserved during the propagation along the internal line and physical picture suggests that
the choice M2(x) is constant for light-like 3-surfaces representing lines of the generalized
Feynman diagrams.

Could the formulation of SUSY limit of TGD allow the new view about off mass
shell particles?

Could the proposed heuristic ideas about off mass shell particles and diagram-wise finiteness
of the perturbation theory, the suggested manner to fix the direction of the projections of p1

and p2 in P (p) in terms of the preferred polarization plane M2 ⊂ M4 characterizing a given
line of Feynman diagram, and the formulation of super-symmetric QFT limit of TGD [K29] be
consistent with each other?

(a) There are good arguments that the generalized SUSY based on bosonic emergence and the
generalization of super field concept guarantees the cancelation of divergences associated
with particles and their super-partners. The new view about off mass shell particles en-
courages a dream about the finiteness of the individual diagrams justifying the motivations
for the primitive model of [K58] .

(b) The description of bosons and their superpartners as wormhole throats requires at the
fundamental level the introduction of new degrees of freedom associated with p = p1 − p2

decomposition. On mass shell property is possible and would realize twistorial dreams.
If one keeps the original view about virtual fermions and their super-partners as single
throated objects, there is no need to describe virtual fermions as wormhole contacts.

(c) Quantum classical correspondence suggests that the projections of p1 and p2 into P (p) lie
in the intersection M2 ∩P (p), where M2 characterizes the line of the generalized Feynman
diagram. If so, then the new degrees of freedom mean integral over the planes M2 labeled by
the points of s ∈ S2. If also virtual fermions correspond to wormhole contacts, BFF-vertices
would contain an amplitude f(α, s1, s2, s3) with si characterizing the lines. The parameters
α would code information about the momenta of virtual particles, about the masses of
on mass shell particles comprising the virtual particles, and also about the dynamics of
Kähler action involving exponent of Kähler function for the extremal in question. If virtual
fermions are single throated, one has f(α, s) with s characterizing the bosonic line. The
generalization would require a characterization of the form factor f(α, s1, s2, s3) or f(α, s)
in principle predicted by TGD proper but probably only modelable at QFT limit. The
view about preferred extremals allows the possibility that si is not conserved along line. If
the values of si at the ends of the line are not correlated, the integral over si gives a form
factor F (α).

(d) The propagators for the generalized chiral super-field describing fermions would not be
affected, and the effects of f would be only seen at the level of propagators and vertices for
bosons and their super-parterns. f could in principle guarantee the finiteness of individual
contributions to both fermionic and bosonic loops without the need for Wick rotation.

Trying to sum up

The proposed replacement of virtual particles as a convenient mathematical abstraction with
something very real suggests that the black box of the loop integrals could be opened and one
might even construct concrete models for off mass shell particles using twistorial formulation.
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The conservative approach would interpret the non-uniqueness of the decomposition of the loop
momenta to on mass shell momenta in terms of gauge invariance. A more radical approach would
assign two additional degrees of freedom to each line of generalized Feynman diagram and allow
vertices to depend on the decomposition. This would give even hopes about the smoothing out
of the standard divergences. As a matter fact, this idea was followed already in the chapter
about bosonic emergence [K58] , where it was proposed that natural physical cutoffs on mass
squared and hyperbolic angle characterizing the energy of virtual particle could guarantee the
finiteness of fermionic loops. The construction of the super-symmetric QFT limit of TGD [K29]
however suggests that the cancelation of infinities takes place by super-symmetry even without
cutoffs. One interpretation is that this cancelation justifies the neglect of the physical cutoff as
an excellent approximation. An interesting question is whether the loop integrals could make
sense even without Wick rotation.

8.6 Does weak form of electric-magnetic duality lead to a
twistorial description?

This section summarizes an further vision about how twistors might emerge from quantum
TGD. It is only loosely related to the other visions and is certainly the simplest one and also
very closely related to the recent picture about generalized Feynman diagrams. Of course, it is
bound to be speculative just like all other considerations of this chapter and one cannot take
the details of the proposal too seriously.

8.6.1 The simplest vision about how twistors might emerge from TGD

The vision involves the notions of bosonic emergence, the identification of virtual states as pairs
of on mass shell states assignable to wormhole throats inspired by zero energy ontology and asso-
ciated realization of Cutkosky rules in terms of manifestly finite Feynman diagrammatics, and as
the latest piece the weak form of electric-magnetic duality and the notion of pseudo-momentum
emerging from the generalized eigenstates of the Chern-Simons Dirac operator. There must
be a correlation between pseudo-momenta and real momenta and the identification of the dif-
ference of pseudo-momenta of wormhole throats as the difference of corresponding on mass
shell momenta is what gives a connection between ordinary virtual momenta and corresponding
pseudo-momenta.

(a) The weak form of electric-magnetic duality [K28] has led to several developments in basic
TGD. One important breakthrough was the improved understanding of the generalized
eigenvalue spectrum of the Chern-Simons Dirac operator. The generalized eigenvalues have
interpretation as pseudo-momenta reducing to the preferred plane M2 ⊂ M4 assignable
to CD. There are good arguments in favor of a discrete spectrum. There are several
options between which one must choose. For the simplest option the pseudo-momenta have
interpretation as hyper-complex primes and possibly also their powers. The number of the
allowed momenta is finite for this option. One can consider also a scenario in which integer
multiples of a finite number of hyper-complex primes and their powers are allowed.

The summation over pseudo-momenta has nothing to do with the integration over the ordi-
nary loop momenta. If one accepts the proposed connection with infinite hyper-octonionic
(and hyper-complex) primes and corresponding arithmetic quantum field theory, one has
separate conservation law for them for each hypercomplex prime defining this kind of
pseudo-momentum. In arithmetic QFT the conservation law states that the number of
bosons and fermions characterized by given prime is conserved in vertex. This conservation
law can be interpreted also in terms of a hierarchy of Planck constants as a conservation law
correlating the geometries of the partonic orbits entering the vertex and stating that the
number of sheets of the covering of CD×CP2 assigned to a given prime is conserved in the
vertex although it can be shared between outgoing particles. Therefore pseudo-momenta
for the modes of the modified Dirac operator would code for geometric data. This is in
accordance with quantum classical correspondence.
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(b) By bosonic emergence [K58] fermionic propagators are the fundamental objects in quantum
TGD. The basic implication is that the fermionic propagators reduce to what is formally
like a massless fermion propagator for the discrete M2-valued pseudo-momenta. The close
analogy with massless theory encourages to consider a possibility of a discrete number the-
oretic variant of the twistor formalism with M4 twistors reducing to M2 twistors. Whether
this formalism has any practical value is of course an open question. Irrespective of whether
the twistor philosophy is accepted, massless pseudo-momenta should characterize on mass
shell states appearing in incoming lines. They would correspond to hyper-complex integers
of form n × (1, 1) with vanishing norm forming an ideal in the algebra of hyper-complex
integers. These integers are expressible as powers of (1, 1) which therefore defines a prime
like object.

(c) One can assign to the lines of generalized Feynman diagrams also ordinary momenta and
in loops also integrations over ordinary four-momenta are possible. In zero energy ontol-
ogy however virtual momenta correspond to pairs of in general non-parallel on-mass-shell
momenta, which can have also opposite signs of energy. On mass shell property for these
momenta implies extremely strong kinematical constraints and only the simplest loops
such as self energy loops remain. Super-symmetry gives good hopes that the bosonic and
fermionic contributions to these loops vanish by the basic sign difference coming from
fermionic statistics since momentum integrals are identical and only pseudo-momentum
summations can distinguish between the diagrams.

(d) Unitarity poses a crucial constraint on the perturbative approach. One would like to have
unitarity in the form of generalized Cutkosky rules [B34] . If one assigns ordinary momenta
with the lines of the generalized Feynman diagram and if ordinary propagators are replaced
with those involving pseudo-momenta, this is however far from obvious. What comes first
in mind is that propagators defined by the pseudo-momenta are replaced with their sums
with the ordinary on mass shell propagators. Unless pseudo-momentum is massless this
modification is trivial. If pseudo-momentum becomes massless the propagator reduces to
ordinary massless propagator and the iε description might allow to have the correct analytic
structure.

(e) One can of argue that would be somewhat frustrating to have two separate loop momentum
summations/integrals and that a more concrete connection between real momenta and
pseudo-momenta should therefore exist. One possibility is that the sum or difference of
on-mass-shell momenta associated with the wormhole throats defining the loop momentum
is equal or at least proportional to the sum or difference of the corresponding pseudo-
momenta. Since incoming lines must correspond to massless pseudo-momenta, the sum or
difference of ordinary momenta associated with the wormhole throats must be massless. In
the case of massive particles this condition makes sense only for the difference of the throat
momenta. Hence pseudo-momenta must correspond to the differences of throat momenta.

In this manner the Cutkosky rules would emerge in a more convincing manner from the
theory. The restriction of the net loop momenta to plane M2 and discretization would
imply a spontaneous breaking of Lorentz invariance for a given CD bringing in mind the
description of quarks and gluons in terms of longitudinal momenta. This restriction would
also improve dramatically the UV behavior and imply finiteness of self energy diagrams
even without super-symmetry. It is not clear whether the number theoretic constraints on
difference of throat momenta are consistent with the momentum conservation in vertices
and it might be that a more general option for which pseudo-momenta are identified as M2

projections of hyper-octonionic primes must be allowed.

In the following the basic arguments supporting this still speculative picture are described.

8.6.2 Generalized eigen modes for the modified Chern-Simons Dirac
equation and hydrodynamical picture

Hydrodynamical picture and the reduction of TGD to almost topological QFT discussed in
detail in [K28] helps to understand also the construction of generalized eigen modes of 3-D
Chern-Simons Dirac equation.
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8.6.3 Generalized Feynman diagrams at fermionic and momentum
space level

Negative energy ontology has already led to the idea of interpreting the virtual particles as
pairs of positive and negative energy wormhole throats. Hitherto I have taken it as granted
that ordinary Feynman diagrammatics generalizes more or less as such. It is however far from
clear what really happens in the verties of the generalized Feynmann diagrams. The safest
approach relies on the requirement that unitarity realized in terms of Cutkosky rules in ordinary
Feynman diagrammatics allows a generalization. This requires loop diagrams. In particular,
photon-photon scattering can take place only via a fermionic square loop so that it seems that
loops must be present at least in the topological sense.

One must be however ready for the possibility that something unexpectedly simple might emerge.
For instance, the vision about algebraic physics allows naturally only finite sums for diagrams
and does not favor infinite perturbative expansions. Hence the true believer on algebraic physics
might dream about finite number of diagrams for a given reaction type. For simplicity generalized
Feynman diagrams without the complications brought by the magnetic confinement since by the
previous arguments the generalization need not bring in anything essentially new.

The basic idea of duality in early hadronic models was that the lines of the dual diagram
representing particles are only re-arranged in the vertices. This however does not allow to get
rid of off mass shell momenta. Zero energy ontology encourages to consider a stronger form of
this principle in the sense that the virtual momenta of particles could correspond to pairs of on
mass shell momenta of particles. If also interacting fermions are pairs of positive and negative
energy throats in the interaction region the idea about reducing the construction of Feynman
diagrams to some kind of lego rules might work.

Virtual particles as pairs of on mass shell particles in ZEO

The first thing is to try to define more precisely what generalized Feynman diagrams are. The
direct generalization of Feynman diagrams implies that both wormhole throats and wormhole
contacts join at vertices.

(a) A simple intuitive picture about what happens is provided by diagrams obtained by replac-
ing the points of Feynman diagrams (wormhole contacts) with short lines and imagining
that the throats correspond to the ends of the line. At vertices where the lines meet the
incoming on mass shell quantum numbers would sum up to zero. This approach leads to
a straightforward generalization of Feynman diagrams with virtual particles replaced with
pairs of on mass shell throat states of type ++, −−, and +−. Incoming lines correspond to
++ type lines and outgoing ones to −− type lines. The first two line pairs allow only time
like net momenta whereas +− line pairs allow also space-like virtual momenta. The sign
assigned to a given throat is dictated by the the sign of the on mass shell momentum on
the line. The condition that Cutkosky rules generalize as such requires ++ and −− type
virtual lines since the cut of the diagram in Cutkosky rules corresponds to on mass shell
outgoing or incoming states and must therefore correspond to ++ or −− type lines.

(b) The basic difference as compared to the ordinary Feynman diagrammatics is that loop
integrals are integrals over mass shell momenta and that all throats carry on mass shell
momenta. In each vertex of the loop mass incoming on mass shell momenta must sum
up to on mass shell momentum. These constraints improve the behavior of loop integrals
dramatically and give excellent hopes about finiteness. It does not however seem that only
a finite number of diagrams contribute to the scattering amplitude besides tree diagrams.
The point is that if a the reactions N1 → N2 and N2 → N3,, where Ni denote particle
numbers, are possible in a common kinematical region for N2-particle states then also the
diagrams N1 → N2 → N2 → N3 are possible. The virtual states N2 include all all states
in the intersection of kinematically allow regions for N1 → N2 and N2 → N3. Hence the
dream about finite number possible diagrams is not fulfilled if one allows massless particles.
If all particles are massive then the particle number N2 for given N1 is limited from above
and the dream is realized.
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(c) For instance, loops are not possible in the massless case or are highly singular (bringing in
mind twistor diagrams) since the conservation laws at vertices imply that the momenta are
parallel. In the massive case and allowing mass spectrum the situation is not so simple.
As a first example one can consider a loop with three vertices and thus three internal lines.
Three on mass shell conditions are present so that the four-momentum can vary in 1-D
subspace only. For a loop involving four vertices there are four internal lines and four mass
shell conditions so that loop integrals would reduce to discrete sums. Loops involving more
than four vertices are expected to be impossible.

(d) The proposed replacement of the elementary fermions with bound states of elementary
fermions and monopoles X± brings in the analog of stringy diagrammatics. The 2-particle
wave functions in the momentum degrees of freedom of fermiona and X± migh allow more
flexibility and allow more loops. Note however that there are excellent hopes about the
finiteness of the theory also in this case.

Loop integrals are manifestly finite

One can make also more detailed observations about loops.

(a) The simplest situation is obtained if only 3-vertices are allowed. In this case conservation of
momentum however allows only collinear momenta although the signs of energy need not be
the same. Particle creation and annihilation is possible and momentum exchange is possible
but is always light-like in the massless case. The scattering matrices of supersymmetric
YM theories would suggest something less trivial and this raises the question whether
something is missing. Magnetic monopoles are an essential element of also these theories
as also massivation and symmetry breaking and this encourages to think that the formation
of massive states as fermion X± pairs is needed. Of course, in TGD framework one has
also high mass excitations of the massless states making the scattering matrix non-trivial.

(b) In YM theories on mass shell lines would be singular. In TGD framework this is not the
case since the propagator is defined as the inverse of the 3-D dimensional reduction of the
modified Dirac operator D containing also coupling to four-momentum (this is required by
quantum classical correspondence and guarantees stringy propagators),

D = iΓ̂αpα + Γ̂αDα ,

pα = pk∂αh
k . (8.6.1)

The propagator does not diverge for on mass shell massless momenta and the propagator
lines are well-defined. This is of course of essential importance also in general case. Only
for the incoming lines one can consider the possibility that 3-D Dirac operator annihilates
the induced spinor fields. All lines correspond to generalized eigenstates of the propagator
in the sense that one has D3Ψ = λγΨ, where γ is modified gamma matrix in the direction
of the stringy coordinate emanating from light-like surface and D3 is the 3-dimensional
dimensional reduction of the 4-D modified Dirac operator. The eigenvalue λ is analogous
to energy. Note that the eigenvalue spectrum depends on 4-momentum as a parameter.

(c) Massless incoming momenta can decay to massless momenta with both signs of energy.
The integration measure d2k/2E reduces to dx/x where x ≥ 0 is the scaling factor of
massless momentum. Only light-like momentum exchanges are however possible and scat-
tering matrix is essentially trivial. The loop integrals are finite apart from the possible
delicacies related to poles since the loop integrands for given massless wormhole contact
are proportional to dx/x3 for large values of x.

(d) Irrrespective of whether the particles are massless or not, the divergences are obtained
only if one allows too high vertices as self energy loops for which the number of momentum
degrees of freedom is 3N−4 for N -vertex. The construction of SUSY limit of TGD in [K29]
led to the conclusion that the parallelly propagating N fermions for given wormhole throat
correspond to a product of N fermion propagators with same four-momentum so that for
fermions and ordinary bosons one has the standard behavior but for N > 2 non-standard
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so that these excitations are not seen as ordinary particles. Higher vertices are finite only
if the total number NF of fermions propagating in the loop satisfies NF > 3N − 4. For
instance, a 4-vertex from which N = 2 states emanate is finite.

Taking into account magnetic confinement

What has been said above is not quite enough. The weak form of electric-magnetic duality [B11]
leads to the picture about elementary particles as pairs of magnetic monopoles inspiring the
notions of weak confinement based on magnetic monopole force. Also color confinement would
have magnetic counterpart. This means that elementary particles would behave like string like
objects in weak boson length scale. Therefore one must also consider the stringy case with
wormhole throats replaced with fermion-X± pairs (X± is electromagnetically neutral and ±
refers to the sign of the weak isospin opposite to that of fermion) and their super partners.

(a) The simplest assumption in the stringy case is that fermion-X± pairs behave as coherent
objects, that is scatter elastically. In more general case only their higher excitations identi-
fiable in terms of stringy degrees of freedom would be created in vertices. The massivation
of these states makes possible non-collinear vertices. An open question is how the massi-
vation fermion-X± pairs relates to the existing TGD based description of massivation in
terms of Higgs mechanism and modified Dirac operator.

(b) Mass renormalization could come from self energy loops with negative energy lines as also
vertex normalization. By very general arguments supersymmetry implies the cancellation
of the self energy loops but would allow non-trivial vertex renormalization [K29] .

(c) If only 3-vertices are allowed, the loops containing only positive energy lines are possible if
on mass shell fermion-X± pair (or its superpartner) can decay to a pair of positive energy
pair particles of same kind. Whether this is possible depends on the masses involved. For
ordinary particles these decays are not kinematically possible below intermediate boson
mass scale (the decays F1 → F2 + γ are forbidden kinematically or by the absence of flavor
changing neutral currents whereas intermediate gauge bosons can decay to on mass shell
fermion-antifermion pair).

(d) The introduction of IR cutoff for 3-momentum in the rest system associated with the largest
CD (causal diamond) looks natural as scale parameter of coupling constant evolution and
p-adic length scale hypothesis favors the inverse of the size scale of CD coming in powers of
two. This parameter would define the momentum resolution as a discrete parameter of the
p-adic coupling constant evolution. This scale does not have any counterpart in standard
physics. For electron, d quark, and u quark the proper time distance between the tips of
CD corresponds to frequency of 10 Hz, 1280 Hz, and 160 Hz: all these frequencies define
fundamental bio-rhythms [K24] .

These considerations have left completely untouched one important aspect of generalized Feyn-
man diagrams: the necessity to perform a functional integral over the deformations of the
partonic 2-surfaces at the ends of the lines- that is integration over WCW. Number theoreti-
cal universality requires that WCW and these integrals make sense also p-adically and in the
following these aspects of generalized Feynman diagrams are discussed.

The general form of generalized eigenvalue equation for Chern-Simons Dirac action

Consider first the the general form and interpretation of the generalized eigenvalue equation
assigned with the modified Dirac equation for Chern-Simons action [K15] . This is of course
only an approximation since an additional contribution to the modified gamma matrices from
the Lagrangian multiplier term guaranteing the weak form of electric-magnetic duality must be
included.

(a) The modified Dirac equation for Ψ is consistent with that for its conjugate if the coefficient
of the instanton term is real and one uses the Dirac action Ψ(D→−D←)Ψ giving modified
Dirac equation as
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DC−SΨ +
1

2
(DαΓ̂αC−S)Ψ = 0 . (8.6.2)

As noticed, the divergence DαΓ̂αC−S does not contain second derivatives in the case of
Chern-Simons action. In the case of Kähler action they occur unless field equations equiva-
lent with the vanishing of the divergence term are satisfied. The extremals of Chern-Simons
action provide a natural manner to define effective 2-dimensionality.

Also the fermionic current is conserved in this case, which conforms with the idea that
fermions flow along the light-like 3-surfaces. If one uses the action ΨD→Ψ, Ψ does not
satisfy the Dirac equation following from the variational principle and fermion current is
not conserved.

(b) The generalized eigen modes of DC−S should be such that one obtains the counterpart of
Dirac propagator which is purely algebraic and does not therefore depend on the coordinates
of the throat. This is satisfied if the generalized eigenvalues are expressible in terms of
covariantly constant combinations of gamma matrices and here only M4 gamma matrices
are possible. Therefore the eigenvalue equation would read as

DΨ = λkγkΨ , D = DC−S +
1

2
DαΓ̂αC−S , DC−S = Γ̂αC−SDα .

(8.6.3)

Here the covariant derivatives Dα contain the measurement interaction term as an apparent
gauge term. For extremals one has

D = DC−S . (8.6.4)

Covariant constancy allows to take the square of this equation and one has

(D2 +
[
D,λkγk

]
)Ψ = λkλkΨ . (8.6.5)

The commutator term is analogous to magnetic moment interaction.

(c) The generalized eigenvalues correspond to λ =
√
λkλk and Dirac determinant is defined as a

product of the eigenvalues and conjecture to give the exponent of Kähler action reducing to
Chern-Simons term. λ is completely analogous to mass. λk cannot be however interpreted
as ordinary four-momentum: for instance, number theoretic arguments suggest that λk
must be restricted to the preferred plane M2 ⊂ M4 interpreted as a commuting hyper-
complex plane of complexified quaternions. For incoming lines this mass would vanish so
that all incoming particles irrespective their actual quantum numbers would be massless in
this sense and the propagator is indeed that for a massless particle. Note that the eigen-
modes define the boundary values for the solutions of DKΨ = 0 so that the values of λ
indeed define the counterpart of the momentum space.

This transmutation of massive particles to effectively massless ones might make possible
the application of the twistor formalism as such in TGD framework [K85] . N = 4 SUSY
is one of the very few gauge theory which might be UV finite but it is definitely unphysical
due to the masslessness of the basic quanta. Could the resolution of the interpretational
problems be that the four-momenta appearing in this theory do not directly correspond to
the observed four-momenta?

Inclusion of the constraint term

As already noticed one must include also the constraint term due to the weak form of electric-
magnetic duality and this changes somewhat the above simple picture.
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(a) At the 3-dimensional ends of the space-time sheet and at wormhole throats the 3-dimensionality
allows to introduce a coordinate varying along the flow lines of Kähler magnetic field
B = ∗J . In this case the integrability conditions state that the flow is Beltrami flow.
Note that the value of Bα along the flow line defining magnetic flux appearing in anti-
commutation relations is constant. This suggests that the generalized eigenvalue equation
for the Chern-Simons action reduces to a collection of ordinary apparently independent
differential equations associated with the flow lines beginning from the partonic 2-surface.
This indeed happens when the CP2 projection is 2-dimensional. In this case it however
seems that the basis un is not of much help.

(b) The conclusion is wrong: the variations of Chern-Simons action are subject to the constraint
that electric-magnetic duality holds true expressible in terms of Lagrange multiplier term

∫
Λα(Jnα −KεnαβγJβγ)

√
g4d

3x . (8.6.6)

This gives a constraint force to the field equations and also a dependence on the induced
4-metric so that one has only almost topological QFT. This term also guarantees the M4

part of WCW Kähler metric is non-trivial. The condition that the ends of space-time sheet
and wormhole throats are extrema of Chern-Simons action subject to the electric-magnetic
duality constraint is strongly suggested by the effective 2-dimensionality. Without the
constraint term Chern-Simons action would vanish for its extremals so that Kähler function
would be identically zero.

This term implies also an additional contribution to the modified gamma matrices besides
the contribution coming from Chern-Simons action so tht the first guess for the modified
Dirac operator would not be quite correct. This contribution is of exactly of the same
general form as the contribution for any general general coordinate invariant action. The
dependence of the induced metric on M4 degrees of freedom guarantees that also M4

gamma matrices are present. In the following this term will not be considered.

(c) When the contribution of the constraint term to the modifield gamma matrices is neglected,
the explicit expression of the modified Dirac operator DC−S associated with the Chern-
Simons term is given by

D = Γ̂µDµ +
1

2
DµΓ̂µ ,

Γ̂µ =
∂LC−S
∂µhk

Γk = εµαβ
[
2Jkl∂αh

lAβ + JαβAk
]

ΓkDµ ,

DµΓ̂µ = BαK(Jkα + ∂αAk) ,

BαK = εαβγJβγ , Jkα = Jkl∂αs
l , ε̂αβγ = εαβγ

√
g3 . (8.6.7)

For the extremals of Chern-Simons action one has DαΓ̂α = 0. Analogous condition holds
true when the constraing contriabution to the modified gamma matrices is added.

Generalized eigenvalue equation for Chern-Simons Dirac action

Consider now the Chern-Simons Dirac equation in more detail assuming that the inclusion of
the constraint contribution to the modified gamma matrices does not induce any complications.
Assume also extremal property for Chern-Simons action with constraint term and Beltrami flow
property.

(a) For the extremals the Chern-Simons Dirac operator (constraint term not included) reduces
to a one-dimensional Dirac operator

DC−S = ε̂rαβ [2JkαAβ + JαβAk] ΓkDr . (8.6.8)
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Constraint term implies only a modification of the modified gamma matrices but the form
of the operator remains otherwise same when extrema are in question so that one has
DαΓ̂α = 0.

(b) For the extremals of Chern-Simons action the general solution of the modified Chern-Simons
Dirac equation (λk = 0) is covariantly constant with respect to the coordinate r:

DrΨ = 0 . (8.6.9)

The solution to this condition can be written immediately in terms of a non-integrable
phase factor Pexp(i

∫
Ardr), where integration is along curve with constant transversal co-

ordinates. If Γ̂v is light-like vector field also Γ̂vΨ0 defines a solution of DC−S . This solution
corresponds to a zero mode for DC−S and does not contribute to the Dirac determinant
(suggested to give rise to the exponent of Kähler function identified as Kähler action).
Note that the dependence of these solutions on transversal coordinates of X3

l is arbitrary
which conforms with the hydrodynamic picture. The solutions of Chern-Simons-Dirac are
obtained by similar integration procedure also when extremals are not in question.

The formal solution associated with a general eigenvalue λ can be constructed by integrating
the eigenvalue equation separately along all coordinate curves. This makes sense if r indeed
assigned to possibly light-like flow lines of Bα or more general Beltrami field possible induced by
the constraint term. There are very strong consistency conditions coming from the conditions
that Ψ in the interior is constant along the flow lines of Kähler current and continuous at the
ends and throats (call them collectively boundaries), where Ψ has a non-trivial variation along
the flow lines of Bα.

(a) This makes sense only if the flow lines of the Kähler current are transversal to the boundaries
so that the spinor modes at boundaries dictate the modes of the spinor field in the interior.
Effective 2-dimensionality means that the spinor modes in the interior can be calculated
either by starting from the throats or from the ends so that the data at either upper of
lower partonic 2-surfaces dictates everything in accordance with zero energy ontology.

(b) This gives an infinite number of commuting diagrams stating that the flow-line time evo-
lution along flow lines along wormhole throats from lower partonic 2-surface to the upper
one is equivalent with the flow-line time evolution along the lower end of space-time sur-
face to interior, then along interior to the upper end of the space-time surface and then
back to the upper partonic 2-surface. If the space-time surface allows a slicing by partonic
2-surfaces these conditions can be assumed for any pair of partonic 2-surfaces connected
by Chern-Simons flow evolution.

(c) Since the time evolution along interior keeps the spinor field as constant in the proper
gauge and since the flow evolutions at the lower and upper ends are in a reverse direction,
there is a strong atemptation to assume that the spinor field at the ends of the of the
flow lines of Kähler magnetic field are identical apart from a gauge transformation. This
leads to a particle-in-box quantizaton of the values of the pseudo-mass (periodic boundary
conditions). These conditions will be assumed in the sequel.

These assumptions lead to the following picture about the generalized eigen modes.

(a) By choosing the gauge so that covariant derivative reduces to ordinary derivative and using
the constancy of Γ̂r, the solution of the generalized eigenvalue equation can be written as

Ψ = exp(iL(r)Γ̂rλkΓk)Ψ0 ,

L(r) =

∫ r

0

1√
ĝrr

dr . (8.6.10)

L(r) can be regarded as the along flux line as defined by the effective metric defined by
modified gamma matrices. If λk is linear combination of Γ0 and ΓrM it anti-commutes
with Γr which contains only CP2 gamma matrices so that the pseudo-momentum is a
priori arbitrary.
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(b) When the constraint term taking care of the electric-magnetric duality is included, also
M4 gamma matrices are present. If they are in the orthogonal complement of a preferred
plane M2 ⊂M4, anti-commutativity is achieved. This assumption cannot be fully justified
yet but conforms with the general physical vision. There is an obvious analogy with the
condition that polarizations are in a plane orthogonal to M2. The condition indeed states
that only transversal deformations define quantum fluctuating WCW degrees of freedom
contributing to the WCW Kähler metric. In M8 − H duality the preferred plane M2 is
interpreted as a hyper-complex plane belonging to the tangent space of the space-time sur-
face and defines the plane of non-physical polarizations. Also a generalization of this plane
to an integrable distribution of planes M2(x) has been proposed and one must consider
also now the possibility of a varying plane M2(x) for the pseudo-momenta. The scalar
function Φ appearing in the general solution ansatz for the field equations satisfies massless
d’Alembert equation and its gradient defines a local light-like direction at space-time-level
and hence a 2-D plane of the tangent space. Maybe the projection of this plane to M4

could define the preferred M2. The minimum condition is that these planes are defined
only at the ends of space-time surface and at wormhole throats.

(c) If one accepts this hypothesis, one can write

Ψ =
[
cos(L(r)λ) + isin(λ(r))Γ̂rλkΓk)

]
Ψ0 ,

λ =
√
λkλk . (8.6.11)

(d) Boundary conditions should fix the spectrum of masses. If the the flow lines of Kähler
current coincide with the flow lines of Kähler magnetic field or more general Beltrami
current at wormhole throats one ends up with difficulties since the induced spinor fields
must be constant along flow lines and only trivial eigenvalues are possible. Hence it seems
that the two Beltrami fields must be transversal. This requires that at the partonic 2-
surfaces the value of the induced spinor mode in the interior coincides with its value at the
throat. Since the induced spinor fields in interior are constant along flow lines, one must
have

exp(iλL(max)) = 1 . (8.6.12)

This implies that one has essentially particle in a box with size defined by the effective
metric

λn =
n2π

L(rmax)
. (8.6.13)

(e) This condition cannot however hold true simultaneously for all points of the partonic 2-
surfaces since L(rmax) depends on the point of the surface. In the most general case one
can consider only a subset consisting of the points for which the values of L(rmax) are
rational multiples of the value of L(rmax) at one of the points -call it L0. This implies
the notion of number theoretical braid. Induced spinor fields are localized to the points
of the braid defined by the flow lines of the Kähler magnetic field (or equivalently, any
conserved current- this resolves the longstanding issue about the identification of number
theoretical braids). The number of the included points depends on measurement resolution
characterized somehow by the number rationals which are allowed. Only finite number of
harmonics and sub-harmonics of L0 are possible so that for integer multiples the number
of points is finite. If nmaxL0 and L0/nmin are the largest and smallest lengths involved,
one can argue that the rationals nmax/n, n = 1, ..., nmax and n/nmin, n = 1, ..., nmin are
the natural ones.

(f) One can consider also algebraic extensions for which L0 is scaled from its reference value
by an algebraic number so that the mass scale m must be scaled up in similar manner. The
spectrum comes also now in integer multiples. p-Adic mass calculations predicts mass scales
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to the inverses of square roots of prime and this raises the expectation that
√
n harmonics

and sub-harmonics of L0 might be necessary. Notice however that pseudo-momentum
spectrum is in question so that this argument is on shaky grounds.

There is also the question about the allowed values of (λ0, λ3) for a given value of λ. This issue
will be discussed in the next section devoted to the attempt to calculate the Dirac determinant
assignable to this spectrum: suffice it to say that integer valued spectrum is the first guess
implying that the pseudo-momenta satisfy n2

0−n2
3 = n2 and therefore correspond to Pythagorean

triangles. What is remarkable that the notion of number theoretic braid pops up automatically
from the Beltrami flow hypothesis.

8.6.4 Hyper-octonionic primes

Before detailed discussion of the hyper-octonionic option it is good to consider the basic prop-
erties of hyper-octonionic primes.

(a) Hyper-octonionic primes are of form

Πp = (n0, n3, n1, n2, ..., n7) , Π2
p = n2

0 −
∑
i

n2
i = p or p2 . (8.6.14)

(b) Hyper-octonionic primes have a standard representation as hyper-complex primes. The
Minkowski norm squared factorizes into a product as

n2
0 − n2

3 = (n0 + n3)(n0 − n3) . (8.6.15)

If one has n3 6= 0, the prime property implies n0 − n3 = 1 so that one obtains n0 = n3 + 1
and 2n3 + 1 = p giving

(n0, n3) = ((p+ 1)/2, (p− 1)/2) .

(8.6.16)

Note that one has (p + 1)/2 odd for p mod 4 = 1) and (p + 1)/2 even for p mod 4 = 3).
The difference n0 − n3 = 1 characterizes prime property.

If n3 vanishes the prime prime property implies equivalence with ordinary prime and one
has n2

3 = p2. These hyper-octonionic primes represent particles at rest.

(c) The action of a discrete subgroup G(p) of the octonionic automorphism group G2 gen-
erates form hyper-complex primes with n3 6= 0 further hyper-octonionic primes Π(p, k)
corresponding to the same value of n0 and p and for these the integer valued projection
to M2 satisfies n2

0 − n2
3 = n > p. It is also possible to have a state representing the

system at rest with (n0, n3) = ((p + 1)/2, 0) so that the pseudo-mass varies in the range
[
√
p, (p+ 1)/2]. The subgroup G(n0, n3) ⊂ SU(3) leaving invariant the projection (n0, n3)

generates the hyper-octonionic primes corresponding to the same value of mass for hyper-
octonionic primes with same Minkowskian length p and pseudo-mass λ = n ≥ √p.

(d) One obtains two kinds of primes corresponding to the lengths of pseudo-momenta equal to
p or

√
p. The first kind of particles are always at rest whereas the second kind of particles

can be brought at rest only if one interprets the pseudo-momentum as M2 projection. This
brings in mind the secondary p-adic length scales assigned to causal diamonds (CDs) and
the primary p-adic lengths scales assigned to particles.

If the M2 projections of hyper-octonionic primes with length
√
p characterize the allowed basic

momenta, ζD is sum of zeta functions associated with various projections which must be in the
limits dictated by the geometry of the orbit of the partonic surface giving upper and lower bounds
Lmax and Lmin on the length L. Lmin is scaled up to

√
n2

0 − n2
3Lmin for a given projection
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(n0, n3). In general a given M2 projection (n0, n3) corresponds to several hyper-octonionic
primes since SU(3) rotations give a new hyper-octonionic prime with the same M2 projection.
This leads to an inconsistency unless one has a good explanation for why some basic momentum
can appear several times. One might argue that the spinor mode is degenerate due to the
possibility to perform discrete color rotations of the state. For hyper complex representatives
there is no such problem and it seems favored. In any case, one can look how the degeneracy
factors for given projection can be calculated.

(a) To calculate the degeneracy factor D(n associated with given pseudo-mass value λ = n one
must find all hyper-octonionic primes Π, which can have projection in M2 with length n
and sum up the degeneracy factors D(n, p) associated with them:

D(n) =
∑
p

D(n, p) ,

D(n, p) =
∑

n2
0−n2

3=p

D(p, n0, n3) ,

n2
0 − n2

3 = n , Π2
p(n0, n3) = n2

0 − n2
3 −

∑
i

n2
i = n−

∑
i

n2
i = p . (8.6.17)

(b) The condition n2
0−n2

3 = n allows only Pythagorean triangles and one must find the discrete
subgroup G(n0, n3) ⊂ SU(3) producing hyper-octonions with integer valued components
with length p and components (n0, n3). The points at the orbit satisfy the condition

∑
n2
i = p− n . (8.6.18)

The degeneracy factor D(p, n0, n3) associated with given mass value n is the number of
elements of in the coset space G(n0, n3, p)/H(n0, n3, p), where H(n0, n3, p) is the isotropy
group of given hyper-octonionic prime obtained in this manner. For n2

0−n2
3 = p2 D(n0, n3, p)

obviously equals to unity.

8.6.5 Generalized Feynman diagrams at fermionic and momentum
space level

Negative energy ontology has already led to the idea of interpreting the virtual particles as
pairs of positive and negative energy wormhole throats. Hitherto I have taken it as granted
that ordinary Feynman diagrammatics generalizes more or less as such. It is however far from
clear what really happens in the verties of the generalized Feynmann diagrams. The safest
approach relies on the requirement that unitarity realized in terms of Cutkosky rules in ordinary
Feynman diagrammatics allows a generalization. This requires loop diagrams. In particular,
photon-photon scattering can take place only via a fermionic square loop so that it seems that
loops must be present at least in the topological sense.

One must be however ready for the possibility that something unexpectedly simple might emerge.
For instance, the vision about algebraic physics allows naturally only finite sums for diagrams
and does not favor infinite perturbative expansions. Hence the true believer on algebraic physics
might dream about finite number of diagrams for a given reaction type. For simplicity generalized
Feynman diagrams without the complications brought by the magnetic confinement since by the
previous arguments the generalization need not bring in anything essentially new.

The basic idea of duality in early hadronic models was that the lines of the dual diagram
representing particles are only re-arranged in the vertices. This however does not allow to get
rid of off mass shell momenta. Zero energy ontology encourages to consider a stronger form of
this principle in the sense that the virtual momenta of particles could correspond to pairs of on
mass shell momenta of particles. If also interacting fermions are pairs of positive and negative
energy throats in the interaction region the idea about reducing the construction of Feynman
diagrams to some kind of lego rules might work.
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Virtual particles as pairs of on mass shell particles in ZEO

The first thing is to try to define more precisely what generalized Feynman diagrams are. The
direct generalization of Feynman diagrams implies that both wormhole throats and wormhole
contacts join at vertices.

(a) A simple intuitive picture about what happens is provided by diagrams obtained by replac-
ing the points of Feynman diagrams (wormhole contacts) with short lines and imagining
that the throats correspond to the ends of the line. At vertices where the lines meet the
incoming on mass shell quantum numbers would sum up to zero. This approach leads to
a straightforward generalization of Feynman diagrams with virtual particles replaced with
pairs of on mass shell throat states of type ++, −−, and +−. Incoming lines correspond to
++ type lines and outgoing ones to −− type lines. The first two line pairs allow only time
like net momenta whereas +− line pairs allow also space-like virtual momenta. The sign
assigned to a given throat is dictated by the the sign of the on mass shell momentum on
the line. The condition that Cutkosky rules generalize as such requires ++ and −− type
virtual lines since the cut of the diagram in Cutkosky rules corresponds to on mass shell
outgoing or incoming states and must therefore correspond to ++ or −− type lines.

(b) The basic difference as compared to the ordinary Feynman diagrammatics is that loop
integrals are integrals over mass shell momenta and that all throats carry on mass shell
momenta. In each vertex of the loop mass incoming on mass shell momenta must sum
up to on mass shell momentum. These constraints improve the behavior of loop integrals
dramatically and give excellent hopes about finiteness. It does not however seem that only
a finite number of diagrams contribute to the scattering amplitude besides tree diagrams.
The point is that if a the reactions N1 → N2 and N2 → N3,, where Ni denote particle
numbers, are possible in a common kinematical region for N2-particle states then also the
diagrams N1 → N2 → N2 → N3 are possible. The virtual states N2 include all all states
in the intersection of kinematically allow regions for N1 → N2 and N2 → N3. Hence the
dream about finite number possible diagrams is not fulfilled if one allows massless particles.
If all particles are massive then the particle number N2 for given N1 is limited from above
and the dream is realized.

(c) For instance, loops are not possible in the massless case or are highly singular (bringing in
mind twistor diagrams) since the conservation laws at vertices imply that the momenta are
parallel. In the massive case and allowing mass spectrum the situation is not so simple.
As a first example one can consider a loop with three vertices and thus three internal lines.
Three on mass shell conditions are present so that the four-momentum can vary in 1-D
subspace only. For a loop involving four vertices there are four internal lines and four mass
shell conditions so that loop integrals would reduce to discrete sums. Loops involving more
than four vertices are expected to be impossible.

(d) The proposed replacement of the elementary fermions with bound states of elementary
fermions and monopoles X± brings in the analog of stringy diagrammatics. The 2-particle
wave functions in the momentum degrees of freedom of fermiona and X± migh allow more
flexibility and allow more loops. Note however that there are excellent hopes about the
finiteness of the theory also in this case.

Loop integrals are manifestly finite

One can make also more detailed observations about loops.

(a) The simplest situation is obtained if only 3-vertices are allowed. In this case conservation of
momentum however allows only collinear momenta although the signs of energy need not be
the same. Particle creation and annihilation is possible and momentum exchange is possible
but is always light-like in the massless case. The scattering matrices of supersymmetric
YM theories would suggest something less trivial and this raises the question whether
something is missing. Magnetic monopoles are an essential element of also these theories
as also massivation and symmetry breaking and this encourages to think that the formation
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of massive states as fermion X± pairs is needed. Of course, in TGD framework one has
also high mass excitations of the massless states making the scattering matrix non-trivial.

(b) In YM theories on mass shell lines would be singular. In TGD framework this is not the
case since the propagator is defined as the inverse of the 3-D dimensional reduction of the
modified Dirac operator D containing also coupling to four-momentum (this is required by
quantum classical correspondence and guarantees stringy propagators),

D = iΓ̂αpα + Γ̂αDα ,

pα = pk∂αh
k . (8.6.19)

The propagator does not diverge for on mass shell massless momenta and the propagator
lines are well-defined. This is of course of essential importance also in general case. Only
for the incoming lines one can consider the possibility that 3-D Dirac operator annihilates
the induced spinor fields. All lines correspond to generalized eigenstates of the propagator
in the sense that one has D3Ψ = λγΨ, where γ is modified gamma matrix in the direction
of the stringy coordinate emanating from light-like surface and D3 is the 3-dimensional
dimensional reduction of the 4-D modified Dirac operator. The eigenvalue λ is analogous
to energy. Note that the eigenvalue spectrum depends on 4-momentum as a parameter.

(c) Massless incoming momenta can decay to massless momenta with both signs of energy.
The integration measure d2k/2E reduces to dx/x where x ≥ 0 is the scaling factor of
massless momentum. Only light-like momentum exchanges are however possible and scat-
tering matrix is essentially trivial. The loop integrals are finite apart from the possible
delicacies related to poles since the loop integrands for given massless wormhole contact
are proportional to dx/x3 for large values of x.

(d) Irrrespective of whether the particles are massless or not, the divergences are obtained
only if one allows too high vertices as self energy loops for which the number of momentum
degrees of freedom is 3N−4 for N -vertex. The construction of SUSY limit of TGD in [K29]
led to the conclusion that the parallelly propagating N fermions for given wormhole throat
correspond to a product of N fermion propagators with same four-momentum so that for
fermions and ordinary bosons one has the standard behavior but for N > 2 non-standard
so that these excitations are not seen as ordinary particles. Higher vertices are finite only
if the total number NF of fermions propagating in the loop satisfies NF > 3N − 4. For
instance, a 4-vertex from which N = 2 states emanate is finite.

Taking into account magnetic confinement

What has been said above is not quite enough. The weak form of electric-magnetic duality [B11]
leads to the picture about elementary particles as pairs of magnetic monopoles inspiring the
notions of weak confinement based on magnetic monopole force. Also color confinement would
have magnetic counterpart. This means that elementary particles would behave like string like
objects in weak boson length scale. Therefore one must also consider the stringy case with
wormhole throats replaced with fermion-X± pairs (X± is electromagnetically neutral and ±
refers to the sign of the weak isospin opposite to that of fermion) and their super partners.

(a) The simplest assumption in the stringy case is that fermion-X± pairs behave as coherent
objects, that is scatter elastically. In more general case only their higher excitations identi-
fiable in terms of stringy degrees of freedom would be created in vertices. The massivation
of these states makes possible non-collinear vertices. An open question is how the massi-
vation fermion-X± pairs relates to the existing TGD based description of massivation in
terms of Higgs mechanism and modified Dirac operator.

(b) Mass renormalization could come from self energy loops with negative energy lines as also
vertex normalization. By very general arguments supersymmetry implies the cancellation
of the self energy loops but would allow non-trivial vertex renormalization [K29] .
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(c) If only 3-vertices are allowed, the loops containing only positive energy lines are possible if
on mass shell fermion-X± pair (or its superpartner) can decay to a pair of positive energy
pair particles of same kind. Whether this is possible depends on the masses involved. For
ordinary particles these decays are not kinematically possible below intermediate boson
mass scale (the decays F1 → F2 + γ are forbidden kinematically or by the absence of flavor
changing neutral currents whereas intermediate gauge bosons can decay to on mass shell
fermion-antifermion pair).

(d) The introduction of IR cutoff for 3-momentum in the rest system associated with the largest
CD (causal diamond) looks natural as scale parameter of coupling constant evolution and
p-adic length scale hypothesis favors the inverse of the size scale of CD coming in powers of
two. This parameter would define the momentum resolution as a discrete parameter of the
p-adic coupling constant evolution. This scale does not have any counterpart in standard
physics. For electron, d quark, and u quark the proper time distance between the tips of
CD corresponds to frequency of 10 Hz, 1280 Hz, and 160 Hz: all these frequencies define
fundamental bio-rhythms [K24] .

These considerations have left completely untouched one important aspect of generalized Feyn-
man diagrams: the necessity to perform a functional integral over the deformations of the
partonic 2-surfaces at the ends of the lines- that is integration over WCW. Number theoreti-
cal universality requires that WCW and these integrals make sense also p-adically and in the
following these aspects of generalized Feynman diagrams are discussed.

8.6.6 Three basic options for the pseudo-momentum spectrum

The calculation of the scaling factor of the Kähler function requires the knowledge of the degen-
eracies of the mass squared eigen values. There are three options to consider.

First option: all pseudo-momenta are allowed

If the degeneracy for pseudo-momenta in M2 is same for all mass values- and formally character-
izable by a number N telling how many 2-D pseudo-momenta reside on mass shell n2

0−n2
3 = m2.

In this case zeta function would be proportional to a sum of Riemann Zetas with scaled argu-
ments corresponding to scalings of the basic mass m to m/q.

ζD(s) = N
∑
q

ζ(log(qx)s) , x =
Lmin
R

. (8.6.20)

This option provides no idea about the possible values of 1 ≤ q ≤ Lmax/Lmin. The number N
is given by the integral of relativistic density of states

∫
dk/2

√
k2 +m2 over the hyperbola and

is logarithmically divergent so that the normalization factor N of the Kähler function would be
infinite.

Second option: All integer valued pseudomomenta are allowed

Second option is inspired by number theoretic vision and assumes integer valued components for
the momenta using mmax = 2π/Lmin as mass unit. p-Adicization motivates also the assumption
that momentum components using mmax as mass scale are integers. This would restrict the
choice of the number theoretical braids.

Integer valuedness together with masses coming as integer multiples of mmax implies (λ0, λ3) =
(n0, n3) with on mass shell condition n2

0 − n2
3 = n2. Note that the condition is invariant under

scaling. These integers correspond to Pythagorean triangles plus the degenerate situation with
n3 = 0. There exists a finite number of pairs (n0, n3) satisfying this condition as one finds by
expressing n0 as n0 = n3 +k giving 2n3k+k2 = p2 giving n3 < n2/2,n0 < n2/2 + 1. This would
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be enough to have a finite degeneracy D(n) ≥ 1 for a given value of mass squared and ζD would
be well defined. ζD would be a modification of Riemann zeta given by

ζD =
∑
q

ζ1(log(qx)s) , x =
Lmin
R

,

ζ1(s) =
∑

gnn
−s , gn ≥ 1 . (8.6.21)

For generalized Feynman diagrams this option allows conservation of pseudo-momentum and
for loops no divergences are possible since the integral over two-dimensional virtual momenta is
replaced with a sum over discrete mass shells containing only a finite number of points. This
option looks thus attractive but requires a regularization. On the other hand, the appearance
of a zeta function having a strong resemblance with Riemann zeta could explain the finding
that Riemann zeta is closely related to the description of critical systems. This point will be
discussed later.

Third option: Infinite primes code for the allowed mass scales

According to the proposal of [K72] , [L11] the hyper-complex parts of hyper-octonionic primes
appearing in their infinite counterparts correspond to the M2 projections of real four-momenta.
This hypothesis suggests a very detailed map between infinite primes and standard model quan-
tum numbers and predicts a universal mass spectrum [K72] . Since pseudo-momenta are auto-
matically restricted to the plane M2, one cannot avoid the question whether they could actually
correspond to the hyper-octonionic primes defining the infinite prime. These interpretations
need not of course exclude each other. This option allows several variants and at this stage it is
not possible to exclude any of these options.

(a) One must choose between two alternatives for which pseudo-momentum corresponds to
hyper-complex prime serving as a canonical representative of a hyper-octonionic prime or
a projection of hyper-octonionic prime to M2.

(b) One must decide whether one allows a) only the momenta corresponding to hyper-complex
primes, b) also their powers (p-adic fractality), or c) all their integer multiples (”Riemann
option”).

One must also decide what hyper-octonionic primes are allowed.

(a) The first guess is that all hyper-complex/hyper-octonionic primes defining length scale√
pLmin ≤ Lmax or pLmin ≤ Lmax are allowed. p-Adic fractality suggests that also the

higher p-adic length scales pn/2Lmin < Lmax and pnLmin < Lmax, n ≥ 1, are possible.

It can however happen that no primes are allowed by this criterion. This would mean
vanishing Kähler function which is of course also possible since Kähler action can vanish
(for instance, for massless extremals). It seems therefore safer to allow also the scale
corresponding to the trivial prime (n0, n3) = (1, 0) (1 is formally prime because it is not
divisible by any prime different from 1) so that at least Lmin is possible. This option also
allows only rather small primes unless the partonic 2-surface contains vacuum regions in
which case Lmax is infinite: in this case all primes would be allowed and the exponent of
Kähler function would vanish.

(b) The hypothesis that only the hyper-complex or hyper-octonionic primes appearing in the
infinite hyper-octonionic prime are possible looks more reasonable since large values of p
would be possible and could be identified in terms of the p-adic length scale hypothesis. All
hyper-octonionic primes appearing in infinite prime would be possible and the geometry
of the orbit of the partonic 2-surface would define an infinite prime. This would also give
a concrete physical interpretation for the earlier hypothesis that hyper-octonionic primes
appearing in the infinite prime characterize partonic 2-surfaces geometrically. One can also
identify the fermionic and purely bosonic primes appearing in the infinite prime as braid
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strands carrying fermion number and purely bosonic quantum numbers. This option will
be assumed in the following.



Chapter 9

Yangian Symmetry, Twistors,
and TGD

9.1 Introduction

Lubos [B59] told for some time ago about last impressive steps in the understanding of N = 4
maximally supersymmetric YM theory (SYM) possessing 4-D super-conformal symmetry. This
theory is related by AdS/CFT duality to certain string theory in AdS5 × S5 background. Sec-
ond stringy representation was discovered by Witten and based on 6-D Calabi-Yau manifold
defined by twistors. In the following I will discuss briefly the notion of Yangian symmetry and
suggest its generalization in TGD framework by replacing conformal algebra with appropriate
super-conformal algebras. Also a possible realization of twistor approach and the construction
of scattering amplitudes in terms of Yangian invariants defined by Grassmannian integrals is
considered in TGD framework and based on the idea that in zero energy ontology one can
represent massive states as bound states of massless particles. There is also a proposal for a
physical interpretation of the Cartan algebra of Yangian algebra allowing to understand at the
fundamental level how the mass spectrum of n-particle bound states could be understood in
terms of the n-local charges of the Yangian algebra. The study of modified Dirac equation leads
to a detailed proposal for the generators of Yangian algebras [K92]: the proposal is discussed
also in this chapter.

Twistors were originally introduced by Penrose to characterize the solutions of Maxwell’s equa-
tions. Kähler action is Maxwell action for the induced Kähler form of CP2. The preferred
extremals allow a very concrete interpretation in terms of modes of massless non-linear field.
Both conformally compactified Minkowski space identifiable as so called causal diamond and
CP2 allow a description in terms of twistors. These observations inspire the proposal that a
generalization of Witten’s twistor string theory relying on the identification of twistor string
world sheets with certain holomorphic surfaces assigned with Feynman diagrams could allow
a formulation of quantum TGD in terms of 3-dimensional holomorphic surfaces of CP3 × CP3

mapped to 6-surfaces dual CP3×CP3, which are sphere bundles so that they are projected in a
natural manner to 4-D space-time surfaces. Very general physical and mathematical arguments
lead to a highly unique proposal for the holomorphic differential equations defining the complex
3-surfaces conjectured to correspond to the preferred extremals of Kähler action.

9.1.1 Background

I am outsider as far as concrete calculations in N = 4 SUSY are considered and the following
discussion of the background probably makes this obvious. My hope is that the reader had
patience to not care about this and try to see the big pattern.

The developments began from the observation of Parke and Taylor [B62] that n-gluon tree
amplitudes with less than two negative helicities vanish and those with two negative helicities
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have unexpectedly simple form when expressed in terms of spinor variables used to represent
light-like momentum. In fact, in the formalism based on Grassmanian integrals the reduced
tree amplitude for two negative helicities is just ”1” and defines Yangian invariant. The article
Perturbative Gauge Theory As a String Theory In Twistor Space [B72] by Witten led to so
called Britto-Cachazo-Feng-Witten (BCFW) recursion relations for tree level amplitudes [B64,
B40, B64] allowing to construct tree amplitudes using the analogs of Feynman rules in which
vertices correspond to maximally helicity violating tree amplitudes (2 negative helicity gluons)
and propagator is massless Feynman propagator for boson. The progress inspired the idea that
the theory might be completely integrable meaning the existence of infinite-dimensional un-usual
symmetry. This symmetry would be so called Yangian symmetry [K87] assigned to the super
counterpart of the conformal group of 4-D Minkowski space.

Drumond, Henn, and Plefka represent in the article Yangian symmetry of scattering amplitudes
in N = 4 super Yang-Mills theory [B45] an argument suggesting that the Yangian invariance of
the scattering amplitudes ins an intrinsic property of planar N = 4 super Yang Mills at least at
tree level.

The latest step in the progress was taken by Arkani-Hamed, Bourjaily, Cachazo, Carot-Huot, and
Trnka and represented in the article Yangian symmetry of scattering amplitudes in N = 4 super
Yang-Mills theory [B38] . At the same day there was also the article of Rutger Boels entitled
On BCFW shifts of integrands and integrals [B29] in the archive. Arkani-Hamed et al argue
that a full Yangian symmetry of the theory allows to generalize the BCFW recursion relation
for tree amplitudes to all loop orders at planar limit (planar means that Feynman diagram
allows imbedding to plane without intersecting lines). On mass shell scattering amplitudes are
in question.

9.1.2 Yangian symmetry

The notion equivalent to that of Yangian was originally introduced by Faddeev and his group
in the study of integrable systems. Yangians are Hopf algebras which can be assigned with
Lie algebras as the deformations of their universal enveloping algebras. The elegant but rather
cryptic looking definition is in terms of the modification of the relations for generating elements
[K87] . Besides ordinary product in the enveloping algebra there is co-product ∆ which maps the
elements of the enveloping algebra to its tensor product with itself. One can visualize product
and co-product is in terms of particle reactions. Particle annihilation is analogous to annihilation
of two particle so single one and co-product is analogous to the decay of particle to two. ∆ allows
to construct higher generators of the algebra.

Lie-algebra can mean here ordinary finite-dimensional simple Lie algebra, Kac-Moody algebra
or Virasoro algebra. In the case of SUSY it means conformal algebra of M4- or rather its
super counterpart. Witten, Nappi and Dolan have described the notion of Yangian for super-
conformal algebra in very elegant and and concrete manner in the article Yangian Symmetry in
D=4 superconformal Yang-Mills theory [B50] . Also Yangians for gauge groups are discussed.

In the general case Yangian resembles Kac-Moody algebra with discrete index n replaced with a
continuous one. Discrete index poses conditions on the Lie group and its representation (adjoint
representation in the case of N = 4 SUSY). One of the conditions conditions is that the tensor
product R ⊗ R∗ for representations involved contains adjoint representation only once. This
condition is non-trivial. For SU(n) these conditions are satisfied for any representation. In the
case of SU(2) the basic branching rule for the tensor product of representations implies that the
condition is satisfied for the product of any representations.

Yangian algebra with a discrete basis is in many respects analogous to Kac-Moody algebra. Now
however the generators are labelled by non-negative integers labeling the light-like incoming and
outgoing momenta of scattering amplitude whereas in in the case of Kac-Moody algebra also
negative values are allowed. Note that only the generators with non-negative conformal weight
appear in the construction of states of Kac-Moody and Virasoro representations so that the
extension to Yangian makes sense.

The generating elements are labelled by the generators of ordinary conformal transformations
acting in M4 and their duals acting in momentum space. These two sets of elements can be
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labelled by conformal weights n = 0 and n = 1 and and their mutual commutation relations
are same as for Kac-Moody algebra. The commutators of n = 1 generators with themselves
are however something different for a non-vanishing deformation parameter h. Serre’s relations
characterize the difference and involve the deformation parameter h. Under repeated commuta-
tions the generating elements generate infinite-dimensional symmetric algebra, the Yangian. For
h = 0 one obtains just one half of the Virasoro algebra or Kac-Moody algebra. The generators
with n > 0 are n+1-local in the sense that they involve n+1-forms of local generators assignable
to the ordered set of incoming particles of the scattering amplitude. This non-locality gener-
alizes the notion of local symmetry and is claimed to be powerful enough to fix the scattering
amplitudes completely.

9.2 How to generalize Yangian symmetry in TGD frame-
work?

As far as concrete calculations are considered, I have nothing to say. I am just perplexed. It
is however possible to keep discussion at general level and still say something interesting (as I
hope!). The key question is whether it could be possible to generalize the proposed Yangian
symmetry and geometric picture behind it to TGD framework.

(a) The first thing to notice is that the Yangian symmetry of N = 4 SUSY in question is
quite too limited since it allows only single representation of the gauge group and requires
massless particles. One must allow all representations and massive particles so that the
representation of symmetry algebra must involve states with different masses, in principle
arbitrary spin and arbitrary internal quantum numbers. The candidates are obvious: Kac-
Moody algebras [A22] and Virasoro algebras [A46] and their super counterparts. Yangians
indeed exist for arbitrary super Lie algebras. In TGD framework conformal algebra of
Minkowski space reduces to Poincare algebra and its extension to Kac-Moody allows to
have also massive states.

(b) The formal generalization looks surprisingly straightforward at the formal level. In zero en-
ergy ontology one replaces point like particles with partonic two-surfaces appearing at the
ends of light-like orbits of wormhole throats located to the future and past light-like bound-
aries of causal diamond (CD×CP2 or briefly CD). Here CD is defined as the intersection
of future and past directed light-cones. The polygon with light-like momenta is naturally
replaced with a polygon with more general momenta in zero energy ontology and having
partonic surfaces as its vertices. Non-point-likeness forces to replace the finite-dimensional
super Lie-algebra with infinite-dimensional Kac-Moody algebras and corresponding super-
Virasoro algebras assignable to partonic 2-surfaces.

(c) This description replaces disjoint holomorphic surfaces in twistor space with partonic 2-
surfaces at the boundaries of CD × CP2 so that there seems to be a close analogy with
Cachazo-Svrcek-Witten picture. These surfaces are connected by either light-like orbits of
partonic 2-surface or space-like 3-surfaces at the ends of CD so that one indeed obtains the
analog of polygon.

What does this then mean concretely (if this word can be used in this kind of context)?

(a) At least it means that ordinary Super Kac-Moody and Super Virasoro algebras associated
with isometries of M4 × CP2 annihilating the scattering amplitudes must be extended to
a co-algebras with a non-trivial deformation parameter. Kac-Moody group is thus the
product of Poincare and color groups. This algebra acts as deformations of the light-like
3-surfaces representing the light-like orbits of particles which are extremals of Chern-Simon
action with the constraint that weak form of electric-magnetic duality holds true. I know
so little about the mathematical side that I cannot tell whether the condition that the
product of the representations of Super-Kac-Moody and Super-Virasoro algebras contains
adjoint representation only once, holds true in this case. In any case, it would allow all
representations of finite-dimensional Lie group in vertices whereas N = 4 SUSY would
allow only the adjoint.
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(b) Besides this ordinary kind of Kac-Moody algebra there is the analog of Super-Kac-Moody
algebra associated with the light-cone boundary which is metrically 3-dimensional. The
finite-dimensional Lie group is in this case replaced with infinite-dimensional group of
symplectomorphisms of δM4

+/− made local with respect to the internal coordinates of the
partonic 2-surface. A coset construction is applied to these two Virasoro algebras so that
the differences of the corresponding Super-Virasoro generators and Kac-Moody generators
annihilate physical states. This implies that the corresponding four-momenta are same:
this expresses the equivalence of gravitational and inertial masses. A generalization of the
Equivalence Principle is in question. This picture also justifies p-adic thermodynamics
applied to either symplectic or isometry Super-Virasoro and giving thermal contribution
to the vacuum conformal and thus to mass squared.

(c) The construction of TGD leads also to other super-conformal algebras and the natural
guess is that the Yangians of all these algebras annihilate the scattering amplitudes.

(d) Obviously, already the starting point symmetries look formidable but they still act on single
partonic surface only. The discrete Yangian associated with this algebra associated with
the closed polygon defined by the incoming momenta and the negatives of the outgoing
momenta acts in multi-local manner on scattering amplitudes. It might make sense to
speak about polygons defined also by other conserved quantum numbers so that one would
have generalized light-like curves in the sense that state are massless in 8-D sense.

9.2.1 Is there any hope about description in terms of Grassmannians?

At technical level the successes of the twistor approach rely on the observation that the am-
plitudes can be expressed in terms of very simple integrals over sub-manifolds of the space
consisting of k-dimensional planes of n-dimensional space defined by delta function appearing in
the integrand. These integrals define super-conformal Yangian invariants appearing in twisto-
rial amplitudes and the belief is that by a proper choice of the surfaces of the twistor space
one can construct all invariants. One can construct also the counterparts of loop corrections
by starting from tree diagrams and annihilating pair of particles by connecting the lines and
quantum entangling the states at the ends in the manner dictated by the integration over loop
momentum. These operations can be defined as operations for Grassmannian integrals in gen-
eral changing the values of n and k. This description looks extremely powerful and elegant and
-most importantly- involves only the external momenta.

The obvious question is whether one could use similar invariants in TGD framework to construct
the momentum dependence of amplitudes.

(a) The first thing to notice is that the super algebras in question act on infinite-dimensional
representations and basically in the world of classical worlds assigned to the partonic 2-
surfaces correlated by the fact that they are associated with the same space-time surface.
This does not promise anything very practical. On the other hand, one can hope that
everything related to other than M4 degrees of freedom could be treated like color degrees
of freedom in N = 4 SYM and would boil down to indices labeling the quantum states. The
Yangian conditions coming from isometry quantum numbers, color quantum numbers, and
electroweak quantum numbers are of course expected to be highly non-trivial and could fix
the coefficients of various singlets resulting in the tensor product of incoming and outgoing
states.

(b) The fact that incoming particles can be also massive seems to exclude the use of the twistor
space. The following observation however raises hopes. The Dirac propagator for wormhole
throat is massless propagator but for what I call pseudo momentum. It is still unclear how
this momentum relates to the actual four-momentum. Could it be actually equal to it?
The recent view about pseudo-momentum does not support this view but it is better to
keep mind open. In any case this finding suggests that twistorial approach could work
in in more or less standard form. What would be needed is a representation for massive
incoming particles as bound states of massless partons. In particular, the massive states of
super-conformal representations should allow this kind of description.
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Could zero energy ontology allow to achieve this dream?

(a) As far as divergence cancellation is considered, zero energy ontology suggests a totally
new approach producing the basic nice aspects of QFT approach, in particular unitarity
and coupling constant evolution. The big idea related to zero energy ontology is that
all virtual particle particles correspond to wormhole throats, which are pairs of on mass
shell particles. If their momentum directions are different, one obtains time-like continuum
of virtual momenta and if the signs of energy are opposite one obtains also space-like
virtual momenta. The on mass shell property for virtual partons (massive in general)
implies extremely strong constraints on loops and one expect that only very few loops
remain and that they are finite since loop integration reduces to integration over much
lower-dimensional space than in the QFT approach. There are also excellent hopes about
Cutkoski rules.

(b) Could zero energy ontology make also possible to construct massive incoming particles from
massless ones? Could one construct the representations of the super conformal algebras
using only massless states so that at the fundamental level incoming particles would be
massless and one could apply twistor formalism and build the momentum dependence of
amplitudes using Grassmannian integrals.

One could indeed construct on mass shell massive states from massless states with momenta
along the same line but with three-momenta at opposite directions. Mass squared is given
by M2 = 4E2 in the coordinate frame, where the momenta are opposite and of same
magnitude. One could also argue that partonic 2-surfaces carrying quantum numbers of
fermions and their superpartners serve as the analogs of point like massless particles and
that topologically condensed fermions and gauge bosons plus their superpartners correspond
to pairs of wormhole throats. Stringy objects would correspond to pairs of wormhole throats
at the same space-time sheet in accordance with the fact that space-time sheet allows a
slicing by string worlds sheets with ends at different wormhole throats and defining time
like braiding.

The weak form of electric magnetic duality indeed supports this picture. To understand how,
one must explain a little bit what the weak form of electric magnetic duality means.

(a) Elementary particles correspond to light-like orbits of partonic 2-surfaces identified as 3-D
surfaces at which the signature of the induced metric of space-time surface changes from
Euclidian to Minkowskian and 4-D metric is therefore degenerate. The analogy with black
hole horizon is obvious but only partial. Weak form of electric-magnetic duality states that
the Kähler electric field at the wormhole throat and also at space-like 3-surfaces defining
the ends of the space-time surface at the upper and lower light-like boundaries of the causal
diamond is proportonial to Kähler magnetic field so that Kähler electric flux is proportional
Kähler magnetic flux. This implies classical quantization of Kähler electric charge and fixes
the value of the proportionality constant.

(b) There are also much more profound implications. The vision about TGD as almost topo-
logical QFT suggests that Kähler function defining the Kähler geometry of the ”world of
classical worlds” (WCW) and identified as Kähler action for its preferred extremal reduces
to the 3-D Chern-Simons action evaluted at wormhole throats and possible boundary com-
ponents. Chern-Simons action would be subject to constraints. Wormhole throats and
space-like 3-surfaces would represent extremals of Chern-Simons action restricted by the
constraint force stating electric-magnetic duality (and realized in terms of Lagrange multi-
pliers as usual).

If one assumes that Kähler current and other conserved currents are proportional to current
defining Beltrami flow whose flow lines by definition define coordinate curves of a globally
defined coordinate, the Coulombic term of Kähler action vanishes and it reduces to Chern-
Simons action if the weak form of electric-magnetic duality holds true. One obtains almost
topological QFT. The absolutely essential attribute ”almost” comes from the fact that
Chern-Simons action is subject to constraints. As a consequence, one obtains non-vanishing
four-momenta and WCW geometry is non-trivial in M4 degrees of freedom. Otherwise one
would have only topological QFT not terribly interesting physically.
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Consider now the question how one could understand stringy objects as bound states of massless
particles.

(a) The observed elementary particles are not Kähler monopoles and there much exist a mech-
anism neutralizing the monopole charge. The only possibility seems to be that there is
opposite Kähler magnetic charge at second wormhole throat. The assumption is that in
the case of color neutral particles this throat is at a distance of order intermediate gauge bo-
son Compton length. This throat would carry weak isospin neutralizing that of the fermion
and only electromagnetic charge would be visible at longer length scales. One could speak
of electro-weak confinement. Also color confinement could be realized in analogous man-
ner by requiring the cancellation of monopole charge for many-parton states only. What
comes out are string like objects defined by Kähler magnetic fluxes and having magnetic
monopoles at ends. Also more general objects with three strings branching from the vertex
appear in the case of baryons. The natural guess is that the partons at the ends of strings
and more general objects are massless for incoming particles but that the 3-momenta are
in opposite directions so that stringy mass spectrum and representations of relevant super-
conformal algebras are obtained. This description brings in mind the description of hadrons
in terms of partons moving in parallel apart from transversal momentum about which only
momentum squared is taken as observable.

(b) Quite generally, one expects for the preferred extremals of Kähler action the slicing of space-
time surface with string world sheets with stringy curves connecting wormhole throats. The
ends of the stringy curves can be identified as light-like braid strands. Note that the strings
themselves define a space-like braiding and the two braidings are in some sense dual. This
has a concrete application in TGD inspired quantum biology, where time-like braiding
defines topological quantum computer programs and the space-like braidings induced by
it its storage into memory. Stringlike objects defining representations of super-conformal
algebras must correspond to states involving at least two wormhole throats. Magnetic flux
tubes connecting the ends of magnetically charged throats provide a particular realization of
stringy on mass shell states. This would give rise to massless propagation at the parton level.
The stringy quantization condition for mass squared would read as 4E2 = n in suitable
units for the representations of super-conformal algebra associated with the isometries. For
pairs of throats of the same wormhole contact stringy spectrum does not seem plausible
since the wormhole contact is in the direction of CP2. One can however expect generation
of small mass as deviation of vacuum conformal weight from half integer in the case of
gauge bosons.

If this picture is correct, one might be able to determine the momentum dependence of the
scattering amplitudes by replacing free fermions with pairs of monopoles at the ends of string and
topologically condensed fermions gauge bosons with pairs of this kind of objects with wormhole
throat replaced by a pair of wormhole throats. This would mean suitable number of doublings
of the Grassmannian integrations with additional constraints on the incoming momenta posed
by the mass shell conditions for massive states.

9.2.2 Could zero energy ontology make possible full Yangian symme-
try?

The partons in the loops are on mass shell particles have a discrete mass spectrum but both
signs of energy are possible for opposite wormhole throats. This implies that in the rules for
constructing loop amplitudes from tree amplitudes, propagator entanglement is restricted to that
corresponding to pairs of partonic on mass shell states with both signs of energy. As emphasized
in [B38] , it is the Grassmannian integrands and leading order singularities of N = 4 SYM,
which possess the full Yangian symmetry. The full integral over the loop momenta breaks the
Yangian symmetry and brings in IR singularities. Zero energy ontologist finds it natural to
ask whether QFT approach shows its inadequacy both via the UV divergences and via the
loss of full Yangian symmetry. The restriction of virtual partons to discrete mass shells with
positive or negative sign of energy imposes extremely powerful restrictions on loop integrals
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and resembles the restriction to leading order singularities. Could this restriction guarantee full
Yangian symmetry and remove also IR singularities?

9.2.3 Could Yangian symmetry provide a new view about conserved
quantum numbers?

The Yangian algebra has some properties which suggest a new kind of description for bound
states. The Cartan algebra generators of n = 0 and n = 1 levels of Yangian algebra commute.
Since the co-product ∆ maps n = 0 generators to n = 1 generators and these in turn to generators
with high value of n, it seems that they commute also with n ≥ 1 generators. This applies to
four-momentum, color isospin and color hyper charge, and also to the Virasoro generator L0

acting on Kac-Moody algebra of isometries and defining mass squared operator.

Could one identify total four momentum and Cartan algebra quantum numbers as sum of contri-
butions from various levels? If so, the four momentum and mass squared would involve besides
the local term assignable to wormhole throats also n-local contributions. The interpretation
in terms of n-parton bound states would be extremely attractive. n-local contribution would
involve interaction energy. For instance, string like object would correspond to n = 1 level and
give n = 2-local contribution to the momentum. For baryonic valence quarks one would have
3-local contribution corresponding to n = 2 level. The Yangian view about quantum numbers
could give a rigorous formulation for the idea that massive particles are bound states of massless
particles.

9.2.4 What about the selection of preferred M2 ⊂M4?

The puzzling aspect of the proposed picture is the restriction of the pseudo-momenta to M2

and quite generally the the selection of preferred plane M2 ⊂M4. This selection is one the key
aspects of TGD but is not too well understood. Also the closely related physical interpretation
of the 2-D pseudo-momenta in M2 is unclear.

The avatars of M2 ⊂M4 in quantum TGD

The choice of preferred plane M2 ⊂M4 pops u again and again in quantum TGD.

(a) There are very strong reasons to believe that the solutions of field equations for the preferred
extremals assign M2 to each point of space-time surface and the interpretation is as the
plane of non-physical polarizations. One can also consider the possibility that M2 depends
on the point of space-time surface but that the different choices integrate to 2-D surface
analogous to string world sheet - very naturally projection of stringy worlds sheets defining
the slicing of the space-time surface.

(b) The number theoretic vision- in particular M8 − H duality (H = M4 × CP2) providing
a purely number theoretic interpretation for the choice H = M4 × CP2 - involves also
the selection of preferred M2. The duality states that the surfaces in H can be regarded
equivalently as surfaces in M8. The induced metric and Kähler form are identical as also
the value of Kähler function. The description of the duality is following.

i. The points of space-time surface in M8 = M4 × E4 in M8 are mapped to points of
space-time surface in M4 × CP2. The M4 part of the map is just a projection.

ii. CP2 part of the map is less trivial. The idea is that M8 is identified as a subspace
of complexified octonions obtained by adding commutative imaginary unit, I call this
sub-space hyper-octonionic. Suppose that space-time surface is hyper-quaternionic (in
appropriate sense meaning that one can attach to its each point a hyper-quaternionic
plane, not necessary tangent plane). Assume that it also contains a preferred hyper-
complex plane M2 of M8 at each point -or more generally a varying plane M2 planes
whose distribution however integrates to form 2-surface analogous to string world sheet.
The interpretation is as a preferred plane of non-physical polarizations so that basic
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aspect of gauge symmetry would have a number theoretic interpretation. Note that
one would thus have a local hierarchy of octonionic, quaternionic, and complex planes.

iii. Under these assumptions the tangent plane (if action is just the four-volume or its
generalization in the case of Kähler action) is characterized by a point of CP2 =
SU(3)/U(2) where SU(3) is automorphism group of octonions respecting preferred
plane M2 of polarizations and U(2) is automorphism group acting in the hyper-
quaternionic plane. This point can be identified as a point of CP2 so that one obtains
the duality.

(c) Also the definition of CDs and the proposed construction of the hierarchy of Planck con-
stants involve a choice of preferred M2, which corresponds to the choice of rest frame and
quantization axis of angular momentum physically. Therefore the choice of quantization
axis would have direct correlates both at the level of CDs and space-time surface. The
vector between the tips of CD indeed defines preferred direction of time and thus rest
system. Similar considerations apply in the case of CP2.

(d) Preferred M2 -but now at this time at momentum space level - appears as the plane
of pseudo-momenta associated with the generalized eigen modes of the modified Dirac
equation associated with Chern-Simons action. Internally consistency requires a restriction
to this plane. This looks somewhat mysterious since this would mean that all exchanged
virtual momenta would be in M2 if the choice is same for all lines of the generalized
Feynman graph. This would restrict momentum exchanges in particle reactions to single
dimension and does not make sense. One must however notice that in the description of
hadronic reactions in QCD picture one makes a choice of longitudinal momentum direction
and considers only longitudinal momenta. It would seem that the only possibility is that the
planes M2 are independent for independent exchanged momenta. For instance, in 2 → 2
scattering the exchange would be in plane defined by the initial and final particles of the
vertex. There are also good arguments for a number theoretic quantization of the momenta
in M2.

The natural expectation from M8−H duality is that the selection of preferred M2 implies
a reduction of symmetries to those of M2×E6 and M2×E2×CP2. Could the equivalence
of M8 and H descriptions force the reduction of M4 momentum to M2 momentum implied
also by the generalized eigen value equation for the modified Dirac operator at wormhole
throats?

The moduli space associated with the choice of M2

Lorentz invariance requires that one must have moduli space of CDs with fixed tips defined as
SO(3, 1)/SO(1) × SO(2) characterizing different choices of M2. Maximal Lorentz invariance
requires the association of this moduli space to all lines of the generalized Feynman graph. It
is easy to deduce that this space is actually the hyperboloid of 5-D Minkowski space. The
moduli space is 4-dimensional and has Euclidian signature of the metric. This follows from
the fact that SO(3, 1) has Euclidian signature as a surface in the four-fold Cartesian power
H(1, 3)4 of Lobatchevski space with points identified as four time-like unit vectors defining rows
of the matrix representing Lorentz transformation. This surface is defined by the 6 orthogonality
conditions for the rows of the Lorentz transformation matrix constraints stating the orthogonality
of the 4 unit vectors. The Euclidian signature fixes the identification of the moduli space as
H(1, 5) having Euclidian signature of metric. The 10-D isometry group SO(1, 5) of the moduli
space acts as symmetries of 5-D Minkowski space (note that the conformal group of M4 is
SO(2, 4). The non-compactness of this space does not favor the idea of wave function in moduli
degrees of freedom.

Concerning the interpretation of pseudo-momenta it is best to be cautious and make only ques-
tions. Should one assume that M2 for the exchanged particle is fixed by the initial and final
momenta of the particle emitting it? How to fix in this kind of situation a unique coordinate
frame in which the number theoretic quantization of exchanged momenta takes place? Could it
be the rest frame for the initial state of the emitting particle so that one should allow also boosts
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of the number theoretically preferred momenta? Should one only assume the number theoreti-
cally preferred mass values for the exchanged particle but otherwise allow the hyperbolic angle
characterizing the energy vary freely?

9.2.5 Does M8−H duality generalize the duality between twistor and
momentum twistor descriptions?

M8−H duality is intuitively analogous to the duality of elementary wave mechanics meaning that
one can use either x-space or momentum space to describe particles. M8 is indeed the tangent
space of H and one could say that M8−H duality assigns to a 4-surface in H its ”momentum”
or tangent as a 4-surface in M8. The more concrete identification of M8 as cotangent bundle
of H so that its points would correspond to 8-momenta: this very naive picture is of course not
correct.

M8−H duality suggests that the descriptions using isometry groups of M4×E4 and M4×CP2

-or as the special role of M2 suggests - those of M2×E6 and M2×E2×CP2 should be equivalent.
The interpretation in hadron physics context would be that SO(4) is the counterpart of color
group in low energy hadron physics acting on strong isospin degrees of freedom and SU(3) that
of QCD description useful at high energies. SO(4) is indeed used in old fashioned hadron physics
when quarks and gluons had not yet been introduced. Skyrme model is one example.

The obvious question is whether the duality between descriptions based on twistors and momen-
tum space twistors generalizes to M8 −H duality. The basic objection is that the charges and
their duals should correspond to the same Lie algebra- or rather Kac-Moody algebra. This is how-
ever not the case. For the massless option one has SO(2)×SU(3) at H-side and SO(2)×SO(4)
or SO(6) and M8 side.This suggests that M8 −H duality is analogous to the duality between
descriptions using twistors and momentum space twistors and transforms the local currents J0

to non-local currents J1 and vice versa. This duality would be however be more general in
the sense that would relate Yangian symmetries with different Kac-Moody groups transforming
locality to non-locality and vice versa. This interpretation is consistent with the fact that the
groups SO(2)×SO(4), SO(6) and SO(2)×SU(3) have same rank and the standard construction
of Kac-Moody generators in terms of exponentials of the Cartan algebra involves only different
weights in the exponentials.

If M8 − H duality has something to do with the duality between descriptions using twistors
and momentum space twistors involved with Yangian symmetry, it should be consistent with
the basic aspects of the latter duality. The following arguments provide support for this.

(a) SO(4) should appear as a dynamical symmetry at M4 × CP2 side and SU(3) at M8 side
(where it indeed appears as both subgroup of isometries and as tangent space group re-
specting the choice of M2. One could consider the breaking of SO(4) to the subgroup
corresponding to vectorial transformations and interpreted in terms of electroweak vec-
torial SU(2): this would conform with conserved vector current hypothesis and partially
conserved axial current hypothesis. The U(1) factor assignable to Kähler form is also
present and allows Kac-Moody variant and an extension to Yangian.

(b) The heuristics of twistorial approach suggests that the roles of currents J0 and their non-
local duals J1 in Minkowski space are changed in the transition from H description to
M8 description in the sense that the non-local currents J1 in H description become local
currents in 8-momentum space (or 4-momentum +strong isospin) in M8 description and
J0 becomes non-local one. In the case of hadron physics the non-local charges assignable to
hadrons as collections of partons would become local charges meaning that one can assign
them to partonic 2-surfaces at boundaries of CDs assigned to M8: this says that hadrons
are the only possible final states of particle reactions. By the locality it would be impossible
decompose momentum and strong isospin to a collection of momenta and strong isospins
assigned to partons.

(c) In H description it would be impossible to do decompose quantum numbers to those of
quarks and gluons at separate uncorrelated partonic 2-surfaces representing initial and
final states of particle reaction. A possible interpretation would be in terms of monopole
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confinement accompanying electroweak and color confinement: single monopole is not a
particle. In M4 × E4 monopoles must be also present since induced Kähler forms are
identical. The Kähler form represents magnetic monopole in E4 and breaks its translational
symmetry and also selects unique M4 × E4 decomposition.

(d) Since the physics should not depend on its description, color should be confined also now.
Indeed, internal quantum numbers should be assigned in M8 picture to a wave function in
M2 × E6 and symmetries would correspond to SO(1, 1) × SO(6) or - if broken- to those
of SO(1, 1)×G, G = SO(2)× SO(4) or G = SO(3)× SO(3). Color would be completely
absent in accordance with the idea that fundamental observable objects are color singlets.
Instead of color one would have SO(4) quantum numbers and SO(4) confinement: note
that the rank of this group crucial for Kac-Moody algebra construction is same as that of
SU(3).

It is not clear whether the numbers of particle states should be same for SO(4) and SU(3).
If so, quark triplet should correspond to doublet and singlet for strong vectorial isospin in
M8 picture. Gluons would correspond to SU(2)V multiplets contained by color octet and
would therefore contain also other representations than adjoint. This could make sense in
composite particle interpretation.

(e) For M2×E2 longitudinal momentum and helicity would make sense and one could speak of
massless strong isospin at M8 side and massless color at H-side: note that massless color is
the only possibility. For M2×SO(6) option one would have 15-D adjoint representation of
SO(6) decomposing as 3×3+3×1+1×3 under SO(3)×SO(3). This could be interpreted
in terms of spin and vectorial isopin for massive particles so that the multiplets would relate
to weak gauge bosons and Higgs boson singlet and triplet plus its pseudoscalar variant. For
4-D representation of SO(6) one would have 2× 2 decomposition having interpretation in
terms of spin and vectorial isospin.

Massive spin would be associated as a local notion with M2 ×E3 and would be essentially
5-D concept. At H side massive particle would make sense only as a non-local notion with
four-momentum and mass represented as a non-local operator.

These arguments indeed encourage to think that M8 − H duality could be the analog for the
duality between the descriptions in terms of twistors and momentum twistors. In this case the
Kac-Moody algebras are however not identical since the isometry groups are not identical.

9.3 Some mathematical details about Grasmannian for-
malism

In the following I try to summarize my amateurish understanding about the mathematical
structure behind the Grassmann integral approach. The representation summarizes what I
have gathered from the articles of Arkani-Hamed and collaborators [B60, B38] . These articles
are rather sketchy and the article of Bullimore provides additional details [B32] related to soft
factors. The article of Mason and Skinner provides excellent introduction to super-twistors [B45]
and dual super-conformal invariance. I apologize for unavoidable errors.

Before continuing a brief summary about the history leading to the articles of Arkani-Hamed
and others is in order. This summary covers only those aspects which I am at least somewhat
familiar with and leaves out many topics about existence which I am only half-conscious.

(a) It is convenient to start by summarizing the basic facts about bi-spinors and their conjugates
allowing to express massless momenta as paa

′
= λaλ̃a′ with λ̃ defined as complex conjugate

of λ and having opposite chirality. When λ is scaled by a complex number λ̃ suffers an
opposite scaling. The bi-spinors allow the definition of various inner products
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〈λ, µ〉 = εabλ
aµb ,[

λ̃, µ̃
]

= εa′b′λ
a′µb

′
,

p · q = 〈λ, µ〉
[
λ̃, µ̃

]
, (qaa′ = µaµ̃a′) . (9.3.1)

If the particle has spin one can assign it a positive or negative helicity h = ±1 . Positive
helicity can be represented by introducing artitrary negative (positive) helicity bispinor µa
(µa′) not parallel to λa (µa′) so that one can write for the polarization vector

εaa′ =
µaλ̃a′

〈µ, λ〉
, positive helicity ,

εaa′ =
λaµ̃a′[
µ̃, λ̃

] , negative helicity . (9.3.2)

In the case of momentum twistors the µ part is determined by different criterion to be
discussed later.

(b) Tree amplitudes are considered and it is convenient to drop the group theory factor Tr(T1T2 · · ·Tn).
The starting point is the observation that tree amplitude for which more than n− 2 gluons
have the same helicity vanish. MHV amplitudes have exactly n−2 gluons of same helicity-
taken by a convention to be negative- have extremely simple form in terms of the spinors
and reads as

An =
〈λx, λy〉4∏n
i=1〈λi, λi+1〉

(9.3.3)

When the sign of the helicities is changed 〈..〉 is replaced with [..].

(c) The article of Witten [B72] proposed that twistor approach could be formulated as a twistor
string theory with string world sheets ”living” in 6-dimensional CP3 possessing Calabi-Yau
structure and defining twistor space. In this article Witten introduced what is known
as half Fourier transform allowing to transform momentum integrals over light-cone to
twistor integrals. This operation makes sense only in space-time signature (2, 2). Witten
also demonstrated that maximal helicity violating (MHV) twistor amplitudes (two gluons
with negative helicity) with n particles with k+2 negative helicities and l loops correspond
in this approach to holomorphic 2-surfaces defined by polynomials defined by polynomials
of degree D = k − 1 + l, where the genus of the surface satisfies g ≤ l. AdS/CFT duality
provides a second stringy approach to N = 4 theory allowing to understand the scattering
amplitudes in terms of Wilson loops with light-like edges: about this I have nothing to say.
In any case, the generalization of twistor string theory to TGD context is highly attractive
idea and will be considered later.

(d) In the article [B40] Cachazo, Svrcek, and Witten propose the analog of Feynman diagram-
matics in which MHV amplitudes can be used as analogs of vertices and ordinary 1/P 2

propagator as propagator to construct tree diagrams with arbitrary number of negative
helicity gluons. This approach is not symmetric with respect to the change of the sign
of helicities since the amplitudes with two positive helicities are constructed as tree dia-
grams. The construction is non-trivial because one must analytically continue the on mass
shell tree amplitudes to off mass shell momenta. The problem is how to assign a twistor
to these momenta. This is achieved by introducing an arbitrary twistor ηa

′
and defining

λa as λa = paa′η
a′ . This works for both massless and massive case. It however leads to

a loss of the manifest Lorentz invariance. The paper however argues and the later pa-
per [B64, B64] shows rigorously that the loss is only apparent. In this paper also BCFW
recursion formula is introduced allowing to construct tree amplitudes recursively by start-
ing from vertices with 2 negative helicity gluons. Also the notion which has become known
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as BCFW bridge representing the massless exchange in these diagrams is introduced. The
tree amplitudes are not tree amplitudes in gauge theory sense where correspond to leading
singularities for which 4 or more lines of the loop are massless and therefore collinear. What
is important that the very simple MHV amplitudes become the building blocks of more
complex amplitudes.

(e) The nex step in the progress was the attempt to understand how the loop corrections could
be taken into account in the construction BCFW formula. The calculation of loop contri-
butions to the tree amplitudes revealed the existence of dual super-conformal symmetry
which was found to be possessed also by BCFW tree amplitudes besides conformal sym-
metry. Together these symmetries generate infinite-dimensional Yangian symmetry [B45]
.

(f) The basic vision of Arkani-Hamed and collaborators is that the scattering amplitudes of
N = 4 SYM are constructible in terms of leading order singularities of loop diagrams.
These singularities are obtained by putting maximum number of momenta propagating in
the lines of the loop on mass shell. The non-leading singularities would be induced by the
leading singularities by putting smaller number of momenta on mass shell are dictated by
these terms. A related idea serving as a starting point in [B60] is that one can define loop
integrals as residue integrals in momentum space. If I have understood correctly, this means
that one an imagine the possibility that the loop integral reduces to a lower dimensional
integral for on mass shell particles in the loops: this would resemble the approach to loop
integrals based on unitarity and analyticity. In twistor approach these momentum integrals
defined as residue integrals transform to residue integrals in twistor space with twistors
representing massless particles. The basic discovery is that one can construct leading order
singularities for n particle scattering amplitude with k + 2 negative helicities as Yangian
invariants Yn,k for momentum twistors and invariants constructed from them by canonical
operations changing n and k. The correspondence k = l does not hold true for the more
general amplitudes anymore.

9.3.1 Yangian algebra and its super counterpart

The article of Witten [B50] gives a nice discussion of the Yangian algebra and its super counter-
part. Here only basic formulas can be listed and the formulas relevant to the super-conformal
case are given.

Yangian algebra

Yangian algebra Y (G) is associative Hopf algebra. The elements of Yangian algebra are labelled
by non-negative integers so that there is a close analogy with the algebra spanned by the gener-
ators of Virasoro algebra with non-negative conformal weight. The Yangian symmetry algebra
is defined by the following relations for the generators labeled by integers n = 0 and n = 1. The
first half of these relations discussed in very clear manner in [B50] follows uniquely from the fact
that adjoint representation of the Lie algebra is in question

[
JA, JB

]
= fABC JC ,

[
JA, J (1)B

]
= fABC J (1)C . (9.3.4)

Besides this Serre relations are satisfied. These have more complex and read as
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[
J (1)A,

[
J (1)B , JC

]]
+
[
J (1)B ,

[
J (1)C , JA

]]
+
[
J (1)C ,

[
J (1)A, JB

]]
=

1

24
fADKfBELfCFMfKLM{JD, JE , JF } ,[[

J (1)A, J (1)B
]
,
[
JC , J (1)D

]]
+
[[
J (1)C , J (1)D

]
,
[
JA, J (1)B

]]
=

1

24
fAGLfBEMfCDK

+fCGLfDEMfABK )fKFNfLMN{JG, JE , JF } .

(9.3.5)

The indices of the Lie algebra generators are raised by invariant, non-degenerate metric tensor
gAB or gAB . {A,B,C} denotes the symmetrized product of three generators.

Repeated commutators allow to generate the entire algebra whose elements are labeled by non-
negative integer n. The generators obtain in this manner are n-local operators arising in (n−1)-
commutator of J (1):s. For SU(2) the Serre relations are trivial. For other cases the first Serre
relation implies the second one so the relations are redundant. Why Witten includes it is for the
purposed of demonstrating the conditions for the existence of Yangians associated with discrete
one-dimensional lattices (Yangians exists also for continuum one-dimensional index).

Discrete one-dimensional lattice provides under certain consistency conditions a representation
for the Yangian algebra. One assumes that each lattice point allows a representation R of JA so
that one has JA =

∑
i J

A
i acting on the infinite tensor power of the representation considered.

The expressions for the generators J1A are given as

J (1)A = fABC
∑
i<j

JBi J
C
j . (9.3.6)

This formula gives the generators in the case of conformal algebra. This representation exists
if the adjoint representation of G appears only one in the decomposition of R ⊗ R. This is the
case for SU(N) if R is the fundamental representation or is the representation of by kth rank
completely antisymmetric tensors.

This discussion does not apply as such to N = 4 case the number of lattice points is finite and
corresponds to the number of external particles so that cyclic boundary conditions are needed
guarantee that the number of lattice points reduces effectively to a finite number. Note that the
Yangian in color degrees of freedom does not exist for SU(N) SYM.

As noticed, Yangian algebra is a Hopf algebra and therefore allows co-product. The co-product
∆ is given by

∆(JA) = JA ⊗ 1 + 1⊗ JA ,

∆(J (1)A) = J (1)A ⊗ 1 + 1⊗ J (1)A + fABCJ
B ⊗ JC per,

(9.3.7)

∆ allows to imbed Lie algebra to the tensor product in non-trivial manner and the non-triviality
comes from the addition of the dual generator to the trivial co-product. In the case that the
single spin representation of J (1)A is trivial, the co-product gives just the expression of the dual
generator using the ordinary generators as a non-local generator. This is assumed in the recent
case and also for the generators of the conformal Yangian.
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Super-Yangian

Also the Yangian extensions of Lie super-algebras make sense. From the point of physics espe-
cially interesting Lie super-algebras are SU(m|m) and U(m|m). The reason is that PSU(2, 2|4)
(P refers to ”projective”) acting as super-conformal symmetries of N = 4 SYM and this super
group is a real form of PSU(4|4). The main point of interest is whether this algebra allows
Yangian representation and Witten demonstrated that this is indeed the case [B50] .

These algebras are Z2 graded and decompose to bosonic and fermionic parts which in general
correspond to n- and m-dimensional representations of U(n). The representation associated with
the fermionic part dictates the commutation relations between bosonic and fermionic generators.
The anticommutator of fermionic generators can contain besides identity also bosonic generators
if the symmetrized tensor product in question contains adjoint representation. This is the case
if fermions are in the fundamental representation and its conjugate. For SU(3) the symmetrize
tensor product of adjoint representations contains adjoint (the completely symmetric structure
constants dabc) and this might have some relevance for the super SU(3) symmetry.

The elements of these algebras in the matrix representation (no Grassmann parameters involved)
can be written in the form

x =

(
a b
c d

)
.

a and d representing the bosonic part of the algebra are n × n matrices and m ×m matrices
corresponding to the dimensions of bosonic and fermionic representations. b and c are fermionic
matrices are n×m and m×n matrices, whose anticommutator is the direct sum of n×n and n×n
matrices. For n = m bosonic generators transform like Lie algebra generators of SU(n)×SU(n)
whereas fermionic generators transform like n⊗ n⊕ n⊗ n under SU(n)× SU(n). Supertrace is
defined as Str(x) = Tr(a)−Tr(b). The vanishing of Str defines SU(n|m). For n 6= m the super
trace condition removes identity matrix and PU(n|m) and SU(n|m) are same. That this does
not happen for n = m is an important delicacy since this case corresponds to N = 4 SYM. If
any two matrices differing by an additive scalar are identified (projective scaling as now physical
effect) one obtains PSU(n|n) and this is what one is interested in.

Witten shows that the condition that adjoint is contained only once in the tensor product R⊗R
holds true for the physically interesting representations of PSU(2, 2|4) so that the generaliza-
tion of the bilinear formula can be used to define the generators of J (1)A of super Yangian of
PU(2, 2|4). The defining formula for the generators of the Super Yangian reads as

J
(1)
C = gCC′J

(1)C′ = gCC′f
C′

AB

∑
i<j

JAi J
B
j

= gCC′f
C′

ABg
AA′gBB

′∑
i<j

J iA′J
j
B′ .

(9.3.8)

Here gAB = Str(JAJB) is the metric defined by super trace and distinguishes between PSU(4|4)
and PSU(2, 2|4). In this formula both generators and super generators appear.

Generators of super-conformal Yangian symmetries

The explicit formula for the generators of super-conformal Yangian symmetries in terms of
ordinary twistors is given by

jAB =

n∑
i=1

ZAi ∂ZBi ,

j
(1)A
B =

∑
i<j

(−1)C
[
ZAi ∂ZCj Z

C
j ∂ZBj

]
. (9.3.9)
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This formula follows from completely general formulas for the Yangian algebra discussed above

and allowing to express the dual generators j
(1)
N as quadratic expression of jN involving structures

constants. In this rather sketchy formula twistors are ordinary twistors. Note however that
in the recent case the lattice is replaced with its finite cutoff corresponding to the external
particles of the scattering amplitude. This probably corresponds to the assumption that for the
representations considered only finite number of lattice points correspond to non-trivial quantum
numbers or to cyclic symmetry of the representations.

In the expression for the amplitudes the action of transformations is on the delta functions and
by partial integration one finds that a total divergence results. This is easy to see for the linear
generators but not so for the quadratic generators of the dual super-conformal symmetries. A

similar formula but with jAB and j
(1)A
B interchanged applies in the representation of the ampli-

tudes as Grassmann integrals using ordinary twistors. The verification of the generalization of
Serre formula is also straightforward.

9.3.2 Twistors and momentum twistors and super-symmetrization

In [B45] the basics of twistor geometry are summarized. Despite this it is perhaps good to collect
the basic formulas here.

Conformally compactified Minkowski space

Conformally compactified Minkowski space can be described as SO(2, 4) invariant (Klein) quadric

T 2 + V 2 −W 2 −X2 − Y 2 − Z2 = 0 . (9.3.10)

The coordinates (T, V,W,X, Y, Z) define homogenous coordinates for the real projective space
RP 5. One can introduce the projective coordinates Xαβ = −Xβα through the formulas

X01 = W − V , X02 = Y + iX , X03 = i√
2
T − Z ,

X12 = − i√
2
(T + Z) , X13 = Y − iX , X23 = 1

2 (V +W ) .
(9.3.11)

The motivation is that the equations for the quadric defining the conformally compactified
Minkowski space can be written in a form which is manifestly conformally invariant:

εαβγδXαβXγδ = 0 . (9.3.12)

The points of the conformally compactified Minkowski space are null separated if and only if
the condition

εαβγδXαβYγδ = 0 (9.3.13)

holds true.
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Correspondence with twistors and infinity twistor

One ends up with the correspondence with twistors by noticing that the condition is equivalent
with the possibility to expression Xαβ as

Xαβ = A[αBβ] , (9.3.14)

where brackets refer to antisymmetrization. The complex vectors A and B define a point in
twistor space and are defined only modulo scaling and therefore define a point of twistor space
CP3 defining a covering of 6-D Minkowski space with metric signature (2, 4). This corresponds
to the fact that the Lie algebras of SO(2, 4) and SU(2, 2) are identical. Therefore the points
of conformally compactified Minkowski space correspond to lines of the twistor space defining
spheres CP1 in CP3.

One can introduce a preferred scale for the projective coordinates by introducing what is called
infinity twistor (actually a pair of twistors is in question) defined by

Iαβ =

(
εA
′B′ 0

0 0

)
. (9.3.15)

Infinity twistor represents the projective line for which only the coordinate X01 is non-vanishing
and chosen to have value X01 = 1.

One can define the contravariant form of the infinite twistor as

Iαβ = εαβγδIγδ =

(
0 0
0 εAB

)
. (9.3.16)

Infinity twistor defines a representative for the conformal equivalence class of metrics at the
Klein quadric and one can express Minkowski distance as

(x− y)2 =
XαβYαβ

IαβXαβIµνY µν
. (9.3.17)

Note that the metric is necessary only in the denominator. In twistor notation the distance can
be expressed as

(x− y)2 =
ε(A,B,C,D)

〈AB〉〈CD〉
. (9.3.18)

Infinite twistor Iαβ and its contravariant counterpart project the twistor to its primed and

unprimed parts usually denoted by µA
′

and λA and defined spinors with opposite chiralities.
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Relationship between points of M4 and twistors

In the coordinates obtained by putting X01 = 1 the relationship between space-time coordinates
xAA

′
and Xαβ is

Xαβ =

(
− 1

2ε
A′B′x2 −ixA′B

ix B′

A εA,B

)
, Xαβ =

(
εA′B ′x

2 −ix B
A′

ixAB′ − 1
2ε
ABx2

)
, (9.3.19)

If the point of Minkowski space represents a line defined by twistors (µU , λU ) and (µV , λV ), one
has

xAC
′

= i
(µV λU − µUλV )AC

′

〈UV 〉
(9.3.20)

The twistor µ for a given point of Minkowski space in turn is obtained from λ by the twistor
formula by

µA
′

= −ixAA
′
λA . (9.3.21)

Generalization to the super-symmetric case

This formalism has a straightforward generalization to the super-symmetric case. CP3 is replaced
with CP3|4 so that Grassmann parameters have four components. At the level of coordinates
this means the replacement [WI ] = [Wα, χα]. Twistor formula generalizes to

µA
′

= −ixAA′λA , χα = θAαλA . (9.3.22)

The relationship between the coordinates of chiral super-space and super-twistors generalizes to

(x, θ) =

(
i
(µV λU − µUλV )

〈UV 〉
,

(χV λU − χUλV )

〈UV 〉

)
(9.3.23)

The above summaried formulas can be applied to super-symmetric variants of momentum
twistors to deduce the relationship between region momenta x assigned with edges of polygons
and twistors assigned with the ends of the light-like edges. The explicit formulas are represented
in [B45] . The geometric picture is following. The twistors at the ends of the edge define the
twistor pair representing the region momentum as a line in twistor space and the intersection
of the twistor lines assigned with the region momenta define twistor representing the external
momenta of the graph in the intersection of the edges.
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Basic kinematics for momentum twistors

The supersymmetrization involves replacement of multiplets with super-multiplets

Φ(λ, λ̃, η) = G+(λ, λ̃) + ηiΓ
aλ, λ̃) + · · ·+ εabcdη

aηbηcηdG−(λ, λ̃) . (9.3.24)

Momentum twistors are dual to ordinary twistors and were introduced by Hodges. The light-
like momentum of external particle a is expressed in terms of the vertices of the closed polygon
defining the twistor diagram as

pµi = xµi − x
µ
i+1 = λiλ̃i , θi − θi+1 = λiηi . (9.3.25)

One can say that massless momenta have a conserved super-part given by λiηi. The dual of
the super-conformal group acts on the region momenta exactly as the ordinary conformal group
acts on space-time and one can construct twistor space for dua region momenta.

Super-momentum conservation gives the constraints

∑
pi = 0 ,

∑
λiηi = 0 . (9.3.26)

The twistor diagrams correspond to polygons with edges with lines carrying region momenta
and external massless momenta emitted at the vertices.

This formula is invariant under overall shift of the region momenta xµa . A natural interpretation
for xµa is as the momentum entering to the the vertex where pa is emitted. Overall shift would
have interpretation as a shift in the loop momentum. xµa in the dual coordinate space is associated
with the line Za−1Za in the momentum twistor space. The lines Za−1Za and ZaZa+1 intersect
at Za representing a light-like momentum vector pµa .

The brackets 〈abcd〉 ≡ εIJKLZ
I
aZ

J
b Z

K
c Z

L
d define fundamental bosonic conformal invariants ap-

pearing in the tree amplitudes as basic building blocks. Note that Za define points of 4-D
complex twistor space to be distinguished from the projective twistor space CP3. Za define
projective coordinates for CP3 and one of the four complex components of Za is redundant and
one can take Z0

a = 1 without a loss of generality.

9.3.3 Brief summary of the work of Arkani-Hamed and collaborators

The following comments are an attempt to summarize my far from complete understanding
about what is involved with the representation as contour integrals. After that I shall describe
in more detail my impressions about what has been done.

Limitations of the approach

Consider first the limitations of the approach.

(a) The basis idea is that the representation for tree amplitudes generalizes to loop amplitudes.
On other words, the amplitude defined as a sum of Yangian invariants expressed in terms
of Grassmann integrals represents the sum of loops up to some maximum loop number.
The problem is here that shifts of the loop momenta are essential in the UV regularization
procedure. Fixing the coordinates x1, · · · , xn having interpretation as momenta associated
with lines in the dual coordinate space allows to eliminate the non-uniqueness due to the
common shift of these coordinates.
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(b) It is not however not possible to identify loop momentum as a loop momentum common
to different loop integrals unless one restricts to planar loops. Non-planar diagrams are
obtained from a planar diagram by permuting the coordinates xi but this means that the
unique coordinate assignment is lost. Therefore the representation of loop integrands as
Grassmann integrals makes sense only for planar diagrams. From TGD point of view one
could argue that this is one good reason for restricting the loops so that they are for on
mass shell particles with non-parallel on mass shell four-momenta and possibly different
sign of energies for given wormhole contact representing virtual particle.

(c) IR regularization is needed even in N = 4 for SYM given by ”moving out on the Coulomb
branch theory” so that IR singularities remain the problem of the theory.

What has been done?

The article proposes a generalization of the BCFW recursion relation for tree diagrams of N = 4
for SYM so that it applies to planar diagrams with a summation over an arbitrary number of
loops.

(a) The basic goal of the article is to generalize the recursion relations of tree amplitudes so that
they would apply to loop amplitudes. The key idea is following. One can formally represent
loop integrand as a contour integral in complex plane whose coordinate parameterizes
the deformations Zn → Zn + εZn−1 and re-interpret the integral as a contour integral
with oppositely oriented contour surrounding the rest of the complex plane which can be
imagined also as being mapped to Riemann sphere. What happens only the poles which
correspond to lower number of loops contribute this integral. One obtains a recursion
relation with respect to loop number. This recursion seems to be the counterpart for the
recursive construction of the loops corrections in terms of absorptive parts of amplitudes
with smaller number of loop using unitarity and analyticity.

(b) The basic challenge is to deduce the Grassmann integrands as Yangian invariants. From
these one can deduce loop integrals by integration over the four momenta associated with
the lines of the polygonal graph identifiable as the dual coordinate variables xa. The
integration over loop momenta can induce infrared divergences breaking Yangian symmetry.
The big idea here is that the operations described above allow to construct loop amplitudes
from the Yangian invariants defining tree amplitudes for a larger number of particles by
removing external particles by fusing them to form propagator lines and by using the
BCFW bridge to fuse lower-dimensional invariants. Hence the usual iterative procedure
(bottom-up) used to construct scattering amplitudes is replaced with a recursive procedure
(top-down). Of course, once lower amplitudes has been constructed they can be used to
construct amplitudes with higher particle number.

(c) The first guess is that the recursion formula involves the same lower order contributions as
in the case of tree amplitudes. These contributions have interpretation as factorization of
channels involving single particle intermediate states. This would however allow to reduce
loop amplitudes to 3-particle loop amplitudes which vanish in N = 4 SYM by the vanishing
of coupling constant renormalization. The additional contribution is necessary and corre-
sponds to a source term identifiable as a ”forward limit” of lower loop integrand. These
terms are obtained by taking an amplitude with two additional particles with opposite
four-momenta and forming a state in which these particles are entangled with respect to
momentum and other quantum numbers. Entanglement means integral over the massless
momenta on one hand. The insertion brings in two momenta xa and xb and one can imagine
that the loop is represented by a branching of propagator line. The line representing the
entanglement of the massless states with massless momentum define the second branch of
the loop. One can of course ask whether only massless momentum in the second branch. A
possible interpretation is that this state is expressible by unitarity in terms of the integral
over light-like momentum.

(d) The recursion formula for the loop amplitude Mn,k,l involves two terms when one neglects
the possibility that particles can also suffer trivial scattering (cluster decomposition). This
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term basically corresponds to the Yangian invariance of n arguments identified as Yangian
invariant of n− 1 arguments with the same value of k.

i. The first term corresponds to single particle exchange between particle groups obtained
by splitting the polygon at two vertices and corresponds to the so called BCFW bridge
for tree diagrams. There is a summation over different splittings as well as a sum over
loop numbers and dimensions k for the Grassmann planes. The helicities in the two
groups are opposite.

ii. Second term is obtained from an amplitude obtained by adding of two massless particles
with opposite momenta and corresponds to n+ 2, k+ 1, l− 1. The integration over the
light-like momentum together with other operations implies the reduction n+ 2→ n.
Note that the recursion indeed converges. Certainly the allowance of added zero energy
states with a finite number of particles is necessary for the convergence of the procedure.

9.3.4 The general form of Grassmannian integrals

If the recursion formula proposed in [B38] is correct, the calculations reduce to the construction
of NkMHV (super) amplitudes. MHV refers to maximal helicity violating amplitudes with 2
negative helicity gluons. For NkMHV amplitude the number of negative helicities is by defini-
tion k + 2 [B60] . Note that the total right handed R-charge assignable to 4 super-coordinates
ηi of negative helicity gluons can be identified as R = 4k. BCFW recursion formula [B64, B64]
allows to construct from MHV amplitudes with arbitrary number of negative helicities.

The basic object of study are the leading singularities of color-stripped n-particle NkMHV
amplitudes. The discovery is that these singularities are expressible in terms Yangian invariants
Yn,k(Z1, · · · , Zn), where Zi are momentum super-twistors. These invariants are defined by
residue integrals over the compact nk − 1-dimensional complex space G(n, k) = U(n)/U(k) ×
U(n − k) of k-planes of complex n-dimensional space. n is the number of external massless
particles, k is the number negative helicity gluons in the case of NkMHV amplitudes, and Za,
i = 1, · · · , n denotes the projective 4-coordinate of the super-variant CP 3|4 of the momentum
twistor space CP3 assigned to the massless external particles is following. Gl(n) acts as linear
transformations in the n-fold Cartesian power of twistor space. Yangian invariant Yn,k is a
function of twistor variables Za having values in super-variant CP3|3 of momentum twistor
space CP3 assigned to the massless external particles being simple algebraic functions of the
external momenta.

It is also possible to defineNkMHV amplitudes in terms of Yangian invariants Ln,k+2(W1, · · · ,Wn)
by using ordinary twistors Wa and identical defining formula. The two invariants are related by
the formula Ln,k+2(W1, · · · ,Wn) = M tree

MHV × Yn,k(Z1, · · · , Zn). Here M tree
MHV is the tree con-

tribution to the maximally helicity violating amplitude for the scattering of n particles: recall
that these amplitudes contain two negative helicity gluons whereas the amplitudes containing
a smaller number of them vanish [B40] . One can speak of a factorization to a product of
n-particle amplitudes with k − 2 and 2 negative helicities as the origin of the duality. The
equivalence between the descriptions based on ordinary and momentum twistors states the dual
conformal invariance of the amplitudes implying Yangian symmetry. It has been conjectured
that Grassmannian integrals generate all Yangian invariants.

The formulas for the Grassmann integrals for twistors and momentum twistors appearing in the
expressions of NkMHV amplitudes are given by following expressions.

(a) The integrals Ln,k(W1, · · · ,Wn) associated with Nk−2MHV amplitudes in the description
based on ordinary twistors correspond to k negative helicities and are given by

Ln,k(W1, · · · ,Wn) =
1

V ol(GL(2))

∫
dk×nCαa

(1 · · · k)(2 · · · k + 1) · · · (n1 · · · k − 1)
×

×
k∏

α=1

d4|4Yα

n∏
i=1

δ4|4(Wi − CαiYα) .

(9.3.27)
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Here Cαa denote the n× k coordinates used to parametrize the points of Gk,n.

(b) The integrals Yn,k(W1, · · · ,Wn) associated with NkMHV amplitudes in the description
based on momentum twistors are defined as

Yn,k(Z1, · · · , Zn) =
1

V ol(GL(k))
×
∫

dk×nCαa
(1 · · · k)(2 · · · k + 1) · · · (n1 · · · k − 1)

×
k∏

α=1

δ4|4(CαaZa) .

(9.3.28)

The possibility to select Z0
a = 1 implies

∑
k Cαk = 0 allowing to eliminate Cαn so that

the actual number of coordinates Grassman coordinates is nk − 1. As already noticed,
Ln,k+2(W1, · · · ,Wn) = M tree

MHV × Yn,k(Z1, · · · , Zn). Momentum twistors are obviously
calculationally easier since the value of k is smaller by two units.

The 4k delta functions reduce the number of integration variables of contour integrals from nk
to (n − 4)k in the bosonic sector (the definition of delta functions involves some delicacies not
discussed here). The n quantities (m, · · ·m + k) are k × k-determinants defined by subsequent
columns from m to m+k−1 of the k×n matrix defined by the coordinates Cαa and correspond
geometrically to the k-volumes of the k-dimensional parallel-pipeds defined by these column
vectors. The fact that the scalings of twistor space coordinates Za can be compensated by
scalings of Cαa deforming integration contour but leaving the residue integral invariant so that
the integral depends on projective twistor coordinates only.

Since the integrand is a rational function, a multi-dimensional residue calculus allows to deduce
the values of these integrals as residues associated with the poles of the integrand in a recursive
manner. The poles correspond to the zeros of the k×k determinants appearing in the integrand
or equivalently to singular lower-dimensional parallel-pipeds. It can be shown that local residues
are determined by (k − 2)(n − k − 2) conditions on the determinants in both cases. The value
of the integral depends on the explicit choice of the integration contour for each variable Cαa
left when delta functions are taken into account. The condition that a correct form of tree
amplitudes is obtained fixes the choice of the integration contours.

For the ordinary twistors W the residues correspond to projective configurations in CPk−1, or
more precisely in the space CPnk−1/Gl(k), which is (k − 1)n − k2-dimensional space defining
the support for the residues integral. Gl(k) relates to each other different complex coordinate
frames for k-plane and since the choice of frame does not affect the plane itself, one has Gl(k)
gauge symmetry as well as the dual Gl(n− k) gauge symmetry.

CPk−1 comes from the fact that Cαk are projective coordinates: the amplitudes are indeed
invariant under the scalings Wi → tiWi, Cαi → tCαi. The coset space structure comes from
the fact that Gl(k) is a symmetry of the integrand acting as Cαi → Λ β

α Cβi . This analog of
gauge symmetry allows to fix k arbitarily chosen frame vectors Cαi to orthogonal unit vectors.
For instance, one can have Cαi = δαi for α = i ∈ 1, · · · , k. This choice is discussed in detail
in [B60] . The reduction to CPk−1 implies the reduction of the support of the integral to line in
the case of MHV amplitudes and to plane in the case of NMHV as one sees from the expression
dµ =

∏
α d

4|4Yα
∏n
i=1 δ

4|4(Wi −CαiYα). For (i1, · · · , ik) = 0 the vectors i1, ..ik belong to k − 2-
dimensional plane of CPk−1. In the case of NMHV (N2MHV ) amplitudes this translates at
the level of twistors to the condition that the corresponding twistors {i1, i2, i3} ({i1, i2, i3, i4})
are collinear (in the same plane) in twistor space. This can be understood from the fact that
the delta functions in dµ allow to express Wi in terms of k − 1 Yα:s in this case.

The action of conformal transformations in twistor space reduces to the linear action of SU(2, 2)
leaving invariant Hermitian sesquilinear form of signature (2, 2). Therefore the conformal invari-
ance of the Grassmannian integral and its dual variant follows from the possibility to perform
a compensating coordinate change for Cαa and from the fact that residue integral is invariant
under small deformations of the integration contour. The above described relationship between
representations based on twistors and momentum twistors implies the full Yangian invariance.
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9.3.5 Canonical operations for Yangian invariants

General l-loop amplitudes can be constructed from the basic Yangian invariants defined by
NkMHV amplitudes by various operations respecting Yangian invariance apart from possible
IR anomalies. There are several operations that one can perform for Yangian invariants Yn,k
and all these operations appear in the recursion formula for planar all loop amplitudes. These
operations are described in [B38] much better than I could do it so that I will not go to any
details. It is possible to add and remove particles, to fuse two Yangian invariants, to merge
particles, and to construct from two Yangian invariants a higher invariant containing so called
BCFW bridge representing single particle exchange using only twistorial methods.

Inverse soft factors

Inverse soft factors add to the diagram a massless collinear particles between particles a and b
and by definition one has

On+1(a, c, b, · · · ) =
〈ab〉
〈ac〉〈cb〉

On(a′b′) . (9.3.29)

At the limit when the momentum of the added particle vanishes both sides approach the original
amplitude. The right-handed spinors and Grassmann parameters are shifted

λ̃′a = λ̃a + 〈cb〉
〈ab〉 λ̃c , λ̃′b = λ̃b + 〈ca〉

〈ba〉 λ̃c ,

η′a = ηa + 〈cb〉
〈ab〉ηc , η′b = ηb + 〈ca〉

〈ba〉ηc .
(9.3.30)

There are two kinds of inverse soft factors.

(a) The addition of particle leaving the value k of negative helicity gluons unchanged means
just the re-interpretation

Y ′n,k(Z1, · · · , Zn−1, Zn) = Yn−1,k(Z1, · · · , Zn−1) (9.3.31)

without actual dependence on Zn. There is however a dependence on the momentum
of the added particle since the relationship between momenta and momentum twistors is
modified by the addition obtained by applying the basic rules relating region super momenta
and momentum twistors (light-like momentum determines λi and twistor equations for
xi and λi, ηi determine (µi, χi)) is expressible assigned to the external particles [B32] .
Modifications are needed only for the new vertex and its neighbors.

(b) The addition of a particle increasing k with single unit is a more complex operation which
can be understood in terms of a residue of Yn,k proportional to Yn−1,k−1 and Yangian
invariant [z1 · · · z5] with five arguments constructed from basic Yangian invariants with
four arguments. The relationship between the amplitudes is now

Y ′n,k(.., Zn−1Zn, Z1 · · · ) = [n− 2 n− 1 n 1 2]× Yn−1,k−1(· · · Ẑn−1, Ẑ1, · · · ) .(9.3.32)

Here

[abcde] =
δ0|4(ηa〈bcde〉+ cyclic)

〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉
. (9.3.33)

denoted also by R(a, b, c, d, e) is the fundamental R-invariant appearing in one loop cor-
rections of MHV amplitudes and will appears also in the recursion formulas. 〈abcd〉 is the
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fundamental super-conformal invariant associated with four super twistors defined in terms
of the permutation symbol.

Ẑn−1, Ẑ1 are deformed momentum twistor variables. The deformation is determined from
the relationship between external momenta, region momenta and momentum twistor vari-
ables. Ẑ1 is the intersection Ẑ1 = (n − 2 n − 1 2) ∩ (12) of the the line (12) with the
plane (n− 2 n− 1 2) and Ẑn−1 the intersection Ẑ1 = (12n) ∩ (n− 2 n− 1) of the the line
(n − 2 n − 1) with the plane (12n). The interpretation for the intersections at the level
of ordinary Feynman diagrams is in terms of the collinearity of the four-momenta involved
with the underlying box diagram with parallel on mass shell particles. These result from
unitarity conditions obtained by putting maximal number of loop momenta on mass shell
to give the leading singularities.

The explicit expressions for the momenta are

Ẑ1 ≡ (n− 2 n− 1 2) ∩ (12)Z1 = 〈2 n− 2 n− 1 n〉+ Z2〈n− 2 n− 1 n 1〉 ,
Ẑn−1 ≡ (12n) ∩ (n− 2 n− 1) = Zn−2〈n− 2 n− 1 n 2〉+ Zn−1〈n 1 2 n− 2〉 .

(9.3.34)

These intersections also appear in the expressions defining the recursion formula.

Removal of particles and merge operation

Particles can be also removed. The first manner to remove particle is by integrating over the
twistor variable characterizing the particle. This reduces k by one unit. Merge operation pre-
serves the number of loops but removes a particle particle by identifying the twistor variables
of neighboring particles. This operation corresponds to an integral over on mass shell loop mo-
mentum at the level of tree diagrams and by Witten’s half Fourier transform can be transformed
to twistor integral.

The product

Y ′(Z1, · · ·Zn) = Y1(Z1, · · ·Zm)× Y2(Zm+1, · · ·Zn) (9.3.35)

of two Yangian invariants is again a Yangian invariant. This is not quite trivial since the
dependence of region momenta and momentum twistors on the momenta of external particles
makes the operation non-trivial.

Merge operation allows to construct more interesting invariants from the products of Yangian
invariants. One begins from a product of Yangian invariants (Yangian invariant trivially) rep-
resented cyclically as points of circle and identifies the last twistor argument of given invariant
with the first twistor argument of the next invariant and performs integrals over the momen-
tum twistor variables appearing twice. The soft k-increasing and preserving operations can be
described also in terms of this operation for Yangian invariants such that the second invari-
ant corresponds to 3-vertex. The cyclic merge operation applied to four MHV amplitudes gives
NMHV amplitudes associated with on mass shell momenta in box diagrams. By applying similar
operation to NMHV amplitudes and MHV amplitudes one obtains 2-loop amplitudes. In [B38]
examples about these operations are described.

BCFW bridge

BCFW bridge allows to build general tree diagrams from MHV tree diagrams [B64, B64] and
recursion formula of [B38] generalizes this to arbitrary diagrams. At the level of Feynman
diagrams it corresponds to a box diagram containing general diagrams labeled by L and R and
MHV and MHV 3-vertices (MHV 3-vertex allows expression in terms of MHV diagrams) with
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the lines of the box on mass shell so that the three momenta emanating from the vertices are
parallel and give rise to a one-loop leading singularity.

At the level of Feynman diagrams BCFW bridge corresponds to so called ”two-mass hard”
leading singularities associated with box diagrams with light-like momenta at the four lines of
the diagram [B60] . The motivation for the study of these diagrams comes from the hypothesis
the leading order singularities obtained by putting as many particles as possible on mass shell
contain the data needed to construct scattering amplitudes of N = 4 SYM completely. This
representation of the leading singularities generalizes to arbitrary loops. The recent article is a
continuation of this program to planar amplitudes.

Also BCFW bridge allows an interpretation as a particular kind fusion for Yang invariants
and involves all the basic operations. One starts from the amplitudes Y LnL,kL and Y RnR,kR and
constructs an amplitude Y ′nL+nR,kL+kR+1 representing the amplitude which would correspond
to a generalization of the MHV diagrams with the two tree diagrams connected by the MHV
propagator (BFCW bridge) replaced with arbitrary loop diagrams. Particle ”1” resp. ”j+1”
is added by the soft k-increasing factor to YnL+1,kL+1 resp. YnR+1,kR+1 giving amplitude with
n+2 particles and with k-charge equal to kL+kR+2. The subsequent operations must reduce k-
charge by one unit. First repeated ”1” and ”j+1” are identified with their copies by k conserving
merge operation, and after that one performs an integral over the twistor variable ZI associated
with the internal line obtained and reducing k by one unit. The soft k-increasing factors bring
in the invariants [n− 1 n 1 I j + 2] associated with YL and [1 I j + 1 j j − 1] associated with
YR. The integration contour is chosen so that it selects the pole defined by ∠n− 1 n 1 I〉 in the
denominator of [n− 1 n 1 I j + 2] and the pole defined by 〈1 I j + 1 j〉 in the denominator of
[1 I j + 1 j j − 1].

The explicit expression for the BCFW bridge is very simple:

(YL ⊗BFCW YR)(1, · · · , n) = [n− 1 n 1 j j + 1]× YR(1, · · · , j, I)YL(I, j + 1, · · · , n− 1, n̂) ,

n̂ = (n− 1 n) ∩ (j j + 1 1) , I = (j j + 1) ∩ (n− 1 n 1) . (9.3.36)

Single cuts and forward limit

Forward limit operation is used to increase the number of loops by one unit. The physical
picture is that one starts from say 1-loop amplitude and cuts one line by assigning to the pieces
of the line opposite light-like momenta having interpretation as incoming and outgoing particles.
The resulting amplitude is called forward limit. The only reasonable interpretation seems to be
that the loop integration is expressed by unitarity as forward limit meaning cutting of the line
carrying the loop momentum. This operation can be expressed in a manifestly Yangian invariant
way as entangled removal of two particles with the merge operation meaning the replacement
Zn → Zn−1. Particle n + 1 is added adjacent to A,B as a k-increasing inverse soft factor and
then A and B are removed by entangled integration, and after this merge operation identifies
n+ 1 and 1.

Forward limit is crucial for the existence of loops and for Yangian invariants it corresponds to the
poles arising from 〈(AB)qZn(z)Z1)〉 the integration contour Zn + zZn−1 around Zb in the basic
formula M =

∮
(dz/z)Mn leading to the recursion formula. A and B denote the momentum

twistors associated with opposite light-like momenta. In the generalized unitarity conditions the
singularity corresponds to the cutting of line between particles n and 1 with momenta q and
−q, summing over the multiplet of stats running around the loop. Between particles n2 and 1
one has particles n − 1, n with momenta q,−q. q = x1 − xn = −xn + xn−1 giving x1 = xn−1.
Light-likeness of q means that the lines (71) = (76) and (15) intersect. At the forward limit
giving rise to the pole Z6 and Z7 approach to the intersection point (76) ∩ (15) . In a generic
gauge theories the forward limits are ill-defined but in super-symmetric gauge theories situation
changes.

The corresponding Yangian operation removes two external particles with opposite four-momenta
and involves integration over two twistor variables Za and Zb and gives rise to the following ex-
pression
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∫
GL(2)

Y (· · · , Zn, ZA, ZB , Z1, · · · ) . (9.3.37)

The integration over GL(2) corresponds to integration over twistor variables associated ZA and
ZB . This operation allows addition of a loop to a given amplitude. The line ZaZb represents
loop momentum on one hand and the dual x-coordinate identified as momentum propagating
along the line on the other hand.

The integration over these variables is equivalent to an integration over loop momentum as the
explicit calculation of [B38] (see pages 12-13) demonstrates. If the integration contours are
products in the product of twistor spaces associated with a and b the and gives lower order
Yangian invariant as answer. It is however also possible to choose the integration contour to
be entangled in the sense that it cannot be reduced to a product of integration contours in
the Cartesian product of twistor spaces. In this case the integration gives a loop integral. In
the removal operation Yangian invariance can be broken by IR singularities associated with the
integration contour and the procedure does not produce genuine Yangian invariant always.

What is highly interesting from TGD point of view is that this integral can be expressed as a
contour integral over CP1 × CP1 combined with integral over loop momentum. If TGD vision
about generalized Feynman graps in zero energy ontology is correct, the loop momentum integral
is discretized to an an integral over discrete mass shells and perhaps also to a sum over discretized
momenta and one can therefore avoid IR singularities.

9.3.6 Explicit formula for the recursion relation

Recall that the recursion formula is obtained by considering super-symmetric momentum-twistor
deformation Zn → Zn + zZn−1 and by integrating over z to get the identity

Mn,k,l =

∮
dz

z
M̂n,k,l(z) . (9.3.38)

This integral equals to integral with reversed integration contour enclosing the exterior of the
contour. The challenge is to deduce the residues contributing to the residue integral and the
claim of [B38] is that these residues reduce to simple basic types.

(a) The first residue corresponds to a pole at infinity and reduces the particle number by one
giving a contribution Mn−1,k,l(1, · · · , n − 1) to Mn,k,l(1, · · · , n − 1, n). This is not totally
trivial since the twistor variables are related to momenta in different manner for the two
amplitudes. This gives the first contribution to the right hand side of the formula below.

(b) Second pole corresponds to the vanishing of 〈Zn(z)Z1ZjZj+1〉 and corresponds to the fac-
torization of channels. This gives the second BCFW contribution to the right hand side of
the formula below. These terms are however not enough since the recursion formula would
imply the reduction to expressions involving only loop corrections to 3-loop vertex which
vanish in N = 4 SYM.

(c) The third kind of pole results when 〈(AB)qZn(z)Z1〉 vanishes in momentum twistor space.
(AB)q denotes the line in momentum twistor space associated with q:th loop variable.

The explicit formula for the recursion relation yielding planar all loop amplitudes is obtained
by putting all these pieces together and reads as
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Mn,k,l(1, · · · , n) = Mn−1,k,l(1, · · · , n− 1)

+
∑

nL,kL,lL;j

[j j + 1 n− 1 n 1]MR
nR,kR,lR(1, · · · , j, Ij)×ML

nL,kL,lL(Ij , j + 1, · · · , n̂j)

+

∫
GL(2)

[AB n− 1 n 1]Mn+2,k+1,n,k−1(1, · · · , n̂AB , Â, B) ,

nL + nR = n+ 2 , kL + kR = k − 1 , lR + lL = l .

(9.3.39)

The momentum super-twistors are given by

n̂j = (n− 1 n) ∩ (j j + 1 1) , Ij = (j j + 1 1) ∩ (n− 1 n 1) ,

n̂AB = (n− 1 n) ∩ (AB 1) , Â = (AB) ∩ (n− 1 n 1) .
(9.3.40)

The index l labels loops in n + 2-particle amplitude and the expression is fully symmetrized
with equal weight for all loop integration variables (AB)l. A and B are removed by entangled
integration meaning that GL(2) contour is chosen to encircle points where both points A,B on
the line (AB) are located at the intersection of the line (AB) with the plane (n− 1 n 1). GL(2)
integral can be done purely algebraically in terms of residues.

In [B38] and [B32] explicit calculations for NkMHV amplitudes are carried out to make the
formulas more concrete. For N1MHV amplitudes second line of the formula vanishes and the
integrals are rather simple since the determinants are 1× 1 determinants.

9.4 Could the Grassmannian program be realized in TGD
framework?

In the following the TGD based modification of the approach based on zero energy ontology is
discussed in some detail. It is found that pseudo-momenta are very much analogous to region
momenta and the approach leading to discretization of pseudo-mass squared for virtual particles
- and even the discretization of pseudo-momenta - is consistent with the Grassmannian approach
in the simple case considered and allow to get rid of IR divergences. Also the possibility that
the number of generalized Feynman diagrams contributing to a given scattering amplitude is
finite so that the recursion formula for the scattering amplitudes would involve only a finite
number of steps (maximum number of loops) is considered. One especially promising feature of
the residue integral approach with discretized pseudo-momenta is that it makes sense also in the
p-adic context in the simple special case discussed since residue integral reduces to momentum
integral (summation) and lower-dimensional residue integral.

9.4.1 What Yangian symmetry could mean in TGD framework?

The loss of the Yangian symmetry in the integrations over the region momenta xa (pa = xa+1−
xa) assigned to virtual momenta seems to be responsible for many ugly features. It is basically
the source of IR divergences regulated by ”moving out on the Coulomb branch theory” so that
IR singularities remain the problem of the theory. This raises the question whether the loss of
Yangian symmetry is the signature for the failure of QFT approach and whether the restriction
of loop momentum integrations to avoid both kind of divergences might be a royal road beyond
QFT. In TGD framework zero energy ontology indeed leads to to a concrete proposal based on
the vision that virtual particles are something genuinely real.

The detailed picture is of course far from clear but to get an idea about what is involved one can
look what kind of assumptions are needed if one wants to realize the dream that only a finite
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number of generalized Feynman diagrams contribute to a scattering amplitude which is Yangian
invariant allowing a description using a generalization of the Grassmannian integrals.

(a) Assume the bosonic emergence and its super-symmetric generalization holds true. This
means that incoming and outgoing states are bound states of massless fermions assignable
to wormhole throats but the fermions can opposite directions of three-momenta making
them massive. Incoming and outgoing particles would consist of fermions associated with
wormhole throats and would be characterized by a pair of twistors in the general situation
and in general massive. This allows also string like mass squared spectrum for bound states
having fermion and antifermion at the ends of the string as well as more general n-particle
bound states. Hence one can speak also about the emergence of string like objects. For
virtual particles the fermions would be massive and have discrete mass spectrum. Also
super partners containing several collinear fermions and antifermions at a given throat are
possible. Collinearity is required by the generalization of SUSY. The construction of these
states bring strongly in mind the merge procedure involving the replacement Zn+1 → Zn.

(b) The basic question is how the momentum twistor diagrams and the ordinary Feynman
diagrams behind them are related to the generalized Feynman diagrams.

i. It is good to start from a common problem. In momentum twistor approach the
relationship of region momenta to physical momenta remains somewhat mysterious.
In TGD framework in turn the relationship of pseudo-momenta identified as general-
ized eigenvalues of the Chern-Simons Dirac operator at the lines of Feynman diagram
(light-like wormhole throats) to the physical momenta has remained unclear. The iden-
tification of the pseudo-momentum as the TGD counterpart of the region momentum
x looks therefore like a natural first guess.

ii. The identification xa+1−xa = pa with pa representing light-like physical four-momentum
generalizes in obvious manner. Also the identification of the light-like momentum of
the external parton as pseudo-momentum looks natural. What is important is that
this does not require the identification of the pseudo-momenta propagating along in-
ternal lines of generalized Feynman diagram as actual physical momenta since pseudo-
momentum just like x is fixed only apart from an overall shift. The identification allows
the physical four-momenta associated with the wormhole throats to be always on mass
shell and massless: if the sign of the physical energy can be also negative space-like
momentum exchanges become possible.

iii. The pseudo-momenta and light-like physical massless momenta at the lines of general-
ized Feynman diagrams on one hand, and region momenta and the light-like momenta
associated with the collinear singularities on the other hand would be in very similar
mutual relationship. Partonic 2-surfaces can carry large number of collinear light-like
fermions and bosons since super-symmetry is extended. Generalized Feynman dia-
grams would be analogous to momentum twistor diagrams if this picture is correct
and one could hope that the recursion relations of the momentum twistor approach
generalize.

(c) The discrete mass spectrum for pseudo-momentum would in the momentum twistor ap-
proach mean the restriction of x to discrete mass shells, and the obvious reason for worry is
that this might spoil the Grassmannian approach relying heavily on residue integrals and
making sense also p-adically. It seems however that there is no need to worry. In [B38]
the M6,4,l=0(1234AB) the integration over twistor variables zA and zB using ”entangled”
integration contour leads to 1-loop MHV amplitude NpMHV , p = 1. The parametrization
of the integration contour is zA = (λA, xλA), zB = (λB , xλB), where x is the M4 coordinate
representing the loop momentum. This boils down to an integral over CP1×CP1×M4 [B38]
. The integrals over spheres CP1s are contour integrals so that only an ordinary integral
over M4 remains. The reduction to this kind of sums occurs completely generally thanks
to the recursion formula.

(d) The obvious implication of the restriction of the pseudo-momenta x on massive mass shells
is the absence of IR divergences and one might hope that under suitable assumptions one
achieves Yangian invariance. The first question is of course whether the required restriction
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of x to mass shells in zA and zB or possibly even algebraic discretization of momenta is
consistent with the Yangian invariance. This seems to be the case: the integration contour
reduces to entangled integration contour in CP1 × CP1 not affected by the discretization
and the resulting loop integral differs from the standard one by the discretization of masses
and possibly also momenta with massless states excluded. Whether Yangian invariance
poses also conditions on mass and momentum spectrum is an interesting question.

(e) One can consider also the possibility that the incoming and outgoing particles - in general
massive and to be distinguished from massless fermions appearing as their building blocks-
have actually small masses presumably related to the IR cutoff defined by the size scale of
the largest causal diamond involved. p-Adic thermodynamics could be responsible for this
mass. Also the binding of the wormhole throats can give rise to a small contribution to
vacuum conformal weight possibly responsible for gauge boson masses. This would imply
that a given n-particle state can decay to N-particle states for which N is below some
limit. The fermions inside loops would be also massive. This allows to circumvent the IR
singularities due to integration over the phase space of the final states (say in Coulomb
scattering).

(f) The representation of the off mass shell particles as pairs of wormhole throats with non-
parallel four-momenta (in the simplest case only the three-momenta need be in opposite
directions) makes sense and that the particles in question are on mass shell with mass
squared being proportional to inverse of a prime number as the number theoretic vision
applied to the modified Dirac equation suggests. On mass shell property poses extremely
powerful constraints on loops and when the number of the incoming momenta in the loop
increases, the number of constraints becomes larger than the number of components of loop
momentum for the generic values of the external momenta. Therefore there are excellent
hopes of getting rid of UV divergences.

A stronger assumption encouraged by the classical space-time picture about virtual particles
is that the 3-momenta associated with throats of the same wormhole contact are always
in same or opposite directions. Even this allows to have virtual momentum spectrum and
non-trivial mass spectrum for them assuming that the three momenta are opposite.

(g) The best that one can hope is that only a finite number of generalized Feynman diagrams
contributes to a given reaction. This would guarantee that amplitudes belong to a finite-
dimensional algebraic extension of rational functions with rational coefficients since finite
sums do not lead out from a finite algebraic extension of rationals. The first problem are self
energy corrections. The assumption tht the mass non-renormalization theorems of SUSYs
generalize to TGD framework would guarantee that the loops contributing to fermionic
propagators (and their super-counterparts) do not affect them. Also the iteration of more
complex amplitudes as analogs of ladder diagrams representing sequences of reactions M →
M1 →M2 · · · .→ N such that at each Mn in the sequence can appear as on mass shell state
could give a non-vanishing contribution to the scattering amplitude and would mean infinite
number of Feynman diagrams unless these amplitudes vanish. If N appears as a virtual
state the fermions must be however massive on mass shell fermions by the assumption about
on-mass shell states and one can indeed imagine a situation in which the decay M → N is
possible when N consists of states made of massless fermions is possible but not when the
fermions have non-vanishing masses. This situation seems to be consistent with unitarity.
The implication would be that the recursion formula for the all loop amplitudes for a given
reaction would give vanishing result for some critical value of loops.

Already these assumptions give good hopes about a generalization of the momentum Grassmann
approach to TGD framework. Twistors are doubled as are also the Grassmann variables and
there are wave functions correlating the momenta of the the fermions associated with the opposite
wormhole throats of the virtual particles as well as incoming gauge bosons which have suffered
massivation. Also wave functions correlating the massless momenta at the ends of string like
objects and more general many parton states are involved but do not affect the basic twistor
formalism. The basic question is whether the hypothesis of unbroken Yangian symmetry could in
fact imply something resembling this picture. The possibility to discretize integration contours
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without losing the representation as residue integral quite generally is basic prerequisite for this
and should be shown to be true.

9.4.2 How to achieve Yangian invariance without trivial scattering
amplitudes?

In N = 4 SYM the Yangian invariance implies that the MHV amplitudes are constant as demon-
strated in [B38] . This would mean that the loop contributions to the scattering amplitudes
are trivial. Therefore the breaking of the dual super-conformal invariance by IR singularities
of the integrand is absolutely essential for the non-triviality of the theory. Could the situation
be different in TGD framework? Could it be possible to have non-trivial scattering amplitudes
which are Yangian invariants. Maybe! The following heuristic argument is formulated in the
language of super-twistors.

(a) The dual conformal super generators of the super-Lie algebra U(2, 2) acting as super vector
fields reducing effectively to the general form J = ηKa ∂/∂Z

J
a and the condition that they

annihilate scattering amplitudes implies that they are constant as functions of twistor
variables. When particles are replaced with pairs of wormhole throats the super generators
are replaced by sums J1 +J2 of these generators for the two wormhole throats and it might
be possible to achieve the condition

(J1 + J2)M = 0 (9.4.1)

with a non-trivial dependence on the momenta if the super-components of the twistors
associated with the wormhole throats are in a linear relationship. This should be the case
for bound states.

(b) This kind of condition indeed exists. The condition that the sum of the super-momenta
expressed in terms of super-spinors λ reduces to the sum of real momenta alone is not
usually posed but in the recent case it makes sense as an additional condition to the super-
components of the the spinors λ associated with the bound state. This quadratic condition
is exactly of the same general form as the one following from the requirement that the sum
of all external momenta vanishes for scattering amplitude and reads as

X = λ1η1 + λ2η2 = 0 . (9.4.2)

The action of the generators η1∂λ1 + η2∂λ2 forming basic building blocks of the super
generators on p1 + p2 = λ1λ̃1 + λ2λ̃2 appearing as argument in the scattering amplitude
in the case of bound states gives just the quantity X, which vanishes so that one has
super-symmetry. The generalization of this condition to n-parton bound state is obvious.

(c) The argument does not apply to free fermions which have not suffered topological conden-
sation and are therefore represented by CP2 type vacuum extremal with single wormhole
throat. If one accepts the weak form of electric-magnetic duality, one can circumvent this
difficulty. The free fermions carry Kähler magnetic charge whereas physical fermions are
accompanied by a bosonic wormhole throat carrying opposite Kähler magnetic charge and
opposite electroweak isospin so that a ground state of string like object with size of order
electroweak length scale is in question. In the case of quarks the Kähler magnetic charges
need not be opposite since color confinement could involve Kähler magnetic confinement:
electro-weak confinement holds however true also now. The above argument generalizes as
such to the pairs formed by wormhole throats at the ends of string like object. One can
of course imagine also more complex hybrids of these basic options but the general idea
remains the same.

Note that the argument involves in an essential manner non-locality , which is indeed the defining
property of the Yangian algebra and also the fact that physical particles are bound states. The
massivation of the physical particles brings in the IR cutoff.
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9.4.3 Number theoretical constraints on the pseudo-momenta

One can consider also further assumptions motivated by the recent view about the generalized
eigenvalues of Chern-Simons Dirac operator having interpretation as pseudo-momentum. The
details of this view need not of course be final.

(a) Assume that the pseudo-momentum assigned to fermion lines by the modified Dirac equa-
tion [K28] is the counterpart of region momentum as already explained and therefore does
not directly correspond to the actual light-like four-momentum associated with partonic
line of the generalized Feynman diagram. This assumption conforms with the assump-
tion that incoming particles are built out of massless partonic fermions. It also implies
that the propagators are massless propagators as required by twistorialization and Yangian
generalization of super-conformal invariance.

(b) Since (pseudo)-mass squared is number theoretically quantized as the length of a hyper-
complex prime in preferred plane M2 of pseudo-momentum space fermionic propagators
are massless propagators with pseudo-masses restricted on discrete mass shells. Lorentz
invariance suggests that M2 cannot be common to all particles but corresponds to pre-
ferred reference frame for the virtual particle having interpretation as plane spanned by
the quantization axes of energy and spin.

(c) Hyper-complex primeness means also the quantization of pseudo-momentum components
so that one has hyper-complex primes of form ±((p + 1)/2,±(p − 1)/1) corresponding to
pseudo-mass squared M2 = p and hypercomplex primes ±(p, 0) with pseudo-mass squared
M2 = p2. Space-like fermionic momenta are not needed since for opposite signs of energy
wormhole throats can have space-like net momenta. If space-like pseudo-momenta are
allowed/needed for some reason, they could correspond to space-like hyper-complex primes
±((p−1)/2,±(p+1)/1) and ±(0, p) so that one would obtain also discretization of space-like
mass shells also. The number theoretical mass squared is proportional to p, whereas p-adic
mass squared is proportional to 1/p. For p-adic mass calculations canonical identification∑
xnp

n maps p-adic mass squared to its real counterpart. The simplest mapping consistent
with this would be (p0, p1)→ (p0, p1)/p. This could be assumed from the beginning in real
context and would mean that the mass squared scale is proportional to 1/p.

(d) Lorentz invariance requires that the preferred coordinate system in which this holds must
be analogous to the rest system of the virtual fermion and thus depends on the virtual
particle. In accordance with the general vision discussed in [K28] Lorentz invariance could
correspond to a discrete algebraic subgroup of Lorentz group spanned by transformation
matrices expressible in terms of roots of unity. This would give a discrete version of mass
shell and the preferred coordinate system would have a precise meaning also in the real
context. Unless one allows algebraic extension of p-adic numbers p-adic mass shell reduces
to the set of above number-theoretic momenta. For algebraic extensions of p-adic numbers
the same algebraic mass shell is obtained as in real correspondence and is essential for the
number theoretic universality. The interpretation for the algebraic discretization would be
in terms of a finite measurement resolution. In real context this would mean discretization
inducing a decomposition of the mass shell to cells. In the p-adic context each discrete
point would be replaced with a p-adic continuum. As far as loop integrals are considered,
this vision means that they make sense in both real and p-adic context and reduce to
summations in p-adic context. This picture is discussed in detail in [K28] .

(e) Concerning p-adicization the beautiful aspect of residue integral is that it makes sense also
in p-adic context provided one can circumvent the problems related to the identification of
p-adic counterpart of π requiring infinite-dimensional transcendental extension coming in
powers of π. Together with the discretization of both real and virtual four-momenta this
would allow to define also p-adic variants of the scattering amplitudes.
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9.4.4 Could recursion formula allow interpretation in terms of zero
energy ontology?

The identification of pseudo-momentum as a counterpart of region momentum suggests that
generalized Feynman diagrams could be seen as a generalization of momentum twistor diagrams.
Of course, the generalization from N = 4 SYM to TGD is an enormous step in complexity and
one must take all proposals in the following with a big grain of salt. For instance, the replacement
of point-like particles with wormhole throats and the decomposition of gauge bosons to pairs of
wormhole throats means that naive generalizations are dangerous.

With this in firmly in mind one can ask whether the recursion formula could allow interpretation
in terms of zero energy states assigned to causal diamonds (CDs) containing CDs containing
· · · . In this framework loops could be assigned with sub-CDs.

The interpretation of the leading order singularities forming the basic building blocks of the
twistor approach in zero ontology is the basic source of questions. Before posing these ques-
tions recall the basic proposal that partonic fermions are massless but opposite signs of energy
are posssible for the opposite throats of wormhole contacts. Partons would be on mass shell
but besides physical states identified as bound states formed from partons also more general
intermediate states would be possible but restricted by momentum conservation and mass shell
conditions for partons at vertices. Consider now the questions.

(a) Suppose that the massivation of virtual fermions and their super partners allows only lad-
der diagrams in which the intermediate states contain on mass shell massless states. Should
one allow this kind of ladder diagrams? Can one identify them in terms of leading order
singularities? Could one construct the generalized Feynman diagrams from Yangian invari-
ant tree diagrams associated with the hierarchy of sub-CDs and using BCFW bridges and
entangled pairs of massless states having interpretation as box diagrams with on mass shell
momenta at microscopic level? Could it make sense to say that scattering amplitudes are
represented by tree diagrams inside CDs in various scales and that the fermionic momenta
associated with throats and emerging from sub-CDs are always massless?

(b) Could BCFW bridge generalizes as such and could the interpretation of BCFW bridge
be in terms of a scattering in which the four on mass shell massless partonic states (par-
tonic throats have arbitrary fermion number) are exchanged between four sub-CDs. This
admittedly looks somewhat artificial.

(c) Could the addition of 2-particle zero energy state responsible for addition of loop in the
recursion relations and having interpretation in terms of the cutting of line carrying loop
momentum correspond to an addition of sub-CD such that the 2-particle zero energy state
has its positive and negative energy part on its past and future boundaries? Could this
mean that one cuts a propagator line by adding CD and leaves only the portion of the line
within CD. Could the reverse operation mean to the addition of zero energy ”thermally
entangled” states in shorter time and length scales and assignable as a zero energy state
to a sub-CD. Could one interpret the Cutkosky rule for propagator line in terms of this
cutting or its reversal. Why only pairs would be needed in the recursion formula? Why not
more general states? Does the recursion formula imply that they are included? Does this
relate to the fact that these zero energy states have interpretation as single particle states
in the positive energy ontology and that the basic building block of Feynman diagrams is
single particle state? Could one regard the unitarity as an identity which states that the
discontinuity of T-matrix characterizing zero energy state over cut is expressible in terms
of TT † and T matrix is the relevant quantity?

Maybe it is again dangerous to try to draw too detailed correspondences: after all, point
like particles are replaced by partonic two-surfaces in TGD framework.

(d) If I have understood correctly the genuine l-loop term results from l − 1-loop term by the
addition of the zero energy pair and integration over GL(2) as a representative of loop
integral reducing n+ 2 to n and calculating the added loop at the same time [B38] . The
integrations over the two momentum twistor variables associated with a line in twistor
space defining off mass shell four-momentum and integration over the lines represent the
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integration over loop momentum. The reduction to GL(2) integration should result from
the delta functions relating the additional momenta to GL(2) variables (note that GL(2)
performs linear transformations in the space spanned by the twistors ZA and ZB and means
integral over the positions of ZA an ZB). The resulting object is formally Yangian invariant
but IR divergences along some contours of integration breaks Yangian symmetry.

The question is what happens in TGD framework. The previous arguments suggests that
the reduction of the the loop momentum integral to integrals over discrete mass shells and
possibly to a sum over their discrete subsets does not spoil the reduction to contour integrals
for loop integrals in the example considered in [B38] . Furthermore, the replacement of
mass continuum with a discrete set of mass shells should eliminate IR divergences and
might allow to preserve Yangian symmetry. One can however wonder whether the loop
corrections with on mass shell massless fermions are needed. If so, one would have at most
finite number of loop diagrams with on mass shell fermionic momenta and one of the TGD
inspired dreams already forgotten would be realized.

9.4.5 What about unitarity?

The approach of Arkani-Hamed and collaborators means that loop integral over four-momenta
are replaced with residue integrals around a small sphere p2 = ε. This is very much reminiscent
of my own proposal for a few years ago based on the idea that the condition of twistorialization
forces to accept only massless virtual states [K85, K58] . I of course soon gave up this proposal
as too childish.

This idea seems to however make a comeback in a modified form. At this time one would have
only massive and quantized pseudo-momenta located at discrete mass shells. Can this picture
be consistent with unitarity?

Before trying to answer this question one must make clear what one could assume in TGD
framework.

(a) Physical particles are in the general case massive and consist of collinear fermions at worm-
hole throats. External partons at wormhole throats must be massless to allow twistorial
interpretation. Therefore massive states emerge. This applies also to stringy states.

(b) The simplest assumption generalizing the childish idea is that on mass shell massless states
for partons appear as both virtual particles and external particles. Space-like virtual mo-
mentum exchanges are possible if the virtual particles can consist of pairs of positive and
negative energy fermions at opposite wormhole throats. Hence also partons at internal lines
should be massless and this raises the question about the identification of propagators.

(c) Generalized eigenvalue equation for Chern-Simons Dirac operator implies that virtual ele-
mentary fermions have massive and quantized pseudo-momenta whereas external elemen-
tary fermions are massless. The massive pseudo-momentum assigned with the Dirac propa-
gator of a parton line cannot be identified with the massless real momentum assigned with
the fermionic propagator line. The region momenta introduced in Grassmannian approach
are something analogous.

As already explained, this brings in mind is the identification of this pseudo momentum
as the counterpart of the region momentum of momentum twistor diagrams so that the
external massless fermionic momenta would be differences of the pseudo-momenta. In-
deed, since region momenta are determined apart from a common shift, they need not
correspond to real momenta. Same applies to pseudo-momenta and one could assume that
both internal and external fermion lines carry light-like pseudo-momenta and that external
pseudo-momenta are equal to real momenta.

(d) This picture has natural correspondence with twistor diagrams. For instance, the region
momentum appearing in BCFW bridge defining effective propagator is in general massive
although the underlying Feynman diagram would contain online massless momenta. In
TGD framework massless lines of Feynman graphs associated with singularities would cor-
respond to real momenta of massless fermions at wormhole throats. Also other canonical
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operations for Yangian invariants involve light-like momenta at the level of Feynman di-
agrams and would in TGD framework have a natural identification in terms of partonic
momenta. Hence partonic picture would provide a microscopic description for the lines of
twistor diagrams.

Let us assume being virtual particle means only that the discretized pseudo-momentum is on
shell but massive whereas all real momenta of partons are light-like, and that negative partonic
energies are possible. Can one formulate Cutkosky rules for unitarity in this framework? What
could the unitarity condition

iDisc(T − T †) = −TT †

mean now? In particular, are the cuts associated with mass shells of physical particles or with
mass shells of pseudo-momenta? Could these two assignments be equivalent?

(a) The restriction of the partons to be massless but having both signs of energy means that
the spectrum of intermediate states contains more states than the external states identified
as bound states of partons with the same sign of energy. Therefore the summation over
intermediate states does not reduce to a mere summation over physical states but involves
a summation over states formed from massless partons with both signs of energy so that
also space-like momentum exchanges become possible.

(b) The understanding of the unitarity conditions in terms of Cutkosky rules would require that
the cuts of the loop integrands correspond to mass shells for the virtual states which are
also physical states. Therefore real momenta have a definite sign and should be massless.
Besides this bound state conditions guaranteeing that the mass spectrum for physical states
is discrete must be assumed. With these assumptions the unitary cuts would not be assigned
with the partonic light-cones but with the mass shells associated of physical particles.

(c) There is however a problem. The pseudo-momenta of partons associated with the external
partons are assumed to be light-like and equal to the physical momenta.

i. If this holds true also for the intermediate physical states appearing in the unitarity
conditions, the pseudo-momenta at the cuts are light-like and cuts must be assigned
with pseudo-momentum light-cones. This could bring in IR singularities and spoil
Yangian symmetry. The formation of bound states could eliminate them and the size
scale of the largest CD involved would bring in a natural IR cutoff as the mass scale of
the lightest particle. This assumption would however force to give up the assumption
that only massive pseudo-momenta appear at the lines of the generalized Feynman
diagrams.

ii. On the other hand, if pseudo-momenta are not regarded as a property of physical state
and are thus allowed to be massive for the real intermediate states in Cutkosky rules,
the cuts at parton level correspond to on mass shell hyperboloids and IR divergences
are absent.

9.5 Could TGD alllow formulation in terms of twistors

There are many questions to be asked. There would be in-numerable questions upwelling from
my very incomplete understanding of the technical issues. In the following I restrict only to the
questions which relate to the relationship of TGD approach to Witten’s twistor string approach
[B72] and M-theory like frameworks. The arguments lead to an explicit proposal how the
preferred extremals of Kähler action could correspond to holomorphic 4-surfaces in CP3×CP3.
The basic motivation for this proposal comes from the observation that Kähler action is Maxwell
action for the induced Kähler form and metric. Hence Penrose’s original twistorial representation
for the solutions of linear Maxwell’s equations could have a generalization to TGD framework.



604 Chapter 9. Yangian Symmetry, Twistors, and TGD

9.5.1 M4 × CP2 from twistor approach

The first question which comes to mind relates to the origin of the Grassmannians. Do they
have some deeper interpretation in TGD context. In twistor string theory Grassmannians relate
to the moduli spaces of holomorphic surfaces defined by string world sheets in twistor space.
Could partonic 2-surfaces have analogous interpretation and could one assign Grassmannians
to their moduli spaces? If so, one could have rather direct connection with topological QFT
defining twistor strings [B72] and the almost topological QFT defining TGD. There are some
hints to this direction which could be of course seen as figments of a too wild imagination.

(a) The geometry of CD brings strongly in mind Penrose diagram for the conformally com-
pactified Minkowski space [A33], which indeed becomes CD when its points are replaced
with spheres. This would suggest the information theoretic idea about interaction between
observer and externals as a map in which M4 is mapped to its conformal compactifica-
tion represented by CD. Compactification means that the light-like points at the light-like
boundaries of CD are identified and the physical counterpart for this in TGD framework
is conformal invariance along light-rays along the boundaries of CD. The world of con-
scious observer for which CD is identified as a geometric correlate would be conformally
compactified M4 (plus CP2 or course).

(b) Since the points of the conformally compactified M4 correspond to twistor pairs [B58],
which are unique only apart from opposite complex scalings, it would be natural to as-
sign twistor space to CD and represent its points as pairs of twistors. This suggest an
interpretation for the basic formulas of Grassmannian approach involving integration over
twistors. The incoming and outgoing massless particles could be assigned at point-like limit
light-like points at the lower and upper boundaries of CD and the lifting of the points of
the light-cone boundary at partonic surfaces would give rise to the description in terms of
ordinary twistors. The assumption that massless collinear fermions at partonic 2-surfaces
are the basic building blocks of physical particles at partonic 2-surfaces defined as many
particles states involving several partonic 2-surfaces would lead naturally to momentum
twistor description in which massless momenta and described by twistors and virtual mo-
menta in terms of twistor pairs. It is important to notice that in TGD framework string
like objects would emerge from these massless fermions.

(c) Partonic 2-surfaces are located at the upper and lower light-like boundaries of the causal
diamond (CD) and carry energies of opposite sign in zero energy ontology. Quite generally,
one can assign to the point of the conformally compactified Minkowski space a twistor
pair using the standard description. The pair of twistors is determined apart from Gl(2)
rotation. At the light-cone boundary M4 points are are light-like so that the two spinors
of the two twistors differ from each other only by a complex scaling and single twistor is
enough to characterize the space-time point this degenerate situation. The components
of the twistor are related by the well known twistor equation µa

′
= −ixaa′λa. One can

therefore lift each point of the partonic 2-surface to single twistor determined apart from
opposite complex scalings of µ and λ so that the lift of the point would be 2-sphere. In the
general case one must lift the point of CD to a twistor pair. The degeneracy of the points
is given by Gl(2) and each point corresponds to a 2-sphere in projective twistor space.

(d) The new observation is that one can understand also CP2 factor in twistor framework. The
basic observation about which I learned in [B58] (giving also a nice description of basics of
twistor geometry) is that a pair (X,Y ) of twistors defines a point of CD on one hand and
complex 2-planes of the dual twistor space -which is nothing but CP2- by the equations

XαW
α = 0 , YαW

α = 0 .

The intersection of these planes is the complex line CP1 = S2. The action of G(2) on
the twistor pair affects the pair of surfaces CP2 determined by these equations since it
transforms the equations to their linear combination but not the the point of conformal
CD resulting as projection of the sphere. Therefore twistor pair defines both a point of M4

and assigns with it pair of CP2:s represented as holomorphic surfaces of the projective dual
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twistor space. Hence the union over twistor pairs defines M4 × CP2 via this assignment
if it is possible to choose ”the other” CP2 in a unique manner for all points of M4. The
situation is similar to the assignment of a twistor to a point in the Grassmannian diagrams
forming closed polygons with light-like edges. In this case one assigns to the the ”region
momenta” associated with the edge the twistor at the either end of the edge. One possible
interpretation is that the two CP2:s correspond to the opposite ends of the CD. My humble
hunch is that this observation might be something very deep.

Recall that the assignment of CP2 to M4 point works also in another direction. M8 −H
duality associates with so called hyper-quaternionic 4-surface of M8 allowing preferred
hyper-complex plane at each point 4-surfaces of M4 × CP2. The basic observation behind
this duality is that the hyper-quaternionic planes (copies of M4) with preferred choices of
hyper-complex plane M2 are parameterized by points of CP2. One can therefore assign to
a point of CP2 a copy of M4. Maybe these both assignments indeed belong to the core of
quantum TGD. There is also an interesting analogy with Uncertainty Principle: complete
localization in M4 implies maximal uncertainty of the point in CP2 and vice versa.

9.5.2 Does twistor string theory generalize to TGD?

With this background the key speculative questions seem to be the following ones.

(a) Could one relate twistor string theory to TGD framework? Partonic 2-surfaces at the
boundaries of CD are lifted to 4-D sphere bundles in twistor space. Could they serve as a
4-D counterpart for Witten’s holomorphic twistor strings assigned to point like particles?
Could these surfaces be actually lifts of the holomorphic curves of twistor space replaced
with the product CP3 × CP2 to 4-D sphere bundles? If I have understood correctly, the
Grassmannians G(n, k) can be assigned to the moduli spaces of these holomorphic curves
characterized by the degree of the polynomial expressible in terms of genus, number of
negative helicity gluons, and the number of loops for twistor diagram.

Could one interpret G(n, k) as a moduli space for the δCD projections of n partonic 2-
surfaces to which k negative helicity gluons and n− k positive helicity gluons are assigned
(or something more complex when one considers more general particle states)? Could
quantum numbers be mapped to integer valued algebraic invariants? IF so, there would
be a correlation between the geometry of the partonic 2-surface and quantum numbers in
accordance with quantum classical correspondence.

(b) Could one understand light-like orbits of partonic 2-surfaces and space-time surfaces in
terms of twistors? To each point of the 2-surface one can assign a 2-sphere in twistor
space CP3 and CP2 in its dual. These CP2s can be identified. One should be able to
assign to each sphere S2 at least one point of corresponding CP2s associated with its
points in the dual twistor space and identified as single CP2 union of CP2:s in the dual
twistor space a point of CP2 or even several of them. One should be also able to continue
this correspondence so that it applies to the light-like orbit of the partonic 2-surface and
to the space-time surface defining a preferred extremal of Kähler action. For space-time
sheets representable as graph of a map M4 → CP2 locally one should select from a CP2

assigned with a particular point of the space-time sheet a unique point of corresponding
CP2 in a manner consistent with field equations. For surfaces with lower dimensional M4

projection one must assign a continuum of points of CP2 to a given point of M4. What kind
equations-could allow to realize this assignment? Holomorphy is strongly favored also by
the number theoretic considerations since in this case one has hopes of performing integrals
using residue calculus.

i. Could two holomorphic equations in CP3×CP2 defining 6-D surfaces as sphere bundles
over M4 ×CP2 characterize the preferred extremals of Kähler action? Could partonic
2-surfaces be obtained by posing an additional holomorphic equation reducing twistors
to null twistors and thus projecting to the boundaries of CD? A philosophical justi-
fication for this conjecture comes from effective 2-dimensionality stating that partonic
2-surfaces plus their 4-D tangent space data code for physics. That the dynamics would
reduce to holomorphy would be an extremely beautiful result. Of course this is only
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an additional item in the list of general conjectures about the classical dynamics for
the preferred extremals of Kähler action.

ii. One could also work in CP3 × CP3. The first CP3 would represent twistors endowed
with a metric conformally equivalent to that ofM2,4 and having the covering of SU(2, 2)
of SO(2, 4) as isometries. The second CP3 defining its dual would have a metric
consistent with the Calabi-Yau structure (having holonomy group SU(3)). Also the
induced metric for canonically imbedded CP2s should be the standard metric of CP2

having SU(3) as its isometries. In this situation the linear equations assigning to
M4 points twistor pairs and CP2 ⊂ CP3 as a complex plane would hold always true.
Besides this two holomorphic equations coding for the dynamics would be needed.

iii. The issues related to the induced metric are important. The conformal equivalence class
of M4 metric emerges from the 5-D light-cone of M2,4 under projective identification.
The choice of a proper projective gauge would select M4 metric locally. Twistors
inherit the conformal metric with signature (2, 4) form the metric of 4+4 component
spinors with metric having (4, 4) signature. One should be able to assign a conformal
equivalence class of Minkowski metric with the orbits of pairs of twistors modulo GL(2).
The metric of conformally compactified M4 would be obtained from this metric by
dropping from the line element the contribution to the S2 fiber associated with M4

point.

iv. Witten related [B72] the degree d of the algebraic curve describing twistor string, its
genus g, the number k of negative helicity gluons, and the number l of loops by the
following formula

d = k − 1 + l , g ≤ l . (9.5.1)

One should generalize the definition of the genus so that it applies to 6-D surfaces.
For projective complex varieties of complex dimension n this definition indeed makes
sense. Algebraic genus [A2] is expressible in terms of the dimensions of the spaces of
closed holomorphic forms known as Hodge numbers hp,q as

g =
∑

(−1)n−khk,0 . (9.5.2)

The first guess is that the formula of Witten generalizes by replacing genus with its
algebraic counterpart . This requires that the allowed holomorphic surfaces are pro-
jective curves of twistor space, that is described in terms of homogenous polynomials
of the 4+4 projective coordinates of CP3 × CP3.

9.5.3 What is the relationship of TGD to M-theory and F-theory?

There are also questions relating to the possible relationship to M-theory and F-theory.

(a) Calabi-Yau-manifolds [A7, A68] are central for the compactification in super string theory
and emerge from the condition that the super-symmetry breaks down to N = 1 SUSY. The
dual twistor space CP3 with Euclidian signature of metric is a Calabi-Yau manifold [B72]
. Could one have in some sense two Calabi-Yaus! Twistorial CP3 can be interpreted as a
four-fold covering and conformal compactification of M2,4. I do not know whether Calabi-
Yau property has a generalization to the situation when Euclidian metric is replaced with
a conformal equivalence class of flat metrics with Minkowskian signature and thus having a
vanishing Ricci tensor. As far as differential forms (no dependence on metric) are considered
there should be no problems. Whether the replacement of the maximal holonomy group
SU(3) with its non-compact version SU(1, 2) makes sense is not clear to me.

(b) The lift of the CD to projective twistor space would replace CD×CP2 with 10-dimensional
space which inspires the familiar questions about connection between TGD and M-theory.
If Calabi-Yau with a Minkowskian signature of metric makes sense then the Calabi-Yau
of the standard M-theory would be replaced with its Minkowskian counterpart! Could it
really be that M-theory like theory based on CP3 × CP2 reduces to TGD in CD × CP2 if
an additional symmetry mapping 2-spheres of CP3 to points of CD is assumed? Could the
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formulation based on 12-D CP3×CP3 correspond to F-theory which also has two time-like
dimensions. Of course, the additional conditions defined by the maps to M4 and CP2 would
remove the second time-like dimension which is very difficult to justify on purely physical
grounds.

(c) One can actually challenge the assumption that the first CP3 should have a conformal
metric with signature (2, 4). Metric appears nowhere in the definition holomorphic functions
and once the projections to M4 and CP2 are known, the metric of the space-time surface
is obtained from the metric of M4 × CP2. The previous argument for the necessity of the
presence of the information about metric in the second order differential equation however
suggests that the metric is needed.

(d) The beginner might ask whether the 6-D 2-sphere bundles representing space-time sheets
could have interpretation as Calabi-Yau manifolds. In fact, the Calabi-Yau manifolds
defined as complete intersections in CP3×CP3 discovered by Tian and Yau are defined by
three polynomials [A68] . Two of them have degree 3 and depend on the coordinates of
single CP3 only whereas the third is bilinear in the coordinates of the CP3:s. Obviously the
number of these manifolds is quite too small (taking into account scaling the space defined
by the coefficients is 6-dimensional). All these manifolds are deformation equivalent. These
manifolds have Euler characteristic χ = ±18 and a non-trivial fundamental group. By
dividing this manifold by Z3 one obtains χ = ±6, which guarantees that the number of
fermion generations is three in heterotic string theory. This manifold was the first one
proposed to give rise to three generations and N = 1 SUSY.

9.5.4 What could the field equations be in twistorial formulation?

The fascinating question is whether one can identify the equations determining the 3-D complex
surfaces of CP3 × CP3 in turn determining the space-time surfaces.

The first thing is to clarify in detail how space-time M4 × CP2 results from CP3 × CP3. Each
point CP3 × CP3 define a line in third CP3 having interpretation as a point of conformally
compactified M4 obtained by sphere bundle projection. Each point of either CP3 in turn defines
CP2 in in fourth CP3 as a 2-plane. Therefore one has (CP3×CP3)× (CP3×CP3) but one can
reduce the consideration to CP3 × CP3 fixing M4 × CP2. In the generic situation 6-D surface
in 12-D CP3×CP3 defines 4-D surface in the dual CP3×CP3 and its sphere bundle projection
defines a 4-D surface in M4 × CP2.

(a) The vanishing of three holomorphic functions f i would characterize 3-D holomorphic sur-
faces of 6-D CP3 × CP3. These are determined by three real functions of three real ar-
guments just like a holomorphic function of single variable is dictated by its values on a
one-dimensional curve of complex plane. This conforms with the idea that initial data are
given at 3-D surface. Note that either the first or second CP3 can determine the CP2

image of the holomorphic 3-surface unless one assumes that the holomorphic functions are
symmetric under the exchange of the coordinates of the two CP3s. If symmetry is not
assumed one has some kind of duality.

(b) Effective 2-dimensionality means that 2-D partonic surfaces plus 4-D tangent space data are
enough. This suggests that the 2 holomorphic functions determining the dynamics satisfy
some second order differential equation with respect to their three complex arguments:
the value of the function and its derivative would correspond to the initial values of the
imbedding space coordinates and their normal derivatives at partonic 2-surface. Since the
effective 2-dimensionality brings in dependence on the induced metric of the space-time
surface, this equation should contain information about the induced metric.

(c) The no-where vanishing holomorphic 3-form Ω, which can be regarded as a ”complex square
root” of volume form characterizes 6-D Calabi-Yau manifold [A7, A68] , indeed contains this
information albeit in a rather implicit manner but in spirit with TGD as almost topological
QFT philosophy. Both CP3:s are characterized by this kind of 3-form if Calabi-Yau with
(2, 4) signature makes sense.
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(d) The simplest second order- and one might hope holomorphic- differential equation that one
can imagine with these ingredients is of the form

Ωi1j1k11 Ωi2j2k22 ∂i1i2f
1∂j1j2f

2∂k1k2f
3 = 0 , ∂ij ≡ ∂i∂j . (9.5.3)

Since Ωi is by its antisymmetry equal to Ω123
i εijk, one can divide Ω123:s away from the

equation so that one indeed obtains holomorphic solutions. Note also that one can replace
ordinary derivatives in the equation with covariant derivatives without any effect so that
the equations are general coordinate invariant.

One can consider more complex equations obtained by taking instead of (f1, f2, f3) arbi-
trary combinations (f i, f j , fk) which results uniquely if one assumes anti-symmetrization
in the labels (1, 2, 3). In the sequel only this equation is considered.

(e) The metric disappears completely from the equations and skeptic could argue that this is
inconsistent with the fact that it appears in the equations defining the weak form of electric-
magnetic duality as a Lagrange multiplier term in Chern-Simons action. Optimist would
respond that the representation of the 6-surfaces as intersections of three hyper-surfaces is
different from the representation as imbedding maps X4 → H used in the usual formulation
so that the argument does not bite, and continue by saying that the metric emerges in any
case when one endows space-time with the induced metric given by projection to M4.

(f) These equations allow infinite families of obvious solutions. For instance, when some f i

depends on the coordinates of either CP3 only, the equations are identically satisfied. As a
special case one obtains solutions for which f1 = Z ·W and (f2, f3) = (f2(Z), f3(W )) This
family contains also the Calabi-Yau manifold found by Yau and Tian, whose factor space
was proposed as the first candidate for a compactification consistent with three fermion
families.

(g) One might hope that an infinite non-obvious solution family could be obtained from the
ansatz expressible as products of exponential functions of Z and W . Exponentials are not
consistent with the assumption that the functions fi are homogenous polynomials of finite
degree in projective coordinates so that the following argument is only for the purpose for
learning something about the basic character of the equations.

f1 = Ea1,a2,a3(Z)Eâ1,â2,â3(W ) , f2 = Eb1,b2,b3(Z)Eb̂1,b̂2,b̂3(W ) ,

f3 = Ec1,c2,c3(Z)Eĉ1,ĉ2,ĉ3(W ) ,

Ea,b,c(Z) = exp(az1)exp(bz2)exp(cz3) .

(9.5.4)

The parameters a, b, c, and â, b̂, ĉ can be arbitrary real numbers in real context. By the
basic properties of exponential functions the field equations are algebraic. The conditions
reduce to the vanishing of the products of determinants det(a, b, c) and det(â, b̂, ĉ) so that
the vanishing of either determinant is enough. Therefore the dependence can be arbitrary
either in Z coordinates or in W coordinates. Linear superposition holds for the modes for
which determinant vanishes which means that the vectors (a, b, c) or (â, b̂, ĉ) are in the same
plane.

Unfortunately, the vanishing conditions reduce to the conditions f i(W ) = 0 for case a)
and to f i(Z) = 0 for case b) so that the conditions are equivalent with those obtained by
putting the ”wave vector” to zero and the solutions reduce to obvious ones. The lesson
is that the equations do not commute with the multiplication of the functions f i with
nowhere vanishing functions of W and Z. The equation selects a particular representation
of the surfaces and one might argue that this should not be the case unless the hyper-
surfaces defined by f i contain some physically relevant information. One could consider
the possibility that the vanishing conditions are replaced with conditions f i = ci with
f i(0) = 0 in which case the information would be coded by a family of space-time surfaces
obtained by varying ci.
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One might criticize the above equations since they are formulated directly in the product CP3×
CP3 of projective twistor by choosing a specific projective gauge by puttingz4 = 1, w4 = 1.
The manifestly projectively invariant formulation for the equations is in full twistor space so
that 12-D space would be replaced with 16-D space. In this case one would have 4-D complex
permutation symbol giving for these spaces Calabi-Yau structure with flat metric. The product
of functions f = z4 = constant and g = w4 = constant would define the fourth function f4 = fg
fixing the projective gauge

εi1j1k1l1εi2j2k2l2∂i1i2f
1∂j1j2f

2∂k1k2f
3∂l1l2f

4 = 0 , ∂ij ≡ ∂i∂j . (9.5.5)

The functions f i are homogenous polynomials of their twistor arguments to guarantee projective
invariance. These equations are projectively invariant and reduce to the above form which means
also loss of homogenous polynomial property. The undesirable feature is the loss of manifest
projective invariance by the fixing of the projective gauge.

A more attractive ansatz is based on the idea that one must have one equation for each f i

to minimize the non-determinism of the equations obvious from the fact that there is single
equation in 3-D lattice for three dynamical variables. The quartets (f1, f2, f3, f i), i = 1, 2, 3
would define a possible minimally non-linear generalization of the equation

εi1j1k1l1εi2j2k2l2∂i1i2f
1∂j1j2f

2∂k1k2f
m∂l1l2f

4 = 0 , ∂ij ≡ ∂i∂j , m = 1, 2, 3 . (9.5.6)

Note that the functions are homogenous polynomials of their arguments and analogous to spher-
ical harmonics suggesting that they can allow a nice interpretation in terms of quantum classical
correspondence.

The minimal non-linearity of the equations also conforms with the non-linearity of the field
equations associated with Kähler action. Note that also in this case one can solve the equations
by diagonalizing the dynamical coefficient matrix associated with the quadratic term and by
identifying the eigen-vectors of zero eigen values. One could consider also more complicated
strongly non-linear ansätze such as (f i, f i, f i, f i), i = 1, 2, 3, but these do not seem plausible.

The explicit form of the equations using Taylor series expansion for multi-linear
case

In this section the equations associated with (f1, f2, f3) ansatz are discussed in order to obtain a
perspective about the general structure of the equations by using simpler (multilinearity) albeit
probably non-realistic case as starting point. This experience can be applied directly to the
(f1, f2, f3, f i) ansatz, which is quadratic in f i.

The explicit form of the equations is obtained as infinite number of conditions relating the
coefficients of the Taylor series of f1 and f2. The treatment of the two variants for the equations
is essentially identical and in the following only the manifestly projectively invariant form will
be considered.

(a) One can express the Taylor series as

f1(Z,W ) =
∑
m,n

Cm,nMm(Z)Mn(W ) ,

f2(Z,W ) =
∑
m,n

Dm,nMm(Z)Mn(W ) ,

f3(Z,W ) =
∑
m,n

Em,nMm(Z)Mn(W ) ,

Mm≡(m1,m2,m3)(Z) = zm1
1 zm2

2 zm3
3 . (9.5.7)
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(b) The application of derivatives to the functions reduces to a simple algebraic operation

∂ij(Mm(Z)Mn(W )) = minjMm1−ei(Z)Mn−ej (W ) . (9.5.8)

Here ei denotes i:th unit vector.

(c) Using the product rule MmMn = Mm+n one obtains

∂ij(Mm(Z)Mn(W ))∂rs(Mk(Z)Ml(W ))

= minjkrls ×Mm−ei(Z)Mn−ej (W )×Mk−er (Z)Mk−es(W )

= minjkrls ×Mm+k−ei−er (Z)×Mn+l−ej−el(W ) . (9.5.9)

(d) The equations reduce to the trilinear form

∑
m,n,k,l,r,s

Cm,nDk,lEr,s(m, k, r)(n, l, s)Mm+k+r−E(Z)Mn+l+s−E(W ) = 0 ,

E = e1 + e2 + e3 , (a, b, c) = εijkaibjcc . (9.5.10)

Here (a, b, c) denotes the determinant defined by the three index vectors involved. By
introducing the summation indices

(M = m+ k + r − E, k, r) , (N = n+ l + s− E, l, s)

one obtains an infinite number of conditions, one for each pair (M,N). The condition for
a given pair (M,N) reads as

∑
k,l,r,s

CM−k−r+E,N−l−s+EDk,lEr,s × (M − k − r + E, k, r)(N − l − s+ E, l, s) = 0 .

(9.5.11)

These equations can be regarded as linear equations by regarding any matrix selected from
{C,D,E} as a vector of linear space. The existence solutions requires that the determi-
nant associated with the tensor product of other two matrices vanishes. This matrix is
dynamical. Same applies to the tensor product of any of the matrices.

(e) Hyper-determinant [B7] is the generalization of the notion of determinant whose vanishing
tells that multilinear equations have solutions. Now the vanishing of the hyper-determinant
defined for the tensor product of the three-fold tensor power of the vector space defined by
the coefficients of the Taylor expansion should provide the appropriate manner to charac-
terize the conditions for the existence of the solutions. As already seen, solutions indeed
exist so that the hyper-determinant must vanish. The elements of the hyper matrix are now
products of determinants for the exponents of the monomials involved. The non-locality of
the Kähler function as a functional of the partonic surface leads to the argument that the
field equations of TGD for vanishing n:th variations of Kähler action are multilinear and
that a vanishing of a generalized hyper-determinant characterizes this [K28] .

(f) Since the differential operators are homogenous polynomials of partial derivatives, the total
degrees of Mm(Z) and Mm(W ) defined as a sum D =

∑
mi is reduced by one unit by the

action of both operators ∂ij . For given value of M and N only the products

Mm(Z)Mn(W )Mk(Z)Mr(W )Ms(Z)Ml(W )

for which the vector valued degrees D1 = m + k + r and D2 = n + l + s have the same
value are coupled. Since the degree is reduced by the operators appearing in the equation,
polynomial solutions for which f i contain monomials labelled by vectors mi, ni, ri for which
the components vary in a finite range (0, nmax) look like a natural solution ansatz. All the
degreesDi ≤ Di,max appear in the solution ansatz so that quite a large number of conditions
is obtained.
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What is nice is that the equation can be interpreted as a difference equation in 3-D lattice with
”time direction” defined by the direction of the diagonal.

(a) The counterparts of time=constant slices are the planes n1 + n2 + n3 = n defining outer
surfaces of simplices having E as a normal vector. The difference equation does not seem
to say nothing about the behavior in the transversal directions. M and N vary in the
simplex planes satisfying

∑
Mi = T1,

∑
Ni = T2. It seems natural to choose T1 = T2 = T

so that Z and W dynamics corresponds to the same ”time”. The number of points in the
T = constant simplex plane increases with T which is analogous to cosmic expansion.

(b) The ”time evolution” with respect to T can be solved iteratively by increasing the value of∑
Mi = Ni = T by one unit at each step. Suppose that the values of coefficients are known

and satisfy the conditions for (m, k, r) and (n, l, s) up to the maximum value T for the sum
of the components of each of these six vectors. The region of known coefficients -”past”-
obviously corresponds to the interior of the simplex bounded by the plane

∑
Mi =

∑
Ni =

T having E as a normal. Let (mmin, nmin), (kmin, lmin) and (rmin, smin) correspond to
the smallest values of 3-indices for which the coefficients are non-vanishing- this could be
called the moment of ”Big Bang”. The simplest but not necessary assumption is that these
indices correspond zero vectors (0, 0, 0) analogous to the tip of light-cone.

(c) For given values of M and N corresponding to same value of ”cosmic time” T one can
separate from the formula the terms which correspond to the un-known coefficients as
the sum CM+E,N+ED0,0E0,0 +DM+E,N+ED0,0C0,0 +EM+E,N+EC0,0D0,0. The remaining
terms are by assumption already known. One can fix the normalization by choosing C0,0 =
D0,0 = E0,0 = 1. With these assumptions the equation reduces at each point of the outer
boundary of the simplex to the form

CM+E,N+E +DM+E,N+E + EM+E,N+E = X

where X is something already known and contain only data about points in the plane
m+ k + r = M and n+ r + s = N . Note that these planes have one ”time like direction”
unlike the simplex plane so that one could speak about a discrete analog of string world
sheet in 3+3+3-D lattice space defined by a 2-plane with one time-like direction.

(d) For each point of the simplex plane one has equation of the above form. The equation is
non-deterministic since only constrain only the sum CM+E,N+E+DM+E,N+E+EM+E,N+E

at each point of the simplex plane to a plane in the complex 3-D space defined by them.
Hence the number of solutions is very large. The condition that the solutions reduce to
polynomials poses conditions on the coefficients since the quantities X associated with
the plane T = Tmax must vanish for each point of the simplex plane in this case. In
fact, projective invariance means that the functions involved are homogenous functions in
projective coordinates and thus polynomials and therefore reduce to polynomials of finite
degree in 3-D treatment. This obviously gives additional condition to the equations.

The minimally non-linear option

The simple equation just discussed should be taken with a caution since the non-determinism
seems to be too large if one takes seriously the analogy with classical dynamics. By the vacuum
degeneracy also the time evolution associated with Kähler action breaks determinism in the
standard sense of the word. The non-determinism is however not so strong and removed com-
pletely in local sense for non-vacuum extremals. One could also try to see the non-determinism
as the analog for non-deterministic time evolution by quantum jumps.

One can however consider the already mentioned possibility of increasing the number of equations
so that one would have three equations corresponding to the three unknown functions f i so that
the determinism associated with each step would be reduced. The equations in question would
be of the same general form but with (f1, f2, f3) replaced with some some other combination.

(a) In the genuinely projective situation where one can consider the (f1, f2, f3, f i), i = 1, 2, 3 as
a unique generalization of the equation. This would make the equations quadratic in fi and
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reduce the non-determinism at given step of the time evolution. The new element is that
now only monomials Mm(z) associated with the f i with same degree of homegenity defined
by d =

∑
mi are consistent with projective invariance. Therefore the solutions are charac-

terized by six integers (di,1, di,2) having interpretation as analogs of conformal weights since
they correspond to eigenvalues of scaling operators. That homogenous polynomials are in
question gives hopes that a generalization of Witten’s approach might make sense. The
indices m vary at the outer surfaces of the six 3-simplices defined by (di,1, di,2) and looking
like tedrahedrons in 3-D space. The functions f i are highly analogous to the homogenous
functions appearing in group representations and quantum classical correspondence could
be realized through the representation of the space-time surfaces in this manner.

(b) The 3-determinants (a, b, c) appearing in the equations would be replaced by 4-determinants
and the equations would have the same general form. One has

∑
k,l,r,s,t,u

CM−k−r−t+E,N−l−s−u+EDk,lEr,sCt,u ×

×(M − k − r − t+ E, k, r, t)(N − l − s− u+ E, l, s, u) = 0 ,

E = e1 + e2 + e3 + e4 , (a, b, c, d) = εijklaibjckdl . (9.5.12)

and its variants in which D and E appear quadratically. The values of M and N are
restricted to the tedrahedrons

∑
Mi =

∑
dk,1 + d1,i and

∑
Ni =

∑
di,2 + di,2, i = 1, 2, 3.

Therefore the dynamics in the index space is 3-dimensional. Since the index space is in a
well-defined sense dual to CP3 as is also the CP3 in which the solutions are represented
as counterparts of 3-surfaces, one could say that the 3-dimensionality of the dynamics
corresponds to the dynamics of Chern-Simons action at space-like at the ends of CD and
at light-like 3-surfaces.

(c) The view based on 4-D time evolution is not useful since the solutions are restricted to
time=constant plane in 4-D sense. The elimination of one of the projective coordinates
would lead however to the analog of the above describe time evolution. In four-D context
a more appropriate form of the equations is

∑
m,n,k,l,r,s

Cm,nDk,lEr,sCt,u(m, k, r, t)(n, l, s, u)Mm+k+r−E(Z)Mn+l+s−E(W ) = 0

(9.5.13)

with similar equations for f2 and f3. If one assumes that the CP2 image of the holomorphic
3-surface is unique (it can correspond to either CP3) the homogenous polynomials f i must
be symmetric under the exchange of Z and W so that the matrices C,D, and E are
symmetric. This is equivalent to a replacement of the product of determinants with a sum
of 16 products of determinants obtained by permuting the indices of each index pair (m,n),
(k, l),(r, s) and (t, u).

(d) The number Ncond of conditions is given by the product Ncond = N(dM )N(dN ) of numbers
of points in the two tedrahedrons defined by the total conformal weights

∑
Mr = dM =

∑
k dk,1 + di,1 and

∑
Nr = dN =

∑
k dk,2 + di,2 , i = 1, 2, 3.

The number Ncoeff of coefficients is

Ncoeff =
∑
k

n(dk,1) +
∑
k

n(dk,2) ,

where n(dk,i) is the number points associated with the tedrahedron with conformal weight
dk,i.

Since one has n(d) ∝ d3, Ncond scales as
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Ncond ∝ d3
Md

3
N = (

∑
k

dk,1 + d1,i)
3 × (

∑
k

dk,2 + di,2)3

whereas the number Ncoeff of coefficients scales as

Ncoeff ∝
∑
k

(d3
k,1 + d3

k,2) .

Ncond is clearly much larger than Ncoeff so the solutions are analogous to partial waves
and that the reduction of the rank for the matrices involved is an essential aspect of
being a solution. The reduction of the rank for the coefficient matrices should reduce the
effective number of coefficients so that solutions can be found. An interesting question is
whether the coefficients are rationals with a suitable normalization allowed by independent
conformal scalings. An analogy for the dynamics is quantum entanglement for 3+3 systems
respecting the conservation of conformal weights and quantum classical correspondence
taken to extreme suggests something like this.

(e) One can interpret these equations as linear equations for the coefficients of the either linear
term or as quadratic equations for the non-linear term. Also in the case of quadratic term
one can apply general linear methods to identify the vanishing eigen values of the matrix
of the quadratic form involved and to find the zero modes as solutions. The rank of the
dynamically determined multiplier matrix must be non-maximal for the solutions to exist.
One can imagine that the rank changes at critical surfaces in the space of Taylor coefficients
meaning a multi-furcation in the space determined by the coefficients of the polynomials.
Also the degree of the polynomial can change at the critical point.

Solutions for which either determinant vanishes for all terms present in the solution exist.
This is is achieved if either the index vectors (m, l, r, t) or (n, l, s, u) in their respective
parallel 3-planes are also in a 3-plane going through the origin. These solutions might seen
as the analogs of vacuum extremals of Chern-Simons action for which the CP2 projection
is at most 2-D Lagrangian manifold.

Quantum classical correspondence requires that the space-time surface carries also informa-
tion about the momenta of partons. This information is quasi-continuous. Also information
about zero modes should have representation in terms of the coefficients of the polynomi-
als. Is this really possible if only products of polynomials of fixed conformal weights with
strong restrictions on coefficients can be used? The counterpart for the vacuum degeneracy
of Kähler action might resolve the problem. The analog for the construction of space-time
surfaces as deformations of vacuum extremals would be starting from a trivial solution and
adding to the building blocks of f i some terms of same degree for which the wave vectors
are not in the intersection of a 3-plane and simplex planes. The still existing ”vacuum
part” of the solution could carry the needed information.

(f) One can take ”obvious solutions” characterized by different common 3-planes for the ”wave
vectors” characterizing the 8 monomials Ma(Z) and Mb(W ), a ∈ {m, k, r, t} and b ∈
{n, l, s, u}. The coefficient matrices C,D,E, F are completely free. For the sum of these
solutions the equations contain interaction terms for which at least two ”wave vectors”
belong to different 3-planes so that the corresponding 4-determinants are non-vanishing.
The coefficients are not anymore free. Could the ”obvious solutions” have interpretation in
terms of different space-time sheets interacting via wormhole contacts? Or can one equate
”obvious” with ”vacuum” so that interaction between different vacuum space-time sheets
via wormhole contact with 3-D CP2 projection would deform vacuum extremals to non-
vacuum extremals? Quantum classical correspondence inspires the question whether the
products for functions fi associated with an obvious solution associated with a particular
plane correspond to a tensor products for quantum states associated with a particular
partonic 2-surface or space-time sheet.

(g) Effective 2-dimensionality realized in terms of the extremals of Chern-Simons actions with
Lagrange multiplier term coming from the weak form of electric magnetic duality should
also have a concrete counterpart if one takes the analogy with the extremals of Kähler
action seriously. The equations can be transformed to 3-D ones by the elimination of the
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fourth coordinate but the interpretation in terms of discrete time evolution seems to be
impossible since all points are coupled. The total conformal weights of the monomials vary
in the range [0, d1,i] and [0, d2,i] so that the non-vanishing coefficients are in the interior of
3-simplex. The information about the fourth coordinate is preserved being visible via the
four-determinants.

(h) It should be possible to relate the hierarchy with respect to conformal weights would to the
geometrization of loop integrals if a generalization of twistor strings is in question. One
could hope that there exists a hierarchy of solutions with levels characterized by the rank of
the matrices appearing in the linear representation. There is a temptation to associate this
hierarchy with the hierarchy of deformations of vacuum extremals of Kähler action forming
also a hierarchy. If this is the case the obvious solutions would correspond to vacuum
exremals. At each step when the rank of the matrices involved decreases the solution
becomes nearer to vacuum extremal and there should exist vanishing second variation of
Kähler action. This structural similarity gives hopes that the proposed ansatz might work.
Also the fact that a generalization of the Penrose’s twistorial description for the solutions of
Maxwell’s equations to the situation when Maxwell field is induced from the Kähler form of
CP2 raises hopes. One must however remember that the consistency with other proposed
solution ansätze and with what is believed to be known about the preferred extremals is
an enormously powerful constraint and a mathematical miracle would be required.

9.6 Comparing twistor revolution with TGD revolution

Lubos Motl saved my Sunday by giving a link to an excellent talk by Nima Arkani-Hamed
about the latest twistorial breakthroughs. Lubos Motl talks about ”minirevolution” but David
Gross uses a more appropriate expression ”uprising”. I would prefer to speak about revolution
inducing at the sociological level a revolt. One must give up QFT in fixed space-time and string
theory, and replace them with a theory whose name Nima guesses to be just ”T”.

For some time ago Lubos Motl told about the latest articles from Nima and collaborators: A Note
on Polytopes for Scattering Amplitudes and Local Integrals for Planar Scattering Amplitudes.

Soon after this Lubos Motl gave a link to a video in which Witten talked about knot invariants.
This talk was very inspiring and led to TGD based vision about how to calculate invariants of
braids, braid cobordisms, and 2-knots in TGD framework and the idea that TGD could be seen
as symplectic QFT for calculating these invariances among other things. Much of work was just
translation of the basic ideas involved to TGD framework.

One crucial observation was that one can assign to the symplectic group of δM4
+ × CP2 gerbe

gauge potentials generalizing ordinary gauge potentials in terms of which one can define infinite
number of classical 2-fluxes allowing to generalize Wilson loop to a Wilson surface. Most impor-
tantly, a unique identification for the decomposition of space-time surface to string world sheets
identified as singularities of induce gauge fields and partonic 2-surfaces emerged and one can see
the two decompositions as dual descriptions. TGD as almost topological QFT concretized to a
symplectic QFT for knots, braids, braid cobordisms, and 2-knots. These ideas are documented
in the chapter Knots and TGD of ”TGD: Physics as Infinite-Dimensional Geometry” [K37] . I
did not realize the obvious connection with twistor approach as I wrote the new chapter.

In his rather energetic lecture Nima emphasized how the Yangian symmetry originally discovered
in 2-D QFTs, algebraic geometry, twistor theory, and string theory fuse to something bigger
called ”T”. I realized that the twistorial picture developed in the earlier postings integrates
nicely with the braidy vision inspired by Witten’s talk and that one could understand in TGD
framework why twistor description, Yangian symmetry of 2-D integrable systems, and algebraic
geometry picture are so closely related. In particular, the dual conformal symmetries of twistor
approach could be understood in terms of duality between partonic 2-surfaces and string world
sheets expressing the strong form of holography. Also a generalization for the dual descriptions
provided by super Wilson loop and ordinary scattering amplitude in N = 4 SUSY in terms of
Wilson sheets suggests itself among many other things. Also a rather obvious solution to the
problem posed by non-planar diagrams to twistor approach suggests itself. Planar diagrams are

http://motls.blogspot.com/2011/01/twistor-minirevolution-goes-on.html
http://streamer.perimeterinstitute.ca/mediasite/viewer/NoPopupRedirector.aspx?peid=ff8f97a4-2848-4b93-98d9-1218de2070af&shouldResize=False
http://motls.blogspot.com/2011/01/twistor-minirevolution-goes-on.html
http://arxiv.org/abs/1012.6030
http://arxiv.org/abs/1012.6030
http://arxiv.org/abs/1012.6032
http://motls.blogspot.com/2011/01/edward-witten-knots-and-quantum-theory.html
http://tgd.wippiespace.com/public_html/tgdgeom/tgdgeom.html#knotstgd
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simply not present and parton-string duality and huge symmetries of TGD give good reasons
for why this should be the case.

9.6.1 The declaration of revolution by Nima from TGD point of view

At first look Nima’s program is a declaration of revolution against all sacred principles. Nima
dooms space-time, wants to get rid of QFT, does not even explicitly care about unitarity, and
wants to throw Feynman diagrams to paper basket. Nima does not even respect string theory
and sees it only as one particular- possibly not the best- manner to describe the underlying
simplicity.

Give up space-time

In many respects I agree with Nima about the fate of space-time of QFT. I however see Nima’s
view a little bit exaggerated: one can perhaps compute scattering amplitudes without Minkowski
space but one cannot translate the results of computations to the language of experiments
without bringing in frequencies and wavelengths, classical fields, and therefore also space-time.
Quantum classical correspondence: this is needed and this brings space-time unavoidably into the
picture. Space-time surface serves as a dynamical correlate for quantum dynamics- generalized
Bohr orbit required by General Coordinate Invariance and strong form of holography. The
enormously important implication is absence of Feynman graphs in ordinary sense since their
is no path integral over space-time surface but just single surface: the preferred extremal of
Kähler action is enough (forgetting the delicacies caused by the failure of classical determinism
in standard sense for Kähler action allowing to realize also the space-time correlates of quantum
jump sequences).

Nima uses black hole based arguments to demonstrate that local observables are not opera-
tionally defined in neither gravitational theories nor quantum field theories and concludes that
space-time is doomed. What would remain would be 4-D space-time regarded as a boundary of
higher dimensional space-time (AdS/CFT correspondence). I think that this is quite too com-
plex and that the reduction in degrees of freedom is much more radical: the landscape misery
is after all basically due to the exponential inflation in the number of degrees of freedom due to
the fatal mistake of making 10-D or 11-D target space dynamical.

What remains in TGD are boundaries of space-time surfaces at the upper and lower ends of
causal diamonds CD × CP2 (briefly CD) and wormhole throats at which the signature of in-
duced metric changes from Euclidian to Minkowskian (recall that Euclidian regions represent
generalized Feynman diagrams). CD is essentially a representation of Penrose diagram which
fits nicely with twistor approach. Strong form of holography implies that partonic 2-surfaces
(or dual string world sheets) and 4-D tangent space data a them are enough as basic particle
physics objects. The rest of space-time is needed to realized quantum classical correspondence
essential for quantum measurement theory.

The basic message of TGD is that quantum superpositions of space-time surfaces are relevant
for physics in all scales. Particles are the dynamical space-time quanta. There is however higher-
dimensional space-time which is fixed and rigid H = M4×CP2 and is needed for the symmetries
of the theory and guarantees the Kähler geometric existence of the world of classical worlds
(WCW). This simplifies the situation enormously: instead of 10- or 11-D dynamical space-time
one has just 4-D space-time and 2-D surfaces plus 4-D tangent space data. Holography is what
we experience it to be: we see only 2-D surfaces. And physics is experimental science although
some super string theorists might argue something else!

Give up fields

Nima argues also that fields are doomed too. I must say that I do not like this Planck length
mysticism: it assumes quite too much and in TGD framework something new emerge already in
CP2 scale about 104 longer than Planck scale. According to Nima all this pain with Feynman
diagrams would be due to the need to realize unitary representations of Poincare group in
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terms of fields. For massless particles one is forced to assume gauge invariance to eliminate the
unphysical polarizations. Nima sees gauge invariance as the source of all troubles. Here I do
not completely agree with Nima. The unitary time evolution in fixed space-time translated to
the path integral over classical fields is what leads to the combinatorial nightmare of summing
over Feynman diagrams and plagues also φ4 theory. Amusingly, as Nima emphasizes all this
has been known for 60 years. It is easy to understand that the possibility to realize unitarity
elegantly using Feynman diagrams led to the acceptance of this approach as the only possible
one.

In TGD framework the geometry of sub-manifolds replaces fields: the dynamics of partonic 2-
surfaces identified as throats of light-like wormhole contacts containing fermions at them gives
rise to bosons as bound states of fermions and antifermions. There is no path integral over space-
time surfaces, just functional integral over partonic 2-surfaces so that path integral disappears.
In zero energy ontology this means that incoming states are bound states of massless fermions
and antifermions at wormhole throats and virtual states consist also of massless fermions but
without the bound state constraint. This means horribly strong kinematic constraints on vertices
defined by partonic 2-surfaces and UV finiteness and IR finiteness are automatic outcome of the
theory. Massivation guaranteeing IR finiteness is consistent with massless-ness of fundamental
particles since massive states are bound states of massless particles.

Nima talks also about emergence as something fundamental and claims that also space-time
emerges. In TGD framework emergence has very concrete meaning. All particles are bound
states of massless fermions and the additional purely bosonic degrees of freedom correspond to
vibrational degrees of freedom for partonic 2-surfaces.

What is lacking from the program of Nima is the vision about physics as a geometry of worlds of
classical worlds [K62] and physics as generalized number theory [K71] . This is what makes the
higher-D imbedding space unique and allows the geometrization of quantum physics and identi-
fication of standard model symmetries as number theoretical symmetries. Infinite-dimensional
geometry is unique just from the requirement that it exists!

9.6.2 Basic results of twistor approach from TGD point of view

The basic ideas of twistor approach are remarkably consistent with the basic picture of TGD.

Only on mass-shell amplitudes appear in the recursion formula

What is striking that the recursion formula of Nima and collaborators for the integrands of the
planar amplitudes of N = 4 SUSY involve only on mass shell massless particles in the role of
intermediate states. This is in sharp conflict with not only Feynman diagrammatic intuition
but also with the very path integral ideology motivated by the need to realize unitary time
development.

As already mentioned, in ZEO (zero energy ontology) all states- both on mass shell and off
mass shell are composites of massless states assigned to 2-D partonic surfaces. Path integral is
indeed replaced with generalized Bohr orbits and one obtains only very few generalized Feynman
diagrams. What remains is functional integral over 3-surfaces, or even less over partonic 2-
surfaces with varying tangent space data.

A further simplification is that as a result of the dynamics of preferred extremals many particle
states correspond to discrete sets of points at partonic 2-surfaces serving as the ends of orbits
of braid strands and possibly also 2-knots and functional integral involves integral over different
configurations of these points [K28] . The physical interpretation is as a realization of finite
measurement resolution as a property of dynamics itself. The string word sheets are uniquely
identified as inverse images under imbedding map of space-time surface to H = M4 × CP2

of homologically non-trivial geodesic sphere of CP2 defining homological magnetic monopole.
Holography in its strongest sense states that all information about non-trivial 2-homology if
space-time surface and knottedness of the string world sheets is coded to the data at partonic
2-surfaces. For details see the chapter Knots and TGD of ”TGD: Physics as Infinite-Dimensional
Geometry [K37] .

http://tgd.wippiespace.com/public_html/tgdgeom/tgdgeom.html#knotstgd
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Twistors and algebraic geometry connection emerge naturally in TGD framework

H = M4 × CP2 and the reduction of all on mass shell states to bound states of massless
states imply that twistor approach is the natural description of scattering amplitudes in TGD
framework.

What is new that one must convolute massless theories in the sense that opposite throats of
CP2 sized wormhole contacts carry massless states. This allows to get rid of IR divergencies
and realized exact Yangian symmetry by a purely physical mechanism making particle states
massive.

An important implication is that even photon, gluons, and graviton have small masses and that
in TGD framework all components of Higgs field are eaten by electroweak gauge bosons. Also
gluons have colored scalar and pseudo-scalar counterparts and already now there are some hints
at LHC for pseudo-scalar gluons. The discovery of Higgs can of course kill this idea anytime.

The connection with twistors allows to understand how algebraic geometry of projective spaces
emerges in TGD framework and one indeed ends up to an alternative formulation of quan-
tum TGD with space-time surfaces in H replaced with holomorphic 6-surfaces of CP3 × CP3,
which are sphere bundles and there effectively 4-D. The equations determining the 6-surfaces
are dictated by rather general constraints.

Dual descriptions in terms of QFT and strings

The connections ofN = 4 SUSY with 2-D integrable systems and the possibly of both stringy and
QFT descriptions characterized by dual conformal symmetries giving rise to Yangian invariance
reduce in TGD framework to the duality between descriptions based on string world sheets and
partonic 2-surfaces.

(a) The connection with string description emerges from the basic TGD in the sense that one
can localize the solutions of the modified Dirac equation [K28] at braid strands located at
the light-like 3-D wormhole throats. Similar localization to string world sheets defined in
the above described manner holds true in space-time interior. The solutions of the modified
Dirac equation localized to braid strands (and to string world sheets in space-time interior)
are characterized by what I called pseudo momenta not directly identifiable as momenta.
The natural identification is as region momenta of the twistor approach. Recall that the
twistorialization of region momenta leads to the momentum twistor approach making dual
conformal invariance manifest.

(b) The strange looking localization of fermions at braid strands makes mathematically sense
only because the classical dynamics of preferred extremals reduces to hydrodynamics such
that the flow parameters for flow lines integrate to global coordinates. So called Beltrami
flows are in question and mean that preferred extremals have interpretation as perfect
fluid flows for which dissipation is minimal [K28] . This property implies also the almost
topological QFT property of TGD meaning that Kähler action reduces to Chern-Simons
action localized at light-like wormhole throats and space-like 3-surfaces at the ends of CDs.

(c) The mathematical motivation on braid strands comes from the fact that this allows to
avoid delta functions in the anticommutators of fermionic oscillator operators at partonic
2-surfaces and therefore also the basic quadratic divergences of quantum field theories.
Oscillator algebra has countable -perhaps even finite number- of generators and the loss
of complete locality is in terms of finite measurement resolution. The larger the number
of braid points selected at partonic 2-surface, the larger the number string world sheets
and the higher the complexity of space-time surface. This obviously means a concrete
realization of holography. The oscillator algebra has interpretation as SUSY algebra with
arbitrarily large N fixed by the number of braid points. This SUSY symmetry is dynamical
and badly broken. For right handed neutrino the breaking is smallest but also in this case
the mixing of left- and right handed M4 chiralities in modified Dirac equation implies non-
conservation of R-parity as well as particle massivation and also the absence of lightest
stable SUSY partner, which means that one particular dark matter candidate is out of
game.

http://matpitka.blogspot.com/2011/01/second-top-quark-related-anomaly-from.html
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(d) The big difference between TGD and string models is that super generators do not corre-
spond to Majorana spinors: this is indeed impossible for M4 × CP2 since it would mean
non-conservation of baryon and lepton numbers. I believed for a long time that stringy
propagators emerge from TGD and the long standing painful question was what about
stringy propagator defined by the inverse 1/G of the hermitian super generator in string
models. In TGD 1/G cannot define stringy propagator since G carries fermion number.
The reduction of strings to pairs of massless particles saves the situation and ordinary
massless propagator for the counterparts of region momenta gives well defined propagators
for on mass shell massless states! Stringy states reduce to bound states of massless particles
in accordance with emergence philosophy. Nothing is scared these days!

Connection with integrable 2-D discrete systems

Twistor approach has revealed a striking connection between 2-D integrable systems and N = 4
SUSY. For instance, one can calculate the anomalous dimensions of N = 4 SUSY from an
integrable model for spin chain in 2 dimensions without ever mentioning Feynman diagrams.

The description in terms of partonic 2-surfaces mean a direct connection with braids appear-
ing in 2-D integrable thermodynamical systems and the description in terms of string world
sheets means connection with integrable theories in 2-D Minkowski space. Both theories in-
volve Yangian symmetry [A54] for which there exists a hierarchy of non-local conserved charged.
Super-conformal invariance and its dual crucial for Yangian symmetry correspond to partonic
2-surfaces and string world sheets. The symmetry algebra is extended dramatically. In N = 4
SUSY one has Yangian of conformal algebra of M4. In TGD this algebra is generalized to
include the super Kac-Moody algebra associated with isometries of the imbedding space, the
super-conformal variant of the symplectic algebra of δM4 × CP2, and also conformal transfor-
mations of M4 mapping given boundary of CD to itself.

This allows also to understand and generalize the duality stating that QFT amplitudes forN = 4
SUSY have interpretation as supersymmetric Wilson loops in dual Minkowski space. The ends of
braid strands indeed define Wilson loops. In TGD framework work one must however generalize
Wilson loops to Wilson sheets [K37] and the circulations of gauge potentials are replaced with
fluxes of gerbe gauge potentials associated with the symplectic group of δM4

+×CP2. As noticed,
dual conformal symmetries correspond to duality of partonic 2-surfaces and string world sheets
implies by the 2-D holography for string world sheets.

9.6.3 Could planar diagrams be enough in the theory transcending
N = 4 SUSY?

Twistor approach as it appears in N = 4 SYM is of course not the final solution.

(a) N = 4 SUSY is not enough for the purposes of LHC.

(b) The extremely beautiful Yangian symmetry fails as one performs integration to obtain the
scattering amplitudes and generates IR singularities. ZEO provides an elegant solution to
this problem by replacing physical on mass shell particles with bound states of massless
particles. Also string like objects emerge as this kind of states.

(c) Only planar diagrams allow to assign to assign to the sum of Feynman diagrams a single
integrand defining the twistor diagram. Something definitely goes wrong unless one is able
to treat the non-planar diagrams. The basic problem is that one cannot assign common loop
momentum variables to all diagrams simultaneously and this is due to the tricky character
of Feynman diagrams. It is difficult to integrate without integrand!

The easy-to-guess question is whether the sum over the non-planar diagrams vanishes or whether
they are just absent in a theory transcending N = 4 SUSY and QFTs. Let N denote the number
of colors of the SUSY. For N → ∞ limit with g2N fixed only planar diagrams survive in this
kind of theory and one obtains a string model like description as conjectured long time ago by
’t Hooft [B70]. This argument led later to AdS/CFT duality.

http://en.wikipedia.org/wiki/Yangian
http://igitur-archive.library.uu.nl/phys/2005-0622-152933/14055.pdf
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The stringy diagrams in TGD framework could correspond to planar diagrams of N = 4 QFT.
Besides this one would have s functional integral over partonic 2-surfaces.

(a) The description would be either in terms of partonic 2-surfaces or string world sheets with
both determined uniquely in terms of a slicing of space-time surface with physical states
characterized in terms of string world sheets in finite measurement resolution.

(b) N → ∞ limit could in TGD framework be equivalent with two replacements. The color
group with the infinite-D symplectic group of δM4

±×CP2 and symplectic group and isom-
etry group of H are replaced with their conformal variants.

(c) Could g2N = constant be equivalent with the use of hyper-finite factors of type II1 [K86]
for which the trace of the unit matrix equals to 1 instead of N = ∞. These factors
characterize the spinor structure of WCW identifiable in terms of Clifford algebra defined
by infinite-D fermionic oscillator algebra defined by second quantized fermions at partonic
2-surfaces.

9.6.4 Motives and twistors

Nima mentions at the end of his talk motives [B12] . I know about this abstract branch of
algebraic geometry only that it is an attempt to build a universal cohomology theory, which
in turn is an algebraic approach to topology allowing to linearize highly non-linear situations
encountered typically in algebraic geometry where topology is replaced with holomorphy which
is must more stringent property and allows richer structures.

(a) Physics as generalized number theory vision involving also fusion of real and p-adic number
fields to a larger super structure brings algebraic geometry to the core of TGD. The partonic
2-surfaces allowing interpretation as inhabitants of the intersection of real and p-adic worlds
serve as correlates for living matter in TGD Universe. They are algebraic surfaces allowing
in preferred coordinates a representation in terms of polynomials with rational coefficients.
Motives would be needed to understand the cohomology of these surfaces. One encounters
all kinds of problems such as counting the number of rational points in the intersection of
p-adic and real variants of the surface and for algebraic surfaces this reduces to the counting
of rational points for real 2-surface about which algebraic geometers know a lot of. For
instance, surfaces of form xn + yn + zn = 0 for n ≥ 3 appearing in Fermat’s theorem are
child’s play since they allow only origin as a common point.

(b) As cautiously concluded in ”Knots and TGD” [K37] , the intersection form for string
world sheets defines a representation of the second relative homology of space-time surface
and by Poincare duality also second cohomology. ”Relative” is with respect to ends of
space-time at the boundaries of CDs and light-like wormhole throats. The intersection
form characterizing the collection of self-intersection points at which the braid strands are
forced to go through each other is almost enough to characterize connected 4-manifolds
topologically by Donaldson theorem [A12] .

(c) String world sheets define a violent unknotting procedure based on reconnections for braid
strands- basic stringy vertex for closed strings- and in this manner knot invariant in the
same manner as the recursion allowing to calculate the value of Jones polynomial for a
given knot. Quantum TGD gives as a by-product rise to a symplectic QFT describing
braids, their cobordisms, and 2-knots. It would not be surprising if the M -matrix elements
would have also interpretation as symplectic covariants providing information about the
topology of the space-time surface. The 2-braid theory associated with space-time surface
would also characterize its topology just as ordinary knots can characterize topology of
3-manifolds.

To sum up, TGD suggests a surprisingly stringy but at the same time incredibly simple general-
ization of string model in which the discoveries made possible by the twistor approach to N = 4
SUSY find a natural generalization. Nima has realized that much more than a mere discovery
of computational recipes is involved and indeed talks about T-theory. I feel that the lonely ”T”
is desperately yearning for the company of ”G” and ”D”!

http://en.wikipedia.org/wiki/Motive_(algebraic_geometry)
http://en.wikipedia.org/wiki/Cohomology_theory
http://tgd.wippiespace.com/public_html/tgdgeom/tgdgeom.html#knotstgd
http://en.wikipedia.org/wiki/Donaldson_theorem
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9.6.5 Reducing non-planar diagrams to planar ones by a generalization
of algorithm for calculating knot invariants?

I have been listening some lectures in Strings 2001. The lectures related to progress in the
calculation of gauge theory and super-gravity amplitudes are really electrifying: one really feels
the sparking enthusiasm of the speakers. Besides twistor revolution there is also other amazing
progress taking place in QFT side.

At this morning I started to listen the talk of Henrik Johansson about Lie algebra structures in
YM and gravitational amplitudes. I have already earlier written about the finding that there
is a symmetry between kinematical numerators of the amplitudes involving polarizations and
momenta on one hand and color factors on the other hand, and that one can in well defined sense
express gravitational scattering amplitudes in terms of squares of YM amplitudes. This holds
true for on mass shell amplitudes. The reduction of the gravitational amplitudes to squares of
YM amplitudes would be incredible simplification: even 3-graviton off mass shell vertex contains
about 100 terms! As a matter fact, gravitation is a gauge theory too with gauge group replaced
with Poincare group so that it would not be totally surprising that this kind of duality between
kinematics would hold true.

This duality is not however the topic of this posting. As Johansson was explaining the Jacobi
identity for the kinematical Lie algebra I got Eureka experience. What the kinematic Jacobi
identity states is following:

The numerator for four-point amplitude with twisted legs in s-channel is expressible as a differ-
ence of planar s- and t-channel amplitudes.

If you did not get the association to twistor program already from this sentence, recall that
the basic problem of twistor approach are non-planar diagrams. For them one cannot order the
loop momenta in such a manner that the ordering would be universal and depend only on the
number of loops as it is for planar diagrams without crossings. Hence one is not able to combine
all diagrams to single integrand and this is related to the tricks one is forced to apply to make
the loop integrals finite: same identification of loop momenta for all diagrams is not possible if
one wants finiteness.

What one needs for a generalizaton of twistor approach to apply to non-planar diagrams is a
universal identification of the loop momenta by cancelling all crossings: the amplitude itself
need not be equal to the difference of the amplitudes obtained by reconnecting in two manners
but could be something more general. This operation would be performed for internal lines
only. For external lines it tells that the amplitudes changes possible sign when external lines are
permuted. For braid statistics a more phase factor would result.

The duality of old-fashioned string models says that the difference of s- and t-channel amplitudes
vanishes so that one can say that amplitudes with twisted legs vanish. Also at large N (number
of colors) limit of N = 4 SUSY these differences vanish and YM theory behaves like string
theory and planar twistor approach should give exact answers at this limit. In TGD framework
the effective replacement of gauge group with infinite-dimensional symplectic group could have
the same effect. But what about finite values of N in super YM theories?

Could one generalize the twistor approach so that one could calculate all amplitudes by recursion-
not only the planar ones?

Alert reader has of course answered already but I try to explain for non-specialists (with me
included). If one has worked with braids and knots, one realizes that the expression for the
amplitude as difference of planar amplitudes is analogous to what you get in elementary un-
knotting operation for braids annihilating one crossing in the knot diagram! In the process
you form the difference of two possible reconnections at the crossing point. If you interpret
the process as time evolution, it corresponds to two vertices in which interiors of strings touch
each other and reconnect in a new manner. In the construction of Jones polynomial as a knot
invariant the repeated application of these un-twisting operations eventually leads to un-knot
and you get as an outcome the knot invariant. Also non-planar Feynman diagram is like a knot
diagram and the outcome of similar procedure should consists of only planar amplitudes.

http://media.medfarm.uu.se/flvplayer/strings2011/video4
http://matpitka.blogspot.com/2011/06/beltrami-flows-symplectic-invariance.html
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For Feynman diagrams one cannot distinguish between upper and lower crossings of the lines.
This could be interpreted by saying that both crossings give the same contribution. This is the
case if untwisting gives the difference of numerators in both color and momentum degrees of
freedom so that the signs cancel and the integrals of both contributions are identical despite the
fact that the propagator denominators are not identical. The most general outcome would be a
term proportional to the sum of the four planar contributions and one could perhaps treat the
situation using twistorial methods. Proportionality coefficient could depend on dimensionless
Lorentz scalars constructed from the incoming momenta of the sub-diagram with crossing and
dictated to high degree by conformal invariance. Professional could probably demonstrate in
five minutes that the conjecture cannot hold true.

Especially, if you have written N times ”Quantum TGD as almost topological QFT ...” you get
at the large N limit the vibe in your spine. Because the combinatorics of an almost topological
QFT must be that of a topological QFT and because braids are basic building brick of TGD
amplitudes, it should be possible to reduce all non-planar amplitudes -both those of TGD and
those of N = 4 SUSY and even other gauge theories - by a repeated un-twisting to planar am-
plitudes. A generalization of the basic algorithm of knot theory would become part of twistorial
Feynman diagrammatics and could perhaps also be used to define the integrand including also
the loops with crossings!

If the proposal can be realized in some sense, the rules for calculating the twistor amplitudes
would be simple.

(a) You - or your knot theoretical friend- must first patiently unknot the Feynman diagrams
involved by eliminating all twists using the basic formula allowing to express twisted sub-
amplitude with a difference of un-twisted sub-amplitudes. You might even dream that he
gives you explicit formulas for the outcome to get rid of your continual requests for help.

(b) At the end of the day you get just planar diagrams and you can apply the general recursive
formulas of Nima and others working for all numbers of external particles and all numbers
of loops to get the integrand, which you should be able to integrate.

(c) Unfortunately you are not! But you can knock the door of Goncharov and ask whether he
could kindly perform the integral using his magic Symbolic Integration Machine [A96] about
which Anastasia Volovich tells in her talk ”Symblifying N=4 SUSY Scattering Amplitudes”.

Is this idea just a passing daydream? Or morning dream- my hungry cat forced me to wake up at
3 a’clock so that I might be hallucinating in half-sleeping state. A specialist could immediately
tell where this crazy idea of Europe’s (if not World’s) worst Feynman diagrammatician fails.

9.6.6 Langlands duality, electric-magnetic duality, S-duality, finite mea-
surement resolution, and quantum Yangian symmetry

The arguments represented in the chapter ”Langlands program and TGD” [K38] support the
view that in TGD Universe number theoretic and geometric Langlands conjectures could be
understood very naturally. The reader is warmly recommended to consult to this chapter for a
more detailed representation.

What is important is that the discussion improves considerably the understanding about TGD
proper. Same can be said about other attempts to apply TGD approach to the problems of
modern mathematics to which topological quantumf field theories have been applied [K72, K88,
K38]. In particular, a connection of Langlands conjectures and Yangian symmetry emerges.
The group G resp. its Langlands dual LG would define what might be called twisted quantum
Yangian associated with G resp. LG. The Lie group G resp. LG corresponds to the description
of TGD in terms of partonic 2-surfaces resp. string world sheets made possible by strong form
of holography in turn implied by strong form of general coordinate invariance implying also
electric-magnetic duality and S-duality. Another new result is the identification of the gauge
group G as a group defining the measurement resolution in the approach based on hyperfinite
factors of type II1 and proposal for the concrete representation of the corresponding Kac-Moody
algebra. A further unexpected outcome are S-dual descriptions of TGD in terms of open string

http://media.medfarm.uu.se/flvplayer/strings2011/video15
http://tgd.wippiespace.com/public_html/tgdnumber/tgdnumber.html#Langlandia
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world sheets and partonic 2-surfaces in the moduli spaces of each other. Besides TGD based
view about space-time, zero energy ontology and the notion of finite measurement resolution
are the basic new notions as compared with the approach of Witten and Kapustin [A109] to the
geometric Langlands duality.

(a) Zero energy ontology (ZEO) and the related notion of causal diamond CD (CD is a short
hand for the cartesian product of causal diamond of M4 and of CP2). ZEO leads to the
notion of partonic 2-surfaces at the light-like boundaries of CD and to the notion of string
world sheet. These notions are central in the recent view about TGD. One can assign
to the partonic 2-surfaces a conformal moduli space having as additional coordinates the
positions of braid strand ends (punctures). By electric-magnetic duality this moduli space
must correspond closely to the moduli space of string world sheets.

(b) Electric-magnetic duality realized in terms of string world sheets and partonic 2-surfaces.
The group G and its Langlands dual LG would correspond to the time-like and space-like
braidings. Duality predicts that the moduli space of string world sheets is very closely
related to that for the partonic 2-surfaces. The strong form of 4-D general coordinate
invariance implying electric-magnetic duality and S-duality as well as strong form of holog-
raphy indeed predicts that the collection of string world sheets is fixed once the collection
of partonic 2-surfaces at light-like boundaries of CD and its sub-CDs is known.

(c) The proposal is that finite measurement resolution is realized in terms of inclusions of
hyperfinite factors of type II1 at quantum level and represented in terms of confining
effective gauge group [K86]. This effective gauge group could be some associate of G: gauge
group, Kac-Moody group or its quantum counterpart, or so called twisted quantum Yangian
strongly suggested by twistor considerations. At space-time level the finite measurement
resolution would be represented in terms of braids at space-time level. The braids come
in two varieties correspond to braids assignable to space-like surfaces at the two light-like
boundaries of CD and with light-like 3-surfaces at which the signature of the induced metric
changes and which are identified as orbits of partonic 2-surfaces connecting the future and
past boundaries of CDs.

There are several steps leading from G to its twisted quantum Yangian. The first step
replaces point like particles with partonic 2-surfaces: this brings in Kac-Moody character.
The second step brings in finite measurement resolution meaning that Kac-Moody type
algebra is replaced with its quantum version. The third step brings in zero energy ontol-
ogy: one cannot treat single partonic surface or string world sheet as independent unit:
always the collection of partonic 2-surfaces and corresponding string worlds sheets defines
the geometric structure so that multilocality and therefore quantum Yangian algebra with
multilocal generators is unavoidable. Also ZEO forces multilocality since zero energy states
defining orthonormal M -matrices are define multilocal Kac-Moody type algebra with inte-
ger powers of S−matrix defining the exponent of phase factor assignable with power zn in
the loop algebra generator.

(d) In finite measurement resolution geometric Langlands duality and number theoretic Lang-
lands duality are very closely related since partonic 2-surface is effectively replaced with
the punctures representing the ends of braid strands and the orbit of this set under a dis-
crete subgroup of G defines effectively a collection of ”rational” 2-surfaces. The number of
the ”rational” surfaces in geometric Langlands conjecture replaces the number of rational
points of partonic 2-surface in its number theoretic variant. The ability to compute both
these numbers is very relevant for quantum TGD.

(e) The natural identification of the associate of G is quantum Yangian of Kac-Moody type
group associated with Minkowskian open string model assignable to string world sheet
representing a string moving in the moduli space of partonic 2-surface. The dual group
corresponds to Euclidian string model with partonic 2-surface representing string orbit in
the moduli space of the string world sheets. The Kac-Moody algebra assigned with sim-
ply laced G is obtained using the standard tachyonic free field representation obtained as
ordered exponentials of Cartan algebra generators identified as transversal parts of M4 co-
ordinates for the braid strands. The importance of the free field representation generalizing
to the case of non-simply laced groups in the realization of finite measurement resolution
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in terms of Kac-Moody algebra cannot be over-emphasized (note that in string models
and conformal field theories this realization of vertex operators in terms of free fields is of
comparable importance).

(f) Langlands duality involves besides harmonic analysis side also the number theoretic side.
Galois groups (collections of them) defined by infinite primes and integers having represen-
tation as symplectic flows defining braidings. I have earlier proposed that the hierarchy of
these Galois groups define what might be regarded as a non-commutative homology and
cohomology. Also G has this kind of representation which explains why the representations
of these two kinds of groups are so intimately related. This relationship could be seen
as a generalization of the MacKay correspondence between finite subgroups of SU(2) and
simply laced Lie groups.

(g) Symplectic group of the light-cone boundary acting as isometries of the WCW geome-
try [K17] allowing to represent projectively both Galois groups and symmetry groups as
symplectic flows so that the non-commutative cohomology would have braided represen-
tation. This leads to braided counterparts for both Galois group and effective symmetry
group.

(h) The moduli space for Higgs bundle playing central role in the approach of Witten and Ka-
pustin to geometric Landlands program is in TGD framework replaced with the conformal
moduli space for partonic 2-surfaces. It is not however possible to speak about Higgs field
although moduli defined the analog of Higgs vacuum expectation value. Note that in TGD
Universe the most natural assumption is that all Higgs like states are ”eaten” by gauge
bosons so that also photon and gluons become massive. This mechanism would be very
general and mean that massless representations of Poincare group organize to massive ones
via the formation of bound states. It might be however possible to see the contribution of
p-adic thermodynamics depending on genus as analogous to Higgs contribution since the
conformal moduli are analogous to vacuum expectation of Higgs field.

9.6.7 About the structure of the Yangian algebra

The attempt to understand Langlands conjecture in TGD framework led to a completely un-
expected progress in the understanding of the Yangian symmetry expected to be the basic
symmetry of quantum TGD and the following vision suggesting how conformal field theory
could be generalized to four-dimensional context is a fruit of this work.

The structure of the Yangian algebra is quite intricate and in order to minimize confusion easily
caused by my own restricted mathematical skills it is best to try to build a physical interpretation
for what Yangian really is and leave the details for the mathematicians.

(a) The first thing to notice is that Yangian and quantum affine algebra are two different
quantum deformations of a given Lie algebra. Both rely on the notion of R-matrix in-
ducing a swap of braid strands. R-matrix represents the projective representations of the
permutation group for braid strands and possible in 2-dimensional case due to the non-
commutativity of the first homotopy group for 2-dimensional spaces with punctures. The
R-matrix Rq(u, v) depends on complex parameter q and two complex coordinates u, v. In
integrable quantum field theories in M2 the coordinates u, v are real numbers having iden-
tification as exponentials representing Lorenz boosts. In 2-D integrable conformal field
theory the coordinates u, v have interpretation as complex phases representing points of a
circle. The assumption that the coordinate parameters are complex numbers is the safest
one.

(b) For Yangian the R-matrix is rational whereas for quantum affine algebra it is trigonometric.
For the Yangian of a linear group quantum deformation parameter can be taken to be equal
to one by a suitable rescaling of the generators labelled by integer by a power of the complex
quantum deformation parameter q. I do not know whether this true in the general case. For
the quantum affine algebra this is not possible and in TGD framework the most interesting
values of the deformation parameter correspond to roots of unity.



624 Chapter 9. Yangian Symmetry, Twistors, and TGD

Slicing of space-time sheets to partonic 2-surfaces and string world sheets

The proposal is that the preferred extremals of Kähler action are involved in an essential manner
the slicing of the space-time sheets by partonic 2-surfaces and string world sheets. Also an
analogous slicing of Minkowski space is assumed and there are infinite number of this kind of
slicings defining what I have called Hamilton-Jaboci coordinates [K8]. What is really involved
is far from clear. For instance, I do not really understand whether the slicings of the space-time
surfaces are purely dynamical or induced by special coordinatizations of the space-time sheets
using projections to special kind of sub-manifolds of the imbedding space, or are these two
type of slicings equivalent by the very property of being a preferred extremal. Therefore I can
represent only what I think I understand about the situation.

(a) What is needed is the slicing of space-time sheets by partonic 2-surfaces and string world
sheets. The existence of this slicing is assumed for the preferred extremals of Kähler
action [K8]. Physically the slicing corresponds to an integrable decomposition of the tangent
space of space-time surface to 2-D space representing non-physical polarizations and 2-D
space representing physical polarizations and has also number theoretical meaning.

(b) In zero energy ontology the complex coordinate parameters appearing in the generalized
conformal fields should correspond to coordinates of the imbedding space serving also as
local coordinates of the space-time surface. Problems seem to be caused by the fact that
for string world sheets hyper-complex coordinate is more natural than complex coordinate.
Pair of hyper-complex and complex coordinate emerge naturally as Hamilton-Jacobi coor-
dinates for Minkowski space encountered in the attempts to understand the construction
of the preferred extremals of Kähler action.

Also the condition that the flow lines of conserved isometry currents define global coordi-
nates lead to the to the analog of Hamilton-Jacobi coordinates for space-time sheets [K8].
The physical interpretation is in terms of local polarization plane and momentum plane de-
fined by local light-like direction. What is so nice that these coordinates are highly unique
and determined dynamically.

(c) Is it really necessary to use two complex coordinates in the definition of Yangian-affine
conformal fields? Why not to use hyper-complex coordinate for string world sheets? Since
the inverse of hyper-complex number does not exist when the hyper-complex number is
light-like, hyper-complex coordinate should appear in the expansions for the Yangian gen-
eralization of conformal field as positive powers only. Intriguingly, the Yangian algebra is
”one half” of the affine algebra so that only positive powers appear in the expansion. Maybe
the hyper-complex expansion works and forces Yangian-affine instead of doubly affine struc-
ture. The appearance of only positive conformal weights in Yangian sector could also relate
to the fact that also in conformal theories this restriction must be made.

(d) It seems indeed essential that the space-time coordinates used can be regarded as imbedding
space coordinates which can be fixed to a high degree by symmetries: otherwise problems
with general coordinate invariance and with number theoretical universality would be en-
countered.

(e) The slicing by partonic 2-surfaces could (but need not) be induced by the slicing of CD by
parallel translates of either upper or lower boundary of CD in time direction in the rest
frame of CD (time coordinate varying in the direction of the line connecting the tips of
CD). These slicings are not global. Upper and lower boundaries of CD would definitely
define analogs of different coordinate patches.

Physical interpretation of the Yangian of quantum affine algebra

What the Yangian of quantum affine algebra or more generally, its super counterpart could
mean in TGD framework? The key idea is that this algebra would define a generalization of
super conformal algebras of super conformal field theories as well as the generalization of super
Virasoro algebra. Optimist could hope that the constructions associated with conformal alge-
bras generalize: this includes the representation theory of super conformal and super Virasoro
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algebras, coset construction, and vertex operator construction in terms of free fields. One could
also hope that the classification of extended conformal theories defined in this manner might be
possible.

(a) The Yangian of a quantum affine algebra is in question. The heuristic idea is that the two
R-matrices - trigonometric and rational- are assignable to the swaps defined by space-like
braidings associated with the braids at 3-D space-like ends of space-time sheets at light-
like boundaries of CD and time like braidings associated with the braids at 3-D light-like
surfaces connecting partonic 2-surfaces at opposite light-like boundaries of CD. Electric-
magnetic duality and S-duality implied by the strong form of General Coordinate Invariance
should be closely related to the presence of two R-matrices. The first guess is that rational
R-matrix is assignable with the time-like braidings and trigonometric R-matrix with the
space-like braidings. Here one must or course be very cautious.

(b) The representation of the collection of Galois groups associated with infinite primes in terms
of braided symplectic flows for braid of braids of .... braids implies that there is a hierarchy
of swaps: swaps can also exchange braids of ...braids. This would suggest that at the
lowest level of the braiding hierarchy the R-matrix associated with a Kac-Moody algebra
permutes two braid strands which decompose to braids. There would be two different
braided variants of Galois groups.

(c) The Yangian of the affine Kac-Moody algebra could be seen as a 4-D generalization of the
2-D Kac-Moody algebra- that is a local algebra having representation as a power series
of complex coordinates defined by the projections of the point of the space-time sheet to
geodesic spheres of light-cone boundary and geodesic sphere of CP2.

(d) For the Yangian the generators would correspond to polynomials of the complex coordinate
of string world sheet and for quantum affine algebra to Laurent series for the complex
coordinate of partonic 2-surface. What the restriction to polynomials means is not quite
clear. Witten sees Yangian as one half of Kac-Moody algebra containing only the generators
having n ≥ 0. This might mean that the positivity of conformal weight for physical states
essential for the construction of the representations of Virasoro algebra would be replaced
with automatic positivity of the conformal weight assignable to the Yangian coordinate.

(e) Also Virasoro algebra should be replaced with the Yangian of Virasoro algebra or its quan-
tum counterpart. This construction should generalize also to Super Virasoro algebra. A
generalization of conformal field theory to a theory defined at 4-D space-time surfaces using
two preferred complex coordinates made possible by surface property is highly suggestive.
The generalization of conformal field theory in question would have two complex coordi-
nates and conformal invariance associated with both of them. This would therefore reduce
the situation to effectively 2-dimensional one rather than 3-dimensional: this would be
nothing but the effective 2-dimensionality of quantum TGD implied by the strong form of
General Coordinate Invariance.

(f) This picture conforms with what the generalization of D = 4N = 4 SYM by replacing point
like particles with partonic 2-surfaces would suggest: Yangian is replaced with Yangian of
quantum affine algebra rather than quantum group. Note that it is the finite measurement
resolution alone which brings in the quantum parameters q1 and q2. The finite measurement
resolution might be relevant for the elimination of IR divergences.

How to construct the Yangian of quantum affine algebra?

The next step is to try to understand the construction of the Yangian of quantum affine algebra.

(a) One starts with a given Lie group G. It could be the group of isometries of the imbedding
space or subgroup of it or even the symplectic group of the light-like boundary of CD×CP2

and thus infinite-dimensional. It could be also the Lie group defining finite measurement
resolution with the dimension of Cartan algebra determined by the number of braid strands.

(b) The next step is to construct the affine algebra (Kac-Moody type algebra with central
extension). For the group defining the measurement resolution the scalar fields assigned
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with the ends of braid strands could define the Cartan algebra of Kac-Moody type algebra
of this group. The ordered exponentials of these generators would define the charged
generators of the affine algebra.

For the imbedding space isometries and symplectic transformations the algebra would be
obtained by localizing with respect to the internal coordinates of the partonic 2-surface.
Note that also a localization with respect to the light-like coordinate of light-cone boundary
or light-like orbit of partonic 2-surface is possible and is strongly suggested by the effective
2-dimensionality of light-like 3-surfaces allowing extension of conformal algebra by the
dependence on second real coordinate. This second coordinate should obviously correspond
to the restriction of second complex coordinate to light-like 3-surface. If the space-time
sheets allow slicing by partonic 2-surfaces and string world sheets this localization is possible
for all 2-D partonic slices of space-time surface.

(c) The next step is quantum deformation to quantum affine algebra with trigonometric R-
matrix Rq1(u, v) associated with space-like braidings along space-like 3-surfaces along the
ends of CD. u and v could correspond to the values of a preferred complex coordinate of
the geodesic sphere of light-cone boundary defined by rotational symmetry. It choice would
fix a preferred quantization axes for spin.

(d) The last step is the construction of Yangian using rational R-matrix Rq2(u, v). In this case
the braiding is along the light-like orbit between ends of CD. u and v would correspond
to the complex coordinates of the geodesic sphere of CP2. Now the preferred complex
coordinate would fix the quantization axis of color isospin.

These arguments are of course heuristic and do not satisfy any criteria of mathematical rigor
and the details could of course change under closer scrutinity. The whole point is in the attempt
to understand the situation physically in all its generality.

How 4-D generalization of conformal invariance relates to strong form of general
coordinate invariance?

The basic objections that one can rise to the extension of conformal field theory to 4-D context
come from the successes of p-adic mass calculations. p-Adic thermodynamics relies heavily on
the properties of partition functions for super-conformal representations. What happens when
one replaces affine algebra with (quantum) Yangian of affine algebra? Ordinary Yangian involves
the original algebra and its dual and from these higher multilocal generators are constructed.
In the recent case the obvious interpretation for this would be that one has Kac-Moody type
algebra with expansion with respect to complex coordinate w for partonic 2-surfaces and its
dual algebra with expansion with respect to hyper-complex coordinate of string world sheet.

p-Adic mass calculations suggest that the use of either algebra is enough to construct single
particle states. Or more precisely, local generators are enough. I have indeed proposed that the
multilocal generators are relevant for the construction of bound states. Also the strong form
of general coordinate invariance implying strong form of holography, effective 2-dimensionality,
electric-magnetic duality and S-duality suggests the same. If one could construct the states
representing elementary particles solely in terms of either algebra, there would be no danger
that the results of p-adic mass calculations are lost. Note that also the necessity to restrict the
conformal weights of conformal representations to be non-negative would have nice interpretation
in terms of the duality.

9.7 More about twistor revolution and TGD

Lubos Motl wrote a nice summary about the talk of Nima Arkani Hamed about twistor revolution
in Strings 2012 and gave also a link to the talk [B25]. It seems that Nima and collaborators
are ending to a picture about scattering amplitudes which strongly resembles that provided bt
generalized Feynman diagrammatics in TGD framework

http://motls.blogspot.fi/2012/07/permutations-join-twistor-minirevolution.html
https://cast.itunes.uni-muenchen.de/vod/clips/ifNaivs8Pf/flash.html
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TGD framework is much more general than N = 4 SYM and is to it same as general relativity
for special relativity whereas the latter is completely explicit. Of course, I cannot hope that
TGD view could be taken seriously - at least publicly. One might hope that these approaches
could be combined some day: both have a lot to give for each other. Below I compare these
approaches.

The recent approach below emerges from the study of preferred extremals of Kähler and solutions
of the modified Dirac equations so that it begins directly from basic TGD whereas the approaches
hitherto have been based on general arguments and the precise role of right-handed neutrino has
remained enigmatic. Chapters ”Construction of quantum TGD: Symmetries” [K20] and ”The
recent vision about preferred extremals and solutions of the modified Dirac equation” [K92] con-
tain section explaining how super-conformal and Yangian algebras crucial for the Grassmannian
approach emerge from the basic TGD.

9.7.1 The origin of twistor diagrammatics

In TGD framework zero energy ontology forces to replace the idea about continuous unitary
evolution in Minkowski space with something more general assignable to causal diamonds (CDs),
and S-matrix is replaced with a square root of density matrix equal to a hermitian l square root
of density matrix multiplied by unitary S-matrix. Also in twistor approach unitarity has ceased
to be a star actor. In p-Adic context continuous unitary time evolution fails to make sense also
mathematically.

Twistor diagrammatics involves only massless on mass shell particles on both external and
internal lines. Zero energy ontology (ZEO) requires same in TGD: wormhole lines carry parallely
moving massless fermions and antifermions. The mass shell conditions at vertices are enormously
powerful and imply UV finiteness. Also IR finiteness follows if external particles are massive.

What one means with mass is however a delicate matter. What does one mean with mass? I have
pondered 35 years this question and the recent view is inspired by p-adic mass calculations and
ZEO, and states that observed mass is in a well-defined sense expectation value of longitudinal
mass squared for all possible choices of M2 ⊂ M4 characterizing the choices of quantization
axis for energy and spin at the level of ”world of classical worlds” (WCW) assignable with given
causal diamond CD.

The choice of quantization axis thus becomes part of the geometry of WCW. All wormhole
throats are massless but develop non-vanishing longitudinal mass squared. Gauge bosons cor-
respond to wormhole contacts and thus consist of pairs of massless wormhole throats. Gauge
bosons could develop 4-D mass squared but also remain massless in 4-D sense if the throats have
parallel massless momenta. Longitudinal mass squared is however non-vanishing andp-adic ther-
modynamics predicts it.

9.7.2 The emergence of 2-D sub-dynamics at space-time level

Nima et al introduce ordering of the vertices in 4-D case. Ordering and related braiding are
however essentially 2-D notions. Somehow 2-D theory must be a part of the 4-D theory also
at space-time level, and I understood that understanding this is the challenge of the twistor
approach at this moment.

The twistor amplitude can be represented as sum over the permutations of n external gluons and
all diagrams corresponding to the same permutation are equivalent. Permutations are more like
braidings since they carry information about how the permutation proceeded as a homotopy.
Yang-Baxter equation emerges and states associativity of the braid group. The allowed braidings
are minimal braidings in the sense that the repetitions of permutations of two adjacent vertices
are not considered to be separate. Minimal braidings reduce to ordinary permutations. Nima also
talks about affine braidings which I interpret as analogs of Kac-Moody algebras meaning that one
uses projective representations which for Kac-Moody algebra mean non-trivial central extension.
Perhaps the condition is that the square of a permutation permuting only two vertices which
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each other gives only a non-trivial phase factor. Lubos suggests an alternative interpretation
which would select only special permutations and cannot be therefore correct.

There are rules of identifying the permutation associated with a given diagram involving only
basic 3-gluon vertex with white circle and its conjugate. Lubos explains this ”Mickey Mouse in
maze” rule in his posting in detail: to determine the image p(n) of vertex n in the permutation
put a mouse in the maze defined by the diagram and let it run around obeying single rule: if the
vertex is black turn to the right and if the vertex is white turn to the left. The mouse cannot
remain in a loop: if it would do so, the rule would force it to run back to n after single full
loop and one would have a fixed point: p(n) = n. The reduction in the number of diagrams is
enormous: the infinity of different diagrams reduces to n! diagrams!

What happens in TGD framework?

(a) In TGD framework string world sheets and partonic 2-surfaces (or either or these if they
are dual notions as conjectured) at space-time surface would define the sought for 2-D
theory, and one obtains indeed perturbative expansion with fermionic propagator defined
by the inverse of the modified Dirac operator and bosonic propagator defined by the cor-
relation function for small deformations of the string world sheet. The vertices of twistor
diagrams emerge as braid ends defining the intersections of string world sheets and partonic
2-surfaces.

String model like description becomes part of TGD and the role of string world sheets in
X4 is highly analogous to that of string world sheets connecting branes in AdS5 × S5 of
N = 4 SYM. In TGD framework 10-D AdS5 × S5 is replaced with 4-D space-time surface
in M4 × CP2. The meaning of the analog of AdS5 duality in TGD framework should
be understood. In particular, it could it be that the descriptions involving string world
sheets on one hand and partonic 2-surfaces - or 3-D orbits of wormhole throats defining the
generalized Feynman diagram- on the other hand are dual to each other. I have conjectured
something like this earlier but it takes some time for this kind of issues to find their natural
answer.

(b) As described in the article, string world sheets and partonic 2-surfaces emerge directly from
the construction of the solutions of the modified Dirac equation by requiring conservation
of em charge. This result has been conjectured already earlier but using other less direct
arguments. 2-D ”string world sheets” as sub-manifolds of the space-time surface make the
ordering possible, and guarantee the finiteness of the perturbation theory involving n-point
functions of a conformal QFT for fermions at wormhole throats and n-point functions for
the deformations of the space-time surface. Conformal invariance should dictate these n-
point functions to a high degree. In TGD framework the fundamental 3-vertex corresponds
to joining of light-like orbits of three wormhole contacts along their 2-D ends (partonic
2-surfaces).

9.7.3 The emergence of Yangian symmetry

Yangian symmetry associated with the conformal transformations of M4 is a key symmetry of
Grassmannian approach. Is it possible to derive it in TGD framework?

(a) TGD indeed leads to a concrete representation of Yangian algebra as generalization of color
and electroweak gauge Kac-Moody algebra using general formula discussed in Witten’s
article about Yangian algebras (see the article).

(b) Article discusses also a conjecture about 2-D Hodge duality of quantized YM gauge poten-
tials assignable to string world sheets with Kac-Moody currents. Quantum gauge potentials
are defined only where they are needed - at string world sheets rather than entire 4-D space-
time.

(c) Conformal scalings of the effective metric defined by the anticommutators of the modified
gamma matrices emerges as realization of quantum criticality. They are induced by critical
deformations (second variations not changing Kähler action) of the space-time surface.
This algebra can be generalized to Yangian using the formulas in Witten’s article (see the
article).

http://motls.blogspot.fi/2012/07/permutations-join-twistor-minirevolution.html
http://tgdtheory.com/public_html/articles/svira.pdf
http://tgdtheory.com/public_html/articles/svira.pdf
http://arxiv.org/pdf/hep-th/0401243v2.pdf
http://tgdtheory.com/public_html/articles/svira.pdf
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(d) Critical deformations induce also electroweak gauge transformations and even more general
symmetries for which infinitesimal generators are products of U(n) generators permuting
n modes of the modified Dirac operator and infinitesimal generators of local electro-weak
gauge transformations. These symmetries would relate in a natural manner to finite mea-
surement resolution realized in terms of inclusions of hyperfinite factors with included al-
gebra taking the role of gauge group transforming to each other states not distinguishable
from each other.

(e) How to end up with Grassmannian picture in TGD framework? This has inspired some
speculations in the past. From Nima’s lecture one however learns that Grassmannian
picture emerges as a convenient parametrization. One starts from the basic 3-gluon vertex
or its conjugate expressed in terms of twistors. Momentum conservation implies that with
the three twistors λi or their conjugates are proportional to each other (depending on
which is the case one assigns white or black dot with the vertex). This constraint can be
expressed as a delta function constraint by introducing additional integration variables and
these integration variables lead to the emergence of the Grassmannian Gn,k where n is the
number of gluons, and k the number of positive helicity gluons.

Since only momentum conservation is involved, and since twistorial description works be-
cause only massless on mass shell virtual particles are involved, one is bound to end up
with the Grassmannian description also in TGD.

9.7.4 The analog of AdS5 duality in TGD framework

The generalization of AdS5 duality of N = 4 SYMs to TGD framework is highly suggestive and
states that string world sheets and partonic 2-surfaces play a dual role in the construction of
M-matrices. Some terminology first.

(a) Let us agree that string world sheets and partonic 2-surfaces refer to 2-surfaces in the slicing
of space-time region defined by Hermitian structure or Hamilton-Jacobi structure.

(b) Let us also agree that singular string world sheets and partonic 2-surfaces are surfaces at
which the effective metric defined by the anticommutators of the modified gamma matrices
degenerates to effectively 2-D one.

(c) Braid strands at wormhole throats in turn would be loci at which the induced metric of the
string world sheet transforms from Euclidian to Minkowskian as the signature of induced
metric changes from Euclidian to Minkowskian.

AdS5 duality suggest that string world sheets are in the same role as string world sheets of 10-D
space connecting branes in AdS5 duality for N = 4 SYM. What is important is that there should
exist a duality meaning two manners to calculate the amplitudes. What the duality could mean
now?

(a) Also in TGD framework the first manner would be string model like description using
string world sheets. The second one would be a generalization of conformal QFT at light-
like 3-surfaces (allowing generalized conformal symmetry) defining the lines of generalized
Feynman diagram. The correlation functions to be calculated would have points at the
intersections of partonic 2-surfaces and string world sheets and would represent braid ends.

(b) General Coordinate Invariance (GCI) implies that physics should be codable by 3-surfaces.
Light-like 3-surfaces define 3-surfaces of this kind and same applies to space-like 3-surfaces.
There are also preferred 3-surfaces of this kind. The orbits of 2-D wormhole throats at
which 4-metric degenerates to 3-dimensional one define preferred light-like 3-surfaces. Also
the space-like 3-surfaces at the ends of space-time surface at light-like boundaries of causal
diamonds (CDs) define preferred space-like 3-surfaces. Both light-like and space-like 3-
surfaces should code for the same physics and therefore their intersections defining partonic
2-surfaces plus the 4-D tangent space data at them should be enough to code for physics.
This is strong form of GCI implying effective 2-dimensionality. As a special case one obtains
singular string world sheets at which the effective metric reduces to 2-dimensional and
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singular partonic 2-surfaces defining the wormhole throats. For these 2-surfaces situation
could be especially simple mathematically.

(c) The guess inspired by strong GCI is that string world sheet -partonic 2-surface duality
holds true. The functional integrals over the deformations of 2 kinds of 2-surfaces should
give the same result so tthat functional integration over either kinds of 2-surfaces should
be enough. Note that the members of a given pair in the slicing intersect at discrete set
of points and these points define braid ends carrying fermion number. Discretization and
braid picture follow automatically.

(d) Scattering amplitudes in the twistorial approach could be thus calculated by using any pair
in the slicing - or only either member of the pair if the analog of AdS5 duality holds true as
argued. The possibility to choose any pair in the slicing means general coordinate invariance
as a symmetry of the Kähler metric of WCW and of the entire theory suggested already
early: Kähler functions for difference choices in the slicing would differ by a real part of
holomorphic function and give rise to same Kähler metric of ”world of classical worlds”
(WCW). For a general pair one obtains functional integral over deformations of space-time
surface inducing deformations of 2-surfaces with only other kind 2-surface contributing to
amplitude. This means the analog of stringy QFT: Minkowskian or Euclidian string theory
depending on choice.

(e) For singular string world sheets and partonic 2-surfaces an enormous simplification results.
The propagators for fermions and correlation functions for deformations reduce to 1-D
instead of being 2-D: the propagation takes place only along the light-like lines at which
the string world sheets with Euclidian signature (inside CP2 like regions) change to those
with Minkowskian signature of induced metric. The local reduction of space-time dimension
would be very real for particles moving along sub-manifolds at which higher dimensional
space-time has reduced metric dimension: they cannot get out from lower-D sub-manifold.
This is like ending down to 1-D black hole interior and one would obtain the analog of
ordinary Feynman diagrammatics. This kind of Feynman diagrammatics involving only
braid strands is what I have indeed ended up earlier so that it seems that I can trust good
intuition combined with a sloppy mathematics sometimes works;-).

These singular lines represent orbits of point like particles carrying fermion number at the
orbits of wormhole throats. Furthermore, in this representation the expansions coming
from string world sheets and partonic 2-surfaces are identical automatically. This follows
from the fact that only the light-like lines connecting points common to singular string
world sheets and singular partonic 2-surfaces appear as propagator lines!

(f) The TGD analog of AdS5 duality of N = 4 SUSYs would be trivially true as an identity
in this special case, and the good guess is that it is true also generally. One could indeed
use integral over either string world sheets or partonic 2-sheets to deduce the amplitudes.

What is important to notice that singularities of Feynman diagrams crucial for the Grassmannian
approach of Nima and others would correspond at space-time level 2-D singularities of the
effective metric defined by the modified gamma matrices defined as contractions of canonical
momentum currents for Kähler action with ordinary gamma matrices of the imbedding space
and therefore directly reflecting classical dynamics.

9.7.5 Problems of the twistor approach from TGD point of view

Twistor approach has also its problems and here TGD suggests how to proceed. Signature
problem is the first problem.

(a) Twistor diagrammatics works in a strict mathematical sense only for M2,2 with metric
signature (1,1,-1,-1) rather than M4 with metric signature (1,-1,-1,-1). Metric signature is
wrong in the physical case. This is a real problem which must be solved eventually.

(b) Effective metric defined by anticommutators of the modified gamma matrices (to be distin-
guished from the induced gamma matrices) could solve that problem since it would have



9.7. More about twistor revolution and TGD 631

the correct signature in TGD framework (see the article). String world sheets and par-
tonic 2-surfaces would correspond to the 2-D singularities of this effective metric at which
the even-even signature (1,1,1,1) changes to even-even signature (1,1,-1,-1). Space-time
at string world sheet would become locally 2-D with respect to effective metric just as
space-time becomes locally 3-D with respect to the induced metric at the light-like orbits
of wormhole throats. String world sheets become also locally 1-D at light-like curves at
which Euclidian signature of world sheet in induced metric transforms to Minkowskian.

(c) Twistor amplitudes are indeed singularities and string world sheets implied in TGD frame-
work by conservation of em charge would represent these singularities at space-time level.
At the end of the talk Nima conjectured about lower-dimensional manifolds of space-time
as representation of space-time singularities. Note that string world sheets and partonic
2-surfaces have been part of TGD for years. TGD is of course to N = 4 SYM what general
relativity is for the special relativity. Space-time surface is dynamical and possesses induced
and effective metrics rather than being flat.

Second limitation is that twistor diagrammatics works only for planar diagrams. This is a
problem which must be also fixed sooner or later.

(a) This perhaps dangerous and blasphemous statement that I will regret it some day but I will
make it;-). Nima and others have not yet discovered that M2 ⊂M4 must be there but will
discover it when they begin to generalize the results to non-planar diagrams and realize that
Feynman diagrams are analogous to knot diagrams in 2-D plane (with crossings allowed)
and that this 2-D plane must correspond to M2 ⊂ M4. The different choices of causal
diamond CD correspond to different choices of M2 representing choice of quantization
axes 4-momentum and spin. The integral over these choices guarantees Lorentz invariance.
Gauge conditions are modified: longitudinal M2 projection of massless four-momentum is
orthogonal to polarization so that three polarizations are possible: states are massive in
longitudinal sense.

(b) In TGD framework one replaces the lines of Feynman diagrams with the light-like 3-surfaces
defining orbits of wormhole throats. These lines carry many fermion states defining braid
strands at light-like 3-surfaces. There is internal braiding associated with these braid
strands. String world sheets connect fermions at different wormhole throats with space-
like braid strands. The M2 projections of generalized Feynman diagrams with 4-D ”lines”
replaced with genuine lines define the ordinary Feynman diagram as the analog of braid
diagram. The conjecture is that one can reduce non-planar diagrams to planar diagrams
using a procedure analogous to the construction of knot invariants by un-knotting the knot
in Alexandrian manner by allowing it to be cut temporarily.

(c) The permutations of string vertices emerge naturally as one constructs diagrams by adding
to the interior of polygon sub-polygons connected to the external vertices. This corresponds
to the addition of internal partonic two-surfaces. There are very many equivalent diagrams
of this kind. Only permutations matter and the permutation associated with a given
diagram of this kind can be deduced by the Mickey-Mouse rule described explicitly by
Lubos. A connection with planar operads is highly suggestive and also conjecture already
earlier in TGD framework.

9.7.6 Still one attempt understand generalized Feynman diagrams

The only manner to develop the understanding about generalized Feynman diagrams is to artic-
ulate the basic questions again and again in the hope that something new might emerge. There
are many questions to be answered.

What Grasmannian twistorialization means when imbedding space spinor fields are the funda-
mental objects. How does ZEO make twistorialization possible? How twistorialization emerges
from the functional integral in WCW from the proposed stringy construction of spinor modes.

One must also understand in detail the realization of super-conformal symmetries and how n-
point functions of conformal field theory are associated with scattering amplitudes, and how

http://tgdtheory.com/public_html/articles/svira.pdf
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cm degrees of freedom described using imbedding space spinor harmonics are treated in the
scattering amplitudes. Also the braiding and knotting should be understood. The challenge
is to find a universal form for the vertices and to identify the propagators. Also the modular
degrees of freedom of partonic 2-surfaces explaining family replication phenomenon should be
taken into account.

Zero energy ontology, twistors, and Grassmannian description?

In ZEO also virtual wormhole throats are massless particles and four-momentum conservation
at vertices identifiable as partonic 2-surfaces at which wormhole throats meet expressed in terms
of twistors leads to Grassmannian formulation automatically. This feature is thus not specific
to N = 4 SYM.

Momentum conservation and massless on mass-shell conditions at vertices defined as partonic
2-surfaces at which the orbits of wormhole contacts meet, are extremely restrictive, and one has
good hopes that huge reduction in the number of twistorial diagrams takes place and could even
lead to finite number of diagrams (number theoretic arguments favor this).

Realization of super-conformal algebra

Thanks to the advances in the construction of preferred extremals and solutions of the modified
Dirac equation there has been considerable progress in the understanding of super-conformal
invariance and its 4-D generalization [K92].

(a) In ordinary SYM ground states correspond to both maximal helicites or only second max-
imal helicity of super multiplet (N = 4 case). Now these ground states are replaced by the
modes of imbedding space spinor fields assignable to center of mass degrees of freedom for
partonic 2-surfaces. The light-like four-momenta of these modes can be expressed in terms
of twistor variables. Spin-statistics connection seems to require that the total number of
fermions and antifermions associated with given wormhole throat is always odd.

(b) Super-algebra consists of oscillator operators with non-vanishing quark or lepton number.
By conformal invariance fermionic oscillator operators obey 1-D anti-commutation rela-
tions. The integral over CD boundary defines a bi-linear form analogous to inner product.
If a reduction to single particle level takes place, the vertex is expressible as a matrix ele-
ment between two fermion-anti-fermion states: the first one assignable to the incoming and
outgoing wormhole throats one and second to the virtual boson identified as wormhole con-
tact on one hand. The exchange boson entangled fermion-anti-fermion state represented
by a bi-local generalization of the gauge current. This picture applying to gauge boson
exchanges generalizes in rather obvious manner.

(c) Unitary demands correlation between fermionic oscillator operators and spinor harmonics
of imbedding space as following argument suggets. The bilocal generalization of gauge
current defines a ”norm” for spinor modes as generalization of what in QFT regarded as
charge. On basis of experience with Dirac spinors one expect that this norm is not positive
definite. This ”norm” must be consistent with the unitarity of the scattering amplitude
and the experience with QFT suggests a correlation between creation/annihilation operator
character of fermionic oscillator operators and the sign of the ”norm” in imbedding space
degrees of freedom.

(d) The modes with negative norm should correspond to negative energy fermions and anni-
hilation operators and modes with positive norm to positive energy fermions and creation
operators. Therefore the anti-commutators of fermionic oscillator operators must be linear
in four-momentum or its longitudinal projection and thus proportional to pkγk or pkLγk.

On the other hand, the primary anti-commutators for the induced spinor fields are pro-
portional to the modified gamma matrix in a direction normal to the 1-D quantization
curve at the boundary of string world sheet or at the partonic 2-surface. These two anti-
commutators should be consistent.
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i. Does the functional integral somehow lead from the primordial anti-commutators to the
anti-commutators involving longitudinal momentum and perhaps 1-D delta function in
the intersection of M2 with CD boundary (light-like line)?

ii. Or does the connection between the two quantizations emerge as boundary conditions
stating that the normal component of modified gamma matrix at the boundary and
along string world sheet equals to pkLγk? This would also realize quantum classical cor-
respondence in the sense that the longitudinal momentum is reflected in the geometry
of the space-time sheet. Quaternionic space-time surfaces indeed contain integrable
distribution of M2(x) ⊂ M4 at their tangent spaces. The restriction to braid strands
would mean that the condition indeed makes sense. Note that braid strands should
correspond to same M2(x).

How conformal time evolution corresponds to physical time evolution?

The only internally consistent option is conformally invariant meaning that induced spinor fields
anti-commute only along as set of 1-D curves belonging to partonic 2-surfaces. This means that
one can speak about conformal time evolution at partonic 2-surface.

This suggests a huge simplification of the conformal dynamics.

(a) Conformal time evolution can be translated to time evolution along light-like orbit of worm-
hole throat by projecting the intersections of this surface with shifted light-cone boundary
to the upper or lower light-like boundary of CD: whether it is upper or lower boundary of
CD depends on the arrow of imbedding space time associated with the zero energy state.
All partonic 2-surfaces would be mapped to same light-cone boundary. The orbits of braid
strands at wormhole throat project to orbits at light-cone boundary in question and can
be further projected to the sphere rM = constant at light-boundary. 3-D dynamics would
project to simplest possible stringy 2-D dynamics (spherical string orbit) and dictated by
conformal invariance.

(b) The conformal field theory in question is for conformal fermionic fields realized in terms
of fermionic oscillator operators and n-point functions correspond to fermionic n-point
functions. The non-triviality of dynamics in these degrees of freedom follows from the non-
triviality of the conformal field theory. The entire collection of partonic 2-surfaces at the
ends of CD would reduce to its projection to S2.

(c) One can try to build a geometric view about the situation using as a guideline conformal
Hamiltonian quantum evolution. Time=constant slices would correspond to 1-D curve or
collection of them. At these slices fermionic oscillator operators would satisfy the conformal
anti-commutation relations. This kind of slice would be associated with both ends of CD.
Braid strands would connect these 1-D slices as kind of hairs. One can however ask whether
there is any need to restrict the end points of braid strands to line on a curve at which
fermionic oscillator operators satisfy stringy anti-commutation relations.

What happens in 3-vertices?

The vision is that only 3-vertices are needed. Idealize particles as wormhole contacts (in reality
pair of wormhole contacts connected by a flux tube would describe elementary particles). A very
convenient visualization of wormhole contact is as a very short string like object with throats
at its ends so that stringy diagrammatics allows to identify the vertices as the analogs of open
string vertices. One can even consider the possibility that string theory amplitudes define the
vertices. This would conform with the p-adic mass calculations applying conformal invariance
in CP2 scale. Note also that partonic 2-surfaces are effectively replaced by braids so that very
stringy picture results.

(a) Consider a three vertex representing the emission of boson by incoming fermion (FFB) or by
incoming boson (BBB) described as wormhole contact such that throats carry fermion and
anti-fermion number in the bosonic case. In the fermionic the first throat carries fermion
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and second one represents vacuum state. The exchanged boson can be regarded as fermion
anti-fermion pair such that second fermion travels to future and second one to the past
in the vertex. 3-vertex would reduce to two 2-vertices representing the transformation of
fermion line from incoming line to exchanged line or from latter to outgoing line.

(b) The minimal option is that the same vertex describes the situation if both cases. Essentially
a combination of incoming free fermions to boson like state is in question and corresponds
in string picture an exchange of open string between open strings. If so, second wormhole
throat is passive and suffers forward scattering in the vertex. The fermion and anti-fermion
of the exchanged virtual boson (the light-like momenta of wormhole throats need not be
collinear for virtual bosons and also the sign of energy can be different form them) would
suffer scattering before the transformation to fermions belonging to incoming and outgoing
wormhole contact.

One expects the vertices to factorize into products of two kinds of factors: the inner products of
fermionic Fock states defined by conformal n-point functions at sphere of light-cone boundary,
and the bi-linear forms for the modes of imbedding space spinor fields involving integral over cm
degrees of freedom and allowing twistorialization by previous arguments. Let us continue with
the simple example in which wormhole throats carry fermion number 0 or 1.

(a) If second wormhole throat is passive, it is enough to construct only FFB vertex, with B
identified as a wormhole contact carrying fermion and anti-fermion. One has 4 fermions al-
together, and one expects that in cm degrees of freedom incoming and outgoing fermion are
un-correlated whereas the fermions of the boson exchange are correlated and the correlation
is expressible as the analog of gauge current.

(b) This suggests a sum over bi-local counterparts of electro-weak and color gauge currents at
opposite ends of the exchanged line. Bi-local gauge currents would contain a spinor mode
from both wormhole throats, and the strict locality of M4 gauge currents would be replaced
with a bi-locality in CP2 scale.

(c) The current assignable to a particular boson exchange must involve the matrix element of
corresponding charge matrix between spinor modes besides the quantity. Is it possible to
find a general expression for the sum over current - current interaction terms? If this is the
case, there would be no need to perform the summation over bosonic exchanges explicitly.
One would have the analog for the

∑
n |n〉〈n| in propagator line but summation allowing

the momenta of fermion and antifermion to be arbitrary massless momenta rather than
summing up to the on mass shell momentum of boson. The counterpart of gauge coupling
should be universal and naturally given by Kähler coupling.

(d) The TGD counterparts of scalar and pseudo-scalar bosons would be vector bosons with
polarization in CP2 direction and they could be also seen both as Higgs like states and
Euclidian pions assignable to wormhole contacts. Genuine H-scalars are excluded implied
by 8-D chiral symmetry implying also separate conservation of B and L.

In the general case the wormhole throats carry arbitrary odd fermion number but for fermion
numbers n > 1 at any wormhole throat exotic super-partner with propagator decaying faster
than 1/p2 is in question. Furthermore, wormhole contact is accompanied by second wormhole
contact since the flux lines of monopole flux must closed. Therefore one has a pair of ”long”
string like flux tubes connected by short flux tubes at their ends. Its length is given by weak
length scale quite generally or possibly by Compton length. The other end of the long flux tube
can also contain fermions at both flux tubes.

The identification of propagators

A natural guess is that the propagator for single fermion state is just the longitudinal Dirac
propagator DpL for a massless fermion in M4 ⊃ M2. For states, which by statistics constraint
always contain an odd number M = 2N + 1 of fermions and antifermions, the propagator would
be M :th power of fermionic longitudinal propagator so that it would reduce to p−2N

L DpL meaning
that only the single fermion states would be behave like ordinary elementary particles. States
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with higher fermion number would represent radiative corrections reflecting the non-point-like
nature of partons. Longitudinal mass squared would be equal to the sum of the contribution from
CP2 degrees of freedom and the integer valued conformal contribution from spinor harmonics.
TheM4 momenta associated with wormhole throats would be light-like. In the prescription using
fermionic longitudinal propagators assigned to the braid strands, braid strands are analogous to
the edges of polygons appearing in twistor Grassmannian approach.

Some open questions

A long list of open questions remains without a final answer. Consider first twistor Grassmannian
approach.

(a) Does this prescription follow from quantum criticality? Recall that quantum criticality
formulated in terms of preferred extremals and modified Dirac equation leads to a stringy
perturbation theory involving fermionic propagator defined by the modified Dirac operator
and functional integral over WCW for the deformations of space-time surface preserving the
preferred extremal property [K92]. This propagator could be called space-time propagator
to distinguish it from the imbedding space propagator associated with the longitudinal
momentum.

(b) One expects that one still has topological Feynman diagrammatic expansion (besides that
defined by functional integral over small deformations of space-time surface with given
topology) involving in principle an arbitrary number of vertices defined by the interme-
diate partonic 2-surfaces. Momentum conservation and massless on mass-shell conditions
however pose powerful restrictions on the allowed diagrams, and one might hope that the
simplicity of the outcome is comparable to Grassmannian twistor approach for N = 4 SYM.
One can even hope that the number of contributing diagrams is finite. The important point
would be that Grassmannian diagrams would give the outcome of the functional integral
over 3-surfaces. Twistorial Grassmann representation is the first guess hitherto for the
explicit outcome of the functional integral over WCW.

(c) The lines of Feynman graph are replaced with braids. A new element is that braid strands
are braided as curves inside light-like 3-surfaces defined by the orbit of the wormhole throat.
Twistorial construction applies only to the planar amplitudes ofN = 4 SYM. Can one imag-
ine TGD counterparts for non-planar amplitudes in TGD framework or does the stringy
picture imply that they are completely absent?

A possible answer to the question is based on the M2 projection of the lines of braid strands
(or on the projection to the 2-surface defined by an integrable distribution of tangent planes
M2(x)). For non-planar diagrams the projections intersect and the intersection cannot be
eliminated by a small deformation. It does not make sense to say that line goes over or
below the second line. One can speak only about crossings. In the theory or algebraic
knots [A118] algebraic knots with crossings are possible [K37]. Could algebraic knot theory
allow to reduce non-planar diagrams to sums of planar diagrams?

(d) Does one obtain Yangian symmetry using longitudinal propagators and by integrating over
the moduli labeling among other things the choices of the preferred plane M2 ⊂ M4 or
integrable distribution of preferred planes M2(x) ⊂ M4? The integral over the choices
M2 ⊂ M4 gives formally a Lorentz invariant outcome. Does it also give rise to physically
acceptable scattering amplitudes? Are the gauge conditions for the incoming gauge boson
states formulated in terms of longitudinal momentum and thus allowing also the third
polarization physical? Can one apply this gauge condition also to the virtual boson like
exchanges?

(e) It is still somewhat unclear whether one should assume single global choice of M2 or an
integrable distribution of M2(x).

i. The choice of M2(x) must be same for all braid strands of given partonic 2-surface
and remain constant along braid strand and therefore be same also at second end of
the strand. Otherwise the fermionic propagator would vary along braid strand. A
possible additional condition on braids is that braid strands correspond to the same
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choice of M2(x). In quantum measurement theory this corresponds to the choice of
same spin quantization axes for all fermions inside parton and is physically extremely
natural condition. The implication is that one can indeed assign a fixed M2 with
CD and choice of braid strands via boundary conditions. The simplest boundary
conditions would require M2(x) to be constant at light-like 3-surfaces and at the ends
of space-time surface at boundaries of CD. This is in spirit with holography stating
that quantum measurements can be carried out only at these 3-surfaces (or at least
those at the ends of CD).

ii. One cannot exclude the possibility that M2(x) does not depend on x for a particular
space-time sheet and even entire CD although this looks rather strong a restriction.
On the other hand, one can ask whether the preferred M2 assigned with CD should
be generalized to an integrable distribution M2(x) assigned with CD such that M2(x)
is contained in the tangent space of preferred Minkowskian extremal.

iii. Is the functional integral over integrable distributions M2(x) needed? It would be
analogous to a functional integral over string world sheets. It is enough to integrate over
Lorentz transforms of a given distribution M2(x) to achieve Lorentz invariance. This
because the choice of the integrable distribution ofM2(x) for space-time surface reduces
effectively to the choice of M2 for the disconnected pieces of generalized Feynman
diagram. Physical intuition suggests that a particular choice of M2(x) corresponds to
fixing of zero modes of WCW and is essentially fixing of classical variables needed to
fix quantization axes. The fixing of value distributions of induced Kähler fields n 4-D
sense at partonic 2-surfaces would be similar fixation of zero modes.

iv. If only M2 momentum makes it visible in anti-commutators, how the other components
of four-momentum can make themselves visible in dynamics? This is possible via mo-
mentum conservation at vertices making possible twistor Grassmannian approach. The
dynamics in transversal momenta would be dictated completely by the conservation
laws.

There are also other challenges.

(a) Family replication phenomenon has TGD based explanation in terms of the conformal
moduli of partonic 2-surfaces. How conformal moduli should be taken into account in
the Feynman diagrammatics? Phenomena like topological mixing inducing in turn the
mixing of partonic 2-topologies responsible for CKM mixing in TGD Universe should be
understood in this description.

(b) Number theoretical universality requires that also the p-adic variants of the amplitudes
should make sense. One could even require that the amplitudes decompose to products
of parts belonging to different number fields [K91]. If one were able to formulate this
vision precisely, it would provide powerful constraints on the amplitudes. For instance, a
reduction of the amplitudes to a sum over finite number of generalized Feynman diagrams
is plausible since this would guarantee that individual contributions which must give rise
to algebraic numbers for algebraic 4-momenta, would sum up to an algebraic number.

9.8 Does the exponent of Chern-Simons action reduce to
the exponent of the area of minimal surfaces?

As I scanned of hep-th I found an interesting article by Giordano, Peschanski, and Seki [B55]
based on AdS/CFT correspondence. What is studied is the high energy behavior of the gluon-
gluon and quark-quark scattering amplitudes of N = 4 SUSY.

(a) The proposal made earlier by Aldaya and Maldacena [B51] is that gluon-gluon scattering
amplitudes are proportional to the imaginary exponent of the area of a minimal surface
in AdS5 whose boundary is identified as momentum space. The boundary of the minimal
surface would be polygon with light-like edges: this polygon and its dual are familiar from
twistor approach.

http://arxiv.org/pdf/1110.3680
http://arxiv.org/pdf/0710.1060
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(b) Giordano, Peschanski, and Seki claim that quark-quark scattering amplitude for heavy
quarks corresponds to the exponent of the area for a minimal surface in the Euclidian
version of AdS5 which is hyperbolic space (space with a constant negative curvature):
it is interpreted as a counterpart of configuration space rather than momentum space and
amplitudes are obtained by analytic continuation. For instance, a universal Regge behavior
is obtained. For general amplitudes the exponent of the area alone is not enough since it
does not depend on gluon quantum numbers and vertex operators at the edges of the
boundary polygon are needed.

In the following my intention is to consider the formulation of this conjecture in quantum TGD
framework. I hasten to inform that I am not a specialist in AdS/CFT and can make only general
comments inspired by analogies with TGD.

9.8.1 Why Chern-Simons action should reduce to area for minimal
surfaces?

The minimal surface conjectures are highly interesting from TGD point of view. The weak form
of electric magnetic duality implies the reduction of Kähler action to 3-D Chern-Simons terms.
Effective 2-dimensionality implied by the strong form of General Coordinate Invariance suggests
a further reduction of Chern-Simons terms to 2-D terms and the areas of string world sheet
and of partonic 2-surface are the only non-topological options that one can imagine. Skeptic
could of course argue that the exponent of the minimal surface area results as a characterizer
of the quantum state rather than vacuum functional. In the following I defend the minimal
interpretation as Chern-Simons terms.

Let us look this conjecture in more detail.

(a) In zero energy ontology twistor approach is very natural since all physical states are bound
states of massless particles. Also virtual particles are composites of massless states. The
possibility to have both signs of energy makes possible space-like momenta for wormhole
contacts. Mass shell conditions at internal lines imply extremely strong constraints on the
virtual momenta and both UV and IR finiteness are expected to hold true.

(b) The weak form of electric magnetic duality [K28] implies that the exponent of Kähler
action reduces to the exponent of Chern-Simons term for 3-D space-like surfaces at the
ends of space-time surface inside CD and for light-like 3-surfaces. The coefficient of this
term is complex since the contribution of Minkowskian regions of the space-time surface is
imaginary (

√
g4 is imaginary) and that of Euclidian regions (generalized Feynman diagrams)

real. The Chern-Simons term from Minkowskian regions is like Morse function and that
from Euclidian regions defines Kähler function and stationary phase approximation makes
sense. The two contributions are different since the space-like 3-surfaces contributing to
Kähler function and Morse function are different.

(c) Electric magnetic duality [K28] leads also to the conclusion that wormhole throats carrying
elementary particle quantum numbers are Kähler magnetic monopoles. This forces to
identify elementary particles as string like objects with ends having opposite monopole
charges. Also more complex configurations are possible.

It is not quite clear what the scale of the stringyness is. The natural first guess inspired
by quantum classical correspondence is that it corresponds to the p-adic length scale of
the particle characterizing its Compton length. Second possibility is that it corresponds
to electroweak scale. For leptons stringyness in Compton length scale might not have any
fatal implications since the second end of string contains only neutrinos neutralizing the
weak isospin of the state. This kind of monopole pairs could appear even in condensed
matter scales: in particular if the proposed hierarchy of Planck constants [K27] is realized.

(d) Strong form of General Coordinate Invariance requires effective 2-dimensionality. In given
UV and IR resolutions either partonic 2-surfaces or string world sheets form a finite hier-
archy of CDs inside CDs with given CD characterized by a discrete scale coming as an
integer multiple of a fundamental scale (essentially CP2 size). The string world sheets have
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boundaries consisting of either light-like curves in induced metric at light-like wormhole
throats and space-like curves at the ends of CD whose M4 projections are light-like. These
braids intersect partonic 2-surfaces at discrete points carrying fermionic quantum numbers.

This implies a rather concrete analogy with AdS5 × S5 duality, which describes gluons as
open strings. In zero energy ontology (ZEO) string world sheets are indeed a fundamental
notion and the natural conjecture is that these surfaces are minimal surfaces whose area
by quantum classical correspondence depends on the quantum numbers of the external
particles. String tension in turn should depend on gauge couplings -perhaps only Kähler
coupling strength- and geometric parameters like the size scale of CD and the p-adic length
scale of the particle.

(e) Are the minimal surfaces in question minimal surfaces of the imbedding space M4 × CP2

or of the space-time surface X4? All possible 2-surfaces at the boundary of CD must be
allowed so that they cannot correspond to minimal surfaces in M4×CP2 unless one assumes
that they emerge in stationary phase approximation only. The boundary conditions at the
ends of CD could however be such that any partonic 2-surface correspond to a minimal
surfaces in X4. Same applies to string world sheets. One might even hope that these
conditions combined with the weak form of electric magnetic duality fixes completely the
boundary conditions at wormhole throats and space-like ends of space-time surface.

The trace of the second fundamental form orthogonal to the string world sheet/partonic
2-surface as sub-manifold of space-time surface would vanish: this is nothing but a general-
ization of the geodesic motion obtained by replacing word line with a 2-D surface. It does
not imply the vanishing of the trace of the second fundamental form in M4 × CP2 having
interpretation as a generalization of particle acceleration [K79]. Effective 2-dimensionality
would be realized if Chern-Simons terms reduce to a sum of the areas of these minimal
surfaces.

These arguments suggest that scattering amplitudes are proportional to the product of exponents
of 2-dimensional actions which can be either imaginary or real. Imaginary exponent would be
proportional to the total area of string world sheets and the imaginary unit would come naturally
from

√
g2. Teal exponent proportional to the total area of partonic 2-surfaces. The coefficient

of these areas would not in general be same.

The equality of the Minkowskian and Euclidian Chern-Simons terms is suggestive but not nec-
essarily true since there could be also other Chern-Simons contributions than those assignable
to wormhole throats and the ends of space-time. The equality would imply that the total area of
string world sheets equals to the total area of partonic 2-surfaces suggesting strongly a duality
meaning that either Euclidian or Minkowskian regions carry the needed information.

9.8.2 IR cutoff and connection with p-adic physics

In twistor approach the IR cutoff is necessary to get rid of IR divergences. Also in the AdS5

approach the condition that the minimal surface area is finite requires an IR cutoff. The problem
is that there is no natural IR cutoff. In TGD framework zero energy ontology brings in a natural
IR cutoff via the finite and quantized size scale of CD guaranteeing that the minimal surfaces
involved have a finite area. This implies that also particles usually regarded as massless have a
small mass characterized by the size of CD. The size scale of CD would correspond to the scale
parameter R assigned with the metric of AdS5.

(a) String tension relates in AdS5 approach to the gauge coupling gYM and to the number Nc
of colors by the formula

λ = g2
YMNc =

R2

α′
. (9.8.1)

1/Nc-expansion is in terms of 1/
√
λ. The formula has an alternative form as an expression

for the string tension
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α′ =
R2√
g2
YMNc

. (9.8.2)

The analog this formula in TGD framework suggests an connection with p-adic length scale
hypothesis.

(a) As already noticed, the natural counterpart for the scale R could be the discrete value of
the size scale of CD. Since the symplectic group assignable to δM4

±×CP2 (or the upper or
lower boundary of CD) is the natural generalization of the gauge group, it would seem that
Nc = ∞ holds true in the absence of cutoff. At the limit Nc = ∞ only planar diagrams
would contribute to YM scattering amplitudes. Finite measurement resolution must make
the effective value of Nc finite so that also λ would be finite. String tension would depend
on both the size of CD and the effective number of symplectic colors.

(b) If α′ is characterized by the square of the Compton length of the particle, λ would be
essentially the square of the ratio of CD size scale given by secondary p-adic lengths and
of the primary p-adic length scale associated with the particle: λ = g2

YM

√
p, where p is

the p-adic prime characterizing the particle. Favored values of the p-adic prime correspond
to primes near powers of two. The effective number of symplectic colors would be Nc =√
p/g2

YM and the expansion would come in powers of g2
YM/

√
p. For electron one would

have p = M127 = 2127−1 so that the expansion would converge extremely fast. Together
with the amazing success of the p-adic mass calculations based on p-adic thermodynamics
for the scaling generator L0 [K50] this suggests a deep connection with p-adic physics and
number theoretic universality.

9.8.3 Could Kähler action reduce to Kähler magnetic flux over string
world sheets and partonic 2-surfaces?

Can one consider alternative identifications of Kähler action for preferred extremals? The only
alternative identification of Kähler function that I can imagine is that Kähler action proportional
to the Kähler magnetic flux

∫
Y 2 J or Kähler electric flux

∫
Y 2 ∗J for string world sheets and

possibly also partonic 2-surfaces. These fluxes are dimensionless numbers. If the weak form of
electric-magnetic duality holds true also at string world sheets, the two options are equivalent
apart from a proportionality constant.

(a) For Kähler magnetic flux there would be no explicit dependence on the induced metric.
This is in accordance with the almost topological QFT property.

(b) Unless the weak form of electric-magnetic duality holds true, the Kähler electric flux has
an explicit dependence on the induced metric but in a scaling invariant manner. The
most obvious objection relates to the sign factor of the dual flux which depends on the
orientation of the string world sheet and thus changes sign when the orientation of space-
time sheet is changed by changing that of the string world sheet. This is in conflict with the
independence of Kähler action on orientation. One can however argue that the orientation
makes itself actually physically visible via the weak form of electric-magnetic duality and
that the change of the orientation as a symmetry is dynamically broken. This breaking
would be anagous to parity breaking at the level of imbedding space.

(c) In [K37] it is proposed that braids defined by the boundaries of string world sheets could
correspond to Legendrian sub-manifolds, whereas partonic 2-surfaces could the duals of
Legendrian manifolds, so that braiding would take place dynamically. The identification of
the Kähler action as Kähler magnetic flux associated with string world sheets and possibly
also partonic 2-surfaces is consistent with the assumption that the extremal of Kähler
action in question. Indeed, the Legendrian property says that the projection of the Kähler
gauge potential on braid strand vanishes and this expresses the extremality of the Kähler
magnetic flux.
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The assumption that Kähler action is proportional to Kähler magnetic flux seems to be consistent
with the minimal surface property. The weak form of electric-magnetic duality gives a constraint
on the normal derivatives of imbedding space coordinates at the string world sheet and minimal
surface property strengthens these constraints. One could perhaps say that space-time surface
chooses its shape in such a manner that the string world sheet has a minimal area.

The open questions are following.

(a) Does Kähler action for the preferred exremals reduce to the area of the string world sheet or
to Kähler flux, or are the representations equivalent so that the induced Kähler form would
effectively define area form? If the Kähler form form associated with the induced metric
on string world sheet is proportional to the induced Kähler form the Kähler magnetic flux
is proportional to the area and Kähler action reduces to genuine area. This condition looks
like a natural additional constraint on string world sheets besides minimal surface property.

(b) The proportionality of the induced Kähler form and Kähler form of the induced 2-metric
implies as such only the extremal property against the symplectic variations so that one
cannot have minimal surface property at imbedding space level. Minimality at space-time
level is however possible since space-time surface itself can arrange the situation so that
general variations deforming the string world sheet along space-time surface reduce to
symlectic variations at the level of the imbedding space.

(c) Does the situation depend on whether the string world sheet is in Minkowskian or Euclidian
space-time region? The problem is that in Euclidian regions the value of Kähler action is
positive definite and it is not obvious why the Kähler magnetic flux for Euclidian string
world sheets should have a fixed sign. Could weak form of electric-magnetic duality fix the
sign?

Irrespective whether the Kähler action is proportional to the total area or the Kähler electric
flux over string world sheets, the theory would be exactly solvable at string world sheet level
(finite measurement resolution).

9.8.4 What is the interpretation of Yangian duality in TGD frame-
work?

Minimal surfaces in both configuration space and momentum space are used in the above men-
tioned two articles [B51, B55]. The possibility of these two descriptions must reflect the Yan-
gian symmetry unifying the conformal symmetries of Minkowski space and momentum space in
twistorial approach.

The minimal surfaces in X4 ⊂ M4 × CP2 are natural in TGD framework. Could also the
minimal surfaces in momentum space have some interpretation in TGD framework? Ore more
generally, what could be the interpretation of the dual descriptions provided by twistor diagrams
with light-like edges and dual twistor diagrams with light-like vertices? One can imagine many
interpretations but zero energy ontology suggests an especially attractive and natural interpre-
tation of this duality as the exchange of the roles of wormhole throats carrying always on mass
shell massless momenta and wormhole contacts carrying in general off-mass shell momenta and
massive momenta in incoming lines.

(a) For configuration space twistor diagrams vertices correspond to incoming and outgoing
light-like momenta. The light-like momenta associated with the wormhole throats of the
incoming and outgoing lines of generalized Feynman diagram could correspond to the light-
like momenta associated with the vertices of the polygon. The internal lines defined by
wormhole contacts carrying virtual off mass shell momenta would naturally correspond to
to edges of the twistor diagram.

(b) What about dual twistor diagrams in which light-like momenta correspond to lines? Zero
energy ontology implies that virtual wormhole throats carry on mass shell massless mo-
menta whereas incoming wormhole contacts in general carry massive particles: this guar-
antees the absence of IR divergences. Could one identify the momenta of internal wormhole
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throats as light-like momenta associated with the lines dual twistor diagrams and the in-
coming net momenta assignable to wormhole contacts as incoming and outgoing momenta.

Also the transition from Minkowskian to Euclidian signature by Wick rotation could have inter-
pretation in TGD framework. Space-time surfaces decompose into Minkowskian and Euclidian
regions. The latter ones represent generalized Feynman diagrams. This suggests a generaliza-
tion of Wick rotation. The string world sheets in Euclidian regions would define the analogs
of the minimal surfaces in Euclidian AdS5 and the string world sheets in Minkowskian regions
the analogs of Minkowskian AdS5. The magnitudes of the areas would be identical so that
they might be seen as analytical continuations of each other in some sense. Note that partonic
2-surfaces would belong to the intersection of Euclidian and Minkowskian space-time regions.
This argument tells nothing about possible momentum space analog of M4 × CP2.





Chapter 10

Some Fresh Ideas about
Twistorialization of TGD

10.1 Introduction

I found from web a thesis by Tim Adamo titled ”Twistor actions for gauge theory and gravity”
[B22]. The work considers formulation of N = 4 SUSY gauge theory directly in twistor space
instead of Minkowski space. The author is able to deduce MHV formalism, tree level amplitudes,
and planar loop amplitudes from action in twistor space. Also local operators and null polygonal
Wilson loops can be expressed twistorially. This approach is applied also to general relativity:
one of the challenges is to deduce MHV amplitudes for Einstein gravity. The reading of the article
inspired a fresh look on twistors and a possible answer to several questions (I have written two
chapters about twistors and TGD [K85, K87] giving a view about development of ideas).

Both M4 and CP2 are highly unique in that they allow twistor structure and in TGD one can
overcome the fundamental ”googly” problem of the standard twistor program preventing twisto-
rialization in general space-time metric by lifting twistorialization to the level of the imbedding
space containg M4 as a Cartesian factor. Also CP2 allows twistor space identifiable as flag man-
ifold SU(3)/U(1) × U(1) as the self-duality of Weyl tensor indeed suggests. This provides an
additional ”must” in favor of sub-manifold gravity in M4×CP2. Both octonionic interpretation
of M8 and triality possible in dimension 8 play a crucial role in the proposed twistorialization
of H = M4 × CP2. It also turns out that M4 × CP2 allows a natural twistorialization re-
specting Cartesian product: this is far from obvious since it means that one considers space-like
geodesics of H with light-like M4 projection as basic objects. p-Adic mass calculations however
require tachyonic ground states and in generalized Feynman diagrams fermions propagate as
massless particles in M4 sense. Furthmore, light-like H-geodesics lead to non-compact candi-
dates for the twistor space of H. Hence the twistor space would be 12-dimensional manifold
CP3 × SU(3)/U(1)× U(1).

Generalisation of 2-D conformal invariance extending to infinite-D variant of Yangian symmetry;
light-like 3-surfaces as basic objects of TGD Universe and as generalised light-like geodesics;
light-likeness condition for momentum generalized to the infinite-dimensional context via super-
conformal algebras. These are the facts inspiring the question whether also the ”world of classical
worlds” (WCW) could allow twistorialization. It turns out that center of mass degrees of freedom
(imbedding space) allow natural twistorialization: twistor space for M4 ×CP2 serves as moduli
space for choice of quantization axes in Super Virasoro conditions. Contrary to the original
optimistic expectations it turns out that although the analog of incidence relations holds true
for Kac-Moody algebra, twistorialization in vibrational degrees of freedom does not look like a
good idea since incidence relations force an effective reduction of vibrational degrees of freedom
to four. The Grassmannian formalism for scattering amplitudes generalizes practically as such
for generalized Feynman diagrams.

643
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10.2 Basic results and problems of twistor approach

The author describes both the basic ideas and results of twistor approach as well as the problems.

10.2.1 Basic results

There are three deep results of twistor approach besides the impressive results which have
emerged after the twistor resolution.

(a) Massless fields of arbitrary helicity in 4-D Minkowski space are in 1-1 correspondence with
elements of Dolbeault cohomology in the twistor space CP3. This was already the discovery
of Penrose..The connection comes from Penrose transform. The light-like geodesics of M4

correspond to points of 5-D submanifold of CP3 analogous to light-cone boundary. The
points of M4 correspond to complex lines (Riemann spheres) of the twistor space CP3: one
can imagine that the point of M4 corresponds to all light-like geodesics emanating from
it and thus to a 2-D surface (sphere) of CP3. Twistor transform represents the value of a
massless field at point of M4 as a weighted average of its values at sphere of CP3. This
correspondence is formulated between open sets of M4 and of CP3. This fits very nicely
with the needs of TGD since causal diamonds which can be regarded as open sets of M4

are the basic objects in zero energy ontology (ZEO).

(b) Self-dual instantons of non-Abelian gauge theories for SU(n) gauge group are in one-one
correspondence with holomorphic rank-N vector bundles in twistor space satisfying some
additional conditions. This generalizes the correspondence of Penrose to the non-Abelian
case. Instantons are also usually formulated using classical field theory at four-sphere S4

having Euclidian signature.

(c) Non-linear gravitons having self-dual geometry are in one-one correspondence with spaces
obtained as complex deformations of twistor space satisfying certain additional conditions.
This is a generalization of Penrose’s discovery to the gravitational sector.

Complexification of M4 emerges unavoidably in twistorial approach and Minkowski space iden-
tified as a particular real slice of complexified M4 corresponds to the 5-D subspace of twistor
space in which the quadratic form defined by the SU(2,2) invariant metric of the 8-dimensional
space giving twistor space as its projectivization vanishes. The quadratic form has also positive
and negative values with its sign defining a projective invariant, and this correspond to complex
continuations of M4 in which positive/negative energy parts of fields approach to zero for large
values of imaginary part of M4 time coordinate.

Interestgingly, this complexification of M4 is also unavoidable in the number theoretic approach
to TGD: what one must do is to replace 4-D Minkowski space with a 4-D slice of 8-D complexified
quaternions. What is interesting is that real M4 appears as a projective invariant consisting of
light-like projective vectors of C4 with metric signature (4,4). Equivalently, the points of M4

represented as linear combinations of sigma matrices define hermitian matrices.

10.2.2 Basic problems of twistor approach

The best manner to learn something essential about a new idea is to learn about its problems.
Difficulties are often put under the rug but the thesis is however an exception in this respect. It
starts directly from the problems of twistor approach. There are two basic challenges.

(a) Twistor approach works as such only in the case of Minkowski space. The basic condition
for its applicability is that the Weyl tensor is self-dual. For Minkowskian signature this
leaves only Minkowski space under consideration. For Euclidian signature the conditions
are not quite so restrictive. This looks a fatal restriction if one wants to generalize the
result of Penrose to a general space-time geometry. This difficlty is known as ”googly”
problem.
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According to the thesis MHV construction of tree amplitudes of N = 4 SYM based on
topological twistor strings in CP3 meant a breakthrough and one can indeed understand also
have analogs of non-self-dual amplitudes. The problem is however that the gravitational
theory assignable to topological twistor strings is conformal gravity, which is generally
regarded as non-physical. There have been several attempts to construct the on-shell
scattering amplitudes of Einstein’s gravity theory as subset of amplitudes of conformal
gravity and also thesis considers this problem.

(b) The construction of quantum theory based on twistor approach represents second challenge.
In this respect the development of twistor approach to N = 4 SYM meant a revolution and
one can indeed construct twistorial scattering amplitudes in M4.

10.3 TGD inspired solution of the problems of the twistor
approach

TGD suggests an alternative solution to the problems of twistor approach. Space-times are 4-D
surfaces of M4 × CP2 so that one obtains automatically twistor structure at the level of M4 -
that is imbedding space.

It seems natural to interpret twistor structure from the point of view of Zero Energy Ontology
(ZEO). The two tips of CD are accompanied by light-cone boundaries and define a pair of 2-
spheres in CP3 since the light-like rays associated with the tips are mapped to points of twistor
space. M4 coordinates for the tips serve as moduli for the space of CDs and can be mapped
to pairs of twistor spheres. The points of partonic 2-surfaces at the boundaries of CD reside
at light-like geodesics and the conformal invariance with respect to radial coordinate emanating
from the tip of CD suggests that the position at light-like geodesic does not matter. Therefore
the points of partonic 2-surfaces can be mapped to union of spheres of twistor space.

10.3.1 Twistor structure for space-time surfaces?

Induction procedure is the core element of sub-manifold gravity. Could one induce the the
twistor structure of M4 to the space-time surface? Would it have any useful function? This idea
does not look attractive.

(a) Twistor structure assigns to a given point of M4 a sphere of CP3 having interpretation as a
sphere parametrizing the light-like geodesics emanating from the point. TheX4 counterpart
of this assignment would be obtained simply by mapping the M4 projection of space-time
point to a sphere of twistor space in standard manner. This could make sense if the M4

projection of space-time surface 4-dimensional but not necessary when the M4 projection
is lower-dimensional - say for cosmic strings.

(b) Twistor structure assigns to a light-like geodesic of M4 a point of CP3. Should one try
to generalize this correspondence to the light-like geodesics of space-time surface? Light-
like geodesic corresponds to its light-like tangent vectors at x whose direction as imbedding
space vector depends now on the point x of the geodesic. The M4 projection for the tangent
vector of light-like geodesics of space-time surface in general time-like vector of M4 so that
one should map time-like M4 ray to CP3. Twistor spheres associated with the two points
of this geodesic do not intersect so that one cannot define the image point in CP3 as an
intersection of twistor spheres. One could consider the lifts of the light-like geodesics of M4

to X4 and map their M4 projections to the points of CP3? This looks however somewhat
trivial and physically uninteresting.

10.3.2 Could one assign twistor space to CP2?

Can one assign a twistor space to CP2? Could this property of CP2 make it physically special?
The necessary condition is satisfied: the Weyl tensor of CP2 is self-dual.
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CP2 twistor space as flag manifold

CP2 indeed allows a twistor structure as one learns from rather technical article about twistor
structures (http://www.ams.org/journals/tran/2004-356-03/S0002-9947-03-03157-X/S0002-9947-03-03157-X.
pdf). The twistor space associated with CP2 is six-dimensional flag manifold (http://en.
wikipedia.org/wiki/Flag_manifold) [A15] F (1, 2, 3) = U(3)/×U(1)×U(1)×U(1) = SU(3)/U(1)×
U(1) [A63] (http://www.ams.org/journals/tran/2004-356-03/S0002-9947-03-03157-X/S0002-9947-03-03157-X.
pdf).

This flag manifold has interpretation as the space of all possible choices of quantization axes for
color hyper charge and isospin. Note that the earlier proposal [K87] that the analog of twistor
space for CP2 is CP3 is wrong.

The twistor space assignable to M4 can be interpreted as a flag manifold consisting of 2-planes
associated with 8-D complexified Minkowski space as is clear from interpretation as projection
space CP3. It might also have an interpretation as the space of the choices of quantization axes.
For M4 light-like vector defines a unique time-like 2-plane M2 and the direction of the associated
3-vector defines quantization axes of spin whereas the sum of the light-like vector and its dual
has only time component and defines preferred time coordinate and thus quantization axes for
energy. In fact, the choice of M1 ⊂ M2 ⊂ M4 defining flag is in crucial role in the number
theoretic vision and also in the proposed construction of preferred extremals: the local choice
of M2 would define the plane of unphysical polarizations and as its orthogonal complement the
plane of physical polarizations.

Amusingly, the flag manifold SU(3)/U(1)×U(1) associated with SU(3) made its first appearance
in TGD long time ago and in rather unexpected context. The mathematician Barbara Shipman
discovered that the the dance of honeybees can be described in terms of this flag manifold [A134]
and made the crazy proposal that quark level physics is somehow related to the honeybee dance.
TGD indeed predicts scaled variants of also quarks and QCD like physics and in biology the
presence of 4 Gaussian Mersenne primes in the length scale range 10 nm- 2.5 µm [K12] suggests
that these QCDs might be realized in the new physics of living cell [K34].

In TGD inspired theory of consciousness the choice of quantization axis represents a higher level
state function reduction and contributes to conscious experience - one can indeed speak about
flag manifold qualia. It will be found that the choice of quantization axis is also unavoidable
in the conditions stating the light-likeness of 3-surfaces and leading to a generalization of Super
Virasoro algebra so that the twistor space of H emerges naturally from basic TGD.

What is the interpretation of the momentum like color quantum numbers?

There is a rather obvious objection against the notion of momentum like quantum numbers in
CP2 degrees of freedom. If the propagator is proportional to 1/(p2 − Y 2 − I2

3 ), where Y and
I3 are assigned to quark, a strong breaking of color symmetry results. The following argument
demonstrates that this is not the case and also gives an interpretation for the notion of anomalous
hyper-charge assignable to CP2 spinors.

(a) Induced spinors do not form color triplets: this is the property of only physical states
involving several wormhole throats and the action of super generators and spinor harmonics
in cm mass degrees of freedom to which one can assign imbedding space spinor harmonics
to be distinguished from second quantizee induced spinors appearing in propagator lines.
Color is analogous to rigid body angular momentum and one can speak of color partial
waves. The total color quantum numbers are dictated by the cm color quantum numbers
plus those associated with the Super Virasoro generators used to create the state [K43] and
which also help to correct the wrong correlation between color and electroweak quantum
numbers between spinor harmonics.

(b) Since CP2 is projective space the standard complex coordinates are ratios of complex coor-
dinates of C3: {ξi = zi/zk , i 6= k}, where k corresponds to one of the complex coordinates
zi for given coordinate patch (there are three coordinate patches). For instance, for k = 3
the coordinates are (ξ1, ξ2)z1/z3, z2/z3). The coordinates zi triplet representation of SU(3)

http://www.ams.org/journals/tran/2004-356-03/S0002-9947-03-03157-X/S0002-9947-03-03157-X.pdf
http://www.ams.org/journals/tran/2004-356-03/S0002-9947-03-03157-X/S0002-9947-03-03157-X.pdf
 http://en.wikipedia.org/wiki/Flag_manifold
 http://en.wikipedia.org/wiki/Flag_manifold
http://www.ams.org/journals/tran/2004-356-03/S0002-9947-03-03157-X/S0002-9947-03-03157-X.pdf
http://www.ams.org/journals/tran/2004-356-03/S0002-9947-03-03157-X/S0002-9947-03-03157-X.pdf
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so that {ξi, i 6= k} carries anomalous color quantum numbers given by the negatives of the
zk.

(c) Also the spinors carry anomalous Y and I3, which are negative to anomalous color quantum
numbers of CP2 coordinates from the fact that spinors and zi/zk form color triplet. These
quantum numbers are same for all spinor components inside given CP2 coordinate patch
so that no breaking of color symmetry results in a given patch. The color momentum
would appear in the Dirac operator assignable to super Virasoro generators and define
most naturally the contribution to region momentum. The ”8-momenta” of external lines
would be differences of region momenta and their color part would vanish for single fermion
states associated with wormhole throat orbits.

10.3.3 Could one assign twistor space to M4 × CP2?

The twistorialization of TGD could be carried by identifying the twistor counterpart of the
imbedding space H = M4×CP2. The first guess that comes in mind is that the twistor space is
just the product of twistor spaces for M4 and CP2. The next thought is that one could identify
the counterpart of twistor space in 8-D context as the space of light-like geodesics of H. Since
light-like geodesics in CP2 couple M4 and CP2 degrees of freedom and since the M4 projection
of the light-like geodesic is in general time-like, this would allow the treatment of also massive
states if the 8-D mass defined as eigenvalue of d’Alembertian vanishes. It however turns that
the first thought is consistent with the general TGD based view and that second option yields
twistor spaces which are non-compact.

In the following two attempts to identify the twistor space as light-like geodesics is made. I
apologize my rudimentary knowledge about the matters involved.

(a) If the dimension of the twistor space is same as that for the projective complexifications
of M8 one would dhave D = 14. This is also the dimension of projective complexification
of octonsions whose importance is suggested by number theoretical considerations. If the
twistorialization respects cartesian products then the dimension would be D = 12.

(b) For M8 at least the twistor space should have local structure given by X8 × S6, where
S6 parametrizes direction vectors in 8-D lightcone. The conformal boundary of the space
of light-like geodesics correspond to light-like geodesics of M4 and this suggests that the
conformal boundary of twistor space is CP3 × CP2 with dimension D = 10.

One can consider several approaches to the identification of the twistor space. One could start
from the condition that twistor space describes projective complexification of M4 × CP2, from
the direct study of light-like geodesics in H, from the definition as flag manifold characterizing
the choices of quantization axes for the isometry group of H.

(a) The first guess of a category theorist would be that twistorialization commutes with
Cartesian products if isometry group decomposes into factors leaving the factors invari-
ant. The naive identification would be as the twelve-dimensional space CP3 × F (1, 2, 3),
F (1, 2, 3) = SU(3)/U(1) × U(1). The points of H would in turn be mapped to products
S2 × S3 ⊂ CP3 × SU(3)/U(1)× U(1), which are 5-dimensional objects.

One can criticize this proposal. The points of this space could be interpreted as 2-
dimensional objects defined as products of light-like geodesics and geodesic circles of CP2.
They could be also interpreted as space-like geodesics with light-like M4 projection. Why
should space-likegeodesics replace light-like geodesics of H with light-like projection?

The experience with TGD however suggests that this could be the physical option. p-Adic
mass calculations require tachyonic ground states and the action of conformal algebras
gives vanishing conformal weight for the physical states. Also massless extremals are char-
acterized by longitudinal space M2 in which momentum projection is light-like whereas the
entire momentum for Fourier components in the expansion of imbedding space coordinates
are space-like. This has led to the proposal that it is light-like M2 projection of momentum
that matters. Also the recent vision about generalized Feynman diagrams is that fermions
propagate as massless particles in M4 sense and that massive particles are bound states of



648 Chapter 10. Some Fresh Ideas about Twistorialization of TGD

massless particles: many-sheeted space-time makes possible to realize this picture. Also the
construction of the analog of Super Virasoro algebra for light-like 3-surface leads naturally
to the product of twistor spaces as moduli space.

(b) The second approach is purely group theoretical and would identify twistor space as the
space for the choices of quantization axes for the isometries which form now a product of
Poincare group and color group. In the case of Poincare group energy and spin are the
observabels and in the case of color group one has isospin and color hypercharge. The
twistor space in the case of time-like M4 projections of 8-momentum is obtained as coset
space P/SO(2)×SU(3)/U(1)×U(1) = M4×SO(3, 1)/M1×SO(2)×SU(3)/U(1)×U(1) =
E3 × SO(3, 1)/SO(2) × SU(3)/U(1) × U(1). The dimension is the expected D = 14. In
Euclidian sector one would have E4×SO(4)/SO(2)×SO(2)×SU(3)/U(1)×U(1) having
also dimension D = 14. The twistor space would not be compact and this is very undesired
feature.

Ordinary twistors define flag manifold for projectively complexified M4. If this is the case
also now one obtains just the naively expected 12-dimensional CP3 × SU(3)/U(1)× U(1)
with two spheres replaced with S2 × S3. This option corresponds to the ”tachyonic”
dentification of geodesics of H defining the twistor space as geodesics having light-like M4

projection and space-like CP2 projection.

(c) One can consider also the space of light-like H-geodesics. Locally the light-like geodesics
for which M4 projection is not space like geodesic can be parametrized by their position
defined as intersection with arbitrary time-like hyper-plane E3 ⊂M4. Tangent vector char-
acterizes the geodesic completely since CP2 geodesics can be characterized by their tangent
vector. Hence the situation reduces locally to that in M8 and light-likeness and projective
invariance mean that the sphere S6 parametrizes the moduli for light-like geodesics at given
point of E3. Hence the parameter space would be at least locally E3×S6. S6 would be the
counterpart of S2 for ordinary twistors. An important special case are light-like geodesics
reducing to light-like geodesics of M4. These are parametzized by X5 ×CP2, where X5 is
the space of light-like geodesics in M4 and defines the analog of light-cone in twistor space
CP3. Therefore the dimension of twistor space must be higher than 10. For M4 the twistor
space has same dimension as projective complexification of M4.

One can study the light-like geodesics of H directly. The equation of light-like geodesic
of H in terms of curve parameter s can be written as mk = vks, φ = ωs, vkv

k = 1 for
time-like M4 projection and vkvk = 0 for light-like M4 projection. For time-like M4

projection light-likeness gives 1 − R2ω2 = 0 fixing the value of ω to ω = 1/R; therefore
CP2 part of the geodesic is characterized by giving unit vector characterizing its direction
at arbitrarily chosen point of CP2 and the modyli sopace space is 3-dimensional S3. For
light-like M4 projection one obtains ω = 0 so that the CP2 projection contracts to a point.
The hyperbolic space H3 or Lobatchevski space (mass shell) parametrizing the space of
unit four-velocities and S3 gives the possible directions of velocity at given point of CP2.

The space of light-like geodesics in H could be therefore regarded as a singular bundle like
structure. The interior of the bundle has the space X6 = E3×H3 of time-like geodesics of
M4 as base and S3 perhaps identifiable as subspace of flag-manifold SU(3)/U(1)×U(1) of
CP2 defining CP2 twistors as fiber. This space couldbe 9-dimensional subspace of D = 14
twistor space and consistency with D = 14 obtained from previous argument. Boundary
consists of light-like geodesics of M4 - that is 5-D subspace of twistor space CP3 and fiber
reduces to CP2. The bundle structure seems trivial apart the singular boundary. Again
there are good reasons to believe that the twistor space is non-compact which is a highly
undesirable feature.

The cautious conclusion is that category theorist is right, and that one must take seriously p-adic
mass calculations and generalized Feynman diagrams: the twistor space in question corresponds
to space-like geodesics of H with light-like M4 projection and reduces to the product of twistor
spaces of M4 and CP2.

I have earlier speculated about twistorial formulation of TGD assuming that the analog of twistor
space for M4×CP2 is CP3×CP3 and also noticed the analogy with F-theory [K87]. In the same
chapter I have also considered an explicit proposal for the realization of the 10-D counterparts
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of space-time surfaces as 6-dimensional holomorphic surfaces in CP3 × CP3 speculated to be
Calabi-Yau manifolds. These speculations can be repeated for CP3 × F (1, 2, 6) but with space-
time surfaces mapped to 9-D surfaces having interpretation as S2×S3 bundles with space-time
surface as a base space. Light-like 3-surfaces would be mapped to 8-D surfaces. Whether they
could allow the identification as 4-complex-dimensional Calabi-Yau manifolds with structure
group SU(4) as a structure group and Kähler metric with global holonomy contained in SU(4)
is a question that mathematician might be able to answer immediately.

10.3.4 Three approaches to incidence relations

The algebraic realization of incidence relations involves spinors. The 2-dimensional character of
the spinors and the possibility to interpret 2×2 Pauli sigma matrices as matrix representation of
units of complexified quaternions with additional imaginary unit commuting with quaternionic
imaginary units seem to be essential. How could one generalize the incidence relations to 8-D
context?

One can consider three approaches to the generalization of the incidence relations defining alge-
braically the correspondence between bi-spinors and light-like vectors.

(a) The simplest approach assumes that twistor space is Cartesian product of those associated
with M4 and CP2 separately so that nothing new should emerge besides the quantization
of Y3 and I3. The incidence relations for Minkowskian and Euclidian situation are discussed
in detail later in the section. It might well be that this is all that is needed.

(b) Second approach is based on triality for the representations of SO(1, 7) realized for 8-D
spaces.

(c) Third approach relies on octonionic representations of sigma matrices and replaces SO(1, 7)
with the octonionic automorphism group G2.

The first approach will be discussed in detail at the end of the section.

The approach to incidence relations based on triality

Second approach to incidence relations is based on the notion of triality serving as a special
signature of 8-D imbedding space.

(a) The triality symmetry making 8-D spaces unique states there are 3 8-D representations of
SO(8) or SO(1,7) related by triality. They correspond complexified vector representation
and spinor representations together with its conjugate. Could ordinary 8-D gamma matrices
define sigma matrices obtained simply by multiplying them by γ0 so that one obtains unit
matric and analogs of 3-D sigma matrices. Sigma matrices defined in this manner span
an algebra which has dimension d1 = 2D−1 corresponding to the even part of 8-D Clifford
algebra.

This dimension should be equal to the real dimension of the complex D×D matrix algebra
given by d2 = 2 × D × D. For D = 8 one one indeed has d1 = 128 = d2! Hence triality
symmetry seems to allow the realization of the incidence relations for 8-vectors and 8-spinors
and their conjugates! Could this realize the often conjectured role of triality symmetry as
the holy trinity of physics? Note that for the Pauli sigma matrices the situation is different.
They correspond to complexified quaternions defining 8-D algebra with dimension d1 = 8,
which is same as the dimension d2 for D = 2 assignable to the two 2-spinors.

(b) There is however a potential problem. For D = 4 the representations of points of com-
plexified M4 span the entire sigma matrix algebra (complexified quaternions). For D = 8
complexified points define 16-D algebra to be contrasted with 128 dimensional algebra
spanned by sigma matrices. Can this lead to difficulties?

(c) Vector xkσk would have geometric interpretation as the tangent vector of the light-like
geodesic at some reference point - most naturally defined by the intersection with X3×CP2,
where X3 is 3-D subspace of M4. X3 could correspond to time=constant slice E3. Zero
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energy ontology would suggests either of the 3-D light-like boundaries of CD: this would
give only subspace of full twistor space.

Geometrically the incidence relation would in the 8-D case state that two 6-spheres of 12-D
twistor space define as their intersection light-like line of M8. Here one encounters an unsolved
mathematical problem. Generalizing from the ordinary twistors, one might guess that complex
structure of 6-sphere could be be crucial for defining complex structure of twistor space. 6-
sphere allows almost complex structures induced by octonion structure. These structures are not
integrable (do not emerge as a side product of complex manifold structure) and an open problem
is whether S6 admits complex structure (http://www.math.bme.hu/~etesi/s6-spontan.pdf)
[A89]. From the reference one however learns that S6 allows twistor structure presumably
identified in terms of the space of geodesics.

The approach to incidence relations based on octonionic variant of Clifford algebra

Third approach is purely number theoretical being based on octonions. Only sigma matrices
are needed in the definition of twistors and incidence relations. In the case of sigma matrices
the replacement of the ordinary sigma matrices with abstract quaternion units makes sense.
One could replace bi-spinors with complexified quaternions and identify the two spinors in their
matrix representation as the two columns or rows of the matrix.

The octonionic generalization would replace sigma matrices with octonionic units. The non-
associativity of octonions however implies that matrix representation does not exist anymore.
Only quaternionic subspaces of octonions allow matrix representation and the basic dynamical
principle of number theoretic vision is that space-time surfaces are associative in the sense
that the tangent space is quaternionic and contains preferred complex subspace. In the purely
octonionic context there seems to be no manner to distinguish between vector x and spinor and
its conjugate. The distinction becomes possible only in quaternionic subspaces in which 8-D
spinors reduces to 4-D spinors and one can use matrix representation to identify vector and and
spinor and its conjugate.

In [K85] I have considered also the proposal for the construction of the octonionic gamma
matrices (they are not necessary in the twistorial construction). Now octonions alone are not
enough since unit matrix does not allow identification as gamma matrix. The proposal constructs
gamma matrices as tensor products of σ3 and octonion units defining octonionic counterpart of
the Clifford algebra realized usually in terms of gamma matrices.

Light-likeness condition corresponds to the vanishing of the determinant for the matrix defined
by the components of light-like vector. Can one generalize this condition to the octonionic
representation? The problem is that matrix representation is lacking and therefore also the
notion of determinant is problematic. The vanishing of determinant is equivalent with the
existence of vectors annihilated by the matrix. This condition makes sense also now and would
say that x as octonion with complexified components produces zero in multiplication with some
complexified octonion. This is certainly true for some complexified octonions which are not
number field since there exist complexified octonions having no inverse. It is of course easy to
construct such octonions and they correspond to light-like 8-vectors having no inverse.

The multiplication of octonionic spinors by octonionic units would appear in the generalization
of the incidence relation µA′ = xAA

′
λA by replacing spinors and 8-coordinate with complex

octonions. This would allow to assign to the tangent vector of light-like geodesic at given point
of X4 a generalized twistor defined by a pair of complexified 8-component octonionic spinors.
It is however impossible to make distinction between these three objects unless one restricts to
quaternionic spinors and vectors and uses matrix representation for quaternions.

10.3.5 Are four-fermion vertices of TGD more natural than 3-vertices
of SYM?

There are some basic differences between TGD and super Yang-Mills theory (SYM) and it is
interesting to compare the two situations from the perspective of both momentum space and

http://www.math.bme.hu/~etesi/s6-spontan.pdf
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twistor space. Here the miminal approach to incidence relations assuming cartesian product
CP3 × SU(3)/U(1) × U(1) is starting point but the dimension of spinor space is allowed to be
free.

(a) In SYM the basic vertex is 3-vertex. Momentum conservation for three massless real
momenta requires that the momenta are parallel. This implies that for on mass shell
states the vertex is highly singular and this in turn is source of IR divergences. The three
twistor pairs would be for real on mass shell states proportional to each other. In twistor
formulation one however allows complex light-like momenta and this requires that either λi
are or λ̂i are collinear. The condition λi = ±( ˆlambdai)

∗ implies that twistors are collinear.

(b) In TGD framework physical states correspond to collections of wormhole contacts carrying
fermion and antifermions at the throats. The simplest states are fermions having fermion
number at either throat. For bosons one has fermion and antifermion at opposite throats.
External particles are bound states of massless particles. 4-fermion vertex is fundamental
one and replaces BFF vertex.

The basic 4-vertex represents a situation in which there are incoming wormhole contacts
which in vertex emit a wormhole contact. For boson exchange incoming fermion and an-
tifermion combine to form the exchanged boson consisting from the fermion and antifermion
at opposite throats of the wormhole contact. All fermions are massless in real sense also
inside internal lines and only the sum of the massless four-momenta is off mass shell. The
momentum of exchanged wormhole contact can be also space-like if energies of fermion
and antifermion have opposite signs. The real on mass shell property reduces the num-
ber of allow diagrams dramatically and strongly suggests the absence of both UV and IR
divergences. Without further conditions ladder diagrams involving arbitrary number of
loops representing massess exchanges are possible but simple power counting argument
demonstrates that no divergences are generated from these loops.

(c) N = 4 SUSY as such is not present so that super-twistors might not needed. SUSY is
at WCW level replaced with conformal supersymmetry. Right-handed neutrino represents
the least broken SUSY and the considerations related to the realization of super-conformal
algebra and WCW gamma matrices as fermion number carrying objects suggest that the
analogy of N = 4 SUSY with conserved fermion number based on covariantly constant
right-handed neutrino spinors emerges from TGD.

Consider now the basic formula for the 3-vertex appearing in gauge theories forgetting the
complications due to SUSY.

(a) The vertex contains determinants of 2 × 2 matrices defined by pairs (λi, λj) and (λ̂i, λ̂j),

i = 1, 2, 3. λ̂′ = −(λα)∗ holds true in Minkowskian signature. These determinants define
antisymmetric Lorentz invariant ”inner products” based on the 2-dimensional permutation
symbol εαα′ defining the Lorentz invariant bilinear for spinors. This form should generalize
to the analog of Kähler form.

(b) Second essential element is the expression for momentum conservation in terms of the

spinors λ and λ̂. The momentum conservation condition
∑
k pk = 0 combined with the

basic identification

pαα
′

= λαλ̂α
′

(10.3.1)

equivalent with incidence relations gives

∑
k=1,...,n

λαk λ̂
α′

k = 0 . (10.3.2)

The key idea is to interpret λαk and λ̂α
′

k as vectors in n-dimensional space which is Grass-
mannian G(2, n) since from a given solution to the conditions one obtains a new one by

scaling the spinors λi and λ̂j by scaling factors, which are inverses of each other. The
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conditions state that the 2-planes spanned by the λα and λ̂α
′

as complex 3-vectors are
orthogonal. The conservation conditions can be satisfied only for 3-vectors.

Since the expression of momentum conservation as orthogonality conditions is a crucial element
in the construction of twistor amplitudes it is good to look in detail what the conditions mean.
For future purposes it is convenient to consider N -spinors instead of 2-spinors.

(a) The number of these vectors is 2+2 for 2-spinors. For N-component spinors it is N +N =
2N . The number of conditions to be satisfied is 2N×N−Nrather than 2N2: the reduction
comes from the factor the condition λ̂α

′
= −(λα)∗ holding for real four-momenta in M4

case. For complex light-like momenta the number of conditions is 2N2 = 8.

(b) For N = 2 and n = 3 with real masses one obtains 6 conditions and 6 independent com-
ponents so that the conditions allow to solve the constraint uniquely (apart from complex
scalings). All momenta are light-like and parallel. For complex masses one has 8 condi-

tions and 12 independent spinor components and conditions imply that either λi or λ̂i are
parallel so that one has 4 complex spinors . For n > 3 the number of conditions is smaller
than the total number of spinor components in accordance with the fact that momentum
conservation conditions allow continuum of solutions. 3-vertex is the generating vertex in
twistor formulation of gauge theories. For N > 2 the number conditions is larger than
available spinor components and the situation reduces to N = 2 for solutions.

(c) Euclidian spinors appear in CP2 degrees of freedom. In N = 2 case spinors are complex,
”momentum” having anomalous isospin and hyper-charge of CP2 spinor as components is
not light-like, and massless Dirac equation is not satisfied. Hence number of orthogonality
conditions is 2×N2 = 8 whereas the total number of spinor components is 3×2+3×2 = 12
as for complex massless momenta. Orthogonality conditions can be satisfied. For N > 2
the real dimension of the sub-paces spanned by spinors is at most 3 and orthogonality
condition can be satisfied if N reduces effectively to N = 2.

Similar discussion applies for 4-fermion vertex in the case of TGD.

(a) Consider first M4 case (N = 2) for n = 4-vertex. The momentum conservation conditions
imply that fourth momentum is the negative of the sum of the three other and massless.
For real momenta the number of conditions on spinors is also now 2×N2−N = 6 for N = 2.
The number of spinor components is now n×N = 4×N = 8 so that 2 spinor components
characterizing the virtual on mass shell momentum of the second fermion composing the
boson remains free in the vertex.

(b) In CP2 degrees of freedom and for n = 4, N = 2 the number of orthogonality conditions is
2N2 = 8 and the total number of spinor components is 2 × n × N = 16 so that 8 spinor
components remain free. The quantization of anomalous hyper-charge and isospin however
discretizes the situation as suggested by number theoretic arguments. Also in M4 degrees
of freedom discretisation of four-momenta is suggestive.

(c) For N > 2 the situation reduces effectively to N = 2 for the solutions to the conditions for
both Minkowskian and Euclidian signature.

10.4 Emergence of M 4×CP2 twistors at the level of WCW

One could imagine even more dramatic generalization of the notion of twistor, which conforms
with the general vision about TGD and twistors. The orbits of partonic 2-surfaces are light-like
surfaces and generalize the notion of light-like geodesics. In TGD framework the replacement
of point like particle with partonic 2-surface plus 4-D tangent space data suggests strongly that
the Yangian algebra defined by finite-dimensional conformal algebra of M4 generalizes to that
defined by the infinite-dimensional conformal algebra associated with all symmetries of WCW.

The twistorialization should give twistorialization of M4 × CP2 at point-like limit defined by
CP2×SU(3)/U(1)×U(1). In the following it will be found that this is indeed the case and that
twistorialization can be seen as a representation for a choice of quantization axes characterized
by appropriate flag manifold.
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10.4.1 Concrete realization for light-like vector fields and generalized
Virasoro conditions from light-likeness

The points of WCW correspond to partonic two-surfaces plus 4-D tangent space data. It is
attractive to identify the tangent space data in terms of light-like vector fields defined at the
partonic 2-surfaces at the ends of light-like 3-surface defining a like of generalized Feynman
diagrams so that their would define light-like vector field in the piece of WCW defined by single
line of generalized Feynman diagrams. It is also natural to continue these light-like vector fields
to light-like vector fields defined at entire light-like 3-surface - call it X3.

To get some grasp about the situation one can start from a simpler situation, CP2 type vacuum
extremals with 1-D light-like curve as M4 projection. The light-likeness condition reads as

mkl
dmk

ds

dml

ds
= 0 , (10.4.1)

One can use the expansion

mk = mk,0 + pk0s+
∑
n,i

an,i
εki√
n
sn ,

εi · εj = −P 2
ij . (10.4.2)

Here orthonormalized polarization vectors εi define 2-D transversal space orthogonal to the
longitudinal space M2 ⊂ M4 and characterized by the projection operator P 2. M2 can be
fixed by a light-like vector and corresponds to the real section of the twistor space naturally.
These conditions are familiar from string (complex coordinate is replaced with s). Here εi are
polarization vectors orthogonal to each other. One obtains the Virasoro conditions

Ln = p · p+ 2
∑
m

an−mam
√
n− k

√
k = 0 (10.4.3)

expressing the invariance of light-likeness condition with respect to diffeomorphisms acting on
coordinate s. For n = 0 one obtains the Virasoro conditions. This can be regarded as restriction
of conformal invariance from string world sheets emerging from the modified Dirac equation at
their ends at light-like 3-surfaces.

The generalization of these conditions is rather obvious. Instead of functions mk
n = εkns

n one
considers functions

mk
n,α = m0 + pk0s+

∑
n,i

an,i,αε
k
i

sn√
n
fα(xT ) +

∑
n,i

bn,i,αc
k
i

sn√
n
gα(xT ) ,

skn,α = sk0 + Jk0 s+ cki s
ngα(xT ) ,

cki · ckj = −δij . (10.4.4)

where sk denotes CP2 coordinates. The tangent vecotor Jk characterizes a geodesic line in CP2

degrees of freedom. There is no reason to restrict the polarization directions in CP2 degrees
of freedom so that the projection operator is flat Eucldian 4-D metric. {fα} is a complete
basis of functions of the transversal coordinates for the s = constant slice defined the partonic
2-surface at given position of its orbit. One can assume that the modes are orthogonal in the
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inner product defined by the imbedding space metric and the integral over partonic 2-surface in
measure defined by the

√
g2 for the 2-D induced metric at the partonic 2-surface

〈fα, fβ〉 = δαβ . (10.4.5)

.

The space of functions fα is assumed to be closed under product so that they satisfy the multi-
plication table

fαfβ = cγαβfγ . (10.4.6)

.

This representation allows to generalize the light-likeness conditions to 3-D form

Ln,α = pkp
k + JkJ

k +
∑
k,α,β

[2an−k,αak,α + 4bn−k,αbk,α]
√
n− k

√
k = 0 . (10.4.7)

These equations define a generalization of Virasoro conditions to 3-D light-like surfaces. The
center of mass part now corresponds to conserved color charge vector associated with CP2

geodesic. One can also write variants of these conditions by performing complexification for
functions fα.

10.4.2 Is it enough to use twistor space of M4 × CP2?

The following argument suggests that Virasoro conditions require naturally the integration over
the twistor space for M4 × CP2 but that twistorialization in vibrational degrees of freedom is
not needed.

The basic problem of Virasoro conditions is that four-momentum in cm degrees of freedom is
time-like in the general case. It is very difficult to accept the generalization of the twistor space
to E3 × SO(3, 1)/SO(2) × SO(1, 1) × SU(3)/U(1) × U(1) in cm degrees of freedom? The idea
about straightforward generalization twistor space to vibrational degrees of freedom seems to
lead to grave difficulties. It however seems that a loophole, in fact two of them, exist and is
based on the notion of momentum twistors.

(a) The key observation is that the selection of M2 in the Virasoro conditions reduces to a
fixing of light-like vector in given M4 coordinates fixing M2 ⊂M4. This choices defines a
twistor in the real section of the twistor space. Could twistors emerge through this kind
of condition? In the quantization of the theory which must somehow appear also in TGD
framework, the selection of quantization axes must be made and means selection of point of
a flag manifold defining the twistor spaces associated with M4 and CP2. In quasiclassical
picture only the components of the tangent vector in CP2 degrees of freedom have well-
defined isospin and hypercharge so that Jk would be a linear combination of I3 and Y .
Standard complex coordinates transforming linearly at their origin under U(2) indeed have
this property.

Could the integration over twistor space mean in WCW context an integration over the
possible choices of the quantization axes necessary in order to preserve isometries as symme-
tries? Four-momenta of external lines itself could be assumed to be massless as conformal
invariance strongly suggests.
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(b) Consider now the problem. Virasoro conditions require that M4 momentum is massive.
This is not consistent with twistorialization. Momentum twistors for which external light-
like momenta characterizing external lines are differences pi = xi − xi−1 of the ”region
momenta” xi assigned with the twistor lines [B32] (http://arxiv.org/pdf/1008.3110v1.
pdf) might solve the problem. In the recent case region momenta xi would correspond to
those appearing in Virasoro conditions and light-like momenta of outgoing lines would
correspond to their differences. Similar identification would apply to color iso-spin and
hyper-charge. For SYM massless real momenta in the condition pi = xi − xi−1 implies
that all three momenta are parallel, which is a catastrophic result. In the TGD based
twistor approach region momenta can be however real and massless : this would give rise
to dual conformal invariance leading to Yangian symmetries. In this picture Super Virasoro
conditions would separate completely from twistorialization and apply in overall cm degrees
of freedos: this is indeed what has been assumed hitherto.

It is easy to see that that region momenta can be real and light-like in TGD framework. A
generalization of the condition pi = xi − xi−1 from 3-vertex to 4-fermion vertex is needed
(4-particle vertex requires super-symmetrization but this is not essential for the argument).
4-fermion vertex involves interaction between 2-fermions via Euclidian wormhole contact
(this will be discussed later) inducing their scattering. For massless external fermion sec-
ond internal line is a wormhole contact carrying massless fermion and anti-fermion at its
opposite throats. The region momentum associated with this line can be defined as sum of
the light-like region momenta associated with the throats. If the external particle is boson
like carrying - in general non-parallel - light-like momenta at its throats, then pi is sum of
their light-like momenta.

Concerning the identification of region momenta, one could consider also another option inspired
by the vision that also the fermions propagating in the internal lines are massless.

(a) For this option also region momenta are light-like in accordance with the idea about twistor
diagrams as null polygons and the idea about light-light on mass shell propagation also on
internal lines. One can consider two options for the fermionic propagator.

i. In twistor description the inverse of the full massless Dirac propagator would appear in
the line in twistor formalism and this would leave only non-physical helicities making
the lines virtual: the interpretation would be as a residue of 1/p2 pole.

ii. The M2 projection of the light-like momentum associated with the corresponding in-
ternal line would be time-like. In CP2 degrees of freedom Jk could be replaced by its
projection to the plane spanned by isospin and hypercharge. The values of the sum of
transverse E2 momentum squared and in cm and vibrational degrees of freedom would
be identical.
Indeed, one possible option considered already earlier is that M4 momentum is always
light-like and only its longitudinal M2 part is precisely defined for quantum states (as
for partons inside hadron). The original argument was that if only the M2 part of
momentum appears in the propagators, one can have on mass shell massless particles
without diverging propagators: in twistorial approach one gets rid of the ordinary
propagators in the case gauge fields. The integration over different choices of M2

associated with the internal line and having interpretation as integration over light-like
virtual momenta would guarantee overall Lorentz invariance. This would allow also the
use of the M2 part of four-momentum - an option cautiously considered for generalized
Feynman diagrams - without losing isometries as symmetries.

(b) The fermion propagator could also contain CP2 contribution. Since only Cartan algebra
charges can be measured simultaneously, Jk would correspond to a superposition of color
hypercharge and isospin generators. The flag manifold SU(3)/U(1) × U(1) would char-
acterize possible choices of quantization axes for CP2. Also in the case of CP2 only the
”polarization directions” orthogonal to the plane defined by I3 and Y could be allowed and
it might be possible to speak about CP2 polarization perhaps related to Higgs field. The
dimension of M4 × CP2 in vibrational degrees of freedom would effectively reduce to 4.
Number theoretically this could correspond to the choice of quaternionic subspace of the
octonionic tangent space.

http://arxiv.org/pdf/1008.3110v1.pdf
http://arxiv.org/pdf/1008.3110v1.pdf
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What can one conclude?

(a) Since the choice of quantization axis is same for all modes and forces them to a space or-
thogonal to that defined by quantization axes, one can say that all modes are characterized
by the twistor space for M4 × CP2 and there is no need to consider infinite-dimensional
generalization of the twistor space only M4 × CP2 twistors would be needed and would
have interpretation as the integration over the choices of quantization axes is natural part
of quantum TGD.

(b) The use of ordinary massless Dirac operator is very attractive option since it gives the
inverse of massless Dirac operator as effective propagator in twistor formalism and requires
that only non-physical helicities propagate. Massless on mass shell propagation is possible
only for fermions as fundamental particles. If one wants also CP2 contribution to the
propagator then restriction to I3 − Y plane might be necessary. This option does not look
too promising.

(c) From the TGD point of view twistor approach to gauge theory in M4 would not describe
not much more than the physics related to the choice of quantization axes in M4. The
physics described by gauge theories is indeed in good approximation to that assignable to
cm degrees of freedom. The remaining part of the physics in TGD Universe - maybe the
most interesting part of it involving WCW integration - would be described in terms of
infinite-dimensional super-conformal algebras.

10.4.3 Super counterparts of Virasoro conditions

Although super-conformal algebras have been applied successfully in p-adic mass calculations,
many aspects related to super Virasoro conditions remain still unclear. p-Adic mass calcula-
tions require only that there are 5 super-conformal tensor factors and leaves a lot of room for
imagination.

(a) There are two super conformal algebras. The first one is the super-symplectic algebra
assignable to the space-like 3-surface and acts at the level of imbedding spaceand is induced
by Hamiltonians of δM4

± × CP2. Second algebra is Super Kac-Moody algebra acting on
light-like 3-surfaces as deformations respecting their light-likeness and is also assignable
to partonic 2-surfaces and their 4-D tangent space. Do these algebras combine to single
algebra or do they define separate Super Virasoro conditions? p-Adic mass calculations
assume that the direct sum is in question and can be localized to partonic 2-surfaces by
strong form of holography. This makes the application of p-adic thermodynamics [K43]
sensical .

(b) Do the Super Virasoro conditions apply only in over all cm degrees of freedom so that spinors
are imbedding space spinors. They would thus apply at the level of the entire 3-surfaces
assigned to external elementary particles and containing at least two wormhole contacts.
In this case the resulting massive states would be bound states of massless fermions with
non-parallel light-like momenta and the resulting massivation could be consistent with
conformal invariance.

This is roughly the recent picture about the situation. One can however consider also alterna-
tives.

(a) Could the Super Virasoro conditions apply to invididual partonic 2-surfaces or even at the
lines of generalized Feynman diagrams but in this case involve only the longitudinal part
of massless M4 momentum?

(b) Could Super-Virasoro conditions be satisfied at partonic 2-surfaces defining vertices in the
sense that the sum of incoming super Virasoro generators annihilate the vertex identified. In
cm degrees of freedom this condition would be satisfied in cm degrees of freedom momentum
conservation holds true. In vibrational degrees of freedom the condition is non-trivial but
in principle can be satisfied. The fermionic oscillator operators at incoming legs are related
linearly to each other and the problem is to solve this relationship. In the case of N-S
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generators the same applies. For Virasoro generators the conditions are satisfied if the
Virasoro algebras of lines annihilate the state associated with them separately.

These options do look too plausible and would make the situation un-necessarily complex.

How the cm parts of WCW gamma matrices could carry fermion number?

Super counterparts of Virasoro conditions must be satisfied for the entire 3-surface or less prob-
ably for the light-like lines of generalized Feynman diagram. These conditions look problematic,
and I have considered earlier several solutions to the problem with a partial motivation coming
from p-adic thermodynamics.

The problem is following.

(a) In Ramond representation super generators are labeled by integers and string models sug-
gest that super generator G0 and its hermitian conjugate have ordinary Dirac operator as
its cm term and vibrational part has fermion number ±1. This does not conform with
the non-hermiticity of G0 and looks non-sensical and it seems difficult to satisfy the super
Virasoro conditions in non-trivial manner.

(b) There exist a mechanism providing the cm part of G0 with fermion number? Right-handed
neutrino is exceptional: it is de-localized into entire X4 as opposed to other spinor com-
ponents localized to string world sheets and has covariantly constant zero modes with
vanishing momentum. These modes seem to provide the only possible option that one
can imagine. The fermion number carrying gamma matrices in cm degrees of freedom of
H would be defined as Γα = γαΨν and Γα† = ΨνRγ

α, where ΨνR represents covariantly
constant right-handed neutrino. The anticommutator gives imbedding space metric as re-
quired. Right-handed neutrino would have a key role in the mathematical structure of the
theory.

(c) For Neveu-Scwartz representation WCW gamma matrices and super generators are labeled
by half odd integers and in this case all generators would have fermion number ±1. The
squares of super generators give rise to Virasoro generators Ln and L0 should be essentially
the mass squared operator as G1/2G−1/2+hc.. This operator should give the d’Alembertian
in M4 × CP2 or its longitudinal part. This is quite possible but it seems that Ramond
option is the physical one.

The two spin states of covariantly constant right handed neutrino and its antiparticle could
provide a fermion number conserving TGD analog of N = 4 SUSY since the four oscillator
operators for ΨνR would define the analogs of the four theta parameters.

What is the nature of the possible space-time supersymmetry generated by the right-handed
neutrino? Do different super-partners have different mass as seems clear if different super-
partners can be distinguished by their interactions. If they have different masses do they obey
same mass formula but with different p-adic prime defining the mass scale? This problem is
discussed the article [?] and in the chapter [K66].

About the SUSY generated by covariantly constant right-handed neutrinos

The interpretation of covariantly constant right-handed neutrinos (νR in what follows) in M4×
CP2 has been a continual head-ache. Should they be included to the spectrum or not. If not,
then one has no fear/hope about space-time SUSY of any kind and has only conformal SUSY.
First some general obsrevations.

(a) In TGD framework right-handed neutrinos differ from other electroweak charge states of
fermions in that the solutions of the modified Dirac equation for them are delocalized at
entire 4-D space-time sheets whereas for other electroweak charge states the spinors are
localized at string world sheets [K92].
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(b) Since right-handed neutrinos are in question so that right-handed neutrino are in 1-1 corre-
spondence with complex 2-component Weyl spinors, which are eigenstates of γ5 with eigen-
value say +1 (I never remember whether +1 corresponds to right or left handed spinors in
standard conventions).

(c) The basic question is whether the fermion number associated with covariantly constant
right-handed neutrinos is conserved or conserved only modulo 2. The fact that the right-
handed neutrino spinors and their conjugates belong to unitarily equivalent pseudoreal
representations of SO(1,3) (by definition unitarily equivalent with its complex conjugate)
suggests that generalized Majorana property is true in the sense that the fermion number
is conserved only modulo 2. Since νR decouples from other fermion states, it seems that
lepton number is conserved.

(d) The conservation of the number of right-handed neutrinos in vertices could cause some
rather obvious mathematical troubles if the right-handed neutrino oscillator algebras assignable
to different incoming fermions are identified at the vertex. This is also suggested by the
fact that right-handed neutrinos are delocalized.

(e) Since the νR:s are covariantly constant complex conjugation should not affect physics.
Therefore the corresponding oscillator operators would not be only hermitian conjugates
but hermitian apart from unitary transformation (pseudo-reality). This would imply gen-
eralized Majorana property.

(f) A further problem would be to understand how these SUSY candidates are broken. Different
p-adic mass scale for particles and super-partners is the obvious and rather elegant solution
to the problem but why the addition of right-handed neutrino should increase the p-adic
mass scale beyond TeV range?

If the νR:s are included, the pseudor3al analog ofN = 1 SUSY assumed in the minimal extensions
of standard model or the analog of N = 2 or N = 4 SUSY N = 2 or even N = 4 SUSY is
expected so that SUSY type theory might describe the situation. The following is an attempt
to understand what might happen. The earlier attempt was made in [K66].

1. Covariantly constant right-handed neutrinos as limiting cases of massless modes

For the first option covariantly constant right-handed neutrinos are obtained as limiting case for
the solutions of massless Dirac equation. One obtains 2 complex spinors satisfying Dirac equation
nkγkΨ = 0 for some momentum direction nk defining quantization axis for spin. Second helicity
is unphysical: one has therefore one helicity for neutrino and one for antineutrino.

(a) If the oscillator operators for νR and its conjugate are hermitian conjugates, which anti-
commute to zero (limit of anticommutations for massless modes) one obtains the analog of
N = 2 SUSY.

(b) If the oscillator operators are hermitian or pseudohermitian, one has pseudoreal analog of
N = 1 SUSY. Since νR decouples from other fermion states, lepton number and baryon
number are conserved.

Note that in TGD based twistor approach four-fermion vertex is the fundamental vertex and
fermions propagate as massless fermions with non-physical helicity in internal lines. This would
suggest that if right-handed neutrinos are zero momentum limits, they propagate but give in
the residue integral over energy twistor line contribution proportional to pkγk, which is non-
vanishing for non-physical helicity in general but vanishes at the limit pk → 0. Covariantly
constant right-handed neutrinos would therefore decouple from the dynamics (natural in con-
tinuum approach since they would represent just single point in momentum space). This option
is not too attractive.

2. Covariantly constant right-handed neutrinos as limiting cases of massless modes

For the second option covariantly constant neutrinos have vanishing four-momentum and both
helicities are allowed so that the number of helicities is 2 for both neutrino and antineutrino.
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(a) The analog of N = 4 SUSY is obtained if oscillator operators are not hermitian apart from
unitary transformation (pseudo reality) since there are 2+2 oscillator operators.

(b) If hermiticity is assumed as pseudoreality suggests, N = 2 SUSY with right-handed neu-
trino conserved only modulo two in vertices obtained.

(c) In this case covariantly constant right-handed neutrinos would not propagate and would
naturally generate SUSY multiplets.

3. Could twistor approach provide additional insights?

Concerning the quantization of νR:s, it seems that the situation reduces to the oscillator algebra
for complex M4 spinors since CP2 part of the H-spinor is spinor is fixed. Could twistor approach
provide additional insights?

As discussed, M4 and CP2 parts of H-twistors can be treated separately and only M4 part is
now interesting. Usually one assigns to massless four-momentum a twistor pair (λa, λ̂a

′
) such

that one has paa
′

= λaλ̂a
′
. Dirac equation gives λa = ±(λ̂a

′
)∗, where ± corresponds to positive

and negative frequency spinors.

(a) The first - presumably non-physical - option would correspond to limiting case and the

twistors λ and λ̂ would both approach zero at the pk → 0 limit, which again would suggest
that covariantly constant right-handed neutrinos decouple completely from dynamics.

(b) For the second option one could assume that either λ or λ̂ vanishes. In this manner one ob-

tains 2 spinors λi, i = 1, 2 and their complex conjugates λ̂i as representatives for the super-
generators and could assign the oscillator algebra to these. Obviously twistors would give
something genuinely new in this case. The maximal option would give 2 anti-commuting
creation operators and their hermitian conjugates and the non-vanishing anti-commutators
would be proportional to δa,bλ

a
i (λb)∗j and δa,bλ̂

a′

i (λ̂b
′
)∗j . If the oscillator operators are her-

mitian conjugates of each other and (pseudo-)hermitian, the anticommutators vanish.

An interesting challenge is to deduce the generalization of conformally invariant part of four-
fermion vertices in terms of twistors associated with the four-fermions and also the SUSY ex-
tension of this vertex.

Are fermionic propagators defined at the space-time level, imbedding space level,
or WCW level?

There are also questions related to the fermionic propagators. Does the propagation of fermions
occur at space-time level, imbedding space level, or WCW level?

(a) Space-time level the propagator would defined by the modified Dirac operator. This descrip-
tion seems to correspond to ultramicroscopic level integrated out in twistorial description.

(b) At imbedding space level allowing twistorial description the lines of generalized Feynman
diagram would be massless in the usual sense and involve only the fermionic propagators
defined by the twistorial ”8-momenta” defining region momenta in twistor approach.This
allows two options.

i. Only the projection to M2 and preferred I3 − Y plane of the momenta would be
contained by the propagator. The integration over twistor space would be necessary
to guarantee Lorentz invariance.

ii. M4 helicity for internal lines would be ”wrong” so that M4 Dirac operator would not
annihilate it. For ordinary Feynman diagrams the propagator would be pkγk/p

2 and
would diverge but for twistor diagrams only its inverse pkγk would appear and would
be well-defined. This option looks attractive from twistor point of view.



660 Chapter 10. Some Fresh Ideas about Twistorialization of TGD

(c) If WCW level determines the sermonic propagator as in string models, bosonic propagator
would naturally correspond to 1/L0. The generalization of the fermionic propagator could
be defined as G/L0, where the super generator G contains the analog of ordinary Dirac
operator as cm part. The square of G would give L0 allowing to define the generalization of
bosonic propagator. The inverse of the fermionic propagator would carry fermion number.

This is good enough reason for excluding WCW level propagator and for assuming that the
fermion propagators defined at imbedding space level appear in the generalized Feynman
diagrams and Super Virasoro algebra are applied only in particle states as done in p-adic
mass calculations.

The conclusion is that the original picture about fermion propagation is the only possible one. If
one requires that ordinary Feynman diagrams make sense then only the M2 part of 4-momentum
can appear in the propagator. If one assumes that only twistor formalism is needed then prop-
agator is replaced with its inverse in fermionic lines and if polarization is ”wrong” the outcome
is non-vanishing. This situation has interpretation in terms of homology theory. One could also
the interpret the situation in terms of residue calculus picking up pkγk as the residue of the pole
of 1/(p2 + iε).

10.4.4 What could 4-fermion twistor amplitudes look like?

What can one conclude about 4-fermion twistor amplitudes on basis of N = 4 amplitudes?
Instead of 3-vertices as in SYM, one has 4-fermion vertices as fundamental vertices and the
challenge is to guess their general form. The basis idea is that N = 4 SYM amplitudes could
give as special case the n-fermion amplitudes and their supersymmetric generalizations.

A attempt to understand the physical picture

One must try to identify the physical picture first.

(a) Elementary particles consist of pairs of wormhole contacts connecting two space-time sheets.
The throats are connected by magnetic fluxes running in opposite directions so that a closed
monopole flux loop is in question. One can assign to the ordinary fermions open string world
sheets whose boundary belong to the light-like 3-surfaces assignable to these two wormhole
contacts. The question is whether one can restrict the consideration to single wormhole
contact or should one describe the situation as dynamics of the open string world sheets
so that basic unit would involve two wormhole contacts possibly both carrying fermion
number at their throats.

Elementary particles are bound states of massless fermions assignable to wormhole throats.
Virtual fermions are massless on mass shell particles with unphysical helicity. Propagator
for wormhole contact as bound state - or rather entire elementary particle would be from
p-adic thermodynamics expressible in terms of Virasoro scaling generator as 1/L0 in the
case of boson. Super-symmetrization suggests that one should replace L0 by G0 in the
wormhole contact but this leads to problems if G0 carries fermion number. This might
be a good enough motivation for the twistorial description of the dynamics reducing it to
fermion propagator along the light-like orbit of wormhole throat. Super Virasoro algebra
would emerged only for the bound states of massless fermions.

(b) Suppose that the construction of four-fermion vertices reduces to the level of single worm-
hole contact. 4-fermion vertex involves wormhole contact giving rise to something analogous
to a boson exchange along wormhole contact. This kind of exchange might allow interpre-
tation in terms of Euclidian correlation function assigned to a deformation of CP2 type
vacuum extremal with Euclidian signature.

A good guess for the interaction terms between fermions at opposite wormhole contacts
is as current-current interaction jα(x)jα(y), where x and y parametrize points of opposite
throats. The current is defined in terms of induced gamma matrices as ΨΓαΨ and one
functionally integrates over the deformations of the wormhole contact assumed to corre-
spond in vacuum configuration to CP2 type vacuum extremal metrically equivalent with
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CP2 itself. One can expand the induced gamma matrix as a sum of CP2 gamma matrix
and contribution from M4 deformation Γα = ΓCP2

α + ∂αm
kγk. The transversal part of M4

coordinates orthogonal to M2 ⊂M4 defines the dynamical part of mk so that one obtains
strong analogy with string models and gauge theories.

(c) The deformation ∆mk can be expanded in terms of CP2 complex coordinates so that
the modes have well defined color hyper-charge and isospin. There are two options to be
considered.

i. One could use CP2 spherical harmonics defined as eigenstates of CP2 scalar Laplacian
D2. The scale of eigenvalues would be 1/R2, where R is CP2 radius of order 104 Planck
lengths. The spherical harmonics are in general not holomorphic in CP2 complex
coordinates ξi, i = 1, 2. The use of CP2 spherical harmonics is however not necessary
since wormhole throats mean that wormhole contact involves only a part of CP2 is
involved.

ii. Conformal invariance suggests the use of holomorphic functions ξm1 ξ
n
2 as analogs of zn

in the expansion. This would also be the Euclidian analog for the appearance of mass-
less spinors in internal lines. Holomorphic functions are annihilated by the ordinary
scalar Laplacian. For conformal Laplacian they correspond to the same eigenvalue
given by the constant curvature scalar R of CP2. This might have interpretation as a
spontaneous breaking of conformal invariance.
The holomorphic basis zn reduces to phase factors exp(inφ) at unit circle and can be
orthogonalized. Holomorphic harmonics reduce to phase factors exp(imφ1)exp(inφ2)
and torus defined by putting the moduli of ξi constant and can thus be orthogonal-
ized. Inner product for the harmonics is however defined at partonic 2-surface. Since
partonic 2-surfaces represent Kähler magnetic monopoles they have 2-dimensional CP2

projection. The phases exp(imφi) could be functionally independent and a reduction of
inner product to integral over circle and reduction of phase factors to powers exp(inφ)
could take place and give rise to the analog of ordinary conformal invariance at par-
tonic 2-surface. This does not mean that separate conservation of I3 and Y is broken
for propagator.

iii. Holomorphic harmonics are very attractive but the problem is that it is annihilated
by the ordinary Laplacian. Besides ordinary Laplacian one can however consider
conformal Laplacian [?] (http://en.wikipedia.org/wiki/Laplace_operators_in_
differential_geometry#Conformal_Laplacian) defined as

D2
c = −6D2 +R , (10.4.8)

and relating the curvature scalars of two conformally scaled metrics. The overall scale
factor and also its sign is just a convention. This Laplacian has the same eigenvalue
for all conformal harmonics. The interpretation would be in terms of a breaking of
conformal invariance due to CP2 geometry: this could also relate closely to the necessity
to assume tachyonic ground state in the p-adic mass calculations [K43].
The breaking of conformal invariance is necessary in order to avoid infrared divergences.
The replacement of M4 massless propagators with massive CP2 bosonic propagators
in 4-fermion vertices brings in the needed breaking of conformal invariance. Conformal
invariance is however retained at the level of M4 fermion propagators and external
lines identified as bound states of massless states.

How to identify the bosonic correlation function inside wormhole contacts?

The next challenge is to identify the correlation function for the deformation δmk inside worm-
hole contacts.

Conformal invariance suggests the identification of the analog of propagator as a correlation
function fixed by conformal invariance for a system defined by the wormhole contact. The corre-
lation function should depend on the differences ξi = ξi,1 − ξi,2 of the complex CP2 coordinates
at the points ξi,1) and ξi,2 of the opposite throats and transforms in a simple manner under
scalings of ξi. The simplest expectation is that the correlation function is power r−n, where

http://en.wikipedia.org/wiki/Laplace_operators_in_differential_geometry#Conformal_Laplacian
http://en.wikipedia.org/wiki/Laplace_operators_in_differential_geometry#Conformal_Laplacian


662 Chapter 10. Some Fresh Ideas about Twistorialization of TGD

r =
√
|ξ1|2 + |ξ2|2 is U(2) invariant coordinate distance. The correlation function can be ex-

panded as products of conformal harmonics or ordinary harmonics of CP2 assignable to ξi,1 and
ξi,2 and one expects that the values of Y and I3 vanish for the terms in the expansions: this
just states that Y and I3 are conserved in the propagation.

Second approach relies on the idea about propagator as the inverse of some kind of Laplacian.
The approach is not in conflict with the general conformal approach since the Laplacian could
occur in the action defining the conformal field theory. One should try to identify a Laplacian
defining the propagator for δmk inside Euclidian regions.

(a) The propagator defined by the ordinary Laplacian D2 has infinite value for all conformal
harmonics appearing in the correlation function. This cannot be the case.

(b) If the propagator is defined by the conformal Laplacian D2
c of CP2 multiplied by some

numerical factor it gives fro a given model besides color quantum numbers conserving delta
function a constant factor nR2 playing the same role as weak coupling strength in the four-
fermion theory of weak interactions. Propagator in CP2 degrees of freedom would give a
constant contribution if the total color quantum numbers for vanish for wormhole throat
so that one would have four-fermion vertex.

(c) One can consider also a third - perhaps artificial option - motivated for Dirac spinors by
the need to generalize Dirac operator to contain only I3 and Y . Holomorphic partial waves
are also eigenstates of a modified Laplacian D2

C defined in terms of Cartan algebra as

D2
C ≡

aY 2 + bI2
3

R2
, (10.4.9)

where a and b suitable numerical constants and R denotes the CP2 radius defined in terms
of the length 2πR of CP2 geodesic circle. The value of a/b is fixed from the condition
Tr(Y 2) = Tr(I2

3 ) and spectra of Y and I3 given by (2/3,−1/3,−1/3) and (0, 1/2,−1/2)
for triplet representation. This gives a/b = 9/20 so that one has

D2
C = (

9

20
Y 2 + I2

3 )× a

R2
. (10.4.10)

In the fermionic case this kind of representation is well motivated since fermionic Dirac
operator would be Y keAk γA + Ik3 e

A
k γA, where the vierbein projections Y keAk Y keAk and

Ik3 e
A
k of Killing vectors represent the conserved quantities along geodesic circles and by

semiclassical quantization argument should correspond to the quantized values of Y and I3
as vectors in Lie algebra of SU(3) and thus tangent vectors in the tangent space of CP2 at
the point of geodesic circle along which these quantities are conserved. In the case of S2

one would have Killing vector field Lz at equator.

Two general remarks are in order.

(a) That a theory containing only fermions as fundamental elementary particles would have
four-fermion vertex with dimensional coupling as a basic vertex at twistor level, would not
be surprising. As a matter of fact, Heisenberg suggested for long time ago a unified theory
based on use of only spinors and this kind of interaction vertex. A little book about this
theory actually inspired me to consider seriously the fascinating challenge of unification.

(b) A common problem of all these options seems to be that the 4-fermion coupling strength
is of order R2 - about 108 times gravitational coupling strength and quite too weak if one
wants to understand gauge interactions. It turns out however that color partial waves for
the deformations of space-time surface propagating in loops can increase R2 to the square
L2
p = pR2 of p-adic length scale. For D2

C assumed to serve as a propagator of an effective
action of a conformal field theory one can argue that large renormalization effects from
loops increase R2 to something of order pR2.
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Do color quantum numbers propagate and are they conserved in vertices?

The basic questions are whether one can speak about conservation of color quantum numbers in
vertices and their propagation along the internal lines and the closed magnetic flux loops assigned
with the elementary particles having size given by p-adic length scale and having wormhole
contacts at its ends. p-Adic mass calculations predict that in principle all color partial waves
are possible in cm degreees of freedom: this is a description at the level of imbedding space and
its natural counterpart at space-time level would be conformal harmonics for induced spinor
fields and allowance of all of them in generalized Feynman diagrams.

(a) The analog of massless propagation in Euclidian degrees of freedom would correspond
naturally to the conservation of Y and I3 along propagator line and conservation of Y and
I3 at vertices. The sum of fermionic and bosonic color quantum numbers assignable to the
color partial waves woul be conserved. For external fermions the color quantum numbers
are fixed but fermions in internal lines could move also in color excited states.

(b) One can argue that the correlation function for the M4 coordinates for points at the ends of
fermionic line do not correlate as functions of CP2 coordinates since the distance between
partonic 2-surface is much longer than CP2 scale but do so as functions of the string
world sheet coordinates as stringy description strongly suggests and that stringy correlation
function satisfying conformal invariance gives this correlation. One can however counter
argue that for hadrons the color correlations are different in hadronic length scale. This
in turn suggests that the correlations are non-trivial for both the wormhole magnetic flux
tubes assignable to elementary particles and perhaps also for the internal fermion lines.

(c) I3 and Y assignable to the exchanged boson should have interpretation as an exchange
of quantum numbers between the fermions at upper and lower throat or change of color
quantum numbers in the scattering of fermion. The problem is that induced spinors have
constant anomalous Y and I3 in given coordinate patch of CP2 so that the exchange of
these quantum numbers would vanish if upper and lower coordinate patches are identical.
Should one expand also the induced spinor fields in Euclidian regions using the harmonics
or their holomorphic variants as suggested by conformal invariance?

The color of the induced spinor fields as analog of orbital angular momentum would realized
as color of the holomorphic function basis in Euclidian regions. If the fermions in the
internal lines cannot carry anomalous color, the sum over exchanges trivializes to include
only a constant conformal harmonic. The allowance of color partial waves would conform
with the idea that all color partial waves are allowed for quarks and leptons at imbedding
space level but define very massive bound states of massless fermions.

(d) The fermion vertex would be a sum over the exchanges defined by spherical harmonics or
- more probably - by their holomorphic analogs. For both the spherical and conformal
harmonic option the 4-fermion coupling strength would be of order R2, where R is CP2

length. The coupling would be extremely weak - about 108 times the gravitational coupling
strength G if the coupling is of order one. This is definitely a severe problem: one would
want something like L2

p, where p is p-adic prime assignable to the elementary particle
involved.

This problem provides a motivation for why a non-trivial color should propagate in internal
lines. This could amplify the coupling strength of order R2 to something of order L2

p = pR2.
In terms of Feynman diagrams the simplest color loops are associated with the closed mag-
netic flux tubes connecting two elementary wormhole contacts of elementary particle and
having length scale given by p-adic length scale Lp. Recall that νLνR pair or its conjugate
neutralizes the weak isospin of the elementary fermion. The loop diagrams representing
exchange of neutrino and the fermion associated with the two different wormhole contacts
and thus consisting of fermion lines assignable to ”long” strings and boson lines assignable
to ”short strings” at wormhole contacts represent first radiative correction to 4-fermion
diagram. They would give sum over color exchanges consistent with the conservation of
color quantum numbers at vertices. This sum, which in 4-D QFT gives rise to divergence,
could increase the value of four-fermion coupling to something of order L2

p = kpR2 and
induce a large scaling factor of D2

C .
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(e) Why known elementary fermions correspond to color singlets and triplets? p-Adic mass
calculations provide one explanation for this: colored excitations are simply too massive.
There is however evidence that leptons possess color octet excitations giving rise to light
mesonlike states. Could the explanation relate to the observation that color singlet and
triplet partial waves are special in the sense that they are apart from the factor 1/

√
1 + r2

, r2 =
∑
ξiξi for color triplet holomorphic functions?

Why twistorialization in CP2 degrees of freedom?

A couple of comments about twistorialization in CP2 degrees of freedom are in order.

i. Both M4 and CP2 twistors could be present for the holomorphic option. M4 twistors
would characterize fermionic momenta and CP2 twistors to the quantum numbers
assignable to deformations of CP2 type vacuum extremals. CP2 twistors would be
discretized since I3 and Y have discrete spectrum and it is not at all clear whether
twistorialization is useful now. There is excellent motivation for the integration over
the flag-manifold defining the choices of color quantization axes. The point is that the
choice of conformal basis with well-defined Y and I3 breaks overall color symmetry
SU(3) to U(2) and an integration over all possible choices restores it.

ii. Four-fermion vertex has a singularity corresponding to the situation in which p1, p2

and p1 + p2 assignable to emitted virtual wormhole throat are collinear and thus all
light-like. The amplitude must develop a pole as p3 + p3 = p1 + p2 becomes massless.
These wormhole contacts would behave like virtual boson consisting of almost collinear
pair of fermion and anti-fermion at wormhole throats.

Reduction of scattering amplitudes to subset of N = 4 scattering amplitudes

N = 4 SUSY provides quantitative guidelines concerning the actual construction of the scatter-
ing amplitudes.

(a) For single wormhole contact carrying one fermion, one obtains two N = 2 SUSY multiplets
from fermions by adding to ordinary one-fermion state right-handed neutrino, its conjugate
with opposite spin, or their pair. The net spin projections would be 0, 1/2, 1 with degenera-
cies (1,2,1) for fermion helicity 1/2 and (0,−1/2,−1) with same degeneracies for fermion
helicity -1/2. These N = 2 multiplets can be imbedded to the N = 4 multiplet containing
24 states with spins (1, 1/2, 0,−1/2,−1) and degeneracies given by (1, 4, 6, 4, 1). The am-
plitudes in N = 2 case could be special cases of N = 4 amplitudes in the same manner as
they amplitudes of gauge theories are special cases of those of super-gauge theories. The
only difference would be that propagator factors 1/p2 appearing in twistorial construction
would be replaced by propagators in CP2 degrees of freedom.

(b) In twistor Grassmannian approach to planar SYM one obtains general formulas for n-
particle scattering amplitudes with k positive (or negative helicities) in terms of residue
integrals in Grassmann manifold G(n, k). 4-particle scattering amplitudes of TGD, that
is 4-fermion scattering amplitudes and their super counterparts would be obtained by re-
stricting to N = 2 sub-multiplets of full N = 4 SYM. The only non-vanishing amplitudes
correspond for n = 4 to k = 2 = n− 2 so that they can be regarded as either holomorphic
or anti-holomorphic in twistor variables, an apparent paradox understandable in terms of
additional symmetry as explained and noticed by Witten. Four-particle scattering ampli-
tude would be obtained by replacing in Feynman graph description the four-momentum in
propagator with CP2 momentum defined by I3 and Y for the particle like entity exchanged
between fermions at opposite wormhole throats. Analogous replacement should work for
twistorial diagrams.

(c) In fact, single fermion per wormhole throat implying 4-fermion amplitudes as building
blocks of more general amplitudes is only a special case although it is expected to provide
excellent approximation in the case of ordinary elementary particles. Twistorial approach
could allow the treatment of also n > 4-fermion case using subset of twistorial n-particle
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amplitudes with Euclidian propagator. One cannot assign right-handed neutrino to each
fermion separately but only to the elementary particle 3-surface so that the degeneration
of states due to SUSY is reduced dramatically. This means strong restrictions on allowed
combinations of vertices.

Some words of critism is in order.

(a) Should one use CP2 twistors everywhere in the 3-vertices so that only fermionic propagators
would remain as remnants of M4? This does not look plausible. Should one use include to
3-vertices both M4 and CP2 type twistorial terms? Do CP2 twistorial terms trivialize as a
consequence of quantization of Y and I3?

(b) Nothing has been said about modified Dirac operator. The assumption has been that it
disappears in the functional integration and the outcome is twistor formalism. The above
argument however implies functional integration over the deformations of CP2 type vacuum
extremals.

10.5 Could twistorialization make sense in vibrational de-
grees of freedom of WCW?

An obvious question is whether the notion of twistor makes sense in vibrational degrees of
freedom of WCW?

(a) Could one map light-like 3-surfaces to the points of an infinite-dimensional analog of twistor
space generalizing or perhaps even defining WCW and its analytic continuation analogous
to that of M4? Could one map partonic 2-surfaces to higher-dimensional spheres of this
generalized twistor-space. Note that 4-D tangent space data would distinguish between
different light-like 3-surfaces associated with the same partonic 2-surfaces.

(b) The geometric co-incidence relations for light-like geodesics of M4 as intersections of twisto-
rial spheres should generalize to the condition that two partonic 2-surfaces at the opposite
ends of CD are connected by a light-like 3-surface.

The conservative conclusion from previous considerations is that twistor description applies only
in cm degrees of freedom and has very natural interpretation as a manner to achieve Lorentz and
color invariance. Hence the twistorialization in vibrational degrees of freedom does not look like
an attractive idea. This idea however has however some very attractive features and therefore
deserved a more detailed debunking.

10.5.1 Algebraic incidence relations in the infinite-D context reduce
to effectively 4-D case

The generalization of algebraic incidence relations to infinite-dimensional context looks like a
highly non-trivial if not inpossible.

It is good to start with motivating observations.

(a) One could replace light-like vector of M4 or H with light-like tangent vector X at point
of WCW. Could one generalize the spinor pair (λ, µ) associated with a light-like M4

geodesic to a pair of spinors of WCW identifiable as fermionic Fock states assignable to
positive/negative energy parts of zero energy states associated with the future and past
boundaries of WCW or rather with the ends of the light-like 3-surface at boundaries of
CD? The formulas d1 = 2D−1 and d2 = 2D×D are not encouraging and the only reason-
able option seems to be that the spinorial dimension must correspond to the dimension of
the space generated by creation operator type gamma matrices which is indeed as WCW
dimension.
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(b) If the spinor pair represents positive and negative energy parts of a zero energy state, does
the co-incidence relation have interpretation as a quantum classical correspondence map-
ping zero energy states consisting of fermions to light-like momenta in WCW and therefore
(tangents of) light-like geodesics of WCW? This kind of correspondence between space-
time surfaces and quantum states would be just what the physical interpretation of TGD
requires. Infinite-D momenta would correspond to pairs of initial and final states defining
physical events in positive energy ontology. A weaker correspondence is that single fermion
states generated by WCW gamma matrices are in 1-1 correspondence with the tangent
space algebra represented as Kac-Moody generators and in this case the situation seems
much promising since bosonic representations of Kac-Moody algebra can act in the same
manner as a representation in terms of fermionic bilinears. This would be the counterpart
of incidence relation now.

(c) What could be the interpretation of the infinite-D hermitian operator XAA′σA, which
should relate positive and negative energy parts of the Fock state to each other? Could the
algebra of these vectors span the infinite-D algebra of WCW and could isometry generators
and WCW gamma matrices (or sigma matrices) span together a super-conformal algebra?
This would be analog for the finite-dimensional super-conformal algebra associated with or-
dinary twistors. X defines a light-like tangent vector: could the interpretation be in terms
of infinite-dimensional momentum vector for which light-likeness condition generalizes or-
dinary light-likeness condition allowing massivation in M4 just as p-adic mass calculations
suggest?

10.5.2 In what sense the numbers of spinorial and bosonic degrees of
freedom could be same?

The detailed consideration of spinors reveals what looks like a grave difficulty: 2-dimensional
considerations suggests that the number of spinorial degrees of freedom of WCW should be
same as the dimension of WCW. N -dimensional spinor space has however dimension, which is
exponentially larger than the dimension WCW. Stating it in slightly different manner: the space
of complexified WCW gamma matrices expressible in terms of fermionic oscillator operators is
exponentially smaller than the space of fermionic Fock states generated by them. As such this
need not spoil hope about algebraic incidence relations but would spoil the nice super-symmetry
between bosonic and fermionic dimensions. Could the situation be saved by considering only
single fermion states or by ZEO or could a generalization of octonionic sigma matrices help?

The condition that single fermion states are on 1-1 correspondence with bosonic states, which
correspond to tangent vectors that is Kac-Moody type algebra, makes sense. The representation
of tangent space momentum vector identified as Kac-Moody generator as fermionic bilinear and
the condition that it annihilates physical state would be the counterpart for the representation
of momentum as bilinear in spinors appearing in twistor. The analog of incidence relation would
express the action of Kac-Moody generator on fermion state or its commutator action on super
generator.

The attempt to generalize momentum conservation conditions essential for the twistor formalism
however fails. The generators of the Cartan algebra of Kac-Moody algebra commute but central
extension spoils the situation and one can talk only about the cm parts of Cartan algebra
Kac-Moody generators as conserved quantities.

10.5.3 Could twistor amplitudes allow a generalization in vibrational
degrees of freedom?

The original idea was that twistorialization could make sense in vibrational degrees of freedom.
It soon became clear that this is not needed since twistorialization in cm degrees of freedom is
all the is needed. Therefore the answer to the question of the title is ”No”.
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Twistorialization in minimal sense is possible

It has been already found that twistorialization in M4 × CP2 emerges naturally from the inte-
gration over selections of quantization axes for Super Virasoro algebra. The amplitudes have
the general Grassmannian form and the additional structures comes from vertices determined
by super conformal invariance and from integration over WCW.

One can of course ask whether twistorialization could make sense in more general sense so
that the integration over WCW 4-D tangent space degrees of freedom could be carried out by
introducing twistor like entities in vibrational degrees of freedom: essentially this would mean
representation of bosonic Kac-Moody algebra in terms of fermionic bilinears and this kind of
representations indeed exist: the condition implying these representations would be that the
sums of fermionic and bosonic Kac-Moody generators annihilate the vertices. One might say
that small deformation of partonic 2-surface corresponds to generation of fermion pairs and has
therefore physically observable.

Twistorialization in strong sense in vibrational degrees of freedom fails

The obvious question is whether twistorial amplitudes could allow a generalization obtained by
replacing 2-spinors with N -spinors with N even approaching infinity. Skeptic could argue that
the treatment of CP2 degrees of freedom in terms of momenta is wrong: for quantum states
one must use color quantum numbers: color isospin, hypercharge and the value of the Casimir
operator. As a matter fact, the number of these parameters is three and happens to be the
same as the number of components of unit vector characterizing the direction of CP2 geodesic
for which all color generators define conserved charges classically.

It its quite possible that the twistor approach does not make sense for color quantum numbers.
It could however make sense for WCW degrees of freedom and co-incidence relations would
allow to assign to tangent vector characterizing light-like 3-surfaces as orbit of parton in terms
of positive and negative energy states at its ends. Quantum classical correspondence would be
realized and even this would be a wonderful result concerning the interpretation of the theory,
especially quantum measurement theory.

Therefore it is interesting to find whether twistor amplitudes allow a formal generalization at
least. The essential elements is the reduction of the construction of amplitudes to that for on
mass shell vertices with on mass shell property generalized to allow complex light-like momenta.
From vertices one can build more general amplitudes by using simple basic operations and
ends up with a recursion formula for the n-particle loop amplitudes in terms of Grassmannian.
The especially interesting feature from TGD point of view is that the integrals are residue
integrals and make sense also p-adically since for algebraic extension of p-adic numbers 2π =
N × sin(2π/N) gives the definition of p-adic 2π: here N corresponds to the largest root of unity
involved with the extension. Hence twistorial construction could provide a universal solution to
the p-adicization problem.

The algebraic incidence relations were already earlier discussed by allowing also the option
N > 2 (N is power of two). It was found that the incidence relations can be satisfied but that
the solutions reduce essentially to those for N = 2. Since this point is important one can look
in more detail what happens for N > 2-spinors (N is power of 2 in finite-D case)?

(a) For general amplitude the number of conditions to be satisfied - the dimension of the
Grassmannian G(k, n) - depends only on the number n of the particles and the number
k of positive helicity external particles. For 3-vertex and k = 2 with complex light-like
momenta at most n = 3 spinors λα resp. λ̂α

′
are linearly independent so that their number

reduces effectively to neff ≤ 3. For N = 2 and neff = 3 both λα and λ̂α
′

span the entire
3-D complex space and no solutions are obtained without posing additional conditions on
the spinors. Already for N = 2 either λi or λ̂i are linearly independent. If this holds
also now for - say - λi and λ̂α

′
span only 2-plane both, one obtains a solution. In other

words, solutions given by 2-spinors give rise to solutions given by N -spinors reducing to
2-spinors effectively. Very probably there are no other solutions. Without these conditions
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one obtains 2×neff ×3−3 = 15 conditions and the effective number of spinor components
is only 2× 3× 1 = 12 < 15.

(b) The reduction implies that in M4 vibrational degrees of freedom some 4-D sub-space of
tangent space of WCW is always selected and vibrational momenta in vertex belong to
this plane. Momentum conservation however allows different 4-D sub-spaces in different
vertices: the 4-D spaces at vertices connected by line must intersect along 1-D space at
least. Hence the physics in vibrational degrees of freedom would reduce to 4-D only at
vertices. An interesting question is whether this might be true for the dynamics of Kähler
action at vertices or - if momentum conservation indeed holds true - in the sense that the
light-like 3-surface corresponds to a motion of partonic 2-surface in 4-D subspace of single
particle WCW. Same applies in CP2 vibrational degrees of freedom.

(c) Similar considerations apply in the case of 4-vertex since the number of conditions depends
on N2 and requires the effective reduction of N to N = 2.

These strange conditions on the dynamics reducing it to effectively four-dimensional one en-
courage to conclude that twistorial approach in vibrational degrees of freedom produces only
problems. In M4 × CP2 degrees it should work with minor modifications.

10.6 Conclusions

The conclusions of these lengthy considerations are following.

(a) Twistorialization takes place naturally at the level of imbedding space and twistor space
is Cartesian product of those associated with M4 and CP2. The twistor space has inter-
pretation as a flag manifold characterizing the choices of quantization axes for longitudinal
momentum components and spin and for isospin and hyper-charge. The integration over
twistor space guarantees Lorentz invariance and color invariance.

(b) The Super Virasoro conditions apply only to the entire physical states associated with
particle like 3-surfaces containing in general several partonic 2-surfaces. These states can be
regarded as bound states of in general non-parallelly propagating massless fermions. Virtual
fermions are massless but possess wrong polarization and residue integral replaces fermion
propagator with its inverse making sense mathematically. The light-likeness conditions for
light-like 3-surfaces allow to deduce the general form of Virasoro conditions. Covariantly
constant right-handed neutrinos could define the fermion number conserving analog of
N = 4 SUSY.

(c) Apart from CP2 twistorialization the resulting formalism is essentially identical with Grass-
mannian twistor formalism with one important exception. The 3-vertex of gauge theories is
replaced with fermionic 4-vertex which is non-vanishing also for non-parallel on mass shell
real momenta and thus avoids the IR singularity of gauge theory vertex.

(d) At the level of WCW incidence relations have an analogy following from expressibility of
Kac-Moody generators as sums of bosonic parts analogous to M4 coordinates and fermionic
parts bilinear in fermionic operators creating WCW spinors and thus analogous to spinors.
The attempt to generalize four-momentum conservation to quadratic conditions for WCW
spinors fails.

(e) Twistor formalism allows to construct the analogs of Feynman rules for QFT limit of TGD.



Chapter 11

Quantum Field Theory Limit of
TGD from Bosonic Emergence

11.1 Introduction

In TGD framework S-matrix must be constructed without the help of path integral. In TGD
only fermions appear as fundamental particles. This suggests a bootstrap program in which
one starts from very simple basic structures and generates the remaining n-point functions as
radiative corrections. The success of twistorial unitary cut method in massless gauge theories
suggests that its basic results such as recursive generation of tree diagrams might be given a
status of axioms. The idea that loop momenta are light-like cannot be however be taken too
seriously. Or so I thought! After an enthusiastic period with this idea I was forced to give it
up only to rediscover it in a modified form inspired by the zero energy ontology and twistor
approach. The idea is that both external and virtual particles are composites of massless states
assignable to wormhole throats. External particles are bound states of massless states assignable
to wormhole throats. For virtual particles one gives up the bound state constraint and one
allows also positive and negative energy wormhole throats to obtain space-like net momenta for
for wormhole throats. This framework gives extremely strong constraints on virtual momenta
and implies cancellation of UV and also IR divergences. This approach is described in the [K87]
.

This chapter represents a humble intermediate step in the evolution of ideas. The approach is
inspired by bosonic emergence which is a basic prediction of TGD and led to the approach to
generalized Feynman diagrams based on Yangian symmetry [A54] . Bosonic emergence suggests
that one could construct the QFT limit of TGD in terms of Dirac action coupled YM gauge
potentials with bosonic propagators generated radiatively. Finiteness requires that fermionic
loop integrations are not free but restricted by some reasonable conditions guaranteeing finiteness
and one simply tries to guess these conditions using p-adic length scale hypothesis. The so called
region momenta appearing in twistor Grassmannian approach [B38] have in TGD framework
direct analogs as pseudo-momenta identified as generalized eigenvalues of Chern-Simons Dirac
operator assigned to the wormhole throats. Pseudo-momenta are analogous to off mass shell
momenta for a massless particle and for external particles they coincide with real light-like
momenta. These momenta are indeed analogous to off mass shell loop momenta but not directly
identifiable as net four-momenta for wormhole contacts. Number theoretic constraints suggests
that pseudo-momenta are quantized and have a limited value range. Therefore the primitive
QFT model of this chapter assuming that virtual momenta are restricted to a finite range in
the momentum space can be said to be as a predecessor of the formulation discussed in [K87] .
This is the reason for why I have decided to keep it.

669
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11.1.1 The dream

Let us summarize the first variant of the dream about bootstrap approach.

(a) In [K15, K20] I have discussed how the ”almost stringy” fermion propagator arises as one
adds to the modified Dirac action a term coupling the charges in a Cartan algebra of the
isometry group of H = M4 × CP2 to conserved fermionic currents (there are several of
them). Also more general observables allow this kind of coupling and the interpretation in
terms of measurement interaction. This term also realizes quantum classical correspondence
by feeding information about quantum numbers of partons to the geometry of space-time
sheet so that quantum numbers entangle with the geometry of space-time sheet as hologra-
phy requires. This measurement interaction was the last piece in the puzzle ”What are the
basic equations of quantum TGD” and unified several visions about the physics predicted
by quantum TGD. ”Almost stringy” means that the on mass shell fermions obey stringy
mass formulas dictated by super-conformal symmetry but that propagator itself -although
it depends on four-momentum- is not the inverse of super-Virasoro generator G0 as it would
be in string models.

(b) The identification of bosons as wormhole contacts means that bosonic propagation reduces
to a propagation of fermion and antifermion at opposite throats of the wormhole throat.
In this framework bosonic n-vertex would correspond to the decay of bosons to fermion-
antifermion pairs in the loop. Purely bosonic gauge boson couplings would be generated
radiatively from triangle and box diagrams involving only fermion-boson couplings. In
particular, bosonic propagator would be generated as a self-energy loop: bosons would
propagate by decaying to fermion-antifermion pair and then fusing back to the boson. TGD
counterpart for gauge theory dynamics would be emergent and bosonic couplings would
have form factors with IR and UV behaviors allowing finiteness of the loops constructed
from them since the constraint that virtual fermion pair corresponds to wormhole contact
poses strong constraint on virtual momenta of fermion and antifermion.

This picture translates to a dream about QFT limit of TGD where n-boson vertices reduce to
fermionic loops defined in standard manner. Unfortunately, this dream about emergence is killed
by the general arguments discussed in the chapter about twistors and TGD [K85] demonstrating
that one encounters UV divergences already in the construction of gauge boson propagator for
both free and light-like loop momenta (suggested by twistorial ideas). The physical reason for
the emergence of these divergences and also their cure at the level of principle is well-understood
in TGD Universe.

(a) The description in terms of number theoretic braids based on the notion of finite measure-
ment resolution should resolve these divergences at the expense of locality. The physical
picture would be provided by the identification of virtual fermion-antifermion pair as worm-
hole contact.

(b) Zero energy ontology brings into the picture also the natural breaking of translational and
Lorentz symmetries caused by the selection of the causal diamond (CD). This breaking is
compensated at the level of configuration space since all Poincare transforms of CDs are
allowed in the construction of the configuration space geometry.

(c) If this approach is accepted then for given CD there are natural IR and UV cutoffs for 3-
momentum (perhaps more naturally for these than for mass squared). IR cutoff is quantified
by the temporal distance between the tips of CD and UV cutoff by similar temporal
distance of smallest CD allowed by length scale resolution. If the hypothesis that the
temporal distances come as octaves of fundamental time scale given by CP2 time scale T0

and implying p-adic length scale hypothesis, the situation is fixed. A weaker condition is
that the distances come as prime multiples pT0 of T0.

(d) QFT type idealization would make sense in finite measurement resolution and the loop
integrals would be both IR and UV finite.
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11.1.2 Improved dream

The arguments above lead to a modified form of the dream.

(a) Only fermionic propagators are allowed and bosonic propagators emerge. Only boson-
fermion coupling characterizing the decay of a wormhole contact to two CP2 type almost
vacuum extremals with single wormhole throat carrying fermion and anti-fermion number
would be feeded to the theory as something given and everything else would result as
radiative corrections. Boson-fermion coupling would be proportional to Kähler coupling
strength fixed by quantum criticality and very near or equal to fine structure constant at
electron’s p-adic length scale for the standard value of Planck constant. If not anything
else, this approach would be predictive.

(b) This approach could be tried to both free and light-like loop momenta. For free loop
momenta the cutoff would be naturally associated with the mass squared of the virtual
particle rather than the energy of a massless particle. Despite its Lorentz invariance one
could criticize this kind of UV cutoff because it allows arbitrarily small wavelengths not in
accordance with the vision about finite measurement resolution. This suggests that these
cutoffs must be combined for a given p-adic length scale Lp to give kµkµ ≡ M2 ≤ p and
|k0| ≤ p using MCP2 as a unit. Hence only the region defined by the intersection of the four-
cube kµ ≤ p and M2 ≤ p contributes to the phase space for cutoff defined by p-adic mass
scale Mp. Its volume behaves like p3+1/2 rather than p4. For space-like momenta similar
situation prevails. In hyperbolic coordinates (k0 = Mcosh(η), |k| = Msinh(η)) for time-like
momenta the cutoffs correspond to (M ≤ √p, cosh(η) ≤ √p). In hyperbolic coordinates
for space-like momenta (p0 = Msinh(η), |p| = Mcosh(η)) the cutoffs correspond (M ≤√
p, |sinh(η)| ≤ √p).

The following considerations led to the conclusion that bosonic propagators could emerge from
fermionic ones in the quantum field theory type description and that this description is also
favored by the basic structure of quantum TGD. An essential element of the approach is a
physical formulation for UV cutoff. A cutoff in both mass squared and hyperbolic angle is
necessary since Wick rotation does not make sense in TGD framework. This approach predicts
all gauge couplings and assuming a geometrically very natural hyperbolic UV cutoff motivated
by zero energy ontology one can understand the evolution of standard model gauge couplings
and reproduce correctly the values of fine structure constant at electron and intermediate boson
length scales. Also asymptotic freedom follows as a basic prediction. The UV cutoff for the
hyperbolic angle as a function of p-adic length scale is the ad hoc element of the model in its
recent form, and a quantitative model for how this function could be fixed by quantum criticality
is formulated and studied.

These considerations and numerical calculations lead to a general vision about how real and
p-adic variants of TGD relate to each other and how p-adic fractalization takes place.

(a) Only fermionic loops would be fundamental and define bosonic propagators and vertices. In
twistor approach generalized Cutkosky rules allow the unitarization of the tree amplitudes
in terms of TT † contribution involving only light-like momenta. Also in TGD this seems
to be the only working option for the bosonic loops at massless limit and requires that TT †

makes sense p-adically. The treatment of the massive case suggests the generalization of
twistors to 8-D context [K85] .

(b) The vanishing of the fermionic loops defining bosonic vertices for the incoming massless
momenta emerges as a consistency condition suggested also by quantum criticality and
by the fact that only BFF vertex is fundamental vertex if bosonic emergence is accepted.
The vanishing of on mass shell N-vertices gives an infinite number of conditions on the
hyperbolic cutoff as function of the integer k labeling p-adic length scale at the limit when
bosons are massless and IR cutoff for the loop mass scale is taken to zero. These condition
generalize also to the massive case and even to quantum TGD proper a first principle
definition of the fermionic loops allowing in turn to define bosonic loops as discontinuity of
TT † obtained by putting on particles on mass shell. It is not yet clear whether dynamical



672 Chapter 11. Quantum Field Theory Limit of TGD from Bosonic Emergence

symmetries, in particular super-conformal symmetries, are involved with the realization of
the vanishing conditions or whether hyperbolic cutoff is all that is needed.

This picture emerged through calculations which evolved from the first trials through the discov-
ery of an impressive number of numerical errors related to signs factors, numerical factors, and
exponents but there are reasons to believe that big blunders have been eliminated now so that
one can trust the results of calculations and conclusions following from them. Calculations are
also far from complete. For instance, propagator has not been calculated for space-like momenta
and it is not clear whether one can trust on the naive analytical continuation. Formal rigor of
course does not yet guarantee that the physical picture is correct.

11.1.3 SUSY improved dream

The basic criticism against the first version of the improved dream is the need to introduce
explicit cutoffs in hyperbolic angle and mass squared for the fermions appearing in fermion loops.
These cutoffs should emerge from dynamics alone. The realization of super-symmetry at space-
time level in TGD sense [K29] requires bosonic emergence as internal consistency condition,
avoids these explicit cutoffs, and leads to an UV finite theory by standard arguments about
cancelation of fermion and sfermion loops in SUSYs. This realizes a 31 year old dream to a
surprisingly high degree. Everything would emerge radiatively from the modified Dirac operator
and boson-fermion vertices (and their super counterparts) dictated by the charge matrix of the
boson coding boson as a fermion-antifermion bilinear.

The super-symmetry in question corresponds to a new variant of standard SUSY having N =∞.
It is natural to ask whether a natural cutoff in the value of N could emerge from the theory. The
notion of braid realizing at space-time level the notion of finite measurement resolution would
certainly imply this kind of cutoff since the number of fermionic oscillator operators would be
finite. The so called weak form of electric-magnetic duality [K28] led to a dramatic integration of
various ideas related to the quantum TGD. The earlier general solution ansatz for the preferred
extremals was understood in much more detailed manner and dual interpretations of solution
ansatz in terms of non-linear Maxwell’s electrodynamics and hydrodynamics were found [K8] . It
was realized that this ansatz implies automatically the reduction of TGD to almost topological
QFT in the sense that Kähler function of WCW reduces to Chern-Simons term. Also Kähler
Dirac equation and Chern-Simons Dirac equation were understood. In particular, the study of
generalized eigen modes of Chern-Simons Dirac equation demonstrated that braids and their
number theoretic variants emerge from the basic quantum TGD. Therefore the cutoff in N is
coded to the dynamics.

11.1.4 ZEO improved dream

A new twist in the dream about finite S-matrix emerged with the realization that in zero energy
ontology (ZEO) virtual particles could correspond to wormhole contacts carrying non-parallel
mass shell momenta which can also correspond to opposite energies [K28, K85] . It is indeed
possible to have both space-like and time-like net momenta for the wormhole contact in this
manner so that one would end up with a variant of the original idea about the replacement of
virtual particles with on mass shell massless particles, which as such was a failure. It is strange
how even the silliest looking idea seems to be an attempt of some bigger mind to communicate
to the stupid theoretician something important.

On mass shell property does not lead to a disaster since the propagator is not ordinary Dirac
propagator (which would of course diverge) but is defined by the Chern-Simons Dirac operator-
essentially Dirac propagator for a 2-D pseudo-momentum having discrete set of allowed val-
ues. There are good arguments that the allowed pseudo-momenta correspond to hyper-complex
primes and possibly a finite number of their powers so that they do not induce divergences.
Also a connection with the notion of infinite prime and corresponding arithmetic quantum field
theory emerges [K72] .
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The progress was stimulated by the simple observation that on mass shell property puts enor-
mously strong kinematic restrictions on the loop integrations. With mild restrictions on the
number of parallel fermion lines appearing in vertices (there can be several since fermionic
oscillator operator algebra defining SUSY algebra generates the parton states)- all loops are
manifestly finite and if particles has always mass -say small p-adic thermal mass also in case of
massless particles and due to IR cutoff due to the presence largest CD- the number of diagrams
is finite. Unitarity reduces to Cutkosky rules [B34] automatically satisfied as in the case of
ordinary Feynman diagrams. The last section of the chapter is devoted to a brief summary of
this approach which should have a counterpart also in the description of QFT limit of TGD.
Also SUSY is consistent with the reduction of off mass shell states to pairs of on mass shell
states and guarantees finiteness of the very few loop summations that remain when kinematic
conditions are applied (self energy loops remain and should vanish by SUSY).

11.1.5 What can one conclude?

What one can abstract from these dreams might be the following vision.

(a) Bosonic emergence and its generalization implying that fermionic propagator is the basic
object. Even in standard gauge theory framework this means enormous simplification if
one can define UV cufoffs.

(b) Generalization of SUSY and the emergence of the notion of braids implying a reduction to
SUSY algebra with a finite value of N . SUSY gives excellent hopes about the finiteness of
the QFT limit even when UV cutoff is not assumed.

(c) The reduction of off mass shell states to pairs of on mass shell states in ZEO modifying dra-
matically the physical interpretation of Feynman diagrammatics and implying a manifest
finiteness and unitarity of the theory. The reduction to almost topological QFT implies
that fermionic propagators are for 2-D discrete pseudo-momentum rather than for real off
mass shell momentum. This description as such is certainly not directly related to QFT
description.

The reader should be warned that this dreaming or might it be called dream walking represents
only a story about evolution of ideas and my motivation for keeping all this material is just for
the fact that I feel important to be honest and confess all the side tracks that I have made. As
already mentioned in the beginning, this chapter can be seen as one step leading to the twistor
approach to TGD inspired by Yangian symmetry [K87] .

11.2 Bootstrap approach to obtain a unitary S-matrix

This section summarizes the basic mathematical realization of the modified Feynman rules hoped
to give rise to a unitary M-matrix (recall that M-matrix is product of a positive square root
of density matrix and unitary S-matrix in TGD framework and need not be unitary in the
general case). The basic idea is that bosonic propagators emerge as fermionic loops. The
approach is bottom up and leads to a precise general formulation for how the counterpart of
YM action emerges from Dirac action coupled to gauge bosons and to modified Feynman rules.
An essential element of the approach is a physical formulation for UV cutoff. Actually cutoff in
both mass squared and hyperbolic angle is needed since Wick rotation does not make sense in
TGD framework. The UV cutoff for the hyperbolic angle as a function of p-adic length scale
is somewhat ad hoc element of the model and a quantitative model for how this function could
follow from the requirement of quantum criticality is formulated and discussed.

11.2.1 Quantitative realization of UV finiteness in terms of p-adic
length scale hypothesis and finite measurement resolution

p-Adic fractality suggests an elegant realization of the notion of finite measurement resolution
implying the finiteness of the ordinary Feynman integrals automatically but predicting diver-
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gences for light-like loop momenta.

Integration measure for loop integrals and cutoff

I have considered several options for the realization of the UV cutoff but one can argue that CP2

scale or equivalently, 2-adic length scale L2 defines the natural maximal UV cutoff in quantum
TGD and corresponds to the maximal measurement resolution for momentum.

(a) The cutoffs will be posed on both mass squared and hyperbolic angle. This conforms with
the p-adic length scale hypothesis emerging from p-adic mass calculations and with the
geometry of CDs. p-Adic length scales come as Lp ∝

√
p, p ' 2k rather than Lp ∝ p as the

proportionality T (p) = pT (CP2) of the temporal distance between tips of the CD combined
with Uncertainty Principle would suggest. The reason is that light-like randomness of
partonic 3-surfaces means Brownian motion so that Lp ∝

√
T (p) and Mp ∝ 1/

√
T (p)

follows. To avoid confusions note that for the conventions that I have used T (p) corresponds
to the secondary p-adic length scale Tp,2 =

√
pTp. For electron T (p) corresponds to .1

seconds.

(b) Loops involve basically integrals of form

∫
d4kk−2n , n = 1, 2, ... (11.2.1)

It is far from obvious whether the usual definition based on Wick rotation of the Euclidian
variant of the integral makes sense in the recent case. The definition based on Wick rotation
would eliminate the divergence in the hyperbolic angle leave only a cutoff in k2 ≥ 0 and
give quadratic resp. logarithmic divergences for n = 1 resp. n = 2. This prescription is not
favored by the picture suggested by the geometry CDs.

(c) The most natural integration measure is just the standard M4 volume element d4k. By
introducing coordinates (m0, rM ) = (εacosh(η), asinh(η)) inside future (ε = 1) and past
(ε = −1) light-cones and (m0, rM ) = (asinh(η), acosh(η)) in their complement, one can
write the M4 integration measure as

d4k = k3dk × sinh2(η)dηdΩ , k2 = kµkµ (11.2.2)

inside future and past light-cones and

d4k = k3dk × cosh2(η)dηdΩ (11.2.3)

in the complement of future and past light-cones. The integration range for k is (0,∞) in
absence of cutoff.

(d) The integral in the time like region involves integration over both signs of k0. By replacing
the integrand with the sum of integrand and its time reversal the integral can be restricted
to the future light-cone. It should be noticed that the integrals given mass term to the
bosonic propagator do not vanish unless the cutoffs for hyperbolic angle η in space-like and
time-like regions are related in a specific manner. The reason is that sinh2(η) in time-like
region is replaced with cosh2(η) space-like region.

(e) The geometry of CDs requires IR and UV cutoffs in both mass squared and hyperbolic
angle. The simplest cutoffs that one an imagine are given by

p−1/2
max ≤

m

m(CP2)
≤ p−1/2

min , 0 ≤ |sinh(η)| ≤ |sinh(ηmax)| .

(11.2.4)
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The primes pmax and pmin correspond to IR and UV cutoffs and pmin ≥ 2 holds true
naturally in QFT limit since stringy excitations having mass scale given by CP2 mass are
not included. This means that all loop integrals are finite. The justification for the presence
of cutoff in |sinh(η)| comes either from the requirement that the Lorentz transformed sub-
CDs to which the fermion loop can be associated remain inside CD within the the time
resolution used (depending on the p-adic length scale characterizing the sub-CD) or by the
condition that the decomposition of the gauge boson to a pair of fermion and anti-fermion
at opposite wormhole throats restricts the range of the virtual momenta to momenta almost
at rest in the rest system of boson. The precise form of the hyperbolic cutoff is far from
obvious and it turns out that the cutoff in hyperbolic angle must be assumed to depend on
p-adic length scale.

(f) The worst integrals in the asymptotic region identified as a p-adic length scale range char-
acterized by prime pair (pmin, pmax) are for the naivest cutoff of form

∫
1
k2 d

4k = 4π(It,2It − Is,2Is) ,
∫

1
k4 d

4k = 4π(It,0It + Is,0Is) ,

It,2 =
∫ kmax,t

0
kdk =

k2max,t
2 , Is,2 =

∫ kmax,s
0

kdk =
k2max,s

2 ,

It,0 =
∫ kmax,t

0
dk
k = log(

kmax,t
kmin,t

) , Is,0 =
∫ kmax,s

0
dk
k = log(

kmax,s
kmin,s

) ,

It = 4
∫ ηmax,t

0
sinh2(η)dη = sinh(2ηmax,t)− 2ηmax,t ,

Is = 2
∫ ηmax,s

0
cosh2(η)dη = 1

2sinh(2ηmax,s) + ηmax,s .

(11.2.5)

The mere finiteness of these integrals requires a cutoff in hyperbolic angle besides that for
mass squared.

(g) For a general Feynman graph with I internal lines and L loops and involving only fermions
one obtains the UV behavior

µ4L−I

in absence of cancelations and using Wick rotation to define the loop integrals. This differs
from the behavior for Minkowskian integrals. Only fermionic loops with single loop and
n ≥ 2 boson vertices in the loop appear in the the TGD variant of gauge theory involving
only Dirac action coupled to gauge bosons and this gives µ4−n behavior formally for bosonic
n-vertex.

FF self energy loop for gauge boson

It is instructive to calculate the FF self energy loop for gauge boson propagator using standard
Feynman rules.

(a) In the section about calculation of the gauge boson propagator it is shown that after
taking the trace over the product of gamma matrices the scalar factor of the loop integral
multiplying the projector to physical polarization degrees of freedom can be written as

X = 2

∫
d4k

1

k2(p+ k)2
× (3p · k +

(p · k)2

p2
+ k2) . (11.2.6)

(b) If Wick rotation is used to define loop integrals mass squared term is generated. Minkowskian
integration measure is however the only sensible choice. In this case one must introduce a
cutoff in both mass squared and hyperbolic angle characterizing virtual fermion momentum
estimated in the rest system of virtual gauge boson. p-Adic length scale hypothesis fixes
the UV and IR cutoffs for mass to be p-adic mass scales and it is natural to divide the
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integration range to p-adic half octaves. In hyperbolic angle the form of the cutoff is not
obvious and will be discussed later. Hyperbolic cutoff is expected to depend on the p-adic
mass scale. Also in this case mass term is generated unless there is a precise relationship
between hyperbolic cutoff in time-like and space-like regions.

(c) Why the mass term of the propagator does not vanish automatically is due to the fact
that the integration measures for space-like and time-like loop momenta have different
dependence on the hyperbolic angle η. In the section about calculation of gauge boson
propagator it is found that time-like and space-like contributions cancel if the time-like and
space-like cutoffs for the hyperbolic angle are related by

−sinh(2ηmax,s) +
1

8
sinh(4ηmax,s)−

5

2
ηmax,s = −2sinh(2ηmax,t)−

1

4
sinh(4ηmax,t) + 5ηmax,t .(11.2.7)

For small values of η this gives

ηmax,s =
4

3
η3
max,t . (11.2.8)

The expressions for the non-vanishing contributions at this limit read as

X = Xt +Xs ,
Xt = 4π

∫ ηmax,t
0

dη × sinh2(η)it , it = −12log(2)cosh2(η) ,

Xs = 4π
∫ ηmax,s

0
dη × cosh2(η)js , js = log(2)

2 (2cosh2(η)− 1)(1− sinh2(η)) .

(11.2.9)

The values of the integrals are

Xt = − 3πlog(2)
4 [sinh(4ηmax,t)− 4ηmax,t] ' −8πlog(2)η3

t,max ,

Xs = πlog(2)
2 ×

[
1
4sinh(4ηmax,s) + sinh(2ηmax,s) + ηmax,s − 1

6sinh
3(2ηmax,s)

]
' 2πlog(2)ηmax,s ' 8πlog(2)

3 η3
max,t .

(11.2.10)

For small values of ηmax,t both contributions behave as η3
max,t and are of opposite sign.

Time-like contribution has three times larger magnitude than space-like contribution at
this limit.

(d) The normalization factor for the inverse of the propagator equals to X multiplied by the
sum of charges squared for fermions coupling to the gauge boson. If the cutoff in the
hyperbolic angle depends on p-adic length scale, one obtains

(
1

GB
)µν = i

[
p2gµν − pµpν

]
×
kmax∑
k=1

X(k) .

(11.2.11)

Here
∑
iQ

2
i represents sum over squares of charges of fermions coupling to the gauge boson.

k = 1, ...kmax labels the p-adic mass mass scales. Electron corresponds to k = 127. The
condition X = 1

4παem(127) poses a strong condition on the parameters of the model of

hyperbolic cutoff ηmax,t(k) = f(k).

(e) There is consistency with gauge invariance if the contraction of the propagator with pµ

vanishes. This is true if the hyperbolic cutoffs in time-like and space-like region satisfy the
proposed relationship. The result is very similar to what one would expect in quantum
field theory so that the finite measurement resolution would not mean any dramatic effect
on the propagator. The limit pmin = 2 would correspond to a maximal UV cutoff defined
by the CP2 mass scale.
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The conclusion is that the definition of loop integrals as Euclidian integrals would lead to a
catastrophe via the generation of gauge boson mass proportional to the cutoff mass whereas the
Minkowskian definition with the notion of cutoff motivated by p-adic length scale hypothesis
and hierarchy of CDs keeps gauge bosons massless if space-like and time-like hyperbolic cutoff
are in a precise relationship and the only contribution to mass comes from mass terms in the
fermionic propagators.

Could bosonic propagators emerge?

The following argument suggests that emergent bosonic propagation is a mathematically con-
sistent notion and conforms with the special features of quantum TGD.

(a) In basic quantum TGD modified Dirac equation containing induced spinor connection as
induced gauge boson field defines the theory and the exponent of Kähler action emerges as
Dirac determinant. The natural guess is that this structure is preserved in the sense that
Feynman diagrammatics is defined by Dirac action coupled to gauge potentials but con-
taining no kinetic term for gauge potentials with kinetic terms emerging from the fermionic
loops and the values of gauge couplings following as predictions of the formalism.

(b) One can try to formulate this idea in terms of path integral formalism. Couple gauge bosonic
field A resp. Grassmann valued fermion fields Ψ to external currents j resp. Grassmann
valued external currents ξ and calculate the functional Fourier transform defined by the
path integral

Z(j, ξ, ξ) = exp(Gc(j, ξ, ξ)) ≡
∫
exp

[
iS(A,Ψ,Ψ)− i

∫
(jA+ ξΨ + Ψξ)

]
DADΨDΨ .

(11.2.12)

Here Gc is the generating functional of connected Green’s functions defined as a functional
integral of Dirac action coupled to gauge potentials over Ψ and A. The functional deriva-
tives of the effective action with respect to the ξ, ξ and j at (j = 0, ξ = 0, ξ = 0) give the
connected N-point functions.

One can also perform Legendre transform

iΓ(A,Ψ,Ψ) = Gc(j, ξ, ξ)− i
∫ [

jA+ Ψξ +

∫
ξΨ

]
,

A = −i δ
δj
Gc , Ψ = −i δ

δξ
Gc , Ψ = i

δ

δξ
Gc .

(11.2.13)

to obtain the effective action Γ.

(c) Gc can be calculated in two steps.

i. At the first step one divides the Dirac action in presence of gauge field to free part and
interaction term

exp(iS(Ψ,Ψ, A) = exp

[
iΨγµ∂µΨ + i

∫
ΨγµAµΨ

]
. (11.2.14)

Gauge couplings have been included to gauge potentials since there is no manner to
separate them uniquely in absence of the kinetic term. The path integral can be carried
out perturbatively by using the general formula

exp(Sc(A, ξ, ξ)) = exp

[
i

∫
δ

δξ
γ ·A δ

δξ

]
× exp

[
iξGF ξ

]
.

(11.2.15)
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and Wick’s reduction formulas. GF fermionic Feynman propagator. This functional
power series gives what can be regarded as a generating functional Sc(A, ξ, ξ) for con-
nected Green’s functions of spinor fields in the presence of external gauge fields or the
analog of YM action induced by the presence of external spinor fields.

ii. At the next step one can calculate the full generating functionalGc(j, ξ, ξ) for connected
Green’s functions using again the general reduction formulas by decomposing Sc(A, ξ, ξ)
to a free part S0(A) analogous to the linear part of YM action and interacting part
Sint(A, ξ, ξ)

Sc(A, ξ, ξ) = S0(A) + Sint(A, ξ, ξ) . (11.2.16)

S0 defines the bosonic kinetic term which is of correct form by the preceding observa-
tions. The interaction terms for A, ξ, and ξ are included in Sint. Since the original
system is gauge invariant also the effective action must be gauge invariant and should
reduce to Yang-Mills action in the lowest orders. Perturbation theory is therefore pos-
sible and one can perform the path integral over A using the induced propagators and
vertices. At this step fields ξ are in the role of non-dynamical external fields just as
A was at the first step and all propagators are bosonic. From the resulting ”partition
function” Z one can generate connected N-point functions as functional derivatives
with respect to the sources.

iii. It seems that the proposed description avoids the most obvious divergences. In par-
ticular, the tadpole term from AµΨ(x)γµΨ(x) proportional to the fermion propagator
DF (x, x) proportional to an integral of form

∫
d4kkµ/k2 and thus vanishing.

iv. The bosonic kinetic term would be proportional to the over all gauge coupling g2 if one
expresses gauge potential in the form gA. This decomposition is however not natural in
TGD since the induced spinor connection corresponds to gA with no explicit value of g
being specified. In the case of simplest tree diagram describing 2→ 2 fermion scattering
that the g2 coming from the ends of the boson line is canceled by the 1/g2 coming from
the bosonic propagator so that the predictions of the theory do not depend on the value
of g in the lowest order. This looks strange but would conform with the absence of
bosonic kinetic term in the primary action making it impossible to identify the value
of g in standard manner. One can however say that the numerical coefficient given
by the fermionic loop integrals defining the bosonic propagator predicts the values
of gauge couplings g through the comparison of their values with the prediction of
standard gauge theory for say 2→ 2 scattering. This picture would conform with the
vision that TGD predicts all gauge couplings. Maybe the emergence of gauge boson
propagators and vertices could be seen as one aspect of quantum criticality.

These arguments suggest that the notion of emergent gauge boson propagation makes sense
mathematically and is favored also by the general structure of quantum TGD. Of course, the
best strategy is the attempt to debunk the notion once and for all. Consistency with p-adic
mass calculations might provide the needed killer argument.

(a) The resulting bosonic mass squared would be in the lowest order sum over products of
masses of fermion pairs coupling to the boson. It is far from clear whether this prediction
is quantitatively consistent with the predictions of the p-adic mass calculations. This
possibility is not of course excluded: boson mass squared is quadratic in fermion masses
coupling to the boson and the p-adic primes associated with the fermions are naturally those
associated with the boson rather than free fermions so that at least the mass scale comes
out correctly. This picture conforms also qualitatively with the fact that mass squared is
identified as conformal weight and the eigenvalue of modified Dirac operator related closely
to the ground state contribution to the mass can be regarded as complex squares root of
conformal weight.

(b) Note that even photon is predicted to be massive unless the fermion and antifermion associ-
ated with photon and other massless particles are massless or in so low p-adic temperature
that the thermal mass is negligible. Also the p-adic prime associated with massless bosons
could be so large that the mass is small.
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(c) Boson masses are of course emergent in the sense that they are determined by the masses of
the fermion and anti-fermion, which they consist of. The question is whether the emergence
of masses takes place via loops rather than p-adic mass calculations in the proposed sense
and whether these pictures are equivalent. That loops could provide the fundamental
description for boson masses is suggested by the asymmetry between bosons and fermions
in the recent form of p-adic mass calculations. The p-adic temperature for bosons must
be Tp ≤ 1/2 whereas Tp = 1 holds true for fermions, and for fermions the analog of Higgs
contribution is negligible whereas for gauge bosons it dominates.

(d) It could be also possible to code p-adic thermodynamics into the Feynman diagrammatics
in a more refined manner so that loops would give only corrections to the masses obtained
from p-adic mass calculations. Instead of simply feeding in the results of p-adic mass
calculations as mass parameters of the fermionic propagators, one could replace S-matrix
with M-matrix involving the square root of density matrix describing the real counterpart
of the partition function characterizing p-adic thermodynamics. Zero energy state would
represent a square root of thermodynamical ensemble involving massless ground states and
their conformal excitations rather than only ground states with thermal masses.

The emergence of the fermionic and bosonic propagators at fundamental level

It took quite a long time to understand how stringy fermionic propagator emerges from quantum
TGD. The problem was that the fermion propagator 1/D defined by the modified Dirac operator
assigned to Kähler action does not depend on momentum at all.

(a) The resolution of the problem [K15, K20] was based on the addition of a general coordinate
invariant and Poincare invariant measurement interaction coupling fermionic currents to
the Cartan charges of the isometry group of M4 × CP2 (note that Poincare group allows
two types of 4-D Cartan algebras corresponding to linear and cylindrical Minkowski coor-
dinates). The coupling occurs only at wormhole throats and involves Chern-Simons Dirac
action and corresponding measurement interaction terms in accordance with the interpre-
tation of wormhole throats as lines of the generalized Feynman diagrams. For vanishing
momenta topological QFT results.

(b) Also the measurement interactions for general observables can be represented in terms of
this kind of couplings by utilizing the infinite hierarchy of conserved fermionic currents
and their classical counterparts implied by quantum criticality realized as a vanishing of
infinite number of second variations of Kähler action for preferred extremals. The critical
deformations for Kähler action are special cases of the deformations for which the second
variation of Chern-Simons action vanishes for each light-like 3-surface Y 3

l in the slicing
of space-time sheet by light-like 3-surfaces parallel to the wormhole throat X3

l and are
therefore orthogonal to the Kähler magnetic field at each Y 3

l .

(c) Quantum criticality states that the couplings induce only a U(1) gauge transformation of
the Kähler function of WCW identified as Dirac determinant: K → K + f + f , where f is
holomorphic function of WCW complex coordinates and arbitrary function of zero mode
coordinates. This condition is expected to fix the values of the coupling parameters appear-
ing in the measurement interaction. In particular, the values of gravitational constant and
gauge couplings are expected to be dictated by this condition. p-Adic coupling constant
evolution corresponds to the hierarchy of CDs whose size scales are assumed to come as
powers of 2.

(d) One can say that fermionic propagators emerge from the measurement interaction for mo-
mentum since in absence of the measurement interactions reducing to the measurement
of momenta the theory reduces to a topological QFT involving only color Cartan charges.
Also measurement interaction for longitudinal part of 4-momentum, spin, and rapidity is
possible and the formalism of high energy hadron physics can be interpreted in terms of
this measurement interaction.

(e) One can define bosonic propagators by performing a path integral over fermionic loops
identified as wormhole contacts with fermion and antifermion at opposite light-like throats
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and functional integral over WCW degrees of freedom (small deformations of wormhole
throats). After that one can calculate bosonic loops- most naturally by using generalized
Cutkosky rules and the generalization of twistor approach to 8-D context. The mere fact
that fermion and antifermion are constrained to the throats of the wormhole contact sug-
gests natural cutoffs for the mass squared and hyperbolic angle of virtual fermions so that
divergences are expected to be absent in the fundamental theory even without the cutoff
due to the finite measurement resolution. From the fermionic Feyman propagator and its
bosonic counterpart one can therefore build all diagrams (no fermionic loops at this level
are present) and get finite results. The finiteness of the fundamental fermionic loops jus-
tifies the cutoffs for mass squared and hyperbolic angle forced by the finite measurement
resolution.

One could of course worry whether the introduction of the p-adic length scale hierarchy might
lead to problems with analyticity and unitarity. I am also the first one admit that the proposed
scenario looks horribly ugly against the extreme elegance of gauge theories like N = 4 SYM. The
tough challenge is to find an elegant mathematical realization of the proposed physical picture
and twistor approach generalized to 8-D context might be of considerable help here.

11.2.2 A more detailed summary of Feynman diagrammatics

The resulting Feynman diagrammatics deserves some more detailed comments.

(a) Consider first the exponent of the action exp(iSc) resulting in fermionic path integral. The
exponent

exp[i

∫
dx4d4yξ(x)GF (x− y)ξ(y)] = exp[i

∫
d4kξ(−k)GF (k)ξ(k)]

is combinatorially equivalent with the sum over n-point functions of a theory representing
free fermions constructed using Wick’s rules that is by connecting n Grassmann spinors
and their conjugates in all possible ways by the fermion propagator GF .

(b) The action of

exp

[
i

∫
d4x

δ

δξ(x)
γ ·A(x)

δ

δξ(x)

]
= exp

[
i

∫
d4kd4k1

δ

δξ(k − k1)
γ ·A(−k)

δ

δξ(k1)

]
on diagrams consisting of n free fermion lines gives sum over all diagrams obtained by
connecting fermion and anti-fermion ends of two fermion lines and inserting to the resulting
vertex A(−k) such that momentum is conserved. This gives sum over all closed and open
fermion lines containing n ≥ 2 boson insertions. The diagram with single gauge boson
insertion gives a term proportional to Aµ(k = 0) ·

∫
d4kkµk−2, which vanishes.

(c) Sc as obtained in the fermionic path integral is the generating functional for connected
many-fermion diagrams in an external gauge boson field and represented as sum over dia-
grams in which one has either closed fermion loop or open fermion line with n ≥ 2 bosons
attached to it. The two parts of Sc have interpretation as the counterparts of YM action
for gauge bosons and Dirac action for fermions involving arbitrary high gauge invariant
n-boson couplings besides the standard coupling. An expansion in powers of γµDµ is sug-
gestive. Arbitrary number of gauge bosons can appear in the bosonic vertices defined by
the closed fermion loops and gauge invariance must pose strong constraints on the bosonic
part of the action if expressible in terms of bosonic gauge invariants. The closed fermion
loop with n = 2 gauge boson insertions defines the bosonic kinetic term and bosonic propa-
gator. The sign of the kinetic terms comes out correctly thanks to the minus sign assigned
to the fermion loop.

(d) Feynman diagrammatics is constructed for Sc using standard Feynman rules. In ordinary
YM theory ghosts are needed for gauge fixing and this seems to be the case also now.
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(e) One can consider also the presence of Higgs bosons. Also the Higgs propagator would
be generated radiatively and would be massless for massless fermions as the study of the
fermionic self energy diagram shows. Higgs would be necessary CP2 vector in M4 × CP2

picture and E4 vector in M8 = M4 × E4 picture. It is not clear whether one can describe
Higgs simply as an M4 scalar. Note that TGD allows in principle Higgs boson but -
according to the recent view - it does not play a role in particle massivation.

Some differences from standard Feynman diagrammatics

The diagrammatics differs from the Feynman diagrammatics of standard gauge theories in some
respects.

(a) 1-P irreducible self energy insertions involve always at least one gauge boson line since the
simplest fermionic loop has become the inverse of the bosonic propagator. Fermionic self
energy loops in gauge theories tends to spoil asymptotic freedom in gauge theories. In
the recent case the lowest order self-energy corrections to the propagators of non-abelian
gauge bosons correspond to bosonic loops since fermionic loops define propagators. Hence
asymptotic freedom is suggestive.

(b) The only fundamental vertex is AFF vertex. As already found, there seems no point in
attaching to the vertex an explicit gauge coupling constant g. If this is however done n-
boson vertices defined by loops are proportional to gn. In gauge theories n-boson vertices are
proportional to gn−2 so that a formal consistency with the gauge theory picture is achieved
for g = 1. In each internal boson line the g2 factor coming from the ends of the bosonic
propagator line is canceled by the g−2 factor associated with the bosonic propagator. In
S-matrix the division of the bosonic propagator from the external boson lines implies gn

proportionality of an n-point function involving n gauge bosons. This means asymmetry
between fermions and bosons unless one has g = 1. g = 1 above means g =

√
~0. Since

fermionic propagator is proportional to ~0
0 and since loop integral involves the factor 1/~0,

the dimensions of bosonic propagator and radiatively generated vertices come out correctly.
The counterparts of gauge coupling constants could be identified from the amplitudes for
2-fermion scattering by comparison with the predictions of standard gauge theories. The
small value of effective gauge coupling g obtained in this manner would correspond to a
large deviation of the normalization factor of the radiatively generated boson propagator
from its standard value.

(c) Furry’s theorem holding true for Abelian gauge theories implies that all closed loops with an
odd number of Abelian gauge boson insertions vanish. This conforms with the expectation
that 3-vertices involving Abelian gauge bosons must vanish by gauge invariance. In the
non-abelian case Furry’s theorem does not hold true so that non-Abelian 3-boson vertices
are obtained.

Is it possible to understand the value of fine structure constant?

The basic test for the theory is whether it can predict correctly the value of fine structure
constant for reasonable choice of the UV and IR cutoffs. In the first approximation one can
assume that photons has only U(1) couplings to fermions so that the fermion-fermion scattering
amplitude at electron’s p-adic length scale is determined by the photon propagator alone.

The expansion in powers of p2 − 2p · k gives at the limit p2 = 0 the following estimate for the
normalization factor of the inverse of the Abelian gauge boson propagator using 2-adic scale
pmin = 2 as UV cutoff.
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(
1

GB
)µν = i

[
p2gµν − pµpν

]
×X ,

X =
∑
k

[
2Gt(ηmax,t(k)) +Gs(ηmax,s(k))

]
× log(2)× 2π

∑
i

Q2
i ,

Gt(η) = −1

4
η +

1

4
sinh(2η) +

1

16
sinh(4η) ,

Gs(η) = +
1

4
η +

1

4
sinh(2η)− 1

16
sinh(4η) .

(11.2.17)

Here
∑
iQ

2
i represents sum over squares of charges of fermions coupling to the gauge boson. For

three lepton and quark generations one would have
∑2
Qi

= 16. Here the same hyperbolic cutoff
is assumed for both time-like and space-like momenta. The basic ad hoc element of the model
is the choice of the cutoff in hyperbolic angle η and one can consider several trials.

The basic a hoc element is the physical interpretation and precise form of the hyperbolic cutoff.

(a) The realization of the cutoff for the mass of the virtual particle in terms of p-adic mass scale

m ≤ m(CP2)/
√
p is on a strong basis. The ad hoc assumption is the form |sinh(η)| ≤ p−1/2

min

for the cutoff in the hyperbolic angle. The cutoff means that the allowed range of 3-momenta
for time-like momenta and of energies for time-like momenta of off mass shell particle is
rather narrow for a given mass. What is clear is that any extension of the allowed phase
space increases the value of X and requires larger pmin for this form of cutoff.

(b) The narrow cutoff in the fermionic loop momenta could be interpreted physically in terms
of the fermion-anti-fermion bound state character of bosons restricting the range of the
virtual momenta of the fermion and anti-fermion to a very narrow range in the rest system
of the boson. This is natural if fermion and antifermion reside at the opposite throats of
the wormhole contact. In the case of virtual bosons radiated by leptons this restriction
would not apply.

(c) There is also second interpretation for the narrow cutoff. The rest system of sub-CD
in which the fermionic loop is calculated is assumed to be the rest system of the virtual
particle. Otherwise one would obtain a breaking of Lorentz invariance. This requirement
could provide an alternative justification for the cutoff in cosh(η) since for too large values
of η identified as the hyperbolic angle assignable to the lower tip of sub-CD the Lorentz
transform of the time coordinate T (p) = pT (CP2) of the upper tip of sub-CD is T =
cosh(η)× pT (CP2), and could be so large that the upper tip belongs outside CD.

1. First trial

’

The first cutoff that comes in mind would be given by constant hyperbolic cutoff sinh(ηmax(k)) =
a/
√
pmin and thus would depend on the UV cutoff length scale only. This cutoff would pre-

dict logarithmic dependence of form 1/αem = log(kmax/kmin) on IR cutoff kmax and predict
αem(127)/αem(89) = log(127/89) ' .3556 to be compared with the experimental value of about
128/137 so that the coupling constant evolution would be too fast.

2. Second trial

The first cutoff predicts too fast coupling constant evolution. Second cutoff can be seen repre-
senting another extreme.

(a) For the cutoff of form

cosh(ηmax(k)) ≤ 1 + a× 2−k (11.2.18)
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the maximal variation of the temporal distance between the tips of the Lorentz transformed
CD is in good approximation ∆T = (cosh(ηmax(k) − 1)T (k) ' aT (CP2). For a < 2 ∆T
is below the optimal time resolution defined by the 2-adic time scale 2T (CP2) everywhere
inside CD. Number theoretical universality favors simple rationals as values of a. The
only p-adically problematic feature is the appearance of log(2) factor in the integral. In
the case of electron length scale the sum is from kmin = 1 to kmax = 127. The sums are
expressible in terms of geometric series for powers of 2−nk, n = 1, ..., 5 and can be carried
out explicitly. The fatal problem of this option is that coupling constant evolution with
respect to IR cutoff is trivial expect immediately above the cutoff length scale.

3. Third trial

The basic criticism against the second trial is the approximate RG invariance only few octaves
above UV cutoff due to the exponential decrease of loop corrections as a function p-adic length
scale. Since the cutoff in hyperbolic angle is introduced in ad hoc manner one can ask whether
one could fix the form of UV cutoff as a function of p-adic length scale by requiring the typical
logarithmic evolution of fine structure constant in all length scales.

(a) The cutoff in hyperbolic angle allowing to achieve this should depend on the logarithm of
the p-adic length scale and in the simplest situation of the form

|sinh(η) ≤ a× k−b , (11.2.19)

where the proper time distance between the tips of CD is given by T = 2kT (CP2). Note
that the condition is equivalent with |sinh(η)| ≤

√
aba/2. b = 1/3 is favored as the Table

1 below shows. This is perhaps not too surprising since it implies that the contribution of
p-adic length scale p ' 2k to X is proportional to 1/log(p) since the contribution in good
approximation scales as η3

t,max(k). The condition would state that the time scale resolution

is roughly aT (2, k)/2kb in the time scale defined by k so that Lorentz boosts increasing the
time difference is measured in rest system with at most this amount are allowed even if they
lead out from the CD containing the sub-CD in question. Physically this resolution looks
reasonable since it is smaller than p-adic time scale but of same order of magnitude. For
prime values of k one could interpret the k−b proportionality as dependence on the p-adic
length scale Lk =

√
kT (CP2) characterizing the size of the wormhole throats associated

with the gauge boson.

(b) The basic constraints on the parameters come from the assumption that the evolution of
the fine structure constant is in the first approximation due to the evolution of IR resolution
time scale fixed by kmax. This gives the condition α(127)/α(89) ' 137/128 from which
two constraints between a and b can be deduced. A further consistency constraint is that
the value of the fine structure constant in CP2 length scale is sensible.

(c) The evolution of non-Abelian gauge couplings would be essentially due to the bosonic
loops and should induce the increase of these couplings as a function of p-adic length
scale since purely fermionic loops are absent. The dependence of gauge coupling on p2 is
predicted to be non-trivial since the logarithmic factors do not remain effectively constant
anymore so that there are good hopes about a realistic coupling constant evolution. An
interesting implication is the presence of sizable pole contributions in hyperbolic integrals
from points ε1mkexp

ε2η = p/mk and logarithmic principal values singularities at points
exp±θ = p/mk (mk = 2−k/2m(CP2)) appearing in the arguments of logarithms. For long
p-adic length scales these singularities correspond rather precisely to p-adic mass scale mk.
These contribution could be interpreted as genuinely p-adic effects.

(d) The numerical calculations can be performed in exactly the same manner as for the simplest
model. At p2 = 0 limit b = 1/3 and a = 0.22050469512552 allows to reproduce the value
of fine structure constant at electron length scale (kmax = 127) within the experimental
accuracy and predicts 1/αem(89) = 128.163120743053 at the intermediate boson mass scale
(kmin = 89). In optimistic mood one could see this prediction as an indication that the
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model is on the right track. For kmax = 2 the prediction is 1/αem(2) = 38.73463833489691.
As a matter fact, k = 1/3 implies that k:th contribution to X which proportional to η3 in
good approximation is proportional to integer power of log(p), p ' 2k. Therefore analyticity
in with respect to 2-adic logarithm of p-adic length scale could replace the value of the fine
structure constant at the intermediate gauge boson length scale as input.

b a α−1
em(89) α−1

em(2)

1/2 0.18002740466919 135.1862478534053 78.00163838242398
1/4 0.28690612308508 121.5583749750381 22.20718277558686

Φ/2 = (
√

5− 1)/4 0.20889716262974 126.426555831784 33.042736628492
5
16 0.21057652266440 126.686675364275 33.770607770943
1
3 0.22050469512552 128.163120743053 38.271945363874

Table 1. The table gives the values of the inverse of the fine structure constant at intermediate
boson length scale (k = 89) and at UV limit (k = 2) for 5 different values of parameter b
characterizing the UV cutoff. The value of a is deduced from the condition that fine structure
constant in electron length scale (k = 127 is reproduced correctly. b = 1/3 produces fine structure
constant at intermediate boson length scale within experimental and theoretical uncertainties.

The predictions for other gauge couplings

One can also look for the predictions for color and electro-weak coupling constants.

(a) The loop is proportional to N(Bi) = Tr(Q2
i ). The charge matrices are IiL for W bosons

and I3
L−pQem, p = sin2(θw) for Z0. For the coupling of Kähler gauge potential the charge

matrix is QK = 1 for leptons and QK = 1/3 quarks: it is easy to see that in this case
the normalization factor is same as photon. The traces of non-Abelian charge matrices
in fundamental representations are Tr(T 2

a ) = −1/2 in the standard normalization. For
photon and gluons both right and left handed chiralities contribute and W bosons only left
handed.

(b) This gives the following expressions for the normalization factors N(Bi)

α(Bi) =
N(γ)

N(Bi)
× αem , (11.2.20)

(11.2.21)

with

N(γ) = N(U(1)) = 16 , N(g) = 6 , N(W ) = 6 , N(Z) = 6− 12p+ 13p2 .

(11.2.22)

The values of the gauge couplings strengths are given by

α(g) = 8
3αem , α(W ) = 8

3αem , α(Z) = 16
6−12p+13p2αem .

(11.2.23)

Electro-weak couplings are unified only if one has p = 12/13, which differs dramatically
from p = 3/8 obtained by definition the ratio αem/αW , which is also the typical prediction
of GUTs.

(c) The table below summarizes the predictions for the bare couplings at p2 = 0 limit for
photon and using k = 2 scale as cutoff for the above described model characterized by the
parameter b in sinh(ηmax,t) = a × k−b with a fixed by the condition that fine structure
constant at electron length scale is reproduced within experimental precision. b = 1/3
predicts smallest value for αs and 1/αs(2) = 14.5255 is consistent with 1/αs(89) ' 10.
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b α−1
em(2) α−1

s (2) α−1
W (2) α−1

Z (2)

1/2 78.0016 28.8792 28.8792 16.0189
1/4 22.2072 8.2537 8.2537 4.5782
Φ/2 33.0427 12.5313 12.5313 7.1049
5/16 33.7706 12.8088 12.8088 7.1049
1/3 38.2719 14.5255 14.5255 8.0571

Table 2. The predictions for the bare gauge coupling strengths at the UV limit k = 2 assuming
M127 as IR cutoff and p = 2 as UV cutoff and using the value of parameter a reproducing the
values of fine structure constant at electron and intermediate boson p-adic mass scale.

Cutoff in the general case

The previous calculations were carried by identifying the UV cutoff as 2-adic length scale.
The calculations can be generalized to an UV cutoff defined by any p-adic length scale with
pmin ' 2kmin . The Lorentz transforms of sub-CDs must belong inside CD within measurement
resolution. For the third trial one would have

sinh(ηt,max) = a× (k − kmin + 1)−b . (11.2.24)

The first guess for the values of a and b having are the values for kmin = 1. k ≥ kmin holds of
course true.

The definition of the UV cutoff for vertex corrections involves a delicacy.

(a) In the vertex correction for FFB vertex the ends of the virtual boson line in general
correspond to fermions with different four-momenta and the hyperbolic angle η must be
assigned to the rest system of either initial or final state fermion. The choice means a
selection of the arrow of geometric time and breaking of T invariance. The requirement of
CPT symmetry is expected to fix the choice.

(b) Similar situation is encountered also in basic quantum TGD. In the construction of the
counterpart of stringy diagrammatics the CP breaking instanton variant of Kähler action
contributes to the modified Dirac action a term whose appearance in the vertices makes
the theory non-trivial [K19] . One must decide, which end of the line carries the CP
breaking CP term. CPT invariance is the natural constraint on the choice. The idea about
fermions (anti-fermions) as particles propagating to the geometric future (past) suggests
that CP breaking term is associated with the negative energy fermion (positive energy
anti-fermion) at the future (past) end of the line. CP symmetry is broken since CP takes
fermion to anti-fermion but does not permute the end of the lines. CPT is respected.

(c) In the recent case the counterpart of CP and T breaking would be the assignment of the
cutoff to the past (future) end in the case of fermions (antifermions). If one assigns the
cutoff in both cases to (say) future end, CPT breaking results. It is important to notice
that the distinction between future and past is always unique in the rest system of the
sub-CD.

(d) For instance, in N-vertices one must sum over all cyclic permutations with one of the vertices
defining the rest system in which η is measured, which means modification of standard QFT
picture.

The hierarchy of Planck constants and radiative corrections

TGD predicts a hierarchy of Planck constants and the question concerns the dependence of the
loop corrections on ~. Consider first a naive argument which does not consider the anatomy of
the pages of the book like structure defining the generalized imbedding space.
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(a) Unless the p-adic cutoff for cosh(η) depends on ~, boson propagator cannot involve ~, and
this is achieved by putting g =

√
~ so that 1/~ factor associated with the loop cancels

g2 = ~. This seems means that loops give no powers of 1/~ as in ordinary quantum field
theories. By checking a sufficient number of diagrams one can get convinced that the ~
dependence of the diagram depends on the total number of particles involved with the
diagram and is given by the proportionality ~(Nin+Nout)/2−1.

(b) This simple dependence of the amplitudes on ~ suggests that it has actually no physical
content. The scaling of the incoming and outgoing wave functions by ~−1/2 and the division
of the amplitude by ~ indeed makes the amplitudes independent of ~. In unitarity conditions
the 1/~ factors from d3k/2E factors assignable to intermediate states correspond to the
~−1/2 factors of the states involved. Therefore QFT limit defined in this manner would
not distinguish between different values of ~ and the difference is seen only at the level of
kinematics (1/~ scaling of the frequencies and wave-vectors for a fixed four-momentum).
The difference would become dynamically visible through the fact that the space-time
surfaces associated with CDs with different values of ~ are not simply scaled up versions
of each other.

(c) This result is in contrast with the standard QFT expectations about how the amplitudes
should behave as functions of ~. One of the motivations for the hierarchy of Planck con-
stants was that radiative corrections come in powers of 1/~ so that large values of Planck
constant improves the convergence of the perturbation series in powers of coupling constant
strengths. If coupling constants emerge in the proposed manner, this motivation for large
values of Planck constants is lost.

That Nature would take itself care that perturbation theory works by making a phase transition
increasing ~ and thus reducing the value of the gauge coupling strength is too attractive to be
given up without fighting back. What could go wrong with the above argument is that it did
not take into account the topological structure of the pages of the generalized imbedding space.

(a) Recall that the generalized imbedding space has a book like structure with pages defined
by Cartesian products of singular coverings and factor spaces of CD ⊂M4 and CP2 (CD
denotes the causal diamond defined as an intersection of future and past directed light-
cones of M4). The coverings are labeled by an integer characterizing the number of sheets
permuted by Zn symmetry and factor spaces by an integer giving the number of points
identified under Zn symmetry. It is convenient to label them by a single number x having
as its values positive integers and their inverses. Depending on whether a covering or factor
space is involved, one has for M4 xa = na or xa = 1/na and for CP2 xb = nb or xb = 1/nb.

(b) The inverse of the gauge boson propagator is by definition proportional to the inverse of
the gauge coupling strength g2/4π~ and therefore can be used to define Planck constant.
The manner how the inverse propagator depends on the numbers xa and xb dictates the
dependence of the Planck constant on these numbers.

(c) QFT limit involves projection of all sheets of the covering to single sheet. Therefore one can
argue that the inverse propagator at QFT limit should be proportional to nanb if both M4

and CP2 correspond to coverings. This would reflect the that the kinetic part of bosonic
action is simply a sum over identical terms from all pages of the covering. This would
imply the general formula ~/~0 = xaxb giving α = α0/xaxb. By increasing the number of
sheets of coverings in M4 and CP2 degrees of freedom system would manage to remain in
perturbative phase. The structure of physical states would of course change [K59] .

(d) The earlier argument for how the Planck constant depends on na and nb [K27] was based
on different definition of Planck constant and did not lead to quite the same prediction.

i. The hypothesis inspired by Schrödinger equation was that the scaling factor of M4

metric at given page of the book is proportional to ~: this implies that Kähler action
for preferred extremals codes for radiative corrections classically. This assumption
guarantees that quantal length scales are proportional to ~.

ii. This requires that M4 covariant metric scales as x2
a. It was assumed that CP2 metric

scales in the same manner- that is as x2
b but this was just a natural looking extrapolation
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from M4 case. The scale invariance of the Kähler action implying that one always re-
scale the overall metric in such a manner that CP2 metric remains unchanged gives
~/~0 = xa/xb to be compared with ~ = xaxb given by the above argument.

iii. If one however assumes that CP2 covariant metric scales as 1/x2
b rather than x2

b , one
obtains ~/~0 = xaxb. This modification is possible and has no implications concerning
the predictions of the theory since there is a complete symmetry under the exchange
covering space ↔ factor space. The only implication is tedious retyping of some basic
formulas.

If the phase transitions changing Planck constant have a QFT type description it must be based
on a 2-vertex proportional to the inverse of the fermionic propagator. If so, the fermionic kinetic
term would be obtained by multiplying Dirac operator with a unitary matrix characterizing
the transition amplitudes between sectors labeled by different values of Planck constant. CKM
mixing would represent a highly analogous situation.

Worrying about coupling constant evolution

Before starting to worry, some general comments about coupling constant evolution are in order.

(a) Renormalization group equations can be deduced from the observation that propagators
suffer simple scaling as both UV and IR cutoffs and external momenta of n-vertex are scaled
up by a power of two. Therefore the effect of the scaling of external can be described as
the effect caused by the 2-adic scaling of UV and IR cutoffs.

(b) Coupling constant evolution can be seen to emerge in two manners. The variation of
IR and UV resolution scales induces coupling constant evolution. If UV cutoff is fixed
to CP2 length scale coupling constant evolution can be assigned to the IR cutoff having
interpretation as time scale assignable to zero energy state: .1 seconds in case of electron’s p-
adic length scale which also happens to define a fundamental biorhythm. Coupling constant
evolution emerges also from the dependence of the propagators and vertices on the masses
of the virtual particles and in the chapter about calculation of the gauge boson propagator
one finds explicit formulas for the propagator. For massless fermions all bare bosonic
propagators are identical apart from overall scaling factors. In the case of vertex corrections
there is dependence on Lorentz invariants defined by the external momenta and similar
universality holds true for bare vertices. The coupling constants estimated in the previous
calculations correspond to the IR p2 = 0 limit for the virtual massless particles.

(c) There are two views about coupling constant evolution. The evolution induced by the
dependence of the propagator on the mass or mass scale of the virtual gauge boson and the
evolution induced by the dependence on the IR cutoff for loop momenta. How these views
can be equivalent? The calculation of the propagator as function of mass of virtual gauge
boson carried out in the chapter devoted to the calculation of the gauge boson propagator
answers this question. The integral defining propagator has a pole at loop momentum
representing same or nearly same p-adic length scale as the scale k0 assignable to p. If IR
cutoff is smaller than the scale of p, the pole induces a large imaginary part to the inverse of
the propagator and thus breaking of unitarity at loop momenta with mass scale below that
of p. Also the sign of the normalization factor of the propagator changes sign due to the
large contributions from the scales k near k0 so that the gauge coupling strength becomes
negative in length scales longer than k0. For instance, for the proposed parameterization
of the hyperbolic cutoff fine structure constant for loop momenta above electron length
scale k0 = 127 would have magnitude roughly two orders smaller than its value at the limit
p2 = 0 so that p2 = 0 limit would have nothing to do with the behavior predicted by QFTs.
The effect is somewhat analogous to what happens in confinement length scale for αs. The
interpretation is that virtual bosons in p-adic length k0 can couple only to loop momenta,
which correspond to shorter p-adic length scales and thus have k ≤ k0. The geometric
interpretation in accordance with the vision about coupling constant evolution is that the
states inside given CD couple only to loop states living inside smaller CDs. The absence
of IR divergences is an obvious implication.
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(d) For the second trial the proposed cutoff predicts that self energy corrections are essentially
independent of the choice of the IR cutoff under very mild conditions (for pmin = 2 already
pmax = 7 corresponds to asymptotia). Same is true for the vertex corrections. This is not
consistent with the physically attractive interpretation of IR cutoff (size of the largest CD
involved) as the length scale defining the coupling constant evolution. For the third trial
situation is quite satisfactory and there are good hopes that reasonable consistency with
standard model predictions are obtained when bosonic loops are taken into account.

There are many things to worry about. One can start by worrying about the convergence of the
perturbation theory.

(a) The disappearance of ~ from the perturbation expansion in terms of loops means formally
g = 1 condition so that all loop corrections are formally of same order of magnitude, and
it might well happen that the expansion does not converge. The contribution to the loop
correction comes from the region of momentum space near the UV cutoff only. In this
region the four-momentum squared associated with the propagator is near its maximal
value and bosonic propagators behave as 1/p2 only near p2 = 0. The expansion in powers
of 1/p2 gives an expression of form X(µ2/p2)p2 for the fermionic self energy loop and the
bare propagator is multiplied by a factor X−1

2 (µ2/p2). In lowest order the loop integral
behaves as µ6/p4 at this limit so that propagators would behave as p4/µ6 near UV cutoff.

(b) The same effect would tend to reduce the values of the bosonic vertices identified as
fermionic loops with n external gauge bosons. In this case one one obtains bare vertex
containing in general by a tensor formed from the incoming momenta pµi multiplied by a
function Xn(µ2/pi · pj), and the powers from propagators emerging from n-vertex tend to
compensate the powers of p from the fermionic propagators and the convergence of the per-
turbation theory depends essentially on the limiting values of the factors Xn. For instance,
for bosonic n-vertex one obtains the scaling factor

Xn(µ2/(pi · pj)∏n
i=1X

−1
2 (µ2/p2

i )
.

The convergence of the perturbation series is dictated by the behavior of these ratios at
the limit p2

i → µ2. These ratios should become smaller than unity in UV. The numeri-
cal constants in question would effectively replace gauge coupling strengths as expansion
parameters for the loop corrections in accordance with universality of quantum criticality.
For Option b) The main contribution to the coupling constant evolution would come from
deep UV near the UV cutoff and would be also more or less independent of UV cutoff as
long as it is much higher than incoming momentum scales.

There are also other reasons to worry. Are there hopes that the evolution of coupling constants
as functions of incoming momenta is physically acceptable?

(a) The most plausible manner to obtain a realistic coupling constant evolution relies on the
proper choice of the cutoff for the hyperbolic angle. As found, for the third trial there are
good hopes about realistic coupling constant evolution. This option gives good hopes for
realistic coupling constant evolution in the range of momenta appearing in particle physics
experiments.

(b) It remains an open problem whether the quantitative form of this cutoff is deducible in the
framework provided by QFT limit or whether it must be accepted as prediction of quantum
TGD proper. A realistic coupling constant evolution requires that a very large number of p-
adic length scales contributes to the loop integrals. This is typical for quantum criticality.
As found, the cutoff in the hyperbolic angle codes for the presence of a large number
of scales. Therefore the hyperbolic cutoff should be deducible from quantum criticality.
Here also number theoretic Universality might provide strong constraints. One might also
hope that the proposed cutoff represents maximal quantum criticality allowed by other
constraints. The higher the quantum criticality as measured by the size of hyperbolic
cutoff is, the weaker are the coupling strengths estimated from the scale factors of bosonic
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propagators so that a kind of compromise might be involved. For too large quantum
fluctuations interactions get too weak and for to low a criticality they become too strong.
The boundary between chaos and order would be in question.

One can also worry about whether the lowest order estimates for the coupling constants inter-
preted as their bare values are realistic. From the identification of gauge couplings in terms of
2-2 scattering of fermions one can conclude that the experimentally measured coupling strength
involves sum over all radiative corrections so that their values can change considerably if the
UV end indeed contributes significantly to the vertex corrections.

11.2.3 Could quantum criticality fix hyperbolic cutoff uniquely?

Quantum criticality fixes the value of Kähler coupling strength and therefore the p-adic length
scale evolution of all gauge couplings. This inspires the question whether one could find a
formulation of quantum criticality allowing to deduce the precise form of the hyperbolic cutoff
and the dependence of bare gauge boson couplings on the mass of the virtual boson. A concrete
formulation for the quantum criticality could be analogous to that for the preferred extremals
of Kähler action. Criticality would state that the matrix defining the second variation of the
effective YM action becomes degenerate in some sense.

Several un-successful guesses about what this could mean at the level of propagator were made.
The evolution of ideas is described in a separate section. The final proposal was that at quantum
criticality all bosonic vertices defined by fermionic loop vanish when the incoming bosons are on
mass shell (massless). The condition indeed realizes quantum criticality in the following sense.
The vanishing of vertices is very much analogous to the vanishing of higher functional derivatives
of the action with respect to gauge fields at criticality (or derivatives of the potential function
in Thom’s catastrophe theory). The conditions also emerge as consistency conditions: if the
vanishing does not occur for on mass shell bosons, one obtains T-matrix expressible in terms of
analytic continuation of TT † and one does not have vertex identified as something irreducible
anymore. Also the fact that only BFF vertex is fundamental vertex if bosonic emergence is
accepted, conforms with the conditions. The vanishing of on mass shell N-vertices gives an
infinite number of conditions on the hyperbolic cutoff as a function of the integer k labeling
p-adic length scale at the limit when bosons are massless and IR cutoff for the loop mass scale is
taken to zero. It is not yet clear whether dynamical symmetries, in particular super-conformal
symmetries, are involved with the realization of the vanishing conditions or whether hyperbolic
cutoff is all that is needed.

11.3 Calculation of the bosonic propagator

The precise form of the bosonic propagator is interesting for obvious reasons. Also this calcula-
tion demonstrates the delicacies involved with the loop integration in Minkowski signature. In
particular, the behavior of bosonic propagators at large momentum limit is decisive as far as
convergence of perturbation theory is considered. Bosonic N-vertex involves N propagator lines
and if single loop integral involves N vertices is proportional to a numerical factor a(N, pi) the
over all factor associated with bosonic N-vertex from which N internal lines emerge is propor-
tional to a(N, {pi})/a(2, pi)

N . The behavior of this factor at the limit when the momenta pi
approach UV cutoff momentum determines the dominant contribution to the Feynman diagram
in the case of loops and if a(2, p) is sufficiently large at this limit, there are good hopes for
convergence. The following calculation of the bosonic propagator at UV limit gives good hopes
in this respect.

11.3.1 The basic integrals

The fermionic loop is given by
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X = − 1

S

∫
d2k

1

k2(p+ k)2
Tr(γµikργργ

νi(p+ k)σγσ)

S = 2 . (11.3.1)

S is the symmetry factor and −1 is the factor associated with fermionic loop. Using

Tr(γµγνγργσ = 4(gµνgρσ − gµρgνσ + gµσgνρ) (11.3.2)

the traces give

X = 2

∫
d4k

1

k2(p+ k)2
× (−pµkν − pνkµ − 2kµkν + (k2 + p · k)gµν) . (11.3.3)

The contraction with the tensor Pµν/3, where

Pµν = gµν − pµpν

p2
(11.3.4)

acts as a projector dropping out polarizations in the direction of momentum, should give the in-
tegral as XPµν assuming that the gauge invariance of Dirac action is not broken. The projection
gives the expression

X = 2

∫
d4k

1

k2(p+ k)2
× (3p · k +

(p · k)2

p2
+ k2)× Pµν . (11.3.5)

The calculation of the integral reduces to that for the following three integrals

I = 6
∫
d4k p·k

k2(p+k)2 , J = 2
∫
d4k 1

(p+k)2 , K = 2
p2

∫
d4k (p·k)2

k2(p+k)2
(11.3.6)

using the cutoff prescription motivated by the notion of measurement resolution. I is assumed
that the momentum p is time-like. It is not clear whether straightforward analytic continuation
allows to deduce the propagator in space-like region.

The integrals over k can be decomposed to sums of two pieces corresponding to time-like and
space-like k.

I = It + Is , J = Jt + Js , K = Kt +Ks . (11.3.7)

In the rest system of the virtual boson the denominator reads in the two cases as

(p+ k)2 = p2 + k2 + 2pk × cosh(η) (time-like case) ,

(p+ k)2 = p2 − |k2|+ 2p|k| × sinh(η) (space-like case) . (11.3.8)

From hitherto |k2| ≡ k2 will be used to simplify the notation. The space-like case differs from
time-like one by cosh(η) → sinh(η) replacements and by the fact that the denominator can
vanish so that loop can have an imaginary ”dispersive” contribution from the propagator pole
which could reduce the normalization factor of the propagator.

Whatever the detailed definitions of the loop integral is, it must satisfy the basic constraint that
the integral at the p2 = 0 limit behaves as p2 and also its first derivatives with respect to the
momentum components vanish: or more generally, the integral is even function of p.
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11.3.2 How to avoid generation of mass term?

p2 = 0 limit of the fermionic loop can be deduced by putting pµ = 0 in the integrals I and J .
This gives

Is = 0 , It = 0 ,
Js = −4π

∫
kdk

∫
2cosh2(η)dη , Jt = 8π

∫
kdk

∫
2sinh2(η)dη ,

Ks = 4π
∫
kdk

∫
2cosh2(η)sinh2(η)dη Kt = 8π

∫
kdk

∫
2sinh2(η)cosh2(η)dη .

(11.3.9)

. Note that the two signs of k0 in the time-like case give additional factor two. A mass term
is generated unless these integrals sum up to zero. The vanishing is achieved if one chooses the
hyperbolic cutoffs in time-like and space-like regions to guarantee this. The condition is

(Js +Ks)(ηmax,s) = −(It +Kt)(ηmax,t) . (11.3.10)

From

Is = 0 , It = 0 ,
Js = −8π

∫
kdk

∫
cosh2(η)dη , Jt = 16π

∫
kdk

∫
sinh2(η)dη ,

Ks = 8π
∫
kdk

∫
cosh2(η)sinh2(η)dη , Kt = 16π

∫
kdk

∫
sinh2(η)cosh2(η)dη ,

(11.3.11)

and using

∫
cosh2(η)dη = 1

4sinh(2η) + η
2 ,

∫
sinh2(η)dη = 1

4sinh(4η)− η
2 ,∫

sinh2(η)cosh2(η)dη = 1
32sinh(4η)− 1

8η
(11.3.12)

one obtains

(Js +Ks)(ηmax,s) ∝ 4

∫ ηmax,s

0

dη ×
[
−cosh2(η) + cosh2(η)sinh2(η)

]
= −sinh(2ηmax,s) +

1

8
sinh(4ηmax,s)−

5

2
ηmax,s ,

(Jt +Kt)(ηmax,s) ∝ 4

∫ ηmax,s

0

dη(2sinh2(η) + 2cosh2(η)sinh2(η))

= 2sinh(2ηmax,t) +
1

4
sinh(4ηmax,t)− 5ηmax,t .

(11.3.13)

This gives the condition

−sinh(2ηmax,s) + 1
8sinh(4ηmax,s)− 5

2ηmax,s

= −2sinh(2ηmax,t)− 1
4sinh(4ηmax,t) + 5ηmax,t .

(11.3.14)
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The conditions should make sense for arbitrary small values of ηmax,i. The Taylor expansion to
third order gives

ηmax,s =
4

3
η3
max,t (11.3.15)

so that this indeed the case. The hyperbolic cutoff for space-like momenta would be considerably
tighter than for time-like momenta so that in long length scales time-contributions to the loop
integral expected to dominate.

As always, one can criticize.

(a) The relationship between time-like and space-like hyperbolic cutoffs is number theoretically
cumbersome.

(b) In super-symmetric gauge theories [B71] loops do not generate mass corrections because
super-symmetry implies the vanishing of leading mass corrections. In TGD standard form
of SUSY does not seem to be realized but the generalization of this symmetry to super-
conformal symmetry might imply the same and even something much more general. This
would allow the time-like and space-like hyperbolic cutoffs to be identical and one could
avoid the number theoretically cumbersome relationship between the two cutoffs. In fact, in
accordance with quantum criticality all loop corrections could vanish for N-point functions
with massless external particles with physical polarizations. This would be be consistent
with the vanishing of the on mass shell inverse propagator. This line of thought will be
developed in the last section of the chapter.

11.3.3 Explicit form of the integrals

In the space-like case one has

I1 = Ipole,1 + IP,1 ,

Ipole,1 = −6iπp

∫
d4k × p · k

k2
δ((p+ k)2 , IP,1 = 6P

∫
d4k × p · k

k2(p+ k)2
,

J1 = Jpole,1 + JP,1 ,

Jpole,1 = −2iπ

∫
d4k × δ((p+ k)2 , JP,1 = 2P

∫
d4k

1

(p+ k)2
,

K1 = Kpole,1 +KP,1 ,

Kpole,1 = −2iπ

∫
d4k

(p · k)2

p2
× δ((p+ k)2 , KP,1 = 2P

∫
d4k

(p · k)2

p2

1

(p+ k)2
.

(11.3.16)

P denotes principal value integral.

Principal value contributions

In the calculation of principal value contributions one must notice that both signs of k0 are
possible in time-like case. One can also restrict the integration range over η to positive value
of η by appropriate arrangement of contribution from different signs of η. In space-like case
this gives to terms corresponding to different signs εs of sinh(η(2)) and in time-like case just
a factor of 2. Different signs of energy give to terms corresponding to different signs εt of
p · k = ±pkcosh(η).

The principal value contributions to space-like integrals can be written as
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IsP = 4π
∫ ηmax,s

0
dη × cosh2(η)× is , is = −3p

∑
εs
εssinh(η)

∫
dk k2

p2−k2+2εspksinh(η) ,

JsP,1 = 4π
∫ ηmax,s

0
dη × cosh2(η)× js , js = 2

∑
εs

∫
dk k3

p2−k2+2εspksinh(η) ,

Ks
P,1 = 4π

∫ ηmax,s
0

dη × cosh2(η)× ks , ks = 2
∑
εs

∫
dk k3sinh2(η)

p2−k2+2εspksinh(η) .

(11.3.17)

One must be very careful with the sign factors. In the time-like case one has only principal value
contributions and one obtains very similar expressions

ItP = 4π
∫ ηmax,t

0
dη × sinh2(η)× it , it = 6pcosh(η)

∑
εt
εt
∫
dk k2

p2+k2+2εtpkcosh(η) ,

J tP = 4π
∫ ηmax,t

0
dη × sinh2(η)× jt , jt = 2

∑
εt

∫
dk k3

p2+k2+2εtpkcosh(η) ,

Kt
P,1 = 4π

∫ ηmax,s
0

dη × cosh2(η)× kt , kt = 2
∑
εt

∫
dk k3cosh2(η)

p2−k2+2εtpksinh(η) .

(11.3.18)

An additional factor two results from the fact that η ≥ 0 is assumed. In time-like case there is
contribution from both signs of k0 so that one obtains also an integral in which k is replaced
with its negative in the denominator.

Pole contributions

The poles of the integrand are given by

ksε1,ε2 = ε1p× exp(ε2η) (space-like case) ,

ktε1,ε2 = ε2p× exp(ε1η) (time-like case) , εi = ±1 .

(11.3.19)

Note that ε1 refers to the roots associated with the same denominator and ε2 to different de-
nominators. For space-like (time-like) case only ε1 = 1 (ε2 = 1) gives a pole in the physical
region. The differences of the roots will be needed in the calculations and are given by

ks+,ε2 − k
s
−,ε2 = 2pexp(ε2η) (space-like case) ,

kt+ε2 − k
t
−ε2 = 2pε2sinh(η) (time-like case) .

(11.3.20)

The pole contribution is present for both space-like and time-like cases. The delta function
δ((p+ k)2) can be written in terms of k and η. In the time-like case as

δ((p+ k)2)d4k = δ(p+ k)2)
∂(k, η)

∂((p+ k)2, η)
d((p+ k)2)sinh2(η)dηdΩ ,

∂(k, η)

∂((p+ k)2, η)
=

1

p
× 1

2cosh(η) + ε1sinh(η)
. (11.3.21)
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In the space-like case one has

δ((p+ k)2)d4k = δ(p+ k)2)
∂(k, η)

∂((p+ k)2, η)
d((p+ k)2)cosh2(η)dηdΩ ,

∂(k, η)

∂((p+ k)2, η)
=

1

p
× 1

−cosh(η)
. (11.3.22)

The integration over Ω gives a factor of 4π. By combining integrals over η to integral over
positive values of η one finds that Ispole vanishes since ε2 → −ε2 is equivalent with η → −η.

Similar vanishing takes place for Itpole since different signs of energy give different sign for p · k
factor. η → −η corresponds to ε1 → −ε1 for Itpole and to ε1 → −ε1 for Jspole and in both cases
one obtains factor 2. Hence the contribution from the poles kε1,ε2 can be written as

Ispole = 0 , Itpole = 0 ,

Jspole,ε2 +Ks
pole,ε2 = −i16π2p2

∫ ηmax,s

0

dη × (1− sinh2(η))× cosh2(η)
exp(3ε2η)

−cosh(η)
,

J tpole,ε1 +Kt
pole,ε1 = −i32π2p2

∫ ηmax,t

0

dη × (1 + cosh2(η))× sinh2(η)
exp(3ε1η)

2cosh(η) + ε1sinh(η)
,

,

(11.3.23)

Pole contributions in the time-like case involve additional factor 2 due to the two signs of k0.
One must integrate separately the pole contributions corresponding to different signs of εi. The
reason is that the integration limits for η are in general different because the upper or lower
limit for η integration can be reduced or increased since k± must belong to the half octave in
question. The determination of the bounds of hyperbolic integral requires a special care. This
point is discussed in the chapter devoted to the calculation of the gauge boson propagator.

Note that the poles give a small imaginary contribution to the kinetic term corresponding to free
theory and imply a breaking of unitarity. The masses of the poles are in good approximation
equal to k2 = p2 for small values of p .

11.3.4 k-integration for the principal value parts of the integrals

The integrals over k reduce to integrals of rational functions using the general expression for
poles given in Eq. 11.3.19. Each octave in momentum space gives its own contribution.

The integrals to be calculated are

is = −3psinh(η)
∑
εs
εs
∫
dk k2

p2−k2+2εspksinh(η) ,

it = 6pcosh(η)
∑
εt=±1 εt

∫
dk k2

p2+k2+2εtpkcosh(η) ,

js + ks = (1− sinh2(η))
∑
εs

∫
dk k3

p2−k2+2εspksinh(η) ,

jt + kt = 2(1 + cosh2(η)
∑
εt

∫
dk k3

p2+k2+2εtpkcosh(η) .

(11.3.24)

The k-integral is over the half-octave [2(−k−1)/2, 2−k/2]m(CP2). The poles can be written as
ksεεs = εp × exp(εεsη) in space-like case and as ktεεt = −εtp × exp(εεtη) in time-like case. One
can express the denominators appearing in the integrands in terms of them as
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1

p2 − k2 + 2εspksinh(η)
=

1

ks+εs − k
s
−εs

∑
ε

ε

k − pεexp(εεsη))

=
1

2pexp(εsη)
×
[

1

k − p× exp(εsη))
− 1

k + p× exp(−εsη))

]
,

1

p2 + k2 + 2εtpkcosh(η)
=

1

kt+εt − k
s
−εt

∑
ε

ε

k − pεexp(εεtη)

= − 1

psinh(η)
×
[

1

k − pεtexp(εtη))
− 1

k − p× εtexp(−εtη))

]
.

(11.3.25)

This gives

is = − 3sinh(η)
2

∫
dk × k2

[
exp(−η)( 1

k−p×exp(η) −
1

k+p×exp(η) )

−exp(η)( 1
k−p×exp(−η) −

1
k+p×exp(−η) )

]
,

it = −6 cosh(η)
sinh(η)

∫
dk × k2

[
1

k−p×exp(η) −
1

k−p×exp(−η)

− 1
k+p×exp(−η) + 1

k+p×exp(η)

]
,

js + ks = (1−sinh2(η))
2p

∫
dk × k3

[
exp(−η)( 1

k−p×exp(η) −
1

k+p×exp(η) )

+exp(η)( 1
k−p×exp(−η) −

1
k+p×exp(−η) )

]
,

jt + kt = − 2(1+cosh2(η)
psinh(η)

∫
dk × k3

[
1

k−p×exp(η) + 1
k−p×exp(−η)

+ 1
k+p×exp(−η) −

1
k+p×exp(η)

]
,

.

One must calculate integrals of form in =
∫ b
a
dk kn

k−K . Taking k1 = k − K as the integration
variable, using binomial expansions, the transformation of integration limits [a, b] to [a−K, b−K],
and the expressions for the integration limits given by [a, b] = [2−(k+1)/2, 2−k/2] × m(CP2) ≡
[2−1/2, 1]mk (the k in p ' 2k should not be confused with the integration variable) one obtains

in =

∫
dk

kn

k −K
=

n∑
m=1

b(n,m)

m
×Kn−m[

m−1∑
r=0

(−1)r × b(m, r)× (bm−r − am−r)Kr]

+ Knlog(| b−K
a−K

|) , b(n,m) =
n!

(n−m)!m!
,

(a, b) = (2−1/2, 1)mk , K = ε1p× exp(ε2η) or K = ε1p× exp(ε2η) .

(11.3.26)

Polynomial terms give contributions which come as powers Km, m ≤ n − 1 and would give to
kinetic term a contribution which is power pk, k = 0, 1 for n = 2 and k = −1, 0, 1 for n = 3.
What is known about p2 = 0 limit implies that these terms must sum up to zero,for i1 and
it. This indeed happens as explicit check shows. For js and jt one must obtain a constant
contribution independent of p and giving rise to mass term in the propagator. This would
correspond to pk, k = 1. The terms must be same apart from sign and cancel each other only if
the hyperbolic cutoffs are related in the proposed manner.
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The logarithmic terms associated with the poles K = k
s/t
± can be combined to single logarithm.

Getting the sign factors correctly takes some time and one must be careful with the expres-
sions for the roots and their differences k±,ε2 which are reproduced for here for the reader’s
convenience.

ks±ε2 = ±p× exp(ε2η) (space-like case) ,

kt±,ε2 = ε2p× exp(±η) (time-like case) ,

ks+ − ks− = 2pexp(ε2η) , (space-like case) ,

kt+,ε2 − k
t
−,ε2 = 2pε2sinh(η) , (time-like case) .

(11.3.27)

The sum over the logarithms combines to form a logarithmic term which is of following form in
various cases.

is = p2 3sinh(η)
2 ×

[
exp(η)log(F1( p

mk
exp(η))

−exp(−η)log(F1( p
mk
exp(−η))

]
,

it = −6p2 cosh(η)
sinh(η) ×

[
exp(2η)log(F2( p

mk
exp(η))

−exp(−2η)log(F2( p
mk
exp(−η))

]
,

js + ks = p2

2 × (1− sinh2(η))
[
exp(2η)log(F2( p

mk
exp(η))

+exp(−2η)log(F2( p
mk
exp(−η))

]
,

jt + kt = −p2 2(1+cosh2(η))
sinh(η) ×

[
exp(3η)log(F1( p

mk
exp(η)))

+exp(−3η)log(F1( p
mk
exp(−η))

]
,

(11.3.28)

where the functions Fi(x) are given by

F1(x) = | (2 + x)(
√

2− x)

(2− x)(
√

2 + x)
| ,

F2(x) = | (2 + x)(2− x)

(
√

2 + x)(
√

2− x)
| (11.3.29)

For small values of x one has F1(x) ' 1 and F2(x) ' 2 so that only F1(x) contributes significantly
to the propagator for pexp(±η) � mk. For large values of x one has Fi(x) ' 1 so that neither
of them contributes for p� mk. For p = 2mkexp(±η) Fi has infinite value so that one obtains
a logarithmic singularity. Since the integration range over η is shortens with exponential rate as
function of k, the logarithmic contribution does not have significant effects. It however means
that p-adic length scale hierarchy is visible as a small effect. If the momentum squared does not
correspond to p-adic mass scale log(F1) ' 0 and log(F2) ' log(2)/2 holds true and the kinetic
term is in excellent approximation proportional to p2. Since Fi are even functions of p, they
are actually functions of p2 rather than p as one might indeed expect on basis of analyticity
requirement.

The expressions for the non-vanishing functions at this limit read as

it = −12log(2)p2cosh2(η) ,

js =
log(2)

2
(2cosh2(η)− 1)(1− sinh2(η)) . (11.3.30)
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At the p2 = 0 limit-that is in p-adic mass scales much larger than p- one has in the next
approximation

F1(x) ' (1−
√

2)× x+O(x3) = (1−
√

2)× p

mk
u±1 ,

F2(x) ' x2

4
+O(x3) =

1

4
(
p

mk
)2u±2 ,

(11.3.31)

This gives

is ' p2 × 2(1−
√

2)× p
mk

3sinh(η)
2 × sinh(2η) ,

it ' −6p2 cosh(η)
sinh(η) ×

[
2log(2)sinh(2η)− 1

2 ( p
mk

)2sinh(4η)
]
,

js + ks ' p2

2 × (1− sinh2(η))
[
2log(2)cosh(2η) + 1

2 ( p
mk

)2cosh(4η)
]
,

jt + kt ' −p2 × 2(1−
√

2)× p
mk

2(1+cosh2(η))
sinh(η) × cosh(4η) ,

(11.3.32)

At the IR limit p/mk � 1 one can expand the logarithms with respect to the variable 1/x and
the lowest order gives

F1(x) ' − 2

x2
+O(x−3) = −(

p

mk
)−2u∓2 ,

F2(x) ' 2(2−
√

2)× x−1 +O(x−3) = 2(2−
√

2)× (
p

mk
)−1u∓1 . (11.3.33)

(11.3.34)

is ' p2 × 2( p
mk

)−2 × 3sinh(η)
2 × sinh(η) ,

it ' −6p2 cosh(η)
sinh(η) ×

[
2log(2)sinh(2η) + 4(2−

√
2)( p

mk
)−1sinh(η)

]
,

js + ks ' p2

2 × 2(2−
√

2)× (1− sinh2(η))
[
2log(2)cosh(2η) + 4(2−

√
2)( p

mk
)−1cosh(η)

]
,

jt + kt ' −p2 × 2( p
mk

)−2 × 2(1+cosh2(η))
sinh(η) × cosh(2η) .

(11.3.35)

One can write p/mk as p/mk = 2k/2 × p/m(CP2). If p corresponds to the p-adic mass scale k0

one can write p/mk = x × 2k0/2m(CP2) so that one has p/mk = x2(k0−k)/2 so that the higher
order contributions decrease with an exponential rate as a function of |k − k0|.

11.3.5 Numerical calculation of the integrals over the hyperbolic angle

The integrals over the hyperbolic angle η can be computed analytically in the case of pole
contributions since integrals of rational functions are in question. In the case of principal value
contributions situation is different since logarithms are present. Also now approximate analytic
approach is convenient since the model for how quantum criticality might dictate the hyperbolic
cutoff requires calculation of the the derivatives of the integrals with respect to momentum p
and analytic approximation to integrals allows to perform this calculation in terms of elementary
functions.

Predicting coupling constant evolution and the bare values of couplings constants is something
which is not done every day, and it is important to make all calculations public so that the
reader can detect possible errors. Therefore I have reported the calculation in all boring detail.



698 Chapter 11. Quantum Field Theory Limit of TGD from Bosonic Emergence

Overall view about calculation

The following summary is for a reader willing to carry out the calculations himself.

(a) By taking u = eη as integration variable, the partial faction expansion of the rational
functions multiplying Fi in various integrals gives integrals of form

∫
unlog(|1 + xu|) for

both signs of n and x. If x is very small, the best manner to proceed is to expand the
logarithm to a Taylor polynomial. If x is very large one can expand log(u + 1/x) into
Taylor polynomial. For x not too far from unity one replace the integration variable with
v = u + 1/x and expand un = (v − 1/x)n using binomial formula, one obtains for n ≥ 0
integrals of form

∫
vnlog(|v|) and partial integration allows to deduce expression for this

integrals in terms of elementary functions as∫
(v + u0)nlog(v)dv =

n∑
k=0

b(n, k)un−k0 vk+1(
log(v)

k + 1
− 1)

(k + 1)2
) .

(b) Also integrals of form
∫
v−nlog(|v|)du are encountered. By changing the integration variable

to v = 1/u these integrals can be transformed to vnlog(v − v0) type integrals for n ≥ 2.
Therefore only the integral

∫
u−1log(|u− u0|)du remains.

(c) For the integrals of type
∫

1
x log(|1 − x|)dx, x = u/u0, one can use in the region u/u0 < 1

the expansion of the denominator in geometric series to obtain the integral function as∫
1

x
log(|1− x|)dx =

∑ (−1)n+1xn

n2
≡ F (x) .

It seems that this function does not allow expression in terms of elementary functions.

(d) If u−u0 vanishes in the integration range the situation is more delicate and the integration
range must be divided into two parts. In this case one can expand u−n = (u0 + v)−n

in Taylor series so that one obtains integrals of
∫
vnlog(|v|)dv are obtained. The integral

reduces to ∫
log(x− x0)

x
dx = log(|x− x0|)log(|1− x

x0
|)− F (

x− x0

x0
) .

The variation range of v is very restricted since u varies in the vicinity of u = 1 so that the
series converges rapidly. The numerical control of the integration reduces to the control
of the degree of the Taylor polynomials. An additional numerical difficulty is posed by
the analytic expressions which involve large terms summing up to zero. To guarantee the
cancelation also numerically, one can combine the contributions from the logarithms log(|1±
xk2−ru|) appearing in log(Fi) to single expression. This also minimizes the possibility of
sign errors.

To sum up, the completely standard integral formulas needed in the numerical calculations are

∫
log(x)xmdx = xm+1( log(x)

m+1 −
1

(m+1)2 ) ,∫
log(x)x−mdx = − 1

m−1 log(x)x−m+1 − 1
(m−1)2x

m−1, m 6= 1 ,∫
log(x)x−1 = 1

2 log(x)2 .

(11.3.36)

Explicit numerical approximations reduce to the cutoff of F (x) to Taylor polynomial.

Since I possess rather primitive calculational tools (MATLAB in home computer) the need to do
the calculations fast enough to perform them within day rather than year forces a rather detailed
analysis of the calculation and also kind of re-synthesis besides the use of analytic formulas. A
careful planning of calculations is necessary in order to avoid un-necessary multiple calculations
and loops rather than just performing simple discretization of the integration variable disfavored
also by the logarithmic singularities of the integrands. The strategy has been simple.
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(a) Separate the easily calculable contribution corresponding to p2 = 0 limit for which F2 =
log(2) and F1 = 0 hold true. The remaining contribution should be small for typical values
of p.

(b) Calculate the coefficients of Laurent and Taylor polynomials having no dependence on
cutoff, momentum, or p-adic integer k to arrays in the beginning of the calculation as loops
and store them as data.

(c) Calculate the coefficients depending on momentum parameter p and p-adic integer k to
arrays in the same manner.

(d) Identify the basic integrals depending on the hyperbolic cutoff umax,t or umax,s, calculate
them, and store them into arrays in the beginning of calculation using loops since there are
typically conditions involved with each step of calculation so that loops cannot be avoided.

(e) Calculate the basic contributions to propagator normalization factor from is, it, js+ks, jt+
kt using matrix operations and element-wise operations for arrays to avoid loops.

(f) Use Taylor polynomials in the case that the analytic expression in terms of elementary
functions does not exist or if the exact analytic expression is numerically unstable (say
involves sum of large contributions summing up to zero but failing to do this exactly in the
numerical approach). For instance, this strategy inspires the calculation and storing into
arrays of integrals of

∫
du× unlog(Fi) rather than

∫
du× unlog(1 + 2−rxku) to which the

integral decomposes.

Representation of rational functions appearing in integrands

Since I do not have opportunity to use symbol manipulation packages I include the detailed
formulas for various functions involved it is essential to keep documentation as precise as possible
so that I include detailed formulas allowing immediate computerization. The inverse of the
propagator is apart from the projector Pµν equal to the sum of the following integrals.

∫
dη × cosh2(η)is = C1

∫
du×

[
r1(u)× log(F1(xku))− u−2r1(u)× log(F1(xku

−1))
]
,

r1(u) = (u− u−1)(u+ u−1)2 = u3 + u− u−1 − u−3 ,∫
dη × sinh2(η)it = C2

∫
du×

[
r2(u)× log(F2(xku))− u−4r2(u)× log(F2(xku

−1))
]
,

r2(u) = u(u+ u−1)(u− u−1) = u(u2 − u−2) ,∫
dη × cosh2(η)(js + ks) = C3 ×

∫
du× r3(u)

[
r3(u)log(F2(xku) + u−4r3(u)× log(F2(xku

−1))
]
,

r3(u) = u(4− (u− u−1)2)(u+ u−1)2 = u(−u4 + 4u2 + 10 + 4u−2 − u−4) ,∫
dη × sinh2(η)(jt + kt) = C4

∫
du×

[
r4(u)× log(F1(xku)) + u−6r4(u)× log(F1(xku

−1)
]
,

r4(u) = u2(4 + (u+ u−1)2)(u− u−1) = u2(u3 + 5u− 5u−1 − u−3) ,

C1 = 3πp2

2 , C2 = −6πp2 , C3 = πp2

2 , C4 = −πp2 .

(11.3.37)

In the integration of the latter terms containing log(Fi(xku
−1) the simplest formulas are obtained

by taking v = u−1 as an integration variable since there is high degree of symmetry between
r and s contributions. du = −dv/v2 brings in one negative power of v and uk goes to v−k

so that one has uk → v−k−2. Since integrand apart multiplying dη satisfies F (u) = F (v) and
since the integration measure dη = du/u equals to −dv/v the overall result is that the integrand
only changes sign: F (u)du = −F (v)dv and the integration limits [1, umax] are replaced with
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[1, u−1
max]. Hence the integrals associated with the latter terms can be reduced to the integrals

defined by ri(u). Taking into account the symmetries of the integrand this gives the formulas

is : I = I(1, umax,s)− I(1, u−1
max,s) ,

it : I = I(1, umax,t)− I(1, u−1
max,t) ,

js + ks : I = I(1, umax,s)− I(1, u−1
max,s) ,

jt + kt : I = I(1, umax,s) + I(1, u−1
max,s) .

(11.3.38)

For jt + kt the integrals obviously tend to cancel each other.

The rational functions ri multiplying functions Fi in various cases can be expressed by giving
the non-vanishing coefficients in their Laurent expansion

ri(u) =
∑
k

r+
i,ku

k +
∑
k

r−i,ku
−k

to make the integration procedure systematic.

One obtains for the non-vanishing coefficients following expressions

r+
1,1 = 1 , r+

1,3 = 1 , r−1,1 = −1 , r−1,3 = −1 ,

r+
2,3 = 1 , r−2,1 = −1 ,

r+
3,1 = 10 , r+

3,3 = 4 , r+
3,5 = −1 , r−3,1 = 4 , r−3,3 = −1 ,

r+
4,1 = −5 , r+

4,3 = 3 , r+
4,5 = 1 , r−4,1 = −1 .

(11.3.39)

Only the coefficients r−i,1 give rise to an integral not expressible in terms of elementary functions.

Functions Fi

The functions Fi and their derivatives are given by

F1(x) = | (2+x)(
√

2−x)

(2−x)(
√

2+x)
| , F2(x) = | (2+x)(2−x)

(
√

2+x)(
√

2−x)
| ,

log(F1)′ = 1
2+x + 1

2−x −
1√
2+x
− 1√

2−x , log(F2)′ = 1
2+x −

1
2−x −

1√
2+x

+ 1√
2−x ,

(11.3.40)

It is convenient to extract from the integrals the contribution which corresponds to p2 = 0 limit
given by Eq. 11.3.30. This contribution comes from F2 alone since F1 vanishes at this limit.

For systemization purposes it is convenient to introduce the functions V (i, ε)(x, u) as

V1,ε(xk, u) = log(F1(xku
ε)) =

∑
ε1,r

V (1, ε1, r))log(|1 + ε12
−rxku

ε|) ,

V2,ε(xk, u) = log(F2(xku
ε)/2) =

∑
ε1,r

V (2, ε1, r))log(|1 + ε12
−rxku

ε|) ,

V (1, ε1, 1)) = 1 , V (1, ε1, 1/2)) = −1 ,

V (2, ε1, 1)) = (−1)ε1 , V (2, ε1, 1/2)) = (−1)ε1−1 .
(11.3.41)

The logarithms log(|2r + ε1xku
ε=−1|) can be decomposed as

log(|1 + ε12−rxku
−1|) = log(|u+ ε12−rxk|)− log(|u|) . (11.3.42)
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The contributions form log(u) terms cancel for Fi and one obtains effectively contribution of
form

∑
n r
±
i,n

∫
unlog(|1 + ε12−rxku|)du ,∑

n s
±
i,n

∫
unlog(|u+ ε12−rxk|) ,

(11.3.43)

Note that when xk is small resp. large the total contributions are or order xk resp. 1/xk and
therefore very small.

Expression of the integrals in terms of the basic integrals

One can express the integrals in terms of following basic integrals:

In(u0, umax) =
∫ umax

1
du× unlog(|u+ u0|) , Jn(umax) =

∫ umax
1

du× un . (11.3.44)

Notice that for n < −1 the integral can be reduced to n ≥ 0 case by changing the integration
variable to v = 1/u.

In the following are listed the expressions of the basic integrals remaining when the contribution
which is non-vanishing at p2 = 0 limit has been subtracted. As already found, s± contributions
are identical with r∓ contributions so that it is enough to multiply by a factor 2 the contributions
coming from r±.

(a) For r+
i,n one obtains following integrals.

is
∑
n r

+
1n

∑
r V (1, 1, r)I(n, r, umax,s) =

∑
n r

+
1nI1(n, r, umax,s) ,

it
∑
n r

+
2n

∑
r V (2, 1, r)I(n, r, umax,t) =

∑
n r

+
2nI2(n, umax,t) ,

js + ks
∑
n r

+
3n

∑
r V (2, 1, r)I(n, r, umax,s) =

∑
n r

+
3nI2(n, umax,,s) ,

jt + kt
∑
n r

+
4n

∑
r V (1, 1, r)I(n, r, umax,t) =

∑
n r

+
4nI1(n, umax,t) ,

Ii(n, umax) = −(i− 1)× log(2)Jn(umax)

+
∑
r=1/2,1(−1)2r(In( 2r

xk
, umax) + (−1)iIn(− 2r

xk
, umax)) .

(11.3.45)

(b) The integration of negative powers requires the change of variable u → u−1 = v, du =
−v−2dv. For r−i,n one has

is
∑
n r
−
1n

∑
r V (1, 1, r)I(n, r, umax,s) =

∑
n r
−
1nI1(n, umax,s) ,

it
∑
n r
−
2n

∑
r V (2, 1, r)I(n, r, umax,t) =

∑
n r
−
2nI2(n, umax,,t) ,

js + ks
∑
n r
−
3n

∑
r V (2, 1, r)I(n, r, umax,s) =

∑
n r
−
3nI2(n, umax,,s) ,

jt + kt
∑
n r
−
4n

∑
r V (1, 1, r)I(n, r, umax,s) =

∑
n r
−
4nI1(n, umax,t) ,

Ii(n > 1, umax) = −
∑
r(−1)2r(In−2(xk2r ,

1
umax

) + (−1)iIn−2(−xk2r ,
1

umax
)) ,

Ii(n = 1, umax) = (i− 1)× log(2)J−1(umax)

−
∑
r=1/2,1(−1)2r(I−1( 2r

xk
, umax) + (−1)iI−1(− 2r

xk
, umax)) .

(11.3.46)
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These expressions make sense for the values of |u0|, which are not too far from unity. For very
large or small values of |u0| Fi are very near to zero or constant. The small corrections come in
powers of p/mk and are typically extremely small. This means that in the case of Ii(n = 1, umax)
the large contribution (i− 1)× log(2)J−1(umax) must be compensated by the contribution from
the sum term. Numerically the compensation takes place in so poor an accuracy that the error
is much large than the magnitude of the actual contribution. Hence a special treatment is
necessary. The large logarithmic term in F2 cancels as one expresses log(|u ± u0|) terms as
log(|1∓ u/u0|) + log(|u0|) so that only log(|1∓ u/u0|) terms remain and give a contribution of
order 1/u0 ' p/mk.

Analytic expressions for the basic integrals

One can deduce explicit analytic expressions for almost all basic integrals in terms of elementary
functions.

1. Reduction of k < −1 case to k ≥ 0 case

The first thing is to notice that integrals Ik<−1(u0, umax) reduce to corresponding integrals with
k ≥ 0.

Ik<−1(u0, umax) = I|k|−2(0, u−1
max)− I|k|−2(|1/u0|, u−1

max)− 1
|k|−1 log(|u0|)× (u

−|k|+1
max − 1) .

(11.3.47)

In the expression for Ii (i labels Fi) the first terms cancel each other so that one has

Ii,k<−1(u0, umax) = 2
∑
r=1/2,1(−1)2r

[
−(I|k|−2(xk2−r, u−1

max) + (−1)iI|k|−2(−xk2−r, u−1
max))

− (i−1)
|k|−1 log(2r/xk)× (u

−|k|+1
max − 1)

]
.

(11.3.48)

For k ≥ 0 and |u0| ≤ 1 the explicit expression for Ik(u0, umax) reads as

Ik≥0(u0, umax) =
∑k
l=0 b(k, l)

(−1)k−luk−l0

l+1

[
(umax + u0)l+1(log(|umax + u0|)− 1

l+1 )

−(1 + u0)l+1(log(|1 + u0|)− 1
l+1 )

]
.

(11.3.49)

2. Alternative form of the integrals Ik≥0(u0, umax)

For |u0| ≥ 1 it is better to use the form

Ik≥0(u0, umax) = log(|u0|)
k+1 (uk+1

max − 1) + uk+1
0

∑k
l=0 b(k, l)

(−1)k−l

l+1

[
(umaxu0

+ 1)l+1(log(|umaxu0
+ 1|)− 1

l+1 )

−( 1
u0

+ 1)l+1(log(| 1
u0

+ 1|)− 1
l+1 )

]
.

(11.3.50)
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This expression is numerically unstable for u0 � 1 (UV limit) and u0 << 1 The simplest manner
to avoid this kind of problems is to expand the logarithms log(|1 + 2−rxku|) appearing in Fi as
Taylor polynomials and summing various contributions analytically.

3. Expression for Ik=−1(u0, umax)

Only I−1(u0 6= 0, umax) does not allow expression in terms of elementary functions.

(a) In the regions umax < |u0| and |u0| < 1 one can write

I−1(u0, umax) = log(|u0|)log(umax) + F (umaxu0
)− F ( 1

u0
) , umax < |u0| ,

I−1(u0, umax) = 1
2 log

2(umax)− F ( u0

umax
) + F (u0) , |u0| < 1 ,

(11.3.51)

and approximate F (x) using Taylor polynomial.

(b) For u0 > 0 and 1 < u0 < umax one obtains the following expression

I−1(u0, umax) = log(2)
∫
du× u−1 +

∫
du× u−1log(1 + (u+u0

2 − 1))

= log(2)log(umax) + I(umax)− I(1) ,

I(u) = − 1
2

∑
k>0

xk

k

[
log(1 + x)−

∑k
l=1

(−1)l+1xl

l

]
, x = u0+u−2

2−u0
.

(11.3.52)

The coefficient of xk

k is the remainder associated with the k + 1:th Taylor polynomial of
log(1 + x).

(c) For u0 < 0 and 1 < |u0| < umax one can expand u in 1/u factor in powers of (u − u0)/u0

and integrate the Taylor expansion term by term. This gives

I−1(u0, umax) = I(umax)− I(1) ,

I(u) = log(|u0x|)log(1 + x)− F (x) , x = u−|u0|
|u0| .

(11.3.53)

4. Expression for Ii,k=−1(u0, umax)

One can perform the sum over integrals associated with Fi and corresponding to opposite values
of u0.

(a) The integrals can be combined for Fi as

Ii,−1 = I−1(u0, umax) + (−1)iI−1(−u0, umax) ,

u0 = 2r

xmax
for r+, s− , u0 = xmax

2r for r−, s+ .
(11.3.54)

The definition of u0 > 0 is dictated by whether xku (r±) or xk/u (s±) appears in the
logarithm and whether u (r+, s−) or 1/u (r−, s−) is used as the integration variable.

(b) In the regions umax < |u0| and |u0| < 1 the functions Ii,−1( 2r

xmax
, umax) can be expressed

as

Ii,−1(u0, umax) = 2(i− 1)log(2)× log(umax)

+
∑
r=1/2,1(−1)2r

[
F i(umaxu0

)− F i( 1
u0

)
]
, umax < u0 ,

Ii,−1(u0, umax) = −
∑
r=1/2,1(−1)2r

[
F i( u0

umax
)− F i(u0)

]
, u0 < 1 .

(11.3.55)
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(c) In the regions 1 < |u0| = |u0| < umax the opposite signs of u0 correspond to different
analytic expressions appearing in Eqs. 11.3.51 and 11.3.52 and one cannot combine them
to a simpler function.

The treatment of |xk| � 1 and |xk| � 1 cases

The treatment of |xk| � 1 and |xk| � 1 cases requires special care since the formal approach
using integral functions approach fails because of numerical in-accuracies. The best manner to
proceed is to expand the logarithms in Fi as powers eries with respect to a suitably selected
small quantity and approximate them with their Taylor polynomials.

1. Small values of xk

Consider first the case xk � 1. This corresponds to momentum p ∼ 2−k0 with k0 > k and is
encountered for large loop momenta. One can express log(1 + ε2−rxku) as power series using
εr,k = 2−rxk as a small parameter to obtain

In(ε, εr,k) =

∫
un(log(1 + εεr,ku) =

∑
l>0

εlεlr,k(−1)l+1

l
Jn+l(umax) , Jn =

∫ umax

1

undu .

(11.3.56)

This gives

I(n ≥ 0, ε, εr,k) =
∑
l>0

εlεlr,k(−1)l+1

l(n+ l + 1)
(un+l+1
max − 1) ,

I(n < 0, ε, εr,k) =
∑

l>0,l 6=n−1

εlεlr,k(−1)l+1

l(n+ l + 1)
(un+l+1
max − 1) +

εn−1
r,k (−1)n

n− 1
log(umax) .

(11.3.57)

The contributions to Fi can be summed so that big contributions canceling each other do it also
numerically.

(a) For F1 contributions with ε = ±1 sum up with opposite overall sign and the overall contri-
bution contains only odd powers of εr,k.

∑
r,ε

f1(ε)I(n, ε, εr,k) =
∑
l>0

C2l−1Jn+2l−1(umax) ,

Cl = 2
∑

r=1/2,1

(−1)2r
εlr,k
l

. (11.3.58)

(b) For F2 contributions with ε = ±1 sum up with same sign and the overall contribution
contains only even powers of εr,k.

∑
r,ε

f2(ε)I(n, ε, εr,k) = −
∑
l>0

C2lJn+2l(umax)) . (11.3.59)
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2. Large values of xk

Second situation requiring special treatment corresponds to a momentum which is large in the
p-adic length scale k considered so that one has k � k0. Small loop momenta correspond to
this case. By replacing εr,k with Mr,k one can write

In(ε,Mr,k) =

∫
du× unlog(1 + εMr,ku) =

∫
du× unlog(Mr,k) +

∫
du× unlog(u+M−1

r,k ) .

(11.3.60)

The sum of the first terms vanishes for F1 (is and jt+kt). For F2 (it and js+ks) it gives overall
contribution equal to

−Jn(umax)log(2) . (11.3.61)

Note that the contribution - although large - does not depend on the scale of Mr,k at all. In the
second term Taylor expansion in power series gives

∫
du× unlog(u) +

∑
l>0 Il+n

εn2−nrMn
r,k(−1)l+1

l , Jr(umax) =
∫ umax

1
urdu .

(11.3.62)

∫
du× uklog(u) terms sum up to zero in both F1 and F2 and the overall integral reduces to the

sum of the remaining terms.

(a) For F1 contributions with ε = ±1 sum up with opposite overall sign and the overall contri-
bution contains only odd powers of Mr,k.

∑
r,ε

f1(ε)I(n, ε,Mr,k) =
∑
l>0

C2l−1Jn−2l+1(umax) ,

Cl = 2
∑

r=1/2,1

(−1)2r(
xk
2r

)l
1

l
. (11.3.63)

Note that the only difference to the previous case is xk/2
r → 2r/xk in the formula of Cl.

(b) For F2 contributions with ε = ±1 sum up with same sign and the overall contribution
contains only even powers of Mr,k (recall that also the additional contribution given by Eq.
11.3.61 is present).

∑
r,ε

f2(ε)I(n, ε,Mr,k) = −
∑
l>0

C2lJn−2l . (11.3.64)

(c) The total contribution in the case of Fi can be written as

Ii,n = −Jn(umax)log(2) + (−1)i−1)
∑
l>0

C2l−1+(i−1)Jn−2l+1−(i−1) . (11.3.65)
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Pole contributions

Tedious calculation allows to derive explicit expressions for the integrals of rational functions of
exp(η) defining the pole contributions. There are two contributions to the integral and they can
be reduced to same kind of integral by the changing the integration variable from u to 1/u in
the contribution. For space-like contributions the integrals can be expressed in the form

Js,+ +Ks,+ = I(umax,s,+)− I(umin,s,+) ,

Js,− +Ks,− = −I(u−1
max,s,−) + I(u−1

min,s,−) ,

I(u) = Cs ×

∑
n≥1

p(n)

n+ 1
un+1 + p(−1)log(u)

 , (11.3.66)

(11.3.67)

p(−1) = 1
8 , p(1) = − 1

8 p(3) = − 3
8 p(5) = 1

8 .

(11.3.68)

Here the umax,s,+ and umin,s− are subject to the additional condition that the the pole momen-
tum is inside the p-adic half octave considered. Same applies to the integration boundaries in
time-like case.

For time-like contributions the integrals can be expressed in the form

Jt,+ +Kt,+ = I(umax,t,+)− I(umin,t,+) ,

Jt,− +Kt,− = −I(u−1
max,t,−) + I(u−1

min,t,−) ,

I(u) =
∑
n>1

p(n)un+1

n+1 + p(1)
6 log(3u2 + 1) + r(−1)

[
log(u)− log(3u2+1)

2

]
,

Ct =
√
−1× 32× π2 ,

p(n > 0) =
1

3

[
−p(n+ 2)

3
+ r(n+ 2)

]
, p(n > 5) = 0 ,

r(−1) = 1
8 , r(1) = 1

2 , r(3) = − 5
4 , r(5) = 1

2 , r(7) = 1
8 .

(11.3.69)

Since the entire integration range for η for a given value of k need not to correspond to the roots
k+ resp. k− belonging to k:th half half octave, the determination of the bounds of hyperbolic
integral requires a special care. One has two roots k+ = pexp(η) and k− = pexp(−η) in both
time-like and space-like case. For k:th p-adic half octave the questions are following. Does p
belong to the k :th octave? Does k+(max, k) = pumax(k) belong to it? Does k−(min, k) =
pu−1

max(k) belong to it? The answers to these three questions determine the limits of the η
integration. There are 23 bit combinations (b0, b+b−) formed by the answers to the question
’Does p resp. k+(max, k) resp. k−(min, k) belong to the Ik = [mk,

√
2mk]?’. The following

table gives the integration ranges for the bit combinations for which they are non-empty for
either k+, k− or both.
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(b0, b+, b−) pole ulower uupper

(111) k+ : 1 umax(k)
k− : 1 umax(k)

(110) k+ : 1 umax(k)
k− : 1 Min( p

mk
, umax(k))

(101) k+ : 1 Min(
√

2mk
p , umax(k))

k− : 1 umax(k)

(100) k+ : 1
√

2mk
p

k− : 1 p
mk

(010) k+ : mk
p umax(k)

(001) k− : p√
2mk

umax(k) .

(11.3.70)

General expression for the normalization factor

To summarize, one can write the expression for the loop integral as

X = Ap2Pµν ,

A =

kmax∑
k=kmin

A(k) ,

A(k) =
1

p2
[−Ipole(k)− IP,1(k)− I2 + Jpole(k) + JP,1(k) + J2(k)] . (11.3.71)

Propagator normalization factor is given by

N =
1

A
. (11.3.72)

The above calculations are carried out by assuming that 2-adic length scale defines the length
scale resolution. The scaling up of the UV cutoff length scale from µ(2) =

√
2m(CP2) to

2−k/2m(CP2) requires only the replacement x = m(CP2)/p appearing in the function F (xk, exp(±η))
with x(k) = 2−(k−1)/2m(CP2)/p. The lowest order approximation must result if one puts p = 0
in the arguments of the logarithms so that only p2 term remains in the propagator. This is
indeed the case as already found.

11.3.6 The evolution of 1/αem(p) for given IR cutoff for loop momenta

The following plots illustrate the evolution of the fine structure constant a function of the mass
of virtual photon. All the plots are associated with the model for the hyperbolic cutoff param-
eterized as sinh(ηt) ≤ a× b−1/3, a = 0.22050469512552, b = 1/3, reproducing the experimental
value 1/αem = 137.035999070 of the fine structure constant at electron length scale for IR cut-
off kmax = 127 and its value at intermediate boson length scale for kmax = 89. The figures
demonstrate following.
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(a) From figures 1 and 2 it is clear that only the scenario in which the IR cutoff kmax for loop
momenta satisfies kmax > k0(p), where k0(p) is the p-adic mass scale of the momentum of
virtual gauge boson, makes sense.

(b) For k0 > kmax there are two reasons for the failure. A large imaginary pole contribu-
tion breaking unitarity (Figure 2) is generated and the evolution for gauge couplings is
unrealistic (Figure 1) due to the large contributions related to the presence of the pole.

(c) In the main text it is proposed that it might be possible to fix the hyperbolic cutoff from
quantum criticality by requiring that the inverses of bare gauge couplings vanish at the end
point of the p-adic half octave for k0 = kmax+n, where n is small integer. The finding that
the real part for the inverse of gauge coupling changes sign for k0 = 90 for kmax = 89 at
the lower end of the p-adic half octave (Figure 3) raises the hope that the hyperbolic cutoff
for various values of k could be determined from this condition by starting from kmax = 1
or 2.

Failure of the model allowing k0 > kmax

Figures 1 and 2 demonstrate that loop momenta must be above the p-adic mass scale of the
gauge boson momentum. Figure 1 demonstrates that the ratio r = αem/αem,pred(pk) where
αem = 137.035999070 is the experimentally determined fine structure constant at electron length
scale and αem,pred(pk) is the predicted fine structure constant for virtual photon mass pk =√

2mk = 2−(k−1)/2xm(CP2), k = 2, ..., 127, x ∈ {2−1/2, 2−1/4, 1}. There is a large oscillation of
the ratio as a function of k at the upper end of the interval. The deviation of the prediction from
unity is so large and so different from expectations that it is safe to conclude that for momentum
of virtual gauge bosons characterized by the p-adic length scale k0 IR cutoff kmax for the loop
momenta must satisfy kmax ≥ k0 + n, n a small positive integer. This interpretation conforms
with the general view provided by zero energy ontology and the assignment of loop corrections
with sub-CDs.

Figure 11.1: The evolution of the ratio r = αem/αem,pred(p), where αem is the experimen-
tally determined value of the fine structure constant at electron length scale and αem,pred(pk) for
pk =

√
2mk = 2−(k−1)/2xm(CP2), k = 2, ..., 127, x ∈ {2−1/2, 2−1/4, 1}. Note that the three points

correspond to the lower end, middle point, and upper end of the p-adic mass scale range labeled by
the integer k0.

Figure 2 represents the ratio αemIm × Im(1/αem(p)) as a function of virtual photon mass for
p(k0) =

√
2xmk = 2−(k0−1)/2xm(CP2), k = 2, ..., 127, x ∈ {2−1/2, 2−1/4, 1}. Unless one assumes

that IR cutoff for loop momenta is larger than mass p, one encounters difficulties with unitarity
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since the pole in the integral defining the inverse of the bosonic propagator induces imaginary
part to the normalization factor X of the propagator. In order to avoid obviously non-physical
predictions the condition Im(X)αem � 1 should hold true. For the model explaining the
behavior of the fine structure constant at p2 = 0 limit Im(X)αem does not satisfy this criterion
as Fig. 5 demonstrates. The value of the imaginary part of normalization is typically 10 times
larger than that of real part.

Figure 11.2: The graph represents the quantity Im(X)αem, where Im(X) is imaginary pole con-
tribution to the normalization factor of the inverse propagator for momenta pk0 =

√
2mk =

2−(k0−1)/2xm(CP2), k = 1, ..., 127, x ∈ {2−1/2, 2−1/4, 1} and assuming kmax = 127.

Behavior of the fine structure constant for k0(p) < kmax option

Figures 1 and 2 allow to conclude that k0(p) < kmax is the only sensible option. Figure 3
illustrates the evolution of the fine structure constant with the interpretation forced by the above
findings for masses pk =

√
2xmk0 = 2−(k−1)/2xm(CP2), k0 = 90, ..., 127, x ∈ {2−1/2, 2−1/4, 1}

assuming that kmax = 89 defining intermediate gauge boson mass scale defines the IR cutoff
for the loop momenta. The behavior approaches rapidly the behavior at p2 = 0 limit. The
value of the ratio is 0.9352 at electron length scale giving αem(89) = 128.1561 to be compared
with the prediction αem(89) = 128.1631 p2 = 0 limit. The value of the fine structure constant is
somewhat larger for p =

√
2m89 than for p2 = 0 as expected for U(1) coupling constant evolution

involving only fermionic loops.

From figure 3 it is clear that fine structure constant can become slightly negative at the upper
end of the half octave kmax − 2 for kmax = 89. This raises the hope that hyperbolic cutoff
and therefore the entire coupling constant evolution apart from corrections coming from bosonic
loops could be fixed from the condition that gauge couplings vanish at this point. The physical
interpretation for kmax would be that k0 > kmax + 1 zero energy states which are within the
reach of the measurement resolution whereas for k0 ≤ kmax + 1 they correspond to quantum
fluctuations.

Contribution of a given p-adic length scale to the fine structure constant

Figure 4 illustrates how the contribution X(k) from a given p-adic length scale k to the normal-
ization factor of the inverse of the fine structure constant depends on k for kmax = M127 and
p =
√

2 × 2−k0/2mCP2, k0 = 89 (this corresponds to the non-physical option) What is plotted
is the contribution to the quantity Re(1/αem(p))αem as a function of k. The contributions from
negative and positive powers of u = cosh(η) to 1/alphaem(p) at given p-adic length scale k
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Figure 11.3: The evolution of the ratio r = αem/αem,pred(pk) for kmax = 89 as IR cutoff for loop
corrections and for momenta pk =

√
2mk = 2−(k−1)/2xm(CP2), k = 90, 127, x ∈ {2−1/2, 2−1/4, 1}.

-including the p-adic scale k0 corresponding to the momentum p of gauge boson, are of opposite
sign and tend to cancel each other.

Figure 11.4: The quantity X(k)αem characterizing the contribution from a given p-adic length scale k
to 1/αem(p) as a function of p-adic length scale k for IR cutoff kmax = 127 and p =

√
2×2−k0/2mCP2,

k0 = 89.

Figure 5 illustrates αem/αem(p)) for the physical option kmax = 89, k0 = 107.

11.4 How quantum criticality could predict the evolution
of hyperbolic cutoff?

In this section the path leading to the recent view about how quantum criticality fixes hyperbolic
cutoff as a function of the p-adic scale k is described in detail. To help reader I have added a
summary about how ideas involved and led also to a more detailed understanding of what cou-
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Figure 11.5: The quantity X(k)αem characterizing the contribution from a given p-adic length scale
k to 1/αem(p) as a function of p-adic length scale k for IR cutoff kmax = 89 and k0 = 107.

pling constant evolution really means. Also a connection with p-adicization and twistorialization
using Cutkosky rule based unitarization emerged during this process.

11.4.1 Summary about how ideas about quantum criticality have evolved

This chapter like all other chapters of books reflects much more the evolution of ideas rather than
its final outcome and a brief summary about what happened might minimize reader’s confusion.
The idea which led to the realization of what QFT limit of TGD could be is simple.

(a) Only fermions are fundamental particles in quantum TGD and bosons are fermion-antifermion
pairs with fermion and antifermion quantum numbers residing at the opposite 3-D light-like
throats of wormhole contacts which are surfaces possessing Euclidian signature of induced
metric and are glued to space-time sheets having Minkowskian signature of induced metric.
Feynman diagrams can therefore be understood in terms of space-time topology and space-
time metric. The interpretation of generalized Feynman diagrams differs dramatically from
that for stringy diagrams since vertices are points where light-like 3-surfaces join together
just like likes of ordinary Feynman diagram do. Stringy diagrams provide a space-time
correlate for the propagation of particle along two different routes followed by fusion and
interference.

(b) Only fermions are fundamental fields in TGD. This suggests that gauge bosons, which
have components of induced spinor connection and projections of CP2 Killing vector field
as classical geometric correlates, should emerge in some sense at QFT limit. In other
words, the action for QFT approximating TGD contains nothing but Dirac action coupled
to gauge potentials, and the bosonic action containing YM term plus infinite number of
vertices defined by closed fermion loops is generated radiatively. This approach leads to
a generalization of Feynman rules and in principle predicts all coupling constants and
their evolution without any input parameters except CP2 size and quantum criticality. p-
Adic mass calculations demonstrated already 15 years ago that one can understand the
mysterious proton mass to Planck mass ratio and elementary particle mass scales and even
masses number theoretically.

(c) An essential element of the approach is a formulation for UV cutoff. A cutoff in both mass
squared and hyperbolic angle is necessary since Wick rotation does not make sense in TGD
framework. By assuming a geometrically very natural hyperbolic UV cutoff motivated
by zero energy ontology one can understand the evolution of the standard model gauge
couplings and reproduce correctly the values of fine structure constant at electron and
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intermediate boson length scales. Also asymptotic freedom follows as a basic prediction.
Contrary to the original beliefs propagator generates a mass term unless the hyperbolic
cutoffs for time-like and space-like gauge boson momenta are in a definite relation. One
could criticize this relation and argue that perhaps super-conformal symmetries might help
to get the cancelation with identical cutoffs. It seems that this is not the case.

The UV cutoff for the hyperbolic angle as a function of p-adic length scale is the ad hoc element
of the model in its recent form. How to formulate quantitatively the quantum criticality in terms
of the behavior of the hyperbolic cutoff as function of p-adic length scale became therefore the
basic problem and led what might like a numerics inspired random walk -or perhaps better to
say sleep walk - towards what I believe to the solution of the problem. During this kind of heavy
numerical calculations one realizes how important it would be to have a colleague replicating
the calculations. One can never be quite sure about signs and numerical factors.

(a) The process gradually led to an improved understanding of the notion of coupling con-
stant evolution itself. The fermionic loop integral contains a propagator pole contributing
imaginary part to the inverse propagator and numerical calculations demonstrated that
this contribution is too large to be physically acceptable. Moreover, the sign of coupling
strength becomes negative for fermion masses above certain critical mass defining the IR
cutoff for the loop momenta. The only manner to avoid difficulties is to assume that loop
momenta are always below the p-adic mass scale associated with the momentum of the
gauge boson. The assumption eliminates the imaginary part of propagator and keeps cou-
pling constant strength positive. This also gives precise content to the notion of coupling
constant evolution since it assigns to the mass scape of p IR cutoff kmax such that for
k > kmax coupling constant strength is positive. A nice geometric interpretation is possible
in zero energy ontology: loop corrections corresponding to geometric details sufficiently
smaller than the length scale assignable to the mass squared.

(b) The next idea was that perhaps one could fix the cutoff on hyperbolic angle (hyperbolic
cutoff) by some naturally occurring condition. The first guess was that the sign of the
coupling constant strength changes at either end of the p-adic half octave for the mass
of gauge boson. The motivation to this idea could have come from the calculation of
the momentum at which the sign changes for the model reproducing physically reasonable
coupling constant evolution: at long length scales the sign indeed changes very near to the
end of the half-octave. Unfortunately this did not work.

(c) The next guess was that the value of boson momentum at which the sign changes is as
near as possible to the end of the mass squared octave. Tedious calculations in a rather
arctic numerical environment demonstrated that one obtains a discrete set of coupling
constant evolutions but that the hyperbolic cutoff is increasing as a function of k rather
than decreasing as required by the coupling constant evolution in standard model. The
increase can be understood as a positive feedback effect: the vanishing of the inverse of
the coupling constant at given length scale requires a contribution, which increases as a
function of the p-adic length scale since the inverse of the coupling constant itself increases.
The attempts to modify the model to modify this behavior failed.

(d) The next idea was that perhaps p-adic fractality helps to assign the change of the sign
at the ends of half octaves or to prime for which p-adic length scale is very near to that
defined by the end of the half octave (p ' 2k). p-Adic fractals were one of the first ideas
about p-adic physics and quite recently that also mathematicians have discovered them.
They are obtained by mapping reals to p-adics by the inverse of the canonical identification
I (or a proper variant of it) performing the arithmetics, and map the result back to reals
by I. I had not found any direct application except in the case of p-adic mass calculations
where p-adic mass squared is mapped to its real counterpart.

The guess was obvious. Express M-matrix element a function of standard Lorentz invariants
with dimensions of mass squared so that a very close connection with mass calculations
is obtained. Map the invariants to their p-adic counterparts using the inverse of I, carry
out the arithmetics defining the function in the p-adicity under question, and return to the
reality using I. Maybe this could allow to achieve the cancelation at the end of the p-adic
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octave for mass squared. I do not believe this anymore but again a wrong idea led to what
looks like a real increase in the understanding of quantum TGD and how p-adic and real
physics relate at the level of M-matrix. One nice finding was that p-adic existence forces
the loop masses to be above the mass of virtual gauge boson forced by purely physical
conditions. It however seems that one must introduce transcendentals like log(2) and π so
that an algebraically infinite-dimensional and basically non-algebraic extension of p-adic
numbers is unavoidable.

(e) The p-adicization program for M-matrix involve a technical difficulty which led to a further
progress. It is not possible to perform loop integrals in the p-adic context. All loop integrals
must be carried out in the real context and the resulting functions must be p-adicized. For
the bosonic vertices defined as purely fermionic loops this is not a problem but the situation
changes for the expansion of the M-matrix involving both bosonic and fermionic lines inside
loops. The same problem is encountered in the twistorialization and the solution of the
problem is based on Cutkosky rules allowing unitarization of the tree amplitudes in terms
of TT † contribution involving only light-like momenta seems to be the only working option
and requires that TT † makes sense p-adically. This idea is actually very near to the original
idea that only light-like momenta appear in loops so that twistorialization is elegant. TT †

indeed allows interpretation in terms of loops so that I was not after all totally silly. The
p-adic existence of the analytic continuation of TT † by dispersion relations poses strong
constraints on otherwise not completely unique continuation.

(f) After these steps I was mature to realize how to formulate quantum criticality in such
a manner that it could fix the hyperbolic cutoff and hence coupling constant evolution
uniquely. The fermionic loops defining bosonic vertices vanish when the incoming mo-
menta are massless. This is it! The condition emerges as a consistency condition: if the
vanishing does not occur for on mass shell bosons, one obtains T-matrix expressible in
terms of analytic continuation of TT † and one does not have vertex identified as something
irreducible anymore. The condition is suggested also by quantum criticality: the vanishing
of vertices is very much analogous to the vanishing of higher functional derivatives of the
action with respect to gauge fields at criticality (or derivatives of the potential function in
Thom’s catastrophe theory). Also the fact that only BFF vertex is fundamental vertex if
bosonic emergence is accepted suggests the conditions. The vanishing of on mass shell N-
vertices gives an infinite number of conditions on the hyperbolic cutoff as a function of the
integer k labeling p-adic length scale at the limit when bosons are massless and IR cutoff
for the loop mass scale is taken to zero. It is not yet clear whether dynamical symmetries,
in particular super-conformal symmetries, are involved with the realization of the vanishing
conditions or whether hyperbolic cutoff is all that is needed.

11.4.2 Searching for the solutions of criticality conditions

In the following criticality conditions are formulated more precisely and the results of the search
for their solutions are summarized.

A detailed definition of the criticality conditions

The general definition of criticality should conform with ak−b model for the coupling constant
evolution in the sense that a small deformation of this model should result from the quantum
criticality condition. Small deformation means that power law behavior should not be modified
considerably (the logarithm of hyperbolic cutoff should be linear in the logarithm of k) and the
normalization at small values of k should not change much. The evolution of fine structure
constant in the range kmax ∈ [89, 127] in turn fixes the value of a with high precision.

Before continuing it is convenient to introduce some notations. Let us denote by O(k) the half
octave associated with k containing momenta p = xmk = x2−k/2m(CP2), x ∈ [2−1/2, 1). Denote
by J(k, k−1) the junction of O(k) and O(k−1) containing the point p = mk. Define a distance
inside half octave as in music - that is as d in x = 2d−1/2 so that the d = 1/4 represents the
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middle point of the half octave and points with d < 1/4 are nearer to the lower and those with
d > 1/4 nearer to the upper end of O(k).

The detailed calculations of 1/αem(p, kmax) as a function of p = xmk0 in O(k0) in ak−b model
model demonstrate that the sign of 1/αem(p, kmax) becomes stably positive for k0 ≥ kmax + n,
where n depends on kmax. The conditions are summarized in the following. The criterion has
been that 5 values with distances d = (i−1)/2Nmax) in O(kmax+nmax) are positive (Nmax = 4).

n(kmax) = 9 for 1 ≤ kmax ≤ 4 ,
n(kmax) = 8 for 5 ≤ kmax ≤ 8 ,
n(kmax) = 7 for 9 ≤ kmax ≤ 14 ,
n(kmax) = 6 for 15 ≤ kmax ≤ 22 ,
n(kmax) = 5 for 23 ≤ kmax ≤ 39 ,
n(kmax) = 4 for 40 ≤ kmax ≤ 71 ,
n(kmax) = 3 for 72 ≤ kmax ≤ 109 ,
n(kmax) = 3 for k mod 2 = 1& 110 ≤ kmax ≤ 134 ,
n(kmax) = 2 for k mod 2 = 0& 110 ≤ kmax ≤ 134 ,
n(kmax) = 1 for kmax ≥ 135 .

(11.4.1)

For instance, for kmax ≤ 4 one has n(kmax) = 9 and for k = 127 n(127) = 3. n(kmax) is piecewise
constant and monotonically decreasing as function of kmax except in the range [110, 134] where
one has n(kmax) = 2 for even values of kmax and n(kmax) = 3 for odd values of kmax. Note
that n(kmax) = 2, where oscillations set on corresponds to the p-adic length scale assignable to
deuteron. The length scale range in which oscillations occur is between hadronic and atomic
physics length scales.

Asymptotia is reached after kmax = 134 - which is between electron’s and atom’s p-adic length
scales - as n(kmax) changes from 2 to 1. Y = 1/αem(p, kmax) must vanish at the lower boundary
O(kmax) in the asymptotic region. The first prime in this range is k0 = 137 defining the p-adic
length scale of atom. Note that fine structure constant 1/αem ' 137 is the fundamental constant
of atomic physics and its value at electron length scale equals to Kähler coupling strength. .

The behavior of the cutoff momentum as function of k

The attempts to realized the scenario for quantum criticality led to the question about the
behavior as a function of kmax of the cutoff momentum p at which the inverse of propagator
vanishes. If the propagator is continuous function of p this momentum should reside in the half
octave kmax + n(kmax.

The calculation of the momentum value at which the inverse propagator vanishes as a function
of kmax shows that above kmax = 61 the cutoff momentum p tends to be very near to the upper
end of the half octave for the ideal hyperbolic cutoff.

(a) The first thing to notice is that there is strong correlation between the graphs of n(k) and
p(k + n(k))/m(k + n(k)).

(b) The behavior of f(k) = p(k + n(k))/m(k + n(k)) brings in mind generalized 2-adic fractal
since it typically increases essentially linearly from a minimum value k0 up to maximum
value k0∆k at which the value is suddenly reduced. The values of ∆k appearing in the
graph are 3, 4, 5, 7, 16, 21, 1. For k ≥ 73 the behave stabilizes to a 2-adic fractal for which
odd values of k correspond to minima and even values of k maxima probably equal to

√
2.

The numerical approach does not allow to tell whether this is the case. This means that the
cutoff momenta associated with even k and its odd follower are very nearly equal. Similar
situation sharpens at higher momenta and also when the end point is near 1.

(c) The calculation for k ∈ [110, 134] gives n(kmax) = 3 for odd kmax and n(kmax) = 2 for even
kmax and f(k) = 1. For k = 135 n = 1 is established. This is an alternative mechanism
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Figure 11.6: The graph represents the ratio p(k + n(k))/m(k + n(k)) of the critical mass to the p-
adic mass scale having variation range [1,

√
2]. Second graph representing n(kmax) demonstrates the

correlation between the two plots. The values of the calculated ratio at the upper end are not exact
since the convergence to the actual value, presumably equal to

√
2, is so slow that calculation does

not reach the zero in the available calculation time.

guaranteing that the values of cutoff momentum are very near to each other. For large
values of kmax the

(d) The corresponding powers 2∆k could also correspond to primes near them so that one
would have 2-adic fractality. The behavior of f(k) resembles population dynamics for
which n(k) serves as a control parameter with breakdown of population induced by the
reduction of n(k) n(k) would be analogous to a temperature like parameter whose decrease
reduces the population. Population however immediately adapts to the reduced value of
the temperature. Above k = 73 the dynamics becomes more like that of market economy
and for large values of k not shown in the graph situation stabilizes to that of minimum
population.

One might think that the change of the sign of the fine structure constant in apparently or
genuinely discontinuous manner at the end point of the half-octave is due to the logarithmic
singularity which moves from the range [1, umax] outside it u = umax and in this manner causes
discontinuity. This cannot be the case since the value of nmax is 3 or 2 and even large in the
region considered. At this moment the underlying mechanism is not understood.

This raises the question whether the phenomenon occurs only for the values a, b of the parame-
ters of the model consistent with the coupling constant evolution. The emergence of p-adic mass
scales as preferred ones would of course be a fantastic support for the model. The experimenta-
tion varying values of a (a = .1 and a = .2) however gives similar qualitative behavior at large
values of k. For instance, for a = .2 p is at either end of the half octave for kmax = 107, 108, 109.

One can wonder whether the hyperbolic cutoff quite generally correspond to either end point of
the half octave or a momentum given by p-adic mass scale as near as possible to the end point.
One can consider various forms of the hypothesis.

(a) The critical momentum at which the amplitude vanishes is always at either end point of
the the half octave kmax + n(kmax). The following considerations demonstrate that this
option fails.

(b) The zero of X = 1/αem(kmax) is as near as possible to either end point of the half octave
kmax+n(kmax)−1. The technical formulation is as the condition that both X and ∂umaxX
vanish so that dumax/dp at curve X = 0 vanishes at criticality. This would mean kind of
fixed point property. This option predicts the increase of umax as function of kmax that
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is asymptotic freedom for all bare couplings. If the value of hyperbolic cutoff is small
enough for kmax = 1, it could increase for small values of kmax and start to decrease
somewhere around kmax = 74. Since the behavior at long length scales reflects only the
net contribution from short length scales it might be possible to obtain consistency with
the values of the fine structure constant at electron and intermediate boson length scales.

(c) A further option is that a discontinuous change of the sign and magnitude at the end point
- taking place for large values of kmax at least apparently - occurs quite generally. One
could also argue that the inverse of coupling strength must be non-vanishing at the cutoff
momentum to avoid the divergence of the propagator as momentum approaches this limit.
The attempts to realize this scenario as a small deformation of ak−b model however fail: it
turns that X for small values of k is continuous and preserves change sign at the end point
of the half-octave fixed by ak−b model.

(d) The behavior of 1/αem(kmax, p) near critical momentum brings strongly in mind 2-adic
fractals or their generalization which might be called 2k-fractals. The characteristic feature
would be discontinuities at powers 2k. This behavior could be more or less equivalent with
p ' 2k-adic fractality. This raises the question whether the bosonic propagator should be
replaced with its fractal variant so that one would obtain discontinuities and even zeros of
1/αem(kmax) near or at the end points half-octave for a small deformation of ak−b model
and whether primes p as near to 2k as possible would emerge naturally in this manner.

In the following these options are discussed in detail.

The first model for the hyperbolic cutoff

Previous findings motivate the following concrete proposal.

(a) Y = 1/αem(p, kmax) vanishes at the junction J(kmax + n(kmax), kmax + n(kmax) − 1)
that is for momentum p = m(kmax + n(kmax)) representing the maximum momentum in
O(kmax+n(kmax) if the point at which the sign changes in O(kmax+n(kmax)−1) occurs is
nearer to this junction. If the sign changes nearer to the junction of J(kmax+n−1, kmax+
n − 2) so that d > 1/4 for the point in question, the sign change should take place at
J(kmax + n− 1, kmax + n− 2) so that one has p = m(kmax + n(kmax)− 1).

(b) A more refined option for the identification of the cutoff momentum p would give a con-
nection with the p-adic length scale hypothesis. The junction could be replaced with
the p-adic mass scale p =

√
qm(CP2) ∈ O(k) for prime q ∈ (2k−1, 2k) and as near as

possible to the end point of the half octave. One would have k = kmax + n(kmax or
k = kmax + n(kmax − 1 depending on whether the point at which sign changes is nearer
to m(kmax + n) or m(kmax + n− 1). This would provide an additional flexibility possibly
significant for small values of kmax where small changes of the parameters affect dramati-
cally the evolution of coupling constants in longer length scales. This option would explain
the special importance of Mersenne primes and exclude Fermat primes. Note however that
the primes in question are rather large and dense already for kmax = 1: since the prime in
question is around 210 the variation ∆p/p is of order 2−10 as one moves from the end of
the half octave to the nearest prime.

The computer code searching for the critical hyperbolic cutoff as a small deformation of the
cutoff consistent with coupling constant evolution has rather simple structure. Similar procedure
applies also if one assumes that the hyperbolic cutoff corresponds to a p-adic length scale near
the end point of the half octave.

(a) The program proceeds from kmax = 1 one by one using the information obtained in previous
steps to find hyperbolic cutoff at given value of kmax as a small deformation of that predicted
by ak−b model.

(b) At each step the program calculates the values of Y = 1/αem(p, kmax) for N points x(i) =
2−1/2+(i−1)/N , i = 1, N + 1 in the interval O(kmax + n(kmax)− 1), finds whether the sign
changes occurs near the lower or upper end, and selects cutoff momentum accordingly as
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m(kmax + n(kmax)) or m(kmax + n(kmax − 1). After this the program searches for two
values of hyperbolic cutoff for kmax such that the signs of Y for them are different and
finds the value of hyperbolic cutoff giving zero of Y by (say) interval halving.

This simple picture could fail and indeed seems to do it.

(a) n(kmax) need not remain same when cutoff ak−b is replaced with the perturbed cutoff.
Hence it seems that one must regard n(kmax = 1) as an integer labeling different coupling
constant evolutions characterized by corresponding hyperbolic cutoff.

(b) Preliminary calculations also support the conclusion that for physically sensible values of
hyperbolic cutoff for kmax = 1 the vanishing conditions can be satisfied for kmax = 1 and
kmax = 2 at the lower end of the interval O(kmax +n(kmax) but that already for kmax = 3
the conditions fail. The reason is that the value of J(kmax + n(kmax), kmax + n(kmax)− 1)
is small and positive and 1/αem(p, kmax) has positive minimum here so that zero is not
possible. In the junction J(kmax+n(kmax)−1, kmax+n(kmax)−2) 1/αem(p, kmax) is large
and negative and unrealistically large hyperbolic cutoff would be required.

These findings suggest a connection with the p-adic length scale hypothesis. In its strongest
form it however cannot help in the problem at hand.

(a) In the spirit of criticality one can consider the hypothesis that the p-adic prime in question
is as near as possible to the zero junction but below the power of 2 characterizing it.
The cutoff momentum would thus correspond to the largest possible one for the curve
Y (umax, p) = 0 in the p-adic half octave. In this manner a finite number of scenarios would
result since the parameters would be n(kmax) and the set of values of hyperbolic cutoff
labeled by these primes. For n(kmax = 1) = 9 these primes would belong to the upper half
of the octave [28, 29]. The list of these 25 primes is

367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479,

487, 491, 499, 503, 509 .

The problem of this option is that it allow in principle quite large number of alterna-
tives since for each value of kmax branching becomes possible unless one poses additional
conditions such as decrease of the hyperbolic cutoff.

(b) J(kmax + n(kmax), kmax + n(kmax) − 1) for k = 3 corresponds to a minimum of Y =
1/αem(p, kmax) as a function of the hyperbolic cutoff umax. This inspires a refined hypoth-
esis attaching a genuine physical meaning to the preferred prime p(kmax) in accordance
with the notion of criticality stating that coupling strength is extremum with respect to
some variable, most naturally the parameter umax. Thus the hyperbolic cutoff for a given
kmax would be such that Y vanishes for p(kmax) and is minimum (or possibly maximum) as
a function of umax or momentum p. The only natural choice is umax. Thus (Y = 0, umax, p)
could be interpreted as a fixed point of the coupling constant flow with respect to hyperbolic
cutoff.

(c) The geometric picture would be following. The graph of Y as a function Y (p, umax) of
momentum p and hyperbolic cutoff umax is a 2-D surface, and the zeros of Y define a curve
X(p, umax) = 0 as the intersection of Y = 0 plane and the surface Y (p, umax) = 0. One
would have the conditions

Y (p, umax) = 0 ,

∂Y
∂umax

= 0 .
(11.4.2)

The constancy of Y along X implies the condition

∂Y

∂umax
+
∂Y

∂p

dp

dumax
= 0 .

(11.4.3)



718 Chapter 11. Quantum Field Theory Limit of TGD from Bosonic Emergence

along the curve X. Together these conditions imply that the extremum satisfies either of
the following conditions

∂Y
∂p = 0 or dp

dumax
= 0 . (11.4.4)

In the generic case both partial derivatives can vanish only in a discrete set of points in the
space spanned by Y, umax and p and the restriction to the plane Y = 0 makes the solution
set empty in the generic case. Thus the physically acceptable solutions would correspond
to the turning point of the curve X as du/dp changes its sign. The cutoff momentum would
thus be as near as possible to the upper end of the half octave. In the case that no turning
point exists, one can choose the umax to correspond to the end point of half octave so that
the original picture results as a special case.

(d) If prime p(kmax) as near as possible to the minimum point p-adic length scale hypothesis
is realized. The really good (probably too good!) news would be that prime corresponds to
the exact minimum. This variational principle fixes coupling constant evolution to a high
degree even without the p-adic length scale hypothesis.

Several methods to find the zero of the derivative of Y with respect to umax have been tried since
the severe restrictions posed by the numerical environment require efficient calculations. The
fastest numerical realization for the search of umax found hitherto is based on the assumption of
differentiability. The idea is of course that differentiability allows to extract global information
from local information. For instance, interval halving method assumes only continuity and is
much slower. Differentiability means Y can be expanded as Taylor polynomial with respect to
p for a constant value of umax and vice versa. Repeated use of the numerically estimated first
order Taylor polynomial allows to find the zero of both Y and zero of its partial derivative with
respect to umax.

(a) Fix the interval O(kmax+n(kmax)). By a guesswork find a value of umax for which the sign
of Y is different at the end points of the interval. Calculate the derivative of Y numerically
with respect to p at the lower end of the half-octave and approximating Y by first order
Taylor polynomial estimate the value of p at which Y = 0 holds true. At this point calculate
the derivative of Y again and repeat the estimate.

(b) To find the zero of derivative of Y with respect to umax at Y = 0 estimate numerically first
and second derivative of Y with respect to umax numerically and from the first order Taylor
polynomial for the first derivative estimate the value umax at which the first derivative
vanishes.

Note that there is a connection with renormalization group theory. The negative contribution
from the pole must compensate the contributions from shorter p-adic length scales, which them-
selves must cancel to a high degree. Certainly they can do it. The contribution from highest
scale would compensate the change of the contributions from shorter scales resulting from change
of the p-adic length scale of momentum. The vanishing conditions give kind of renormalization
group equation governing the stationary situation and states that the hyperbolic cutoff in scale
kmax must be such that its contribution cancels the change of the k < kmax contributions due to
the increases of the cutoff momentum. This condition is not not quite all since it only assigns to
Y = 0 a definite value of p but leaves cutoff open. The vanishing of derivative gives additional
condition.

About the results of preliminary calculations

Preliminary calculations carried out up to kmax = 9 lead to sinh(ηmax)(1) = 0.20600945079286
and to a value of hyperbolic cutoff which starts to gradually increase at kmax = 3 as the table
below shows. In the table the label ’cr’ refers to the cutoff implied by quantum criticality and
’id’ corresponds to the cutoff reproducing the coupling constant evolution.
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kmax 1 2 3
cr 0.20600945079286 0.14741274374679 0.12231921784712
id 0.22050469512552 0.17501469250309 0.15288941641253

kmax 4 5 6
cr 0.12717022328504 0.13289051287886 0.13935265256642
id 0.13890925349465 0.12895192798125 0.12134841022403

kmax 7 8 9
cr 0.14687347939079 0.15423164581071 0.16257461579696
id 0.11527058427996 0.11025234756276 0.10600760059852

(11.4.5)

The increase can be understood as a positive feedback effect.

(a) The calculation predicts n(kmax) = 9 for all kmax ≤ 9 whereas the ak−b model gives
kmax = 8 for 4 ≤ kmax ≤ 7 and kmax = 7 for 8 ≤ 12. The problem must relate closely to
the sticking to a fixed value of kmax.

(b) For a given kmax the contribution from kmax,i + n(kmax,i), kmax,i < kmax to Y for p in
O(kmax + n(kmax) − 1) is positive unless one has nkmax < nkmax − 1 in which case both
values of kmax give negative contributions. Hence the hyperbolic cutoff must increase in
order to produce large enough negative contribution.

(c) By a judicious choice of sinh(ηmax)(kmax) having a discrete set of possible values in one-one
correspondence with different values of n(kmax), the feedback effect should become negative
and guarantee that n(kmax) approaches to unity fast enough. A sufficient reduction of the
starting point estimate for sinh(ηmax) for kmax ≥ 4 should induce a reduction n(kmax) and
allow a realistic evolution. Also the initial value sinh(ηmax)(1) might require changing to
a larger or smaller one.

The experimentation by varying the value of sinh(ηmax)(1) does not give encouraging results.
Hyperbolic cutoff begins to increase for all series listed below.

k 1 2 3 4

sinh(ηmax(k)) 0.09660156250000 0.07527753426130 0.05642313113454 0.058050094309350
0.13951072443182 0.10638078636486 0.08206464660889 0.08475010008178
0.16883146306818 0.12598096859481 0.09976082012596 0.10329475255049
0.20600945079286 0.14741274374679 0.12231921784712 0.13890925349465
0.25472427728834 0.20217479286468 0.15842711440463 0.17679278339077

(11.4.6)

What could go wrong? These calculations are based on the assumption that the critical momen-
tum is nearer to the lower end of the critical half-octave at which Y changes sign. p could be
however also nearer to the upper end of the critical half-octave. The most general option allows
both alternatives. If even and odd values of k correspond to different alternatives, the values of
critical momenta are near to each other and kmax contribution must compensate a contribution
from shorter scales which is as small as possible since it corresponds to the difference of the
critical momenta. This could allow to avoid the increase of sinh(ηmax)(k). At the next step
the distance between momenta would be however nearly two octaves in the worst case unless
the value of nmax is reduced by unity and this could induce to the increase of the cutoff. Only
numerical experimentation can tell whether this option works. The experimentation with the
option sinh(ηmax(1)) = 0.20600945079286 yields disappointment. For instance, the value of
cutoff can be reduced for kmax = 4 but it returns back to the earlier value at kmax = 5.

The increase at small values of kmax need not be a catastrophe as I thought first.
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(a) The increase of umax as function of kmax is asymptotic freedom for all bare couplings and
this is in accordance with GUT type thinking.

(b) As already found, at large values of kmax the calculations show that critical momenta
correspond to end points of the half-octaves for ak−b model so that the decrease of the
hyperbolic cutoff conforms with criticality. For instance, for a = .20, b = 1/3 the lower
end of the half-octave corresponds to the zero X in the range kmax = 89, ..., 91 (I have not
checked how long interval gives the same result).

(c) If the value of hyperbolic cutoff is small enough for kmax = 1, it could increase for small
values of kmax and start to decrease for some value of kmax < 89. Since the behavior at
long length scales reflects only the net contribution from short length scales, it might be
possible to obtain consistency with the values of fine structure constant at electron and
intermediate boson length scales. Unfortunately the numerical calculations are very slow
with the computer resources available so that it takes time to check this.

The calculations done for the option sinh(ηmax(1)) = 0.09660156250000 up to kmax = 29 are
not encouraging in this respect.

Figure 11.7: The hyperbolic cutoff sinh(ηmax(k)) for the model of criticality with sinh(ηmax(1)) =
0.09660156250000 assuming that critical momentum corresponds to the vanishing of both 1/αem and
∂umax1/αem so that critical momentum as near as possible to an end point of half octave.

The growth of the hyperbolic cutoff is in good approximation exponential with a slowly increasing
rate parameter r. At certain value of r starts to increase rapidly as the figure 11.4.2 demonstrates.
This kind of behavior is definitely non-physical.

Could one consider any cure to the situation? As already noticed, the relationship between
the time-like and space-like hyperbolic cutoffs forced by the cancelation of the radiative mass
is number theoretically cumbersome, and it might be that super-conformal symmetry or some
more general symmetry could guarantee the cancelation of the radiative mass just as space-time
super-symmetry does this in SUSYs [B71] . This would allow the time-like and space-like cutoffs
to be identical and affect considerably the loop corrections since space-like corrections would
dominate and one would expect behavior of the hyperbolic cutoff to be roughly a/k rather than
ak−1/3. At this moment it is not possible to do any quantitative calculations in this respect
without making simplifying ad hoc assumptions.

11.4.3 Could p-adic fractality solve the problems?

The above described proposals for how quantum criticality could fix coupling constant evolution
in a manner consistent with ak−b model might fail. The fundamental observation is that critical
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Figure 11.8: The ratio r = cut(k + 1)/cut(k) for the hyperbolic cutoff cut(k) ≡ sinh(ηmax(k)) as
function of k for three values of cut(1) is in reasonable approximation constant so that cut(k) increases
exponentially. For certain critical value r begins to increase rapidly.

momenta correspond to an end point of the half octave for large values of k automatically and
2k-adic behavior and discontinuities at the end point of the half octave emerges naturally at this
limit. The obvious question is whether and how could one generalize this behavior. Supercon-
formal invariance and some more general symmetry has been already mentioned. Or should one
perhaps replace the inverse propagator with p-adic fractal to obtain discontinuities or perhaps
even zeros at the end points of half-octaves for all values of kmax? p-Adic thermodynamics in
which mass squared and probabilities are p-adic valued and mapped to their real counterparts by
canonical identification [K51, K31] indeed suggests an approach based on p-adic fractalization.
One can imagine several variants of this fractalization.

(a) One could replace inverse propagator as a function of mass squared with its p-adic fractal
variant obtained by the fractalization procedure meaning the replacement of p2 (mass
squared) with its 2k-adic variant in the argument of 1/αem(kmax), the replacement of
ordinary algebraic operations with their 2k-adic or p-adic counterparts and the mapping
of the resulting p-adic valued function back to the reals by the inverse of the canonical
identification. The proposed model yielding the real propagator would remain an exact
part of the model. The problem is that p-adicization respects the zeros of function so that
the zeros of 1/αem(kmax) would not be shifted to the end points of half-octaves.

(b) The loop integral for a given half octave O(k), 1 ≤ k ≤ kmax, is the basic building block
of 1/αem(kmax). This suggests that it is these contributions which are 2k-adicized or p-
adicized for p ' 2k. The sum over these contributions carried out using 2k- or p-adic
arithmetics would bring in the fractality. This would make possible to shift the zeros near
the end points of the half octave with a proper choice of hyperbolic cutoff or even the
replacement of zeros by discontinuous change of sign. If the detailed fractalization recipe
is such that for large values of 2k or p real topology results in a good approximation, a
consistency 2k-adic fractality suggested near cutoff mass also by the number based real
approach for large values of kmax is obtained.

(c) One could also consider the option in which one performs p-adic fractalization for the
integrand appearing in the loop integral. This option however means quite a dramatic
departure from the original model. For instance, the relationship between time-like and
space-like hyperbolic cutoffs are lost guaranteing masslessness would be lost. Also the
definition of the p-adic variant of the momentum space represents a non-trivial challenges
and one should treat mass squared and hyperbolic angle and other angles in non-symmetric
manner in order to avoid the loss of Lorentz invariance. If all these coordinates are p-
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adicized there is algebraic interaction between all of them and hopes about reasonably
simple numerics are lost. Already these reasons are enough to not consider this option.
A further generalization would be the replacement of the real loop integral by its possibly
existing p-adic variant but the non-existence of satisfactory definition of p-adic definite
integral is discouraging.

The general recipe for p-adic fractalization

p-Adic fractals are obtained by replacing real analytic function fR(x) with integer valued coef-
ficients with its p-adic variant fp(x). One maps first the argument xR to its p-adic variant xp
by the inverse I−1 of the canonical identification, calculates f(xp) interpreted now as p-adically
analytic function, and then maps the f(xp) to a real number (f(xp))R by I. Since I does not
commute with arithmetic operations, one obtains a fractal which has typically discontinuities at
powers of p. By suitably generalizing the notion of canonical identification one can consider also
functions for which the coefficients of Laurent series are rational numbers. Allowing algebraic
extensions of p-adic numbers one can consider also algebraic coefficients.

Canonical identification allows several variants.

(a) The simplest variant of a p-adic fractal is obtained by using the rule
∑
xnp

n → fp(x) =∑
xnp

−n to map p-adic numbers to their real counterparts in a continuous manner. The
inverse of the canonical identification is unique for numbers of form 2kn, n a finite integer.
If n is p-adic integer infinite as a real integer the inverse image of its image is two-valued.
This corresponds to the fact that the pinary expansion for real numbers is not unique when
the number of pinary digits is infinite(for instance −1 = (p− 1)(1 + p+ p2...) and 1/p are
mapped to same real point p in canonical identification).

(b) Canonical identification is continuous but does not commute with the basic arithmetic
operations since in general one has (x + y)R 6= xR + yR and (xy)R 6= xRyR). For integers
smaller enough than p one has however commutativity so that addition and multiplication
and also subtraction if it does not produce negative number commute in approximate sense
with I.

(c) One can consider also a canonical identification based on writing 2-adic expansion in the

form x =
∑
xnp

nk, xn =
∑k−1

0 ynrp
r. This map maps all integers smaller than pk to

itself. One might speak of pk-adic fractal in this case. Effective p-adic topology could be
interpreted in terms of 2k-adic fractality since 2k-adic thermodynamics and p-adic thermo-
dynamics for for p ' 2k give very similar predictions for particle masses. p-Adic length
scale k could correspond to the canonical identification labeled by k and at long length
scales ordinary topology would gradually establish itself.

(d) The problem of the simplest variants of canonical identification is that they do not respect
even approximately real division: except in special cases I(m/n) does not have much to do
with I(m)/I(n) if one expresses m/n as an infinite series in powers of p as is always possible.
Physically I(m/n) ' I(m)/I(n) property would be however desirable approximately at
least. The modification of the canonical identification respecting this property is based on
the unique representation of the rational number as q = m/n (m and n have no common
factors) and the definition of the canonical identification as q → I(m)/I(n). Here also pk-
adic variant of I could be used so that rationals with m < pk,n < pk would be mapped to
rationals. In this manner canonical identification could be generalized to functions f(x) for
which Laurent series has rational valued coefficients. Also algebraic coefficients are possible
if algebraic extensions of p-adics are allowed.

(e) The arithmetic operations on p-adic side - sums in the recent case - should be performed in
such a manner that the outcome is a rational number mapped to real side by the inverse of
the variant of canonical identification used. This is possible in a unique manner if pinary
cutoff for the expansions in powers of p is introduced. Also the fact that infinite series
in powers of p appear makes pinary cutoff necessary. The sum of the contributions from
different p-adic half-octaves would reduce to sums of rationals and could be carried out
in standard manner by forming a common denominator as a product of denominators.
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The representation as a generalized rational in which m and n are p-adic integers infinite
as real integers is not unique since m/n can be always represented as an infinite integer
when n is not divisible by p. The recipe for forming sums of rationals by forming common
denominator would formally work but in practice pinary cutoff is unavoidable in any case.

(f) A conceptual problem related to the canonical identification is that it is not general coor-
dinate invariant concept so that one encounters potential problems with symmetries. In
the recent case however only mass squared defines a unique coordinate as Lorentz invariant
and one circumvents this kind of problems.

(g) Canonical identification maps all p-adic numbers to non-negative ones and minus sign has
no natural p-adic counterpart so that p-adic fractalization of functions having also negative
values requires a special care.

i. The first problem is that it is not clear how to map negative real numbers to their
p-adic counterparts. In the recent case however absolute value of p2 appears as the
argument of the propagator so that this is not a problem. If one just takes the real
analytic function with rational Laurent series and interprets it as its p-adic variant,
canonical identification gives always a non-negative real function. For the inverse of
the propagator one does not encounter this problem for physical values of p since non-
negativity dictates the cutoff momentum. On the other hand, p-adicization would yield
a non-negative value of 1/αem everywhere and one could consider the possibility that
this could be the deeper reason why for the p-adic fractalization. p-Adic fractalization
might take place also in the confinement phase transition in which the coupling strength
becomes negative in QFT based on real topology for mass squared.

ii. One could also separate the sign of real function by decomposing the domain of def-
inition to regions in which the function has definite sign. The absolute value of the
function could be mapped to its p-adic counterpart and mapped back by canonical
identification in this approach. This kind of separation of sign factor is carried out also
in Lebesque integral.

(h) Imaginary unit is also a potential problem, which is however absent if the physically un-
avoidable momentum cutoff eliminating pole contribution to the propagator is posed. For
p mod 4 = 3 imaginary unit can be introduced via an algebraic extension and it is natural
to map real imaginary unit to its p-adic counterpart in this case. For p mod 4 = 1

√
−1

however exists as a p-adic number and the real image of the p-adicized complex function is
real function in this case so that it seems that one must pose the condition p mod 4 = 3
or treat the real imaginary unit just like minus sign.

p-Adic fractalization of propagator

The first rough sketch for the criticality realized in terms of p-adic fractalization would be as
follows.

(a) One begins from the analytic expression for the contribution from the half-octave k ≤ kmax,
maps momentum p to p-adic number by I−1, replaces the contribution with its p-adic
variant, performs the p-adic summation of the contributions with various values of k and
maps the result to reals by I. For a given value of kmax 2kmax+n(kmax)-adic fractalization
based on I(m/n) = I(m)/I(n) takes place. Alternatively, p-adic fractalization with p '
2kmax+n(kmax) is carried out.

(b) Hyperbolic cutoff as a function of kmax is required to be such that the cutoff momentum
p is at the either end of the half-octave. Stronger condition would be that 1/αem vanishes
at the end of the interval.

(c) As far as numerics is considered, the new element is the replacement of the analytic repre-
sentation of the loop integral for given value of k with its p-adic variant. This representation
exists with certain restrictions on the values of p/mk.

i. Integrals of rational functions with integer coefficients are in question and give rational
functions and logarithms. In the case of logarithms problems are encountered unless
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one can reduce everything these functions to log(1 +x) existing p-adically for |x|p < 1.
One must of course introduce log(2) since the asymptotic contribution is proportional to
log(2). Also π must be introduced the extension of p-adic numbers infinite-dimensional
in the algebraic sense. These restrictions might well force the p-adic momentum cutoff
number theoretically.

ii. The inspection of the formulas for the integrals involved shows that for momenta in
the region where one cannot expand the logarithms of integrands as power series the
logarithms make the situation very complex. This provides number theoretic justifica-
tion for the introduction of the cutoff of loop momenta larger than the virtual mass of
gauge boson. It also eliminates the non-physical imaginary pole contribution and one
gets rid of the problems posed by the negative values of the propagator.

iii. In the asymptotic region where xk,r = 2−r×(p/m(kmax)), r ∈ {1/2, 1} (p denotes mass
here) is small both in real and p-adic sense, the situation is relatively simple. p2 is
indeed of order O(p) or O(2kmax+nkmax) p-adically so that this condition is satisfied. If
powers of umax and xk,r exist p-adically, various rational integrals exist p-adically. Also
log(umax) must make sense p-adically and umax = 1+O(p) is the minimal requirement
guaranteing this. At least

√
2, log(2), and π must belong to the extension of p-adic

numbers used. For a genuinely p-adic topology the cutoff hierarchy depends on p-adic
prime p but for 2k-adic case cutoff hierarchy is same for all values of k so that 2k-adicity
looks a more appropriate option.

(d) The basic challenge is the summation of the contributions from different value of kmax. For
suitably chosen cutoffs this might be possible to carry out analytically and the condition
that this is possible might be part of quantum criticality. The condition that the contri-
bution is a function of p/mk with rational or at most algebraic coefficients is expected to
pose strong conditions on the form of the hyperbolic cutoff as function of kmax.

p-Adic fractalization of the entire perturbation theory?

p-Adic fractalization works also for the vertices and would mean the mapping of the various
contributions to the n-point function to their p-adic counterparts, performing the summation,
and mapping the result back to the reals by I. If all contributions depend on Lorentz invariants
such as sij = (pi − pj)2 and εi · pj , p-adic fractalization can be carried out in Lorentz invariant
manner. The invariant mass squared sU for any subset U of particles defines this kind of
invariant and sU is same for a subset and its complement so that for Ni → Nf scattering there
are 2Ni+Nf−1 invariants of this kind. The set of these invariants and thus canonical identification
is unique. The entire perturbation series for the coefficients of Lorentz invariant form factors
could be replaced with its p-adic variant with summation over various contributions carried out
using p-adic arithmetics. Unless one treats separately the minus sign and imaginary unit, the
resulting amplitudes would be non-negative numbers and interference effects would occur at the
p-adic level only.

There is an objection against this picture. One can speak about interference in real and p-
adic sense. How does one know which sums appearing in perturbation theory are carried out
at the real side and which sums are performed at the p-adic side? An illustrative example is
F → BF → F loop diagram contributing to the fermion propagator. The integral must be
carried at the real side. What bosonic propagator should one use? The real propagator or its
p-adic fractal variant? If p-adic fractal variant is used, a problem is caused by the fact that it
does not have any nice analytic expression and the effect of canonical identification is not on an
analytic function. Hence it would seem that one must calculate the basic building blocks n:th
order contribution at the real side and then p-adicize. Hence p-adicization would be applied to
the bosonic propagator itself rather than to the contributions from different p-adic length scales
and one would lose the original motivation for the p-adic fractality.

Loops are also the basic problem of the twistor approach since the particles in the loops are
massive and twistorialization for them is not elegant. The unitarization using Cutkosky rules
meaning the addition of TT † term to the tree amplitude however allows twistorialization since
loops are avoided completely and only light-like momenta are involved. This procedure could
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used also to perform p-adicization and p-adic fractalization. Fermionic loops giving the vertices
could be calculated in the real context and continued to the p-adic side. p-Adicization works
for T-matrix if TT † allows it. The same procedure would make possible twistorialization, p-
adicization, and p-adic fractalization.

A more radical possibility is that the loops associated with the T -matrix vanish if the incoming
and outgoing particles are on mass shell so that only tree diagrams contribute to T -matrix. The
interpretation would be in terms of quantum criticality. Also in this case one must however
include TT † contribution to guarantee unitarity since the cutoff on loop momenta implies that
the corresponding contribution to the discontinuity of T vanishes. Therefore this approach
seems un-necessarily complicated and leads to conditions which are very probably too strong.
The vanishing of the N-vertices defined by fermionic loops for on mass shell bosons however
makes sense and could be interpreted as a precise quantitative realization of quantum quantum
criticality and bosonic emergence. This condition has also generalization to massive case and
also to full quantum TGD. In the following both these options are discussed in more detail.

What about unitarity?

One criticism of the proposed vision is that the realization of unitarity in terms of Cutkosky
rules do not seem to be consistent with the cutoff for loop momenta. In the following various
options for defining unitary S-matrix are considered.

1. Feynman graphics for zero energy states

(a) In negative energy ontology standard view about Feynman graphics can be expressed as
the rule

T+− = T+−×̂T+− . (11.4.7)

Here ×̂ is product involving sum over virtual momenta restricted only by the p-adic cutoffs
on mass squared and hyperbolic angle. There is analogy with projection operator for the
extended product ×̂ but with incoming and outgoing momenta restricted to on mass shell.

(b) Cutkosky rules can be expressed as

Disc(T+−) = T+−T+− , (11.4.8)

where the latter product is over on mass shell states with a given particle number in the
intermediate state. Cutkosky rules imply that unitarity does not depend on the values of
coupling constants and is much stronger condition than mere unitarity. Quantum criticality
however requires special values of coupling constants so that either Cutkosky rules fail or
some additional conditions emerge.

(c) The application of Cutkosky rules to the above expression however yields a cold shower since
the p-adic cutoffs for the loop momenta imply that the discontinuity vanishes. The only
manner to guarantee unitarity is by adding the TT † contribution from massless intermediate
states by hand as is done in the unitarization of twistor diagrams. This in turn make it
un-necessary to introduce other than on mass shell loops and the original idea that loop
momenta are light-like [K85] is realized. This method also allow p-adicization and p-adic
fractalization if TT † contribution makes sense p-adically. Skeptic reader can of course
wonder why p-adic effective topology in momentum space would be needed. For p-adic
mass calculations the answer is clear but for T-matrix far from so.

(d) The p-adic fractal variant Tp of real T -matrix satisfies unitarity conditions in standard form
only if the condition

(TT †)p = TpT
†
p (11.4.9)
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holds true. The simplest possible toy example about the conditions is the product of two
p-adic integers x =

∑
xnp

n and y =
∑
ynp

n. xpyp = (xy)p for the simplest form of
canonical identification only if the conditions

∑
m≤n xn−mym < p holds true. It could

be possible to satisfy unitarity conditions with a suitable cutoff for pinary digits for the
canonical identification used, at least in the measurement resolution used.

(e) Could also fermionic loops be defined in terms of Cutkosky rules? If so, one could not
introduce cutoffs and could not understand coupling constant evolution in the proposed
manner. There is also another objection against this picture. In the case of massless
particles the rate r(B → FF ) in which all momenta are collinear would define the absorptive
part whose continuation would define the inverse of the bosonic propagator but only at mass
shell where the propagator vanishes. This would mean the vanishing of r which might make
sense due to the extremely singular kinematics. Hence this approach fails.

(f) The vanishing of N-vertices for on mass shell momenta of incoming bosons would however be
a natural condition fixing the hyperbolic cutoff since otherwise one should add unitarizing
contribution and would not have a genuine vertex anymore. The vanishing of all vertices
except BFF vertex on mass shell would also conform with the fact that Dirac action defines
the entire theory. One testable implication of the vanishing condition is the prediction that
the box diagram for 2→ 2 scattering of gauge bosons vanishes and the scattering amplitude
corresponds to the absorptive contribution to the annihilation of two gauge bosons to two
fermion and antifermion.

(g) Furry’s theorem states that fermionic loops vanish for odd number of external photons irre-
spective of whether they are on or off mass shell. Furry’s theorem follows from the oddness
of the photon under charge conjugation implying that vacuum expectation involving odd
number of photon fields vanishes. At the Feynman diagram level the theorem follows from
the formulas CγµC−1 = −γµ and CDF (x1, x2)C−1 = DF (x2, x1) allowing to show that
diagrams with different orientation of fermionic lines contribute with opposite signs for a
odd number of external photons (there is sum over the diagrams obtained by the permuta-
tion of vertices along the loop with one vertex fixed). Furry’s theorem does not hold true
for fermionic loops involving odd number of non-Abelian gluons since the permutation of
boson vertices involves also permutation of charge matrices and vanishing occurs only if
Tr(Ta1Ta2 ...Tan) = Tr(TanTan−1

...Ta1) holds true.

(h) If the N-vertex reduces to a sum of terms for which at least one of boson legs,- say the ith

one is proportional to pµi , vanishing occurs when all bosons are on mass shell. Non-abelian
gauge boson vertices do not vanish on mass shell so that a form factor guaranteing the
vanishing of this kind of vertices must be present and should be induced by dynamical
symmetries of some kind implying that the on mass shell bosonic action effectively reduces
to that of a free Abelian YM theory.

(i) One can hope that the hyperbolic cutoff alone could guarantee this miracle. p2
i = 0 limit

corresponds to asymptotia as far as the hyperbolic cutoff as a function of the p-adic mass
scale labeled by k is considered. The weak form of the condition would state that the
vanishing takes place only at the limit when the IR cutoff for the loop mass scale approaches
zero - that is at the limit kmax → ∞. The contributions from various p-adic mass scales
would sum up to zero at this limit for any N-vertex. The resulting infinite set of conditions
could fix hyperbolic cutoff as a function of k. The fact that the loops involve both gluons
and electro-weak gauge bosons strengthens the conditions further.

The form of the condition consistent with finite measurement resolution would state that
on mass shell N -vertices vanish for any value of kmax up to some maximum value Ncr
depending on kmax. Ncr(kmax) would be analogous to the order of perturbation theory and
correspond to the maximal number of internal propagator legs. It would also characterize
the measurement resolution.

What could be the role of super-conformal and more general symmetries?

The argument, which eventually led to p-adic fractality and vanishing of loops as a realization of
quantum criticality started from the working hypothesis that 1/αem vanishes at a point which
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is as near to either end of the p-adic half octave as possible. This ad hoc assumption might be
wrong and must be replaced with much more general assumption that vertices vanish for on mass
shell gauge bosons. The cancelation of the vertices should be based on some general mechanism.
Hyperbolic cutoff is the possibility already considered but symmetries is what would be the first
guess in the framework of standard QFT.

1. Is it necessary to have different hyperbolic cutoffs for time-like and space-like momenta?

In the proposed model for the hyperbolic cutoff the cancelation of the mass term in the bosonic
propagator fixes the relationship between time-like and space-like hyperbolic cutoffs. This ap-
proach did not predict a realistic evolution of the hyperbolic cutoff in the purely real context.
One could hope that p-adic fractalization could help to resolve the problem.

The question is whether mere dynamical gauge symmetry could guarantee the vanishing of
the vertices when incoming bosons are massless and have physical polarizations so that loop
contributions would involve p2

i and εi · pi factors. If the vanishing for on mass shell momenta
were implied by symmetries and would not occur for off mass shell particles, hyperbolic cutoff
would become un-necessary and one could have the picture of standard quantum field theory.
Also the fermionic loop defining the inverse of the gauge boson propagator should cancel for
p2 = 0 as it indeed does by its p2-proportionality.

Dynamical super-conformal or gauge invariance should force the vertices to be proportional to
the product f

∏
i(p

2
i ) with f(p2

i ) = 0, where pi are the momenta for the incoming and outgoing
particles. Vertices other than BFF would be non-vanishing only if some bosons are off mass
shell. If this kind of vertices are to mimic the vertices of YM theory, they should be slowly
varying: for instance,

∏
i(1/log(p2

i /M
2)) proportionality of N-vertices would give hopes about

this kind of mimicry. Maybe massless quarks and gluons inside hadrons are effectively non-
interacting because vertices vanish for on mass shell massless particles whereas massivation for
the electro-weak gauge bosons by symmetry breaking would make electro-weak vertices non-
trivial.

2. Superconformal invariance replaces space-time supersymmetry in TGD framework

(a) One of the most beautiful predictions of SUSY gauge theories [B71] is the cancelation of the
leading order corrections to the mass of the scalar particle whereas logarithmic corrections
do not vanish and could be finite in N = 4 SUSY.

(b) In TGD framework there are reasons to believe that space-time supersymmetry is replaced
by super-conformal symmetry so that sparticles are not quite what they are in SUSY gauge
theories. Sparticles would be obtained by adding to the state a right handed neutrino
moving in a non-trivial color partial wave so that sparticles in the sense of the minimal
supersymmetry standard model (MSSM [B20] ) would not be present. There would be
an infinite tower of these colored excitations. In fact, the allowed parameter space for
MSSM has been shrinking continually [C7] and challenges MSSM as a generalization of the
standard model.

(c) The notion of finite measurement resolution realized in terms of inclusions of hyperfinite
factors of type II1 [K86, K27] leads to the proposal that there is infinite hierarchy of dy-
namical gauge symmetries and that the super-conformal variants of these symmetries could
act as Super Kac-Moody type dynamical symmetries and leave physical states invariant.

3. Could dynamical symmetries make possible non-trivial bosonic vertices vanishing for on mass
shell momenta?

The question is whether super-conformal sfermions associated with some dynamical gauge sym-
metry possibly related to the finite measurement resolution and HFFs could allow non-trivial
bosonic vertices vanishing for on mass shell momenta.

(a) There should be a force binding right handed neutrino and fermion together. This would
suggest that right handed neutrino and fermion are colored and the force acts between
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wormhole throats which corresponds to a deformation of CP2 type vacuum extremal pos-
sessing induced metric with Euclidian signature. Since the addition of a possibly colored
right handed neutrino would transform particle to sparticle in TGD, sfermions in TGD
framework are not what they are in SUSYs. Squarks would be leptoquarks containing
right-handed neutrino and sleptons would involve a contraction of M4 or CP2 gamma ma-
trices with some naturally occurring classical vector field. Candidates for this kind of vector
fields emerge in the formulation based on modified Dirac action.

(b) Unless one is ready to modify the original idea about bosonic emergence, the only logical
manner to define the propagator associated with the bosonic super partners of the fermion
is in terms of a fermionic loop in which the vertex contains a projector to the right handed
neutrino spinor and a matrix responsible for the spin structure of the state at imbedding
space level. The contribution to the gauge boson propagator from these states is higher
order loop contribution and should vanish at p2 = 0 limit by the general vision. Hence
the introduction of super partners would not help to get rid of the radiatively generated
gauge boson mass. Note that this definition of sfermion propagators treats super-partners
differently and is therefore inconsistent with the notion of super symmetry. Dynamical and
probably broken super-conformal symmetry could be in question.

(c) One can imagine also sfermions for which fermion and right handed neutrino reside at the
same wormhole throat rather than opposite wormhole throats. Also now color force could
guarantee stability of the state so that colored super-conformal generators with quantum
numbers of right handed neutrino would be involved as also colored fermions. In this case
one could argue that the propagator is just a scalar or vector propagator at the fundamental
level. Note however that gauge invariance might cause difficulties if vectorial super-partners
are allowed. If the coupling of the gauge boson to the sfermion candidates boils down to the
standard coupling of a gauge boson to a scalar field, one obtains A ·p and A ·A couplings for
scalar super partner and only the first one contributes to the gauge boson propagator. The
contribution is automatically proportional to p2 for scalar superpartner and presumably
also for spin one super-partners. Since no contribution to gauge boson mass appears,
the relation between the time-like and hyperbolic cutoffs would remain the only possible
manner to guarantee the vanishing of gauge boson mass and hyperbolic cutoff would be
indeed fundamental for the understanding also the dynamical symmetry guaranteing the
cancelation of loops.

(d) Somewhat disappointingly, it would seem that the contribution of the superpartners to the
inverse of the propagator can affect only the evolution of the hyperbolic cutoff if determined
by the condition that critical momenta for which 1/αem vanishes are as near as possible
to the end points of the half octave, and one might hope a physically sensible prediction
for the coupling constant evolution. What would be needed would be the transformation
of the positive feedback loop to a negative one so that hyperbolic cutoff could decrease.
Sfermion couplings should transform the increase of the coupling constant strength as a
function of p-adic length scale characteristic for asymptotic freedom to a decrease.

To sum up: quantum criticality, bosonic emergence, number theoretic universality, p-adic frac-
tality, and twistor program seem to be very intimately inter-related in TGD Universe. Less clear
is whether dynamical super-conformal symmetries related to finite measurement resolution and
hierarchy of HFFs are involved. Needless to say, the overall situation is far from crystal clear
at this moment. The great question marks are whether the hyperbolic cutoff could be avoided
by symmetries and if not - whether the choice of hyperbolic cutoff is fixed by the condition that
N-vertices vanish at the limit when bosons are massless and IR cutoff for loop mass scale is
taken to zero. Recall that the argument, which eventually led to p-adic fractality and vanishing
of loops as a realization of quantum criticality started from the working hypothesis that 1/αem
vanishes at a point which is as near to either end of the p-adic half octave as possible. This
somewhat ad hoc assumption can be replaced with much more general assumption that the
fermionic loops defining the vertices vanish for on mass shell bosons.
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11.5 Further progress

11.5.1 Could supersymmetry make momentum cutoffs un-necessary?

Super symmetric QFTs (SUSYs) are much more well-behaved that ordinary gauge theories as
far as divergences are considered. This raises the question whether supersymmetry could allow
to get rid of the momentum cutoffs in the loop integrations defining the bosonic propagators.

Contrary to the original expectations, TGD seems to allow a generalization of the space-time
super-symmetry. This became clear with the increased understanding of the modified Dirac
action [K15, K20] . The introduction of a measurement interaction term to the action allows
to understand how stringy propagator results and provides profound insights about physics
predicted by TGD. Also an old anomalous particle production event [C17] that I learned of in
the blog of Tommaso Dorigo [C10] having interpretation in terms of super-symmetry forced to
reconsider the possibility of space-time super-symmetry in TGD [K47] .

The appearance of the momentum and color quantum numbers in the measurement interaction
couples space-time degrees of freedom to quantum numbers and allows also to define SUSY
algebra at fundamental level as anti-commutation relations of fermionic oscillator operators.
Depending on the situation N = 2N SUSY algebra or fermionic part of super-conformal algebra
with infinite number of oscillator operators results. The addition of fermion in particular mode
would define particular super-symmetry. Zero energy ontology implies that fermions as wormhole
throats correspond to chiral super-fields assignable to positive or negative energy SUSY algebra
whereas bosons as wormhole contacts with two throats correspond to the direct sum of positive
and negative energy algebra and to fields which are chiral or antichiral with respect to both
positive and negative energy theta parameters. This super-symmetry is badly broken due to the
dynamics of the modified Dirac operator which also mixes M4 chiralities inducing massivation.
Since righthanded neutrino has no electro-weak couplings the breaking of the corresponding
super-symmetry should be weakest.

The question is whether this SUSY has a realization as a SUSY algebra at space-time level and
whether the QFT limit of TGD could be formulated as a generalization of SUSY QFT. There
are several problems involved.

(a) In TGD framework super-symmetry means addition of fermion to the state and since the
number of spinor modes is larger states with large spin and fermion numbers are obtained.
This picture does not fit to the standard view about super-symmetry. In particular, the
identification of theta parameters as Majorana spinors and super-charges as Hermitian
operators is not possible.

(b) The belief that Majorana spinors are somehow an intrinsic aspect of super-symmetry is
however only a belief. Weyl spinors meaning complex theta parameters are also possible.
Theta parameters can also carry fermion number meaning only the supercharges carry
fermion number and are non-hermitian. The the general classification of super-symmetric
theories indeed demonstrates that for D = 8 Weyl spinors and complex and non-hermitian
super-charges are possible. The original motivation for Majorana spinors might come from
MSSM assuming that right handed neutrino does not exist. This belief might have also
led to string theories in D=10 and D=11 as the only possible candidates for TOE after it
turned out that chiral anomalies cancel.

(c) The massivation of particles is the basic problem of both SUSYs and twistor approach. The
fact that particles which are massive in M4 sense can be interpreted as massless particles in
M4 × CP2 suggests a manner to understand super-symmetry breaking and massivation in
TGD framework. In particular, the massive particle can be put in short representations of
SUSY even when the massivation is by p-adic thermodynamics. The octonionic realization
of twistors is a very attractive possibility in this framework and quaternionicity condition
guaranteing associativity leads to twistors which are almost equivalent with ordinary 4-D
twistors.

It seems possible to formulate even quantum TGD proper in terms of super-field defined in
the world of classical worlds (WCW). Super-fields would provide in this framework an elegant
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book-keeping apparatus for the elements of local Clifford algebra of WCW extended to fields in
the M4 ×CP2 whose points label the positions of the tips of the causal diamonds CDs). What
the actual construction of SUSY QFT limit means depends on how strong approximations one
wants to make.

(a) The minimal approach to SUSY QFT limit is based on an approximation assuming only the
super-multiplets generated by right-handed neutrino or both right-handed neutrino and its
antineutrino. The assumption that right-handed neutrino has fermion number opposite to
that of the fermion associated with the wormhole throat implies that bosons correspond to
N = (1, 1) SUSY and fermions to N = 1 SUSY identifiable also as a short representation of
N = (1, 1) SUSY algebra trivial with respect to positive or negative energy algebra. This
means a deviation from the standard view but the standard SUSY gauge theory formalism
seems to apply in this case.

(b) A more ambitious approach would put the modes of induced spinor fields up to some cutoff
into super-multiplets. At the level next to the one described above the lowest modes of the
induced spinor fields would be included. The very large value of N means that N ≤ 3∈
SUSY cannot define the QFT limit of TGD for higher cutoffs. One should generalize SUSYs
gauge theories to arbitrary value of N but there are reasons to expect that the formalism
becomes rather complex. More ambitious approach working at TGD however suggest a
more general manner to avoid this problem.

i. One of the key predictions of TGD is that gauge bosons and Higgs can be regarded
as bound states of fermion and antifermion located at opposite throats of a wormhole
contact. This implies bosonic emergence meaning that it QFT limit can be defined in
terms of Dirac action. Bosonic propagators and vertices can be constructed as fermionic
loops so that all coupling constant follow as predictions. One must however pose cutoffs
in mass squared and hyperbolic angle assignable to the momenta of fermions appearing
in the loops in order to obtain finite theory and to avoid massivation of bosons. The
resulting coupling constant evolution is consistent with low energy phenomenology if
the cutoffs in hyperbolic angle as a function of p-adic length scale is chosen suitably.

ii. The generalization of bosonic emergence that the TGD counterpart of SUSY is obtained
by the replacement of Dirac action with action for chiral super-field coupled to vector
field as the action defining the theory so that the propagators of bosons and all their
super-counterparts would emerge as fermionic loops.

iii. The huge super-symmetries give excellent hopes about the cancelation of infinities so
that this approach would work even without the cutoffs in mass squared and hyperbolic
angle assignable to the momenta of fermions appearing in the loops. Cutoffs have a
physical motivation in zero energy ontology but it could be an excellent approximation
to take them to infinity. Alternatively, super-symmetric dynamics provides cutoffs
dynamically.

(c) The intriguing formal analogy of the Kähler potential and super-potential with the Kähler
function defining the Kähler metric of WCW and determined up to a real part of ana-
lytic function of the complex coordinates of WCW. This analogy suggests that the action
defining the SUSY-Kähler potential- is identifiable as the Kähler function defining WCW
Kähler metric at its maximum. Super-potential in turn would correspond to a holomorphic
function defining the modification of Kähler function due and the space-time sheet due
to measurement interaction. This beautiful correspondence would make WCW geometry
directly visible in the properties of QFT limit of TGD.

(d) The condition that N =∞ variants for chiral and vector superfields exist fixes completely
the identification of these fields in zero energy ontology.

i. In this framework chiral fields are generalizations of induced spinor fields and vector
fields those of gauge potentials obtained by replacing them with their super-space
counterparts. Chiral condition reduces to analyticity in theta parameters thanks to
the different definition of hermitian conjugation in zero energy ontology (θ is mapped
to a derivative with respect to theta rather than to θ) and conjugated super-field acts
on the product of all theta parameters.
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ii. Chiral action is a straightforward generalization of the Dirac action coupled to gauge
potentials. The counterpart of YM action can emerge only radiatively as an effective
action so that the notion emergence is now unavoidable and indeed basic prediction of
TGD.

iii. The propagators associated with the monomials of n theta parameters behave as 1/pn

so that only J = 0, 1/2, 1 states propagate in normal manner and correspond to normal
particles. The presence of monomials with number of thetas higher than 2 is necessary
for the propagation of bosons since by the standard argument fermion and scalar loops
cancel each other by super-symmetry. This picture conforms with the identification of
graviton as a bound state of wormhole throats at opposite ends of string like object. A
second element essential for the finiteness of the theory is that the super-vector bosons
emitted by chiral particles move collinearly as indeed required by the wormhole contact
picture. Therefore these emission vertices are local in momentum space.

iv. This formulation allows also to use modified gamma matrices in the measurement inter-
action defining the counterpart of super variant of Dirac operator. Poincare invariance
is not lost since momenta and color charges act on the tip of CD rather than the
coordinates of the space-time sheet. Hence what is usually regarded as a quantum
theory in the background defined by classical fields follows as exact theory. This feeds
all data about space-time sheet associated with the maximum of Kähler function. In
this approach WCW as a Kähler manifold is replaced by a cartesian power of CP2,
which is indeed quaternionic Kähler manifold. The replacement of light-like 3-surfaces
with number theoretic braids when finite measurement resolution is introduced, leads
to a similar replacement.

v. Quantum TGD as a ”complex square root” of thermodynamics approach suggests
that one should take a superposition of the amplitudes defined by the points of a
coherence region (identified in terms of the slicing associated with a given wormhole
throat) by weighting the points with the Kähler action density. The situation would be
highly analogous to a spin glass system since the modified gamma matrices defining the
propagators would be analogous to the parameters of spin glass Hamiltonian allowed
to have a spatial dependence. This would predict the proportionality of the coupling
strengths to Kähler coupling strength and bring in the dependence on the size of CD
coming as a power of 2 and give rise to p-adic coupling constant evolution. Since TGD
Universe is analogous to 4-D spin glass, also a sum over different preferred extremals
assignable to a given coherence regions and weighted by exp(K) is probably needed.

vi. In TGD Universe graviton is necessarily a bi-local object and the emission and ab-
sorption of graviton are bi-local processes involving two wormhole contacts: a pair of
particles rather than single particle emits graviton. This is definitely something new
and defies a description in terms of QFT limit using point like particles. Graviton
like states would be entangled states of vector bosons at both ends of stringy curve so
that gravitation could be regarded as a square of YM interactions in rather concrete
sense. The notion of emergence would suggest that graviton propagator is defined by
a bosonic loop. Since bosonic loop is dimensionless, IR cutoff defined by the largest
CD present must be actively involved. At QFT limit one can hope a description as
a bi-local process using a bi-local generalization of the QFT limit. It turns out that
surprisingly simple candidate for the bi-local action exists.

11.5.2 Generalized Feynman diagrams at fermionic and momentum
space level

Negative energy ontology has already led to the idea of interpreting the virtual particles as
pairs of positive and negative energy wormhole throats. Hitherto I have taken it as granted
that ordinary Feynman diagrammatics generalizes more or less as such. It is however far from
clear what really happens in the verties of the generalized Feynmann diagrams. The safest
approach relies on the requirement that unitarity realized in terms of Cutkosky rules in ordinary
Feynman diagrammatics allows a generalization. This requires loop diagrams. In particular,
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photon-photon scattering can take place only via a fermionic square loop so that it seems that
loops must be present at least in the topological sense.

One must be however ready for the possibility that something unexpectedly simple might emerge.
For instance, the vision about algebraic physics allows naturally only finite sums for diagrams
and does not favor infinite perturbative expansions. Hence the true believer on algebraic physics
might dream about finite number of diagrams for a given reaction type. For simplicity generalized
Feynman diagrams without the complications brought by the magnetic confinement since by the
previous arguments the generalization need not bring in anything essentially new.

The basic idea of duality in early hadronic models was that the lines of the dual diagram
representing particles are only re-arranged in the vertices. This however does not allow to get
rid of off mass shell momenta. Zero energy ontology encourages to consider a stronger form of
this principle in the sense that the virtual momenta of particles could correspond to pairs of on
mass shell momenta of particles. If also interacting fermions are pairs of positive and negative
energy throats in the interaction region the idea about reducing the construction of Feynman
diagrams to some kind of lego rules might work.

Virtual particles as pairs of on mass shell particles in ZEO

The first thing is to try to define more precisely what generalized Feynman diagrams are. The
direct generalization of Feynman diagrams implies that both wormhole throats and wormhole
contacts join at vertices.

(a) A simple intuitive picture about what happens is provided by diagrams obtained by replac-
ing the points of Feynman diagrams (wormhole contacts) with short lines and imagining
that the throats correspond to the ends of the line. At vertices where the lines meet the
incoming on mass shell quantum numbers would sum up to zero. This approach leads to
a straightforward generalization of Feynman diagrams with virtual particles replaced with
pairs of on mass shell throat states of type ++, −−, and +−. Incoming lines correspond to
++ type lines and outgoing ones to −− type lines. The first two line pairs allow only time
like net momenta whereas +− line pairs allow also space-like virtual momenta. The sign
assigned to a given throat is dictated by the the sign of the on mass shell momentum on
the line. The condition that Cutkosky rules generalize as such requires ++ and −− type
virtual lines since the cut of the diagram in Cutkosky rules corresponds to on mass shell
outgoing or incoming states and must therefore correspond to ++ or −− type lines.

(b) The basic difference as compared to the ordinary Feynman diagrammatics is that loop
integrals are integrals over mass shell momenta and that all throats carry on mass shell
momenta. In each vertex of the loop mass incoming on mass shell momenta must sum
up to on mass shell momentum. These constraints improve the behavior of loop integrals
dramatically and give excellent hopes about finiteness. It does not however seem that only
a finite number of diagrams contribute to the scattering amplitude besides tree diagrams.
The point is that if a the reactions N1 → N2 and N2 → N3,, where Ni denote particle
numbers, are possible in a common kinematical region for N2-particle states then also the
diagrams N1 → N2 → N2 → N3 are possible. The virtual states N2 include all all states
in the intersection of kinematically allow regions for N1 → N2 and N2 → N3. Hence the
dream about finite number possible diagrams is not fulfilled if one allows massless particles.
If all particles are massive then the particle number N2 for given N1 is limited from above
and the dream is realized.

(c) For instance, loops are not possible in the massless case or are highly singular (bringing in
mind twistor diagrams) since the conservation laws at vertices imply that the momenta are
parallel. In the massive case and allowing mass spectrum the situation is not so simple.
As a first example one can consider a loop with three vertices and thus three internal lines.
Three on mass shell conditions are present so that the four-momentum can vary in 1-D
subspace only. For a loop involving four vertices there are four internal lines and four mass
shell conditions so that loop integrals would reduce to discrete sums. Loops involving more
than four vertices are expected to be impossible.
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(d) The proposed replacement of the elementary fermions with bound states of elementary
fermions and monopoles X± brings in the analog of stringy diagrammatics. The 2-particle
wave functions in the momentum degrees of freedom of fermiona and X± migh allow more
flexibility and allow more loops. Note however that there are excellent hopes about the
finiteness of the theory also in this case.

Loop integrals are manifestly finite

One can make also more detailed observations about loops.

(a) The simplest situation is obtained if only 3-vertices are allowed. In this case conservation of
momentum however allows only collinear momenta although the signs of energy need not be
the same. Particle creation and annihilation is possible and momentum exchange is possible
but is always light-like in the massless case. The scattering matrices of supersymmetric
YM theories would suggest something less trivial and this raises the question whether
something is missing. Magnetic monopoles are an essential element of also these theories
as also massivation and symmetry breaking and this encourages to think that the formation
of massive states as fermion X± pairs is needed. Of course, in TGD framework one has
also high mass excitations of the massless states making the scattering matrix non-trivial.

(b) In YM theories on mass shell lines would be singular. In TGD framework this is not the
case since the propagator is defined as the inverse of the 3-D dimensional reduction of the
modified Dirac operator D containing also coupling to four-momentum (this is required by
quantum classical correspondence and guarantees stringy propagators),

D = iΓ̂αpα + Γ̂αDα ,

pα = pk∂αh
k . (11.5.1)

The propagator does not diverge for on mass shell massless momenta and the propagator
lines are well-defined. This is of course of essential importance also in general case. Only
for the incoming lines one can consider the possibility that 3-D Dirac operator annihilates
the induced spinor fields. All lines correspond to generalized eigenstates of the propagator
in the sense that one has D3Ψ = λγΨ, where γ is modified gamma matrix in the direction
of the stringy coordinate emanating from light-like surface and D3 is the 3-dimensional
dimensional reduction of the 4-D modified Dirac operator. The eigenvalue λ is analogous
to energy. Note that the eigenvalue spectrum depends on 4-momentum as a parameter.

(c) Massless incoming momenta can decay to massless momenta with both signs of energy.
The integration measure d2k/2E reduces to dx/x where x ≥ 0 is the scaling factor of
massless momentum. Only light-like momentum exchanges are however possible and scat-
tering matrix is essentially trivial. The loop integrals are finite apart from the possible
delicacies related to poles since the loop integrands for given massless wormhole contact
are proportional to dx/x3 for large values of x.

(d) Irrrespective of whether the particles are massless or not, the divergences are obtained
only if one allows too high vertices as self energy loops for which the number of momentum
degrees of freedom is 3N−4 for N -vertex. The construction of SUSY limit of TGD in [K29]
led to the conclusion that the parallelly propagating N fermions for given wormhole throat
correspond to a product of N fermion propagators with same four-momentum so that for
fermions and ordinary bosons one has the standard behavior but for N > 2 non-standard
so that these excitations are not seen as ordinary particles. Higher vertices are finite only
if the total number NF of fermions propagating in the loop satisfies NF > 3N − 4. For
instance, a 4-vertex from which N = 2 states emanate is finite.

Taking into account magnetic confinement

What has been said above is not quite enough. As shown in the accompanying article and in [K28]
the weak form of electric-magnetic duality [B11] leads to the picture about elementary particles
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as pairs of magnetic monopoles inspiring the notions of weak confinement based on magnetic
monopole force. Also color confinement would have magnetic counterpart. This means that
elementary particles would behave like string like objects in weak boson length scale. Therefore
one must also consider the stringy case with wormhole throats replaced with fermion-X± pairs
(X± is electromagnetically neutral and ± refers to the sign of the weak isospin opposite to that
of fermion) and their super partners.

(a) The simplest assumption in the stringy case is that fermion-X± pairs behave as coherent
objects, that is scatter elastically. In more general case only their higher excitations identi-
fiable in terms of stringy degrees of freedom would be created in vertices. The massivation
of these states makes possible non-collinear vertices. An open question is how the massi-
vation fermion-X± pairs relates to the existing TGD based description of massivation in
terms of Higgs mechanism and modified Dirac operator.

(b) Mass renormalization could come from self energy loops with negative energy lines as also
vertex normalization. By very general arguments supersymmetry implies the cancellation
of the self energy loops but would allow non-trivial vertex renormalization [K29] .

(c) If only 3-vertices are allowed, the loops containing only positive energy lines are possible if
on mass shell fermion-X± pair (or its superpartner) can decay to a pair of positive energy
pair particles of same kind. Whether this is possible depends on the masses involved. For
ordinary particles these decays are not kinematically possible below intermediate boson
mass scale (the decays F1 → F2 + γ are forbidden kinematically or by the absence of flavor
changing neutral currents whereas intermediate gauge bosons can decay to on mass shell
fermion-antifermion pair).

(d) The introduction of IR cutoff for 3-momentum in the rest system associated with the largest
CD (causal diamond) looks natural as scale parameter of coupling constant evolution and
p-adic length scale hypothesis favors the inverse of the size scale of CD coming in powers of
two. This parameter would define the momentum resolution as a discrete parameter of the
p-adic coupling constant evolution. This scale does not have any counterpart in standard
physics. For electron, d quark, and u quark the proper time distance between the tips of
CD corresponds to frequency of 10 Hz, 1280 Hz, and 160 Hz: all these frequencies define
fundamental bio-rhythms [K24] .

These considerations have left completely untouched one important aspect of generalized Feyn-
man diagrams: the necessity to perform a functional integral over the deformations of the
partonic 2-surfaces at the ends of the lines- that is integration over WCW. Number theoreti-
cal universality requires that WCW and these integrals make sense also p-adically and in the
following these aspects of generalized Feynman diagrams are discussed.

11.5.3 Trying to understand the QFT limit of TGD

Already string models taught (or at least should have taught) to see quantum field theory as an
effective description of a microscopic theory working at low energy limit. Since string theorists
have not been able cook up any convincing answer to the layman’s innocent question ”How
would you describe atom using these tiny strings which are so awe inspiring?”, QFT limits have
become what string models actually are at the phenomenological level. AdS-CFT correspondence
actually equates string theory with a conformal quantum field theory in Minkowski space so
that hopes about genuine microscopic theory are lost. This is disappointing but not surprising
since strings are still too simple: they are either open or closed, there is no interesting internal
topology.

In TGD framework string world sheets are replaced with 4-D space-time surfaces. One ends up
with a very concrete vision about matter based on the notion of many-sheeted space-time and the
implications are highly non-trivial in all scales. For instance, blackhole interior is replaced with
a space-time region with Euclidian signature of the induced metric characterizing any physical
system be it elementary particle, condensed matter system, or astrophysical object. Therefore
the key question becomes the following.
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Does TGD have QFT in M4 as low energy limit or rather - as a limit holding true in a given
scale in the infinite length scale hierarchies predicted by theory (p-adic length scale hierarchy and
hierarchy of effective Planck constants and hierarchy of causal diamonds)?

This question emerged as an outcome of an attempt to answer a series of questions related to
Higgs like particle [K90]. Questions were motivated by the facts that p-adic thermodynamics
[K50] provides a microscopic description of particle massivation in TGD Universe and Higgs
like field has no obvious classical space-time correlate. Does Higgs like particle exists in TGD
Universe? If it exists as the recent LHC data strongly suggest, what is its microscopic description
in TGD framework? There is indeed elegant identification of Higgs like particle in terms of
bosonic emergence (bosons would const of fermion-antfermion pairs associated with wormhole
contacts). Is Higgs field a proper description for the Higgs like particle at QFT limit? Does
Higgs mechanism provide QFT counterpart for description in terms of p-adic thermodynamics
(even if this the case, Higgs mechanism would be only a manner to parametrize particle mass
spectrum rather than to predict it)? How could one construct the standard model action defining
the possibly existing QFT limit of TGD? The next question is the fundamental question already
stated.

Instead of trying to answer the question about the existence of QFT limit, the following argument
suggests a procedure for constructing the QFT limit by applying a variant of a standard proce-
dure by assigning various kinds of fields to the particles described as quantum states associated
with wormhole contacts at the microscopic level.

What are the fundamental dynamical objects?

The original assumption was that elementary particles correspond to wormhole throats. With
the discovery of the weak form of electric-magnetic duality came the realization that wormhole
throat is homological magnetic monopole (rather than Dirac monopole) and must therefore have
(Kähler) magnetic charge. Magnetic flux lines must be however closed so that the wormhole
throat must be associated with closed flux loop.

The most natural assumption is that this loop connects two wormhole throats at the first space-
time sheet, that the flux goes through a second wormhole contact to another sheet, returns
back along second flux tube, and eventually is transferred to the original throat along the first
wormhole contact.

The solutions of the Modified Dirac equation [K92] assign to this flux tube string like curve as a
boundary of string world sheet carrying the induced fermion field. This closed string has ”short”
portions assignable to wormhole contacts and ”long” portions corresponding to the flux tubes
connecting the two wormhole contacts. One can assign a string tension defined by CP2 scale
with the ”short” portions of the string and string tension defined by the primary or perhaps
secondary p-adic length scale to the ”long” portions of the closed string.

Also the ”long” portion of the string can contribute to the mass of the elementary particle as a
contribution to the vacuum conformal weight. In the case of weak gauge bosons this would be
the case and since the contribution is naturally proportional to gauge couplings strength of W/Z
boson one could understand Q/Z mass ratio if the p-adic thermodynamics gives a very small
contribution from the ”short” piece of string (also photon would receive this small contributionin
ZEO): this is the case if one must have T = 1/2 for gauge bosons. Note that ”long” portion of
string can contribute also to fermion masses a small shift. Hence no Higgs vacuum expectation
value or coherent state of Higgs would be needed. There are two options for the interpretation
of recent results about Higgs and Option II in which Higgs mechanism emerges as an effective
description of particle massivation at QFT limit of the theory and both gauge fields and Higgs
fields and its vacuum expectation exist only as constructs making sense at QFT limit. Higgs
like particles do of course exist. At WCW limit they are replaced by WCW spinor fields as
fundamental object.

One can consider several identifications of the fundamental dynamical object of p-adic mass
calculations. Either as a wormhole throat (in the case of fermions for which either wormhole
throat carries the fermion quantum number this looks natural), as entire wormhole contact, or

http://tgdtheory.com/public_html/tgdgeom/tgdgeom.html#dirasvira
http://matpitka.blogspot.fi/2012/11/higgs-like-state-according-to-tgd-after.html
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as the entire flux tube having two wormhole contacts. Which one of these options is correct?
The strong analogy with string model implied by the presence of fermionic string world sheet
would support that the identification as entire flux tube in which case the large masses for higher
conformal excitations could be interpreted in terms of string tension. Note that this is the only
possibility in case of gauge bosons.

A recipe for obtaining QFT limit?

In TGD framework quantized gauge potentials and Higgs field should emerge only at M4 QFT
limit. It is not even possible to speak about Higgs and YM parts of the action at the microscopic
level. The functional integral defined by the vacuum function expressed as exponent of Kähler
action for preferred extremals to which couplings of microscopic expressions of particles in terms
of fermions coupled to the effective fields describing them at QFT limit should define the effective
action at QFT limit.

The basic recipe for obtaining the effective action defining QFT limit would be simple.

(a) Start from the vacuum functional which is exponent of Kähler action for preferred extremals
with Euclidian regions giving real exponent and Minkowskian regions imaginary exponent.

(b) Add to this action terms which are bilinear in the microscopic expression for the particle
state and the corresponding effective field appearing in the effective action. Note also that
the bilinears of induced spinor field defining bosons involve induced spinor fields at different
wormhole throats so that local divergences are avoided.

(c) Perform the functional integration over WCW (”world of classical worlds”) and take vacuum
expectation value in fermionic degrees of freedom.

(d) This gives an effective field theory in M4 × CP2. To get M4 QFT integrate over CP2

degrees of freedom in the action. This dimensional reduction is similar to what occurs
in Kaluza-Klein theories. The resulting action is effective action so that there is no need
to calculate loops anymore since they have been included in the functional integral over
preferred extremals.

The functional integration of WCW induces also integration of induced spinor fields which
apart from right-handed neutrino are restricted to the string world sheets. In principle induced
spinor fields could be non-vanishing also at partonic 2-surfaces but simple physical considerations
suggest that they are restricted to the intersection points of partonic 2-surfaces and string world
sheets defining the ends of braid strands. Therefore the effective spinor fields Ψeff would
appear only at braid ends in the integration over WCW and one has good hopes of performing
the functional integral.

(a) One can assign to the induced spinor fields Ψ imbedding space spinor fields Ψeff appearing
in the effective action. The dimensions of Ψ and Ψeff are 1/L3/2. A dimensionally correct
guess is the term

∫
d2x
√
g2Ψeff (P )D−1Ψ + h.c, where Γα denotes the induced gamma

matrices, P denotes the end point of a braid strand at the wormhole throat, and D denotes
the ”ordinary” massless Dirac operator ΓαDα for the induced gamma matrices. Propagator
contributes dimension L and is well-defined since Ψ is not annihilated by D but by the
modified Dirac operator in which modified gamma matrices defined by the modified Dirac
action appear. Note that internal consistency does not allow the replacement of Kähler
action with four-volume. Integral over the second wormhole throat contributes dimension
L2. Therefore the outcome is a dimensionless finite quantity, which reduces to the value
of integrand at the intersection of partonic 2-surface and string world sheet - that is at
ends of braid strand since induced spinors are localized at string world sheets unless right-
handed neutrinos are in question. The fact that induced spinor fields are proportional to a
delta function restricting them to string world sheets does not lead to problems since the
modified Dirac action itself vanishes by modified Dirac equation.

(b) Both Higgs and gauge bosons correspond to bi-local objects consisting of fermion and anti-
fermion at opposite throats of wormhole contact and restricted to braid ends. The are
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connected by the analog of non-integrable phase factor defined by classical gauge poten-
tials. These bilinear fermionic objects should correspond to Higgs and gauge potentials at
QFT limit. The two integrations over the partonic 2-surfaces contribute L2 both, whereas
the dimension of the quantity defining the gauge boson or Higgs like state is 1/L3 from
the dimensions of spinor fields and from the dimension of generalized polarization vector
compensated by that of gamma matrices. Hence the dimensions of the bi-local quantities
are L for both gauge bosons and Higgs like particles. They must be coupled to their ef-
fective QFT counterparts so that a dimensionless term in action results. Note that delta
functions associated with the induced spinor fields reduce them to the end points of braid
strand connecting wormhole throats and finite result is obtained.

(c) How to identify these dimensional bilinear terms defining the QFT limit? The basic problem
is that the microscopic representation of the particle is bi-local and the effective field at
QFT limit should be local. The only possibility is to consider an average of the effective
field over the stringy curve connecting the points at two throats. The resulting quantities
must have dimensions 1/L in accordance with naive scaling dimensions of gauge bosons
and Higgs to compensate the dimension L of the microscopic representation of bosons.
For gauge bosons having zero dimension as 1-forms the average

∫
Aµdx

µ/l along a unique
stringy curve of length l connecting wormhole throats defines a quantity with dimension
1/L. For Higgs components having dimension 1/L the quantities

∫
HA
√
g1dx/l, where

g1 corresponds to the induced metric at the stringy curve, has also dimension 1/L. The
presence of the induced metric depending on CP2 metric guarantees that the effective action
contains dimensional parameters so that the breaking of scale invariance results.





Chapter 12

Does the QFT Limit of TGD
Have Space-Time
Super-Symmetry?

12.1 Introduction

Contrary to the original expectations, TGD seems to allow a generalization of the space-time
super-symmetry. This became clear with the increased understanding of the modified Dirac
action [K15, K20] . The introduction of a measurement interaction term to the action allows
to understand how stringy propagator results and provides profound insights about physics
predicted by TGD. Also an old anomalous particle production event [C17] that I learned of in
the blog of Tommaso Dorigo [C10] having interpretation in terms of super-symmetry forced to
reconsider the possibility of space-time super-symmetry in TGD [K47] .

The appearance of the momentum and color quantum numbers in the measurement interaction
couples space-time degrees of freedom to quantum numbers and allows also to define SUSY
algebra at fundamental level as anti-commutation relations of fermionic oscillator operators.
Depending on the situation N = 2N SUSY algebra or fermionic part of super-conformal algebra
with infinite number of oscillator operators results. The addition of fermion in particular mode
would define particular super-symmetry. Zero energy ontology implies that fermions as wormhole
throats correspond to chiral super-fields assignable to positive or negative energy SUSY algebra
whereas bosons as wormhole contacts with two throats correspond to the direct sum of positive
and negative energy algebra and to fields which are chiral or antichiral with respect to both
positive and negative energy theta parameters. This super-symmetry is badly broken due to the
dynamics of the modified Dirac operator which also mixes M4 chiralities inducing massivation.
Since righthanded neutrino has no electro-weak couplings the breaking of the corresponding
super-symmetry should be weakest.

The question is whether this SUSY has a realization as a SUSY algebra at space-time level and
whether the QFT limit of TGD could be formulated as a generalization of SUSY QFT. There
are several problems involved.

(a) In TGD framework super-symmetry means addition of fermion to the state and since the
number of spinor modes is larger states with large spin and fermion numbers are obtained.
This picture does not fit to the standard view about super-symmetry. In particular, the
identification of theta parameters as Majorana spinors and super-charges as Hermitian
operators is not possible.

(b) The belief that Majorana spinors are somehow an intrinsic aspect of super-symmetry is
however only a belief. Weyl spinors meaning complex theta parameters are also possible.
Theta parameters can also carry fermion number meaning only the supercharges carry
fermion number and are non-hermitian. The the general classification of super-symmetric
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theories indeed demonstrates that for D = 8 Weyl spinors and complex and non-hermitian
super-charges are possible. The original motivation for Majorana spinors might come from
MSSM assuming that right handed neutrino does not exist. This belief might have also
led to string theories in D=10 and D=11 as the only possible candidates for TOE after it
turned out that chiral anomalies cancel.

(c) The massivation of particles is the basic problem of both SUSYs and twistor approach. The
fact that particles which are massive in M4 sense can be interpreted as massless particles in
M4 × CP2 suggests a manner to understand super-symmetry breaking and massivation in
TGD framework. In particular, the massive particle can be put in short representations of
SUSY even when the massivation is by p-adic thermodynamics. The octonionic realization
of twistors is a very attractive possibility in this framework and quaternionicity condition
guaranteing associativity leads to twistors which are almost equivalent with ordinary 4-D
twistors.

It seems possible to formulate even quantum TGD proper in terms of super-field defined in
the world of classical worlds (WCW). Super-fields would provide in this framework an elegant
book-keeping apparatus for the elements of local Clifford algebra of WCW extended to fields in
the M4 ×CP2 whose points label the positions of the tips of the causal diamonds CDs). What
the actual construction of SUSY QFT limit means depends on how strong approximations one
wants to make.

(a) The minimal approach to SUSY QFT limit is based on an approximation assuming only the
super-multiplets generated by right-handed neutrino or both right-handed neutrino and its
antineutrino. The assumption that right-handed neutrino has fermion number opposite to
that of the fermion associated with the wormhole throat implies that bosons correspond to
N = (1, 1) SUSY and fermions to N = 1 SUSY identifiable also as a short representation of
N = (1, 1) SUSY algebra trivial with respect to positive or negative energy algebra. This
means a deviation from the standard view but the standard SUSY gauge theory formalism
seems to apply in this case.

(b) A more ambitious approach would put the modes of induced spinor fields up to some cutoff
into super-multiplets. At the level next to the one described above the lowest modes of the
induced spinor fields would be included. The very large value of N means that N ≤ 3∈
SUSY cannot define the QFT limit of TGD for higher cutoffs. One should generalize SUSYs
gauge theories to arbitrary value of N but there are reasons to expect that the formalism
becomes rather complex. More ambitious approach working at TGD however suggest a
more general manner to avoid this problem.

i. One of the key predictions of TGD is that gauge bosons and Higgs can be regarded
as bound states of fermion and antifermion located at opposite throats of a wormhole
contact. This implies bosonic emergence meaning that it QFT limit can be defined
in terms of Dirac action. The resulting theory was discussed in detail in [K58] and it
was shown that bosonic propagators and vertices can be constructed as fermionic loops
so that all coupling constant follow as predictions. One must however pose cutoffs in
mass squared and hyperbolic angle assignable to the momenta of fermions appearing
in the loops in order to obtain finite theory and to avoid massivation of bosons. The
resulting coupling constant evolution is consistent with low energy phenomenology if
the cutoffs in hyperbolic angle as a function of p-adic length scale is chosen suitably.

ii. The generalization of bosonic emergence that the TGD counterpart of SUSY is obtained
by the replacement of Dirac action with action for chiral super-field coupled to vector
field as the action defining the theory so that the propagators of bosons and all their
super-counterparts would emerge as fermionic loops.

iii. The huge super-symmetries give excellent hopes about the cancelation of infinities so
that this approach would work even without the cutoffs in mass squared and hyperbolic
angle assignable to the momenta of fermions appearing in the loops. Cutoffs have a
physical motivation in zero energy ontology but it could be an excellent approximation
to take them to infinity. Alternatively, super-symmetric dynamics provides cutoffs
dynamically.
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(c) The intriguing formal analogy of the Kähler potential and super-potential with the Kähler
function defining the Kähler metric of WCW and determined up to a real part of ana-
lytic function of the complex coordinates of WCW. This analogy suggests that the action
defining the SUSY-Kähler potential- is identifiable as the Kähler function defining WCW
Kähler metric at its maximum. Super-potential in turn would correspond to a holomorphic
function defining the modification of Kähler function due and the space-time sheet due
to measurement interaction. This beautiful correspondence would make WCW geometry
directly visible in the properties of QFT limit of TGD.

(d) The condition that N =∞ variants for chiral and vector superfields exist fixes completely
the identification of these fields in zero energy ontology.

i. In this framework chiral fields are generalizations of induced spinor fields and vector
fields those of gauge potentials obtained by replacing them with their super-space
counterparts. Chiral condition reduces to analyticity in theta parameters thanks to
the different definition of hermitian conjugation in zero energy ontology (θ is mapped
to a derivative with respect to theta rather than to θ) and conjugated super-field acts
on the product of all theta parameters.

ii. Chiral action is a straightforward generalization of the Dirac action coupled to gauge
potentials. The counterpart of YM action can emerge only radiatively as an effective
action so that the notion emergence is now unavoidable and indeed basic prediction of
TGD.

iii. The propagators associated with the monomials of n theta parameters behave as 1/pn

so that only J = 0, 1/2, 1 states propagate in normal manner and correspond to normal
particles. The presence of monomials with number of thetas higher than 2 is necessary
for the propagation of bosons since by the standard argument fermion and scalar loops
cancel each other by super-symmetry. This picture conforms with the identification of
graviton as a bound state of wormhole throats at opposite ends of string like object. A
second element essential for the finiteness of the theory is that the super-vector bosons
emitted by chiral particles move collinearly as indeed required by the wormhole contact
picture. Therefore these emission vertices are local in momentum space.

iv. This formulation allows also to use modified gamma matrices in the measurement inter-
action defining the counterpart of super variant of Dirac operator. Poincare invariance
is not lost since momenta and color charges act on the tip of CD rather than the
coordinates of the space-time sheet. Hence what is usually regarded as a quantum
theory in the background defined by classical fields follows as exact theory. This feeds
all data about space-time sheet associated with the maximum of Kähler function. In
this approach WCW as a Kähler manifold is replaced by a cartesian power of CP2,
which is indeed quaternionic Kähler manifold. The replacement of light-like 3-surfaces
with number theoretic braids when finite measurement resolution is introduced, leads
to a similar replacement.

v. Quantum TGD as a ”complex square root” of thermodynamics approach suggests
that one should take a superposition of the amplitudes defined by the points of a
coherence region (identified in terms of the slicing associated with a given wormhole
throat) by weighting the points with the Kähler action density. The situation would be
highly analogous to a spin glass system since the modified gamma matrices defining the
propagators would be analogous to the parameters of spin glass Hamiltonian allowed
to have a spatial dependence. This would predict the proportionality of the coupling
strengths to Kähler coupling strength and bring in the dependence on the size of CD
coming as a power of 2 and give rise to p-adic coupling constant evolution. Since TGD
Universe is analogous to 4-D spin glass, also a sum over different preferred extremals
assignable to a given coherence regions and weighted by exp(K) is probably needed.

vi. In TGD Universe graviton is necessarily a bi-local object and the emission and ab-
sorption of graviton are bi-local processes involving two wormhole contacts: a pair of
particles rather than single particle emits graviton. This is definitely something new
and defies a description in terms of QFT limit using point like particles. Graviton
like states would be entangled states of vector bosons at both ends of stringy curve so
that gravitation could be regarded as a square of YM interactions in rather concrete
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sense. The notion of emergence would suggest that graviton propagator is defined by
a bosonic loop. Since bosonic loop is dimensionless, IR cutoff defined by the largest
CD present must be actively involved. At QFT limit one can hope a description as
a bi-local process using a bi-local generalization of the QFT limit. It turns out that
surprisingly simple candidate for the bi-local action exists.

The plan of the chapter reflects partially my own selfish needs. I have to learn space-time
super-symmetry at the level of the basic formalism and the best manner to do it is to write it
out.

(a) The chapter begins with a brief summary of the basic concepts of SUSYs without doubt
revealing my rather fragmentary knowledge about these theories. My only excuse is that
I really thought that space-time super-symmetries and the formalism of SUSY theories do
not generalize in TGD framework.

(b) Just learning the basics led to amazing findings. First, the anti-commutation relations
of the fermionic oscillator operators for the modified Dirac action can be formulated as
a generalized SUSY algebra for space-time super-symmetries with large or even infinite
value of N = 2N . Secondly, the notion of super-field allows an elegant formulation for
the local Clifford algebra of WCW. And thirdly, Kähler potential and super-potential have
interpretation in terms of the Kähler function characterizing WCW geometry. I can now
grasp why SUSY afficionados are so fascinated about their brain child.

(c) The octonionic formulation of the modified Dirac equation leading to a general solution
ansatz working also for the ordinary gamma matrix algebra is discussed to demonstrate
what is involved. The notions of hyper-octonionic twistor and induced hyper-quaternionic
twistor structure [K15, K85] are introduced. Hyper-quaternionicity can be realized for the
induced octonionic algebra and natural matrix representations are obtained using structure
constants.

(d) Twistors have indeed become a part of the calculational arsenal of SUSY gauge theories,
and TGD leads to a proposal how to avoid the problems caused by massive particles by
using the notion of masslessness in 8-D sense and the notion of induced octo-twistor. At
QFT limit the idea is simple: massless free particles correspond to geodesics of M4 ×CP2

and in QFT formulation one keeps just the knowledge that particle moves along geodesic
circle S1 × CP2.

(e) SUSY algebras at the level of quantum TGD proper and its QFT limit are discussed and
the conditions guaranteing that standard SUSY formalism applies are discussed: in this
theory fermions resp. bosons correspond to N = 1 resp. N = (1, 1) SUSY.

(f) Finally, SUSY QFT limit of quantum TGD based on the generalization of the bosonic
emergence [K58] is proposed. The generalization of SUSY YM action emerges radiatively
through super-symmetric fermion loops in this framework and the counterpart of chiral
action is the fundamental action. The first approach applying only for small values of N
relies on the replacement of the Dirac action coupled to gauge potentials with the Kähler
potential defined by WCW Kähler function at its maximum. Second approach is inspired
by N =∞ case and based on different definition of super-fields.

This chapter is a fourth one in a series containing two chapters about twistors [K85, K87] and a
chapter about bosonic emergence [K58] . At this moment the chapter about the generalization
of twistor Grassmannian approach [B38] and Yangian symmetry [A54] to TGD framework [K87]
represents the most realistic view about what quantum TGD might be. Although a lot of
cognitive dust is present, this chapter together with the chapters [K85, K58] might be helpful
for the reader trying to get a better understanding about my motivations and goals. There is
also a connection with the topological explanation of family replacation phenomenon: by com-
bining the assumption that SU(3) acts as dynamical symmetry acting on fermion families for
vertices allows only BFF type vertices and their super-symmetric generalizations at fundamental
level [K18]. Also bosonic emergence allows only BFF type vertices: this simplifies enormously
the construction of M -matrix. Right-handed neutrinos have been the longstanding poorly un-
derstdood issue of TGD and one can develop arguments that N = 2 or N = 4 SUSY emerges
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naturally in TGD framework and corresponds to the addition of a collinear right-handed neu-
trino and and antineutrino to the state representing massless particle. It must be emphasized
that also this chapter is like a lab note book, a story telling how ideas have evolved and continue
to evolve.

12.2 SUSY briefly

The Tasi 2008 lectures by Yuri Shirman [B68] provide a modern introduction to 4-dimensional
N = 1 super-symmetry and super-symmetry breaking. In TGD framework the super-symmetry
is 8-dimensional super-symmetry induced to 4-D space-time surface and one N = 2N can be
large so that this introduction is quite not enough for the recent purposes. This section provides
only a brief summary of the basic concepts related to SUSY algebras and SUSY QFTs and
the breaking of super-symmetry is mentioned only by passing. I have also listed the crucial
basic facts about N > 1 super-symmetry [B6, B19] with emphasis in demonstrating that for
8-D super-gravity with one time-dimension super-charges are non-Hermitian and that Majorana
spinors are absent as required by quantum TGD.

12.2.1 Weyl fermions

Gamma matrices in chiral basis.

γµ =

(
0 σµ

σµ 0

)
, γ5 =

(
σ0 0
0 −σ0

)
,

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

σ0 = σ0 , σi = −σi .

(12.2.1)

Note that Pauli sigma matrices can be interpreted as matrix representation for hyper-quaternion
units.

Dirac spinors can be expressed in terms of Weyl spinors as

Ψ =

(
ηα

χ∗α̇

)
. (12.2.2)

Note that does not denote complex conjugation and that complex conjugation transforms
non-dotted and dotted indices to each other. η and χ are both left handed Weyl spinors and
transform according to complex conjugate representations of Lorentz group and one can interpret
χ as representing that charge conjugate of right handed Dirac fermion.

Spinor indices can be lowered and raised using antisymmetric tensors εαβ and εα̇β̇ and one has

ηαηα = 0 , χ∗α̇χ
∗
α̇ = 0 ,

ηχ = χη = εαβηαχβ , η∗χ∗ = χ∗η∗ = εαβη∗αχ
∗
β .

(12.2.3)

Left-handed and right handed spinors can be combined to Lorentz vectors as

η∗α̇σ
µα̇αηα = −η∗ασµαα̇η

∗α̇ . (12.2.4)

The SUSY algebra at QFT limit differs from the SUSY algebra defining the fundamental anti-
commutators of the fermionic oscillator operators for the induced spinor fields since the modified
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gamma matrices defined by the Kähler action are replaced with ordinary gamma matrices. This
is quite a dramatic difference and raises two questions.

The Dirac action

L = iΨ∂µγ
µΨ−mΨΨ (12.2.5)

for a massive particle reads in Weyl representation as

L = iη∗∂µσ
µη + iχ∗∂µσ

µχ−mχη −mχ∗η∗ . (12.2.6)

12.2.2 SUSY algebras

In the following 4-D SUSY algebras are discussed first following the representation of [B68] .
After that basic results about higher-dimensional SUSY algebras are listed with emphasis on
8-D case.

D = 4 SUSY algebras

Poincare SUSY algebra contains as super-generators transforming as Weyl spinors transforming
in complex conjugate representations of Lorentz group. The basic anti-commutation relations
of Poincare SUSY algebra in Weyl fermion basis can be expressed as

{Qα, Qβ̇} = 2σµ
αβ̇
Pµ ,

{Qα, Qβ} = {Qα̇, Qβ̇} = 0 ,

[Qα, Pµ] = [Qα̇, Pµ] = 0 . (12.2.7)

By taking a trace over spinor indices one obtains expression for energy as P 0 =
∑
iQiQi+QiQi.

Since super-generators must annihilated super-symmetric ground states, the energy must vanish
for them.

This algebra corresponds to simplest N = 1 SUSY in which only left-handed fermion appears.
For N = 1 SUSY the super-charges are are hermitian whereas in TGD framework supercharges
carry fermion number. This implies that super-charges come in pairs of super charge so that
N = 2N must hold true and its hermitian conjugate and only the second half of super-charges
can annihilate vacuum state. Weyl spinors must also come as pairs of right- and left-handed
spinors.

The construction generalizes in a straightforward manner to allow arbitrary number of fermionic
generators. The most general anti-commutation relations in this case are

{Qiα, Qjβ̇} = 2δji σ
µ

αβ̇
Pµ ,

{Qiα, Qjβ} = εαβZij ,

{Qα̇, Qβ̇} = εα̇β̇Z∗ij . (12.2.8)

The complex constants are called central charges because they commute with all generators of
the super-Poincare group.
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Higher-dimensional SUSY algebras

The character of supersymmetry is sensitive to the dimension D of space-time and to the sig-
nature of the space-time metric higher dimensions [B6] . The available spinor representations
depend on k; the maximal compact subgroup of the little group of the Lorentz that preserves
the momentum of a massless particle is Spin(d− 1)× Spin(D − d− 1), where d is the number
of spatial dimensions D− d is the number time dimensions and k is defined as k = 2d−D. Due
to the mod 8 Bott periodicity of the homotopy groups of the Lorentz group, really we only need
to consider k = 2d−D modulo 8. In TGD framework one has D = 8, d = 7 and k = 6.

For any value of k there is a Dirac representation, which is always of real dimension N =
[21+[(2d−k)/2] where [x] is the greatest integer less than or equal to x. For TGD this of course gives
25 = 32 corresponding to complex 8-component quark and lepton like spinors. For −2 ≤ k ≤ 2
not realized in TGD there is a real Majorana spinor representation, whose dimension is N/2.
When k is even (TGD) there is a Weyl spinor representation, whose real dimension is N/2. For
k mod 8 = 0 (say in super-string models) there is a Majorana-Weyl spinor, whose real dimension
is N/4. For 3 ≤ k ≤ 5 so called symplectic Majorana spinor with dimension D/2 and for k = 4
symplectic Weyl-Majorana spinors with dimension D/4 is possible. The matrix ΓD+1 defined
as the product of all gamma matrices has eigenvalues ±(−1)−k/2. The eigenvalue of ΓD+1 is
the chirality of the spinor. CPT theorem implies that the for D mod 4 = 0 the numbers of
left and right handed super-charges are same. For D mod 4 = 2 the numbers of left and right
handed chiralities can be different and corresponding SUSYs are classified by N = (NL,NR),
where NL and NR are the numbers of left and right handed super charges. Note that in TGD
the chiralities are ±1 and correspond to quark and leptons like spinors.

TGD does not allow super-symmetry with Majorana particles. It is indeed possible to have non-
hermitian super-charges [B19] in dimension D = 8. In D = 8 SUGRA with one time dimension
super-charges ar non-hermitian and Majorana particles are absent. Also in D = 4 SUGRA
predicts super-charges are non-hermitian super-charges but Majorana particles are present.

(a) D = 8 super-gravity corresponds to N = 2 and allows complex super-charges Qiα ∈ 8 and

their hermitian conjugates Q
i

α ∈ 8. The group of R symmetries is U(2). Bosonic fields
consists the metric gmn, seven real scalars, six vectors, three 2-form fields and one 3-form
field. Fermionic fields consist of two Weyl (left) gravitini ψαi, six Weyl (right) spinors plus
their hermitian conjugates of opposite chirality. There are no Majorana fermions.

(b) D = 4,N = 8 SUGRA is second example allowing complex non-hermitian super-charges.

The supercharges Qiα ∈ 2 and their hermitian conjugates Q
i

α̇ ∈ 2. R-symmetry group is
U(8). Bosonic fields are metric gmn, 70 real scalars and 28 vectors. Fermionic fields are 8
Majorana gravitini Ψa,i

m and 56 Majorana spinors.

For N = 2N and at least D = 8 with one time dimension the super charges can be assumed to
come in hermitian conjugate pairs and the non-vanishing anti-commutators can be expressed as

{Q†iα, Q
j

β̇
} = 2δji σ

µ

αβ̇
Pµ ,

{Q†iα, Qjβ} = εαβZij ,

{Q†α̇, Qβ̇} = εα̇β̇Z∗ij . (12.2.9)

In this case Zij is anti-hermitian matrix. 8-D chiral invariance (separate conservation of lepton
and quark numbers) suggests strongly that that the condition Zij = 0 must hold holds true.
A given pair of super-charges is analogous to creation and annihilation operators for a given
fermionic chirality. In TGD framework opposite chiralities correspond to quark and lepton like
spinors.
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Representations of SUSY algebras in dimension D = 4

The physical components of super-fields correspond to states in the irreducible representations
of SUSY algebras. The representations can be constructed by using the basic anticommutation
relations for Qiα and Qjα̇, i, j ∈ {1, ...,N}, α, α̇ ∈ {1, 2}. The representations can be classified
to massive and massless ones. Also the presence of central charges affects the situation. A
given irreducible representation is characterized by its ground state and R-parity assignments
distinguish between representations with the same spin content, say fermion and its scalar super-
partner and Higss with its fermionic super-partner.

(a) In the massive case one obtains in the rest system just fermionic oscillator algebra with
with 2N fermionic creation operators and 2N annihilation operators. The number of states
created from a vacuum state with spin s0 is 2N and maximum spin is s0+N/2. For instance,
forN = 1 and s0 = 0 one obtains for 4 states with spins J ≤ 1/2. Renormalizability requires
massive matter to have s ≤ 1/2 so that only N = 1 is possible in this case. For particles
massless at fundamental level and getting their masses by symmetry breaking this kind of
restriction does not apply.

(b) In the massless case only one half of fermionic oscillator operators have vanishing anti-
commutators corresponding to the fact that for massless state only the second helicity is
physical. This implies that the number of states is only 2N and the helicities vary from λ0

to λ0 +N/2. For N = 1 the representation is 2-dimensional.

(c) In the presence of central charges Zij = −Zji the representations are in general massive
(Zij has dimensions of mass), U(N) acts as symmetries of Z, and since Z2 is symmetric its
diagonalizability implies that Z matrix can be cast by a unitary transformation into a direct
sum of 2-D antisymmetric real matrices multiplied by constants Zi. Therefore the super-
algebra can be cast in diagonal form with anticommutators proportional to M ± Zm with
M −Zm ≥ 0 by unitarity. This implies the celebrated Bogomol’nyi bound M ≥ max{Zn}.
For this value of varying mass parameter it is possible to have reduction of the dimension
of the representation by one half. If the eigenvalues Zn are identical the number of states
is reduced to that for a massless representation. This multiplet is known as short BPS
multiplet. Although BPS multiplets are massive (mass is expressible in terms of Higgs
expectation value) they form multiplets shorter than the usual massive SUSY multiplets.

12.2.3 Super-space

The heuristic view about super-space [B18] is as a manifold with D local bosonic coordinates
xµ and ND/2 complex anti-commuting spinor coordinates θαi and their complex conjugates

θ
i

α̇ = (θαi )∗. For N = 1, which is relevant to minimally super-symmetric standard model
(MSSM), the spinors θ can also chosen to be real that is Majorana spinors, so that one has 4
bosonic and four real coordinates. In TGD framework one must however use Weyl spinors.

The anti-commutation relations for the super-coordinates are

{θα, θβ} = {θα̇, θβ̇} = {θα, θβ̇} = 0 . (12.2.10)

The integrals over super-space in 4-D N = 1 case are defined by the following formal rules which
actually state that super-integration is formally analogous to derivation.

∫
dθ =

∫
dθ =

∫
dθθ =

∫
dθθ = 0 ,∫

dθαdθβ = δαβ ,

∫
dθα̇dθβ̇ = δβ̇α̇ ,∫

d2θθ2 =

∫
d2θθ

2
,

∫
d4θθ2θ

2
= 1 . (12.2.11)
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Here the shorthand notations

d2θ ≡ −1

4
εαβdθ

αdθβ ,

d2θ ≡ −1

4
εα̇β̇dθα̇dθβ̇ ,

d4θ ≡ d2θd2θ . (12.2.12)

are used.

The generalization of the formulas to D > 4 and N > 1 cases is trivial. In infinite-dimensional
case relevant for the super-symmetrization of the WCW geometry in terms of local Clifford
algebra of WCW to be proposed later the infinite number of complex theta parameters poses
technical problems unless one defines super-space functions properly.

Chiral super-fields

Super-multiplets can be expressed as single super-field define in super-space. Super-field can be
expanded as a Taylor series with respect to the theta parameters. In 4-dimensional N = 1 case
one has

Φ(xµ, θ, θ) = φ(xµ) + θη(xµ) + θη†(xµ) + θσαθVα(xµ) + θ2F (xµ) + θ2F (xµ)...+ θ2θ
2
D(xµ) .(12.2.13)

The action of super-symmetries on super-fields can be expressed in terms of super-covariant
derivatives defined as

Dα =
∂

∂θα
− iσµαα̇θ

α̇ ∂

∂µ
, Dα̇ = − ∂

∂θ
α̇

+ iθασµαα̇
∂

∂µ
. (12.2.14)

This allows very concise realization of super-symmetries.

General super-field defines a reducible representation of super-symmetry. One can construct
irreducible representations of super-fields a pair of chiral and antichiral super-fields by posing
the condition

Dα̇Φ = 0 , DαΦ† = 0 . (12.2.15)

The hermitian conjugate of chiral super-field is anti-chiral.

Chiral super-fields can be expressed in the form

Φ = Φ(θ, yµ) , yµ = xµ + iθσµθ , yµ† = xµ − iθσµθ . (12.2.16)

These formulas generalize in a rather straightforward manner to D > 4 and N > 1 case.

It is easy to check that any analytic function of a chiral super-field, call it W (Φ), is a chiral super-
field. In super-symmetries its θ2 component transforms by a total derivative so that the action
defined by the super-space integral of W (φ) is invariant under super-symmetries. This allows
to construct super-symmetric actions using W (Φ) and W (Φ†). The so called super-potential is
defined using the sum of W (Φ) +W (Φ†).
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Analytic functions of does not give rise to kinetic terms in the action. The observation θ2θ
2

component of a real function of chiral super-fields transforms also as total derivative under super-
symmetries allows to circumvent this problem by introducing the notion of Kähler potential
K(Φ,Φ†) as a real function of chiral super-field and its conjugate. In he simplest case one has

K =
∑
i

Φ†iΦi . (12.2.17)

LK =
∫
Kd4θ gives rise to simples super-symmetric action for left-handed fermion and its scalar

super-partner.

Kähler potential allows an interpretation as a Kähler function defining the Kähler metric for
the manifold defined by the scalars φi. This Kähler metric depends in the general case on φi
and appears in the kinetic term of the super-symmetric action. Super-potential in turn can be
interpreted as a counterpart of real part of a complex function which can be added to the Kähler
function without affect the Kähler metric. This geometric interpretation suggests that in TGD
framework every complex coordinate φi of WCW defines a chiral super-field whose bosonic part.

Wess-Zumino model as simple example

Wess-Zumino model without interaction term serves as a simple illustration of above formal
considerations. The action density of Wess-Zumino Witten model can be deduced by integration
Kähler potential K = Φ†Φ for chiral super fields over theta parameters. The result is

L = ∂uφ
∗∂µφ+ iη∗∂µη + F ∗F . (12.2.18)

The action of super-symmetry

δΦ = εαDαΦ , δΦ† = εα̇Dα̇Φ , εα̇ = ε∗α (12.2.19)

gives the transformation formulas

δφ = εαηα , δη = −iη∗α̇σµαα̇∂µφ+ εαF , δF = −iεα̇σµα̇α∂µηα (12.2.20)

plus their hermitian conjugates. The corresponding Noether current is indeed hermitian since
the transformation parameters εα and εα̇ = ε∗α appear in it and cannot be divided away. This
conserved current has as such no meaning and the statement that ground state is annihilated
by the corresponding super-charge means that vacuum field configuration rather than Fock
vacuum remains invariant under supersymmetries. Rather, the breaking of super-symmetry by
adding a super-potential implies that F develops vacuum expectation and the vacuum solution
(φ = 0, η = 0, F = constant) of field equations is not anymore invariant super super-symmetries.

The non-hermitian parts of the super current corresponding to different fermion numbers are
separately conserved and corresponding super-charges are non-Hermitian and together with
other charges define a super-algebra which to my best understanding is not equivalent with the
super-algebra defined by allowing the presence of anti-commuting parameters ε. The situation is
similar in TGD where one class of non-hermitian super-currents correspond to the modes of the
induced spinor fields contracted with Ψ and their conjugates. The octonionic solution ansatz for
the induced spinor field allows to express the solutions in terms of two complex scalar functions
so that the super-currents in question would be analogous to those of N = 2 SUSY and one
might see the super-symmetry of quantum TGD extended super-symmetry obtained from the
fundamental N = 2 super-symmetry.
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Vector super-fields and supersymmetric variant of YM action

Chiral super-fields allow only the super-symmetrization of Dirac action. The super-symmetrization
of YM action requires the notion of a hermitian vector super field V = V †, whose components
correspond to vector bosons, their super-counterparts and additional degrees of freedom which
cannot be dynamical. These degrees of freedom correspond gauge degrees of freedom.

In the Abelian case the gauge symmetries are realized as V → V + Λ + Λ†, where Λ is a chiral
super-field. These symmetries induce gauge transformations of the vector potential. Their action
on chiral super-fields is Φ→ exp(−qΛ)Φ, Φ† → Φ†exp(−Λ†). In non-Abelian case the realization
is as exp(V )→ exp(−Λ†)exp(V )exp(Λ) so that the modified Kähler potential K(Φ†, exp(qV )Φ)
remains invariant.

One can assign to V a gauge invariant chiral spinor super-field as

Wα = −1

4
D

2
(eVDαe

−V ) ,

D
2

= εα̇β̇Dα̇Dβ̇ (12.2.21)

defining the analog of gauge field. D
2

eliminates all terms the exponent of θ is higher than that
of θ since these would spoil the chiral super-field property (the anti-commutativity of super-
covariant derivatives Dα̇ makes this obvious). Dα in turn eliminates from the resulting scalar
part so that one indeed has chiral spinor super-field. In higher dimensions and for larger value of
N the definition of Wα must be modified in order to achieve this: what is needed is the product
of all derivatives D ˙iα.

The analytic functions of chiral spinor super-fields are chiral super-fields and θ2 component of
WαWα transforms as a total derivatives. The super-symmetric Lagrangian of U(1) theory can
be written as

L =
1

4g2

(∫
d2θWαWα +

∫
d2θW †α̇W

†
α̇

)
. (12.2.22)

Note that in standard form of YM action 1/2g2 appears.

R-symmetry

R-symmetry is an important concomitant of super-symmetry. In N = 1 case R-symmetry
performs a phase rotation θ → eiαθ for the super-space coordinate θ and an opposite phase
rotation for the differential dθ. For N > 1 R-symmetries are U(N) rotations. R-symmetry is
an additional symmetry of the Lagrangian terms due to Kähler potential since both d4θ (and
its generalization) as well as Kähler potential are real. Also super-symmetric YM action is R-
invariant. R-symmetry is a symmetry of if super-potential W only if it has super-charge QR = 2
(QR = 2N ) in order to compensate the super-charge of d2N θ.

12.2.4 Non-renormalization theorems

Super-symmetry gives powerful constraints on the super-symmetric Lagrangians and leads to
non-renormalization theorems.

The following general results about renormalization of supersymmetric gauge theories hold true
(see [B68] , where heuristic justification of the non-renormalization theorems and explicit for-
mulas are discussed).

(a) Super-potential is not affected by the renormalization.
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(b) Kähler potential is subject to wavefunction renormalization in all orders. The renormal-
ization depends on the parameters with dimensions of mass. In particular, quadratic di-
vergences to masses cancel.

(c) Gauge coupling suffers renormalization only by a constant which corresponds to one-loop
renormalization. Any renormalization beyond one loop is due to wave function renormal-
ization of the Kähler potential and it is possible to calculate the beta function exactly.

It is interesting to try to see these result from TGD perspective.

(a) In TGD framework super-potential interpreted as defining the modification of WCW Kähler
function, which does not affect Kähler metric and would reflect measurement interaction.
The non-renormalization of W would mean that the measurement interaction is not subject
to renormalization. The interpretation is in terms of quantum criticality which does not
allow renormalization of the coefficients appearing in the measurement interaction term
since otherwise Kähler metric of WCW would be affected.

(b) The wavefunction renormalization of Kähler potential would correspond in TGD framework
scaling of the WCW Kähler metric. Quantum criticality requires that Kähler function
remains invariant. Also since no parameters with dimensions of mass are available, there
is temptation to conclude that wave function renormalization is trivial.

(c) Only the gauge coupling would be suffer renormalization. If one however believes in the
generalization of bosonic emergence it is Kähler function which defines the SUSY QFT
limit of TGD so that gauge couplings follow as predictions and their renormalization is a
secondary -albeit real- effect having interpretation in terms of the dependence of the gauge
coupling on the p-adic length scale. The conclusion would be that at the fundamental level
the quantum TGD is RG invariant.

12.3 Does TGD allow the counterpart of space-time super-
symmetry?

The question whether TGD allows space-time super-symmetry or something akin to it has been
a longstanding problem. A considerable progress in the respect became possible with the better
understanding of the modified Dirac equation. At the same time I learned about almost 15
year old striking eeγγ + /E detected by CDF collaboration [C17, C13] from Tommaso Dorigo’s
blog [C10] .

12.3.1 Basic data bits

Let us first summarize the data bits about possible relevance of super-symmetry for TGD before
the addition of the 3-D measurement interaction term to the modified Dirac action [K15, K28] .

(a) Right-handed covariantly constant neutrino spinor νR defines a super-symmetry in CP2

degrees of freedom in the sense that Dirac equation is satisfied by covariant constancy and
there is no need for the usual ansatz Ψ = DΨ0 giving D2Ψ = 0. This super-symmetry
allows to construct solutions of Dirac equation in CP2 [A137, A100, A121, A95] .

(b) In M4 ×CP2 this means the existence of massless modes Ψ = /pΨ0, where Ψ0 is the tensor
product of M4 and CP2 spinors. For these solutions M4 chiralities are not mixed unlike
for all other modes which are massive and carry color quantum numbers depending on the
CP2 chirality and charge. As matter fact, covariantly constant right-handed neutrino spinor
mode is the only color singlet. The mechanism leading to non-colored states for fermions
is based on super-conformal representations for which the color is neutralized [K43, K52]
. The negative conformal weight of the vacuum also cancels the enormous contribution to
mass squared coming from mass in CP2 degrees of freedom.
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(c) Right-handed covariantly constant neutrino allows to construct the gamma matrices of the
world of classical worlds (WCW) as fermionic counterparts of Hamiltonians of WCW. This
gives rise super-symplectic symmetry algebra having interpretation also as a conformal
algebra. Also more general super-conformal symmetries exist.

(d) Space-time (in the sense of Minkowski space M4) super-symmetry in the conventional sense
of the word is impossible in TGD framework since it would require require Majorana spinors.
In 8-D space-time with Minkowski signature of metric Majorana spinors are definitely ruled
out by the standard argument leading to super string model. Majorana spinors would also
break separate conservation of lepton and baryon numbers in TGD framework.

12.3.2 Could one generalize super-symmetry?

Could one then consider a more general space-time super-symmetry with ”space-time” identified
as space-time surface rather than Minkowski space?

(a) The TGD variant of the super-symmetry could correspond quite concretely to the addition
to fermion and boson states right-handed neutrinos. Since right-handed neutrinos do not
have electro-weak interactions, the addition might not appreciably affect the mass formula
although it could affect the p-adic prime defining the mass scale.

(b) The problem is to understand what this addition of the right-handed neutrino means.
To begin with, notice that in TGD Universe fermions reside at light-like 3-surfaces at
which the signature of induced metric changes. Bosons correspond to pairs of light-like
wormhole throats with wormhole contact having Euclidian signature of the induced metric.
It is essential that either fermion or antifermion in the boson state carries what might be
called un-physical polarization in the standard conceptual framework. Only in this manner
the helicities can come out correctly. The assumption that the bosonic wormhole throats
correspond to positive and negative energy space-time sheets realizes this constraint in the
framework of zero energy ontology.

(c) The super-symmetry as an addition to the fermion state a second wormhole throats carrying
right handed neutrino quantum numbers does not make sense since the resulting state
cannot be distinguished from gauge boson or Higgs type particle. The light-like 3-surfaces
can however carry fermion numbers up to the number of modes of the induced spinor
field, which is expected to be infinite inside string like objects having wormhole throats
at ends and finite when one has space time sheets containing the throats [K28] . In very
general sense one could say that each mode defines a very large broken N -super-symmetry
with the value of N depending on state and light-like 3-surface. The breaking of this
super-symmetry would come from electro-weak - , color - , and gravitational interactions.
Right-handed neutrino would by its electro-weak and color inertness define a minimally
broken super-symmetry.

(d) What this addition of the right handed neutrinos or more general fermion modes could
precisely mean? One cannot assign fermionic oscillator operators to right handed neutrinos
which are covariantly constant in both M4 and CP2 degrees of freedom since the modes with
vanishing energy (frequency) cannot correspond to fermionic oscillator operator creating a
physical state since one would have a = a†. The intuitive view is that all the spinor modes
move in an exactly collinear manner -somewhat like quarks inside hadron do approximately.

12.3.3 Modified Dirac equation briefly

The answer to the question what ”collinear motion” means mathematically emerged from the
recent progress in the understanding of the modified Dirac equation.

(a) The modified Dirac action involves two terms. Besides the original 4-D modified Dirac
action there is measurement interaction. This term correlates space-time geometry with
quantum numbers assignable to super-conformal representations and is also necessary to
obtain almost-stringy propagator.
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(b) The modified Dirac equation with measurement action added reads as

(DK +Q×OΨ = 0 . (12.3.1)

i. DK corresponds formally to 4-D massless Dirac operatr in X4. Q realizes measurement
interaction.

ii. Q is linear in Cartan algebra generators of the isometry algebra of imbedding space
(color isospin and hypercharge plus four-momentum or two components of four mo-
mentum and spin and boost in direction of 3-momentum). Q is expressible as

Q = QA∂αh
kgABjBkΓ̂αK . (12.3.2)

Here QA is Cartan algebra generator acting on physical states. Physical states must
be eigen states of QA since otherwise the equations do not make sense. gAB is the
inverse of the matrix defined by the imbedding space inner product of Killing vector
fields jkA and jlB : its existence allows only Cartan algebra charges.

iii. One can add to the measurement interaction also a coupling to the modified gamma
matrices definee by the instanton term J ∧J associated with Kähler action. This term
is total divergence but gives rise to a sum of Chern-Simons terms localizable to the
wormhole throats or to light-like 3-surface parallel to them. This term contributes a
boundary condition to the solutions of the modified Dirac equation breaking CP and
T invariance. The interpretation is in terms of dissipation caused by state function
reductions.

iv. In general case the modified gamma matrices are defined in terms of action density L
as

Γ̂α =
∂L

∂αhk
γk . (12.3.3)

γk denotes imbedding space gamma matrices.

v. The operator O characterizes the conserved fermionic current to which Cartan algebra
generators of isometries couple. The simplest conserved currents correspond to quark or
lepton currents and corresponding vectorial isospin- and spin currents [K28] . Besides
this there is an infinite hierarchy of conserved currents relating to quantum criticality
and in one-one correspondence with vanishing second variations of Kähler action for
preferred extremal. These couplings allow to represent measurement interaction for
any observable.

(c) The equation (DK +Q)νR = 0 for right-handed neutrino would reduce for vanishing color
charges and covariantly constant spinor to the analog of algebraic fermionic on mass shell
condition pAγ

AνR = 0 since Q is obtained by projecting the total four-momentum of the
parton state interpreted as a vector-field of H to the space-time surface and by replacing
ordinary gamma matrices with the modified ones. This equation cannot be exact since Q
depends on the point of the light-like 3-surface so that covariant constancy fails and DK

cannot annihilate the state. This is the space-time correlate for the breaking of super-
symmetry. The action of the Cartan algebra generators is purely algebraic and on the state
of super-conformal representations rather than that of a differential operator on spinor field.
The modified equation implies that all spinor modes represent fermions moving collinearly
in the sense an equation with the same total four-momentum and total color quantum
numbers is satisfied by all of them. Note that pA represents the total four-momentum of
the state rather than individual four-momenta of fermions.

12.3.4 TGD counterpart of space-time super-symmetry

This picture allows to define more precisely what one means with the approximate super-
symmetries in TGD framework.
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(a) One can in principle construct many-fermion states containing both fermions and anti-
fermions at given light-like 3-surface. The four-momenta of states related by super-symmetry
need not be same. Super-symmetry breaking is present and has as the space-time correlate
the deviation of the modified gamma matrices from the ordinary M4 gamma matrices. In
particular, the fact that Γ̂α possesses CP2 part in general means that different M4 chiralities
are mixed: a space-time correlate for the massivation of the elementary particles.

(b) For right-handed neutrino super-symmetry breaking is expected to be smallest but also in
the case of the right-handed neutrino mode mixing of M4 chiralities takes place and breaks
the TGD counterpart of super-symmetry.

(c) The fact that all helicities in the state are physical for a given light-like 3-surface has
important implications. For instance, the addition of a right-handed antineutrino to right-
handed (left-handed) electron state gives scalar (spin 1) state. Also states with fermion
number two are obtained from fermions. For instance, for eR one obtains the states
{eR, eRνRνR, eRνR, eRνR} with lepton numbers (1, 1, 0, 2) and spins (1/2, 1/2, 0, 1). For
eL one obtains the states {eL, eLνRνR, eLνR, eLνR} with lepton numbers (1, 1, 0, 2) and
spins (1/2, 1/2, 1, 0). In the case of gauge boson and Higgs type particles -allowed by TGD
but not required by p-adic mass calculations- gauge boson has 15 super partners with
fermion numbers [2, 1, 0,−1,−2].

The cautious conclusion is that the recent view about quantum TGD allows the analog of
super-symmetry which is necessary broken and for which the multiplets are much more general
than for the ordinary super-symmetry. Right-handed neutrinos might however define something
resembling ordinary super-symmetry to a high extent. The question is how strong prediction
one can deduce using quantum TGD and proposed super-symmetry.

(a) For a minimal breaking of super-symmetry only the p-adic length scale characterizing the
super-partner differs from that for partner but the mass of the state is same. This would
allow only a discrete set of masses for various super-partners coming as half octaves of the
mass of the particle in question. A highly predictive model results.

(b) The quantum field theoretic description should be based on QFT limit of TGD formulated
in terms of bosonic emergence [K58] . This formulation should allow to calculate the
propagators of the super-partners in terms of fermionic loops.

(c) This TGD variant of space-time super-symmetry resembles ordinary super-symmetry in
the sense that selection rules due to the right-handed neutrino number conservation and
analogous to the conservation of R-parity hold true. The states inside super-multiplets
have identical electro-weak and color quantum numbers but their p-adic mass scales can be
different. It should be possible to estimate reaction reaction rates using rules very similar
to those of super-symmetric gauge theories.

(d) It might be even possible to find some simple generalization of standard super-symmetric
gauge theory to get rough estimates for the reaction rates. There are however problems.
The fact that spins J = 0, 1, 2, 3/2, 2 are possible for super-partners of gauge bosons forces
to ask whether these additional states define an analog of non-stringy strong gravitation.
Note that graviton in TGD framework corresponds to a pair of wormhole throats connected
by flux tube (counterpart of string) and for gravitons one obtains 28-fold degeneracy.

12.3.5 Experimental indication for space-time super-symmetry

There is experimental indication for super-symmetry dating back to 1995 [C17] . The event
involves e+e−γγ plus missing transverse energy /ET . The electron-positron pair has transversal
energies ET = (36, 59) GeV GeV and invariant mass Mee = 165 GeV. The two photons have
transversal energies (30,38) GeV. The missing transverse energy is /ET = 53 GeV. The cross
sections for these events in standard model are too small to be observed. Statistical fluctuation
could be in question but one could also consider the event as an indication for super-symmetry.

In [C13] an explanation of the event in terms of minimal super-symmetric standard model
(MSSM) was proposed.
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(a) The collision of proton and antiproton would induce an annihilation of quark and antiquark
to selectron pair ẽ−ẽ+ via virtual photon or Z0 boson with the mass of ẽ in the range
(80,130) GeV (the upper bound comes from the total energy of the particles involved.

(b) ẽ± would in turn decay to e± and neutralino χ0
2 ad χ0

2 to the lightest super-symmetric
particle χ0

1 and photon. The neutralinos are in principle mixtures of the super partners
associated with γ, Z0, and neutral higgs h (there are two of them in minimal super-
symmetric generalization of standard model). The highest probability for the chain is
obtained if χ0

2 is gluino and χ0
1 is higgsino.

(c) The kinematics of the event allows to deduce the bounds

80 < m(ẽ)/GeV < 130 ,

38 ≤ m(χ0
2)/GeV ≤ min

[
1.12m(ẽ)/GeV − 37, 95 + 0.17m(χ0

1)/GeV
]
,

m(χ0
1)/GeV ≤ m(χ0

2)/GeV ≤ min
[
1.4m(ẽ)/GeV − 105, 1.6m(χ0

2)/GeV − 60
]
.

(12.3.4)

(d) Sfermion production rate depends only on masses of the sfermions, so that slepton produc-
tion cross section decouples from the analysis of particular scenarios. The cross section is at
the level of σ = 10 fb and consistent with data (one event!). The parameters of MSSM are
super-symmetric soft-breaking parameters, super-potential parameters, and the parameter
tan(β). This allows to derive more stringent limits on the masses and parameters of MSSM.

Consider now the explanation of the event in TGD framework.

(a) By the properties of super-partners the production rate for ẽ−ẽ+ is predicted to be same
as in MSSM for ẽ = eRνR. Same order of magnitude is predicted also for more exotic
super-partners such as eLνR with spin 1.

(b) In TGD framework it is safest to use just the kinematical bounds on the masses and p-adic
length scale hypothesis. If super-symmetry breaking means same mass formula from p-adic
thermodynamics but in a different p-adic mass scale, m(ẽ) is related by a power of

√
2 to

m(e). Using m(ẽ) = 2(127−k(ẽ))/2m(e) one finds that the mass range [80, 130] GeV allows
two possible masses for selectron corresponding to p ' 2k, k = 91 with m(ẽ) = 131.1
GeV and k = 92 with m(ẽ) = 92.7 GeV. The bounds on m(Z) leave only the option
m(Z̃) = m(Z) = 91.2 GeV and m(ẽ) = 131.1 GeV.

(c) The indirect determinations of Higgs masses from experimental data seem to converge to
two different values. The first one would correspond to m(h) = 129 GeV and k(h) = 94 and
second one to m(h) = 91 GeV with k(h) = 95 [K18, K53] . The fact that already the TGD
counterpart for the Gell-Mann-Okubo mass formula in TGD framework requires quarks to
exist at several p-adic mass scales [K53] , suggests that Higgs can exist in both of these mass
scales depending on the experimental situation. The mass of Higgsino would correspond
to some half octave of m(h). Note that the model allows to conclude that Higgs indeed
exists also in TGD Universe although it does not seem to play the same role in particle
massivation as in the standard model. The bounds allow only k(h̃) = k(h) + 3 = 97 and
m(h̃) = 45.6 GeV for m(h) = 129 GeV . The same same mass is obtained for m(h) = 91
GeV. Therefore the kinematic limits plus super-symmetry breaking at the level of p-adic
mass scale fix completely the masses of the super-particles involved in absence of mixing
effects for sneutralinos. To sum up, the masses of sparticles involved are predicted to be

m(ẽ) = 131 GeV , m(Z̃0) = 91.2 GeV , m(h̃) = 45.6 GeV . (12.3.5)

12.4 Octo-twistors and modified Dirac equation

Classical number fields define one vision about quantum TGD which has unexpected connection
also with the problem of defining twistors in terms of octonionic analog of the Clifford algebra
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which serves as alternative for standard Clifford algebra in this dimension. The vision about
quantum TGD has evolved gradually and involves several speculative ideas.

(a) The hard core of the vision is that space-time surfaces as preferred extremals of Kähler
action can be identified as what I have called hyper-quaternionic surfaces of M8 or M4 ×
CP2. This requires only the mapping of the modified gamma matrices to octonions or to
a basis of subspace of complexified octonions. This means also the mapping of spinors
to octonionic spinors. There is no need to assume that imbedding space-coordinates are
octonionic.

(b) I have considered also the idea that quantum TGD might emerge from the mere associa-
tivity.

i. Consider Clifford algebra of WCW. Treat ”vibrational” degrees of freedom in terms
second quantized spinor fields and add center of mass degrees of freedom by replacing
8-D gamma matrices with their octonionic counterparts - which can be constructed
as tensor products of octonions providing alternative representation for the basis of
7-D Euclidian gamma matrix algebra - and of 2-D sigma matrices. Spinor components
correspond to tensor products of octonions with 2-spinors: different spin states for
these spinors correspond to leptons and baryons.

ii. Construct a local Clifford algebra by considering Clifford algebra elements depend-
ing on point of M8 or H. The octonionic 8-D Clifford algebra and its local variant
are non-accociative. Associative sub-algebra of 8-D Clifford algebra is obtained by
restricting the elements so any quaternionic 4-plane. Doing the same for the local
algebra means restriction of the Clifford algebra valued functions to any 4-D hyper-
quaternionic sub-manifold of M8 or H which means that the gamma matrices span
complexified quaternionic algebra at each point of space-time surface. Also spinors
must be quaternionic.

iii. The assignment of the 4-D gamma matrix sub-algebra at each point of space-time
surface can be done in many manners. If the gamma matrices correspond to the
tangent space of space-time surface, one obtains just induced gamma matrices and
the standard definition of quaternionic sub-manifold. In this case induced 4-volume is
taken as the action principle. If Kähler action defines the space-time dynamics, the
modified gamma matrices do not span the tangent space in general.

iv. An important additional element is involved. If the M4 projection of the space-time
surface contains a preferred subspace M2 at each point, the quaternionic planes are
labeled by points of CP2 and one can equivalently regard the surfaces of M8 as surfaces
of M4 × CP2 (number-theoretical ”compactification”). This generalizes: M2 can be
replaced with a distribution of planes of M4 which integrates to a 2-D surface of M4 (for
instance, for string like objects this is necessarily true). The presence of the preferred
local plane M2 corresponds to the fact that octonionic spin matrices ΣAB span 14-
D Lie-algebra of G2 ⊂ SO(7) rather than that 28-D Lie-algebra of SO(7, 1) whereas
octonionic imaginary units provide 7-D fundamental representation of G2. Also spinors
must be quaternionic and this is achieved if they are created by the Clifford algebra
defined by induced gamma matrices from two preferred spinors defined by real and
preferred imaginary octonionic unit. Therefore the preferred plane M3 ⊂ M4 and
its local variant has direct counterpart at the level of induced gamma matrices and
spinors.

v. This framework implies the basic structures of TGD and therefore leads to the notion
of world of classical worlds (WCW) and from this one ends up with the notion WCW
spinor field and WCW Clifford algebra and also hyper-finite factors of type II1 and III1.
Note that M8 is exceptional: in other dimensions there is no reason for the restriction
of the local Clifford algebra to lower-dimensional sub-manifold to obtain associative
algebra.

(c) I have used time also to wilder speculations inspired by the idea that one could treat
imbedding space coordinates or space-time coordinate as single hyper-octonionic or hyper-
quaternionic coordinate but this line of approach has not led to anything really interesting.
For instance, I have considered the generalization of conformal fields by replacing complex
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coordinate z with complexified octonionic coordinate of M8 to obtain a generalization
of configuration space spinor fields and Clifford algebra elements to octonion-conformal
fields. The dependence of the modes of the octonion-conformal field on M4 coordinates
seems however non-physical (one would expect plane waves instead of powers) so that this
approach does not seem promising.

The above line of ideas leads naturally to (hyper-)quaternionic sub-manifolds and to basic quan-
tum TGD (note that the ”hyper” is un-necessary if one accepts just the notion of quaternionic
sub-manifold formulated in terms of modified gamma matrices). One can pose some further
questions.

(a) Quantum TGD reduces basically to the second quantization of the induced spinor fields.
Could it be that the theory is integrable only for 4-D hyper-quaternionic space-time surfaces
in M8 (equivalently in M4 × CP2) in the sense than one can solve the modified Dirac
equation exactly only in these cases?

(b) The construction of quantum TGD -including the construction of vacuum functional as
exponent of Kähler function reducing to Kähler action for a preferred extremal - should
reduce to the modified Dirac equation defined by Kähler action. Could it be that the
modified Dirac equation can be solved exactly only for Kähler action.

(c) Is it possible to solve the modified Dirac equation for the octonionic gamma matrices and
octonionic spinors and map the solution as such to the real context by replacing gamma
matrices and sigma matrices with their standard counterparts? Could the associativity
conditions for octospinors and modified Dirac equation allow to pin down the form of
solutions to such a high degree that the solution can be constructed explicitly?

(d) Octonionic gamma matrices provide also a non-associative representation for 8-D version of
Pauli sigma matrices and encourage the identification of 8-D twistors as pairs of octonionic
spinors conjectured to be highly relevant also for quantum TGD. Does the quaternionicity
condition imply that octo-twistors reduce to something closely related to ordinary twistors
as the fact that 2-D sigma matrices provide a matrix representation of quaternions suggests?

In the following I will try to answer these questions by developing a detailed view about the
octonionic counterpart of the modified Dirac equation and proposing explicit solution ansätze
for the modes of the modified Dirac equation.

12.4.1 The replacement of SO(7, 1) with G2

The basic implication of octonionization is the replacement of SO(7, 1) as the structure group
of spinor connection with G2. This has some rather unexpected consequences.

Octonionic representation of 8-D gamma matrices

Consider first the representation of 8-D gamma matrices in terms of tensor products of 7-D
gamma matrices and 2-D Pauli sigma matrices.

(a) The gamma matrices are given by

γ0 = 1× σ1 , γi = γi ⊗ σ2 , i = 1, .., 7 . (12.4.1)

7-D gamma matrices in turn can be expressed in terms of 6-D gamma matrices by expressing
γ7 as

γ
7)
i+1 = γ

6)
i , i = 1, ..., 6 , γ

7)
1 = γ

6)
7 =

6∏
i=1

γ
6)
i . (12.4.2)
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(b) The octonionic representation is obtained as

γ0 = 1× σ1 , γi = ei ⊗ σ2 . (12.4.3)

where ei are the octonionic units. e2
i = −1 guarantees that the M4 signature of the metric

comes out correctly. Note that γ7 =
∏
γi is the counterpart for choosing the preferred

octonionic unit and plane M2.

(c) The octonionic sigma matrices are obtained as commutators of gamma matrices:

Σ0i = ei × σ3 , Σij = f k
ij ek ⊗ 1 . (12.4.4)

These matrices span G2 algebra having dimension 14 and rank 2 and having imaginary
octonion units and their conjugates as the fundamental representation and its conjugate.
The Cartan algebra for the sigma matrices can be chosen to be Σ01 and Σ23 and belong to
a quaternionic sub-algebra.

(d) The lower dimension of the G2 algebra means that some combinations of sigma matrices
vanish. All left or right handed generators of the algebra are mapped to zero: this explains
why the dimension is halved from 28 to 14. From the octonionic triangle expressing the
multiplication rules for octonion units [A30] one finds e4e5 = e1 and e6e7 = −e1 and
analogous expressions for the cyclic permutations of e4, e5, e6, e7. From the expression
of the left handed sigma matrix I3

L = σ23 + σ30 representing left handed weak isospin
(see the Appendix of the book about the geometry of CP2) one can conclude that this
particular sigma matrix and left handed sigma matrices in general are mapped to zero.
The quaternionic sub-algebra SU(2)L × SU(2)R is mapped to that for the rotation group
SO(3) since in the case of Lorentz group one cannot speak of a decomposition to left and
right handed subgroups. The elements of the complement of the quaternionic sub-algebra
are expressible in terms of Σij in the quaternionic sub-algebra.

Some physical implications of SO(7, 1)→ G2 reduction

This has interesting physical implications if one believes that the octonionic description is equiv-
alent with the standard one.

(a) Since SU(2)L is mapped to zero only the right-handed parts of electro-weak gauge field
survive octonization. The right handed part is neutral containing only photon and Z0

so that the gauge field becomes Abelian. Z0 and photon fields become proportional to
each other (Z0 → sin2(θW )γ) so that classical Z0 field disappears from the dynamics,
and one would obtain just electrodynamics. This might provide a deeper reason for why
electrodynamics is an excellent description of low energy physics and of classical physics.
This is consistent with the fact that CP2 coordinates define 4 field degrees of freedom so
that single Abelian gauge field should be enough to describe classical physics. This would
remove also the interpretational problems caused by the transitions changing the charge
state of fermion induced by the classical W boson fields.

Also the realization of M8 −H duality led to the conclusion M8 spinor connection should
have only neutral components. The isospin matrix associated with the electromagnetic
charge is e1 × 1 and represents the preferred imaginary octonionic unit so that that the
image of the electro-weak gauge algebra respects associativity condition. An open question
is whether octonionization is part of M8-H duality or defines a completely independent
duality. The objection is that information is lost in the mapping so that it becomes ques-
tionable whether the same solutions to the modified Dirac equation can work as a solution
for ordinary Clifford algebra.

(b) The gauge potentials and gauge fields defined by CP2 spinor connection are mapped to
fields in SO(2) ⊂ SU(2) × U(1) in quaternionic sub-algebra which in a well-defined sense
corresponds to M4 degrees of freedom! Since the resulting interactions are of gravitational
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character, one might say that electro-weak interactions are mapped to manifestly gravita-
tional interactions. Since SU(2) corresponds to rotational group one cannot say that spinor
connection would give rise only to left or right handed couplings, which would be obviously
a disaster.

Octo-spinors and their relation to ordinary imbedding space spinors

Octo-spinors are identified as octonion valued 2-spinors with basis

ΨL,i = ei

(
1
0

)
,

Ψq,i = ei

(
0
1

)
. (12.4.5)

One obtains quark and lepton spinors and conjugation for the spinors transforms quarks to
leptons. Note that octospinors can be seen as 2-dimensional spinors with components which
have values in the space of complexified octonions.

The leptonic spinor corresponding to real unit and preferred imaginary unit e1 corresponds
naturally to the two spin states of the right handed neutrino. In quark sector this would mean
that right handed U quark corresponds to the real unit. The octonions decompose as 1+1+3+3
as representations of SU(3) ⊂ G2. The concrete representations are given by

{1± ie1} , eR and νR with spin 1/2 ,
{e2 ± ie3} , eR and νL with spin -1/2 ,
{e4 ± ie5} eL and νL with spin 1/2 ,
{e6 ± ie7} eL and νL with spin 1/2 .

(12.4.6)

Instead of spin one could consider helicity. All these spinors are eigenstates of e1 (and thus of the
corresponding sigma matrix) with opposite values for the sign factor ε = ±. The interpretation
is in terms of vectorial isospin. States with ε = 1 can be interpreted as charged leptons and D
type quarks and those with ε = −1 as neutrinos and U type quarks. The interpretation would be
that the states with vanishing color isospin correspond to right handed fermions and the states
with non-vanishing SU(3) isospin (to be not confused with QCD color isospin) and those with
non-vanishing SU(3) isospin to left handed fermions. The only difference between quarks and
leptons is that the induced Kähler gauge potentials couple to them differently.

The importance of this identification is that it allows a unique map of the candidates for the
solutions of the octonionic modified Dirac equation to those of ordinary one. There are some
delicacies involved due to the possibility to chose the preferred unit e1 so that the preferred
subspace M2 can corresponds to a sub-manifold M2 ⊂M4.

12.4.2 Octonionic counterpart of the modified Dirac equation

The solution ansatz for the octonionic counterpart of the modified Dirac equation discussed
below makes sense also for ordinary modified Dirac equation which raises the hope that the
same ansatz, and even same solution could provide a solution in both cases.

The general structure of the modified Dirac equation

There are two options concerning measurement interaction corresponding to D4 = DK + QK
and D3 = DC−S + QC−S . Here only the option based on DK + QK is discussed since it looks
more promising.
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For DK + QK option there is only single equation and corresponds to a 4-D modified Dirac
equation defined by Kähler action with measurement interaction term:

(DK +QK)Ψ = 0 . (12.4.7)

Also a CP-breaking instanton could be considered. In absence of measurement interaction
the dimensional reduction of this operator to a sum corresponding to DK,3 acting on light-
like 3-surfaces and 1-D operator DK,1 acting on the coordinate labeling the 3-D light-like 3-
surfaces in the slicing allows to assign eigenvalues to DK,3 as analogs of energy eigenvalues for
ordinary Schrödinger equation. It is not clear whether similar reduction occurs also in presence
of measurement interaction. Dirac determinant is identified as the product of these eigen values
of DK,3 +QK .

About the hyper-octonionic variant of the modified Dirac equation

What gives excellent hopes that the octonionic variant of modified Dirac equation could lead
to a provide precise information about the solution spectrum of modified Dirac equation is the
condition that everything in the equation should be associative. Hence the terms which are by
there nature non-associative should vanish automatically. First some general comments.

(a) The first implication is that the besides octonionic gamma matrices also octonionic spinors
should belong to the local quaternionic plane at each point of the space-time surface.
Spinors are also generated by quaternionic Clifford algebra from two preferred spinors
defining a preferred plane in the space of spinors. Hence spinorial dynamics seems to
mimic very closely the space-time dynamics and one might even hope that the solutions of
the modified Dirac action could be seen as maps of the space-time surface to surfaces of
the spinor space. The reduction to quaternionic sub-algebra suggest that some variant of
ordinary twistors emerges in this manner in matrix representation.

(b) The octonionic sigma matrices span G2 where as ordinary sigma matrices define SO(7, 1).
On the other hand, the holonomies are identical in the two cases if right-handed charge
matrices are mapped to zero so that there are indeed hopes that the solutions of the
octonionic Dirac equation cannot be mapped to those of ordinary Dirac equation. If left-
handed charge matrices are mapped to zero, the resulting theory is essentially the analog
of electrodynamics coupled to gravitation at classical level but it is not clear whether this
physically acceptable. It is not clear whether associativity condition leaves only this option
under consideration.

(c) The condition D2Ψ = 0 with D = (DK + QK) involves products of three octonions and
derivatives of the modified gamma matrices which can belong to the complement of the
quaternionic sub-space. Therefore (D2)DΨi = D(D2Ψi) could fail. It is not clear whether
the failure of this condition is a catastrophe.

For the measurement interaction defined by Kähler action situation is very simple since com-
mutator condition is not needed. The solution ansatz to the modified Dirac equation with
interaction term is expected to be of the form Ψ = (DK +QK)(Ψ0u0 + Ψ1u1), where u0 and u1

are constant spinors representing real unit and the preferred unit e1. Hence constant spinors as-
sociated with right handed electron and neutrino and right-handed d and u quark would appear
in Ψ and Ψi could correspond to scalar coefficients of spinors with different charge. This ansatz
would reduce the modified Dirac equation to (DK +QK)2Ψi = 0 since there are no charged cou-
plings present. The reduction of a d’Alembert type equation for single scalar function coupling
to U(1) gauge potential and U(1) ”gravitation” would obviously mean a dramatic simplification
raising hopes about integrable theory.
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General features of the solution ansatz

The solution ansätze for Chern-Simons and Kähler option have some common features.

(a) In both cases one must eliminate QK from the equation. The function Φi -call it just Φ -
is proportional to a function, which is a generalization of plane wave and guarantees that
Kähler Dirac equation is satisfied:

UQ = exp(iΦQ) , ΦQ =

∫
γ4,1

QK,αdx
α . (12.4.8)

Here the curves γ4,1 can be chosen rather freely sinec integrable phase factor is in question.
γ4,1 can be chose so that it defines a slicing of X4 reducing to a union of the slicings of Y 3

l .
The stringy slicing of X4 encourages the identification of these curves as the ends of the
orbits of strings connecting different wormhole throats. For four-momentum this expression
reduces to a plane wave.

(b) In both cases one must eliminate the covariant derivatives from the modified Dirac equation.
For the Abelian option the non-integrable phase factor is defined by the Abelian induced
spinor connection and eliminates the coupling to gauge potentials in the modified Dirac
equation. By abelianity these factors reduce to ordinary integrals:

UA,i = exp(i

∫
γ4,i

Aαdx
α) ≡ exp(iΦA,i) , i = 1, 2 . (12.4.9)

The two families of curves denoted by γ4,i correspond to stringy curves and the curves
defined by their ends. The phase factors are actually diagonal 2×2 matrix since A involves
a coupling to spin. In octonionic case the Abelian phase factor is actually diagonal 2 × 2
matrix since A involves a coupling to spin.

The detailed form of the modified Dirac-Kähler equation for Kähler option

Γ̂u = Γ̂v implies the degeneracy of the effective metric so that one has ĝuα = ĝvα. This simplifies
the equation to an effectively 2-dimensional form.

(a) The integrable phase factor exp(ΦQ) and non-integrable phase factors exp(ΦA,i are present
also now.

(b) The general form of the solution ansatz for Kähler option differs slightly from that for
Chern-Simons option since one can assume plane waves in both directions but with different
”energies”.

Uλ1,λ2 = exp(iλ1u)exp(iλ2v) ≡ exp(iΦλ1)exp(iΦλ2) . (12.4.10)

(c) In the recent case the factor R depends only on the transversal coordinates associated with
the partonic 2-surfaces, and is analogous to oscillator wave function in an external magnetic
field at X2 defined by the Abelian gauge field.

(d) One can write the solution ansatz in the form

Ψ = (DK +QK)Ψi =

[
DK,2R

R
+ Γ̂u(∂uΦQ + ∂uΦA,1 + ∂vΦA,2 + λ1 + λ2)

]
Ψi .

(12.4.11)

Here DK,2 represents 2-dimensional dimensional reduction of DK acting at partonic 2-
surface.
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(e) Without further assumptions it is not possible get rid of the non-integrable phase factors
completely. The sum of the derivatives of non-integrable phase factors characterizes the
change of the Kähler magnetic flux through a surface defined by 2 parallel stringy curves
and 2 parallel string end curves as second stringy curve and string end curve meeting at the
point considered are shifted slightly. The condition allowing to get rid of these derivatives
reads as

Jtu = 0 . (12.4.12)

The condition states that there is no Kähler electric field component along string orbits
so that the strings would behave like conductors. Note that this condition generalizes also
to non-Abelian case (non-octonionic gamma matrices). Effective 3-dimensionality suggests
that also ΦQ is constant along stringy curves.

With these optimistic assumptions the ansatz would reduce to

Ψ = (DK +QK)Ψi =

[
DK,2R

R
+ Γ̂u(λ1 + λ2)

]
Ψi .

(12.4.13)

(f) Continuing in the same optimistic spirit the modified Dirac equation reduces to

(DK +QK)(DK +QK)Ψi = (DK +QK)

[
DKR

R
+ Γ̂u(λ1 + λ2)

]
Ψi

=

[
D2
K,2R

R
+ (Γ̂u)2(λ1 + λ2)2 +

[
DK , Γ̂

u
]

(λ1 + λ2)

]
Ψi .

(12.4.14)

Since R depends only on the two transversal coordinates, one obtains equation analogous
to a 2-dimensional Schrödinger equation in 2-D magnetic field and quantization of λ1 + λ2

is expected. In the octonionic picture the magnetic field is Abelian so that the analogy
is rather concrete. If the region surrounding the wormhole throat has boundary, only
finite number of eigen-modes are expected. If a string-like object is in question there is
no boundary so that the number of eigenvalues can be infinite. This means homological
non-triviality and Kähler magnetic charge so that a string carrying magnetic monopoles at
its ends is in question.

(g) The quantization of λi ought to have a description in terms of the analogy with the harmonic
oscillator wave functions for a charged particle in an external Abelian magnetic field. λ1−λ2

could be determined by the boundary conditions. λ1 = λ2 is suggested by the duality of
the slicing defined by stringy curves and by string end curves.

To sum up, the solution ansatz is very simple for Kähler option provided that the induced
Kähler form (more generally, induced electro-weak gauge field) vanishes in (u, v) planes and
the generalized plane-waves exp(iΦQ) are constant along the stringy curves as the effective 3-
dimensionality and light-likeness of these curves suggests. For the dual solution ansatz exp(iΦQ)
would be constant along the string end curves. These ansätze are analogs of plane waves with
opposite wave vectors but same frequency.

12.4.3 Could the notion of octo-twistor make sense?

The basic problem of the twistor program is how to overcome the difficulties caused by particle
massivation and TGD framework suggests possible clues in this respect.
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(a) In TGD framework it is natural to regard particles as massless particles in 8-D sense and to
introduce 8-D counterpart of twistors by relying on the geometric picture in which twistors
correspond to a pair of spinors characterizing light-like momentum ray and a point of M8

through which the ray traverses. Twistors would consist of a pair of spinors and quark and
lepton spinors define the natural candidate for the spinors in question.

(b) In the case of ordinary Clifford algebra unit matrix and six-dimensional gamma matrices
γi, i = 1, ..., 6 and γ7 =

∏
i γi would define the variant of Pauli sigma matrices as σ0 = 1,

σk = γk, k = 1, .., 7 The problem is that masslessness condition does not correspond to the
vanishing of the determinant for the matrix pkσ

k.

(c) In the case of octo-twistors Pauli sigma matrices σk would correspond to hyper-octonion
units {σ0, σk} = {1, iek} and one could assign to pkσ

k a matrix by the linear map defined
by the multiplication with P = pkσ

k. The matrix is of form Pmn = pkfkmn, where fkmn
are the structure constants characterizing multiplication by hyper-octonion. The norm
squared for octonion is the fourth root for the determinant of this matrix. Since pkσ

k

maps its octonionic conjugate to zero so that the determinant must vanish (as is easy to
see directly by reducing the situation to that for hyper-complex numbers by considering
the hyper-complex plane defined by P ).

(d) The associativity of octo-twistors means that the momentum like quantity and the two
spinors belong to the same complex quaternionic plane. This suggests that octo-twistor
can be mapped to an ordinary twistor by mapping the basis of hyper-quaternions to Pauli
sigma matrices. Quaternionization would also allow to assign to momentum to the spinors
in standard manner.

One can consider two approaches to the notion of octo-twistor: global and local.

(a) The global approach to the notion of octo-twistor starts from four-momentum and color
charges combined to form an 8-vector. Associativity requires that both the momentum and
the spinors defining the twistors are in the same quaternionic plane which suggests that 8-D
twistors reduce to 4-D twistors. In the case of M8 and assuming 8-momenta, this difficulty
can be overcome if fixed M4 ⊂M8 defines Minkowski momentum. In the case of M4×CP2

one can assign to light-like geodesics light-like 8-momentum in terms of the tangent vector
to a light-like geodesic line reducing to circle in CP2. In quantum theory color isospin
and hypercharge would be the counterparts of CP2 momentum. In this case the geometric
condition assigning to the light-like ray a position assignable to light-cone boundary of M8

in second light-cone boundary of M8 requires M8 −H duality. The objection against this
approach is that it is stringy propagator which should fix the notion of twistor used.

(b) The second approach is local and replaces 8-momentum with the charge vector Qα ap-
pearing in the stringy propagator belonging to the local hyper-quaternionic plane of the
space-time surface by the associativity condition. Local twistorialization would be based
on Qα, which together with the leptonic and quark-like spinors should belong to the local
quaternionic sub-space. This means four complex components for both spinors and four
components for real components for Qα. The defining equation would read in this case be

Qiα = ΨiΓ̂αΨi . (12.4.15)

Here i = q, L refers to leptonic/quark-like spinor. These conditions would hold true sep-
arately for quark-like and lepton like charge vectors since quark and lepton currents are
separately conserved.

The experience with the ordinary twistors and the requirement that local octo-twistors can
be mapped to ordinary twistors suggest that one should consider the condition

gαβK QiαQiβ = 0 (12.4.16)

as a generalization of the masslessness condition. Here gK is the effective metric defined
by the anti-commutator of the modified gamma matrices defined by C-S action or Kähler
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action. One can hope that this condition is consistent with the vanishing of the commutator
[DK , D3] giving already 8 conditions. If the dynamics of Kähler action manages to make
massive particles effectively massless, a local twistor description in essentially 4-dimensional
sense would be possible by the effective metric defined by modified gamma matrices and
the construction of local twistors would reduce to standard recipes.

12.5 SUSY algebra of fermionic oscillator operators and
WCW local Clifford algebra elements as super-fields

Whether TGD allows space-time supersymmetry has been a long-standing question. Majo-
rana spinors appear in N = 1 super-symmetric QFTs- in particular minimally super-symmetric
standard model (MSSM). Majorana-Weyl spinors appear in M-theory and super string models.
An undesirable consequence is chiral anomaly in the case that the numbers of left and right
handed spinors are not same. For D = 11 and D = 10 these anomalies cancel which led to the
breakthrough of string models and later to M-theory. The probable reason for considering these
dimensions is that standard model does not predict right-handed neutrino (although neutrino
mass suggests that right handed neutrino exists) so that the numbers of left and right handed
Weyl-spinors are not the same.

In TGD framework the situation is different. Covariantly constant right-handed neutrino spinor
acts as a super-symmetry in CP2. One might think that right-handed neutrino in a well-
defined sense disappears from the spectrum as a zero mode so that the number of right and
left handed chiralities in M4 × CP2 would not be same. For light-like 3-surfaces covariantly
constant right-handed neutrino does not however solve the counterpart of Dirac equation for a
non-vanishing four-momentum and color quantum numbers of the physical state. Therefore it
does not disappear from the spectrum anymore and one expects the same number of right and
left handed chiralities.

In TGD framework the separate conservation of baryon and lepton numbers excludes Majorana
spinors and also the the Minkowski signature of M4×CP2 makes them impossible. The conclu-
sion that TGD does not allow super-symmetry is however wrong. For N = 2N Weyl spinors are
indeed possible and if the number of right and left handed Weyl spinors is same super-symmetry
is possible. In 8-D context right and left-handed fermions correspond to quarks and leptons and
since color in TGD framework corresponds to CP2 partial waves rather than spin like quantum
number, also the numbers of quark and lepton-like spinors are same.

The physical picture suggest a new kind of approach to super-symmetry in the sense that the
anti-commutations of fermionic oscillator operators associated with the modes of the induced
spinor fields define a structure analogous to SUSY algebra. This means that N = 2N SUSY
with large N is in question allowing spins higher than two and also large fermion numbers.
Recall that N ≤ 32 is implied by the absence of spins higher than two and the number of real
spinor components is N = 32 also in TGD. The situation clearly differs from that encountered
in super-string models and SUSYs and the large value of N allows to expect very powerful
constraints on dynamics irrespective of the fact that SUSY is broken. Right handed neutrino
modes define a sub-algebra for which the SUSY is only slightly broken by the absence of weak
interactions and one could also consider a theory containing a large number of N = 2 super-
multiplets corresponding to the addition of right-handed neutrinos and antineutrinos at the
wormhole throat.

Masslessness condition is essential for super-symmetry and at the fundamental level it could
be formulated in terms of modified gamma matrices using octonionic representation and as-
suming that they span local quaternionic sub-algebra at each point of the space-time sheet.
SUSY algebra has standard interpretation with respect to spin and isospin indices only at the
partonic 2-surfaces so that the basic algebra should be formulated at these surfaces. Effective
2-dimensionality would require that partonic 2-surfaces can be taken to be ends of any light-like
3-surface Y 3

l in the slicing of the region surrounding a given wormhole throat.
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12.5.1 Super-algebra associated with the modified gamma matrices

Anti-commutation relations for fermionic oscillator operators associated with the induced spinor
fields are naturally formulated in terms of the modified gamma matrices. Super-conformal
symmetry suggests that the anti-commutation relations for the fermionic oscillator operators at
light-like 3-surfaces or at their ends are most naturally formulated as anti-commutation relations
for SUSY algebra. The resulting anti-commutation relations would fix the quantum TGD.
Lepton and quark like spinors are now the counterparts of right and left handed Weyl spinors.
Spinors with dotted and un-dotted indices correspond to conjugate representations of SO(3, 1)×
SU(4)L × SU(2)R. The anti-commutation relations make sense for sigma matrices identified as
6-dimensional matrices 16, γ7, γ1, ...γ6 .

In leptonic sector one would have the anticommutation relations

{a†mα̇, a
n
β} = 2δnmDα̇β ,

D = (pµ +
∑
a

Qaµ)σµ . (12.5.1)

In quark sector σµ is replaced with σµ obtained by changing the signs of space-like sigma ma-
trices. pµ and Qaµ are the projections of momentum and color charges in Cartan algebra to the
space-time surface. The action of these charges is on the position of the tip of CD and therefore
purely algebraic as far as space-time coordinates are considered. The anti-commutation rela-
tions define a generalization of the ordinary equal-time anticommutation relations for fermionic
oscillator operators to a manifestly covariant form. Extended SUSY algebra suggest that the
anti-commutators could contain additional central charge term proportional to δαβ but the 8-D
chiral invariance excludes this term.

In the octonionic representation of the sigma matrices matrix indices cannot be present at the
right handed side without additional conditions. Octonionic units however allow a representa-
tion as matrices defined by the structure constants failing only when products of more than two
octonions are considered. For the quaternionic sub-algebra this does not occur. Both spinor
modes and and gamma matrices must belong to the local hyper-quaternionic sub-algebra. Oc-
tonionic representation reduces SO(7, 1) so G2 as a tangent space group. Similar reduction for
7-dimensional compact space takes place also M-theory.

One can consider basically two different options concerning the definition of the super-algebra. If
the super-algebra is defined at the 3-D ends of the intersection of X4 with the boundaries of CD,
the modified gamma matrices appearing in the operator D appearing in the anti-commutator
are associated with Kähler action. If the generalized masslessness condition D2 = 0 holds true
-as suggested already earlier- one can hope that no explicit breaking of super-symmetry takes
place and elegant description of massive states as effectively massless states making also possible
generalization of twistor is possible. One must however notice that also massive representatives of
SUSY exist. SUSY algebra could be also defined at 2-D ends of light-like 3-surfaces. According
to considerations of [K28] these options are equivalent if the effective metric defined by the
modified gamma matrices is degenerate so that space-time sheet is effectively 3-dimensional. In
this case propagation takes place along 3-D light-like 3-surfaces. This condition fails for string
like objects.

One can realize the local Clifford algebra in terms of super fields by introducing theta parameters
in the standard manner and the expressing a collection of local Clifford algebra element with
varying values of fermion numbers (function of CD and CP2 coordinates) as a chiral super-field.
The definition of a chiral super field requires the introduction of super-covariant derivatives.

Standard form for the anti-commutators of super-covariant derivatives Dα make sense only
if the momentum and color charges do not act as differential operators acting on space-time
coordinates and thus affecting the modified gamma matrices. This is achieved since pk and
Qa act on the position of the tip of CD in M4 × CP2 (rather than internal coordinates of the
space-time sheet).
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12.5.2 Super-fields associated with WCW Clifford algebra

WCW local Clifford algebra elements possess definite fermion numbers and it is not physically
sensible to super-pose local Clifford algebra elements with different fermion numbers. The
extremely elegant formulation of super-symmetric theories in terms of super-fields encourages
to ask whether the local Clifford algebra elements could allow expansion in terms of complex
theta parameters assigned to various fermionic oscillator operator in order to obtain formal
superposition of elements with different fermion numbers. One can also ask whether the notion
of chiral super field might make sense.

The obvious question is whether it makes sense to assign super-fields with the modified gamma
matrices.

(a) As already noticed, modified gamma matrices are not covariantly constant but this is
not a problem since the action of momentum generators and color generators space-time
coordinates is purely algebraic.

(b) One can define the notion of super-field also at the fundamental level. Chiral super-field
would be continuation of the local Clifford algebra of associated with CD to a local Clifford
algebra element associated with the union of CDs. This would allow elegant description of
cm degrees of freedom, which are the most interesting as far as QFT limit is considered.

(c) In particular, the Kähler function of WCW as a function of complex coordinates can be
extended to a chiral super-field defined in quantum fluctuation degrees of freedom. It would
depend on zero modes too. Does also the latter dependence allow super-space continuation?
Coefficients of powers of theta would correspond to fermionic oscillator operators. Does
this function define the propagators of various states associated with light-like 3-surface?
Configuration space complex coordinates would correspond to the modes of induced spinor
field so that super-symmetry would be realized very concretely.

(d) Quantum criticality implies infinite number of conserved super-currents assignable to zero
modes and it seems that similar coding makes sense also for the dependence of Kähler
function on zero modes.

The really elegant feature of the super-field concept is that it allows to code the Taylor polynomial
of a function at given point -essentially non-local data- to a purely local data about super field.
The coding of the Taylor expansion of WCW Kähler function at maximum would represent only
one example of this expansion.

The obvious idea is that the exponent of the super-space Kähler function defines the vacuum
functional of the theory determining all interaction vertices. In this interpretation the scalar
components φi of infinite-component chiral field would correspond to complex coordinates of
WCV. Also zero modes might allow super-symmetrization by using the fermionic currents im-
plied by quantum criticality.

It is not clear whether vector super-fields make sense in this framework or are needed.

(a) Zero energy ontology and the identification of gauge bosons as wormhole contacts encourage
the identification of both fermions and bosons as chiral super-fields. One could assign to
fermions either the positive or negative energy variant of N super-algebra having possibly
infinite number of generators and to bosons the direct sum of these super-algebras so that
one has positive and negative energy fermions F+ and F− with N super-symmetry and
bosons B+− with (N ,N ) super-symmetry. B+− would be anti-chiral with respect to θ+

and chiral with respect to θ− and hermiticity condition can be considered as an additional
condition with hermitian conjugation mapping θ+ to θ−. The fundamental action would
reduce to the integral over θ+ and θ− and their conjugates in the product of F−B−+F+.
Gauge symmetries are consistent with this guess if realized by regarding both B and F fields
are chiral super-fields. Bosonic emergence would suggest that no kinetic term is needed for
bosons.

(b) One can consider also the possibility of Hermitian vector field V as local Clifford algebra
element by using the same basic definition as used in super-symmetric quantum field the-
ories. The c-number part of V could be interpreted in terms of the spinor connection of
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WCW: this part cannot be dynamical. It is not however clear whether the definition of
corresponding chiral super-field is sensible in the infinite-dimensional context. Also one
can ask whether this kind of field is needed at the fundamental level since bosons and their
super-partners in TGD framework are identified as pairs of wormhole throats. Super-Kähler
function K = K(Φ†,Φ) (K = K(Φ†, exp(−V )Φ)) would be a function of chiral super-field
Φ, its conjugate Φ† (, and vector super-field V ). A profound generalization of the physics
as geometry idea would be the outcome.

At QFT limit the super fields depend on the point of M4. The dependence on the point h of
M4×CP2 makes sense also in WCW context since h can be interpreted as position of the either
tip of CD. A given value of Φ at given point h of H fixes the WCW coordinates characterizing
the light-like 3-surface X3

l inside CD with tip at h. Constant values of Φ analogous to vacuum
expectation of Higgs means that X3

l is same for all CDs. The quantum field character of Φ codes
for the fact that one has actually quantum superposition of space-time surfaces. The functional
integral around a given maximum of Kähler function replaces this superposition effectively with
single space-time surface.

12.6 SUSY algebra at QFT limit

The first expectation is that QFT limit TGD corresponds to a situation in which space-time
surfaces are representable as a graph for some map M4 → CP2. This assumption is not actually
needed in zero energy ontology since M4 labels the positions of either tip of CD rather than
points of the space-time sheet. The position of the other tip of CD relative to the first one
could be interpreted in terms of Robertson-Walker coordinates for quantum cosmology [K67] .
Second intuitively plausible idea is that particle space-time sheets are replaced with world-lines.
Actually the replacement of partonic 2-surfaces with points is needed and even this assumption
can be given up in one formulation of QFT limit feeding information about partonic 2-surfaces
to the theory. What is essential that only perturbations around single maximum of Kähler
function are considered. If several maxima are important, one must include a weighting defined
by the values of the exponent of Kähler function.

12.6.1 Minimum information about space-time sheet and particle quan-
tum numbers needed to formulate SUSY algebra

The basic problem is how to feed just the essential information about quantum states and
space-time surfaces to the definition of the QFT limit.

(a) The information about quantum numbers of particles feeded to the measurement interaction
must be feeded also to the QFT action. It is natural to start from the classical description
of point like particles in H in terms of light-like curves of H reducing to light-like geodesic
lines for free particles. Momentum and color charges serve as natural quantum numbers.
The conserved color charges associated with CP2 geodesics need not correspond to the usual
color charges since they correspond to center of mass rotational motion in CP2 degrees of
freedom. Ordinary color charges correspond to the spinorial partial wavs assignable to CP2

type extremals.

(b) Should interpreted QFT limit as a QFT in X4 representable as a graph for a map M4 →
CP2, or in M4, or perhaps in M4×CP2? In zero energy ontology the proper interpretation
is in terms of QFT in M4 labeling the tips of CDs so that no restrictions on space-time
sheets need to be posed. Furthermore, by quantum classical correspondence the space-time
sheet surrounding given wormhole throat depends on the four-momentum assigned so that
Poincare invariant theory in M4 is the only logically consistent option. Minimal extension
to M4 ×CP2 is required in order to take into account the geodesic motion in CP2 degrees
of freedom.

(c) What information about space-time surface is needed?
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i. One can in principle feed all information about space-time sheet without losing Poincare
invariance since momentum operators do not act on space-time coordinates. The de-
scription becomes however in-practical even if one restricts the consideration to the
maxima of Kähler function.

ii. The minimal approach would use only cm degrees of freedom for the tip of the CD
associated with the particle and feed minimum information about light-like 3-surface
inside the CD.

iii. The information about partonic two-surfaces X2 defined as intersections of 3-D light-
like wormhole throats with the boundary of CD characterizes elementary particles,
and it would be natural to feed this information to the theory by replacing M4 gamma
matrices with modified gamma matrices. This would feed in also the information about
hyper-quaternionicity making possible to generalize the notion of twistor. This infor-
mation would be coded by the partial derivatives of the imbedding space coordinates
at X2, and would be needed only at the partonic 2-surfaces X2 defining the generalized
vertices.

iv. Some information about zero modes characterized by the induced Kähler form invariant
under quantum fluctuations assignable to Hamiltonians of δM4

± × CP2 at boundaries
of CD is certainly needed: here the identification of Kähler potential as the Kähler
function of WCW is highly attractive hypothesis.

12.6.2 The physical picture behind the realization of SUSY algebra at
point like limit

The challenge is to deduce SUSY algebra in the approximation that partonic 2-surfaces are
replaced by points. The basic physical constraint on the realization of the SUSY algebra come
from the condition that one must be able to describe also massive particles as members of
SUSY multiplets. This should make possible also twistorialization in terms of octonionic gamma
matrices reducing to quaternionic ones using representation of octonion units in terms of the
structure constants of the octonionic algebra. The general structure of modified Dirac action
suggests how to proceed. pkγk should be replaced with a simplified version of its 8-D variant in
M4 × CP2 and the CP2 part of this operator should describe the massivation.

(a) Since light-like 3-surfaces contract to light-like curves at point like limit and since only CP2

gamma matrices contribute to Chern-Simons Dirac action, it is natural to assume that the
CP2 projection of the light-like curve describing the particle characterizes the situation.
The interpretation of the curve is in terms of center of mass motion of the topologically
condensed space-time sheet describing the particle. For particles which are massless in M4,
the CP2 projection must contract to a point. For massive particles the projection is a curve
in CP2.

(b) The generalization of the Dirac operator appearing in commutation relations reads as

pkγk → D = pkγk +Qγk
dsk

ds
,

skl
dsk

dt

dsl

dt
= 1 . (12.6.1)

Mass shell condition fixes the value of Q

Q = ±m . (12.6.2)

For geodesic circle the angle coordinate to be angle parameterizing the geodesic circle is the
natural variable and the gamma matrices can be taken to be just single constant gamma
matrix along the geodesic circle.
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(c) Imbedding space spinors have anomalous color charge equal to -1 unit for lepton and 1/3
units for quarks. Mass shell condition is satisfied if Q is proportional to anomalous hyper-
charge and mass of the particle in turn determined by p-adic thermodynamics.

(d) The geometric interpretation would be that in topological condensation the color rotational
degrees of freedom of the particle are reduced. If the light-like 3-surfaces contains the
geodesic the geodesic circle S1, color rotational degrees of freedom are not lost completely
and color hypercharge remains a good quantum number in these degrees of freedom. It
is however important to notice that anomalous color hypercharge has nothing to do with
ordinary color quantum numbers.

(e) Particle mass m should relate closely to the frequencies characterizing general extremals.
Quite generally, one can write in cylindrical coordinates the general expressions of CP2 angle
variables Ψ and Φ as (Ψ,Φ) = (ω1t+k1z+n1φ..., ω2t+k2z+n2φ...). Here ... denotes Fourier
expansion [L1] , [L1] : this corresponds to Cartan algebra of Poincare group with energy,
one momentum component and angular momentum defining the quantum numbers. One
can say that the frequencies define a warping of M4 for (Ψ,Φ) = (ω1t, ω2t). The frequencies
characterizing the warping of the canonically imbedded M4 should closely relate to the mass
of the particle. This raises the question whether the replacement of S1 with S1 × S1 is
appropriate.

(f) Twistor description is also required. Generalization of ordinary twistors to octotwistor with
quaternionicity condition as constraint allows to describe massive particles using almost-
twistors. For massive particle the unit octonion corresponding to momentum in rest frame,
the octonion defined by the polarization vector εkγk, and the tangent vector γkds

k/ds (ana-
log of polarization vector in CP2) generate quaternionic sub-algebra. For massless particle
momentum and polarization generate quaternionic sub-algebra as M4 tangent space.

The SUSY algebra at QFT limit differs from the SUSY algebra defining the fundamental anti-
commutators of the fermionic oscillator operators for the induced spinor fields since the modified
gamma matrices defined by the Kähler action are replaced with ordinary gamma matrices. This
is quite a dramatic difference and raises two questions. The first question ”Why not replace
the anti-commutation relations with those for the actual fermionic oscillator algebra?” has been
already answered.

One can also wonder why not to replace Kähler action with the action defined by the 4-D volume
in the induced metric? After all, apart from almost vacuum extremals 4-volume action has
almost the same basic extremals (CP2 type extremals, restricted subset of massless extremals,
string like objects). The modified gamma matrices for volume action are just induced gamma
matrices reducing to M4 gamma matrices for canonically imbedded M4 so that the proposed
form of the super-algebra in this framework can be seen as a well-motivated approximation. Also
super-symmetry breaking induced by the mixing of M4 chiralities is expected to occur. There
are however arguments in favor Kähler action.

(a) Four-volume option has obvious shortcomings. Only very small space-time sheets are pos-
sible since vacuum functional decreases exponentially as a function of four-volume so that
the Planck constant allowing space-time sheet with a given four-volume would scale like
1/four-volume. As a matter fact, also for Kähler action large value of Planck constant is
required and this explains why string like objects correspond to a macroscopic quantum
phase. Classical gauge fields would be completely absent from the space-time dynamics.
The notion of effective 3-dimensionality would make no sense and the slicings by light-like
3-surfaces are not restricted to a finite volume surrounding the wormhole throat at QFT
limit. Hence the value of N is expected to be infinite and one can hope of obtaining the
SUSY QFT limit with a finite value of N only as an approximation.

(b) For CP2 type extremals and string like objects the two actions are expected to give rise
to a rather similar theory. Canonically imbedded M4 and its small deformations are an
exception. The good news is that for the small deformations of M4 one can expect finite
value of N as an exact result rather than approximation.

(c) The information about the zero modes - including vacuum degeneracy - is actually not
lost as one replaces modified gamma matrices with the ordinary ones in anti-commutations
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since the Kähler potential defining the action principle (assuming bosonic emergence) car-
ries information about zero modes. The Kähler potential carries also information about
quantum fluctuating degrees of freedom coded by the super-potential at the maximum of
Kähler function (with measurement interaction controllable by the experimenter included
and affecting only the super-potential and thus the maximum of Kähler function but not
WCW metric).

(d) The quantum criticality of the Kähler action distinguishes Kähler action from four-volume.
It predicts inclusion hierarchies of super-conformal algebras assignable to the zero modes.
In each breaking of the super-conformal symmetry the rank of the WCW Kähler metric is
reduced as quantum fluctuating degrees of freedom are transformed to zero modes. Some
components of the inverse of the Kähler metric appearing in the Kähler potential diverge
as a consequence and the corresponding complex coordinates of WCW transform to zero
modes. This picture conforms with the view about SUSY breaking as a reduction of the
rank of the Kähler metric defined by Kähler potential.

12.6.3 Explicit form of the SUSY algebra at QFT limit

The explicit form of the SUSY algebra follows from the proposed picture.

(a) Spinor modes at X2 correspond to the generators of the algebra. Effective 2-D property
implies that spinor modes at partonic 2-surface can be assumed to have well-defined weak
isospin and spin and be proportional to constant spinors.

(b) The anti-commutators of oscillator operators define SUSY algebra. In leptonic sector one
has

{a†mα̇, a
n
β} = δnmDα̇β ,

D = (pkσk +Qaσa) . (12.6.3)

Qa denote color charges. The notions are same as in the case of WCW Clifford algebra.
In quark sector one has opposite chirality and σ is replaced with σ̂. Both the ordinary and
octonionic representations of sigma matrices are possible.

12.6.4 How the representations of SUSY in TGD differ from the stan-
dard representations?

The minimal super-sub-algebra generated by right-handed neutrino and antineutrino are the
most interesting at low energies, and it is interesting to compare the naturally emerging repre-
sentations of SUSY to the standard representations appearing in super-symmetric YM theories.

The basic new element is that it is possible to have short representations of SUSY algebra for
massive states since particles are massless in 8-D sense. The mechanism causing the massivation
remains open and p-adic thermodynamics can be responsible for it. Higgs mechanism could
however induce small corrections to the masses.

The SUSY representations of SYM theories are constructed from J = 0 ground state (chiral
multiplet for N = 1 hyper-multiplet for N = 2: more logical naming convention would be just
scalar multiplet) and J = 1/2 ground state for vector multiplet in both cases. N = 2 multiplet
decomposes to vector and chiral multiplets of N = 1 SUSY. Hyper-multiplet decomposes into
two chiral multiplets which are hermitian conjugates of each other. The group of R-symmetries
is SU(2)R × U(1)R. In TGD framework the situation is different for two reasons.

(a) The counterparts of ordinary fermions are constructed from J = 1/2 ground state with
standard electro-weak quantum numbers associated with wormhole throat rather than J =
0 ground state.
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(b) The counterparts of ordinary bosons are constructed from J = 0 and J = 1 ground states
assigned to wormhole contacts with the electroweak quantum numbers of Higgs and elec-
troweak gauge bosons. If one poses no restrictions on bound states, the value of N is
effectively doubled from that for representation associated with single wormhole throat.

These differences are allowed by general SUSY symmetry which allow the ground state to have
arbitrary quantum numbers. Standard SYM theories however correspond to different represen-
tations so that the formalism used does not apply as such.

Consider first the states associated with single wormhole throat. The addition of righthanded
neutrinos and their antineutrinos to a state with the constraint that pkγk annihilates the state
at partonic 2-surface X2 would mean that the helicities of the two super-symmetry generators
are opposite. In this respect the situation is same as in the case of ordinary SUSY.

(a) If one starts from J = 0 ground state, which could correspond to a bosonic state generated
by configuration space Hamiltonian and carrying SO(2) × SU(3)c quantum numbers one
obtains the counterparts of chiral/hyper- multiplets. These states have however vanishing
electro-weak quantum numbers and do not couple to ordinary quarks neither.

(b) If one starts J = 1/2 ground state one obtains the analog of the vector multiplet as in SYM
but but belonging to a fundamental representation of rotation group and weak isospin group
rather than to adjoint representation. For N = 1 one obtains the analog of vector chiral
multiplet but containing spins J = 1/2 and J = 1. For N = 2 on obtains two chiral
multiplets with (J, F,R) = (1, 2, 1) and (J, F,R) = (1/2, 1, 0) and (J, F,R) = (0, 0,−1) and
(−1/2, 1, 0) = (0, 0, 0).

(c) It is possible to have standard SUSY multiplet if one assumes that the added neutrino has
always fermionic number opposite that the fermion in question. In this case on obtains
N = 1 scalar multiplet. This option could be defended by stability arguments and by the
fact that it does not put right-handed neutrino itself to a special role.

For the states associates with wormhole contact zero energy ontology allows to consider two non-
equivalent options. The following argument supports the view that gauge bosons are obtained
as wormhole throats only if the throats correspond to different signs of energy.

(a) For the first option the both throats correspond to positive energies so that spin 1 bosons
are obtained only if the fermion and antifermion associated with throats have opposite
M4 chirality in the case that they are massless (this is important!). This looks somewhat
strange but reflects the fact that J = 1 states constructed from fermion and antifermion
with same chirality and parallel 4-momenta have longitudinal polarization. If the ground
state has longitudinal polarization the spin of the state is due to right-handed neutrinos
alone: in this case however spin 1 states would have fermion number 2 and -2.

(b) If the throats correspond to positive and negative energies the momenta are related by time
reflection and physical polarizations for the negative energy antifermion corespond to non-
physical polarizations of positive energy antifermion. In this case physical polarizations are
obtained.

If one assumes that the signs of the energy are opposite for the wormhole throats, the following
picture emerges.

(a) If fermion and antifermion correspond to N = 2-dimensional representation of super-
symmetry, one expects 2N = 4 gauge boson states obtained as a tensor product of two
hyper-multiplets if bound states with all possible quantum number combinations are pos-
sible. Taking seriously the idea that only the bound states of fermion and antifermion are
possible, one is led to consider the idea that the wormhole throats carry representations
of N = 1 super-symmetry generated by M4 Weyl spinors with opposite chiralities at the
two wormhole throats (right-handed neutrino and its antineutrino). This would give rise
to a vector representation and eliminate a large number of exotic quantum number com-
binations such as the states with fermion number equal to two and also spin two states.
This idea makes sense a also for a general value of N . Bosonic representation could be
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also seen as the analog of short representation for N = 2N super-algebra reducing to a
long representation N = N . Short representations occur quite generally for the massive
representations of SUSY and super-conformal algebras when 2r generators annihilate the
states [B27] .

Note that in TGD framework the fermionic states of vector and hyper multiplets related
by U(2)R R-symmetry differ by a νRνR pair whose members are located at the opposite
throats of the wormhole contact.

(b) If no restrictions on the quantum numbers of the boson like representation are posed, zero
energy ontology allows to consider also an alternative interpretation. N = 4 (or more
generally, N = 2N -) super-algebra could be interpreted as a direct sum of positive and
negative energy super-algebras assigned to the opposite wormhole throats. Boson like
multiplets could be interpreted as a long representation of the full algebra and fermionic
representations as short representations with states annihilated either by the positive or
negative energy part of the super-algebra. The central charges Zij must vanish in order to
have a trivial representations with pk = 0. This is expected since the representations are
massless in the generalized sense.

(c) Standard N = 2 multiplets are obtained if one assume that right-handed neutrino has
always opposite fermion number than the fermion at the throat. The arguments in favor
of this option have been already given.

12.7 Super-symmetric QFT limit of TGD

The definition of the SUSY QFT limit of TGD involves several challenges. A generalization of
the super-space concept is needed to cope with N > 1 symmetry and the notions of chiral and
vector super-fields must be defined precisely. The previous findings about the super-multiplets
assignable to fermions and bosons suggest that standard formalism does not generalize as such.
Accordingly, two lines of approach are studied in this section. The first one relies on the gen-
eralization of the standard definitions chiral and vector super-fields applied in TGD framework,
and works in practice only for N = (1, 0) and N = (0, 1) in fermionic sector and N = (1, 1)
in bosonic sector (notation is motivated by zero energy ontology). Second approach relies on a
new view about super fields forced by the condition that the formalism makes sense for N =∞.

12.7.1 Basic concepts and ideas

A brief overview about basic concepts and ideas to be discussed in this section is in order before
going to the details.

The notion of super-space

(a) Majorana spinors do not make sense in TGD framework but the use of Weyl spinors as
spinors with definite H-chirality is possible. It is possible to use spinor of fixed chirality only
since leptons and charge conjugates of quarks can be regarded as having same H-chirality.
By hyper-quaternionicity the octonionic gamma matrices allow a matrix representation in
terms of octonionic structure constants so that also octonionic formulation makes sense.
The pair {a†m, am} of oscillator operators corresponds to the pair (θmα̇, θ

α
m).

(b) A non-trivial question relates to the identification of the super-space. The first candidate is
M1,N , M = M4×S1 , S1 a geodesic circle of CP2. Since the gamma matrices of S1 must be
expressed in terms of H gamma matrices one can however argue that effectively super-space
corresponds induced from M1,N , M = H. This and the condition of hyper-quaternionicity
suggest the notion of induced super-symmetry suggests itself meaning that D = 4 holds true
effectively. The value of N would be naturally N = 2 for fermions and N = 4 for bosons
if one restricts the consideration to right-handed neutrino and antineutrino modes since
CP2 spinor indices are effectively frozen in this case. If the numbers of quark and lepton
like modes are different, one has N = (N1,N2) super-symmetry, and the axial anomaly
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with respect to H-chirality is possible. The different couplings of lepton and quark fields
to Kähler gauge potential should take care of the anomaly.

Super-covariant derivatives

Consider next the definition of super-covariant derivatives.

(a) The dotted and un-dotted indices Dm,α resp. Dm,α̇ label the spin and weak isospin indices
of quark resp. lepton like spinors. The indices m label the spinor modes associated with
quarks and leptons for the space-time sheet whose zero modes are coded by the induced
CP2 Kähler form Jαβ . Also now leptons and antiquarks can be regarded as two induces
spinor field with with same chirality so that one has N = 2N super-symmetry.

(b) Super-covariant derivatives can be defined by modifying the usual definitions in rather
obvious manner.

Dm,α = ∂
∂θm,α − iQαα̇θ

α̇

m , Dmα̇ = − ∂

∂θ
mα̇ + iθαmQαα̇ , Q = σA(pA +QA) .(12.7.1)

(c) The anti-commutations for given a H-chirality can be written as

{Dmα, Dnβ} = 0 , {Dmα, Dnβ} = 0 ,
{Dmα, Dnβ̇} = δnmDαβ̇ .

(12.7.2)

Identification of the super-fields: conventional approach

Also now super-field can be defined in terms of the Taylor expansion with respect to theta
parameters. Chiral super-fields satisfy the usual conditions given by

DmαΦ = 0 , Dmα̇Φ = 0 . (12.7.3)

The differences from standard SUSY are due to the fact that fermions have ground state which is
not scalar but J = 1/2 particle whereas bosons correspond to J = 1 ground states and wormhole
throats so that NB = 2NF holds true. This means that J = 0 chiral field must be replaced with
spin J = 1/2 and N = 2 chiral superfield in the case of fermions and spin 1/2 vector field must
be replaced with spin J = 1 NB = 4 analog of vector super-field unless one poses additional
conditions of the allowed bound states to reduce NB to NB = 2.

As found, the assumption that right handed neutrino has fermion number opposite to the fermion
state assigned to the throat reduces the fermionic super-symmetry to N = 1 and bosonic super-
symmetry to N = 2 and fermionic states can be regarded as short representations of N = 2
super-symmetry natural in zero energy ontology. With these assumptions standard formalism
works as such.

(a) The chiral super-field can be written as

Φ = Φ(θm, H
k) , Hk = hk + iθmQθ

m , hk ≡ (mk, φ) . (12.7.4)

Here the sum is over both lepton and antiquark plus modes mode the induced spinor field.

(b) Vector super-fields describe gauge bosons and their super-counterparts. V = V † is satisfied.
The definition of vector super field is as usual. One starts from super field V and defines
super gauge transformations as transformations V → V + Λ + Λ†, where Λ is chiral spinor
super-field.
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Wmα = XDm,αV , Wmα = XDm,αV , X = − 1

2N

∏
m,α

Dmα .

(12.7.5)

defines a gauge invariant quantity analogous to gauge field. Chiral super-fields transform
as Φ→ exp(Λ)Φ, Φ† → Φ†exp(Λ†).

The quantity

L = Φ†exp(−V )Φ . (12.7.6)

is gauge invariant and defines a generalization of Dirac Lagrangian. This action can be
regarded as a particular Kähler potential.

(c) For ordinary SUSYs Kähler potential can be very general real function of super-fields and
the space of super-fields defines Kähler manifold. Also super-potential which is sum of
holomorphic function of chiral super-fields and its conjugate is possible and corresponds to
the addition of real part of complex function to Kähler potential is possible. These terms are
make possible breaking of super-symmetry by a generation of vacuum expectation values
of some scalar fields.

Identification of the super-fields: the approach inspired by N =∞ case

The standard approach does not work at all for N = ∞ and becomes highly questionable also
for the values of N , which are large. Zero energy ontology and the identification of fermions as
wormhole throats and bosons as wormhole contacts inspires a new manner to see super fields.
Positive energy chiral fields correspond to analytic functions of θ alone with no dependence
on θ. Negative energy chiral field is obtained as hermitian conjugate of this field. Hermitian
conjugation maps θ to ∂θD in positive energy chiral super field and the resulting operator acts
on the product X of all theta parameters. Note that the presence of D is essential for obtaining
the generalization of Dirac action. Note that in this approach there is no need to introduce
super-derivatives and θs and ∂θDs define the representation of the space-time super-symmetry
algebra. Super vector fields are defined as hermitian operators of form Vk = Vk(θ, ∂θ) acting on
chiral super-fields, and the generalization of chiral action with coupling to super vector fields is
obtained by the minimal substitution D → D + V .

SUSY breaking

The general vision about breaking of super-symmetry would be following.

(a) The effective dimension of space-time as it appears in the anticommutators of super-
generators in D = 5. Since the number of components of 5-D Weyl spinors is 4, the
number κ of supergenerators is given by κ = 4N .

(b) One obtains a hierarchy of SUSY breakings. It is possible to decompose the full SUSY
action to a sum of actions with a smaller value of N by integrating over theta parameters
associated with the higher modes of the induced spinor field. It is also possible to take into
account only finite number of spinor modes. The presence of higher modes poses strong
constraints on the coupling parameters of the SUSY action.

(c) Taking into account only right-handed neutrino and its antineutrino, the number of real
supercharges is κ = 8 so that ifD = 5 is the effective space-time dimensionN = (1, 1) SUSY
is obtained at the lowest level in good approximation due to the electro-weak inertness of
right-handed neutrinos.
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12.7.2 About super-field formalism in N = 2 case

For SUSY limit of quantum TGD assuming that only right-handed neutrinos and antineutrinos
appear as generators of super-symmetries and that the added righthanded neutrino has fermion
number opposite that that of the fermion of the throat corresponds to N = 2 for gauge bosons
and Higgs and to N = 1 equivalently N = 2 short representation for fermions. For this option
super-field formalism guarantees also the conservation of fermion numbers automatically. With
these assumptions it is of considerable interest to summarize the basic facts ofN = 2 super-fields.

(a) N = 2 super-multiplets are known as vector multiplet assigned to gauge bosons and
their partners and hyper multiplet assigned with matter. Vector multiplet contains two
Weyl fermions and vector boson and scalar in adjoint representations. The two fermionic
states transform non-trivially under the R-symmetry group SU(2)R ×U(1)R. Vector mul-
tiplet decomposes under N = 1 supersymmetry to vector multiplet and chiral multiplet.
Hyper-multiplet consists of two Weyl fermion and complex bosons and SUR mixes the two
fermions. Two N = 1 multiplets are in question.

(b) A pedagogical representation for the generalization of N = 1 SYM action to N = 2 case
can be found in the article of Adel Bilal [B26] . This action includes only N = 2 super part-
ners of gauge boson which are all in the adjoint representation of the gauge group. N = 2
vector multiplet decomposes to N = 1 vector multiplet and chiral multiplet and the N = 1
reduction of the action gives sum of N = 1 YM action and Kähler potential. N = 2 sym-
metry allows no super-potential for vector multiplet. The super YM action is determined
by a holomorphic function known as pre-potential fixed completely by renormalizability to
be quadratic function of N = 2 vector super-field Ψ.

(c) The Lagrangian of N = 2 SUSY YM theory reduced to N = 1 notation reads as

L =
1

4π
Im

[∫
d4θ

∂F(A)

∂A
+

∫
d2θ

1

2

∂2F(A)

∂A2
WαW

α

]
. (12.7.7)

A denotes N = 1 chiral multiplet in N = 2 vector multiplet whose scalar component is
denoted by a.

(d) N = 2 supersymmetry implies that the Kähler potential and Kähler metric associated with
the vector multiplet can be written in terms of single holomorphic function F(A) known
as prepotential as

K = Im(
∂F(A)

∂A
A) ,

ds2 = Im(
∂2F(A)

∂2a2
)dada . (12.7.8)

(e) In the classical theory tree level Lagrangian allows to deduce F(A) as

F(A) =
1

2
× τclA2 , τcl =

θ

2π~
+ i

4π

g2
. (12.7.9)

Here τ unifies gauge coupling strength and θ parameter associated with the instanton term
to single complex parameter and the holomorphy of F(a) poses very powerful constraints
on the theory.

The expression of the scalar potential associated with vector multiplet reads as

V (φ) =
1

g2
Tr(φ, φ†]2) . (12.7.10)

Scalar potential vanishes in the sub-space defined by the Cartan algebra of gauge group
so that scalar potential has r-dimensional sub-manifold of vanishing extrema, where r
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is the rank of the Cartan sub-algebra. Radiative corrections affect V so that the the
vacuum degeneracy disappears. Note that vacuum degeneracy is analogous to the vacuum
degeneracy of Kähler action in TGD.

There are very strong constraints on the moduli space defined by scalars [B10] .

(a) For D = 4 and N = 2 the moduli space associated with the vector multiplet (so called
Coulomb branch) contains one complex scalar defining so calling special Kähler mani-
fold [B69] . The moduli space associated with hyper-multiplet (so called Higgs branch)
contains two scalars and is Hyper-Kähler manifold [B23] . For N > 2 the moduli spaces
are symmetric spaces. The article of Antoine van Proyen discusses vector multiplets in
N = 2 supersymmetry and associated moduli spaces for the scalar fields appearing in the
theory and fixed to a high degree by super-symmetry.

(b) This picture conforms with the view that WCW is infinite-dimensional symmetric space
with Hyper-Kähler structure and corresponds to the moduli space of hypermultiplet.

In TGD framework vector multiplets are associated with wormhole contacts. They do not
represent fundamental degrees of freedom and describe at QFT limit phenomenologically bound
states since it is the total momentum and color charge which appear in the modified Dirac
equation in regions surrounding both wormhole throats. With above described assumptions
about super-symmetry the bosonic multiplets are N = 2 multiplets whereas fermionic ones are
short variants of them. Zero energy ontology plays an essential role.

12.7.3 Electric magnetic duality, monopole condensation and confine-
ment from TGD point view

N = 2 SYM theory was studied by Seiberg and Witten in their seminal paper Electric-magnetic
duality, monopole condensation, and confinement in N = 2 super-symmetric Yang-Mills the-
ory [B67] and it is interesting to try to see the results of Seiberg and Witten from TGD point
of view. Electric magnetic duality conjecture of Olive and Montonen was inspired by the obser-
vation about the upper bound form the masses of dyons deduced by Prasad and Somerfield and
Bogomol’nyi (BPS) and reading as

M ≥
√
|Z| , Z = v(ne + i

nm
α

) . (12.7.11)

Here v denotes Higgs expectation value, α = g2/4π~ is gauge coupling strength, and ne and
nm characterize the electric and magnetic charges of the dyon. States for which equality holds
true in above formula are called BPS saturated and they correspond to massive representation of
SUSY with the same number of states as appearing in massless representations. The observation
inspiring the duality conjecture was that the formula is symmetric under ne ↔ nm, v ↔ v/α,
and α ↔ 1/α. Electric magnetic duality implies that the strong coupling phase for ordinary
particles can be understood as a weak coupling phase for monopoles.

Witten demonstrated that in the original sense this duality can hold true forN = 4 theories since
only in this case the electrons and monopoles have same quantum number spectrum but in the
case of N = 2 theories it can hold true at the low energy Abelian limit of the theory and between
particle and special class of dyons with vanishing electric charges (neutral magnetic monopoles).
The duality of Montonen and Olive actually generalizes in the sense that all transformation of
the group SL(2, Z) acting on the complex coupling strength

τ = i
4π~
g2

+
θ

2π

transform different phases of the theory to each other. These transformations also transform
dyons with charges (nm, ne) to each other.

An interesting question is whether electric magnetic duality and color confinement based on the
condensate of magnetic monopoles could have counterparts in TGD framework.
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(a) The counterpart for the electric phase corresponds to wormhole throats surrounded by a
slicing by light-like 3-surfaces with boundary so that momentum and color charges can be
assigned to single wormhole throat and N for the entire super-algebra is finite.

(b) Also the counterpart of the magnetic phase exists. Topological magnetic monopoles make
sense in TGD framework since the topology of CP2 allows wormhole throats carrying
homological magnetic charges. Monopole phase could exist in the sense that the outer
boundary of the space-time sheet carries the neutralizing magnetic charge or that the
wormhole throats feed the magnetic fluxes to large space-time sheets. Also the deformations
of string like objects X2 × Y 2 ⊂ M4 × CP2 carry naturally magnetic fluxes along them
and could feed them to larger space-time sheets through magnetically charged wormhole
throats defining bosonic super-multiplet. Also fermions with opposite magnetic charges
can topologically condense at string like object and effectively serve as its ends. The same
momentum and color charge would be associated with all wormhole throats associated
with a given string like object having an interpretation as hadron-like object so that a color
confined perturbative phase would be in question. The value of N for the entire super-
algebra is infinite for string like objects and the description in terms of super-conformal
algebra seems to be more appropriate than QFT description. In this sense one would have
genuinely non-perturbative phase.

(c) As Witten shows, in N = 2 theory electric magnetic duality of Montonen and Olive fails
in N = 2 SUSY because the number of states for electron multiplet is 4 and contains spin
1 state whereas monopole states have J ≤ 1/2. In TGD framework the reduction of N = 2
symmetry to N = 1 symmetry for massless fermions changes the situation so that a natural
conjecture is that electric magnetic duality actually holds true in TGD framework. If the
conjecture is really true, it could be seen as a support for zero energy ontology as also for
the identification of fermions as wormhole throats and bosons as wormhole contacts.

(d) The mapping of the coupling constant to its inverse cannot apply to the Kähler coupling
strength fixed by the quantum criticality but makes sense for the color coupling strength. If
one accepts holography, then light-like 3-surfaces are fundamental objects and whether one
can regard them as magnetic monopoles or not, depends on the space-time sheets assigned
to them. This assignment could change in a phase transition transforming the space-time
sheets surrounding the wormhole throats so that particles would transform to monopole
like entities. More generally, the basic objects would be dyons and the phase transitions
would be characterized by Sl(2, Z).

(e) One can of course, ask whether the inverse of Kähler coupling strength, which is analogous
to the inverse of critical temperature and with CP breaking theta angle added to it as an
imaginary part, could have a discrete spectrum of values identifiable as the orbit of Sl(2, Z).

12.7.4 Interpretation of Kähler potential and super-potential terms in
TGD framework

TGD suggests the interpretation of Kähler potential and superpotential in terms of WCW
geometry.

(a) The Kähler potential could be interpreted in terms of WCW Kähler function. If K is
quadratic in chiral super-field only the dependence on zero modes is possible. This is what
is required since integration over quantum fluctuating degrees of freedom is carried out
at QFT limit. Maximum of configuration space Kähler function defines Kähler potential.
Spinor modes more or less in 1-1 correspondence with coordinates of WCW. Could Kähler
potential define the Kähler potential of WCW which would thus make itself directly visible
at space-time level.

(b) Super-potential term could be interpreted as counterpart for the addition of a real part
of holomorphic function to Kähler function. This part would not affect WCW metric but
would characterize different measurement interactions. Separate conservation of lepton
and quark numbers require that super-potential is sum over lepton and quark contribu-
tions. R-parity conservation allows only quadratic super-potential. By quantum criticality
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the moduli space for the super-potential could correspond to the modifications of Kähler
function not affecting Kähler metric but affecting the maximum of Kähler function and
thus space-time sheet. This would be counterpart for the non-renormalization theorems of
super-potential in SUSYs.

12.7.5 Generalization of bosonic emergence

Generalization of the bosonic emergence. The propagators for wormhole contacts carrying
manyfermion states at wormhole throats are induced by propagators assignable to single throats
as radiative corrections. Dirac action is replaced with K = Φ†exp(V )Φ, where Φ is chiral super
field.

Different measurement interactions correspond to different super-potentials.

By previous arguments bosonic emergence would mean that the super-variant of the configura-
tion space Kähler function defines the super-symmetric action principle at QFT limit so that
one can say that the geometrization of quantum physics takes place in a very concrete sense
also at QFT limit. This would be quite an elegant physical manifestation of the underlying
infinite-dimensional geometry.

12.7.6 Is N > 8 super-symmetry internally consistent?

The standard wisdom says that N = 8 is absolute upper bound for the super-symmetry (spins
larger than 2 are not regarded as physical). In TGD N = 8 emerges naturally for space-time
surfaces due to the dimension D = 8 of imbedding space and the fact that imbedding space
spinors with a given H-chirality (quarks and leptons which color appearing as partial waves in
CP2 have 8 complex components. One obtains N = 8 without restrictions if one considers only
the super-algebra defined by the oscillator operators associated with the lowest modes of these
spinor fields at light-like 3-surfaces obtained as a solutions of the modified Dirac equation with
measurement interaction term.

It is also possible to consider the super-symmetry generated by all modes of the induced spinor
fields and thus with a quite large (even infinite for string like objects) number N of super
generators. This super-symmetry is broken as all super-symmetries in TGD framework. This
means that rather high spins are present in the analogs of scalar and vector multiplets and
the Kähler potential (expected to be closely related to the Kähler function of the world of the
classical worlds (WCW)) describing interaction of chiral multiplet with a vector multiplet can
be constructed also for any value of N - at least formally. If one believes on the generalization
of the bosonic emergence, one expects that bosonic part of the action is generated radiatively
as one functionally integrates over the fields appearing in the chiral multiplet.

The standard wisdom says that is is not possible to construct interactions for higher spin fields.
Is this really true? Why wouldn’t the analogs of scalar (chiral/hyper) and vector multiplets
make sense for higher values of N? Why would it be impossible to define an spin 1/2 chiral
super-field associated with the vector multiplet and therefore the super-symmetric analog of
YM action using standard formulas? Why the standard coupling to chiral multiplet would not
make sense?

One objection against higher spins is of course the lack of the geometric interpretation. Spin
1 and Spin 2 fields allow it. Can one then imagine any geometric interpretation for higher
spin components of super-fields? John Baez and others [A48] are busily developing non-Abelian
generalizations of group theory, categories and geometry and speak about things that they call
n-groups, n-categories, and n-geometries. Could the generalization of ordinary geometry to n-
geometry in which parallel translations are performed for higher dimensional objects rather than
points provide a natural interpretation for gauge fields assigned to higher spins? One would have
natural hierarchy. Parallel translations of points would give rise curves, parallel translations of
curves would give rise to surfaces, and so on. As as a special case the entire hierarchy of these
parallel translations would be induced by ordinary parallel translation.
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12.7.7 Super-fields in TGD framework

In the case of infinite-dimensional super-space the definition of the super-fields is not quite
straightforward since the super-space integrals of finite polynomials of theta parameters always
vanish so that the construction of super-symmetric action as an integral over super-space would
give a trivial result. For chiral fields the integrals are formally non-vanishing but in the case that
the super-field reduces to a finite polynomial of theta at yµ = 0 the non-vanishing terms in real
Lagrangian involve the action of an infinite number of operators Dα̇ implying the proportionality
to an infinite power of momentum which vanishes for massless states. It seems that one should
be able to add in a natural manner terms which are obtained as theta derivatives of the product
of all theta parameters and that the action should consist of the products of the terms associated
with mononomials of theta and monomials of derivatives with respect to theta parameters acting
on the infinite product of theta parameters, call it X.

The fact that positive resp. negative energy vacuum is analogous to Dirac sea with negative resp.
positive energy states filled suggests a remedy to the situation. This would mean that positive
energy chiral field is just like its ordinary counterpart whereas negative energy chiral fields
would be obtained by applying a polynomial of derivatives of theta to the product X =

∏
θiα

of all theta parameters. The theta integral of X is by definition equal to 1. In integral over
theta parameters the monomials of theta associated with positive energy chiral field and negative
energy chiral field would combine together and one would obtain desired action. In the following
this approach is sketched. Devil lies in the details and detailed checks that everything works are
not yet done.

TGD variants of chiral super fields

Consider first the construction of chiral super-fields and of the super-counterpart of Dirac action.

(a) Wormhole throats carry a collection of collinearly moving fermions with momentum appear-
ing in the measurement interaction term identified as the total momentum. This suggests
that kinetic terms behave positive powers of Dirac operator with one power for each theta
parameter.

(b) One must be careful with dimensions. The counterpart of Dirac operator is D = σk(pk +
Qk)/M . The mass parameter M must be included for dimensional reasons and changes
only the normalization of the theta parameters from that used earlier and changes the
anti-commutation relations of the super-algebra in an obvious manner. The value of M
is determined by quantum criticality since it appears also in the measurement interaction
term. The first guess for the value of M is of order CP2 mass defined as m(CP2) =
n~0/R, where R is the length of CP2 geodesic and n is a numerical constant. The proposal
for a bi-local QFT limit describing gravitational interaction leads to the conclusion that
gravitational constant is proportional to 1/M2.

(c) In the case of single wormhole throat one can speak about positive and negative energy
chiral fields. Positive energy chiral fields are constructed as polynomials, and more gener-
ally, as Taylor series whereas negative energy chiral fields are obtained by mapping positive
energy chiral fields to an operator in which each theta parameter θ is replaced with

∂θD = ∂θσ
k (pk +Qk)

M
. (12.7.12)

This operator acts in the product X of all theta parameters to give the negative energy
counterpart of chiral field. The inclusion of sigma-matrices is necessary in order to obtain
chiral symmetry at the level of H, in particular the counterpart of Dirac action. In the
integral over all theta parameters defining the Lagrangian density the terms corresponding
to mononomials M(θ, x) and their conjugates M(∂θD

→, x) are paired and theta integrals
can be carried out easily. Here → tells that the spatial derivatives appearing in D are
applied to M .
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(d) There is an asymmetry between positive and negative energy states and the experience with
the ordinary Dirac action ΨD→Ψ−ΨD←Ψ suggests that one should add a term in which θ
parameters are replaced with −Dθ so that space-time derivatives act on the positive energy
chiral field and partial derivative ∂θ appear as such. The most plausible interpretation is
that the negative energy chiral field is obtained by replacing θs in the positive energy chiral
field with ∂θs and allowing to act on X. The addition of D would thus give rise to the
generalization of the kinetic term.

(e) Chiral condition can be posed and one can express positive energy chiral field in as an
infinite powers series containing all finite powers of theta parameters whereas negative
energy chiral field contains only infinite powers of θ. The interpretation is in terms of
different Dirac vacuum. What one means which super-covariant derivatives is not quite
clear.

i. The usual definition of super covariant derivatives would be as

Diα = ∂iα + i(θD)iα , Diα̇ = ∂θiα̇ + i(Dθ)iα̇ . (12.7.13)

ii. A definition giving rise to the same anti-commutators would be as

Diα = ∂iα , Diα̇ = ∂iα̇ + 2i(Dθ)α̇ (12.7.14)

In the recent case D does not appear at all in the chiral action since for negative energy
chiral field conjugation does not correspond to θ → θ but to θ → ∂θ and 1→ X. Hence
the simplest theory would result using Dα = ∂iα.

iii. If one includes into the product of X of theta parameters only θs but not their con-
jugates, the two definitions are equivalent since the powers of θDθ give nothing in
theta integration. This definition of X is be possible using the definition of hermitian
conjugation appropriate also for N = ∞. This formalism of course works also for a
finite value of N .

Consider now the resulting action obtained by performing the theta integrations. The inter-
esting question is what form of the super-covariant derivatives one should use. The following
considerations suggests that the two alternatives give almost identical -if not identical- results
but that the simpler definition Dα = ∂iα is much more elegant.

(a) For Dα = ∂iα the propagators are just inverses of Dd where d is the number of theta
parameters in the monomial defining the super-field component in question so that the
Feynman rules for calculating bosonic propagators and vertices are very simple. Only the
spinor and vector terms corresponding to degree d = 1 and d = 2 in theta parameters
behave in the expected manner. This conforms with the collinearity. In particular, for spin
2 states the propagator would behave like p−4 for large momenta. This conforms with the
prediction that graviton cannot correspond to singlet wormhole throat but to a string like
object consisting of a superposition of pairs of wormhole contacts and of wormhole throats.
If this expansion makes sense, higher spin propagators would behave as increasingly higher
inverse powers of momentum and would not contribute much to the high energy physics. At
energies much smaller than mass scale they would give rise to contact terms proportional
to a negative power of mass dictated by the number of thetas.

(b) For Dα = ∂iα + i(θD)α the situation is considerably more complex although the basic
contribution to the propagators is same. The chiral field property using the standard
definition means that propagator is multiplied by an infinite geometric series in D2 coming
from the contractions of θDθ in positive energy chiral super-field as they are contracted
with corresponding terms ∂θD∂θ appearing in negative energy chiral super-field acting
on X. The summation can be done by Feynman rules for a ”free field theory” in which
incoming particles correspond to θ parameters and outgoing particles to partial derivatives
with respect to theta parameters. The rule is that any theta parameter can be connected
to any derivative with respect to theta parameter and any pair of theta parameters and its
conjugate connected in this manner gives D2/M2 as a result. For the N :th power of θDθ a
given theta can be connected to ∂θ in N ! manner and same applies to its conjugate. Hence



780 Chapter 12. Does the QFT Limit of TGD Have Space-Time Super-Symmetry?

the 1/N ! factors coming from the expansion of plane wave exp(ip ·m+ iθDθ) cancel each
other and one obtains geometric series.

i. These rules assign to the power series exp(iθDθ) an over-all factor

Y = KY1 , Y1 =
1− (p

2−m2

M2 )K+1

1− p2−m2

M2

. (12.7.15)

The integer K results when one truncates the SUSY to a SUSY with finite value of N .
The value of K depends somewhat on the number of theta parameters associated with
the field component but approaches infinite value for N =∞.

ii. Propagator is inversely proportional to Y . This factor appears also in vertices and
since the propagators and vertices defining the bosonic action involve always chiral
loops with the same number of chiral field propagators and incoming vector super-
fields the factors N cancel out neatly.

iii. For p2 �M2 the factor Y1 equals to unity in good approximation. For |p2−m2| �M2

Y1 diverges at the limit K → ∞ and propagator vanishes for |p2 −m2| � M2, which
raises the hope about dynamical cutoff guaranteing UV finiteness. Vertices however
contain a similar factor. Again the fact that the loops defining the bosonic vertices
and propagators contain same number of vertices and propagators implies that these
factors cancel each other.

iv. The overall result seems to be a presence of infinite factors which however cancel
completely in the expressions for bosonic vertices and propagators and introduce only
a small effect at low energies. For Dα = ∂iα all these complications are avoided. It
should not be difficult to decide between these options.

TGD variant of vector super field

Chiral super-fields are certainly not all that is needed. Also interactions must be included, and
this raises the question about the TGD counterpart of the vector super-field.

(a) The counterpart of the chiral action would be a generalization of the Dirac action coupled
to a gauge potential obtained by adding the super counterpart of the vector potential to
the proposed super counterpart of Dirac action. The generalization of the vector potential
would be the TGD counterpart of the vector super field. Vector particle include M4 scalars
since Higgs behaves as CP2 vector and H-scalars are excluded by chiral invariance.

(b) Since bosons are bound states of positive and negative energy fermions at opposite wormhole
throats it seems that vector super field must correspond to an operator slashed between
positive and negative energy super-fields rather than ordinary vector super-field. The first
guess is that vector super-field is an operator expressible as a Taylor series in which positive
energy fermions correspond to the powers of θα and negative energy fermions correspond to
the powers of derivatives ∂θα . Naively, D in ∂θD is replaced by D+ V . Vector super-field
must be hermitian (V = V †) with hermitian conjugation defined so that it maps theta
parameters to the partial derivatives ∂θ and performs complex conjugation. A better guess
is that D appearing in the definition of the kinetic term is replaced with D + V where V
is a hermitian super-field. This definition would be direct generalization of the minimal
substitution rule.

(c) It is important to notice that the gauge bosons appearing in the covariant derivatives
have same momentum so that the interaction terms are local in momentum space rather
than x-space. This conforms with the view that the N virtual bosons emitted in the N + 2
vertex propagate along single wormhole throat. For bosonic emergence these couplings give
rise to exchanges of N collinear vector particles between two fermion lines behaving like
(k2−m2)−2N and thus approaching rapidly to zero in UV and contact interaction in IR. For
m = 0 one obtains series of interactions corresponding to potentials of form V ∝ r2n+1. For
massive case these interactions are screened by the Yukawa factor exp(−mr/~). Confining
linear interaction potential in QCD could result in this manner for m = 0 and N = 2. If
the coupling were local in x-space the exchange would involve N − 1 free loop momenta
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giving loop integral diverging like λ2N−4 as a function of momentum cutoff. Already for
d = 2 one would obtain logarithmic divergence.

(d) It is difficult to imagine how a kinetic term for the vector super-field could be defined. This
supports the idea that bosonic propagators and vertices emerge as one performs functional
integral over components of the chiral fields.

(e) There is also the question about gauge invariance. The super-field generalization of the non-
Abelian gauge transformation formula looks more like the generalization of Dirac action
to its super-counterpart: D → D + V everywhere. Her V is the contraction of sigma
matrices with super-field Vk, which is vector field in M4 having also S1 component which
does not depend on S1 coordinate. Positive energy chiral field would transform as Φ+ →
exp(Λ)Φ, where λ is a chiral field. The negative energy chiral field would transform as
Φ− → Φ−exp(Λ

†) with hermitian conjugation involving also the map of thetas to their
derivatives. Each theta parameter would represent a fermion transforming under gauge
symmetries in a manner dictated by its electro-weak quantum numbers (the inclusion of
color quantum numbers is not quite trivial: probably they must be included as a label for
quark modes). As in the case of Dirac action, the transformation formula for vector super-
field would be dictated by the requirement that the derivatives of Λ coming from exp(Λ) are
canceled by the derivative terms in the transformation formula for the vector super field.
The resulting transformation formulas are identical with standard ones formally since the
only new thing is that both Vk and and gauge group element g are super-fields.

How to feed information about classical physics of space-time sheet to chiral and
vector super-fields?

The new view about super fields need not be consistent with the geometric interpretation as-
signed to the chiral multiplets in the standard SUSY without some modifications.

(a) The geometric interpretation of Kähler potential and super-potential are very attractive
features of ordinary SUSY. The most general interpretation in TGD framework would be
as the WCW Kähler function K and holomorphic function f , whose real part added to K
does not affect its metric but changes the maxima of Kähler function.

(b) In standard SUSYs the scalar parts of chiral fields give rise to Higgs expectation values and
internal consistency arguments force the manifold of Higgs expectation values to be Kähler
or even quaternionic Kähler manifold with coordinates interpreted as Higgs field. In TGD
framework Higgs is CP2 vector which brings in additional constraint. CP2 is quaternionic
Kähler manifold but CP2 coordinates do not allow interpretation as Higgs field. CP2

gamma matrices induced to S1 giving rise to a constant gamma matrix could be however
identified as S1 component of vector potential identifiable as Higgs vacuum expectation
contributing to the mass of a given particle besides the dominating contribution coming
from p-adic thermodynamics.

(c) In the model based on ordinary N = 1 SUSY each particle would correspond to its own
N = 1 multiplet so that a Cartesian power of CP2s would define the quaternionic manifold.
This conforms with the geometric picture provided by the replacement of light-like 3-
surfaces with braid strands in which a Cartesian power of δM4

± × CP2 effectively replaces
WCW.

(d) The new view about super fields requires the replacement of the constant S1 component of
the super gauge potential with a diagonal matrix whose eigenvalues depend on the mode of
spinor field characterized by the theta parameter. Quite generally, super-symmetry break-
ing results from the replacement of the mass parameter m in D with a diagonal operator
whose eigenvalues mk give the masses assignable to the modes depending on the spinor
mode. Mathematically the genuine S1 mass term determined by p-adic thermodynam-
ics can be distinguished from a small Higgs expectation coded by S1 vector potential by
comparing particles with different charges.
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The induced Kähler form defining zero modes is so essential for quantum TGD at the funda-
mental level that the coding of at least part of this information to the chiral action is a highly
desirable feature. This seems possible.

(a) The overall renormalization factor of the chiral super field cannot carry the information
about the geometry of the space-time sheet. The vector super-field vertices involving vec-
tor particles are obtained as chiral loops an the normalization factors from the vertices
involving N vectors and 2 chiral particles cancel their inverses associated with the chiral
propagators. Hence the possible renormalization of the generalized Dirac action has no
physical implications. This is one of the nice outcomes of emergence concept.

(b) One can however add to the induced gauge potentials associated with the space-time sheet
to the super gauge potential as its classical parts. It is important to notice that X4 coor-
dinates would appear as parameters constant with respect to pk since pk would correspond
to M4 coordinate for the tip of CD rather than space-time coordinate. The standard
interpretation would be as slowly varying background fields.

(c) The information about vacuum degeneracy coded by the modified gamma matrices could
be coded by replacing the operator D with that appearing in the modified Dirac action
and assigned to the maximum of Kähler function. Note that this would bring in two color
charges Qi. The modified gamma matrices appearing in it would behave as constants with
respect to pk and Qk. Somewhat surprisingly, zero energy ontology would make it possible
to feed all information about the classical physics of the space-time sheet without losing
Poincare invariance.

12.7.8 Could QFT limit be finite?

Could the resulting theory be finite without hyperbolic and mass scale cutoffs in UV region?
Consider first general arguments without any resort to the proposed definition of TGD counter-
parts of super-fields.

(a) Non-renormalization theorems allow to expect that a cancelation of quadratic infinities
takes place as a consequence of super-symmetry. Cancelation of quadratic divergences in
the bosonic propagators means that there is no need to assume that hyperbolic cutoffs are
different for time-like and space-like momenta.

(b) There are arguments suggesting that N = 8 SUGRA is UV finite. Since the number of
super-symmetries in quantum TGD is even higher than in N = 8 super-gravity, the theory
might be also UV finite. If infinities cancel, the theory without UV cutoff for the mass
scale and hyperbolic angle could provide an excellent approximation to the theory. Also
the standard prescription for calculating loop integrals might make sense if this is the case.
Geometric arguments support the presence of the cutoffs but one must remain critical.

(c) Super-symmetry alone does not guarantee finiteness since it is possible to define extremely
general SUSY actions in terms of integrals of functions of super-space integrated over
super-space. Chiral action should have some additional symmetries not possessed by super-
symmetric counter-terms. Chiral action is quadratic in chiral super-field meaning the ab-
sence of self couplings of the chiral super field. Linear superposition of the solutions is
certainly a very special symmetry and very essential for the perturbation theory. QFT
limit is obtained by integrating over the quantum fluctuations in WCW degrees of freedom
for a a maximum of Kähler function. Therefore Kähler potential naturally corresponds to
WCW Kähler potential at its maximum and depends only on zero modes. This would con-
form with the fact that only second derivatives of Kähler potential (Kähler metric) appear
in the Kähler potential. Also R-parity arguments favor this form.

(d) Also for the proposed TGD inspired identifications of super-fields, the cancelation of UV
divergences should be essentially algebraic and due to the cancelation of chiral contributions
from the loops contributing to the vector super-field propagators and vertices. Also for the
emerging bosonic effective action same mechanism should be at work. The renormalization
theorems state that the only renormalizations in SUSYs are wave function renormalizations.
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In the case of bosonic propagators loops therefore mean only the renormalization of the
propagator. In the recent case only the chiral loops are included so that the situation is
analogous to Abelian YM theory or N = 4 super YM theory, where the beta functions for
gauge couplings vanish. Hence one might hope that also now wave function renormalization
is the only effect so that the radiatively generated contribution should be proportional to
the standard form of the vector propagator. The worst that can occur is logarithmically
diverging renormalization of the propagator which occur in many SUSYs. The challenge
is to show that logarithmic divergences possibly coming from the θd, d = 1, 2, parts of the
chiral super-field cancel. The condition for this cancelation is purely algebraic since the
coupling to k = 2 part is gradient coupling so that the leading divergences have same form.

(e) It could happen that the contributions from d ≤ 2 cancel exactly as they do in SUSYs
but the contributions from the field components with d > 2 give a non-vanishing and
certainly finite contribution. If this were the case then the exotic chiral field components
with propagators behaving like 1/pd, d > 2, ... would make possible the propagation for the
components of the vector super-feld.

12.7.9 Can one understand p-adic coupling constant evolution as a
prediction of QFT limit?

The precise formulation of the p-adic coupling constant evolution is one the basic challenges
of quantum TGD. The best that one can hope is the deduction of p-adic thermodynamics and
p-adic length scale hypothesis as well as p-adic coupling constant evolution from QFT limit
alone.

For the simple form of the QFT limit involving M4 × S1 gamma matrices in the definition of
D, p-adic length scale could make itself visible via the mass parameters and the contribution of
the Higgs field appearing as S1 part of the gauge potential. This is of course just feeding in the
results of p-adic thermodynamics. Gauge couplings predicted by the emergence would depend
on these parameters but the coupling constant evolution would reflect only the effects of mass
parameters on it.

4-D spin glass analogy is one of the basic visions about the physics of quantum TGD. In the
theory of spin glasses ultrametric topology possessed also by p-adic number fields emerges as a
topology of the energy landscape consisting of the minima of free energy. In TGD framework the
space for the maxima of Kähler function could obey ultrametric topology with the value of prime
p fixed by the scale of CD in question and given by a power of 2. Therefore one has good hopes
that for small enough sub-CDs of a given CD the failure of the strict non-determinism implies
p-adic coupling constant evolution. p-Adic thermodynamics determining particle masses cannot
of course follow from QFT limit since it relates to the space-like space-time regions (locally CP2

type vacuum extremals) defining the generalized Feynman diagrams. By combining this vision
and the QFT limit with maximal information feed about the space-time sheet gives hopes about
achieving more ambitious goals.

(a) If one replaces D with the actual measurement interaction term, all information about
the space-time sheet within a given CD is feeded via modified gamma matrices Γ̂α =
Γk∂LK/∂αh

k in as effective slowly varying background fields. The propagators reflect di-
rectly the local space-time dynamics, and one obtains a distribution of scattering amplitudes
as a function of the point of the space-time sheet within a given CD. A 4-D distribution for
the values of gauge coupling constants is predicted whereas 1-D evolution or even discrete
p-adic evolution would be quite enough.

(b) Space-time surfaces decompose into connected Minkowskian regions surrounding wormhole
throats (basins for the local slicings by light-like 3-surfaces parallel to the throats) and
these regions naturally correspond to coherence regions at QFT limit. A space-time integral
defining a quantum superposition of the amplitudes associated with various points of the
coherence region looks like a physically natural mathematical object to consider. Only the
kinetic terms for vector super-field would involve the weighting over the coherence region.
Ideal weighting depends on zero modes only and therefore cannot depend on the induced
metric.
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i. If the weighting is defined by Kähler action density, normalization is not required and
would lead to difficulties when the Kähler action vanishes. This implies the propor-
tionality of emerging bosonic kinetic terms to 1/g2

K so that propagators and also gauge
coupling strengths included by definition to the propagators are proportional to g2

K .
The basic property of emergence is that the dependence of Feynman diagrams on 1/g2

K

coming from the modified gamma matrices cancels out in perturbation theory. This is
a nice feature consistent with the idea that the propagator for the small deformations
of 3-surfaces corresponds to the WCW contravariant Kähler metric proportional to
g2
K [K17] . The counterparts of the gauge couplings identified in terms of the inverses

of propagators for the vector super-field components obtained in this manner would
depend on the p-adic length scale Lp ∝

√
p, p ' 2k, for the smallest CD containing the

coherence region. One can criticize this weighting scheme. The ideal weighting scheme
should depend on zero modes (Jαβ) only but this weighting scheme depends on the
induced metric. Huge amount of information is needed and a concrete connection with
the view about generalized Feynman graphs is lacking. Note also that the properties
of elementary particles reflecting themselves at the level of propagators would depend
on the macroscopic field patterns of Kähler electric field.

ii. The idea that light-like 3-surfaces meet at partonic two-surfaces X2 identified as their
intersections of wormhole throats with the light-like boundaries of CDs would suggest
only 2-D weighting over partonic 2-surfaces with Kähler action replaced by magnetic
flux density 1

gK
J
√
g2, J = Jαβεαβ . The dependence on the induced metric is only

apparent. 1/gK factor must be included to get dimensions correctly. This weighting
depends on zero modes only. The dependence of the coupling constants on the p-
adic size scale of CD comes out naturally, and only the information from the scales
relevant to elementary particles affect propagators and couplings. As in the previous
case, non-trivial interference effects are possible since the sign of J varies. The only
information about the preferred extremals of Kähler action is about the derivatives
∂αh

k at X2 appearing in Γ̂α. In the calculation of the super-vector field propagators
the information about the modified gamma matrices at both ends of X3

l is needed and
the weighting would be over the both ends.

iii. One must decide whether to perform the weighting for the kinetic term of vector super-
field action or for the loop integrals defining the corresponding propagators. Spin glass
analogy would suggest the first option. The weighting the kinetic term would be
proportional to x2/g2

K , where x is a numerical parameter characterizing the net result
of the weighting. The emerging propagators would be proportional to g2

K/x
2 and g2

K

proportionality is indeed what one expects. For the latter option propagator would
be proportional to x2/g2

K , which does not make sense unless one considers the rather
remote possibility that electric-magnetic duality relates the two weightings. The value
of x is expected to be smallest for homologically trivial partonic 2-surfaces (Kähler
magnetic charge vanishes). Gauge coupling strengths would be therefore smallest for
magnetic monopoles, which looks somewhat counter-intuitive if one thinks in terms of
electric-magnetic duality. On the other hand, since the propagator for the deformations
of 3-surface is contravariant Kähler metric of WCW becoming singular near vacuum
extremals and since the kinetic term of Kähler action approaches zero near vacuum
extremals, one expects gauge couplings to grow large near vacuum extremals since they
are inversely proportional to the scale of the kinetic term. Also asymptotic freedom
conforms with this result since in very short length scales magnetically charged string
like objects are expected to replace space-time sheets as basic objects whereas long
length scales correspond to nearly vacuum extremals.

A cautious conclusion is that the weighting scheme based on Kähler magnetic magnetic
flux is the correct choice.

(c) p-Adic coupling constant evolution for the propagator is obtained in a manner consistent
with what has been discussed in [K58] . If virtual boson momenta in a given half octave of
masses labeled by integer k correspond to CD labeled by this integer. Since the coherence
region surrounding the propagating wormhole throat is contained inside a CD character-
ized by this size scale, the scale of CD indeed defines the p-adic length scale in question.
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Since the propagator by definition is proportional to the coupling strength also coupling
constant evolution is coded in this manner. The difference to earlier picture is that αK
proportionality means that the loops defining propagator must be of order one or larger.
In the model based on hyperbolic cutoff the cutoff guaranteed the desired value.

(d) The failure of the strict determinism for Kähler action suggests that for the practical pur-
poses the coherence regions must be replaced with an ensemble of local preferred extremals
of Kähler action. The dependence of the modified gamma matrices defined by the Kähler
action on the space-time point is analogous to a similar dependence of the coupling con-
stant parameters of the spin glass Hamiltonian. The vacuum functional exp(K) for the
coherence region defines the counterpart for the real square root of the density matrix and
the sum over the preferred extremals weighted by exp(K) for the coherence region defines
the analog of statistical average.

12.7.10 Is the QFT type description of gravitational interactions pos-
sible?

In TGD Universe graviton is necessarily a bi-local object and the emission and absorption of
graviton are bi-local processess involving two wormhole contacts: a pair of particles rather than
single particle emits graviton. This is definitely something new and defies a description in terms
of QFT limit using point like particles. Graviton like states would be entangled states of vector
bosons at both ends of string so that gravitation could be regarded as a square of YM interactions
in rather concrete sense. The notion of emergence would suggest that graviton propagator is
defined by a bosonic loop. Since bosonic loop is dimensionless, IR cutoff defined by the largest
CD present must be actively involved.

The connection with strings is via the assignment of wormhole contacts at the ends of a stringy
curve. Stringy diagrams would not however describe graviton emission. Rather, a generalization
of the vertex of Feynman diagram would be in question in the sense that three string world sheets
would be glued together along their 1-dimensional ends in the vertex. This generalizes similar
description for gauge interactions using Feynman diagrams. In the microscopic description point
like particles are replaced with 2-D partonic surfaces so that in gravitational case one has stringy
3-surfaces at vertices.

At QFT limit one can hope a description as a bi-local process using a bi-local generalization of the
QFT limit so that stringy degrees of freedom need not be described explicitly. There are hopes
about success, since these degrees of freedom have been taken into account in the spectrum of
modes of the induced spinor field and reflect themselves as quantum numbers labeling fermionic
oscillator operators. Also modified gamma matrices feed information about space-time surface
to the theory.

What one really means with strings?

Before continuing is it is good take critical attitude to the proposed picture. What one really
means with string is the first question.

(a) Stringy curves appear in in the slicing of the space-time sheet around wormhole throat
to light-like 3-surfaces labeled by the points of string. Hamilton-Jacobi coordinates [K8]
suggest that the M4 projections of these curves light-like so that the curves would be
space-like.

(b) For string like objects obtained as deformations of cosmic strings X2 × Y 2 ⊂ M4 × CP2

one can assign Kähler magnetic flux flowing along the stringy curves. These curves should
define a special class of stringy curves.

(c) If the basin for the slicing by light-like 3-surfaces for a given wormhole throat has an outer
boundary at which induced Kähler form vanishes (it is not obvious that this can be the
case), one can ask whether stringy curves effectively end at the boundary of the basin or
what happens? Magnetic flux conservation does not allow to assign magnetic flux to the
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stringy curves now. The analogy with field lines gravitational scalar potential suggests
a possible answer. All wormhole throats would act as sources for these lines identifiable
as field lines of a gradient vector field. Basins would not actually have any boundaries
since the extrema of the potential would consist in the generic case of a discrete set of
points. Whether stringy curves really have something to do with field lines of a gradient of
gravitational potential must be however left an open question.

(d) Despite the emergence of stringy picture, string model as such does not seem to help much
since the graviton emission vertex is completely different from that in string models.

A physically attractive realization of the braids - and more generally- of slicings of space-time
surface by 3-surfaces and string world sheets, is discussed in [K37] by starting from the obser-
vation that TGD defines an almost topological QFT of braids, braid cobordisms, and 2-knots.
The boundaries of the string world sheets at the space-like 3-surfaces at boundaries of CDs and
wormhole throats would define space-like and time-like braids uniquely.

The idea relies on a rather direct translation of the notions of singular surfaces and surface
operators used in gauge theory approach to knots [A147] to TGD framework. It leads to the
identification of slicing by three-surfaces as that induced by the inverse images of r = constant
surfaces of CP2, where r is U(2) invariant radial coordinate of CP2 playing the role of Higgs field
vacuum expectation value in gauge theories. r =∞ surfaces correspond to geodesic spheres and
define analogs of fractionally magnetically charged Dirac strings identifiable as preferred string
world sheets. The union of these sheets labelled by subgroups U(2) ⊂ SU(3) would define the
slicing of space-time surface by string world sheets. The choice of U(2) relates directly to the
choice of quantization axes for color quantum numbers characterizing CD and would have the
choice of braids and string world sheets as a space-time correlate.

What one really means with gravitons?

One can also ask what one really means with graviton. The identification of graviton is indeed
far from obvious.

(a) Wormhole throats and contacts allow J = 2 states but they couple only to states which
corresponds to d ≥ 2 monomials of theta so that couplings to the fermions are absent.

(b) TGD predicts a hierarchy of string like objects of all possible sizes and these are good
candidates for graviton like states. The hierarchy of Planck constants and the huge values
of gravitational Planck constant suggests that gigantic gravitons identifiable as stringy
curves connecting particles at astrophysical distances are possible. The emission of dark
graviton would be bi-local process in astrophysical length scales and would look locally like
an emission of gauge boson.

(c) One can of course argue it is not clear whether stringy gravitons represent hadron like
objects responsible for strong gravitation below relevant p-adic length scale rather than
genuine gravitons. For instance, the identification of elementary particles in terms of CP2

type extremals forces to ask whether gravitons could correspond to pieces of CP2 type ex-
tremals connecting positive and negative energy space-time sheets with a wormhole contact
having two pairs of wormhole throats so that spin two states would become possible. If
this generalization is accepted, one must also accept the possibility of wormhole contacts
with arbitrary number of throat pairs. One can also wonder what is the origin of Planck
length which is roughly 104 times shorter than CP2 length. For instance, could it have
purely geometric interaction characterizing the distance between these wormhole contacts?

With this identification graviton emission at elementary particle level could be seen as a
creation of a virtual wormhole throat pair inside wormhole contact formed by fermion and
anti-fermion and making possible emission of graviton. One can also consider a distribution
of wormhole throat pairs inside wormhole created in this manner in which case 1/GN would
characterize the probability for the appearance of wormhole throat pair.

(d) Graviton must be generalized to a super-field and bi-locality suggests that this field is a
bi-local composite of super gauge fields in some sense. Ordinary graviton would be only
single component of this field.
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To sum up, if is far from clear what graviton precisely is and gauge-theory-gravitation corre-
spondence suggests that there is a rich spectrum of graviton like states. Despite this one can
characterize rather precisely what the description of gravitational interaction at QFT limit must
be by using general symmetry principles and basic structure of quantum TGD.

Could bi-local QFT allow to describe gravitation as a square of gauge interactions?

The key question is whether one can generalize the formalism of QFT limit to describe also
gravitational interactions. The first guess is that in some sense gravitation is a square of YM
interactions. This statement has a precise content in some string theories. Also the scattering
amplitudes of N = 8 super-gravity allow a construction in terms of N = 4 SYM amplitudes.
In the recent case gravitation as a square of YM theory would mean that graviton propagator
emerges from vector super-field propagators assignable at the ends of the gravitonic string.
Vector propagators would in turn emerge from chiral super-field propagators.

The bi-local character of the basic process suggests that a bi-local generalization of QFT limit
is needed to describe gravitation. In fact, at the long length scale limit of the theory the
appearance of second derivatives in the curvature scalar could be seen as a signature of bi-locality
at fundamental level. Bi-locality brings in the notion of distance and the metric description of
gravitation indeed assumes that distances are dynamical. Note that also the typical experimental
arrangements for detecting gravitons are bi-local (typically the variation of the distance between
the ends of a metal bar is measured).

(a) Bi-locality would suggest that one has a pairing of the chiral actions to a bi-local action.
Whether the vector bosons at the ends of graviton string move collinearly or not is a non-
trivial question. Experimentation with the candidates for the bilinear gravitational action
shows that the simplest theory results when collinearity assumption is given up. It is also far
from clear whether collinearity assumption allows any internally consistent mathematical
realization: the problem is that by collinearity graviton propagator becomes proportional
to 1/p4 and one should somehow eliminate one 1/p2 factor. If one gives up collinearity, one
obtains a bosonic loop integral with vector boson momenta p− k and k. Graviton kinetic
term emerges from a loop of two bosons and is therefore dimensionless so that IR cutoff L
is necessary in order to obtain p2L2 type kinetic term and finiteness. The IR cutoff comes
naturally as the size scale L of the largest CD involved and appears also as scaling factor
of the action by purely dimensional reasons and disappears naturally from the interaction
vertices.

(b) Graviton would correspond to a bi-local composite of super gauge fields acting as operators
V (θi, ∂θi), i = 1, 2, on the chiral super-fields at the ends of the string and graviton propa-
gation should reduce to vector boson propagation just as vector boson propagation reduces
to fermion pair propagation. General gauge invariance at the level of space-time sheet
is not a problem. At the level of M4, whose coordinates label the positions for the tips
of CD the possibility to choose preferred M4 coordinates guarantees general coordinate
invariance trivially. The elimination of non-physical graviton polarizations for massless
gravitons is achieved by the ordinary gauge invariance. In this conceptual framework elimi-
nation of non-physical graviton polarization does not have obvious connection with general
coordinate invariance. The properties of the slicings by light-like 3-surfaces suggest this
connection.

(c) At the point like limit the emission of gravitons is described by an interaction term of form
Tαβδgαβ . This expression should have a bi-local gauge invariant generalization. The energy
momentum tensor for Dirac action suggests the following remarkably simple expression for
the interaction action Lgr in super space.

Lgr = KΨDAΨ×ΨDAΨ . (12.7.16)

A summation over the contracted index pairs is understood in the formula. The theta pa-
rameters associated with the two actions are regarded as independent Grassmann variables.
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(d) If the vector boson momenta at the ends of graviton string vary freely apart from the
constraint that they sum up to the momentum of the virtual graviton, K must be of form
K = kL2 to compensate the dimension 1/L2 coming from the two DAs. L naturally corre-
sponds to IR cutoff defined by the size of the largest CD involved. The bosonic loop giving
graviton propagator at the IR limit is dimensionless so that the resulting propagator must
be proportional to 1/(p2L2) so that the powers of L cancel each other in the propagators.
DA = pA + QA + VA is the covariant derivative corresponding to a particular momentum
component. Note that also color charge (color hyper charge or isospin) is included and
is present for massive particles. Since only covariant derivatives appear, the expression is
manifestly super gauge invariant.

(e) The integration over the theta parameters gives factors D = Γ̂ADA/M for each integrated
pair of theta parameters. Here M is a parameter with dimensions of mass to make D
dimensionless and CP2 is the most natural guess for its value. The resulting action for
graviton has the following form

Lgr =
K

M2
ΨOAΨ×ΨOAΨ ,

OA =
D→DA→ −D←DA←

M
,

D← =
D←A Γ̂A

M
, D→ =

Γ̂AD→A
M

, D =
Γ̂ADA

M
.

(12.7.17)

The 1/p2L2 from the IR cutoff for the loop integral defining the emergent graviton prop-
agator given by a dimensionless bosonic loop cancels L2 from factor kL2/M2 and kM2

should be proportional to GN .

(f) The tensor structure of the graviton vertex resulting from DDA in the lowest order seems
to be correct. Γ̂ADB→ resp. Γ̂ADB← is the analog of energy momentum tensor and in
the lowest order gives rise to the desired proportionality of the gravitational coupling to
momentum. Since graviton is emitted by a pair of particles the proportionality to the
momenta of both particles is natural. Note that only the momenta associated with the
vector bosons defining the emitted graviton-like particle are collinear, not the momenta of
the emitting particles at the ends of the string. The bilinear DB⊗DC is the counterpart of
δgαβ and polarization tensor of graviton. Both DB and DC are contracted with the analog
of the energy momentum tensor.

(g) Ordinary graviton must correspond to electro-weak U(1) for which coupling is to fermion
number. The mixing of U(1)Y and U(1) ⊂ SU(2) should be completely absent for gravitons.
In other words, the corresponding value of Weinberg angle must vanish: sin2(θW,gr) = 0
implying mZ = mW in gravitonic propagation. The graviton analogs formed from massless
gluons would have a finite interaction range by confinement and weak gravitons would be
massive so that no dramatic new effects are predicted.

When one feeds the information about space-time surface into the theory additional complica-
tions arise since the modified gamma matrices Γ̂α(x) = Γk∂LK/∂αh

k would replace the M4×S1

gamma matrices and one must integrate over the points x. As found, the condition that weight-
ing scheme depends on zero modes only (is symplectic invariant at the level of WCW) fixes
it uniquely to a weighting by magnetic flux at the intersections of light-like wormhole throats
with the light-like boundaries of CD relevant for the p-adic length scale defined by the virtual
momentum squared.

(a) Bi-locality suggests that both ends of string correspond to their own partonic 2-surfaces
so that both ends involve weighting by the Kähler magnetic flux J

√
g/gK . J = Jαβεαβ .

Since J vanishes for vacuum regions and since also its sign varies, this is expected to bring
in four identical reduction factors -call them x- to the kinetic term of graviton.
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(b) The defining property of the emergence is that the variation of the scale of Γ̂A is compen-
sated by the variation of the scale of the propagator so that the proportionality of Γ̂A to
1/g2

K is not seen in scattering amplitudes.

(c) Again one must decide whether the weighting is performed for the calculation of the prop-
agator or whether one uses the bosonic propagators already calculated with corresponding
weightings at the ends of lines. Only the latter option conforms with the idea about
gravitation as square of gauge interactions predicting α2

K-proportionality for the graviton
propagator. From the general proportionality of bosonic propagators to g2

K/x
2 ∝ αK one

has the order of magnitude estimate

16πGN ∼ kg4
K

x4M2
∼ kα2

K

M2
. (12.7.18)

16πG comes from the fact that it appears in the linearized Einstein’s equations as the coeffi-
cient of energy momentum tensor. If k does not depend on ~ then αK ∝ 1/~ and M ∝ ~/R
correctly predicts that GN does not depend on ~. Using αK ' 1/137 and M = m(CP2) =
.2437×10−3mPl [K43] one obtains the very rough estimate k = (m(CP2)/αKmPl)

2 = .056.

(d) Note that the solutions of field equations in the static limit when the situation resembles
formally electrostatics, gravitational coupling strength is estimated classically to be of order
CP2 length squared [K8] . Since the value of CP2 mass (and thus length) is firmly fixed
by elementary particle mass calculations [K43] , this results could be seen as a a serious
objection against TGD. One could say that the weighting provides a ”screening mechanism”
reducing the naive value of the gravitational coupling strength.

This picture allows to interpret the cutoff for N as a cutoff for the maximal number of points
of the partonic 2-surface carrying fermionic quantum numbers: essentially a cutoff in measure-
ment resolution is in question. The super-symmetric excitations of graviton can be interpreted
microscopically as multi-string states but looking like a single string in the spatial measurement
resolution provided by single partonic 2-surface.

Could one apply the formalism at fundamental level?

There are good motivations for asking whether this formalism - when appropriately generalized-
could apply to the basic quantum TGD.

(a) Only the data about partonic 2-surfaces are feeded into the vertices so that the assumption
that space-time sheets are representable as graphs for maps from M4 to CP2 is not actually
needed. The information about the interior topology of the space-time sheet is un-necessary
and the effective 2-dimensionality simplifies the situation enormously. Note however that
the initial values of derivatives of H-coordinates at partonic 2-surfaces are needed.

(b) The cutoff for N has interpretation as a cutoff for the maximal number of points of the
partonic 2-surface carrying fermionic quantum numbers: essentially a cutoff in measurement
resolution is in question. Already N = 2 cutoff is expected to be a good approximation
since higher theta monomials give rise to short range forces.

(c) The super-symmetric excitations of graviton can be interpreted microscopically as multi-
string states but looking like a single string in the spatial measurement resolution provided
by single partonic 2-surface. Therefore strings split to space-like braids at fundamental
level. The duality between these space-like braids and light-like braids at light-like 3-
surfaces might be important.

(d) The generalization should take into account the fact theta parameters correspond to dif-
ferent points of X2 and that the wormhole throats associated with the bosonic wormhole
contacts are not one and same thing. These effects are expected to be small unless the
size of the wormhole is very large as it is for anyon-like wormhole throats with macroscopic
size containing states with a high fermion number [K59] . Also global data such as the
moduli characterizing the conformal equivalence class of partonic 2-surface are needed in
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order to describe family replication phenomenon at the fundamental level. The description
of color quantum numbers at fundamental level introduces additional complications. The
functional integral over WCW must be performed and gives rise to non-perturbative effects
when a large number of maxima of Kähler function must be included.

12.8 A more detailed summary of Feynman diagrammat-
ics for emergence

In the following the Feynman diagrammatics for Dirac action coupled to gauge potential is
sketched briefly and some comments on generalization to the super-symmetric case are made.

12.8.1 Emergence in absence of super-symmetry

The resulting Feynman diagrammatics deserves some more detailed comments.

(a) Consider first the exponent of the action exp(iSc) resulting in fermionic path integral. The
exponent

exp[i

∫
dx4d4yξ(x)GF (x− y)ξ(y)] = exp[i

∫
d4kξ(−k)GF (k)ξ(k)]

is combinatorially equivalent with the sum over n-point functions of a theory representing
free fermions constructed using Wick’s rules that is by connecting n Grassmann spinors
and their conjugates in all possible ways by the fermion propagator GF .

(b) The action of

exp

[
i

∫
d4x

δ

δξ(x)
γ ·A(x)

δ

δξ(x)

]
= exp

[
i

∫
d4kd4k1

δ

δξ(k − k1)
γ ·A(−k)

δ

δξ(k1)

]
on diagrams consisting of n free fermion lines gives sum over all diagrams obtained by
connecting fermion and anti-fermion ends of two fermion lines and inserting to the resulting
vertex A(−k) such that momentum is conserved. This gives sum over all closed and open
fermion lines containing n ≥ 2 boson insertions. The diagram with single gauge boson
insertion gives a term proportional to Aµ(k = 0) ·

∫
d4kkµk−2, which vanishes.

(c) Sc as obtained in the fermionic path integral is the generating functional for connected
many-fermion diagrams in an external gauge boson field and represented as sum over dia-
grams in which one has either closed fermion loop or open fermion line with n ≥ 2 bosons
attached to it. The two parts of Sc have interpretation as the counterparts of YM action
for gauge bosons and Dirac action for fermions involving arbitrary high gauge invariant
n-boson couplings besides the standard coupling. An expansion in powers of γµDµ is sug-
gestive. Arbitrary number of gauge bosons can appear in the bosonic vertices defined by
the closed fermion loops and gauge invariance must pose strong constraints on the bosonic
part of the action if expressible in terms of bosonic gauge invariants. The closed fermion
loop with n = 2 gauge boson insertions defines the bosonic kinetic term and bosonic propa-
gator. The sign of the kinetic terms comes out correctly thanks to the minus sign assigned
to the fermion loop.

(d) Feynman diagrammatics is constructed for Sc using standard Feynman rules. In ordinary
YM theory ghosts are needed for gauge fixing and this seems to be the case also now.

(e) One can consider also the presence of Higgs bosons. Also the Higgs propagator would
be generated radiatively and would be massless for massless fermions as the study of the
fermionic self energy diagram shows. Higgs would be necessary CP2 vector in M4 × CP2

picture and E4 vector in M8 = M4 × E4 picture. It is not clear whether one can describe
Higgs simply as an M4 scalar. Note that TGD allows in principle Higgs boson but -
according to the recent view - it does not play a role in particle massivation.
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12.8.2 Some differences from standard Feynman diagrammatics

The diagrammatics differs from the Feynman diagrammatics of standard gauge theories in some
respects.

(a) 1-P irreducible self energy insertions involve always at least one gauge boson line since the
simplest fermionic loop has become the inverse of the bosonic propagator. Fermionic self
energy loops in gauge theories tends to spoil asymptotic freedom in gauge theories. In
the recent case the lowest order self-energy corrections to the propagators of non-abelian
gauge bosons correspond to bosonic loops since fermionic loops define propagators. Hence
asymptotic freedom is suggestive.

(b) The only fundamental vertex is AFF vertex. As already found, there seems no point in
attaching to the vertex an explicit gauge coupling constant g. If this is however done n-
boson vertices defined by loops are proportional to gn. In gauge theories n-boson vertices are
proportional to gn−2 so that a formal consistency with the gauge theory picture is achieved
for g = 1. In each internal boson line the g2 factor coming from the ends of the bosonic
propagator line is canceled by the g−2 factor associated with the bosonic propagator. In
S-matrix the division of the bosonic propagator from the external boson lines implies gn

proportionality of an n-point function involving n gauge bosons. This means asymmetry
between fermions and bosons unless one has g = 1. g = 1 above means g =

√
~0. Since

fermionic propagator is proportional to ~0
0 and since loop integral involves the factor 1/~0,

the dimensions of bosonic propagator and radiatively generated vertices come out correctly.
The counterparts of gauge coupling constants could be identified from the amplitudes for
2-fermion scattering by comparison with the predictions of standard gauge theories. The
small value of effective gauge coupling g obtained in this manner would correspond to a
large deviation of the normalization factor of the radiatively generated boson propagator
from its standard value.

(c) Furry’s theorem holding true for Abelian gauge theories implies that all closed loops with an
odd number of Abelian gauge boson insertions vanish. This conforms with the expectation
that 3-vertices involving Abelian gauge bosons must vanish by gauge invariance. In the
non-abelian case Furry’s theorem does not hold true so that non-Abelian 3-boson vertices
are obtained.

12.8.3 Generalization of the formalism to the super-symmetric case

In principle the generalization of the formula of generalized Feynmann diagrammatics to super-
symmetric case at QFT limit of TGD is straightforward.

(a) Consider first the standard formalism making sense only for N = 1 case in TGD framework.
In this case the Kähler potential K(Φ†, exp(−V )Φ) replaces Dirac action coupled to gauge
potentials and the functional integral at the first step is over super-fields assigned to the
fermions. Theta integrations gives the Lagrangian as function of components of super-fields
and the free-field functional integral over the fields appearing in Φ and Φ† gives the action
as a functional of gauge boson fields and their super-partners appearing in V . All vertices
and propagators are expressible in terms of loops of fermions and their super-partners and
gauge couplings and their evolution follow as predictions.

(b) For the option based on TGD inspired generalization of super-fields the fundamental action
is the generalization of Dirac action. As already found the propagators for chiral field
components with d theta parameters behave as k−d so that they do not induce divergences
in fermionic loops. Also bosonic propagators for field components involving d thetas behave
in similar manner. The possible divergences in the bosonic propagators would vanish by
the same mechanism as in ordinary super-symmetry.

In the earlier approach the elimination of UV divergences required the introduction of cutoffs in
mass squared and hyperbolic angle characterizing velocity of virtual fermion in the rest system of
the virtual boson. The requirement that quadratic divergences are absent in the inverses of the
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propagators forced the hyperbolic cutoffs to be different for time-like and space-like momenta.
The justification for hyperbolic cutoff was in terms of a geometric argument: the causal diamond
(CD) characterizing virtual fermion must remain inside the CD defining the IR cutoff. Super-
symmetry could imply this cutoff in a smooth manner by the cancelation of the divergences
associated with particles and their super-partners as already noticed.

12.9 Could N = 2 or N = 4 SYM be a part of TGD after
all?

Whether right-handed neutrinos generate a supersymmetry in TGD has been a long standing
open question. N = 1 SUSY is certainly excluded by fermion number conservation but already
N = 2 defining a ”complexification” of N = 1 SUSY is possible and could generate right-
handed neutrino and its antiparticle. These states should however possess a non-vanishing
light-like momentum since the fully covariantly constant right-handed neutrino generates zero
norm states. So called massless extremals (MEs) allow massless solutions of the modified Dirac
equation for right-handed neutrino in the interior of space-time surface, and this seems to be case
quite generally in Minkowskian signature for preferred extremals. This suggests that particle
represented as magnetic flux tube structure with two wormhole contacts sliced between two MEs
could serve as a starting point in attempts to understand the role of right handed neutrinos and
how N = 2 or N = 4 SYM emerges at the level of space-time geometry. The following arguments
inspired by the article of Nima Arkani-Hamed et al [B37] about twistorial scattering amplitudes
suggest a more detailed physical interpretation of the possible SUSY associated with the right-
handed neutrinos.

The fact that right handed neutrinos have only gravitational interaction suggests a radical re-
interpretation of SUSY: no SUSY breaking is needed since it is very difficult to distinguish
between mass degenerate spartners of ordinary particles. In order to distinguish between differ-
ent spartners one must be able to compare the gravitomagnetic energies of spartners in slowly
varying external gravimagnetic field: this effect is extremely small.

12.9.1 Scattering amplitudes and the positive Grassmannian

The work of Nima Arkani-Hamed and others represents something which makes me very opti-
mistic and I would be happy if I could understand the horrible technicalities of their work. The
article Scattering Amplitudes and the Positive Grassmannian by Arkani-Hamed, Bourjaily, Cac-
hazo, Goncharov, Postnikov, and Trnka [B37] summarizes the recent situation in a form, which
should be accessible to ordinary physicist. Lubos has already discussed the article. The following
considerations do not relate much to the main message of the article (positive Grassmannians)
but more to the question how this approach could be applied in TGD framework.

All scattering amplitudes have on shell amplitudes for massless particles as building
bricks

The key idea is that all planar amplitudes can be constructed from on shell amplitudes: all
virtual particles are actually real. In zero energy ontology I ended up with the representation
of TGD analogs of Feynman diagrams using only mass shell massless states with both positive
and negative energies. The enormous number of kinematic constraints eliminates UV and IR
divergences and also the description of massive particles as bound states of massless ones becomes
possible.

In TGD framework quantum classical correspondence requires a space-time correlate for the
on mass shell property and it indeed exists. The mathematically ill-defined path integral over
all 4-surfaces is replaced with a superposition of preferred extremals of Kähler action analo-
gous to Bohr orbits, and one has only a functional integral over the 3-D ends at the light-like
boundaries of causal diamond (Euclidian/Minkowskian space-time regions give real/imaginary
Chern-Simons exponent to the vacuum functional). This would be obviously the deeper principle

http://arxiv.org/pdf/1212.5605v1.pdf
http://arxiv.org/pdf/1212.5605v1.pdf
http://motls.blogspot.fi/2012/12/amplitudes-permutations-grassmannians.html
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behind on mass shell representation of scattering amplitudes that Nima and others are certainly
trying to identify. This principle in turn reduces to general coordinate invariance at the level of
the world of classical worlds.

Quantum classical correspondence and quantum ergodicity would imply even stronger condition:
the quantal correlation functions should be identical with classical correlation functions for any
preferred extremal in the superposition: all preferred extremals in the superposition would be
statistically equivalent [K92]. 4-D spin glass degeneracy of Kähler action however suggests that
this is is probably too strong a condition applying only to building bricks of the superposition.

Minimal surface property is the geometric counterpart for masslessness and the preferred ex-
tremals are also minimal surfaces: this property reduces to the generalization of complex struc-
ture at space-time surfaces, which I call Hamilton-Jacobi structure for the Minkowskian signature
of the induced metric. Einstein Maxwell equations with cosmological term are also satisfied.

Massless extremals and twistor approach

The decomposition M4 = M2 ×E2 is fundamental in the formulation of quantum TGD, in the
number theoretical vision about TGD, in the construction of preferred extremals, and for the
vision about generalized Feynman diagrams. It is also fundamental in the decomposition of the
degrees of string to longitudinal and transversal ones. An additional item to the list is that
also the states appearing in thermodynamical ensemble in p-adic thermodynamics correspond
to four-momenta in M2 fixed by the direction of the Lorentz boost. In twistor approach to TGD
the possibility to decompose also internal lines to massless states at parallel space-time sheets
is crucial.

Can one find a concrete identification for M2 × E2 decomposition at the level of preferred ex-
tremals? Could these preferred extremals be interpreted as the internal lines of generalized
Feynman diagrams carrying massless momenta? Could one identify the mass of particle pre-
dicted by p-adic thermodynamics with the sum of massless classical momenta assignable to
two preferred extremals of this kind connected by wormhole contacts defining the elementary
particle?

Candidates for this kind of preferred extremals indeed exist. Local M2×E2 decomposition and
light-like longitudinal massless momentum assignable to M2 characterizes ”massless extremals”
(MEs, ”topological light rays”). The simplest MEs correspond to single space-time sheet carrying
a conserved light-like M2 momentum. For several MEs connected by wormhole contacts the
longitudinal massless momenta are not conserved anymore but their sum defines a time-like
conserved four-momentum: one has a bound states of massless MEs. The stable wormhole
contacts binding MEs together possess Kähler magnetic charge and serve as building bricks of
elementary particles. Particles are necessary closed magnetic flux tubes having two wormhole
contacts at their ends and connecting the two MEs.

The sum of the classical massless momenta assignable to the pair of MEs is conserved even
when they exchange momentum. Quantum classical correspondence requires that the conserved
classical rest energy of the particle equals to the prediction of p-adic mass calculations. The
massless momenta assignable to MEs would naturally correspond to the massless momenta
propagating along the internal lines of generalized Feynman diagrams assumed in zero energy
ontology. Masslessness of virtual particles makes also possible twistor approach. This supports
the view that MEs are fundamental for the twistor approach in TGD framework.

Scattering amplitudes as representations for braids whose threads can fuse at 3-
vertices

Just a little comment about the content of the article. The main message of the article is that
non-equivalent contributions to a given scattering amplitude in N = 4 SYM represent elements
of the group of permutations of external lines - or to be more precise - decorated permutations
which replace permutation group Sn with n! elements with its decorated version containing 2nn!
elements. Besides 3-vertex the basic dynamical process is permutation having the exchange of

http://matpitka.blogspot.fi/2012/12/how-coupling-constant-evolution-could.html
http://matpitka.blogspot.fi/2012/12/how-coupling-constant-evolution-could.html
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neighboring lines as a generating permutation completely analogous to fundamental braiding.
BFCW bridge has interpretation as a representations for the basic braiding operation.

This supports the TGD inspired proposal (TGD as almost topological QFT) that generalized
Feynman diagrams are in some sense also knot or braid diagrams allowing besides braiding
operation also two 3-vertices [K37]. The first 3-vertex generalizes the standard stringy 3-vertex
but with totally different interpretation having nothing to do with particle decay: rather particle
travels along two paths simultaneously after 1 → 2 decay. Second 3-vertex generalizes the 3-
vertex of ordinary Feynman diagram (three 4-D lines of generalized Feynman diagram identified
as Euclidian space-time regions meet at this vertex). The main idea is that in TGD framework
knotting and braiding emerges at two levels.

(a) At the level of space-time surface string world sheets at which the induced spinor fields
(except right-handed neutrino [K92]) are localized due to the conservation of electric charge
can form 2-knots and can intersect at discrete points in the generic case. The boundaries
of strings world sheets at light-like wormhole throat orbits and at space-like 3-surfaces
defining the ends of the space-time at light-like boundaries of causal diamonds can form
ordinary 1-knots, and get linked and braided. Elementary particles themselves correspond
to closed loops at the ends of space-time surface and can also get knotted (possible effects
are discussed in [K37]).

(b) One can assign to the lines of generalized Feynman diagrams lines in M2 characterizing
given causal diamond. Therefore the 2-D representation of Feynman diagrams has con-
crete physical interpretation in TGD. These lines can intersect and what suggests itself is
a description of non-planar diagrams (having this kind of intersections) in terms of an al-
gebraic knot theory. A natural guess is that it is this knot theoretic operation which allows
to describe also non-planar diagrams by reducing them to planar ones as one does when
one constructs knot invariant by reducing the knot to a trivial one. Scattering amplitudes
would be basically knot invariants.

”Almost topological” has also a meaning usually not assigned with it. Thurston’s geometrization
conjecture stating that geometric invariants of canonical representation of manifold as Riemann
geometry, defined topological invariants, could generalize somehow. For instance, the geometric
invariants of preferred extremals could be seen as topological or more refined invariants (symplec-
tic, conformal in the sense of 4-D generalization of conformal structure). If quantum ergodicity
holds true, the statistical geometric invariants defined by the classical correlation functions of
various induced classical gauge fields for preferred extremals could be regarded as this kind
of invariants for sub-manifolds. What would distinguish TGD from standard topological QFT
would be that the invariants in question would involve length scale and thus have a physical
content in the usual sense of the word!

12.9.2 Could N =2 or N = 4 SUSY have something to do with TGD?

N = 4 SYM has been the theoretical laboratory of Nima and others. N = 4 SYM is definitely
a completely exceptional theory, and one cannot avoid the question whether it could in some
sense be part of fundamental physics. In TGD framework right handed neutrinos have remained
a mystery: whether one should assign space-time SUSY to them or not. Could they give rise to
something resembpling N = 2 or N = 4 SUSY with fermion number conservation?

Earlier results

My latest view is that fully covariantly constant right-handed neutrinos decouple from the dy-
namics completely. I will repeat first the earlier arguments which consider only fully covariantly
constant right-handed neutrinos.

(a) N = 1 SUSY is certainly excluded since it would require Majorana property not possible in
TGD framework since it would require superposition of left and right handed neutrinos and
lead to a breaking of lepton number conservation. Could one imagine SUSY in which both

http://en.wikipedia.org/wiki/Thurston's_geometrization_conjecture
http://en.wikipedia.org/wiki/Thurston's_geometrization_conjecture
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MEs between which particle wormhole contacts reside have N = 2 SUSY which combine
to form an N = 4 SUSY?

(b) Right-handed neutrinos which are covariantly constant right-handed neutrinos in both M4

degrees of freedom cannot define a non-trivial theory as shown already earlier. They have
no electroweak nor gravitational couplings and carry no momentum, only spin.

The fully covariantly constant right-handed neutrinos with two possible helicities at given
ME would define representation of SUSY at the limit of vanishing light-like momentum. At
this limit the creation and annihilation operators creating the states would have vanishing
anticommutator so that the oscillator operators would generate Grassmann algebra. Since
creation and annihilation operators are hermitian conjugates, the states would have zero
norm and the states generated by oscillator operators would be pure gauge and decouple
from physics. This is the core of the earlier argument demonstrating that N = 1 SUSY is
not possible in TGD framework: LHC has given convincing experimental support for this
belief.

Could massless right-handed neutrinos covariantly constant in CP2 degrees of free-
dom define N = 2 or N = 4 SUSY?

Consider next right-handed neutrinos, which are covariantly constant in CP2 degrees of freedom
but have a light-like four-momentum. In this case fermion number is conserved but this is
consistent with N = 2 SUSY at both MEs with fermion number conservation. N = 2 SUSYs
could emerge from N = 4 SUSY when one half of SUSY generators annihilate the states, which
is a basic phenomenon in supersymmetric theories.

(a) At space-time level right-handed neutrinos couple to the space-time geometry - gravitation
- although weak and color interactions are absent. One can say that this coupling forces
them to move with light-like momentum parallel to that of ME. At the level of space-time
surface right-handed neutrinos have a spectrum of excitations of four-dimensional analogs
of conformal spinors at string world sheet (Hamilton-Jacobi structure).

For MEs one indeed obtains massless solutions depending on longitudinal M2 coordinates
only since the induced metric in M2 differs from the light-like metric only by a contribution
which is light-like and contracts to zero with light-like momentum in the same direction.
These solutions are analogs of (say) left movers of string theory. The dependence on E2

degrees of freedom is holomorphic. That left movers are only possible would suggest that
one has only single helicity and conservation of fermion number at given space-time sheet
rather than 2 helicities and non-conserved fermion number: two real Majorana spinors
combine to single complex Weyl spinor.

(b) At imbedding space level one obtains a tensor product of ordinary representations of N =
2 SUSY consisting of Weyl spinors with opposite helicities assigned with the ME. The state
content is same as for a reduced N = 4 SUSY with four N = 1 Majorana spinors replaced
by two complex N = 2 spinors with fermion number conservation. This gives 4 states at
both space-time sheets constructed from νR and its antiparticle. Altogether the two MEs
give 8 states, which is one half of the 16 states of N = 4 SUSY so that a degeneration of
this symmetry forced by non-Majorana property is in question.

Is the dynamics of N = 2 or N = 4 SYM possible in right-handed neutrino sector?

Could N = 2 or N = 4 SYM be a part of quantum TGD? Could TGD be seen a fusion of a
degenerate N = 4 SYM describing the right-handed neutrino sector and string theory like theory
describing the contribution of string world sheets carrying other leptonic and quark spinors? Or
could one imagine even something simpler?

What is interesting that the net momenta assigned to the right handed neutrinos associated
with a pair of MEs would correspond to the momenta assignable to the particles and obtained
by p-adic mass calculations. It would seem that right-handed neutrinos provide a representation
of the momenta of the elementary particles represented by wormhole contact structures. Does
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this mimircry generalize to a full duality so that all quantum numbers and even microscopic
dynamics of defined by generalized Feynman diagrams (Euclidian space-time regions) would be
represented by right-handed neutrinos and MEs? Could a generalization of N = 4 SYM with
non-trivial gauge group with proper choices of the ground states helicities allow to represent the
entire microscopic dynamics?

Irrespective of the answer to this question one can compare the TGD based view about super-
symmetric dynamics with what I have understood about N = 4 SYM.

(a) In the scattering of MEs induced by the dynamics of Kähler action the right-handed neu-
trinos play a passive role. Modified Dirac equation forces them to adopt the same direction
of four-momentum as the MEs so that the scattering reduces to the geometric scattering
for MEs as one indeed expects on basic of quantum classical correspondence. In νR sector
the basic scattering vertex involves four MEs and could be a re-sharing of the right-handed
neutrino content of the incoming two MEs between outgoing two MEs respecting fermion
number conservation. Therefore N = 4 SYM with fermion number conservation would
represent the scattering of MEs at quantum level.

(b) N = 4 SUSY would suggest that also in the degenerate case one obtains the full scattering
amplitude as a sum of permutations of external particles followed by projections to the
directions of light-like momenta and that BCFW bridge represents the analog of funda-
mental braiding operation. The decoration of permutations means that each external line
is effectively doubled. Could the scattering of MEs can be interpreted in terms of these
decorated permutations? Could the doubling of permutations by decoration relate to the
occurrence of pairs of MEs?

One can also revert these questions. Could one construct massive states in N = 4 SYM
using pairs of momenta associated with particle with integer label k and its decorated copy
with label k + n? Massive external particles obtained in this manner as bound states of
massless ones could solve the IR divergence problem of N = 4 SYM.

(c) The description of amplitudes in terms of leading singularities means picking up of the
singular contribution by putting the fermionic propagators on mass shell. In the recent
case it would give the inverse of massless Dirac propagator acting on the spinor at the end
of the internal line annihilating it if it is a solution of Dirac equation.

The only way out is a kind of cohomology theory in which solutions of Dirac equation
represent exact forms. Dirac operator defines the exterior derivative d and virtual lines
correspond to non-physical helicities with dΨ 6= 0. Virtual fermions would be on mass-shell
fermions with non-physical polarization satisfying d2Ψ = 0. External particles would be
those with physical polarization satisfying dΨ = 0, and one can say that the Feynman
diagrams containing physical helicities split into products of Feynman diagrams containing
only non-physical helicities in internal lines.

(d) The fermionic states at wormhole contacts should define the ground states of SUSY repre-
sentation with helicity +1/2 and -1/2 rather than spin 1 or -1 as in standard realization of
N = 4 SYM used in the article. This would modify the theory but the twistorial and Grass-
mannian description would remain more or less as such since it depends on light-likeneness
and momentum conservation only.

3-vertices for sparticles are replaced with 4-vertices for MEs

In N = 4 SYM the basic vertex is on mass-shell 3-vertex which requires that for real light-like
momenta all 3 states are parallel. One must allow complex momenta in order to satisfy energy
conservation and light-likeness conditions. This is strange from the point of view of physics
although number theoretically oriented person might argue that the extensions of rationals
involving also imaginary unit are rather natural.

The complex momenta can be expressed in terms of two light-like momenta in 3-vertex with one
real momentum. For instance, the three light-like momenta can be taken to be p, k, and p− ka
with k = apR. Here p (incoming momentum) and pR are real light-like momenta satisfying
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p · pR = 0 but with opposite sign of energy, and a is complex number. What is remarkable that
also the negative sign of energy is necessary also now.

Should one allow complex light-like momenta in TGD framework? One can imagine two options.

(a) Option I: no complex momenta. In zero energy ontology the situation is different due to the
presence of a pair of MEs meaning replaced of 3-vertices with 4-vertices or 6-vertices, the
allowance of negative energies in internal lines, and the fact that scattering is of sparticles is
induced by that of MEs. In the simplest vertex a massive external particle with non-parallel
MEs carrying non-parallel light-like momenta can decay to a pair of MEs with light-like
momenta. This can be interpreted as 4-ME-vertex rather than 3-vertex (say) BFF so that
complex momenta are not needed. For an incoming boson identified as wormhole contact
the vertex can be seen as BFF vertex.

To obtain space-like momentum exchanges one must allow negative sign of energy and
one has strong conditions coming from momentum conservation and light-likeness which
allow non-trivial solutions (real momenta in the vertex are not parallel) since basically the
vertices are 4-vertices. This reduces dramatically the number of graphs. Note that one
can also consider vertices in which three pairs of MEs join along their ends so that 6 MEs
(analog of 3-boson vertex) would be involved.

(b) Option II: complex momenta are allowed. Proceeding just formally, the
√
g4 factor in

Kähler action density is imaginary in Minkowskian and real in Euclidian regions. It is now
clear that the formal approach is correct: Euclidian regions give rise to Kähler function and
Minkowskian regions to the analog of Morse function. TGD as almost topological QFT
inspires the conjecture about the reduction of Kähler action to boundary terms proportional
to Chern-Simons term. This is guaranteed if the condition jµKAµ = 0 holds true: for the
known extremals this is the case since Kähler current jK is light-like or vanishing for
them. This would seem that Minkowskian and Euclidian regions provide dual descriptions
of physics. If so, it would not be surprising if the real and complex parts of the four-
momentum were parallel and in constant proportion to each other.

This argument suggests that also the conserved quantities implied by the Noether theorem
have the same structure so that charges would receive an imaginary contribution from
Minkowskian regions and a real contribution from Euclidian regions (or vice versa). Four-
momentum would be complex number of form P = PM + iPE . Generalized light-likeness
condition would give P 2

M = P 2
E and PM · PE = 0. Complexified momentum would have 6

free components. A stronger condition would be P 2
M = 0 = P 2

E so that one would have two
light-like momenta ”orthogonal” to each other. For both relative signs energy PM and PE
would be actually parallel: parametrization would be in terms of light-like momentum and
scaling factor. This would suggest that complex momenta do not bring in anything new
and Option II reduces effectively to Option I. If one wants a complete analogy with the
usual twistor approach then P 2

M = P 2
E 6= 0 must be allowed.

Is SUSY breaking possible or needed?

It is difficult to imagine the breaking of the proposed kind of SUSY in TGD framework, and
the first guess is that all these 4 super-partners of particle have identical masses. p-Adic
thermodynamics does not distinguish between these states and the only possibility is that
the p-adic primes differ for the spartners. But is the breaking of SUSY really necessary?
Can one really distinguish between the 8 different states of a given elementary particle
using the recent day experimental methods?

i. In electroweak and color interactions the spartners behave in an identical manner
classically. The coupling of right-handed neutrinos to space-time geometry however
forces the right-handed neutrinos to adopt the same direction of four-momentum as
MEs has. Could some gravitational effect allow to distinguish between spartners? This
would be trivially the case if the p-adic mass scales of spartners would be different.
Why this should be the case remains however an open question.

ii. In the case of unbroken SUSY only spin distinguishes between spartners. Spin deter-
mines statistics and the first naive guess would be that bosonic spartners obey totally
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different atomic physics allowing condensation of selectrons to the ground state. Very
probably this is not true: the right-handed neutrinos are delocalized to 4-D MEs and
other fermions correspond to wormhole contact structures and 2-D string world sheets.
The coupling of the spin to the space-time geometry seems to provide the only possible
manner to distinguish between spartners. Could one imagine a gravimagnetic effect
with energy splitting proportional to the product of gravimagnetic moment and exter-
nal gravimagnetic field B? If gravimagnetic moment is proportional to spin projection
in the direction of B, a non-trivial effect would be possible. Needless to say this kind
of effect is extremely small so that the unbroken SUSY might remain undetected.

iii. If the spin of sparticle be seen in the classical angular momentum of ME as quantum
classical correspondence would suggest then the value of the angular momentum might
allow to distinguish between spartners. Also now the effect is extremely small.

What can one say about scattering amplitudes?

One expect that scattering amplitudes factorize with the only correlation between right-
handed neutrino scattering and ordinary particle scattering coming from the condition that
the four-momentum of the right-handed neutrino is parallel to that of massless extremal
of more general preferred extremal having interpretation as a geometric counterpart of
radiation quantum. This momentum is in turn equal to the massless four-momentum
associated with the space-time sheet in question such that the sum of classical four-momenta
associated with the space-time sheets equals to that for all wormhole throats involved. The
right-handed neutrino amplitude itself would be simply constant. This certainly satisfies
the SUSY constraint and it is actually difficult to find other candidates for the amplitude.
The dynamics of right-handed neutrinos would be therefore that of spectator following the
leader.

12.9.3 Right-handed neutrino as inert neutrino?

There is a very interesting posting by Jester in Resonaances with title How many neutrinos
in the sky? [C3]. Jester tells about the recent 9 years WMAP data [C12] and compares it
with earlier 7 years data. In the earlier data the effective number of neutrino types was
Neff = 4.34±0.87 and in the recent data it is Neff = 3.26±0.35. WMAP alone would give
Neff = 3.89± 0.67 also in the recent data but also other data are used to pose constraings
on Neff .

To be precise, Neff could include instead of fourth neutrino species also some other weakly
interacting particle. The only criterion for contributing to Neff is that the particle is in
thermal equilibrium with other massless particles and thus contributes to the density of
matter considerably during the radiation dominated epoch.

Jester also refers to the constraints on Neff from nucleosynthesis, which show that Neff ∼ 4
us slightly favored although the entire range [3, 5] is consistent with data.

It seems that the effective number of neutrinos could be 4 instead of 3 although latest
WMAP data combined with some other measurements favor 3. Later a corrected version
of the eprint appeared [C12] telling that the original estimate of Neff contained a mistake
and the correct estimate is Neff = 3.84± 0.40.

An interesting question is what Neff = 4 could mean in TGD framework?

i. One poses to the modes of the modified Dirac equation the following condition: electric
charge is conserved in the sense that the time evolution by modified Dirac equation does
not mix a mode with a well-defined em charge with those with different em charge. The
implication is that all modes except pure right handed neutrino are restricted at string
world sheets. The first guess is that string world sheets are minimal surfaces of space-
time surface (rather than those of imbedding space). One can also consider minimal
surfaces of imbedding space but with effective metric defined by the anti-commutators
of the modified gamma matrices. This would give a direct physical meaning for this
somewhat mysterious effective metric.

http://resonaances.blogspot.fi/2013/01/how-many-neutrinos-in-sky.html
http://resonaances.blogspot.fi/2013/01/how-many-neutrinos-in-sky.html
http://3.bp.blogspot.com/-levjUYMaqQE/UPl798LhJ8I/AAAAAAAAA-8/6GChqA3jp5Y/s1600/Neff_nucleosynthesis.png
http://arxiv.org/abs/1212.5226v2
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For the neutrino modes localized at string world sheets mixing of left and right handed
modes takes place and they become massive. If only 3 lowest genera for partonic 2-
surfaces are light, one has 3 neutrinos of this kind. The same applies to all other fermion
species. The argument for why this could be the case relies on simple observation [K18]:
the genera g=0,1,2 have the property that they allow for all values of conformal moduli
Z2 as a conformal symmetry (hyper-ellipticity). For g > 2 this is not the case. The
guess is that this additional conformal symmetry is the reason for lightness of the three
lowest genera.

ii. Only purely right-handed neutrino is completely delocalized in 4-volume so that one
cannot assign to it genus of the partonic 2-surfaces as a topological quantum number
and it effectively gives rise to a fourth neutrino very much analogous to what is called
sterile neutrino. Delocalized right-handed neutrinos couple only to gravitation and in
case of massless extremals this forces them to have four-momentum parallel to that of
ME: only massless modes are possible. Very probably this holds true for all preferred
extremals to which one can assign massless longitudinal momentum direction which
can vary with spatial position.

iii. The coupling of νR is to gravitation alone and all electroweak and color couplings are
absent. According to standard wisdom delocalized right-handed neutrinos cannot be
in thermal equilibrium with other particles. This according to standard wisdom. But
what about TGD?
One should be very careful here: delocalized right-handed neutrinos is proposed to give
rise to SUSY (not N = 1 requiring Majorana fermions) and their dynamics is that of
passive spectator who follows the leader. The simplest guess is that the dynamics of
right handed neutrinos at the level of amplitudes is completely trivial and thus trivially
supersymmetric. There are however correlations between four-momenta.

A. The four-momentum of νR is parallel to the light-like momentum direction assignable
to the massless extremal (or more general preferred extremal). This direct cou-
pling to the geometry is a special feature of the modified Dirac operator and thus
of sub-manifold gravity.

B. On the other hand, the sum of massless four-momenta of two parallel pieces of
preferred extremals is the - in general massive - four-momentum of the elementary
particle defined by the wormhole contact structure connecting the space-time sheets
(which are glued along their boundaries together since this is seems to be the only
manner to get rid of boundary conditions requiring vacuum extremal property
near the boundary). Could this direct coupling of the fouyr-momentum direction of
right-handed neutrino to geometry and four-momentum directions of other fermions
be enough for the right handed neutrinos to be counted as a fourth neutrino species
in thermal equilibrium? This might be the case!

One cannot of course exclude the coupling of 2-D neutrino at string world sheets to
4-D purely right handed neutrinos analogous to the coupling inducing a mixing of
sterile neutrino with ordinary neutrinos. Also this could help to achieve the thermal
equilibrium with 2-D neutrino species.





Chapter 13

Generalized Feynman Graphs
as Generalized Braids

13.1 Introduction

Ulla send me a link to an article by Sam Nelson about very interesting new-to-me notion
known as algebraic knots [A118, A73], which has initiated a revolution in knot theory. This
notion was introduced 1996 by Louis Kauffmann [A111] so that it is already 15 year old
concept. While reading the article I realized that this notion fits perfectly the needs of
TGD and leads to a progress in attempts to articulate more precisely what generalized
Feynman diagrams are. It should be added that the knots and braids are not anything new
in TGD framework and I have considered knot theory from TGD point of view already
earlier [K37].

The basic challenge of quantum TGD is to give a precise content to the notion of gen-
eralization Feynman diagram and the reduction to braids of some kind is very attractive
possibility inspired by zero energy ontology. The point is that no n > 2-vertices at the
level of braid strands are needed if bosonic emergence holds true. In the following I will
summarize briefly the vision about generalized Feynman diagrams, introduce the notion of
algebraic knot, and after than discuss in more detail how the notion of algebraic knot could
be applied to generalized Feynman diagrams.

i. The algebraic structrures kei, quandle, rack, and biquandle and their algebraic modi-
fications as such are not enough. The lines of Feynman graphs are replaced by braids
and in vertices braid strands redistribute. This poses several challenges: the cross-
ing associated with braiding and crossing occurring in non-planar Feynman diagrams
should be integrated to a more general notion; braids are replaced with sub-manifold
braids; braids of braids ....of braids are possible; the redistribution of braid strands in
vertices should be algebraized. In the following I try to abstract the basic operations
which should be algebraized in the case of generalized Feynman diagrams.

ii. One should be also able to concretely identify braids and 2-braids (string world sheets)
as well as partonic 2-surfaces and I have discussed several identifications during last
years. Legendrian braids turn out to be very natural candidates for braids and their
duals for the partonic 2-surfaces. String world sheets in turn could correspond to
the analogs of Lagrangian sub-manifolds or to minimal surfaces of space-time surface
satisfying the weak form of electric-magnetic duality. The latter option turns out to
be more plausible. Finite measurement resolution would be realized as symplectic
invariance with respect to the subgroup of the symplectic group leaving the end points
of braid strands invariant. In accordance with the general vision TGD as almost
topological QFT would mean symplectic QFT. The identification of braids, partonic
2-surfaces and string world sheets - if correct - would solve quantum TGD explicitly
at string world sheet level in other words in finite measurement resolution.

iii. Irrespective of whether the algebraic knots are needed, the natural question is what
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generalized Feynman diagrams are. It seems that the basic building bricks can be iden-
tified so that one can write rather explicit Feynman rules already now. Of course, the
rules are still far from something to be burned into the spine of the first year graduate
student. A brief summary of generalized Feynman rules in zero energy ontology is
proposed. This requires the identification of vertices, propagators, and prescription for
integrating over al 3-surfaces. It turns out that the basic building blocks of generalized
Feynman diagrams are well-defined.

iv. The notion of generalized Feynman diagram leads to a beautiful duality between the
descriptions of hadronic reactions in terms of hadrons and partons analogous to gauge-
gravity duality and AdS/CFT duality but requiring no additional assumptions. The
model of quark gluon plasma as s strongly interacting phase is proposed. Color mag-
netic flux tubes are responsible for the long range correlations making the plasma phase
more like a very large hadron rather than a gas of partons. One also ends up with a
simple estimate for the viscosity/entropy ratio using black-hole analogy.

13.2 Algebraic braids, sub-manifold braid theory, and
generalized Feynman diagrams

Ulla send me a link to an article by Sam Nelson about very interesting new-to-me notion
known as algebraic knots [A118, A73], which has initiated a revolution in knot theory. This
notion was introduced 1996 by Louis Kauffmann [A111] so that it is already 15 year old
concept. While reading the article I realized that this notion fits perfectly the needs of
TGD and leads to a progress in attempts to articulate more precisely what generalized
Feynman diagrams are.

In the following I will summarize briefly the vision about generalized Feynman diagrams,
introduce the notion of algebraic knot, and after than discuss in more detail how the
notion of algebraic knot could be applied to generalized Feynman diagrams. The algebraic
structrures kei, quandle, rack, and biquandle and their algebraic modifications as such are
not enough. The lines of Feynman graphs are replaced by braids and in vertices braid
strands redistribute. This poses several challenges: the crossing associated with braiding
and crossing occurring in non-planar Feynman diagrams should be integrated to a more
general notion; braids are replaced with sub-manifold braids; braids of braids ....of braids
are possible; the redistribution of braid strands in vertices should be algebraized. In the
following I try to abstract the basic operations which should be algebraized in the case of
generalized Feynman diagrams.

One should be also able to concretely identify braids and 2-braids (string world sheets) as
well as partonic 2-surfaces and I have discussed several identifications during last years.
Legendrian braids turn out to be very natural candidates for braids and their duals for
the partonic 2-surfaces. String world sheets in turn could correspond to the analogs of
Lagrangian sub-manifolds or to minimal surfaces of space-time surface satisfying the weak
form of electric-magnetic duality. The latter option turns out to be more plausible. Finite
measurement resolution would be realized as symplectic invariance with respect to the
subgroup of the symplectic group leaving the end points of braid strands invariant. In
accordance with the general vision TGD as almost topological QFT would mean symplectic
QFT. The identification of braids, partonic 2-surfaces and string world sheets - if correct
- would solve quantum TGD explicitly at string world sheet level in other words in finite
measurement resolution.

Irrespective of whether the algebraic knots are needed, the natural question is what gener-
alized Feynman diagrams are. It seems that the basic building bricks can be identified so
that one can write rather explicit Feynman rules already now. Of course, the rules are still
far from something to be burned into the spine of the first year graduate student.

http://www.ams.org/notices/201111/rtx111101553p.pdf
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13.2.1 Generalized Feynman diagrams, Feynman diagrams, and
braid diagrams

How knots and braids a la TGD differ from standard knots and braids?

TGD approach to knots and braids differs from the knot and braid theories in given ab-
stract 3-manifold (4-manifold in case of 2-knots and 2-braids) is that space-time is in TGD
framework identified as 4-D surface in M4 × CP2 and preferred 3-surfaces correspond to
light-like 3-surfaces defined by wormhole throats and space-like 3-surfaces defined by the
ends of space-time sheets at the two light-like boundaries of causal diamond CD.

The notion of finite measurement resolution effectively replaces 3-surfaces of both kinds
with braids and space-time surface with string world sheets having braids strands as their
ends. The 4-dimensionality of space-time implies that string world sheets can be knotted
and intersect at discrete points (counterpart of linking for ordinary knots). Also space-time
surface can have self-intersections consisting of discrete points.

The ordinary knot theory in E3 involves projection to a preferred 2-plane E2 and one assigns
to the crossing points of the projection an index distinguishing between two cases which are
transformed to each other by violently taking the first piece of strand through another piece
of strand. In TGD one must identify some physically preferred 2-dimensional manifold in
imbedding space to which the braid strands are projected. There are many possibilities
even when one requires maximal symmetries. An obvious requirement is however that this
2-manifold is large enough.

i. For the braids at the ends of space-time surface the 2-manifold could be large enough
sphere S2 of light-cone boundary in coordinates in which the line connecting the tips of
CD defines a preferred time direction and therefore unique light-like radial coordinate.
In very small knots it could be also the geodesic sphere of CP2 (apart from the action
of isometries there are two geodesic spheres in CP2).

ii. For light-like braids the preferred plane would be naturally M2 for which time direc-
tion corresponds to the line connecting the tips of CD and spatial direction to the
quantization axis of spin. Note that these axes are fixed uniquely and the choices of
M2 are labelled by the points of projective sphere P 2 telling the direction of space-like
axis. Preferred plane M2 emerges naturally also from number theoretic vision and
corresponds in octonionic pictures to hyper-complex plane of hyper-octonions. It is
also forced by the condition that the choice of quantization axes has a geometric cor-
relate both at the level of imbedding space geometry and the geometry of the ”world
of classical worlds”.

The braid theory in TGD framework could be called sub-manifold braid theory and cer-
tainly differs from the standard one.

i. If the first homology group of the 3-surface is non-trivial as it when the light-like
3-surfaces represents an orbit of partonic 2-surface with genus larger than zero, the
winding of the braid strand (wrapping of branes in M-theory) meaning that it represents
a homologically non-trivial curve brings in new effects not described by the ordinary
knot theory. A typical new situation is the one in which 3-surface is locally a product
of higher genus 2-surface and line segment so that knot strand can wind around the
2-surface. This gives rise to what are called non-planar braid diagrams for which the
projection to plane produces non-standard crossings.

ii. In the case of 2-knots similar exotic effects could be due to the non-trivial 2-homology
of space-time surface. Wormhole throats assigned with elementary particle wormhole
throats are homologically non-trivial 2-surfaces and might make this kind of effects
possible for 2-knots if they are possible.

The challenge is to fnd a generalization of the usual knot and braid theories so that they
apply in the case of braids (2-braids) imbedded in 3-D (4-D) surfaces with preferred highly
symmetry sub-manifold of M4 × CP2 defining the analog of plane to which the knots are
projected. A proper description of exotic crossings due to non-trivial homology of 3-surface
(4-surface) is needed.



804 Chapter 13. Generalized Feynman Graphs as Generalized Braids

Basic questions

The questions are following.

i. How the mathematical framework of standard knot theory should be modified in order
to cope with the situation encountered in TGD? To my surprise I found that this
kind of mathematical framework exists: so called algebraic knots [A118, A73] define a
generalization of knot theory very probably able to cope with this kind of situation.

ii. Second question is whether the generalized Feynman diagrams could be regarded as
braid diagrams in generalized sense. Generalized Feynman diagrams are generalizations
of ordinary Feynman diagrams. The lines of generalized Feynman diagrams correspond
to the orbits of wormhole throats and of wormhole contacts with throats carrying
elementary particle quantum numbers.
The lines meet at vertices which are partonic 2-surfaces. Single wormhole throat can
describe fermion whereas bosons have wormhole contacts with fermion and antifermion
at the opposite throats as building bricks. It seems however that all fermions carry
Kähler magnetic charge so that physical particles are string like objects with magnetic
charges at their ends.
The short range of weak interactions results from the screening of the axial isospin
by neutrinos at the other end of string like object and also color confinement could
be understood in this manner. One cannot exclude the possibility that the length of
magnetic flux tube is of order Compton length.

iii. Vertices of the generalized Feynman diagrams correspond to the partonic 2-surfaces
along which light-like 3-surfaces meet and this is certainly a challenge for the required
generalization of braid theory. The basic objection against the reduction to algebraic
braid diagrams is that reaction vertices for particles cannot be described by ordinary
braid theory: the splitting of braid strands is needed.
The notion of bosonic emergence [K58] however suggests that 3-vertex and possible
higher vertices correspond to the splitting of braids rather than braid strands. By
allowing braids which come from both past and future and identifying free fermions as
wormhole throats and bosons as wormhole contacts consisting of a pair of wormhole
throats carrying fermion and antifermion number, one can understand boson excanges
as recombinations without anyneed to have splitting of braid strands. Strictly and
technically speaking, one would have tangles like objects instead of braids. This would
be an enormous simplification since n > 2-vertices which are the source of divergences
in QFT:s would be absent.

iv. Non-planar Feynman diagrams are the curse of the twistor approach and I have already
earlier proposed that the generalized Feynman amplitudes and perhaps even twistorial
amplitudes could be constructed as analogs of knot invariants by recursively trans-
forming non-planar Feynman diagrams to planar ones for which one can write twistor
amplitudes. This forces to answer two questions.

A. Does the non-nonplanarity of Feynman diagrams - completely combinatorial ob-
jects identified as diagrams in plane - have anything to do with the non-planarity
of algebraic knot diagrams and with the non-planarity of generalized Feynman
diagrams which are purely geometric objects?

B. Could these two kind of non-planarities be fused to together by identifying the
projection 2-plane as preferred M2 ⊂ M4. This would mean that non-planarity
in QFT sense is defined for entire braids: braid A can have virtual crossing with
B. Non-planarity in the sense of knot theory would be defined for braid strands
inside the braids. At vertices braid strands are redistributed between incoming
lines and the analog of virtual crossing be identifiable as an exchange of braid
strand between braids. Several kinds of non-planarities would be present and the
idea about gradual unknotting of a non-planar diagram so that a planar diagram
results as the final outcome might make sense and allow to generalize the recursion
recipe for the twistorial amplitudes.

C. One might consider the possibility that inside orbits of wormhole throats defin-
ing the lines of Feynman diagrams the R-matrix for integrable QFT in M2 (only

http://tgd.wippiespace.com/public_html/tgdquant/tgdquant.html#emergence
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permutations of momenta are allowed) describes the dynamics so that one obtains
just a permutation of momenta assigned to the braid strands. Ordinary braiding
would be described by existing braid theories. The core problem would be the
representation of the exchange of a strand between braids algebraically.

13.2.2 Brief summary of algebraic knot theory

Basic ideas of algebraic knot theory

In ordinary knot theory one takes as a starting point the representation of knots of E3 by
their plane plane projections to which one attach a ”color” to each crossing telling whether
the strand goes over or under the strand it crosses in planar projection. These numbers
are fixed uniquely as one traverses through the entire knot in given direction.

The so called Reidermeister moves are the fundamental modifications of knot leaving its
isotopy equivalence class unchanged and correspond to continuous deformations of the knot.
Any algebraic invariant assignable to the knot must remain unaffected under these moves.
Reidermeister moves as such look completely trivial and the non-trivial point is that they
represent the minimum number of independent moves which are represented algebraically.

In algebraic knot theory topological knots are replaced by typographical knots resulting as
planar projections. This mapping of topology to algebra and this is always fascinating. It
turns out that the existing knot invariants generalize and ordinary knot theory can be seen
as a special case of the algebraic knot theory. In a loose sense one can say that the algebraic
knots are to the classical knot theory what algebraic numbers are to rational numbers.

Virtual crossing is the key notion of the algebraic knot theory. Virtual crossing and their
rules of interaction were introduced 1996 by Louis Kauffman as basic notions [A6]. For
instance, a strand with only virtual crossings should be replaceable by any strand with the
same number of virtual crossings and same end points. Reidermeister moves generalize to
virtual moves. One can say that in this case crossing is self-intersection rather than going
under or above. I cannot be eliminated by a small deformation of the knot. There are
actually several kinds of non-standard crossings: examples listed in figure 7 of [A118]) are
virtual, flat, singular, and twist bar crossings.

Algebraic knots have a concrete geometric interpretation.

i. Virtual knots are obtained if one replaces E3 as imbedding space with a space which has
non-trivial first homology group. This implies that knot can represent a homologically
non-trivial curve giving an additional flavor to the unknottedness since homologically
non-trivial curve cannot be transformed to a curve which is homologically non-trivial
by any continuous deformation.

ii. The violent projection to plane leads to the emergence of virtual crossings. The product
(S1 ×S1)×D, where (S1 ×S1) is torus D is finite line segment, provides the simplest
example. Torus can be identified as a rectangle with opposite sides identified and
homologically non-trivial knots correspond to curves winding n1 times around the
first S1 and n2 times around the second S1. These curves are not continuous in the
representation where S1 × S1 is rectangle in plane.

iii. A simple geometric visualization of virtual crossing is obtained by adding to the plane a
handle along which the second strand traverses and in this manner avoids intersection.
This visualization allows to understand the geometric motivation for the the virtual
moves.

This geometric interpretation is natural in TGD framework where the plane to which the
projection occurs corresponds to M2 ⊂M4 or is replaced with the sphere at the boundary
of S2 and 3-surfaces can have arbitrary topology and partonic 2-surfaces defining as their
orbits light-like 3-surfaces can have arbitrary genus.

In TGD framework the situation is however more general than represented by sub-manifold
braid theory. Single braid represents the line of generalized Feynman diagram. Vertices
represent something new: in the vertex the lines meet and the braid strands are redis-
tributed but do not disappear or pop up from anywhere. That the braid strands can come
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both from the future and past is also an important generalization. There are physical arg-
ments suggesting that there are only 3-vertices for braids but not higher ones [K18]. The
challenge is to represent algebraically the vertices of generalized Feynman diagrams.

Algebraic knots

The basic idea in the algebraization of knots is rather simple. If x and y are the crossing
portions of knot, the basic algebraic operation is binary operation giving ”the result of x
going under y”, call it x.y telling what happens to x. ”Portion of knot” means the piece of
knot between two crossings and x . y denotes the portion of knot next to x. The definition
is asymmetrical in x and y and the dual of the operation would be y / x would be ”the
result of y going above x”. One can of course ask, why not to define the outcome of the
operation as a pair (x / y, y . x). This operation would be bi-local in a well-defined sense.
One can of course do this: in this case one has binary operation from X × X → X × X
mapping pairs of portions to pairs of portions. In the first case one has binary operation
X ×X → X.

The idea is to abstract this basic idea and replace X with a set endowed with operation . or
/ or both and formukate the Reidermeister conditions given as conditions satisfied by the
algebra. One ends up to four basic algebraic structures kei, quandle, rack, and biquandle.

i. In the case of non-oriented knots the kei is the algebraic structure. Kei - or invontary
quandle-is a set X with a map X ×X → X satisfying the conditions

A. x . x = x (idenpotency, one of the Reidemeister moves)

B. (x . y) . y =x (operation is its own right inverse having also interpretation as
Reidemeister move)

C. (x . y) . z = (x . z) . (y . z) (self-distributivity)

Z([t])/(t2) module with x . y = tx+ (1− t)y is a kei.

ii. For orientable knot diagram there is preferred direction of travel along knot and one
can distinguish between . and its right inverse .−1. This gives quandle satisfying the
axios

A. x . x = x

B. (x . y) .−1 y = (x .−1 y) . y = x

C. (x . y) . z = (x . z) . (y . z)

Z[t±1] nodule with x . y = tx+ (1− t)y is a quandle.

iii. One can also introduce framed knots: intuitively one attaches to a knot very near to
it. More precise formulation in terms of a section of normal bundle of the knot. This
makes possible to speak about self-linking. Reidermeister moves must be modified
appropriately. In this case rack is the appropriate structure. It satisfied the axioms of
quandle except the first axiom since corresponding operation is not a move anymore.
Rack axioms are eqivalent with the requirement that functions fy : X → X defined
by fy(x)x . y) are automorphisms of the structure. Therefore the elements of rack
represent its morphisms. The modules over Z[t±1, s]/s(t + s − 1) are racks. Coxeter
racks are inner product spaces with x . y obtained by reflecting x across y.

iv. Biquandle consists of arcs connecting the subsequent crossings (both under- and over-)
of oriented knot diagram. Biquandle operation is a map B : X ×X → X ×X of order
pairs satisfying certain invertibility conditions together with set theoretic Yang-Baxter
equation:

(B × I)(I ×B)(B × I) = (I ×B)(B × I)(I ×B) .

Here I : X → X is the identity map. The three conditions to which Yang-Baxter
equation decomposes gives the counterparts of the above discussed axioms. Alexander
biquandle is the module Z(t±1, s±1 with B(x, y) = (ty + (1− ts)x, sx) where one has
s 6= 1. If one includes virtual, flat and singular crossings one obtains virtual/singular
aundles and semiquandles.
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13.2.3 Generalized Feynman diagrams as generalized braid dia-
grams?

Zero energy ontology suggests the interpretation of the generalized Feynman diagrams as
generalized braid diagrams so that there would be no need for vertices at the fundamental
braid strand level. The notion of algebraic braid (or tangle) might allow to formulate this
idea more precisely.

Could one fuse the notions of braid diagram and Feynman diagram?

The challenge is to fuse the notions of braid diagram and Feynman diagram having quite
different origin.

i. All generalized Feynman diagrams are reduced to sub-manifold braid diagrams at mi-
croscopic level by bosonic emergence (bosons as pairs of fermionic wormhole throats).
Three-vertices appear only for entire braids and are purely topological whereas braid
strands carrying quantum numbers are just re-distributed in vertices. No 3-vertices at
the really microscopic level! This is an additional nail to the coffin of divergences in
TGD Universe.

ii. By projecting the braid strands of generalized Feynman diagrams to preferred plane
M2 ⊂ M4 (or rather 2-D causal diamond), one could achieve a unified description
of non-planar Feynman diagrams and braid diagrams. For Feynman diagrams the
intersections have a purely combinatorial origin coming from representations as 2-D
diagrams.
For braid diagrams the intersections have different origin and non-planarity has differ-
ent meaning. The crossings of entire braids analogous to those appearing in non-planar
Feynman diagrams should define one particular exotic crossing besides virtual crossings
of braid strands due to non-trivial first homology of 3-surfaces.

iii. The necessity to choose preferred plane M2 looks strange from QFT point of view. In
TGD framework it is forced by the number theoretic vision in which M2 represents
hyper-complex plane of sub-space of hyper-octonions which is subspace of complexified
octonions. The choice of M2 is also forced by the condition that the choice of quan-
tization axes has a geometric correlate both at the level of imbedding space geometry
and the geometry of the ”world of classical worlds”.

iv. Also 2-braid diagrams defined as projections of string world sheets are suggestive and
would be defined by a projections to the 3-D boundary of CD or to M3 ⊂ M4.
They would provide a more concrete stringy illustration about generalized Feynman
diagram as analog of string diagram. Another attractive illustration is in terms of
dance metaphor with the boundary of CD defining the 3-D space-like parquette. The
duality between space-like and light-like braids is expected to be of importance.

The obvious conjecture is that Feynman amplitudes are a analogous to knot invariants
constructible by gradually reducing non-planar Feynman diagrams to planar ones after
which the already existing twistor theoretical machinery ofN = 4 SYMs would apply [K85].

Does 2-D integrable QFT dictate the scattering inside the lines of generalized
Feynman diagrams

The preferred plane M2 (more precisely, 2-D causal diamond having also interpretation
as Penrose diagram) plays a key role as also the preferred sphere S2 at the boundary of
CD. It is perhaps not accident that a generalization of braiding was discovered in integrable
quantum field theories in M2. The S-matrix of this theory is rather trivial looking: particle
moving with different velocities cross each other and suffer a phase lag and permutation
of 2-momenta which has physical effects only in the case of non-identical particles. The
R-matrix describing this process reduces to the R-matrix describing the basic braiding
operation in braid theories at the static limit.

I have already earlier conjectured that this kind of integrable QFT is part of quantum
TGD [K20]. The natural guess is that it describes what happens for the projections of

http://tgd.wippiespace.com/public_html/tgdquant/tgdquant.html#quthe
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4-momenta in M2 in scattering process inside lines of generalized Feynman diagrams. If
integrable theories in M2 control this scattering, it would cause only phase changes and
permutation of the M2 projections of the 4-momenta. The most plausible guess is that
M2 QFT characterized by R-matrix describes what happens to the braid momenta during
the free propagation and the remaining challenge would be to understand what happens
in the vertices defined by 2-D partonic surfaces at which re-distribution of braid strands
takes place.

How quantum TGD as almost topological QFT differs from topological QFT
for braids and 3-manifolds

One must distinguish between two topological QFTs. These correspond to topological
QFT defining braid invariants and invariants of 3-manifolds respectively. The reason is
that knots are an essential element in the procedure yielding 3-manifolds. Both 3-manifold
invariants and knot invariants would be defined as Wilson loops involving path integral over
gauge connections for a given 3-manifold with exponent o non-Abelkian f Chern-Simons
action defining the weight.

i. In TGD framework the topological QFT producing braid invariants for a given 3-
manifold is replaced with sub-manifold braid theory. Kähler action reduces Chern-
Simons terms for preferred extremals and only these contribute to the functional inte-
gral. What is the counterpart of topological invariance in this framework? Are general
isotopies allowed or should one allow only sub-group of symplectic group of CD bound-
ary leaving the end points of braids invariant? For this option Reidermeister moves are
undetectable in the finite measurement resolution defined by the subgroup of the sym-
plectic group. Symplectic transformations would not affect 3-surfaces as the analogs
of abstract contact manifold since induced Kähler form would not be affected and only
the imbedding would be changed.
In the approach based on inclusions of HFFs gauge invariance or its generalizations
would represent finite measurement resolution (the action of included algebra would
generate states not distiguishable from the original one).

ii. There is also ordinary topological QFT allowing to construct topological invariants for
3-manifold. In TGD framework the analog of topological QFT is defined by Chern-
Simons-Kähler action in the space of preferred 3-surfaces. Now one sums over small
deformations of 3-surface instead of gauge potentials. If extremals of Chern-Simons-
Kähler action are in question, symplectic invariance is the most that one can hope for
and this might be the situation quite generally. If all light-like 3-surfaces are allowed so
that only weak form of electric-magnetic duality at them would bring metric into the
theory, it might be possible to have topological invariance at 3-D level but not at 4-D
level. It however seems that symplectic invariance with respect to subgroup leaving
end points of braids invariant is the realistic expectation.

Could the allowed braids define Legendrian sub-manifolds of contact manifolds?

The basic questions concern the identification of braids and 2-braids. In quantum TGD
they cannot be arbitrary but determined by dynamics providing space-time correlates for
quantum dynamics. The deformations of braids should mean also deformations of 3-surfaces
which as topological manifolds would however remain as such. Therefore topological QFT
for given 3-manifold with path integral over gauge connections would in TGD correspond to
functional integral of 3-surfaces corresponding to same topology even symplectic structure.
The quantum fluctuating degrees of freedom indeed correspond to symplectic group divided
by its subgroup defining measurement resolution.

What is the dynamics defining the braids strands? What selects them? I have considered
this problem several times. Just two examples is enough here.

i. Could they be some special light-like curves? Could the condition that the end points
of the curves correspond to rational points in some preferred coordinates allow to select
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these light-like curves? But what about light-like curves associated with the ends of
the space-time surface?

ii. The solutions of modified Dirac equation [K28] are localized to curves by using the
analog of periodic boundary conditions: the length of the curve is quantized in the ef-
fective metric defined by the modified gamma matrices. Here one however introcuced a
coordinate along light-like 3-surface and it is not clear how one should fix this preferred
coordinate.

1. Legendrian and Lagrangian sub-manifolds

A hint about what is missing comes from the observation that a non-vanishing Chern-
Simons-Kähler form A defines a contact structure [A10] at light-like 3-surfaces if one has
A∧dA 6= 0. This condition states complete non-intebrability of the distribution of 2-planes
defined by the condition Aµt

µ = 0, where t is tangent vector in the tangent bundle of
light-like 3-surface. It also states that the flow lines of A do not define global coordinate
varying along them.

i. It is however possible to have 1-dimensional curves for which Aµt
µ = 0 holds true at

each point. These curves are known as Legendrian sub-manifolds to be distinguished
from Lagrangian manifolds for which the projection of symplectic form expressible
locally as J = dA vanishes. The set of this curves is discrete so that one obtains
braids. Legendrian knots are the simplest example of Legendrian sub-manifolds and
the question is whether braid strands could be identified as Legendrian knots. For
Legendrian braids symplectic invariance replaces topological invariance and Legendrian
knots and braids can be trivial in topological sense. In some situations the property
of being Legendrian implies un-knottedness.

ii. For Legendrian braid strands the Kähler gauge potential vanishes. Since the solutions
of the modified Dirac equation are localized to braid strands, this means that the cou-
pling to Kähler gauge potential vanishes. From physics point of view a generalization
of Legendre braid strand by allowing gauge transformations A→ A+dΦ looks natural
since it means that the coupling of induced spinors is pure gauge terms and can be
eliminated by a gauge transformation.

2. 2-D duals of Legendrian sub-manifolds

One can consider also what might be called 2-dimensional duals of Legendrian sub-manifolds.

i. Also the one-form obtained from the dual of Kähler magnetic field defined as Bµ =
εµνγJνν defines a distribution of 2-planes. This vector field is ill-defined for light-like
surfaces since contravariant metric is ill-defined. One can however multiply B with the
square root of metric determining formally so that metric would disappear completely
just as it disappears from Chern-Simons action. This looks however somewhat tricky
mathematically. At the 3-D space-like ends of space-time sheets at boundaries of CD
Bµ is however well-defined as such.

ii. The distribution of 2-planes is integrable if one has B ∧ dB = 0 stating that one has
Beltrami field: physically the conditions states that the current dB feels no Lorentz
force. The geometric content is that B defines a global coordinate varying along its
flow lines. For the preferred extremals of Kähler action Beltrami condition is satisfied
by isometry currents and Kähler current in the interior of space-time sheets. If this
condition holds at 3-surfaces, one would have an global time coordinate and integrable
distribution of 2-planes defining a slicing of the 2-surface. This would realize the
conjecture that space-time surface has a slicing by partonic 2-surfaces. One could say
that the 2-surfaces defined by the distribution are orthogonal to B. This need not
however mean that the projection of J to these 2-surfaces vanishes. The condition
B ∧ dB = 0 on the space-like 3-surfaces could be interpreted in terms of effective
2-dimensionality. The simplest option posing no additional conditions would allow
two types of braids at space-like 3-surfaces and only Legendrian braids at light-like
3-surfaces.

http://en.wikipedia.org/wiki/Contact_geometry#Legendrian_submanifolds_and_knots
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These observations inspire a question. Could it be that the conjectured dual slicings of
space-time sheets by space-like partonic 2-surfaces and by string world sheets are defined
by Aµ and Bµ respectively associated with slicings by light-like 3-surfaces and space-like
3-surfaces? Could partonic 2-surfaces be identified as 2-D duals of 1-D Legendrian sub-
manifolds?

The identification of braids as Legendrian braids for light-like 3-surfaces and with Legen-
drian braids or their duals for space-like 3-surfaces would in turn imply that topological
braid theory is replaced with a symplectic braid theory in accordance with the view about
TGD as almost topological QFT. If finite measurement resolution corresponds to the re-
placement of symplectic group with the coset space obtained by dividing by a subgroup,
symplectic subgroup would take the role of isotopies in knot theory. This symplectic sub-
group could be simply the symplectic group leaving the end points of braids invariant.

An attempt to identify the constraints on the braid algebra

The basic problems in understanding of quantum TGD are conceptual. One must pro-
ceed by trying to define various concepts precisely to remove the many possible sources
of confusion. With this in mind I try collect essential points about generalized Feynman
diagrams and their relation to braid diagrams and Feynman diagrams and discuss also the
most obvious constraints on algebraization.

Let us first summarize what generalized Feynman diagrams are.

i. Generalized Feynman diagrams are 3-D (or 4-D, depends on taste) objects inside CD×
CP2. Ordinary Feynman diagrams are in plane. If finite measurement resolution has
as a space-time correlate discretization at the level of partonic 2-surfaces, both space-
like and light-like 3-surfaces reduce to braids and the lines of generalized Feynman
diagrams correspond to braids. It is possible to obtain the analogs of ordinary Feynman
diagrams by projection to M2 ⊂ M4 defined uniquely for given CD. The resulting
apparent intersections would represent ne particular kind of exotic intersection.

ii. Light-like 3-surfaces define the lines of generalized Feynman diagrams and the braiding
results naturally. Non-trivial first homology for the orbits of partonic 2-surfaces with
genus g > 0 could be called homological virtual intersections.

iii. It zero energy ontology braids must be characterized by time orientation. Also it seems
that one must distinguish in zero energy ontology between on mass shell braids and off
mass shell braid pairs which decompose to pairs of braids with positive and negative
energy massless on mass shell states. In order to avoid confusion one should perhaps
speak about tangles insie CD rather than braids. The operations of the algebra are
same except that the braids can end either to the upper or lower light-like boundary
of CD. The projection to M2 effectively reduces the CD to a 2-dimensional causal
diamond.

iv. The vertices of generalized Feynman diagrams are partonic 2-surfaces at which the
light-like 3-surfaces meet. This is a new element. If the notion of bosonic emergence
is accepted no n > 2-vertices are needed so that braid strands are redistributed in the
reaction vertices. The redistribution of braid strands in vertices must be introduced as
an additional operation somewhat analogous to . and the challenge is to reduce this
operation to something simple. Perhaps the basic operation reduces to an exchange
of braid strand between braids. The process can be seen as a decay of of braid with
the conservation of braid strands with strands from future and past having opposite
strand numbers. Also for this operation the analogs of Reidermeister moves should be
identified. In dance metaphor this operation corresponds to a situation in which the
dancer leaves the group to which it belongs and goes to a new one.

v. A fusion of Feynman diagrammatic non-planarity and braid theoretic non-planarity is
needed and the projection to M2 could provide this fusion when at least two kinds of
virtual crossings are allowed. The choice of M2 could be global. An open question
is whether the choice of M2 could characterize separately each line of generalized
Feynman diagram characterized by the four-momentum associated with it in the rest
system defined by the tips of CD. Somehow the theory should be able to fuse the
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braiding matrix for integrable QFT in M2 applying to entire braids with the braiding
matrix for braid theory applying at the level of single braid.

Both integral QFTs in M2 and braid theories suggest that biquandle structure is the
structure that one should try to generalized.

i. The representations of resulting bi-quandle like structure could allow abstract interest-
ing information about generalized Feynman diagrams themselves but the dream is to
construct generalized Feynman diagrams as analogs of knot invariants by a recursive
procedure analogous to un-knotting of a knot.

ii. The analog of bi-quandle algebra should have a hierarchical structure containing braid
strands at the lowest level, braids at next level, and braids of braids...of braids at
higher levels. The notion of operad would be ideal for formulating this hierarchy and I
have already proposed that this notion must be essential for the generalized Feynman
diagrammatics. An essential element is the vanishing of total strand number in the
vertex (completely analogous to conserved charged such as fermion number). Again
a convenient visualization is in terms of dancers forming dynamical groups, forming
groups of groups forming .....
I have already earlier suggested [K20] that the notion of operad [A31] relying on permu-
tation group and its subgroups acting in tensor products of linear spaces is central for
understanding generalized Feynman diagrams. n → n1 + n2 decay vertex for n-braid
would correspond to ”symmetry breaking” Sn → Sn1

× Sn2
. Braid group represents

the covering of permutation group so that braid group and its subgroups permuting
braids would suggest itself as the basic group theoretical notion. One could assign to
each strand of n-braid decaying to n1 and n2 braids a two-valued color telling whether
it becomes a strand of n1-braid or n2-braid. Could also this ”color” be interpreted as
a particular kind of exotic crossing?

iii. What could be the analogs of Reidermaster moves for braid strands?

A. If the braid strands are dynamically determined, arbitrary deformations are not
possible. If however all isotopy classes are allowed, the interpretation would be
that a kind of gauge choice selecting one preferred representation of strand among
all possible ones obtained by continuous deformations is in question.

B. Second option is that braid strands are dynamically determined within finite mea-
surement resolution so that one would have braid theory in given length scale
resolution.

C. Third option is that topological QFT is replaced with symplectic QFT: this option
is suggested by the possibility to identify braid strands as Legendrian knots or
their duals. Subgroup of the symplectic group leaving the end points of braids
invariant would act as the analog of continous transformations and play also the
role of gauge group. The new element is that symplectic transformations affect
partonic 2-surfaces and space-time surfaces except at the end points of braid.

iv. Also 2-braids and perhaps also 2-knots could be useful and would provide string theory
like approach to TGD. In this case the projections could be performed to the ends of
CD or to M3, which can be identified uniquely for a given CD.

v. There are of course many additional subtleties involved. One should not forget loop
corrections, which naturally correspond to sub-CDs. The hierarchy of Planck constants
and number theoretical universality bring in additional complexities.

All this looks perhaps hopelessly complex but the Universe around is complex even if the
basic principles could be very simple.

13.2.4 About string world sheets, partonic 2-surfaces, and two-
knots

String world sheets and partonic 2-surfaces provide a beatiful visualization of generalized
Feynman diagrams as braids and also support for the duality of string world sheets and
partonic 2-surfaces as duality of light-like and space-like braids. Dance metaphor is very
helpful here.

http://tgd.wippiespace.com/public_html/tgdquant/tgdquant.html#quthe
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i. The projection of string world sheets and partonic 2-surfaces to 3-D space replaces knot
projection. In TGD context this 3-D of space could correspond to the 3-D light-like
boundary of CD and 2-knot projection would correspond to the projection of the braids
associated with the lines of generalized Feynman diagram. Another identification would
be as M1×E2, where M1 is the line connecting the tips of CD and E2 the orthogonal
complement of M2.

ii. Using dance metaphor for light-like braiding, braids assignable to the lines of general-
ized Feynman diagrams would correspond to groups of dancers. At vertices the dancing
groups would exchange members and completely new groups would be formed by the
dancers . The number of dancers (negative for those dancing in the reverse time direc-
tion) would be conserved. Dancers would be connected by threads representing strings
having braid points at their ends. During the dance the light-like braiding would in-
duce space-like braiding as the threads connecting the dancers would get entangled.
This would suggest that the light-like braids and space-like braidings are equivalent
in accordance with the conjectured duality between string-world sheets and partonic
2-surfaces. The presence of genuine 2-knottedness could spoil this equivalence unless
it is completely local.

Can string world sheets and partonic 2-surfaces get knotted?

i. Since partonic 2-surfaces (wormhole throats) are imbedded in light-cone boundary,
the preferred 3-D manifolds to which one can project them is light-cone boundary
(boundary of CD). Since the projection reduces to inclusion these surfaces cannot get
knotted. Only if the partonic 2-surfaces contains in its interior the tip of the light-cone
something non-trivial identifiable as virtual 2-knottedness is obtained.

ii. One might argue that the conjectured duality between the descriptions provided by
partonic 2-surfaces and string world sheets requires that also string world sheets repre-
sent trivial 2-braids. I have shown earlier that nontrivial local knots glued to the string
world sheet require that M4 time coordinate has a local maximum. Does this mean
that 2-knots are excluded? This is not obvious: TGD allows also regions of space-time
surface with Euclidian signature and generalized Feynman graphs as 4-D space-time
regions are indeed Euclidian. In these regions string world sheets could get knotted.

What happens for knot diagrams when the dimension of knot is increased to two? According
to the articles of Nelson [A118] and Carter [A73] the crossings for the projections of braid
strands are replaced with more complex singularities for the projections of 2-knots. One
can decompose the 2-knots to regions surrounded by boxes. Box can contain just single
piece of 2-D surface; it can contain two intersection pieces of 2-surfaces as the counterpart
of intersecting knot strands and one can tell which of them is above which; the box can
contain also a discrete point in the intersection of projections of three disjoint regions of
knot which consists of discrete points; and there is also a box containing so called cone
point. Unfortunately, I failed to understand the meaning of the cone point.

For 2-knots Reidemeister moves are replaced with Roseman moves. The generalization
would allow virtual self intersections for the projection and induced by the non-trivial
second homology of 4-D imbedding space. In TGD framework elementary particles have
homologically non-trivial partonic 2-surfaces (magnetic monpoles) as their building bricks
so that even if 2-knotting in standard sense might be not allowed, virtual 2-knotting would
be possible. In TGD framework one works with a subgroup of symplectic transformations
defining measurement resolution instead of isotopies and this might reduce the number of
allowed mov

The dynamics of string world sheets and the expression for Kähler action

The dynamics of string world sheets is an open question. Effective 2-dimensionality suggests
that Kähler action for the preferred extremal should be expressible using 2-D data but there
are several guesses for what the explicit expression could be, and one can only make only
guesses at this moment and apply internal consistency conditions in attempts to kill various
options.

http://www.ams.org/notices/201111/rtx111101553p.pdf
http://arxiv.org/pdf/1002.4429v2
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1. Could weak form of electric-magnetic duality hold true for string world sheets?

If one believes on duality between string world sheets and partonic 2-surfaces, one can
argue that string world sheets are most naturally 2-surfaces at which the weak form of
electric magnetic duality holds true. One can even consider the possibility that the weak
form of electric-magnetic duality holds true only at the the string world sheets and partonic
2-surfaces but not at the preferred 3-surfaces.

i. The weak form of electric magnetic duality would mean that induced Kähler form is
non-vanishing at them and Kähler magnetic flux over string world sheet is proportional
to Kähler electric flux.

ii. The flux of the induced Kähler form of CP2 over string world sheet would define a
dimensionless ”area”. Could Kähler action for preferred extremals reduces to this flux
apart from a proportionality constant. This ”area” would have trivially extremum
with respect to symplectic variations if the braid strands are Legendrian sub-manifolds
since in this case the projection of Kähler gauge potential on them vanishes. This is
a highly non-trivial point and favors weak form of electric-magnetic duality and the
identification of Kähler action as Kähler magnetic flux. This option is also in spirit
with the vision about TGD as almost topological QFT meaning that induced metric
appears in the theory only via electric-magnetic duality.

iii. Kähler magnetic flux over string world sheet has a continuous spectrum so that the
identification as Kähler action could make sense. For partonic 2-surfaces the magnetic
flux would be quantized and give constant term to the action perhaps identifiable as
the contribution of CP2 type vacuum extremals giving this kind of contribution.

The change of space-time orientation by changing the sign of permutation symbol would
change the sign in electric-magnetic duality condition and would not be a symmetry. For
a given magnetic charge the sign of electric charge changes when orientation is changed.
The value of Kähler action does not depend on space-time orientation but weak form of
electric-magnetic duality as boundary condition implies dependence of the Kähler action on
space-time orientation. The change of the sign of Kähler electric charge suggests the inter-
pretation of orientation change as one aspect of charge conjugation. Could this orientation
dependence be responsible for matter antimatter asymmetry?

2. Could string world sheets be Lagrangian sub-manifolds in generalized sense?

Legendrian sub-manifolds can be lifted to Lagrangian sub-manifolds [A10] Could one gen-
eralize this by replacing Lagrangian sub-manifold with 2-D sub-manifold of space-times
surface for which the projection of the induced Kähler form vanishes? Could string world
sheets be Lagrangian sub-manifolds?

I have also proposed that the inverse image of homologically non-trivial sphere of CP2 under
imbedding map could define counterparts of string world sheets or partonic 2-surfaces.
This conjecture does not work as such for cosmic strings, massless extremals having 2-
D projection since the inverse image is in this case 4-dimensional. The option based on
homologically non-trivial geodesic sphere is not consistent with the identification as analog
of Lagrangian manifold but the identification as the inverse image of homologically trivial
geodesic sphere is.

The most general option suggested is that string world sheet is mapped to 2-D Lagrangian
sub-manifold of CP2 in the imbedding map. This would mean that theory is exactly solvable
at string world sheet level. Vacuum extremals with a vanishing induced Kähler form would
be exceptional in this framework since they would be mapped as a whole to Lagrangian
sub-manifolds of CP2. The boundary condition would be that the boundaries of string
world sheets defined by braids at preferred 3-surfaces are Legendrian sub-manifolds. The
generalization would mean that Legendrian braid strands could be continued to Lagrangian
string world sheets for which induced Kähler form vanishes. The physical interpretation
would be that if particle moves along this kind of string world sheet, it feels no covariant
Lorentz-Kähler force and contra variant Lorentz forces is orthogonal to the string world
sheet.

There are however serious objections.

http://en.wikipedia.org/wiki/Contact_geometry#Legendrian_submanifolds_and_knots
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i. This proposal does not respect the proposed duality between string world sheets and
partonic 2-surfaces which as carries of Kähler magnetic charges cannot be Lagrangian
2-manifolds.

ii. One loses the elegant identification of Kähler action as Kähler magnetic flux since
Kähler magnetic flux vanishes. Apart from proportionality constant Kähler electric
flux ∫

Y 2

∗J

is as a dimensionless scaling invariant a natural candidate for Kähler action but need
not be extremum if braids are Legendrian sub-manifolds whereas for Kähler magnetic
flux this is the case. There is however an explicit dependence on metric which does
not conform with the idea that almost topological QFT is symplectic QFT.

iii. The sign factor of the dual flux which depends on the orientation of the string world
sheet and thus changes sign when the orientation of space-time sheet is changed by
changing that of the string world sheet. This is in conflict with the independence of
Kähler action on orientation. One can however argue that the orientation makes itself
actually physically visible via the weak form of electric-magnetic duality. If the above
discussed duality holds true, the net contribution to Kähler action would vanish as the
total Kähler magnetic flux for partonic 2-surfaces. Therefore the duality cannot hold
true if Kähler action reduces to dual flux.

iv. There is also a purely formal counter argument. The inverse images of Lagrangian
sub-manifolds of CP2 can be 4-dimensional (cosmic strings and massless extremals)
whereas string world sheets are 2-dimensonal.

String world sheets as minimal surfaces

Effective 2-dimensionality suggests a reduction of Kähler action to Chern-Simons terms to
the area of minimal surfaces defined by string world sheets holds true [K36]. Skeptic could
argue that the expressibility of Kähler action involving no dimensional parameters except
CP2 scaled does not favor this proposal. The connection of minimal surface property with
holomorphy and conformal invariance however forces to take the proposal seriously and it
is easy to imagine how string tension emerges since the size scale of CP2 appears in the
induced metric [K36].

One can ask whether the mimimal surface property conforms with the proposal that string
worlds sheets obey the weak form of electric-magnetic duality and with the proposal that
they are generalized Lagrangian sub-manifolds.

i. The basic answer is simple: minimal surface property and possible additional conditions
(Lagrangian sub-manifold property or the weak form of electric magnetic duality) poses
only additional conditions forcing the space-time sheet to be such that the imbedded
string world sheet is a minimal surface of space-time surface: minimal surface property
is a condition on space-time sheet rather than string world sheet. The weak form of
electric-magnetic duality is favored because it poses conditions on the first derivatives
in the normal direction unlike Lagrangian sub-manifold property.

ii. Any proposal for 2-D expression of Kähler action should be consistent with the pro-
posed real-octonion analytic solution ansatz for the preferred extremals [K8]. The
ansatz is based on real-octonion analytic map of imbedding space to itself obtained by
algebraically continuing real-complex analytic map of 2-D sub-manifold of imbedding
space to another such 2-D sub-manifold. Space-time surface is obtained by requiring
that the ”imaginary” part of the map vanishes so that image point is hyper-quaternion
valued. Wick rotation allows to formulate the conditions using octonions and quater-
nions. Minimal surfaces (of space-time surface) are indeed objects for which the imbed-
ding maps are holomorphic and the real-octonion analyticity could be perhaps seen as
algebraic continuation of this property.

iii. Does Kähler action for the preferred exremals reduce to the area of the string world
sheet or to Kähler magnetic flux or are the representations equivalent so that the

http://tgd.wippiespace.com/public_html/tgdgeom/tgdgeom.html#kahler
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induced Kähler form would effectively define area form? If the Kähler form form
associated with the induced metric on string world sheet is proportional to the induced
Kähler form the Kähler magnetic flux is proportional to the area and Kähler action
reduces to genuine area. Could one pose this condition as an additional constraint
on string world sheets? For Lagrangian sub-manifolds Kähler electric field should be
proportional to the area form and the condition involves information about space-time
surface and is therefore more complex and does not look plausible.

Explicit conditions expressing the minimal surface property of the string world
sheet

It is instructive to write explicitly the condition for the minimal surface property of the
string world sheet and for the reduction of the area Kähler form to the induced Kähler
form. For string world sheets with Minkowskian signature of the induced metric Kähler
structure must be replaced by its hyper-complex analog involving hyper-complex unit e
satisfying e2 = 1 but replaced with real unit at the level hyper-complex coordinates. e
can be represented as antisymmetric Kähler form Jg associated with the induced metric
but now one has J2

g = g instead of J2
g = −g. The condition that the signed area reduces

to Kähler electric flux means that Jg must be proportional to the induced Kähler form:
Jg = kJ , k = constant in a given space-time region.

One should make an educated guess for the imbedding of the string world sheet into a
preferred extremal of Kähler action. To achieve this it is natural to interpret the minimal
surface property as a condition for the preferred Kähler extremal in the vicinity of the
string world sheet guaranteing that the sheet is a minimal surface satisfying Jg = kJ . By
the weak form of electric-magnetic duality partonic 2-surfaces represent both electric and
magnetic monopoles. The weak form of electric-magnetic duality requires for string world
sheets that the Kähler magnetic field at string world sheet is proportional to the component
of the Kähler electric field parallel to the string world sheet. Kähler electric field is assumed
to have component only in the direction of string world sheet.

1. Minkowskian string world sheets

Let us try to formulate explicitly the conditions for the reduction of the signed area to
Kähler electric flux in the case of Minkowskian string world sheets.

i. Let us assume that the space-time surface in Minkowskian regions has coordinates
coordinates (u, v, w,w) [K8]. The pair (u, v) defines light-like coordinates at the string
world sheet having identification as hyper-complex coordinates with hyper-complex
unit satisfying e = 1. u and v need not - nor cannot as it turns out - be light-like with
respect to the metric of the space-time surface. One can use (u, v) as coordinates for
string world sheet and assume that w = x1 + ix2 and w are constant for the string
world sheet. Without a loss of generality one can assume w = w = 0 at string world
sheet.

ii. The induced Kähler structure must be consistent with the metric. This implies that
the induced metric satisfies the conditions

guu = gvv = 0 . (13.2.1)

The analogs of these conditions in regions with Euclidian signature would be gzz =
gzz = 0.

iii. Assume that the imbedding map for space-time surface has the form

sm = sm(u, v) + fm(u, v, xm)klx
kxl , (13.2.2)

so that the conditions

∂lks
m = 0 , ∂k∂us

m = 0, ∂k∂vs
m = 0 (13.2.3)

are satisfies at string world sheet. These conditions imply that the only non-vanishing
components of the induced CP2 Kähler form at string world sheet are Juv and Jww.
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Same applies to the induced metric if the metric of M4 satisfies these conditions (no
non-vanishing components of form muk or mvk).

iv. Also the following conditions hold true for the induced metric of the space-time surface

∂kguv = 0 , ∂ugkv = 0 , ∂vgku = 0 . (13.2.4)

at string world sheet as is easy to see by using the ansatz.

Consider now the minimal surface conditions stating that the trace of the four components
of the second fundamental form whose components are labelled by the coordinates {xα} ≡
(u, v, w,w) vanish for string world sheet.

i. Since only guv is non-vanishing, only the components Hk
uv of the second fundamental

form appear in the minimal surface equations. They are given by the general formula

Hα
uv = HγPαγ ,

Hα = (∂u∂vx
α +

(
α

β γ

)
∂ux

β∂vx
γ) . (13.2.5)

Here Pαγ is the projector to the normal space of the string world sheet. Formula
contains also Christoffel symbols ( α

β γ ).

ii. Since the imbedding map is simply (u, v) → (u, v, 0, 0) all second derivatives in the
formula vanish. Also Hk = 0,k ∈ {w,w} holds true. One has also ∂ux

α = δαu and
∂vx

β = δβv . This gives

Hα = ( α
u v ) . (13.2.6)

All these Christoffel symbols however vanish if the assumption guu = gvv = 0 and the
assumptions about imbedding ansatz hold true. Hence a minimal surface is in question.

Consider now the conditions on the induced metric of the string world sheet

i. The conditions reduce to

guu = gvv = 0 . (13.2.7)

The conditions on the diagonal components of the metric are the analogs of Virasoro
conditions fixing the coordinate choices in string models. The conditions state that the
coordinate lines for u and v are light-like curves in the induced metric.

ii. The conditions can be expressed directly in terms of the induced metric and read

muu + skl∂us
k∂us

l = 0 ,

mvv + skl∂vs
k∂vs

l = 0 . (13.2.8)

The CP2 contribution is negative for both equations. The conditions make sense only
for (muu > 0,mvv > 0). Note that the determinant condition muumvv −muvmvu < 0
expresses the Minkowskian signature of the (u, v) coordinate plane in M4.

The additional condition states

Jguv = kJuv . (13.2.9)

It reduces signed area to Kähler electric flux. If the weak form of electric-magnetic duality
holds true one can interpret the area as magnetic flux defined as the flux of the dual of
induced Kähler form over space-like surface and defining electric charge. A further condition
is that the boundary of string world sheet is Legendrean manifold so that the flux and thus
area is extremized also at the boundaries.

2.Conditions for the Euclidian string world sheets

One can do the same calculation for string world sheet with Euclidian signature. The only
difference is that (u, v) is replaced with (z, z). The imbedding map has the same form
assuming that space-time sheet with Euclidian signature allows coordinates (z, z, w,w) and
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the local conditions on the imbedding are a direct generalization of the above described
conditions. In this case the vanishing for the diagonal components of the string world sheet
metric reads as

hkl∂zs
k∂zs

l = 0 ,

hkl∂zs
k∂zs

l = 0 . (13.2.10)

The natural ansatz is that complex CP2 coordinates are holomorphic functions of the
complex coordinates of the space-time sheet.

3. Wick rotation for Minkowskian string world sheets leads to a more detailed solution
ansatz

Wick rotation is a standard trick used in string models to map Minkowskian string world
sheets to Euclidian ones. Wick rotation indeed allows to define what one means with real-
octonion analyticity. Could one identify string world sheets in Minkowskian regions by
using Wick rotation and does this give the same result as the direct approach?

Wick rotation transforms space-time surfaces in M4 × CP2 to those in E4 × CP2. In
E4×CP2 octonion real-analyticity is a well-defined notion and one can identify the space-
time surfaces surfaces at which the imaginary part of of octonion real-analytic function
vanishes: imaginary part is defined via the decomposition of octonion to two quaternions
as o = q1 +Iq2 where I is a preferred octonion unit. The reverse of the Wick rotation maps
the quaternionic surfaces to what might be called hyper-quaternionic surfaces in M4×CP2.

In this picture string world sheets would be hyper-complex surfaces defined as inverse
imagines of complex surfaces of quaternionic space-time surface obtained by the inverse of
Wick rotation. For this approach to be equivalent with the above one it seems necessary
to require that the the treatment of the conditions on metric should be equivalent to that
for which hyper-complex unit e is not put equal to 1. This would mean that the conditions
reduce to independent conditions for the real and imaginary parts of the real number
formally represented as hyper-complex number with e = 1.

Wick rotation allows to guess the form of the ansatz for CP2 coordinates as functions
of space-time coordinates In Euclidian context holomorphich functions of space-time co-
ordinates are the natural ansatz. Therefore the natural guess is that one can map the
hypercomplex number t± ez to complex coordinate t± iz by the analog of Wick rotation
and assume that CP2 complex coordinates are analytic functions of the complex space-time
coordinates obtained in this manner.

The resulting induced metric could be obtained directly using real coordinates (t, z) for
string world sheet or by calculating the induced metric in complex coordinates t ± iz and
by mapping the expressions to hyper-complex numbers by Wick rotation (by replacing i
with e = 1). If the diagonal components of the induced metric vanish for t± iz they vanish
also for hyper-complex coordinates so that this approach seem to make sense.

Electric-magnetic duality for flux Hamiltonians and the existence of Wilson
sheets

One must distinguish between two conjectured dualities. The weak form of electric-
magnetic duality and the duality between string world sheets and partonic 2-surfaces.
Could the first duality imply equivalence of not only electric and magnetic flux Hamil-
tonians but also electric and magnetic Wilson sheets? Could the latter duality allow two
different representations of flux Hamiltonians?

i. For electric-magnetic duality holding true at string world sheets one would have non-
vanishing Kähler form and the fluxes would be non-vanishing. The Hamiltonian fluxes

Qm,A =

∫
X2

JHAdx
1dx2 =

∫
X2

HAJαβdx
α ∧ dxβ (13.2.11)
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for partonic 2-surfacesX2 define WCW Hamiltonians playing a key role in the definition
of WCW Kähler geometry. They have also interpretation as a generalization of Wilson
loops to Wilson 2-surfaces.

ii. Weak form of electric magnetic duality would imply both at partonic 2-surfaces and
string world sheets the proportionality

Qm,A =

∫
X2

JHAdx
1 ∧ dx2 ∝ Q∗m,A =

∫
X2

HA ∗ Jαβdxα ∧ dxβ . (13.2.12)

Thefore the electric-magnetic duality would have a concrete meaning also at the level
of WCW geometry.

iii. If string world sheets are Lagrangian sub-manifolds Hamiltonian fluxes would vanish
identically so that the identification as Wilson sheets does not make sense. One would
lose electric-magnetic duality for flux sheets. The dual fluxes

∗QA =

∫
Y 2

∗JHAdx
1 ∧ dx2 =

∫
Y 2

ε γδ
αβ Jγδ =

∫
Y 2

√
det(g4)

det(g⊥2 )
J⊥34dx

1 ∧ dx2

for string world sheets Y 2 are however non-vanishing. Unlike fluxes, the dual fluxes
depend on the induced metric although they are scaling invariant.

Under what conditions the conjectured duality between partonic 2-surface and string world
sheets hold true at the level of WCW Hamiltonians?

i. For the weak form of electric-magnetic duality at string world sheets the duality would
mean that the sum of the fluxes for partonic 2-surfaces and sum of the fluxes for string
world sheets are identical apart from a proportionality constant:∑

i

QA(X2
i ) ∝

∑
i

QA(Y 2
i ) . (13.2.13)

Note that in zero ontology it seems necessary to sum over all the partonic surfaces (at
both ends of the space-time sheet) and over all string world sheets.

ii. For Lagrangian sub-manifold option the duality can hold true only in the form∑
i

QA(X2
i ) ∝

∑
i

Q∗A(Y 2
i ) . (13.2.14)

Obviously this option is less symmetric and elegant.

Summary

There are several arguments favoring weak form of electric-magnetic duality for both string
world sheets and partonic 2-surfaces. Legendrian sub-manifold property for braid strands
follows from the assumption that Kähler action for preferred extremals is proportional to
the Kähler magnetic flux associated with preferred 2-surfaces and is stationary with respect
to the variations of the boundary. What is especially nice is that Legendrian sub-manifold
property implies automatically unique braids. The minimal option favored by the idea that
3-surfaces are basic dynamical objects is the one for which weak form of electric-magnetic
duality holds true only at partonic 2-surfaces and string world sheets. A stronger option
assumes it at preferred 3-surfaces. Duality between string world sheets and partonic 2-
surfaces suggests that WCW Hamiltonians can be defined as sums of Kähler magnetic
fluxes for either partonic 2-surfaces or string world sheets.

13.2.5 What generalized Feynman rules could be?

After all these explanations the skeptic reader might ask whether this lengthy discussion
gives any idea about what the generalized Feynman rules might look like. The attempt
to answer this question is a good manner to make a map about what is understood and
what is not understood. The basic questions are simple. What constraints does zero energy
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ontology (ZEO) pose? What does the necessity to projecti the four-momenta to a preferred
plane M2 mean? What mathematical expressions one should assign to the propagator
lines and vertices? How does one perform the functional integral over 3-surfaces in finite
measurement resolution? The following represents tentatative answers to these questions
but does not say much about exact role of algebraic knots.

Zero energy ontology

ZEO poses very powerful constraints on generalized Feynman diagrams and gives hopes
that both UV and IR divergences cancel.

i. ZEO predicts that the fermions assigned with braid strands associated with the virtual
particles are on mass shell massless particles for which the sign of energy can be also
negative: in the case of wormhole throats this can give rise to a tachyonic exchange.

ii. The on mass shell conditions for each wormhole throat in the diagram involving loops
are very stringent and expected to eliminate very large classes of diagrams. If however
given diagonal diagram leading from n-particle state to the same n-particle state -
completely analogous to self energy diagram- is possible then the ladders form by these
diagrams are also possible and one one obtains infinite of this kind of diagrams as
generalized self energy correction and is excellent hopes that geometric series gives a
closed algebraic function.

iii. IR divergences plaguing massless theories are cancelled if the incoming and outgoing
particles are massive bound states of massless on mass shell particles. In the simplest
manner this is achieved when the 3-momenta are in opposite direction. For internal
lines the massive on-mass shell-condition is not needed at all. Therefore there is an
almost complete separation of the problem how bound state masses are determined
from the problem of constructing the scattering amplitudes.

iv. What looks like a problematic aspect ZEO is that the massless on-mass-shell propa-
gators would diverge for wormhole throats. The solution comes from the projection
of 4-momenta to M2. In the generic the projection is time-like and one avoids the
singularity. The study of solutions of the modified Dirac equation [K28] and number
theoretic vision [K72] indeed suggests that the four-momenta are obtained by rotating
massless M2 momenta and their projections to M2 are in general integer multiples
of hyper-complex primes or light-like. The light-like momenta would be treated like
in the case of ordinary Feynman diagrams using iε-prescription of the propagator and
would also give a finite contributions corresponding to integral over physical on mass
shell states. This guarantees also the vanishing of the possible IR divergences coming
from the summation over different M2 momenta.
There is a strong temptation to identify - or at least relate - the M2 momenta label-
ing the solutions of the modified Dirac equation with the region momenta of twistor
approach [K87]. The reduction of the region momenta to M2 momenta could dra-
matically simplify the twistorial description. It does not seem however plausible that
N = 4 super-symmetric gauge theory could allow the identification of M2 projec-
tions of 4-momenta as region momenta. On the other hand, there is no reason to
expect the reduction of TGD certainly to a gauge theory containing QCD as part. For
instance, color magnetic flux tubes in many-sheeted space-time are central for under-
standing jets, quark gluon plasma, hadronization and fragmentation [L13] but cannot
be deduced from QCD. Note also that the splitting of parton momenta to their M2

projections and transversal parts is an ad hoc assumption motivated by parton model
rather than first principle implication of QCD: in TGD framework this splitting would
emerge from first principles.

v. Zero energy ontology strongly suggests that all particles (including photons, gluons,
and gravitons) have mass which can be arbitrarily small and can be see as being due to
the fact that particle ”eats” Higgs like states giving it the otherwise lacking polarization
states. This would mean a generalization of the notion of Higgs particle to a Higgs like
particle with spin. It would also mean rearrangmenet of massless states at wormhole
throat level to massives physical states.
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The projection of the momenta to M2 is consistent with this vision. The natural
generalization of the gauge condition p · ε = 0 is obtained by replacing p with the
projection of the total momentum of the boson to M2 and ε with its polarization so
that one has p|| · ε. If the projection to M2 is light-like, three polarization states are
possible in the generic case, so that massivation is required by internal consistency.
Note that if intermediate states in the unitary condition were states with light-like
M2-momentum one could have a problematic situation.

vi. A further natural assumption is that the M2 projections of all momenta assignable
to braid strands are parallel. Only the projections of the momenta to the orthogo-
nal complement E2 of M2 can be non-parallel and for massive wormhole throats they
must be non-parallel. This assumption does not break Lorentz invariance since in the
full amplitude one must integrate over possible choices of M2. It also interpret the
gauge conditions either at the level of braid strands or of partons. Quantum classi-
cal correspondence in strong form would actually suggests that quantum 4-momenta
should co-incide with the classical ones. The restriction to M2 projections is however
necessary and seems also natural. For instance, for massless extremals only M2 pro-
jection of wave-vector can be well-defined: in transversal degrees of freedom there is a
superposition over Fourier components with diffrent transversal wave-vectors. Also the
partonic description of hadrons gives for the M2 projections of the parton momenta a
preferred role. It is highly encouraging that this picture emerged first from the mod-
ified Dirac equation and purely number theoretic vision based on the identification of
M2 momenta in terms of hyper-complex primes.
The number theoretical approach also suggests a number theoretical quantization of
the transversal parts of the momenta [K72]: four-momenta would be obtained by ro-
tating massless M2 momenta in M4 in such a manner that the components of the
resulting 3-momenta are integer valued. This leads to a classical problem of number
theory which is to deduce the number of 3-vectors of fixed length with integer valued
components. One encounters the n-dimensional generalization of this problem in the
construction of discrete analogs of quantum groups (these ”classical” groups are analo-
gous to Bohr orbits) and emerge in quantum arithmetics [K89], which is a deformation
of ordinary arithmetics characterized by p-adic prime and giving rigorous justification
for the notion of canonical identification mapping p-adic numbers to reals.

vii. The real beauty of Feynman rules is that they guarantee unitarity automatically. In
fact, unitarity reduces to Cutkosky rules which can be formulated in terms of cut ob-
tained by putting certain subset of interal lines on mass shell so that it represents
on mass shell state. Cut analyticity implies the usual iDisc(T ) = TT †. In the re-
cent context the cutting of the internal lines by putting them on-mass-shell requires a
generalization.

A. The first guess is that on mass shell property means that M2 projection for the
momenta is light-like. This would mean that also these momenta contribute to
the amplitude but the contribution is finite just like in the usual case. In this
formulation the real particles would be the massless wormhole throats.

B. Second possibility is that the internal lines on on mass shell states corresponding to
massive on mass-shell-particles. This would correspond to the experimental mean-
ing of the unitary conditions if real particles are the massive on mass shell particles.
Mathematically it seems possible to pick up from the amplitude the states which
correspond to massive on mass shell states but one should understand why the
discontinuity should be associated with physical net masses for wormhole contacts
or many-particle states formed by them. General connection with unitarity and
analyticity might allow to understand this.

viii. CDs are labelled by various moduli and one must integrate over them. Once the tips
of the CD and therefore a preferred M1 is selected, the choice of angular momentum
quantization axis orthogonal to M1 remains: this choice means fixing M2. These
choices are parameterized by sphere S2. It seems that an integration over different
choices of M2 is needed to achieve Poincare invariance.
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How the propagators are determined?

In accordance with previous sections it will be assumed that the braid are Legendrian braids
and therefore completely well-defined. One should assign propagator to the braid. A good
guess is that the propagator reduces to a product of three terms.

i. A multi-particle propagator which is a product of collinear massless propagators for
braid strands with fermionin number F = 0, 1− 1. The constraint on the momenta is
pi = λip with

∑
i λi = 1. So that the fermionic propagator is 1∏

i λi
pkγk. If one gas

p = nP , where P is hyper-complex prime, one must sum over combinations of λi = ni
satisfying

∑
i ni = n.

ii. A unitary S-matrix for integrable QFT in M2 in which the velocities of particles
assignable to braid strands appear for which fixed by R-matrix defines the basic 2-
vertex representing the process in which a particle passes through another one. For this
S-matrix braids are the basic units. To each crossing appearing in non-planar Feynman
diagram one would have an R-matrix representing the effect of a reconnection the ends
of the lines coming to the crossing point. In this manner one could gradually transform
the non-planar diagram to a planar diagram. One can ask whether a formulation in
terms of a suitable R-matrix could allow to generalize twistor program to apply in the
case of non-planar diagrams.

iii. An S-matrix predicted by topological QFT for a given braid. This S-matrix should be
constructible in terms of Chern-Simons term defining a sympletic QFT.

There are several questions about quantum numbers assignable to the braid strands.

i. Can braid strands be only fermionic or can they also carry purely bosonic quantum
numbers corresponding to WCW Hamiltonians and therefore to Hamiltonians of δM4

±×
CP2? Nothing is lost if one assumes that both purely bosonic and purely fermionic
lines are possible and looks whether this leads to inconsistencies. If virtual fermions
correspond to single wormhole throat they can have only time-like M2-momenta. If
virtual fermions correspond to pairs of wormhole throats with second throat carrying
purely bosonic quantum numbers, also fermionic can have space-like net momenta.
The interpretation would be in terms of topological condensation. This is however not
possible if all strands are fermionic. Situation changes if one identifies physical fermions
wormhole throats at the ends of Kähler magnetic flux tube as one indeed does: in this
case virtual net momentum can be space-like if the sign of energy is opposite for the
ends of the flux tube.

ii. Are the 3-momenta associated with the wormholes of wormhole contact parallel so that
only the sign of energy could distinguish between them for space-like total momentum
and M2 mass squared would be the same? This assumption simplifies the situation
but is not absolutely necessary.

iii. What about the momentum components orthogonal to M2? Are they restricted only
by the massless mass shell conditions on internal lines and quantization of the M2

projection of 4-momentum?

iv. What braids do elementary particles correspond? The braids assigned to the wormhole
throat lines can have arbitrary number n of strands and for n = 1, 2 the treatment of
braiding is almost trivial. A natural assumption is that propagator is simply a product
of massless collinear propagators for M2 projection of momentum [K29]. Collinearity
means that propagator is product of a multifermion propagator 1

λipkγk
, znd multiboson

propagator 1
µipkγk

,
∑
λi +

∑
i µi = 1. There are also quantization conditions on

M2 projections of momenta from modified Dirac equation implying that multiplies of
hyper-complex prime are in question in suitable units. Note however that it is not clear
whether purely bosonic strands are present.

v. For ordinary elementary particles with propagators behaving like
∏
i λ
−1
i 1p−n, only

n ≤ 2 is possible. The topologically really interesting states with more than two braid
strands are something else than what we have used to call elementary particles. The
proposed interpretation is in terms of anyonic states [K59]. One important implication
is that N = 1 SUSY generated by right-handed neutrino or its antineutrino is SUSY



822 Chapter 13. Generalized Feynman Graphs as Generalized Braids

for which all members of the multiplet assigned to a wormhole throat have braid
number smaller than 3. For N = 2 SUSY generated by right-handed neutrino and
its antiparticle the states containing fermion and neutrino-antineutrino pair have three
braid strands and SUSY breaking is expected to be strong.

Vertices

Conformal invariance raises the hope that vertices can be deduced from super-conformal
invariance as n-point functions. Therefore lines would come from integrable QFT in M2

and topological braid theory and vertices from confofmal field theory: both theories are
integrable.

The basic questions is how the vertices are defined by the 2-D partonic surfaces at which
the ends of lines meet. Finite measurement resolution reduces the lines to braids so that
the vertices reduces to the intersection of braid strands with the partonic 2-surface.

i. Conformal invariance is the basic symmetry of quantum TGD. Does this mean that the
vertices can be identified as n-point functions for points of the partonic 2-surface defined
by the incoming and outgoing braid strands? How strong constraints can one pose on
this conformal field theory? Is this field theory free and fixed by anticommutation
relations of induced spinor fields so that correlation function would reduce to product
of fermionic two points functions with standard operator in the vertices represented
by strand ends. If purely bosonic vertices are present, their correlation functions must
result from the functional integral over WCW.

ii. For the fermionic fields associated with each incoming braid the anticommutators of
fermions and antifermions are trivial just as the usual equal time anticommutation re-
lations. This means that the vertex reduces to sum of products of fermionic correlation
functions with arguments belonging to different incoming and outgoing lines. How can
one calculate the correlators?

A. Should one perform standard second quantization of fermions at light-like 3-surface
allowing infinite number of spinor modes, apply a finite measurement resolution to
obtain braids, for each partonic 2-surface, and use the full fermion fields to calculate
the correlators? In this case braid strands would be discontinuous in vertices. A
possible problem might be that the cutoff in spinor modes seems to come from the
theory itself: finite measurement resolution is a property of quantum state itself.

B. Could finite measurement resolution allow to approximate the braid strands with
continuous ones so that the correlators between strands belonging to different lines
are given by anticommutation relations? This would simplify enormously the sit-
uation and would conform with the idea of finite measurement resolution and the
vision that interaction vertices reduce to braids. This vision is encouraged by the
previous considerations and would mean that replication of braid strands analo-
gous to replication of DNA strands can be seen as a fundamental process of Nature.
This of course represents an important deviation from the standard picture.

iii. Suppose that one accepts the latter option. What can happen in the vertex, where line
goes from one braid to another one?

A. Can the direction of momentum changed as visual intuition suggests? Is the total
braid momentum conservation the only constraint so that the velocities assignable
braid strands in each line would be constrained by the total momentum of the line.

B. What kind of operators appear in the vertex? To get some idea about this one can
look for the simplest possible vertex, namely FFB vertex which could in fact be
the only fundamental vertex as the arguments of [K18] suggest. The propagator of
spin one boson decomposes to product of a projection operator to the polarization
states divited by p2 factor. The projection operator sum over products εki γk at
both ends where γk acts in the spinor space defined by fermions. Also fermion
lines have spinor and its conjugate at their ends. This gives rise to pkγk/p

2. pkγk
is the analog of the bosonic polarization tensor factorizing into a sum over products
of fermionic spinors and their conjugates. This gives the BFF vertex εki γk slashed
between the fermionic propagators which are effectively 2-dimensional.
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C. Note that if H-chiralities are same at the throats of the wormhole contact, only spin
one states are possible. Scalars would be leptoquarks in accordance with general
view about lepton and quark number conservation. One particular implication is
that Higgs in the standard sense is not possible in TGD framework. It can appear
only as a state with a polarization which is in CP2 direction. In any case, Higgs
like states would be eaten by massless state so that all particles would have at least
a small mass.

Functional integral over 3-surfaces

The basic question is how one can functionally integrate over light-like 3-surfaces or space-
like 3-surfaces.

i. Does effective 2-dimensionality allow to reduce the functional integration to that over
partonic 2-surfaces assigned with space-time sheet inside CD plus radiative corrections
from the hierarchy of sub-CDs?

ii. Does finite measurement resolution reduce the functional integral to a ordinary integral
over the positions of the end points of braids and could this integral reduce to a sum?
Symplectic group of δM4

±×CP2 basically parametrizes the quantum fluctuating degrees
of freedom in WCW. Could finite measurement resolution reduce the symplectic group
of δM4

± × CP2 to a coset space obtained by dividing with symplectic transformations
leaving the end points invariant and could the outcome be a discrete group as proposed?
Functional integral would reduce to sum.

iii. If Kähler action reduces to Chern-Simons-Kähler terms to surface area terms in the
proposed manner, the integration over WCW would be very much analogous to a
functional integral over string world sheets and the wisdom gained in string models
might be of considerable help.

Summary

What can one conclude from these argument? To my view the situation gives rise to a
considerable optimism. I believe that on basis of the proposed picture it should be possible
to build a concrete mathematical models for the generalized Feynman graphics and the
idea about reduction to generalized braid diagrams having algebraic representations could
pose additional powerful constraints on the construction. Braid invariants could also be
building bricks of the generalized Feynman diagrams. In particular, the treatment of the
non-planarity of Feynman diagrams in terms of M2 braiding matrix would be something
new.

13.3 Duality between low energy and high energy de-
scriptions of hadron physics

I found the talk of Matthew Schwartz titled The Emergence of Jets at the Large Hadron
Collider [C20] belonging to the Monday Colloqium Series at Harward. The talk told about
the history of the notion of jet and how it is applied at LHC. The notion of jet is something
between perturbative and non-perturbative QCD and therefore not a precisely defined
concept as one approaches small mass limit for jets.

The talk inspired some questions relating to QCD and hadron physics in general. I am of
course not competent to say anything interesting about jet algorithms. Hadronization pro-
cess is however not well understood in the framework of QCD and uses phenomenological
fragmentation functions. The description of jet formation in turn uses phenomenological
quark distribution functions. TGD leads to a rather detailed fresh ideas about what quarks,
gluons, and hadrons are and stringy and QFT like descriptions emerge as excellent candi-
dates for low and high energy descriptions of hadrons. Low energies are the weakness of
QCD and one can well ask whether QCD fails as a physical theory at infrared. Could TGD
do better in this respect?

http://media.physics.harvard.edu/video/?id=COLLOQ_SCHWARTZ_101711
http://media.physics.harvard.edu/video/?id=COLLOQ_SCHWARTZ_101711
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Only a minor fraction of the rest energy of proton is in the form of quarks and gluons.
In TGD framework these degrees of freedom would naturally correspond to color magnetic
flux tubes carrying color magnetic energy and in proton-proton collisions the color magnetic
energy of p-p system in cm system is gigantic. The natural question is therefore about what
happens to the ”color magnetic bodies” of the colliding protons and of quarks in proton-
proton collision.

In the sequel I will develop a simple argument leading to a very concrete duality between two
descriptions of hadron reactions manifest at the level of generalized Feynman graphs. The
first description is in terms of meson exchanges and applies naturally in long scales. Second
one is terms of perturbative QCD applying in short scales. The basic ingredients of the
argument are the weak form of electric-magnetic duality [K28] and bosonic emergence [K58]
leading to a rather concrete view about physical particles, generalized Feynman diagrams
reducing to generalized braid diagrams in the framework of zero energy ontology (ZEO),
and reconnection of Kähler magnetic flux tubes having interpretation in terms of string
diagrams providing the mechanism of hadronization. Basically the prediction follows from
the dual interpretations of generalized Feynman diagrams either as stringy diagrams (low
energies) or as Feynman diagrams (high energies).

It must be emphasized that this duality is something completely new and a simple prediction
of the notion of generalized Feynman diagram. The result is exact: no limits (such as large
N limit) are needed.

13.3.1 Weak form of electric magnetic duality and bosonic emer-
gence

The weak form of electric magnetic duality allows the identification of quark wormhole
throats as Kähler magnetic monopoles with non-vanishing magnetic charges Qm. The
closely related bosonic emergence [K58] effectively eliminates the fundamental BFF vertices
from the theory.

i. Elementary fermion corresponds to single wormhole throat with Kähler magnetic charge.
In topological condensation a wormhole throat is formed and the working hypothesis is
that the second throat is Kähler magnetically neutral. The throats created in topolog-
ical condensation (formation of topological sum) are always homologically trivial since
purely local process is in question.

ii. In absence of topological condensation physical leptons correspond to string like objects
with opposite Kähler magnetic charges at the ends. Topologically condensed lepton
carries also neutralizing weak isospin carried by neutrino pair at the throats of the
neutralizing wormhole contact. Wormhole contact itself carries no Kähler magnetic
flux. The neutralization scale for Qm and weak isospin could be either weak length
scale for both fermions and bosons. The alternative option is Compton length quite
generally - this even for fermions since it is enough that the weak isospin of weak
bosons is neutralized in the weak scale. The alert reader have of course asked whether
the weak isospin of fermion must be neutralized at all if this is the case. Whether this
really happens is not relevant for the following arguments.

iii. Whether a given quark is accompanied by a wormhole contact neutralizing its weak
isospin is not quite clear: this need not be the case since the Compton length of weak
bosons defines the range of weak interactions. Therefore one can consider the possibility
that physical quarks have non-vanishing Qm and that only hadrons have Qm = 0. Now
the Kähler magnetic flux tubes would connect valence quarks. In the case of proton
one would have three of them. About 31 year old proposal is that color hyper charge
is proportional to Kähler magnetic charge. If so then color confinement would require
Kähler magnetic confinement.

iv. By bosonic emergence bosons correspond to wormhole contacts or pairs of them. Now
wormhole throats have opposite values of Qm but the contact itself carries vanish-
ing Kähler magnetic flux. Fermion and anti-fermion are accompanied by neutralizing
Kähler magnetic charge at the ends of their flux tubes and neutrino pair at its throats
neutralizes the weak charge of the boson.

http://tgd.wippiespace.com/public_html/tgdgeom/tgdgeom.html#Dirac
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13.3.2 The dual interpretations of generalized Feynman diagrams
in terms of hadronic and partonic reaction vertices

Generalized Feynman diagrams are defined in the framework of zero energy ontology (ZEO).
Bosonic emergence eliminates fundamental BFF vertices and reduces generalized Feynman
diagrams to generalized braid diagrams. This is essential for the dual interpretation of the
qqg vertex as a meson emission vertex for hadron. The key idea is following.

i. Topologically condensed hadron - say proton- corresponds to a double sheeted struc-
ture: let us label the sheets by letters A and B. Suppose that the sheet A contains
wormhole throats of quarks carrying magnetic charges. These wormhole throats are
connected by magnetically neutral wormhole contact to sheet B for which wormhole
throats carry vanishing magnetic charges.

ii. What happens when hadronic quark emits a gluon is easiest to understand by consider-
ing first the annihilation of topologically non-condensed charged lepton and antilepton
to photon - that is L + L → γ vertex. Lepton and antilepton are accompanied by
flux tubes at different space-time sheets A and B and each has single wormhole throat:
one can speak of a pair of topologically condensed deformations of CP2 type vacuum
extremals as a correlate for single wormhole throat. At both ends of the flux tubes
deformations o fCP2 type vacuum exremals fuse via topological sum to form a pair of
photon wormhole contacts carrying no Kähler magnetic flux. The condition that the
resulting structure has the size of weak gauge boson suggests that weak scale defines
also the size of leptons and quarks as magnetic flux tubes. Quarks can however carry
net Kähler magnetic charge (the ends of flux tube do not have opposite values of Kähler
magnetic charge.

iii. With some mental gymnastics the annihilation vertex L+ L→ γ can be deformed to
describe photon emission vertex L → L + γ: The negative energy antilepton arrives
from future and positive energy lepton from the past and they fuse to a virtual photon
in the manner discussed.

iv. qqg vertex requires further mental gymnastics but locally nothing is changed since
the protonic quark emitting the gluon is connected by a color magnetic flux tube
to another protonic quark in the case of incoming proton (and possibly to neutrino
carrying wormhole contact with size given by the weak length scale). What happens is
therefore essentially the same as above. The protonic quark has become part of gluon
at space-time sheet A but has still flux tube connection to proton. Besides this there
appears wormhole throat at space-time sheet B carrying quark quantum numbers: this
quark would in the usual picture correspond to the quark after gluon emission and
antiquark at the same space-time sheet associated with the gluon. Therefore one has
proton with one quark moving away inside gluon at sheet A and a meson like entity
at sheet B. The dual interpretation as the emission of meson by proton makes sense.
This vertex does not correspond to the stringy vertex AB+CD → AD+BC in which
strings touch at some point of the interior and recombine but is something totally new
and made possible by many-sheeted space-time. For gauge boson magnetically charge
throats are at different space-time sheets, for meson they at the same space-time sheet
and connected by Kähler magnetic flux tube.

v. Obviously the interpretation as an emission of meson like entity makes sense for any
hadron like entity for which quark or antiquark emits gluon. This is what the duality
of hadronic and parton descriptions would mean. Note that bosonic emergence is
absolutely essential element of this duality. In QCD it is not possible to understand
this duality at the level of Feynman diagrams.

13.3.3 Reconnection of color magnetic flux tubes

The reconnection of color magnetic flux tubes is the key mechanism of hadronization and
a slow process as compared to quark gluon emission.

i. Reconnection vertices have interpretation in terms of stringy vertices AB + CD →
AD +BC for which interiors of strings serving as representatives of flux tubes touch.
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The first guess is that reconnection is responsible for the low energy dynamics of
hadronic collisions.

ii. Reconnection process takes place for both the hadronic color magnetic flux tubes and
those of quarks and gluons. For ordinary hadron physics hadrons are characterized
by Mersenne prime M107. For M89 hadron physics reconnection process takes place in
much shorter scales for hadronic flux tubes.

iii. Each quarks is characterized by p-adic length scales: in fact this scale characterizes
the length scale of the the magnetic bodies of the quark. Therefore Reconnection at
the level of the magnetic bodies of quarks take places in several time and length scales.
For top quark the size scale of magnetic body is very small as is also the reconnection
time scale. In the case of u and d quarks with mass in MeV range the size scale of the
magnetic body would be of the order of electron Compton length. This scale assigned
with quark is longer than the size scale of hadrons characterized by M89. Classically
this does not make sense but in quantum theory Uncertainty Principle predicts it from
the smallness of the light quark masses as compared to the hadron mass. The large
size of the color magnetic body of quark could explain the strange finding about the
charge radius of proton [K47].

iv. For instance, the formation of quark gluon plasma would involve reconnection process
for the magnetic bodies of colliding protons or nuclei in short time scale due to the
Lorentz contraction of nuclei in the direction of the collision axis. Quark-gluon plasma
would correspond to a situation in which the magnetic fluxes are distributed in such
a manner that the system cannot be decomposed to hadrons anymore but acts like a
single coherent unit. Therefore quark-gluon plasma in TGD sense does not correspond
to the thermal quark-gluon plasma in the naive QCD sense in which there are no long
range correlations.
Long range correlations and quantum coherence suggest that the viscosity to entropy
ratio is low as indeed observed [K47]. The earlier arguments suggest that the preferred
extremals of Kähler action have interpretation as perfect fluid flows [K28]. This means
at given space-time sheet allows global time coordinate assignable to flow lines of the
flow and defined by conserved isometry current defining Beltrami flow. As a matter
fact, all conserved currents are predicted to define Beltrami flows. Classically perfect
fluid flow implies that viscosity, which is basically due to a mixing causing the loss of
Beltrami property, vanishes. Viscosity would be only due to the finite size of space-time
sheets and the radiative corrections describable in terms of fractal hierarchy CDs within
CDs. In quantum field theory radiative corrections indeed give rise to the absorbtive
parts of the scattering amplitudes.

13.3.4 Hadron-parton duality and TGD as a ”square root” of the
statistical QCD description

The main result is that generalized Feynman diagrams have dual interpretations as QCD
like diagrams describing partonic reactions and stringy diagrams describing hadronic reac-
tions so that these matrix elements can be taken between either hadronic states or partonic
states. This duality is something completely new and distinguishes between QCD and
TGD.

I have proposed already earlier this kind of duality but based on group theoretical arguments
inspired by what I call M8−M4×CP2 duality [K28] and two hypothesis of the old fashioned
hadron physics stating that vector currents are conserved and axial currents are partially
conserved. This duality suggests that the group SO(4) = SU(2)L × SU(2)R assignable to
weak isospin degrees of freedom takes the role of color group at long length scales and can
be identified as isometries of E4 ⊂ M8 just like SU(3) corresponds to the isometries of
CP2.

Initial and final states correspond to positive and negative energy parts of zero energy
states in ZEO. These can be regarded either partonic or hadronic many particle states.
The inner products between positive energy parts of partonic and hadronic state basis
define the ”square roots” of the parton distribution functions for hadrons. The inner

http://tgd.wippiespace.com/public_html/paddark/paddark.html#mass4
http://tgd.wippiespace.com/public_html/paddark/paddark.html#mass4
http://tgd.wippiespace.com/public_html/paddark/paddark.html#mass4
http://tgd.wippiespace.com/public_html/paddark/paddark.html#mass4
http://tgd.wippiespace.com/public_html/tgdgeom/tgdgeom.html#Dirac
http://tgd.wippiespace.com/public_html/tgdgeom/tgdgeom.html#Dirac
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products of between negative energy parts of hadronic and partonic state basis define the
”square roots” of the fragmentations functions to hadrons for partons. M-matrix defining
the time-like entanglement coefficients is representable as product of hermitian square root
of density matrix and S-matrix is not time reversal invariant and this partially justifies the
use of statistical description of partons in QCD framework using distribution functions and
fragmentation functions. Decoherence in the sum over quark intermediate states for the
hadronic scattering amplitudes is essential for obtaining the standard description.

13.4 Quark gluon plasma in TGD framework

I listened an excellent talk by Dam Thanh Son in Harward Monday seminar series [C21].
The title of the talk was Viscosity, Quark Gluon Plasma, and String Theory. What the
talk represents is a connection between three notions which one would not expect to have
much to do with each other.

In the following I shall briefly summarize the basic points of Son’s talk which I warmly
recommend for anyone wanting to sharpen his or her mental images about quark gluon
plasma.

i. Besides this I discuss a TGD variant of AdS/CFT correspondence based on string-
parton duality allowing a concrete identification of the process leading to the formation
of strongly interacting quark gluon plasma.

ii. ”Strongly interacting” means that partonic 2-surfaces are connected by Kähler mag-
netic flux tubes making the many-hadron system single large hadron in the optimal
case rather than a gas of uncorrelated partons. This allows a concrete generalization
of the formula of kinetic gas theory for the viscosity.

iii. One ends up also to a concrete interpretation for the formula for the η/s ratio in
terms of TGD variant of Einsteinian gravitation and the analogs of black-hole horizons
identified as partonic 2-surfaces. This gravitation is not fictive gravitation in 10-D
space but real sub-manifold gravitation in 4-D space-time.

iv. It is essential that TGD does not assume gravitational constant as a fundamental con-
stant but as a prediction of theory depending on the p-adic length scale and the typical
value of Kähler action for the lines of generalized Feynman graphs. Feeding in the no-
tion of gravitational Planck constant, one finds beautiful interpretation for the lower
limit viscosity which is smaller than the one predicted by AdS-CFT correspondence.

13.4.1 Some points in Son’s talk

Son discusses first the notion of shear viscosity at undergraduate level - as he expresses
it. First the standard Wikipedia definition for shear viscosity is discussed in terms of the
friction forces created in a system consisting two parallel plates containing liquid between
them as one moves a plate with respect to another parallel plate.

Son explains how Maxwell explains the viscosity of gases in terms of kinetic gas theory and
entered with a strange result: the estimate η = ρvlfree leads to the conclusion that the
viscosity has no pressure dependence: Maxwell himself verified the result experimentally.
Imagining that the interaction of gas molecules can be reduced to zero leads to a paradox:
the viscosity of the ideal gas is infinite. The solution of the paradox is simple: the theory
applies only if lfree is considerably smaller than the size scale of the system, say the distance
between the two plates, one of which is moving.

Son discusses the viscosity for some condensed matter systems and finds that the value
of viscosity increases very rapidly as a function of temperature: does this mean a rapid
increase of lfree with temperature? Son also notices that the viscosity seems to be bounded
from below. Son discusses also η/s ratio for the condensed matter systems and finds that it
is typically by a factor 10-100 larger than the minimal values ~/4π suggested by AdS/CFT
correspondence [B49].

Son describes gauge-gravity duality briefly. AdS/CFT approach does not allow simple
arguments analogous to those used in the kinetic theory of gases.

http://media.physics.harvard.edu/video/?id=LOEB_SON_041811
http://en.wikipedia.org/wiki/AdS/CFT
http://en.wikipedia.org/wiki/Viscosity
http://en.wikipedia.org/wiki/AdS/CFT
http://en.wikipedia.org/wiki/AdS/CFT
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i. One central formula is Kubo’s formula giving viscosity as the low frequency limit for
the Fourier component of the component of energy momentum tensor commutation
[T yx(x, t), T yx(0, 0)] as

η =
1

2~ω

∫
〈[T yx(x, t), T yx(0, 0)] d4x〉ω→0

forN = 4 SUSY defined in M4. Now this theory isN = 4 SUSY so that there is no hope
about simple interpretation. Note that the formula is consistent with the dimensions of
viscosity which is M/L3. I confess that I do not understand the origin of the formula at
the level details. Green-Kubo relations [B5] are certainly the starting poing having very
general justification as an outcome of fluctuation theorem [B4] allowing understood
relatively easily in Gaussian model for thermodynamics. Since energy momentum
tensor serves as a source of gravitons and is the basic observable in hydrodynamics,
it is clear that this formula is consistent with gauge theory-gravity correspondence.
ω → 0 limis means that the low energy sector of the gauge theory is in question so that
the perturbative approach fails.

ii. In TGD framework the analog of this formula need not be useful. If it apply it should
apply to partonic 2-surfaces and AdS5×S5 should be replaced with space-time surface.
The energy momentum tensor should be the energy momentum tensor of partonic 2-
surface fixed to a high degree by conformal invariance. One should sum over all partonic
2-surfaces. The partonic 2-surfaces would correspond to both ends of a braid strands
at the opposite light-like boundaries of CD. The integral at the level of the partonic
2-surface is now only 2-dimensional and the dimension of η would be 1~/L in this case.
In the kinetic gas theory formula this follows from the fact that mass density has now
dimension m/L rather than m/L3. The summation over the partonic 2-surfaces could
correspond in many particle system integration. I tend to see this kind of approach as
too formal.

AdS/CFT duality [B49] reduces the calculation of the viscosity to that for the graviton
absorption cross section for AdS5 × S5 black hole when the N-stack of branes is replaced
with a brane black hole in AdS5 × S5. Viscosity is is reduced essentially to the area of the
black-hole multiplied by Planck constant. Since the dimension of 4-D viscosity is ~/L3,
the area must be measured using Planck length squared G as a unit. Is viscosity the
number density multiplied by this dimensionless quantity? I must admit that I do not
really understand this result.

13.4.2 What is known about quark-gluon plasma?

Son summarizes some facts about quark-gluon plasma and they are included in the following
summary about what little I know.

i. The first surprise was produced by RHIC observing that the viscosity to entropy density
ratio for quark gluon plasma is near ~/4π -its lower limit as predicted by AdS/CFT
duality. The low value of η/s ratio does not mean that the viscosity would be low. As a
matter fact it is gigantic - of order 1014 centipoise and thefore 14 orders of magnitude
higher than for water! Glass is the the only condensed matter system possessing a
higher viscosity in the list of Son. The challenge is to understand why the ratio is so
small in terms of QCD or perhaps a theory transcending the limitations of QCD at low
energies. From Kubo’s formula it is clear that the low energy limit of QCD is indeed
needed to understand the viscocity.

ii. In the nuclear collidisions allowing to deduce information about viscosity the nuclei do
not collide quite head on. The time of collision is short due to the Lorentz contraction.
The projection of the collision region in the plane orthogonal to the collision axes is
almond shaped so that rotational symmetry is lost and implies that viscous forces
enters the game. If the system reaches thermal equilibrium, the notion of pressure
make senses. The force caused by the pressure gradient is stronger in transversal than
longitudinal direction of almond since the almond in transversal direction is shorter

http://en.wikipedia.org/wiki/Green-Kubo
http://en.wikipedia.org/wiki/Fluctuation_theorem
http://en.wikipedia.org/wiki/RHIC
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than in longitudinal direction. That hets in this direction are more energetic supports
the view that pressure is a well-defined concept. On the other hand, the viscous force
in the longitudinal direction is large and tends to compensate this effect. This effect
gives hopes of measuring the viscosity.

iii. η/s ratio seems to be near ~/4π for the quark-gluon plasma formed in both heavy ion
collisions and in proton-proton collisions although the energy scales are quite different.
This is not expected on basis of the strong temperature dependence of viscosity in
condensed matter systems.

iv. On basis of RHIC results [C6, C16] for heavy ion collisions and the LHC results for
proton-proton collisions, which unexpectedly demonstrated similar plasma behavior
for proton-proton collisions one can conclude that quark gluon plasma is a strongly
interacting system. The temperature assignable to the quark-gluon plasma possibly
formed in proton-proton collisions is of course must higher than at RHIC. Recently
also the results from lead-lead collisions at LHC have emerged: the temperature of
the plasma should be about 500 MeV as compared to the temperature 250 MeV at
RHIC. In this case AdS/CFT duality gives hopes for describing the non-perturbative
aspects of the system. This is just a hope: AdS/CFT correspondence requires many
assumptions which might not hold true for the quark-gluon plasma and there are
preliminary indications [C18], which do not support AdS/CFT duality [C1, C2]. The
experiments favor a model in which the situation is described based old-fashioned Lund
model [C4] treating gluons as strings. This description is a a simplified version of the
description provided by TGD.

13.4.3 Gauge-gravity duality in TGD framework

AdS/CFT duality is one variant of a more general gauge-gravity duality. Gauge-gravity in
turn involves several variants depending on whether one assumes that Einstein’s curvature
scalar provides a good approximation to the description of gravitational sector. This re-
quires that higher spin excitations of string like objects are very heavy and can be neglected.
It might be that since low energy limit is in question as is clear from Kubo’s formula, the
use of Einstein’s action makes sense very generally.

String-gauge theory duality in TGD framework

If I were enemy of string theory and follower of the usual habits of my species, I would be
very skeptic from the beginning. There are however no rational reasons to be hostile since
string worlds sheets at 4-D space time sheets appear also in TGD and there very strong
reasons to expect duality between QFT like descriptions and stringy description. I indeed
discussed in previous section how this duality can be understood directly at the level of
generalized Feynman diagrams as a kind of combinatorial identity. There is no need to
introduce strings in AdS5 × S5 as in the usual AdS/CFT approach and Nc →∞ implying
the vanishing of the contribution of non-planar Feynman diagrams is not needed.

The reduction to Einsteinian gravity need not take place

String-gauge theory duality need not reduce QCD to Einsteinian gravity allowing modeling
in terms of curvature scalar.

i. In TGD framework the physics for small deformations of vacuum extremals - whose
number is gigantic (any Lagrangian sub-manifold of CP2 defines a vacuum sector of
the theory) - would be governed by Einstein’s equations. The value of gravitational
constant is however dynamical and a little dimensional analysis argument suggests that
the gravitational constant satisfies [K55]

Geff (p) = L2(k)exp(−2SK) ,

http://en.wikipedia.org/wiki/RHIC
http://indico.cern.ch/getFile.py/access?contribId=10&sessionId=6&resId=0&materialId=slides&confId=149305
http://matpitka.blogspot.com/2011/10/adscft-does-not-work-well-for-heavy-ion.html
http://en.wikipedia.org/wiki/Lund_model
http://en.wikipedia.org/wiki/Lund_model
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where Lp is p-adic length scales associated with p-adic prime p ' 2k and SK is the
Kähler action for a deformation of CP2 type vacuum extremal in general smaller than
for full CP2.

ii. Ordinary gravitational constant would correspond to p = M127 = 2127 − 1 assignable
to electron: M127 is the largest Mersenne prime which does not define a completely
super-astrophysical p-adic length scale. The value of SK would be almost maximal and
induce an enormous reduction of the value of G.

iii. For hadron physics SK should not be large and in reasonable approximation this would
give Geff ' ~L2(k = 107). The deformations of CP2 type vacuum extremals, whose
M4 projections are random light-like curves. are assignable to elementary particles
such as gluons. In the case of hadrons these projections are expected to be short
and so that the exponent is expected to be near unity. One might hope that these
contributions dominate in the calculation of viscosity so that Einstein’s picture indeed
works.

iv. In the case of hadron physics there are no strong reason to expect a general reduction to
Einsteinian gravity. Higher spin states at the hadronic Regge trajectories are important
and hadron physics does not reduce to gravitational theory involving the exchanges of
only spin two strong gravitons.
This requires additional assumption which the lecture of Son tried to clarify. The
assumption is that the coordinate of AdS5 orthogonal to its boundary M4 representing
4-D Minkowski space represents scaling of the physical system and that the interactions
in the bulk are ultra-local with respect to this coordinate. Only systems with same scale
size interact. This assumption looks very strange to me but has analog in quantum
TGD. Personally I would take this argument with a big grain of salt.

Reduction to hydrodynamics

The AdS5/CFT duality in the strong form reduces the dynamics at the boundary of AdS5

to Einstein’s gravity in the interior of AdS and the N -stack of 3-branes corresponds to brane
black-hole in AdS5 × S5. There are also good reasons to expect that Einstein’s gravity in
turn reduces to hydrodynamics.

The field equations of TGD are conservation laws for isometry currents and Kähler currents
plus their super counterparts. Also in hydrodynamics the basic equations reduce to con-
servation laws. The structural equations of hydrodynamics correspond to the identification
of gauge fields and metrics as induced structures.

The reduction to 4-D hydrodynamics in much stronger sense is suggestive since a large
class of preferred extremals of Kähler action have interpretation as hydrodynamic flows
for which flow lines define coordinate curves of a global coordinate [K28]. Beltrami flows
are in question. For instance, a magnetic field for which Lorentz force vanishes is a good
example of 3-D Beltrami flow. There are good arguments in favore of the existence of a
unique preferred coordinate system defined in terms of light-like local direction and its dual
direction plus two orthogonal local polarization directions.

Could AdS/CFT duality have some interpretation in TGD framework?

In TGD framework the duality between strings and particles replacing AdS/CFT duality
means the replacement of AdS × S5 with space-time surface represented as surface in
M4 × CP2. Furthermore M4 is replaced with partonic 2-surfaces the super-conformal
invariance ofN = 4 SUSY inM4 is replaces with 2-D super-conformal invariance. Therefore
the attempts to build analogies with AdS/CFT duality type description might be waste of
time. The temptation for the search of analogies is however too high.

In the case of AdS/CFT duality for Minkowski space that coordinate of AdS5 orthogonal to
its M4 boundary is interpreted as a scale parameter for the system and also has interpreta-
tion as a scalar field in M4. Could this scaling degree have some sensible interpretation in
TGD framework. What about the N-stack of 3-branes representing a copy of M4 identified
as the boundary of AdS5?
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i. In TGD framework the only physically sensible interpretation would be in terms of
the hierarchy of Planck constants [K27]. The quantum size of the particle scales like
~ and is therefore integer valued. This suggests that the continuous AdS5 coordinate
orthogonal to M4 could be replaced with the integer labeling the effective values of
Planck constant and hence the local coverings of M4 × CP2 providing a convenient
description for the fact that -due to the enormous vacuum degeneracy of Kähler action-
the time derivatives of the imbedding space coordinates are multi-valued functions of
the canonical momentum densities. Different coverings that they effectively correspond
to different sectors of the effective imbedding space which can be seen as a finite covering
of M4×CP2. Only the particles with the same value of Planck constant can appear in
the same vertex of generalized Feynman diagrams and this is nothing but the strange
assumption made to guarantee the locality of AdS dynamics.

ii. Same collapse of the sheets of the covering actually applies in the directions transversal
to space-like and light-like 3-surfaces so that both of them represent branchings and
the total number of branches in the interior os n1n2.

iii. One must assume that the sheets of the covering collapse at the partonic 2-surfaces and
perhaps also at the string world sheets. This strange orbifold property brings strongly
in mind the stack of N-branes which collapse to single 3 brane however remembering its
N-stack property: for instance, a dynamical gauge group SU(N)×U(1) describing finite
measurement resolution emerges. The loss of the infinitely thin stack property in the
interior guarantees that N -stack property is not forgotten. I have indeed proposed that
similar emergence of gauge groups allowing to represent finite measurement resolution
in terms of gauge symmetry emerges also in TGD framework.

iv. The effective dimensionless coupling in the perturbative expansion is g2N/~ and for
large N limit the series does not converge. If N corresponds to the number of colors for
dynamically generated gauge group labeling colors, the substitution ~ = N~0 however
implies that the expansion parameter does not change at all so that the limit would be
different from the usual N →∞ limit used to derive AdS/CFT duality.

An integrable QFT in M2 identified as hyper-complex plane in number theoretic vision
is necessary for interpreting generalized Feynman diagrams as generalized braids. One
can of course ask whether one would have super-confromal QFT in M2 and wheter AdS3

could be replaced with its discrete version with normal coordinate identified as the integer
characterizing the value of Planck constant. To me this approach seems highly artificial
although it might make sense formally.

One can of course ask whether M4×CP2 could have some deep connection with AdS5×S5.
This might be the case: CP2 is obtained from S5 by identifying all points of its geodesic
circles and M4 is obtained from AdS5 by identifying all points of radial geodesics in the
the scaling direction.

Do black-holes in AdS5 × S5 have TGD counterpart?

The black-holes in AdS5 × S5 have very natural counterparts as regions of the space-time
surfaces with Euclidian signature of the induced metric. These regions represent generalized
Feynman diagrams. By holography one could restrict the consideration also to the partonic
2-surfaces at the ends of CDs and if string world sheets and partonic 2-surfaces are dual
to string world sheets coming as Minkowskian and Euclidian variants.

Black-holes in TGD framework would have Euclidian metric and their presence is absolutely
essential for reducing the functional integral to a genuine integral. Otherwise one would
have the analog of path integral with the exponential of Kähler action defining a mere
phase factor.

The entropy area law for the black-holes generalizes to p-adic thermodynamics and the p-
adic mass squared value for the particle predicted by p-adic thermodynamics is essentially
the p-adic entropy: both are mapped to the real sector by canonical identification. Also
the black hole entropy is proportional to mass squared.

The gigantic value of the gravitational Planck constants brings in additional interpretational
issues to be discussed later.
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13.4.4 TGD view about strongly interacting quark gluon plasma

The magnetic flux tubes/strings connecting quarks make the QCD plasma strongly inter-
acting in TGD framework.

i. In the hadronic phase the network formed by these flux tubes decomposes to sub-
networks assignable to the colliding protons. In the final state the sub-networks are
associated with the outgoing hadrons. In the collision a network is formed in which
the flux tubes can connect larger number of quarks and one obtains much longer cycles
in the network as in the initial and final states. This can be regarded as a defining
property of strongly interaction quark gluon plasma. IIn quantum world one obtains
a quantum superposition over networks with different connectedness structures. The
quark-gluon plasma is not ideal in quantum sense.

ii. The presence of plasma blob predicts the reduction of jet production cross section.
Typically a pair of jets is produced. If this occurs in deep interior of the plasma, the
jets cannot escape the plasma. If this occurs near the surface of the plasma, the other
jet escapes. This predicts reduction of the jet production cross section.

iii. The decomposition to connected flux tube networks could explain why the experimen-
tally detected ratio for jet production cross section nucleonic total scattering cross
section is larger than the predicted one: the flux tube network would consist of dis-
connected network with a considerably property and for these the jet production cross
section would not be so dramatically reduced by the fact that the other member of the
never gets out from the plasma blob.

In TGD context the basic process leading to the formation of the quark-gluon plasma
is reconnection for the flux tubes describable in terms of string diagrams AB − CD →
AD+BC. In the case of ordinary quark gluon plasma the density is so high that nucleons
overlap geometrically and lead to the formation of the plasma. In TGD framework the
magnetic bodies of quarks having size scale characterized by quark Compton length would
overlap. The Compton lengths for light quarks with masses estimated to be of order 10
MeV are much larger than the size scale of nucleon and even that of nucleus. What does
this mean? Does the reconnection process take place in several scales so that the notion
of quark gluon plasma would be fractal? Note that in the recent proton-proton collisions
the energy per nucleon is about 200 GeV. Does quark gluon plasma at LHC involve the
fusion of the flux tubves of the color magnetic bodies of nucleons? Do these form connected
structures.

In the kinetic gas theory viscous force in the system of parallel plates is caused by the
diffusion of particles moving with velocity u which depends on the coordinate orthogonal
to the parallel plates. One can imagine a fictive plane through which the particles diffuse in
both directions and the forces is due to that fact that the diffusing particles have different
velocities differing by ∆ux = ∂yuxlfree on the average. In the case of magnetic flux tubes
the presence of magnetic flux tube connection the two quarks at the opposite sides of
the fictive plane leads to a stretching of the flux tube and this costs energy. This favors
the diffusion of either quark to the other side of the fictive plane and this induces the
transformed of momentum parallel to the plates. Similar argument could apply also in the
case of the ordinary liquids if one allows also electric flux tubes.

Jets and flux tubes structures

Magnetic flux tube provide also a more concrete vision about the notion of jet.

i. Jets are collinear particle like objects producing collinear hadrons. The precise defini-
tion of jets is however problematic in QCD framework. TGD suggests a more precise
definition of jets as connected sub-networks formed by partons and by definition hav-
ing vanishing total Kähler magnetic charge. Jet would be kind of super-hadron which
decays to ordinary nearly collinear hadrons as the flux tube structure decomposes by
reconnection process to smaller connected flux tube structures during hadronization.
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ii. Factorization theorems of QCD discussed in very clear manner by Ian Stewart [C22]
state that the dynamics at widely different scales separate for each other so that quan-
tum mechanical interference effects can be neglected and probabilistic description ap-
plies in long length scales and quantal effects reduce to non-perturbative ones. The
initial and final stages of the collision process proceed slowly as compared to those
describable in terms of perturbative QCD. Hence one can apply partonic distribution
functions and fragmentation functions. These functions should have a description in
terms of reconnection process.

iii. The presence of different scales means in TGD framework to p-adic length scale hier-
archy assignable to flux tubes gives a much more precise articulation for the notion of
scale. No quantum interference effects can take place between different p-adic scales if
the real amplitudes are obtained from p-adic valued amplitudes by the generalization
of canonical identification discussed in [K89]. For instance, in p-adic mass calculations
the values p-adic mass squared are summed for for given p-adic prime before the map-
ping to real mass squared by canonical identification. For different values of p-adic
primes the additive quantities are the real masses.

Possible generalizations of Maxwell’s formula formula for the viscosity

Could one understand the viscosity if one assumes that the reconnection of the magnetic
flux tubes replaces the collisions of particles in the kinetic theory of gases? One can imagine
several alternatives.

i. The free path of the particle appears in the kinetic gas theory estimate η = nmvlfree
for the viscosity. If this decomposition makes sense now, lfree should correspond to
the size scale of the magnetic body of light quark and if its size corresponds to the
Compton length of the quark one would have lfree ∼ ~/m. If one assumes s ∼ n one
has η = nv~. For v = c = 1 this would give η/s ∼ ~/4π apart from numerical constant.
If ~ indeed appears in lfree and the magnetic flux tube size scales as ~, the minimum
value for the viscosity would scale as ~. It is difficult to say whether one should
regard this as good or bad prediction from the point of view of the hierarchy of Planck
constants. Over-optimistically one might ask whether large ~ could explain the non-
minimal values of η/s in terms of large ~. Note however that the minimal value of η/s
can be smaller than ~/4π in some systems.

ii. One could consider the replacement of the Compton length rC = ~/mq with the clas-
sical charge radius of quark defined as rcl = g2/mq. In this case the size scale of the
magnetic body would not depend on ~. For color coupling strength αs = .1 one would
have rcl/rC = 1.26 so that experimental data do not allow to distinguish between
these options. At low energies rcl would grow and therefore also the viscosity since the
lengths of flux tubes would get longer.

iii. One can also purely gravitational view about single partonic 2-surface. Taking the
notion of gravitational Planck constant seriously [K66], one can consider the replace-
ment of v with the velocity parameter v0 (dimensionless in the units used) appear-
ing in the gravitational Planck constant ~gr = GeffM

2/v0 and the identification
lfree = 2rS = 4GeffM : the diameter of the black hole identified as partonic 2-surface.
Note that Schwartchild radius would be equal to Planck length. Entropy would be
given 4π(2GeffM)2/~Geff multiplied by the number N = ~/~0 of the sheets of the
covering. This would give the lower bound ~0v0/4π which is smaller than that provided
by AdS/CFT approach. This option looks the most attractive one.

For all three options one would expect that η/s ratio is same for the quark-gluon plasma
formed in heavy ion collisions and in proton-proton collisions. The critical reader probably
wonders what one means with the entropy in the strongly interacting system. Magnetic flux
tubes could be seen as space-time correlates for entanglement. Can one regard the entropy
as a single particle observable? Can one assign to each partonic 2-surfaces an entangle-
ment entropy or does the entropy characterizes pairs of parton surfaces being analogous to
potential energy rather than kinetic energy?

http://media.physics.harvard.edu/video/?id=COLLOQ_STEWART_112210
http://tgd.wippiespace.com/public_html/tgdnumber/tgdnumber.html#qarithmetics
http://tgd.wippiespace.com/public_html/tgdnumber/tgdnumber.html#qarithmetics
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The formula for viscosity based on black-hole analogy

The following argument is a longer version of very concise argument of previous section
suggesting that the notion of gravitational Planck constant allows to generalize the formula
of the kinetic gas theory to give viscosity in the more general case. Partonic 2-surface is
regarded as an analog the horizon of a black-hole. The interior of the black-hole corresponds
to a region with an Euclidian signature of the induced metric. The space-time metric in
question could be either the induced metric or the effective metric defined by the modified
gamma matrices defined by Kähler action [K28]. Induced metric seems to be the correct
option since it is non-trivial for vacuum extremals of Kähler action but also the effective
metric probably has physical meaning. Only the data at horizon having by definition
degenerate four-metric appear in the formula for η/s.

i. The notion of gravitational Planck constant for space-time sheets carrying self gravi-
tational interaction is given by ~gr = kGM2/v0, where v0 < c = 1 has dimensions of
velocity. The interpretation is in terms of Planck constant assignable with flux tubes
mediating self gravitation and carrying dark energy identified as magnetic energy. The
enormous value of Planck constant means cosmological quantum coherence explaining
why this energy density is very slow varying and can be therefore described in terms
of cosmological constant in good approximation. Negative ”pressure” corresponds to
magnetic tension.

ii. Suppose that v0 is identified as the velocity appearing as typical velocity in the kinetic
theory estimate η = Mnvlfree. Suppose that lfree corresponds to Schwartschild radius
for the effective gravitational constant lfree = 2rs = 4GeffM . Another possible iden-

tification is as the scaled up Planck length lfree = lP =
√
~G = GM/

√
v0. Suppose

that the formula for black hole entropy holds true and gives for the entropy of single
particle the expression S = 4π(2GeffM)2/~Geff . This gives η/s = ~v0/4π for the
first option (note that v0 dependence disappears. One obtains η/s = ~/16π

√
v0 for the

second option so that v0 dependence remains.

iii. The objection is that black hole entropy goes to zero as ~ increases. One can indeed
argue that the S = 4π(2GeffM)2/~Geff gives only the contribution of single sheet in
the N = hbar/~0 fold covering of M4 × CP2 so that one must multiply this entropy
with N . This would give

η

S
=

~0

4π
× v0

c
.

The minimum viscosity can be smaller than ~0/4π and the essential parameter is the
velocity parameter v0 = v0 < c = 1. This is true also in AdS-CFT correspondence.

This argument suggests that the Einsteinian dark gravity with gravitational gauge coupling
having as parameters p-adic length scale and the typical Kähler action of deformed CP2

type vacuum extremal could allow to understand viscosity in terms of string-QFT duality in
the idealization that the situation reduces to a black-hole physics with partonic 2-surfaces
taking the role of black holes. This proposal might make even in the case of condensed
matter if one one gives up the assumption that the basic objects are more analogous to
stars than black-holes.

13.4.5 AdS/CFT is not favored by LHC

As already noticed that the first experimental results from LHC [C18] do not favor AdS/CFT
duality but are qualitatively consistent with TGD view about gauge-gravity duality. Be-
cause of the importance of the results I add a version of my blog posting [C2] about these
results.

Sabine Hossenfelder told in BackReaction blog about the first results from lead-lead ion col-
lisions at LHC, which have caused a cold shower for AdS/CFT enthusiasts. Or summarizing
it in the words of Sabine Hossenfelder:

http://indico.cern.ch/getFile.py/access?contribId=10&sessionId=6&resId=0&materialId=slides&confId=149305
http://matpitka.blogspot.com/2011/10/adscft-does-not-work-well-for-heavy-ion.html
http://backreaction.blogspot.com/2011/10/adscft-confronts-data.html
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As the saying goes, a picture speaks a thousand words, but since links and image sources
have a tendency to deteriorate over time, let me spell it out for you: The AdS/CFT scaling
does not agree with the data at all.

The results

The basic message is that AdS/CFT fails to explain the heavy ion collision data about
jets at LHC. The model should be able to predict how partons lose their momentum in
quark gluon plasma assumed to be formed by the colliding heavy nuclei. The situation is
of course not simple. Plasma corresponds to low energy QCD and strong coupling and is
characterized by temperature. Therefore it could allow description in terms of AdS/CFT
duality allowing to treat strong coupling phase. Quarks themselves have a high transversal
momentum and perturbative QCD applies to them. One has to understand how plasma
affects the behavior of partons. This boils to simple question: What is the energy loss of
the jet in plasma before it hadronizes.

The prediction of AdS/CFT approach is a scaling law for the energy loss E ∝ L3T , where
L is the length that parton travels through the plasma and the temperature T is about
500 MeV is the temperatures of the plasma (at RHIC it was about 350 MeV). The figure
in the posting of Sabine Hossenfelder [C1] compares the prediction for the ratio RAA of
the predicted nuclear cross section for jets in lead-lead collisions to those in proton-proton
collisions to experimental data normalized in such a manner that if the nucleus behaved
like a collection of independent nucleons the ratio would be equal to one.

That the prediction for RAA is too small is not so bad a problem: the real problem is that
the curve has quite different shape than the curve representing the experimental data. In
the real situation RAA as a function of the average transversal momentum pT of the jets
approaches faster to the ”nucleus as a collection of independent nucleons” situation than
predicted by AdS/CFT approach. Both perturbative QCD and AdS/CFT based model fail
badly: their predictions do not actually differ much.

An imaginative theoretician can of course invent a lot of excuses. It might be that the
number Nc = 3 of quark colors is not large enough so that strong coupling expansion and
AdS/CFT fails. Supersymmetry and conformla invariance actually fail. Maybe the plasma
temperature is too high (higher that at RHIC where the observed low viscocity of gluon
plasma motivated AdS/CFT approach). The presence of both weak coupling regime (high
energy partons) and strong coupling regime (the plasma) might have not been treated
correctly. One could also defend AdS/CFT by saying that maybe one should take into
account higher stringy corrections for strings moving in 10 dimensional AdS5 × S5. Why
not branes? Why not black holes? And so on....

Could the space-time be 4-dimensional after all?

What is remarkable that a model called ”Yet another Jet Energy-loss Model” (YaJEM)
based on the simple old Lund model [C4] treating gluons as strings in 4-D space-time
works best! Also the parameters derived for RHIC do not need large re-adjustment at
LHC.

4-D space-time has been out of fashion for decades and now every-one well-informed theo-
retician talks about emerget space-time. Don’t ask what this means. Despite my attempts
to understand I (and very probably any-one) do not have a slighest idea. What I know is
that string world sheets are 2-dimensional and the only hope to get 4-D space-time is by
this magic phenomenon of emergence. In other worlds, 3-brane is what is wanted and it
should emerge ”non-perturbatively” (do not ask what this means!).

Since there are no stringy authorities nearby, I however dare to raise a heretic question.
Could it be that string like objects in 4-D space-time are indeed the natural description?
Could strings, branes, blackholes, etc. in 10-D space-time be completely un-necessary stuff
needed to keep several generations of misled theoreticians busy? Why not to to start by
trying to build abstraction from something which works? Why not start from Lund model
or hadronic string model and generalize it?

http://backreaction.blogspot.com/2011/10/adscft-confronts-data.html
http://backreaction.blogspot.com/2011/10/adscft-confronts-data.html
http://en.wikipedia.org/wiki/Lund_model
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This is what TGD indeed was when it emerged some day in October year 1977: a gen-
eralization of the hadronic string model by replacing string world sheets with space-time
sheets. Another motivation for TGD was as a solution to the energy problem of GRT. In
this framework the notion of (color) magnetic flux tubes emerges naturally and magnetic
flux tubes are one of the basic structures of the theory now applied in all length scales.
The improved mathematical understanding of the theory has led to notions like effective 2-
dimensionality and stringy worlds sheets and partonic 2-surfaces at 4-D space-time surface
of M4 × CP2 as basic structures of the theory.

What TGD can say about the situation?

In TGD framework a naive interpretation for LHC results would be that the colliding nuclei
do not form a complete plasma and this non-ideality becomes stronger as pT increases.
As if for higher pT the parton would traverse several blobs rather than only single big
one and situation would be between an ideal plasma and to that in which nucleuo form
collections of independent nucleons. Could quantum superposition of states with each of
them representing a collection of some number of plasma blobs consisting of several nucleons
be in question. Single plasma blob would correspond to the ideal situation. This picture
would conform with the vision about color magnetic flux tubes as a source of long range
correlations implying that what is called quark-gluon plasma is in the ideal case like single
very large hadron and thus a diametrical opposite for parton gas.

In TGD framework where hadrons themselves correspond to space-time sheets, this inter-
pretation is suggestive. The increase of the temperature of the plasma corresponds to the
reduction of αs suggesting that with at T=500 GeV at LHC the plasma is more ”blobby”
than at T=350 GeV at RHIC. This would conform with the fact that at lower tempera-
ture at RHIC the AdS/CFT model works better. Note however that at RHIC the model
parameters for AdS/CFT are very different from those at LHC [C1]: not a good sign at all.

I have also discussed the TGD based explanation of RHIC results for heavy ion collisions
and the unexpected behavior of quark-gluon plasma in proton-proton (rather than heavy
ion) collisions at LHC [K48].

13.5 Proposal for a twistorial description of generalized
Feynman graphs

Listening of the lectures of Nima Arkani-Hamed is always an inspiring experience and so also
at this time [B24]. The first recorded lectures was mostly about the basic ”philosophical”
ideas behind the approach and the second lecture continued discussion of the key points
about twistor kinematics which I should already have in my backbone but do not. The
lectures stimulated again the feeling that the generalized Feynman diagrammatics has all
the needed elements to allow a twistorial description. It should be possible t to interpret
the diagrams as the analogs of twistorial diagrams.

A couple of new ideas emerged as a result of concentrate effort to build bridge to the
twistorial approach.

i. Generalized Feynman diagrams involve only massless states at wormhole throats so that
twistorial description makes sense for the kinematical variables. One should identify
the counterparts of the lines and vertices of the twistor diagrams constructed from
planar polygons and counterparts of the region momenta.

ii. M2 ⊂ M4 appears as a central element of TGD based Feynman diagrammatics and
M2 projection of the four momentum appears in propagator and also in the modified
Dirac equation. I realized that p-adic mass calculations must give the thermal expec-
tation value of the M2 mass squared. Since the throats are massless this means that
the transversal momentum squared equal to CP2 contribution plus conformal weight
contribution to mass squared.

iii. It is not too surprising that a very beautiful interpretation in terms of the analogs
of twistorial diagrams becomes possible. The idea is to interpret wormhole contacts

http://www.as.huji.ac.il/schools/phys29/recorded_lectures
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as pairs of lines of twistor diagrams carrying on mass shell momenta. In this manner
triangles with truncated apexes with double line representing the wormhole throats
become the basic objects in generalized Feynman diagrammatics. The somewhat mys-
terious region momenta of twistor approach correspond to momentum exchanges at
the wormhole contacts defining the vertices. A reasonable expectation is that the Yan-
gian invariants used to construct the amplitudes of N = 4 SUSY can be used as basic
building bricks also now.

iv. Renormalization group is not understood in the usual twistor approach and p-adic
considerations and quantization of the size of causal diamond (CD) suggests that the
old proposal about discretization of coupling constant evolution to p-adic length scale
evolution makes sense. A very concrete realization of the evolution indeed suggest itself
and would mean the replacement of each triangle with the quantum superposition of
amplitudes associated with triangles with smaller size scale and contained with the
original triangle characterized by the size scale of corresponding CD containing it. In
fact the incoming and outgoing particles of of vertex could be located at the light-like
boundaries of CD.

v. The approach should be also number theoretically universal and this suggests that the
amplitudes should be expressible in terms of quantum rationals and rational functions
having quantum rationals as coefficients of powers of the arguments. Quantum ra-
tionals are characterized by p-adic prime p and p-adic momentum with mass squared
interpreted as p-adic integer appears in the propagator. This means that the propa-
gator proportional to 1/P 2 is proportional to 1/p when mass squared is divisible by p,
which means that one has pole like contribution. The real counterpart of propagator in
canonical identification is proportional to p. This would select the all CD characterized
by n divisible by p as analogs of poles.

13.5.1 What generalized Feynman diagrams could be?

Let us first list briefly what these generalized Feynman diagrams emerge and what they
should be.

i. Zero energy ontology and the closely related notion of causal diamond (CD are abso-
lutely essential for the whole approach. U -matrix between zero energy states is unitary
but does not correspond to the S-matrix. Rather, U -matrix has as its orthonormal rows
M-matrices which are ”complex” square roots of density matrices representable as a
product of a Hermitian square root of density matrix and unitary and universal S-
matrix commuting with it so that the Lie algebra of these Hermitian matrices acts as
symmetries of S-matrix. One can allow all M -matrices obtained by allowing integer
powers of S-matrix and obtains the analog of Kac-Moody algebra. The powers of S
correspond to CD with temporal distance between its tips coming as integer multiple of
CP2 size. The goal is to construct M -matrices and these could be non-unitary because
of the presence of the hermitian square root of density matrix.

ii. If is assumed that M -matrix elements can be constructed in terms of generalized Feyn-
man diagrams. What generalized Feynman diagrams strictly speaking are is left open.
The basic properties of generalized Feynman diagrams - in particular the property
that only massless on mass shell states but with both signs of energy appear- however
suggest strongly that they are much more like twistor diagrams and that twistorial
method used to sum up Feynman diagrams apply.

The lines of the generalized Feynman diagrams

Generalized Feynman diagrams are constructed using solely diagrams containing on mass
shell massless particles in both external and internal lines. Massless-ness could mean also
massless-ness in M4 × CP2 sense, and p-adic thermodynamics indeed suggests that this is
true in some sense.

i. For massless-ness in M4 × CP2 sense the standard twistor description should fail for
massive excitations having mass scale of order 104 Planck masses. At external lines
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massless states form massive on mass shell particles. In the following this possible
difficulty will be neglected. Stringy picture suggests that this problem cannot be fatal.

ii. Second possibility is that massless states form composites which in the case of fermions
have the mass spectrum determined by CP2 Dirac operator and and that that physi-
cal states correspond to states of super-conformal representations with ground states
weight determined by the sum of vacuum conformal weight and the contribution of CP2

mass squared. In this case, one would have massless-ness in M4 sense but composite
would be massless in M4 × CP2 sense. In this case twistorial description would work.

iii. The third and the most attractive option is based on the fact that its is M2 momentum
that appears in the propagators. The picture behind p-adic mass calculations is string
picture inspired by hadronic string model and in hadron physics one can assign M2 to
longitudinal parts of the parton momenta.
One can therefore consider the possibility that M2 momentum square obeys p-adic
thermodynamics. M2 momentum appears also in the solutions of the modified Dirac
equation so that this identification looks physically very natural. M2 momentum
characterizes naturally also massless extremals (topological light rays) and is in this
case massless. Therefore throats could be massless but M2 momentum identifiable as
the physical momentum would be predicted by p-adic thermodynamics and its p-adic
norm could correspond to the scale of CD.
Mathematically this option is certainly the most attractive one and it might be also
physically acceptable since integration over moduli characterizing M2 is performed to
get the full amplitude so that there is no breaking of Poincare invariance.

There are also other complications.

i. Massless wormhole throats carry magnetic charges bind to form magnetically neutral
composite particles consisting of wormholes connected by magnetic flux tubes. The
wormhole throat at the other end of the wormhole carries opposite magnetic charge
and neutrino pair canceling the electro-weak isospin of the physical particle. This
complication is completely analogous to the appearance of the color magnetic flux
tubes in TGD description of hadrons and will be neglected for a moment.

ii. Free fermions correspond to single wormhole throats and the ground state is massless
for them. Topologically condensed fermions carry mass and the ground states has
developed mass by p-adic thermodynamics. Above considerations suggests that the
correct interpretation of p-adic thermal mass squared is as M2 mass squared and that
the free fermions are still massless! Bosons are always pairs of wormhole throats. It is
convenient to denote bosons and topologically condensed fermions by a pair of parallel
lines very close to each other and free fermion by single line.

iii. Each wormhole throat carries a braid and braid strands are carriers of four-momentum.

A. The four momenta are parallel and only the M2 projection of the momentum
appears in the fermionic propagator. To obtain Lorentz invariance one must inte-
grate over boosts of M2 and this corresponds to integrating over the moduli space
of causal diamond (CD) inside which the generalized Feynman diagrams reside.

B. Each line gives rise to a propagator. The sign of the energy for the wormhole throat
can be negative so that one obtains also space-like momentum exchanges.

C. It is not quite clear whether one can allow also purely bosonic braid strands. The
dependence of the over all propagator factor on longitudinal momentum is 1/p2n so
that throats carrying 1 or 2 fermionic strands (or single purely bosonic strand) are
in preferred position and braid strand numbers larger than 2 give rise to something
different than ordinary elementary particle. It is probably not an accident that
quantum phases q = exp(i2π/n) give rise to bosonic and fermionic statistics for
n = 1, 2 and to braid statistics for n > 2. States with n ≥ 3 are expected to
be anyonic. This also reduces the large super symmetry generated by fermionic
oscillator operators at the partonic 2-surfaces effectively to N = 1 SUSY.

In the following It will be assume that all braid strands appearing in the lines are massless
and have parallel four-momenta and that M2 momentum squared is given by p-adic ther-
modynamics and actually mass squared vanishes. It is also assumed that M2 momenta of
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the throats of the wormhole throats are paralleI in accordance with the classical idea that
wormhole throats move in parallel. It is convenient to denote graphically the wormhole
throat by a pair of parallel lines very close to each other.

Vertices

The following proposal for vertices neglects the fact that physical elementary particles are
constructed from wormhole throat pairs connected by magnetic flux tubes. It is however
easy to generalizes the proposal to that case.

i. Conservation of momentum holds in each vertex but only for the total momentum
assignable to the wormhole contact rather than for each throat. The latter condition
would force all partons to have parallel massless four-momenta and the S-matrix would
be more or less trivial. Conservation of four-momentum, the massless on mass shell
conditions for 4-momenta of wormhole throatas and on mass shell conditions M2 mo-
mentum squared given by stringy mass squared spectrum are extremely powerful and
it is quite possible that one obtains in a given resolution defined by the largest and
smallest causal diamonds finite number of diagrams.

ii. I have already earlier developed argments strongly suggesting that that only three-
vertices are fundamental [K18]. The three vertex at the level of wormhole throats
means gluing of the ends of the generalized line along 2-D partonic two surface defining
their ends so that diagrams are generalization of Feynman diagrams rather than 4-D
generalizations of string diagrams so that a generalization of a a trouser diagram does
not describe particle decay). The vertex can be BFF or BBB vertex or a variant of
this kind of vertex obtained by replacing some B:s and F:s with their super-partners
obtained by adding right handed neutrino or antineutrino on the wormhole throat
carrying fermion number. Massless on mass shell conditions hold true for wormhole
throats in internal lines but they are not on mass shell as a massive particles like
external lines.

iii. What happens in the vertex is momentum exchange between different wormhole throats
regarded as braids with strands carrying parallel momenta. This momentum exchange
in general corresponds to a non-vanishing mass squared and can be graphically de-
scribed as a line connecting two vertices of a triangle defined by the particles emerging
into the vertex. To each vertex of the triangle either massless fermion line or pair of
lines describing topologically condensed fermion or boson enters. The lines connecting
the vertices of the triangle carry the analogs of region momenta [K87], which are in
general massive but the differences of two adjacent region momenta are massless. The
outcome is nothing but the analog of the twistor diagram. 3- vertices are fundamental
and one would obtain only 3-gons and the Feynman graph would be a collection of
3-gons such that from each line emerges an internal or external line.

iv. A more detailed graphical description utilizes double lines. For FFB vertices with
free fermions one would have 4-gon containing a pair of vertices very near to each
other corresponding to the outgoing boson wormhole decribed by double line. This
is obtained by truncating the bosonic vertex of 3-gon and attaching bosonic double
line to it. For topologically condensed fermions and BBB vertex one would have 6-gon
obtained by truncating all apices of a 3-gon.

Some comments about the diagrammatics is in order.

i. On mass shell conditions and momentum conservation conditions are extremely pow-
erful so that one has excellent reasons to expect that in a given resolution defined by
the largest and smallest CD involves the number of contributing diagrams is finite.

ii. The resulting diagrams are very much like twistor diagrams in N = 4 D=4 SYM for
which also three-vertex and its conjugate are the fundamental building bricks from
which tree amplitudes are constructed: from tree amplitudes one in turn obtains loop
amplitudes by using the recursion formulas. Since all momenta are massless, one can
indeed use twistor formalism. For topologically condensed fermions one just forms all
possible diagrams consisting of 6-gons for which the truncated apices are connected by
double lines and takes care that n lines are taken to be incoming lines.
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iii. The lines can cross, and this corresponds to the analog of non-planar diagram. I
have proposed a knot-theoretic description of this situation based on the generalized
braiding matrix appearing in integrable QFTs defined in M2. By using a representation
for the braiding operation which can be used to eliminate the crossings of the lines one
could transform all diagrams to planar diagrams for which one could apply existing
construction recipe.

iv. The basic conjecture is that the basic building bricks are Yangian invariants. Not only
for the conformal group of M4 but also for the super-conformal algebra should have
an extension to Yangian. This Yangian should be related to the symmetry algebra
generated by the M-matrices and analogous to Kac-Moody algebra. For this Yangian
points as vertices of the momentum polygon are replaced with partonic 2-surfaces.

Generalization of the diagrammatics to apply to the physical particles

The previous discussion has neglected the fact that the physical particles are not wormhole
contacts. Topologically condensed elementary fermions and bosons indeed correspond to
magnetic flux pairs at different space-time sheets with wormhole contacts at the ends. How
could one describe this situation in terms of the generalization Feynman diagrams?

The natural guess is that one just puts two copies of diagrams above each other so that
the triangles are replaced with small cylinders with cross section given by the triangle and
the edges of this triangular cylinder representing magnetic flux tubes. It is natural to allow
momentum exchanges also at the other end of the cylinder: for ordinary elementary particle
these ends carry only neutrino pairs so that the contribution to interactions is screening at
small momenta. Also momentum exchanges long the direction of the cylinder should be
allowed and would correspond to the non-perturbative low energy degrees of freedom in the
case of hadrons. This momentum exchange assignable to flux tube would be between the
truncated triangle rather than separately along the three vertical edges of the triangular
cylinder.

13.5.2 Number theoretical universality and quantum arithmetics

The approach should be also number theoretically universal meaning that amplitudes
should make sense also in p-adic number fields or perhaps in adelic sense in the tensor
product of p-adic numbers fields. Quantum arithmetics is characterized by p-adic prime
and canonical identification mapping p-adic amplitudes to real amplitudes is expected to
make number theoretical universality possible.

This is achieved if the amplitudes should be expressible in terms of quantum rationals and
rational functions having quantum rationals as coefficients of powers of the arguments.
This would be achieved by simply mapping ordinary rationals to quantum rationals if they
appear as coefficients of polynomials appearing in rational functions.

Quantum rationals are characterized by p-adic prime p and p-adic momentum with mass
squared interpreted as p-adic integer appears in the propagator. If M2 mass squared
is proportional to this p-adic prime p, propagator behaves as 1/P 2 ∝ 1/p, which means
that one has pole like contribution for these on mass shell longitudinal masses. p-Adic mass
calculations indeed give mass squared proportional to p. The real counterpart of propagator
in canonical identification is proportional to p. This would select the all CD characterized
by n divisible by p as analogs of propagator poles. Note that the infrared singularity is
moved and the largest p-adic prime appearing as divisor of integer characterizing the largest
CD indeed serves as a physical IR cufoff.

It would seem that one must allow different p-adic primes in the generalized Feynman
diagram since physical particles are in general characterized by different p-adic primes.
This would require the analog of tensor product for different quantum rationals analogous
to adeles. These numbers would be mapped to real (or complex) numbers by canonical
identification.
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How to get only finite number of diagrams in a given IR and UV resolution?

In gauge theory one obtains infinite number of diagrams. In zero energy ontology the overall
important additional constraint comes from on mass shell conditions at internal lines and
external lines and from the requirement that the M2 momentum squared is quantized for
super-conformal representation in terms of stringy mass squared spectrum.

This condition alone does not however imply that the number of diagrams is finite. If
forward scattering diagram is non-vanishing also scattering without on mass shell massive
conditions on final state lines is possible. One can construct diagrams representing a
repeated n → n scattering and combining these amplitudes with non-forward scattering
amplitude one obtains infinite number of scattering diagrams with fixed initial and final
states. Number theoretic universality however requires that the number of the contributing
diagrams must be finite unless some analytic miracles happens.

The finite number of diagrams could be achieved if one gives for the vision about CDs
within CDs a more concrete metric meaning. In spirit of Uncertainty Principle, the size
scale of the CD defined by the temporal distance between its tips could correspond to the
inverse of the momentum scale defined as its inverse. A further condition would be that the
sub-CDs and their Lorentz boosts are indeed within the CD and do not overlap. Obviously
the number of diagrams representing repeated n− n scattering forward scattering is finite
if these assumptions are made. This would also suggest a scale hierarchy in powers of
2 for CDs: the reason is that given CD with scale T = nT (CP2) can contain two non-
overlapping sub-CDs with the same rest frame only if sub-CD has size scale smaller than
nTCP2/2. This applies also to the Lorentz boosts of the sub-CDs.

Amplitudes would be constructed by labeling the CDs by integer n defining its size scale.
p-Adicity suggests that the factorization of n to primes must be important and if n = p
condition holds true, a new resonant like contribution appears corresponding to p-adic
diagrams involving propagator.

Should one allow all M2 momenta in the loops in all scales or should one restrict the M2

momenta to have a particular mass squared scale determined somehow by the size of CD
involved? If this kind of constraint is posed it must be posed in mathematically elegant
manner and it is not clear how to to this.

Is this kind of constraint really necessary? Quantum arithmetics for the length scale char-
acterized by p-adic prime p would make M2 mass squared values divisible by p to almost
poles of the propagators, and this might be enough to effectively select the particular p
and corresponding momentum scale and CD scale. Consider only the Mersenne prime
M127 = 2127 − 1 as a concrete example.

How to realize the number theoretic universality?

One should be able to realized the p-adicity in some elegant manner. One must certainly al-
low different p-adic primes in the same diagram and here adelic structure seems unavoidable
as tensor product of amplitudes in different p-adic number fields or rather - their quantum
arithmetic counterparts characterized by a preferred prime p and mapped to reals by the
substitution p→ 1/p. What does this demand?

i. One must be able to glue amplitudes in different p-adic number fields together so that
the lines in some case must have dual interpretation as lines of two p-adic number fields.
It also seems that one must be able to assign p-adic prime and quantum arithmetics
characterized by a given prime p to to a given propagator line. This prime is probably
not arbitrarily and it will be found that it should not be larger than the largest prime
dividing n characterizing the CD considered.

ii. Should one assign p-adic prime to a given vertex?

A. Suppose first that bare 3-vertices reduce to algebraic numbers containing no ra-
tional factors. This would guarantee that they are same in both real and p-adic
sense. Propagators would be however quantum rationals and depend on p and have
almost pole when the integer valued mass squared is proportional to p.
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B. The radiative corrections to the vertex would involve propagators and this sug-
gests that they bring in the dependence on p giving rise to p-adic coupling con-
stant evolution for the real counterparts of the amplitudes obtained by canonical
identification.

A. Should also vertices obey p-adic quantum arithmetics for some p? What about a
vertex in which particles characterized by different p-adic primes enter? Which
prime defines the vertex or should the vertex somehow be multi-p p-adic? It
seems that vertex cannot contain any prime as such although it could depend
on incoming p-adic primes in algebraic or transcendental manner.

B. Could the radiative corrections sum up to algebraic number depending on the
incoming p-adic primes? Or are the corrections transcendental as ordinary per-
turbation theory suggests and involve powers of π and logarithm of mass squared
and basically logarithms of some primes requiring infinite-dimensional transcen-
dental extension of p-adic numbers? If radiative corrections depend only on the
logarithms of these primes p-adic coupling constant evolution would be obtained.
The requirement that radiative vertex corrections vanish does not look physically
plausible.

C. Only sub-CDs corresponding to integers m < n would be possible as sub-CD. A
geometrically attractive possibility is that CD characterized by integer n allows
only propagator lines which correspond to prime factors of integers not larger than
the largest prime dividing n in their quantum arithmetics. Bare vertices in turn
could contain only primes larger than the maximal prime dividing n. This would
simplify the situation considerably- This could give rise to coupling constant evolu-
tion even in the case that the radiative corrections are vanishing since the rational
factors possibly present in vertices would drop away as n would increase.

D. Integers n = 2k give rise to an objection. They would allow only 2-adic propagators
and vertices containing no powers of 2. For p = 2 the quantum arithmetics reduces
to ordinary arithmetics and ordinary rationals correspond to p = 2 apart from the
fact that powers of 2 mapped to their inverses in the canonical identification. This
is not a problem and might relate to the fact that primes near powers of 2 are
physically preferred. Indeed, the CDs with n = 2k would be in a unique position
number theoretically. This would conform with the original - and as such wrong -
hypothesis that only these time scales are possible for CDs. The preferred role of
powers of two supports also p-adic length scale hypothesis.

These observations give rather strong clues concerning the construction of the amplitudes.
Consider a CD with time scale characterized by integer n.

i. For given CD all sub-CDs with m < n are allowed and all p-adicities corresponding
to the primes appearing as prime factors of given m are possible. m = 2k are in a
preferred position since p = 2 quantum rationals not containing 2 reduce to ordinary
rationals.

ii. The geometric condition that sub-CDs and their boosts remain inside CD and do not
overlap together with momentum conservation and on-mass-shell conditions on internal
lines implies that only a finite number of generalized Feynman diagrams are possible for
given CD. This is essential for number theoretical universality. To each sub-CD one
must assign its moduli spaces including its not-too-large boosts. Also the planes M2

associated with sub-CDs should be regarded as independent and one should integrate
over their moduli.

iii. The construction of amplitudes with a given resolution would be a process involving
a finite number of steps. The notion of renormalization group evolution suggests a
generalization as a change of the amplitude induced by adding CDs with size smaller
than smallest CDs and their boosts in a given resolution.

iv. It is not clear whether increase of the upper length scale interpreted as IR cutoff
makes sense in the similar manner although physical intuition would encourage this
expectation.
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13.5.3 How to understand renormalization flow in twistor context?

In twistor context the notion of mass renormalization is not straightforward since everything
is massless. In TGD framework p-adic mass scale hypothesis suggests a solution to the
problem.

i. At the fundamental level all elementary particles are massless and only their composites
forming physical particles are massive.

ii. M2 mass squared is given by p-adic mass calculations and should correspond to the
mass squared of the physical particle. There are contributions from magnetic flux tubes
and in the case of baryons this contribution dominates.

iii. p-Adic physics discretizes coupling constant flow. Once the p-adic length scale of the
particle is fixed its M2 momentum squared is fixed and massless takes care of the rest.

Consider now how renormalization flow would emerge in this picture. At the level of
generalized Feynman diagrams the change of the IR (UV) resolution scale means that the
maximal size of the CDs involve increases (the minimal size of the sides decreases).

Concerning the question what CD scales should be allowed, the situation is not completely
clear.

i. The most general assumption allows integer multiples of CP2 scale and would guarantee
that the products of hermitian matrices and powers of S-matrix commuting with them
define Kac-Moody type algebra assignable to M-matrices. If one uses in renormalization
group evolution equation CDs corresponding to integer multiples of CP2 length scale,
the equation would become a difference equation for integer valued variable.

ii. p-Adicity would suggest that the scales of CDs come as prime multiples of CP2 scale.
The proposed realization of p-adicity indeed puts CDs characterized by p-adic primes
p in a special position since they correspond to the emergence of a vertex corresponding
to p-adic prime p which depends on p in the sense that the radiative corrections to
3-vertex can give it a dependence on log(p). This requires infinite-D transcendental
extension of p-adic numbers.
As far as coupling constant evolution in strict sense is considered, a natural looking
choice is evolution of vertices as a function of p-adic primes of the particles arriving to
the vertex since radiative corresponds are expected to depend on their logarithms.

iii. p-Adic length scale hypothesis would allow only p-adic length scales near powers of
two. There are excellent reasons to expect that these scales are selected by a kind of
evolutionary process favoring those scales for CDs for which particles are maximally
stable. The fact that quantum arithmetics for p = 2 reduces to ordinary arithmetics
when quantum integers do not contain 2 raises with size scales coming as powers of 2
in a special position and also supports p-adic length scale hypothesis.

Renormalization group equations are based on studying what happens in an infinitesimal
reduction of UV resolution scale would mean. Now the change cannot be infinitesimal but
must correspond to a change in the scale of CD by one unit defined by CP2 size scale.

i. The decrease of UV cutoff means addition of new details represented as bare 3-vertices
represented by truncated triangle having size below the earlier length scale resolution.
The addition can be done inside the original CD and inside any sub-CD would be in
question taking care that the details remain inside CD. The hope is that this addition
of details allows a recursive definition. Typically addition would involve attaching
two sub-CDs to propagator line or two propagator lines and connecting them with
propagator. The vertex in question would correspond to a p-adic prime dividing the
integer characterizing the sub-CDs. Also the increase of the shortest length scale makes
sense and means just the deletion of the corresponding sub-CDs. Note that also the
positions of sub−CDs inside CD manner since the number of allowed boosts depends
on the position. This would mean an additional complication.

ii. The increase of IR cutoff length means that the size of the largest CD increases. The
physical interpretation would be in terms of the time scale in which one observes the
process. If this time scale is too long, the process is not visible. For instances, the
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study of strong interactions between quarks requires short enough scale for CD. At
long scales one only observes hadrons and in even longer scales atomic nuclei and
atoms.

iii. One could also allow the UV scale to depend on the particle. This scale should cor-
respond to the p-adic mass scales assignable to the stable particle. In hadron physics
this kind of renormalization is standard operation.

13.5.4 Comparison with N = 4 SYM

The ultimate hope is to formulate all these ideas in precise formulas. This goal is still far
away but one can make trials. Let us first compare the above proposal to the formalism in
N = 4 SYM.

i. In the construction of twistorial amplitudes the 4-D loop integrals are interpreted as
residue integrals in complexified momentum space and reduces to residues around the
poles. This is analogous to using ”on mass shell states” defined by this poles. In TGD
framework the situation is different since one explicitly assigns massless on-mass-shell
fermions to braid strands and allows the sign of the energy to be both positive and
negative.

ii. Twistor formalism and description of momentum and helicity in terms of the twistor
(λ, µ) certainly makes sense for any spin. The well-known complications relate to
the necessity to use complex twistors for M4 signature: this would correspond to
complexified space-time or momentum space. Also region momenta and associated
momentum twistors are the TGD counterparts so that the basic building bricks for
defining the analogs of twistorial amplitudes exist.

An important special feature is that the gauge potential is replaced with its N = 4 super
version.

i. This has some non-generic implications. In particular gluon helicity -1 is obtained from
1 ground state by ”adding” four spartners with helicity +1/2 each. This interpretation
of the two helicities of a massless particle is not possible in N < 4 theories nor in TGD
and the question is whether this is something deep or not remains open.

ii. In TGD framework it is natural to interpret all fermion modes associated with partonic
2-surface (and corresponding light-like 3-surfaces) as generators of super-symmetry and
fermions are fundamental objects instead of helicity +1 gauge bosons. Right-handed
neutrino has special role since it has no electroweak or color interactions and generates
SUSY for which breaking is smallest.

iii. The N = 2 SUSY generated by right-handed neutrino and antineutrino is broken since
the propagator for states containing three fermion braid strands at the same wormhole
throat behaves like 1/p3: this is already an anyon-like state. The least broken SUSY
is N = 1 SUSY with spartners of fermions being spin zero states. The proposal is
that one could construct scattering amplitudes by using a generalize chiral super-field
associated with N equal to the number of spinor modes acting on ground state that
has vanishing helicity. For N = 4 it has helicity +1 [K29]. This would suggest that
the analogs of twistorial amplitudes exist and could even have very similar formulas in
terms of twistor variables.

iv. The all-loop integrand [B36] for scattering amplitudes in planar N = 4 SYM relies
of BCFW formula allowing to sew two n-particle three amplitudes together using
single analog of propagator line christened as BCFW bridge. Denote by Y n, k, l n-
particle amplitudes with k positive helicity gluons and l loops. One can glue YnL,kL,lL
and YnR,kR,lR by using BCFW bridge and ”entangled ” removal of two external lines
YnL+nR,k=kL+kR+1,l=lL+lR−1) amplitude to get Yn=nL+nR−2,k=kL+kR+1,l=lL+lR ampli-
tude recursively by starting from just two amplitudes defining the 3-vertices. The
procedure involves only residue integral over the Gl(k, n) for a quantity which is Yan-
gian invariant. The question is whether one could apply this procedure by replacing
N = 4 SUSY with SUSY in TGD sense and generalizing the fundamental three particle
vertices appropriately by requiring that they are Yangian invariants?

http://arxiv.org/abs/1008.2958
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v. One can also make good guesses for the BCFW bridge and entangled removal. By
looking the structure of the amplitudes obtained by the procedure from 3-amplitudes,
one learns that one obtains tree diagrams for which some external lines are connected
to give loop. The simplest situation would be that BCFW bridge corresponds to M2

fermion propagator for a given braid strand and entangled removal corresponds to a
short cut of two external lines to internal loop line. One would have just ordinary
Feynman graphs but vertices connected with Yangian invariants (not that there is sum
over loop corrections). It should be easy to kill this conjecture.

13.5.5 Very Special Relativity as justification for the special role
of M2

The preferred role of M2 in the construction of generalized Feynman diagrams could be
used as a criticism. Poincare invariance is lost. The first answer to the criticism is that
one integrates of the choices of M2 so that Poincare invariance is lost. One can however
defend this assumption also from different view point. Actually Glashow and Cohen did
this in their Very Special Relativity proposal [B33]! While scanning old files, I found an
old text about Very Special Relativity of Glashow and Cohen, and realized that it relates
very closely to the special role of M2 in the construction of generalized Feynman diagrams.
There is article Very Special Relativity and TGD [L2] at my homepage but for some reason
the text has disappeared from the book that contained it. I add the article more or less as
such here.

Configuration space (”world of classical worlds”, WCW) decomposes into a union of sub-
configuration spaces associated with future and past light-cones and these in turn decom-
pose to sub-sub-configuration spaces characterized by selection of quantization axes of spin
and color quantum numbers. At this level Poincare and even Lorentz group are reduced.
The possibility that this kind of breaking might be directly relevant for physics is discussed
below.

One might think that Poincare symmetry is something thoroughly understood but the
Very Special Relativity [B33] proposed by nobelist Sheldon Glashow and Andrew Cohen
suggests that this might belief might be wrong. Glashow and Cohen propose that instead
of Poincare group, call it P , some subgroup of P might be physically more relevant than
the whole P . To not lose four-momentum one must assume that this group is obtained as
a semi-direct product of some subgroup of Lorentz group with translations. The smallest
subgroup, call it L2, is a 2-dimensional Abelian group generated by Kx + Jy and Ky − Jx.
Here K refers to Lorentz boosts and J to rotations. This group leaves invariant light-like
momentum in z direction. By adding Jz acting in L2 like rotations in plane, one obtains
L3, the maximal subgroup leaving invariant light-like momentum in z direction. By adding
also Kz one obtains the scalings of light-like momentum or equivalently, the isotropy group
L4 of a light-like ray.

The reasons why Glashow and Cohen regard these groups so interesting are following.

i. All kinematical tests of Lorentz invariance are consistent with the reduction of Lorentz
invariance to these symmetries.

ii. The representations of group L3 are one-dimensional in both massive and massless case
(the latter is familiar from massless representations of Poincare group where particle
states are characterized by helicity). The mass is invariant only under the smaller
group. This might allow to have left-handed massive neutrinos as well as massive
fermions with spin dependent mass.

iii. The requirement of CP invariance extends all these reduced symmetry groups to the
full Poincare group. The observed very small breaking of CP symmetry might correlate
with a small breaking of Lorentz symmetry. Matter antimatter asymmetry might relate
to the reduced Lorentz invariance.

The idea is highly interesting from TGD point of view. The groups L3 and L4 indeed play
a very prominent role in TGD.

http://www.df.unibo.it/honorem2006/Glashow-laurea-eng.pdf
http://tgdtheory.com/public_html/articles/veryspecial.pdf
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i. The full Lorentz invariance is obtained in TGD only at the level of the entire configura-
tion space which is union over sub-configuration spaces associated with future and past
light-cones (space-time sheets inside future or past light-cone) [K36, K17]. These sub-
configuration spaces decompose further into a union of sub-sub-configuration spaces
for which a choice of quantization axes of spin reflects itself at the level of generalized
geometry of the imbedding space (quantum classical correspondence requires that the
choice of quantization axes has imbedding space and space-time correlates) [K86, K27].
The construction of the geometry for these sub-worlds of classical worlds reduces to
light-cone boundary so that the little group L3 leaving a given point of light-cone
boundary invariant is in a special role in TGD framework.

ii. The selection of a preferred light-like momentum direction at light-cone boundary cor-
responds to the selection of quantization axis for angular momentum playing a key role
in TGD view about hierarchy of Planck constants associated with a hierarchy of Jones
inclusions implying a breaking of Lorentz invariance induced by the selection of quan-
tization axis [K86, K27]. The number theoretic vision about quantum TGD implies
a selection of two preferred axes corresponding to time-like and space-like direction
corresponding to real and preferred imaginary unit for hyper-octonions [K74, K72]. In
both cases L4 emerges naturally.

iii. The TGD based identification of Kac-Moody symmetries as local isometries of the
imbedding space acting on 3-D light-like orbits of partonic 2-surfaces involves a selection
of a preferred light-like direction and thus the selection of L4.

iv. Also the so called massless extremals representing a precisely targeted propagation of
patterns of classical gauge fields with light velocity along typically cylindrical tubes
without a change in the shape involve L¡sub¿4¡/sub¿. A very general solution ansatz
to classical field equations involves a local decomposition of M4 to longitudinal and
transversal spaces and selection of a light-like direction [K8].

v. The parton model of hadrons assumes a preferred longitudinal direction of momentum
and mass squared decomposes naturally to longitudinal and transversal mass squared.
Also p-adic mass calculations rely heavily on this picture and thermodynamics mass
squared might be regarded as a longitudinal mass squared [K50]. In TGD framework
right handed covariantly constant neutrino generates a super-symmetry in CP2 degrees
of freedom and it might be better to regard left-handed neutrino mass as a longitudinal
mass.

This list justifies my own hunch that Glashow and Cohen might have discovered something
very important.

13.6 Still about non-planar twistor diagrams

13.6.1 Background

A question Krzysztof Bielas about how non-planar Feynman diagrams could be represented
in twistor Grassmannian approach inspired a re-reading of the recent article by recent article
by Nima Arkani-Hamed et al [B37].

This inspired the conjecture that non-planar twistor diagrams correspond to non-planar
Feynman diagrams and a concrete proposal for realizing the earlier proposal [K37] that the
contribution of non-planar diagrams could be calculated by transforming them to planar
ones by using the procedure applied in knot theories to eliminate crossings by reducing
the knot diagram with crossing to a combination of two diagrams for which the crossing is
replaced with reconnection. The Wikipedia article about magnetic reconnection explains
what reconnection means. More explicitly, the two reconnections for crossing line pair
(AB,CD) correspond to the non-crossing line pairs (AD,BC) and (AC,BD).

In the article of Nima et al [B37] the twistor Grassmann program is discussed at rather
detailed level and I found that I had moments of ”I understand” feeling. A good test for
whether this was just an illusion is to try to sum up up some basic ideas involved.

http://arxiv.org/pdf/1212.5605v1.pdf
http://tgdtheory.com/public_html/tgdgeom/tgdgeom.html#knotstgd
http://en.wikipedia.org/wiki/Reconnection
http://arxiv.org/pdf/1212.5605v1.pdf
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i. The crucial observation is that the on mass shell condition for n-particle vertex con-
taining massless particles characterized by bi-spinors λ and λ̃ can be satisfied if either
λ:s or λ̃:s are parallel. In the case of 3-vertices this dictates completely the dependence
of the vertex on twistor variables for arbitrary helicities. There are therefore two ver-
tices depending on the two manners to satisfy momentum conservation conditions. In
N = 4 theory different helicities belong to the same super multiplet and the depen-
dence on helities disappears from the amplitude. There are only two twistor 3-vertices
: ”black” and ”white”. From on mass shell 3-particle scattering amplitudes one can
construct arbitrary planar scattering amplitudes. All virtual particles are on mass shell
but complex momenta must be allowed. The physical interpretation of complex mo-
menta in TGD framework is not quite clear: one possibility is that Euclidian regions
of space-time surface (lines of generalized Feynman diagram indeed give imaginary
contribution to four-momentum as the reality of

√
g4 as compared to its imaginary

value in Minkowskian regions suggests. Euclidian regions are indeed responsible for
dissipation.

ii. The diagrams have two basic symmetries. So called mergers and square moves generate
twistor diagrams equivalent with the original one. Merger allows to transform a dia-
gram involving n incoming particles and only black or white vertices to single n-vertex.
The diagrams can be transformed to bipartite form in which black vertices resp. white
vertices are lumped to single vertex are connected to each other. Square move rotates
4-particle twistor box diagram (counterpart of tree 4-particle tree diagrams) in which
only black and white vertices are connected so that white and black vertices change
positions. These equivalences reduce enormously the number of independent diagrams.
These moves imply that in the case of N = 4 SYM the amplitude assignable to the
diagram is completely determined by the permutation assignable to it by the so called
left-right rule stating that one starts from an external particle, call it ”a”, and moves
along the diagram turning to the left if the vertex is white and to the right if it is black.
Eventually one ends up to an external line - call it ”b”. The fate of ”a” in permutation
is σ(a) = b. It is difficult to exaggerate the importance of this result.
These moves are analogous to something, which I proposed long time ago in [K7]. I
however concluded that this is too crazy idea even from me and removed the chapter
for several years from my homepage. During last year (2012) I returned to this idea
from different point of view. The idea was that generalized Feynman diagrams could be
seen as a sequences of algebraic operations in the generalization of arithmetic system
including besides tensor product and direct sum also their inverse operations. Any fan
of the Universe as quantum computer idea would be fascinated by this idea. Given
sequence of arithmetic operations has infinite number of different representations: this
would be the counterpart for the equivalence for infinite number of twistor diagrams.

iii. The situation in N = 4 theories is analogous to that in 1+1-D integral quantum field
theories. Here the basic scattering event is 2 → 2 scattering: 4-vertex instead of 3-
vertex. The sole effect of the scattering is permutation of the momenta and quantum
numbers of the particle and phase lag. One can say that particle stops for a moment
in the scattering vertex. The number of particles is conserved in the scattering. Yang-
Baxter equations states that the scattering amplitude is characterized by a permutation
(actually braiding that is element in the braid group defining the covering group of
permutations).

13.6.2 Does TGD generalize N = 4 SYM or 1+1-D integrable
QFT?

What happens in TGD? To what alternative TGD corresponds to: N = 4 SYM or 1+1-D
integrable QFT?

i. Effective 2-dimensionality suggests that 1+1-D integrable QFTs might be the natural
analog for TGD. In zero energy ontology fermions are the only fundamental particles
and bosons emerge as fermion-antifermion pairs at opposite wormhole throat. This
implies that 2+2-fermion vertex is the fundamental vertex. This vertex involves worm-

http://tgdtheory.com/public_html/tgdquant/tgdquant.html#bialgebra
http://tgdtheory.com/public_html/tgdnumber/tgdnumber.html#qarithmetics
http://en.wikipedia.org/wiki/Yang–Baxter_equation
http://en.wikipedia.org/wiki/Yang–Baxter_equation
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hole contact and throats as an additional topological ingredient. In TGD framework
the conservation of particle numbers is replaced by fermion-number conservation which
allows creation of pairs of fundamental fermions, in particular bosons. The essentially
new element is the formation of bound states of massless bound states of fermions and
anti-fermions which allows to solve the problems related to IR singularities since the
theory itself generates the infrared cutoff in terms of mass scales of the bound states
identifiable as p-adic mass scales.

ii. Braiding is the key element of 1+1-D integrable QFTs and also in TGD generalized
Feynman diagrams can be regarded as generalizations of braid diagrams allowing braids
of braids. 3-D light-like orbits of wormhole throats carry braid strands carrying fermion
number.

iii. The proposal is that the 2-D plane M2 carrying Feynman diagram - interpreted usually
as a purely combinatorial auxiliary notion - is realized quite concretely as plane M2 ⊂
M4 to which the lines of the generalized Feynman diagram are projected. M2 has
several interpretations.
In quantum measurement theory it corresponds to a plane spanned by the time axis
of the rest system and spin quantization axis and characterizes given causal dia-
mond (CD): note that quantum measurement has geometrization at the level of WCW
(”world of classical worlds” defined as the space of 3-surfaces).
At particle physics level M2 corresponds to the plane of non-physical polarizations.
M2 has also number theoretic interpretation as (hyper)-complex plane of complexified
octonions spanned by real unit and preferred imaginary unit. If TGD indeed relates
closely to 1+1-D integrable QFT, one can ask whether the scattering is such that it
represents just a permutation of incoming lines which in ZEO have either positive
or negative energy: just this makes possible particle creation since particle number
conservation is reduced to fermion number conservation.

iv. One conjecture is that only the M2 projections of massless 4-momenta of fermions ap-
pear as inverses of propagators assignable to the lines of generalized Feynman diagrams
if they are actually twistor diagrams as ZEO strongly suggests (virtual fundamental
fermions are on mass shell massless particles). Another possibility is that the virtual
fermions have non-physical helicities so that the inverse of the massless propagator
would not annihilate them.

v. Knotting and intersections associated with non-planarity would be both described in
terms of generalized knot diagrams which are braids of braids ... Crossings would result
as one projects the lines of generalized Feynman diagram to M2. The conjecture is
that generalized Feynman diagrams allow a generalization of the recursion process used
to construct knot invariants to transform the diagrams to sums of planar diagrams to
which twistor Grassmannian approach modified so that it applies to fermions applies.
In algebraic knot theory one indeed allows also knot diagrams in which the intersection
of the lines can be real rather than apparent (strand goes over or below the other one).

13.6.3 Could one understand non-planar diagrams in twistor ap-
proach?

Non-planar Feynman diagrams remain the technical challenge for the twistor Grassmannian
approach (I have written something about this earlier in my blog). In ZEO all particles can
be seen as bound states of massless fundamental fermions (leptons and quarks assignable
to single generation with family replications described topologically). Hence twistor de-
scription is very natural in TGD framework

The vague idea that I try to make more precise in sequel is that non-planar diagrams could
be reduced to planar ones by a procedure similar to construct knot invariants [K37]. Knots
are generalized so that one allows also vertices. The crossings of lines could be reduced
by to a combination of non-crossing lines (by reconnecting the four lines in crossing in
two different non-crossing manners) and in this manner one would obtain eventually only
planar diagrams.

http://matpitka.blogspot.fi/2011/07/reducing-non-planar-diagrams-to-planar.html
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In algebraic knot theory one considers also genuine crossings besides strand going over or
below another one. I have discussed this from TGD point of view [K37](see also the blog
posting). One should somehow eliminate the crossing. One could imagine of adding at
each crossing a handle to the plane M2 containing the diagram to obtain an imbedding
to a higher genus surface. Knot theoretic approach suggests that the non-planar crossed
amplitude is equal to a quantum superposition of two amplitudes without crossing obtained
by reconnecting lines.

Also non-planar massless twistor diagrams make sense although only planar ones are dis-
cussed in the article by Nima et al [B37] . This raises some questions.

i. Could the non-planar twistor diagrams represent the contribution of the non-planar
Feynman diagrams? This would mean an enormous simplification and perhaps the
possibility to calculate the non-planar contribution to the scattering amplitudes. That
this should be the case is strongly suggested by the power and elegance of the twistor
formalism itself.

ii. Could the identification of the permutation associated with planar diagrams in terms
of left-right paths generalize? The hope is that suitably defined right-left paths define
a permutation also in the presence of crossings. The basic question is what happens at
crossings? Should one go straight through or turn to the right or left in a given crossing?
The straight-through option is the most natural one and allows to assign with each
right-left path an arrow so that 2n different arrow combinations are obtained: more
details are discussed below.

iii. Knot theory approach suggests that one recursively reduces non-planar amplitude to a
superposition of planar amplitudes by replacing at each crossing the amplitude with a
superposition of two ”more planar” amplitudes obtained by reconnecting the crossing
lines in two different manners. The simplest assumption is that one obtains either the
sum or difference of the ”more planar” amplitudes associated with the resulting two
diagrams. How to choose between ’+’ and ’ -’?
It is known that non-planar contributions are negligible at large N limit for SUSYs. If
the relative for ”more planar” amplitudes is ′−′, and the two reconnected amplitudes
approach asymptotically the same amplitude, one can understand the dominance of
the planar amplitudes at this limit. This suggests that ’-’ is the correct option. But
which ’more planar’ amplitude corresponds to ’+’ and which to ’-’?
In knot theory the overall sign would be fixed by whether the line that one is traversing
goes over or below the crossing line. Now this option does not work. There is how-
ever an alternative possibility to fix the signs if one can assign to a given non-planar
diagram the 2n coverings with fixed arrows of right-left paths. Depending on how the
reconnection is carried out, the right-left path continues in the same or opposite direc-
tion as the arrow assigned with the crossing line. It is natural to assign a positive sign
with the ”parallel” reconnected diagram and negative sign to the ”antiparallel” one.
One might of course argue that the arrows must be consistent so that one should
actually allow only the ”parallel” option. This would however produce only positive
signs so that it does not look promising.

If this procedure works, it reduces non-planar twistor diagrams to a superposition of non-
planar ones. One must however check that the procedure is well-defined. Consider first the
problem of assigning right-left paths to a non-planar twistor diagram.

i. One must decide what happens sy the crossings and the simplest rule is that one just
continues straight forward.

ii. The possibility to assign freely an arrow with two possible directions to right-left path
beginning from any external line is essential. Suppose that the notion of right-left
paths based on the straight-through rule defines always a permutation also for non-
planar diagrams. Suppose that one assign freely two possible arrows to right-left paths
beginning from any external line. This would give 2n assignments altogether.

iii. If the right-left paths a → b and b → a are identical, this rule leads to inconsistency
since the choice of the arrow for a → b would fix the arrow for b → a and the total
number of independent choices would be reduced. Fortunately, this situation cannot

http://matpitka.blogspot.fi/2011/11/as-i-told-already-earlier-ulla-send-me.html
http://matpitka.blogspot.fi/2011/11/as-i-told-already-earlier-ulla-send-me.html
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occur since the right-left path beginning for b leaves the path coming from a at the
first vertex.

iv. Note that the notion of decorated permutation introduced by Nima et al also brings in
2n-fold degeneracy by replacing the set of n external lines with its 2-fold covering space
containing 2n lines and allowing besides permutation a → σ(a) also a → n + σ(a).
Presumably these two descriptions are equivalent. A possible interpretation of the
covering would be in terms of braid group representations defining a 2-fold covering of
the permutation group.

The recursive elimination of crossings would proceed in the following manner.

i. One proceeds along right-left path in the direction of its arrow. If the movement in
direction opposite to the arrow were allowed the resulting ”more planar” amplitudes
would sum up to zero. As one changes the direction of arrow, the elimination process
begins from σ(a) instead of a and proceeds along different path.

ii. When a particular crossing on a given right-left path is eliminated the diagram with
a superposition A−B of ”more planar” diagrams obtained by reconnection. The rule
is that A corresponds to the reconnection for which the directions of the arrows are
same and B to that for which they are opposite. One can continue for both resulting
reconnected diagrams along the left-right path repeat the procedure at each crossing.
k steps produces 2k planar amplitudes with varying sign factors.

iii. Eventually one ends up to an external line b = σ(a): b is expected to depend on the
particular ”more planar” diagram that one is considering. The diagrams obtained in
this manner can still contain crossings. One must continue to some direction and the
natural choice is to turn around. The next turning point would be c = σ(σ(a)), where
c again depends on the resulting ”more planar” diagram. One can repeat the process
and eventually end up to a situation in which one has returned back to a and there is no
point to continue anymore since the process would repeat itselfw without eliminating
crossings anymore.

iv. Crossings could however still be present. What one can do is to repeat the reduction
process by starting from some other external line not belonging to the path traversed.
The hope is that eventually one has only planar twistor amplitudes reducible to their
minimal form using the left-right rule assigning a unique permutation to each resulting
planar diagram. One can also hope that the outcome is independent of the order
in which one performs these wanderings around the diagrams rise to new diagrams.
The similarity of the elimination process to that applied to knots gives hopes that the
outcome does not depend on the order in which the right-left paths associated with
external particles are treated in the process.
Permutations can be decomposed to products of cycles in commuting cyclic subgroups
Zni ,

∏
ni
Zni ⊂ Sn and

∑
i ni = n. Therefore each cycle for a given final planar diagram

defines one step in this process needed to obtain that particular planar diagram.

13.6.4 How stringy diagrams could relate to the planar and non-
planar twistor diagrams?

What also popped up to my innocent mind was a question which any string theorist could
probably answer immediately. Could it be that string world sheets with g handles could
correspond in QFT description to non-planar diagrams imbeddable to a surface of genus
g?

In TGD framework this would have a concrete meaning. In TGD Universe all fermions
except right-handed neutrino are localized at string world sheets (sub-manifolds of the 4-
surface of M4 × CP2 representing space-time). The localization is forced by the condition
that the modes of the induced spinor field are eigenstates of electric charge. The generalized
Feynman diagrams involves a functional integration over WCW giving an expansion in
terms of fermion propagators for fundamental fermions. By symmetry considerations the
outcome is expected to give twistorial diagrams but with fermions as fundamental particles

http://en.wikipedia.org/wiki/Permutation_group
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rather than super-symmetrized gauge fields. The conjecture is that Yangian symmetry
forces twistorial Grassmann amplitudes.

In this framework the non-planar twistor diagrams could indeed correspond to the con-
tributions of space-time surfaces for which string world sheets have handles. In Euclidian
regions defining the lines of the generalized Feynman diagram higher genera should be
possible although one does not have path integral but functional integral over preferred
extremals of Kähler action [K92] for which also the dynamics of the string world sheets is
fixed.

http://tgdtheory.com/public_html/tgdgeom/tgdgeom.html#dirasvira
http://tgdtheory.com/public_html/tgdgeom/tgdgeom.html#dirasvira
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Chapter 14

Was von Neumann Right After
All?

14.1 Introduction

The work with TGD inspired model [K84] for topological quantum computation [B54] led
to the realization that von Neumann algebras [A91, A142, A124, A86] , in particular so
called hyper-finite factors of type II1 [A105] , seem to provide the mathematics needed
to develop a more explicit view about the construction of S-matrix. In this chapter I
will discuss various aspects of type II1 factors and their physical interpretation in TGD
framework. The lecture notes of R. Longo [A114] give a concise and readable summary
about the basic definitions and results related to von Neumann algebras and I have used this
material freely in this chapter. The original discussion has transformed during years from
free speculation reflecting in many aspects my ignorance about the mathematics involved
to a more realistic view about the role of these algebras in quantum TGD.

14.1.1 Philosophical ideas behind von Neumann algebras

The goal of von Neumann was to generalize the algebra of quantum mechanical observables.
The basic ideas behind the von Neumann algebra are dictated by physics. The algebra
elements allow Hermitian conjugation ∗ and observables correspond to Hermitian operators.
Any measurable function f(A) of operator A belongs to the algebra and one can say that
non-commutative measure theory is in question.

The predictions of quantum theory are expressible in terms of traces of observables. Den-
sity matrix defining expectations of observables in ensemble is the basic example. The
highly non-trivial requirement of von Neumann was that identical a priori probabilities for
a detection of states of infinite state system must make sense. Since quantum mechani-
cal expectation values are expressible in terms of operator traces, this requires that unit
operator has unit trace: tr(Id) = 1.

In the finite-dimensional case it is easy to build observables out of minimal projections
to 1-dimensional eigen spaces of observables. For infinite-dimensional case the probably
of projection to 1-dimensional sub-space vanishes if each state is equally probable. The
notion of observable must thus be modified by excluding 1-dimensional minimal projections,
and allow only projections for which the trace would be infinite using the straightforward
generalization of the matrix algebra trace as the dimension of the projection.

The non-trivial implication of the fact that traces of projections are never larger than one is
that the eigen spaces of the density matrix must be infinite-dimensional for non-vanishing
projection probabilities. Quantum measurements can lead with a finite probability only
to mixed states with a density matrix which is projection operator to infinite-dimensional
subspace. The simple von Neumann algebras for which unit operator has unit trace are
known as factors of type II1 [A105] .
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The definitions of adopted by von Neumann allow however more general algebras. Type
In algebras correspond to finite-dimensional matrix algebras with finite traces whereas
I∞ associated with a separable infinite-dimensional Hilbert space does not allow bounded
traces. For algebras of type III non-trivial traces are always infinite and the notion of
trace becomes useless being replaced by the notion of state which is generalization of
the notion of thermodynamical state. The fascinating feature of this notion of state is
that it defines a unique modular automorphism of the factor defined apart from unitary
inner automorphism and the question is whether this notion or its generalization might be
relevant for the construction of M-matrix in TGD.

14.1.2 Von Neumann, Dirac, and Feynman

The association of algebras of type I with the standard quantum mechanics allowed to
unify matrix mechanism with wave mechanics. Note however that the assumption about
continuous momentum state basis is in conflict with separability but the particle-in-box
idealization allows to circumvent this problem (the notion of space-time sheet brings the
box in physics as something completely real).

Because of the finiteness of traces von Neumann regarded the factors of type II1 as fun-
damental and factors of type III as pathological. The highly pragmatic and successful
approach of Dirac [A85] based on the notion of delta function, plus the emergence of
s [A93] , the possibility to formulate the notion of delta function rigorously in terms of
distributions [A103, A132] , and the emergence of path integral approach [A125] meant
that von Neumann approach was forgotten by particle physicists.

Algebras of type II1 have emerged only much later in conformal and topological quantum
field theories [A130, A146] allowing to deduce invariants of knots, links and 3-manifolds.
Also algebraic structures known as bi-algebras, Hopf algebras, and ribbon algebras [A110]
relate closely to type II1 factors. In topological quantum computation [B54] based on braid
groups [A72] modular S-matrices they play an especially important role.

In algebraic quantum field theory [B41] defined in Minkowski space the algebras of observ-
ables associated with bounded space-time regions correspond quite generally to the type
III1 hyper-finite factor [B66, B31] .

14.1.3 Hyper-finite factors in quantum TGD

The following argument suggests that von Neumann algebras known as hyper-finite factors
(HFFs) of type III1 appearing in relativistic quantum field theories provide also the proper
mathematical framework for quantum TGD.

i. The Clifford algebra of the infinite-dimensional Hilbert space is a von Neumann algebra
known as HFF of type II1. There also the Clifford algebra at a given point (light-
like 3-surface) of world of classical worlds (WCW) is therefore HFF of type II1. If
the fermionic Fock algebra defined by the fermionic oscillator operators assignable
to the induced spinor fields (this is actually not obvious!) is infinite-dimensional it
defines a representation for HFF of type II1. Super-conformal symmetry suggests that
the extension of the Clifford algebra defining the fermionic part of a super-conformal
algebra by adding bosonic super-generators representing symmetries of WCW respects
the HFF property. It could however occur that HFF of type II∞ results.

ii. WCW is a union of sub-WCWs associated with causal diamonds (CD) defined as
intersections of future and past directed light-cones. One can allow also unions of CDs
and the proposal is that CDs within CDs are possible. Whether CDs can intersect is
not clear.

iii. The assumption that the M4 proper distance a between the tips of CD is quantized in
powers of 2 reproduces p-adic length scale hypothesis but one must also consider the
possibility that a can have all possible values. Since SO(3) is the isotropy group of CD,
the CDs associated with a given value of a and with fixed lower tip are parameterized
by the Lobatchevski space L(a) = SO(3, 1)/SO(3). Therefore the CDs with a free
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position of lower tip are parameterized by M4 × L(a). A possible interpretation is in
terms of quantum cosmology with a identified as cosmic time [K67] . Since Lorentz
boosts define a non-compact group, the generalization of so called crossed product
construction strongly suggests that the local Clifford algebra of WCW is HFF of type
III1. If one allows all values of a, one ends up with M4 ×M4

+ as the space of moduli
for WCW.

iv. An interesting special aspect of 8-dimensional Clifford algebra with Minkowski signa-
ture is that it allows an octonionic representation of gamma matrices obtained as tensor
products of unit matrix 1 and 7-D gamma matrices γk and Pauli sigma matrices by
replacing 1 and γk by octonions. This inspires the idea that it might be possible to end
up with quantum TGD from purely number theoretical arguments. This seems to be
the case. One can start from a local octonionic Clifford algebra in M8. Associativity
condition is satisfied if one restricts the octonionic algebra to a subalgebra associated
with any hyper-quaternionic and thus 4-D sub-manifold of M8. This means that the
modified gamma matrices associated with the Kähler action span a complex quater-
nionic sub-space at each point of the sub-manifold. This associative sub-algebra can be
mapped a matrix algebra. Together with M8 −H duality [K15, K20] this leads auto-
matically to quantum TGD and therefore also to the notion of WCW and its Clifford
algebra which is however only mappable to an associative algebra and thus to HFF of
type II1.

14.1.4 Hyper-finite factors and M-matrix

HFFs of type III1 provide a general vision about M-matrix.

i. The factors of type III allow unique modular automorphism ∆it (fixed apart from
unitary inner automorphism). This raises the question whether the modular automor-
phism could be used to define the M-matrix of quantum TGD. This is not the case as
is obvious already from the fact that unitary time evolution is not a sensible concept
in zero energy ontology.

ii. Concerning the identification of M-matrix the notion of state as it is used in theory of
factors is a more appropriate starting point than the notion modular automorphism but
as a generalization of thermodynamical state is certainly not enough for the purposes
of quantum TGD and quantum field theories (algebraic quantum field theorists might
disagree!). Zero energy ontology requires that the notion of thermodynamical state
should be replaced with its ”complex square root” abstracting the idea about M-
matrix as a product of positive square root of a diagonal density matrix and a unitary
S-matrix. This generalization of thermodynamical state -if it exists- would provide a
firm mathematical basis for the notion of M-matrix and for the fuzzy notion of path
integral.

iii. The existence of the modular automorphisms relies on Tomita-Takesaki theorem, which
assumes that the Hilbert space in which HFF acts allows cyclic and separable vector
serving as ground state for both HFF and its commutant. The translation to the lan-
guage of physicists states that the vacuum is a tensor product of two vacua annihilated
by annihilation oscillator type algebra elements of HFF and creation operator type
algebra elements of its commutant isomorphic to it. Note however that these algebras
commute so that the two algebras are not hermitian conjugates of each other. This
kind of situation is exactly what emerges in zero energy ontology: the two vacua can be
assigned with the positive and negative energy parts of the zero energy states entangled
by M-matrix.

iv. There exists infinite number of thermodynamical states related by modular automor-
phisms. This must be true also for their possibly existing ”complex square roots”.
Physically they would correspond to different measurement interactions giving rise to
Kähler functions of WCW differing only by a real part of holomorphic function of com-
plex coordinates of WCW and arbitrary function of zero mode coordinates and giving
rise to the same Kähler metric of WCW.
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The concrete construction of M-matrix utilizing the idea of bosonic emergence (bosons as
fermion anti-fermion pairs at opposite throats of wormhole contact) meaning that bosonic
propagators reduce to fermionic loops identifiable as wormhole contacts leads to general-
ized Feynman rules for M-matrix in which modified Dirac action containing measurement
interaction term defines stringy propagators. This M-matrix should be consistent with the
above proposal.

14.1.5 Connes tensor product as a realization of finite measure-
ment resolution

The inclusions N ⊂ M of factors allow an attractive mathematical description of finite
measurement resolution in terms of Connes tensor product but do not fix M-matrix as was
the original optimistic belief.

i. In zero energy ontology N would create states experimentally indistinguishable from
the original one. Therefore N takes the role of complex numbers in non-commutative
quantum theory. The spaceM/N would correspond to the operators creating physical
states modulo measurement resolution and has typically fractal dimension given as
the index of the inclusion. The corresponding spinor spaces have an identification as
quantum spaces with non-commutative N -valued coordinates.

ii. This leads to an elegant description of finite measurement resolution. Suppose that
a universal M-matrix describing the situation for an ideal measurement resolution
exists as the idea about square root of state encourages to think. Finite measurement
resolution forces to replace the probabilities defined by the M-matrix with their N
”averaged” counterparts. The ”averaging” would be in terms of the complex square
root of N -state and a direct analog of functionally or path integral over the degrees of
freedom below measurement resolution defined by (say) length scale cutoff.

iii. One can construct also directly M-matrices satisfying the measurement resolution con-
straint. The condition that N acts like complex numbers on M-matrix elements as
far as N -”averaged” probabilities are considered is satisfied if M-matrix is a tensor
product of M-matrix inM(N interpreted as finite-dimensional space with a projection
operator to N . The condition that N averaging in terms of a complex square root of N
state produces this kind of M-matrix poses a very strong constraint on M-matrix if it is
assumed to be universal (apart from variants corresponding to different measurement
interactions).

14.1.6 Quantum spinors and fuzzy quantum mechanics

The notion of quantum spinor leads to a quantum mechanical description of fuzzy probabil-
ities. For quantum spinors state function reduction cannot be performed unless quantum
deformation parameter equals to q = 1. The reason is that the components of quantum
spinor do not commute: it is however possible to measure the commuting operators rep-
resenting moduli squared of the components giving the probabilities associated with ’true’
and ’false’. The universal eigenvalue spectrum for probabilities does not in general contain
(1,0) so that quantum qbits are inherently fuzzy. State function reduction would occur
only after a transition to q=1 phase and decoherence is not a problem as long as it does
not induce this transition.

This chapter represents a summary about the development of the ideas with last sections
representing the recent latest about thereaalization and role of HFFs in TGD. I have saved
the reader from those speculations that have turned out to reflect my own ignorance or are
inconsistent with what I regarded established parts of quantum TGD.

14.2 Von Neumann algebras

In this section basic facts about von Neumann algebras are summarized using as a back-
ground material the concise summary given in the lecture notes of Longo [A114] .
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14.2.1 Basic definitions

A formal definition of von Neumann algebra [A142, A124, A86] is as a ∗-subalgebra of the
set of bounded operators B(H) on a Hilbert space H closed under weak operator topology,
stable under the conjugation J =∗: x → x∗, and containing identity operator Id. This
definition allows also von Neumann algebras for which the trace of the unit operator is not
finite.

Identity operator is the only operator commuting with a simple von Neumann algebra. A
general von Neumann algebra allows a decomposition as a direct integral of simple algebras,
which von Neumann called factors. Classification of von Neumann algebras reduces to that
for factors.

B(H) has involution ∗ and is thus a ∗-algebra. B(H) has order order structure A ≥ 0 :
(Ax, x) ≥ 0. This is equivalent to A = BB∗ so that order structure is determined by
algebraic structure. B(H) has metric structure in the sense that norm defined as supremum
of ||Ax||, ||x|| ≤ 1 defines the notion of continuity. ||A||2 = inf{λ > 0 : AA∗ ≤ λI} so that
algebraic structure determines metric structure.

There are also other topologies for B(H) besides norm topology.

i. Ai → A strongly if ||Ax − Aix|| → 0 for all x. This topology defines the topology of
C∗ algebra. B(H) is a Banach algebra that is ||AB|| ≤ ||A|| × ||B|| (inner product is
not necessary) and also C∗ algebra that is ||AA∗|| = ||A||2.

ii. Ai → A weakly if (Aix, y) → (Ax, y) for all pairs (x, y) (inner product is necessary).
This topology defines the topology of von Neumann algebra as a sub-algebra of B(H).

Denote by M ′ the commutant of M which is also algebra. Von Neumann’s bicommutant
theorem says thatM equals to its own bi-commutant. Depending on whether the identity
operator has a finite trace or not, one distinguishes between algebras of type II1 and type
II∞. II1 factor allow trace with properties tr(Id) = 1, tr(xy) = tr(yx), and tr(x∗x) > 0,
for all x 6= 0. Let L2(M) be the Hilbert space obtained by completing M respect to the
inner product defined 〈x|y〉 = tr(x∗y) defines inner product in M interpreted as Hilbert
space. The normalized trace induces a trace in M ′, natural trace TrM ′ , which is however
not necessarily normalized. JxJ defines an element of M ′: if H = L2(M), the natural
trace is given by TrM ′(JxJ) = trM (x) for all x ∈M and bounded.

14.2.2 Basic classification of von Neumann algebras

Consider first some definitions. First of all, Hermitian operators with positive trace ex-
pressible as products xx∗ are of special interest since their sums with positive coefficients
are also positive.

In quantum mechanics Hermitian operators can be expressed in terms of projectors to the
eigen states. There is a natural partial order in the set of isomorphism classes of projectors
by inclusion: E < F if the image of H by E is contained to the image of H by a suitable
isomorph of F . Projectors are said to be metrically equivalent if there exist a partial
isometry which maps the images H by them to each other. In the finite-dimensional case
metric equivalence means that isomorphism classes are identical E = F .

The algebras possessing a minimal projection E0 satisfying E0 ≤ F for any F are called type
I algebras. Bounded operators of n-dimensional Hilbert space define algebras In whereas
the bounded operators of infinite-dimensional separable Hilbert space define the algebra
I∞. In and I∞ correspond to the operator algebras of quantum mechanics. The states of
harmonic oscillator correspond to a factor of type I.

The projection F is said to be finite if F < E and F ≡ E implies F = E. Hence metric
equivalence means identity. Simple von Neumann algebras possessing finite projections but
no minimal projections so that any projection E can be further decomposed as E = F +G,
are called factors of type II.

Hyper-finiteness means that any finite set of elements can be approximated arbitrary well
with the elements of a finite-dimensional sub-algebra. The hyper-finite II∞ algebra can be
regarded as a tensor product of hyper-finite II1 and I∞ algebras. Hyper-finite II1 algebra
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can be regarded as a Clifford algebra of an infinite-dimensional separable Hilbert space
sub-algebra of I∞.

Hyper-finite II1 algebra can be constructed using Clifford algebras C(2n) of 2n-dimensional
spaces and identifying the element x of 2n×2n dimensional C(n) as the element diag(x, x)/2
of 2n+1× 2n+1-dimensional C(n+ 1). The union of algebras C(n) is formed and completed
in the weak operator topology to give a hyper-finite II1 factor. This algebra defines the
Clifford algebra of infinite-dimensional separable Hilbert space and is thus a sub-algebra of
I∞ so that hyper-finite II1 algebra is more regular than I∞.

von Neumann algebras possessing no finite projections (all traces are infinite or zero) are
called algebras of type III. It was later shown by [A81] [A77] that these algebras are labeled
by a parameter varying in the range [0, 1], and referred to as algebras of type IIIx. III1
category contains a unique hyper-finite algebra. It has been found that the algebras of
observables associated with bounded regions of 4-dimensional Minkowski space in quantum
field theories correspond to hyper-finite factors of type III1 [A114] . Also statistical systems
at finite temperature correspond to factors of type III and temperature parameterizes one-
parameter set of automorphisms of this algebra [B66] . Zero temperature limit correspond
to I∞ factor and infinite temperature limit to II1 factor.

14.2.3 Non-commutative measure theory and non-commutative topolo-
gies and geometries

von Neumann algebras and C∗ algebras give rise to non-commutative generalizations of
ordinary measure theory (integration), topology, and geometry. It must be emphasized that
these structures are completely natural aspects of quantum theory. In particular, for the
hyper-finite type II1 factors quantum groups and Kac Moody algebras [B44] emerge quite
naturally without any need for ad hoc modifications such as making space-time coordinates
non-commutative. The effective 2-dimensionality of quantum TGD (partonic or stringy 2-
surfaces code for states) means that these structures appear completely naturally in TGD
framework.

Non-commutative measure theory

von Neumann algebras define what might be a non-commutative generalization of measure
theory and probability theory [A114] .

i. Consider first the commutative case. Measure theory is something more general than
topology since the existence of measure (integral) does not necessitate topology. Any
measurable function f in the space L∞(X,µ) in measure space (X,µ) defines a bounded
operator Mf in the space B(L2(X,µ)) of bounded operators in the space L2(X,µ) of
square integrable functions with action of Mf defined as Mfg = fg.

ii. Integral over M is very much like trace of an operator fx,y = f(x)δ(x, y). Thus
trace is a natural non-commutative generalization of integral (measure) to the non-
commutative case and defined for von Neumann algebras. In particular, generalization
of probability measure results if the case tr(Id) = 1 and algebras of type In and II1
are thus very natural from the point of view of non-commutative probability theory.

The trace can be expressed in terms of a cyclic vector Ω or vacuum/ground state in physi-
cist’s terminology. Ω is said to be cyclic if the completion MΩ = H and separating if xΩ
vanishes only for x = 0. Ω is cyclic for M if and only if it is separating for M ′. The
expression for the trace given by

Tr(ab) =

(
(ab+ ba)

2
,Ω

)
(14.2.1)

is symmetric and allows to defined also inner product as (a, b) = Tr(a∗b) in M. If Ω
has unit norm (Ω,Ω) = 1, unit operator has unit norm and the algebra is of type II1.
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Fermionic oscillator operator algebra with discrete index labeling the oscillators defines II1
factor. Group algebra is second example of II1 factor.

The notion of probability measure can be abstracted using the notion of state. State ω on
a C∗ algebra with unit is a positive linear functional on U , ω(1) = 1. By so called KMS
construction [A114] any state ω in C∗ algebra U can be expressed as ω(x) = (π(x)Ω,Ω) for
some cyclic vector Ω and π is a homomorphism U → B(H).

Non-commutative topology and geometry

C∗ algebras generalize in a well-defined sense ordinary topology to non-commutative topol-
ogy.

i. In the Abelian case Gelfand Naimark theorem [A114] states that there exists a con-
travariant functor F from the category of unital abelian C∗ algebras and category of
compact topological spaces. The inverse of this functor assigns to space X the contin-
uous functions f on X with norm defined by the maximum of f . The functor assigns
to these functions having interpretation as eigen states of mutually commuting observ-
ables defined by the function algebra. These eigen states are delta functions localized
at single point of X. The points of X label the eigenfunctions and thus define the
spectrum and obviously span X. The connection with topology comes from the fact
that continuous map Y → X corresponds to homomorphism C(X)→ C(Y ).

ii. In non-commutative topology the function algebra C(X) is replaced with a general C∗

algebra. Spectrum is identified as labels of simultaneous eigen states of the Cartan
algebra of C∗ and defines what can be observed about non-commutative space X.

iii. Non-commutative geometry can be very roughly said to correspond to ∗-subalgebras
of C∗ algebras plus additional structure such as symmetries. The non-commutative
geometry of Connes [A78] is a basic example here.

14.2.4 Modular automorphisms

von Neumann algebras allow a canonical unitary evolution associated with any state ω fixed
by the selection of the vacuum state Ω [A114] . This unitary evolution is an automorphism
fixed apart form unitary automorphisms A→ UAU∗ related with the choice of Ω.

Let ω be a normal faithful state: ω(x∗x) > 0 for any x. One can mapM to L2(M) defined
as a completion of M by x → xΩ. The conjugation ∗ in M has image at Hilbert space
level as a map S0 : xΩ → x∗Ω. The closure of S0 is an anti-linear operator and has polar
decomposition S = J∆1/2, ∆ = SS∗. ∆ is positive self-adjoint operator and J anti-unitary
involution. The following conditions are satisfied

∆itM∆−it = M ,

JMJ = M′ . (14.2.2)

∆it is obviously analogous to the time evolution induced by positive definite Hamiltonian
and induces also the evolution of the expectation ω as π → ∆itπ∆−it.

14.2.5 Joint modular structure and sectors

Let N ⊂ M be an inclusion. The unitary operator γ = JNJM defines a canonical endo-
morphisms M → N in the sense that it depends only up to inner automorphism on N ,
γ defines a sector of M. The sectors of M are defined as Sect(M) = End(M)/Inn(M)
and form a semi-ring with respected to direct sum and composition by the usual operator
product. It allows also conjugation.

L2(M) is a normal bi-module in the sense that it allows commuting left and right multipli-
cations. For a, b ∈ M and x ∈ L2(M) these multiplications are defined as axb = aJb∗Jx
and it is easy to verify the commutativity using the factor Jy∗J ∈ M′. [A81] [A78]
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has shown that all normal bi-modules arise in this way up to unitary equivalence so that
representation concepts make sense. It is possible to assign to any endomorphism ρ index
Ind(ρ) ≡M : ρ(M). This means that the sectors are in 1-1 correspondence with inclusions.
For instance, in the case of hyper-finite II1 they are labeled by Jones index. Furthermore,
the objects with non-integral dimension

√
[M : ρ(M)] can be identified as quantum groups,

loop groups, infinite-dimensional Lie algebras, etc...

14.2.6 Basic facts about hyper-finite factors of type III

Hyper-finite factors of type II1, II∞ and III1, III0, IIIλ, λ ∈ (0, 1), allow by definition
hierarchy of finite approximations and are unique as von Neumann algebras. Also hyper-
finite factors of type II∞ and type III could be relevant for the formulation of TGD. HFFs
of type II∞ and III could appear at the level operator algebra but that at the level of
quantum states one would obtain HFFs of type II1. These extended factors inspire highly
non-trivial conjectures about quantum TGD. The book of Connes [A78] provides a detailed
view about von Neumann algebras in general.

Basic definitions and facts

A highly non-trivial result is that HFFs of type II∞ are expressible as tensor products
II∞ = II1 ⊗ I∞, where II1 is hyper-finite [A78] .

1. The existence of one-parameter family of outer automorphisms

The unique feature of factors of type III is the existence of one-parameter unitary group
of outer automorphisms. The automorphism group originates in the following manner.

i. Introduce the notion of linear functional in the algebra as a map ω :M→ C. ω is said
to be hermitian it respects conjugation inM; positive if it is consistent with the notion
of positivity for elements of M in which case it is called weight; state if it is positive
and normalized meaning that ω(1) = 1, faithful if ω(A) > 0 for all positive A; a trace if
ω(AB) = ω(BA), a vector state if ω(A) is ”vacuum expectation” ωΩ(A) = (Ω, ω(A)Ω)
for a non-degenerate representation (H, π) ofM and some vector Ω ∈ H with ||Ω|| = 1.

ii. The existence of trace is essential for hyper-finite factors of type II1. Trace does not
exist for factors of type III and is replaced with the weaker notion of state. State
defines inner product via the formula (x, y) = φ(y∗x) and * is isometry of the inner
product. *-operator has property known as pre-closedness implying polar decompo-
sition S = J∆1/2 of its closure. ∆ is positive definite unbounded operator and J
is isometry which restores the symmetry between M and its commutant M′ in the
Hilbert space Hφ, where M acts via left multiplication: M′ = JMJ .

iii. The basic result of Tomita-Takesaki theory is that ∆ defines a one-parameter group
σtφ(x) = ∆itx∆−it of automorphisms of M since one has ∆itM∆−it = M. This
unitary evolution is an automorphism fixed apart from unitary automorphism A →
UAU∗ related with the choice of φ. For factors of type I and II this automorphism
reduces to inner automorphism so that the group of outer automorphisms is trivial as
is also the outer automorphism associated with ω. For factors of type III the group
of these automorphisms divided by inner automorphisms gives a one-parameter group
of Out(M) of outer automorphisms, which does not depend at all on the choice of the
state φ.

More precisely, let ω be a normal faithful state: ω(x∗x) > 0 for any x. One can mapM to
L2(M) defined as a completion of M by x → xΩ. The conjugation ∗ in M has image at
Hilbert space level as a map S0 : xΩ → x∗Ω. The closure of S0 is an anti-linear operator
and has polar decomposition S = J∆1/2, ∆ = SS∗. ∆ is positive self-adjoint operator and
J anti-unitary involution. The following conditions are satisfied

∆itM∆−it = M ,

JMJ = M′ . (14.2.3)
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∆it is obviously analogous to the time evolution induced by positive definite Hamiltonian
and induces also the evolution of the expectation ω as π → ∆itπ∆−it. What makes this
result thought provoking is that it might mean a universal quantum dynamics apart from
inner automorphisms and thus a realization of general coordinate invariance and gauge
invariance at the level of Hilbert space.

2. Classification of HFFs of type III

Connes achieved an almost complete classification of hyper-finite factors of type III com-
pleted later by others. He demonstrated that they are labeled by single parameter 0 ≤ λ ≤
1] and that factors of type IIIλ, 0 ≤ λ < 1 are unique. Haagerup showed the uniqueness for
λ = 1. The idea was that the the group has an invariant, the kernel T (M) of the map from
time like R to Out(M), consisting of those values of the parameter t for which σtφ reduces
to an inner automorphism and to unity as outer automorphism. Connes also discovered
also an invariant, which he called spectrum S(M) of M identified as the intersection of
spectra of ∆φ\{0}, which is closed multiplicative subgroup of R+.

Connes showed that there are three cases according to whether S(M) is

i. R+, type III1

ii. {λn, n ∈ Z}, type IIIλ.

iii. {1}, type III0.
The value range of λ is this by convention. For the reversal of the automorphism it
would be that associated with 1/λ.

Connes constructed also an explicit representation of the factors 0 < λ < 1 as crossed
product II∞ factor N and group Z represented as powers of automorphism of II∞ factor
inducing the scaling of trace by λ. The classification of HFFs of type III reduced thus to
the classification of automorphisms of N ⊗ B(H. In this sense the theory of HFFs of type
III was reduced to that for HFFs of type II∞ or even II1. The representation of Connes
might be also physically interesting.

Probabilistic view about factors of type III

Second very concise representation of HFFs relies on thermodynamical thinking and realizes
factors as infinite tensor product of finite-dimensional matrix algebras acting on state spaces
of finite state systems with a varying and finite dimension n such that one assigns to each
factor a density matrix characterized by its eigen values. Intuitively one can think the finite
matrix factors as associated with n-state system characterized by its energies with density
matrix ρ defining a thermodynamics. The logarithm of the ρ defines the single particle
quantum Hamiltonian as H = log(ρ) and ∆ = ρ = exp(H) defines the automorphism σφ
for each finite tensor factor as exp(iHt). Obviously free field representation is in question.

Depending on the asymptotic behavior of the eigenvalue spectrum one obtains different
factors [A78] .

i. Factor of type I corresponds to ordinary thermodynamics for which the density matrix
as a function of matrix factor approaches sufficiently fast that for a system for which
only ground state has non-vanishing Boltzmann weight.

ii. Factor of type II1 results if the density matrix approaches to identity matrix suffi-
ciently fast. This means that the states are completely degenerate which for ordinary
thermodynamics results only at the limit of infinite temperature. Spin glass could be
a counterpart for this kind of situation.

iii. Factor of type III results if one of the eigenvalues is above some lower bound for
all tensor factors in such a manner that neither factor of type I or II1 results but
thermodynamics for systems having infinite number of degrees of freedom could yield
this kind of situation.

This construction demonstrates how varied representations factors can have, a fact which
might look frustrating for a novice in the field. In particular, the infinite tensor power of
M(2, C) with state defined as an infinite tensor power of M(2, C) state assigning to the
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matrix A the complex number (λ1/2A11 + λ−1/2 φ(A) = A22)/(λ1/2 + λ−1/2) defines HFF
IIIλ [A78] , [C11] . Formally the same algebra which for λ = 1 gives ordinary trace and
HFF of type II1, gives III factor only by replacing trace with state. This simple model
was discovered by Powers in 1967.

It is indeed the notion of state or thermodynamics is what distinguishes between factors.
This looks somewhat weird unless one realizes that the Hilbert space inner product is
defined by the ”thermodynamical” state φ and thus probability distribution for operators
and for their thermal expectation values. Inner product in turn defines the notion of norm
and thus of continuity and it is this notion which differs dramatically for λ = 1 and λ < 1
so that the completions of the algebra differ dramatically.

In particular, there is no sign about I∞ tensor factor or crossed product with Z represented
as automorphisms inducing the scaling of trace by λ. By taking tensor product of I∞ factor
represented as tensor power with induces running from −∞ to 0 and II1 HFF with indices
running from 1 to∞ one can make explicit the representation of the automorphism of II∞
factor inducing scaling of trace by λ and transforming matrix factors possessing trace given
by square root of index M : N to those with trace 2.

14.3 Braid group, von Neumann algebras, quantum
TGD, and formation of bound states

The article of Vaughan Jones in [A72] discusses the relation between knot theory, statistical
physics, and von Neumann algebras. The intriguing results represented stimulate concrete
ideas about how to understand the formation of bound states quantitatively using the
notion of join along boundaries bond. All mathematical results represented in the following
discussion can be found in [A72] and in the references cited therein so that I will not bother
to refer repeatedly to this article in the sequel.

14.3.1 Factors of von Neumann algebras

Von Neumann algebras M are algebras of bounded linear operators acting in Hilbert space.
These algebras contain identity, are closed with respect to Hermitian conjugation, and are
topologically complete. Finite-dimensional von Neuman algebras decompose into a direct
sum of algebras Mn, which act essentially as matrix algebras in Hilbert spaces Hnm, which
are tensor products Cn ⊗ Hm. Here Hm is an m-dimensional Hilbert space in which Mn

acts trivially. m is called the multiplicity of Mn.

A factor of von Neumann algebra is a von Neumann algebra whose center is just the scalar
multiples of identity. The algebra of bounded operators in an infinite-dimensional Hilbert
space is certainly a factor. This algebra decomposes into ”atoms” represented by one-
dimensional projection operators. This kind of von Neumann algebras are called type I
factors.

The so called type II1 factors and type III factors came as a surprise even for Murray and
von Neumann. II1 factors are infinite-dimensional and analogs of the matrix algebra factors
Mn. They allow a trace making possible to define an inner product in the algebra. The
trace defines a generalized dimension for any subspace as the trace of the corresponding
projection operator. This dimension is however continuous and in the range [0, 1]: the finite-
dimensional analog would be the dimension of the sub-space divided by the dimension ofHn
and having values (0, 1/n, 2/n, ..., 1). II1 factors are isomorphic and there exists a minimal
”hyper-finite” II1 factor is contained by every other II1 factor.

Just as in the finite-dimensional case, one can to assign a multiplicity to the Hilbert spaces
where II1 factors act on. This multiplicity, call it dimM (H) is analogous to the dimension
of the Hilbert space tensor factor Hm, in which II1 factor acts trivially. This multiplicity
can have all positive real values. Quite generally, von Neumann factors of type I and II1

are in many respects analogous to the coefficient field of a vector space.
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14.3.2 Sub-factors

Sub-factors N ⊂ M , where N and M are of type II1 and have same identity, can be also
defined. The observation that M is analogous to an algebraic extension of N motivates
the introduction of index |M : N |, which is essentially the dimension of M with respect to
N . This dimension is an analog for the complex dimension of CP2 equal to 2 or for the
algebraic dimension of the extension of p-adic numbers.

The following highly non-trivial results about the dimensions of the tensor factors hold
true.

i. If N ⊂ M are II1 factors and |M : N | < 4, there is an integer n ≥ 3 such |M : N | =
r = 4cos2(π/n), n ≥ 3.

ii. For each number r = 4cos2(π/n) and for all r ≥ 4 there is a sub-factor Rr ⊂ R with
|R : Rr| = r.
One can say thatM effectively decomposes to a tensor product ofN with a space, whose
dimension is quantized to a certain algebraic number r. The values of r corresponding
to n = 3, 4, 5, 6... are r = 1, 2, 1 + Φ ' 2.61, 3, ... and approach to the limiting value
r = 4. For r ≥ 4 the dimension becomes continuous.

An even more intriguing result is that by starting from N ⊂ M with a projection eN :
M → N one can extend M to a larger II1 algebra 〈M, eN 〉 such that one has

|〈M, eN 〉 : M | = |M : N | ,
tr(xeN ) = |M : N |−1tr(x) , x ∈M . (14.3.1)

One can continue this process and the outcome is a tower of II1 factors Mi ⊂Mi+1 defined
by M1 = N , M2 = M , Mi+1 = 〈Mi, eMi−1〉. Furthermore, the projection operators
eMi
≡ ei define a Temperley-Lieb representation of the braid algebra via the formulas

e2
i = ei ,

eiei±1ei = τei , τ = 1/|M : N |
eiej = ejei , |i− j| ≥ 2 . (14.3.2)

Temperley Lieb algebra will be discussed in more detail later. Obviously the addition of a
tensor factor of dimension r is analogous with the addition of a strand to a braid.

The hyper-finite algebra R is generated by the set of braid generators {e1, e2, .....} in the
braid representation corresponding to r. Sub-factor R1 is obtained simply by dropping the
lowest generator e1, R2 by dropping e1 and e2, etc..

14.3.3 II1 factors and the spinor structure of infinite-dimensional
configuration space of 3-surfaces

The following observations serve as very suggestive guidelines for how one could interpret
the above described results in TGD framework.

i. The discrete spectrum of dimensions 1, 2, 1 + Φ, 3, .. below r < 4 brings in mind the
discrete energy spectrum for bound states whereas the for r ≥ 4 the spectrum of
dimensions is analogous to a continuum of unbound states. The fact that r is an
algebraic number for r < 4 conforms with the vision that bound state entanglement
corresponds to entanglement probabilities in an extension of rationals defining a finite-
dimensional extension of p-adic numbers for every prime p.

ii. The discrete values of r correspond precisely to the angles φ allowed by the unitarity
of Temperley-Lieb representations of the braid algebra with d = −

√
r. For r ≥ 4

Temperley-Lieb representation is not unitary since cos2(π/n) becomes formally larger
than one (n would become imaginary and continuous). This could mean that r ≥ 4,
which in the generic case is a transcendental number, represents unbound entanglement,
which in TGD Universe is not stable against state preparation and state function
reduction processes.
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iii. The formula tr(xeN ) = |M : N |−1tr(x) is completely analogous to the formula char-
acterizing the normalization of the link invariant induced by the second Markov move
in which a new strand is added to a braid such that it braids only with the leftmost
strand and therefore does not change the knot resulting as a link closure. Hence the
addition of a single strand seems to correspond to an introduction of an r-dimensional
sub-factor to II1 factor.

In TGD framework the generation of bound state has the formation of (possibly braided
join along boundaries bonds as a space-time correlate and this encourages a rather concrete
interpretation of these findings. Also the I1 factors themselves have a nice interpretation
in terms of the configuration space spinor structure.

1. The interpretation of II1 factors in terms of Clifford algebra of configuration space

The Clifford algebra of an infinite-dimensional Hilbert space defines a II1 factor. The
counterparts for ei would naturally correspond to the analogs of projection operators (1 +
σi)/2 and thus to operators of form (1+Σij)/2, defined by a subset of sigma matrices. The
first guess is that the index pairs are (i, j) = (1, 2), (2, 3), (3, 4), ..... The dimension of the
Clifford algebra is 2N for N -dimensional space so that ∆N = 1 would correspond to r = 2
in the classical case and to one qubit. The problem with this interpretation is r > 2 has
no physical interpretation: the formation of bound states is expected to reduce the value
of r from its classical value rather than increase it.

One can however consider also the sequence (i, j) = (1, 1 + k), (1 + k, 1 + 2k), (1 + 2k, 1 +
3k), .... For k = 2 the reduction of r from r = 4 would be due to the loss of degrees of
freedom due to the formation of a bound state and (r = 4,∆N = 2) would correspond to
the classical limit resulting at the limit of weak binding. The effective elimination of the
projection operators from the braid algebra would reflect this loss of degrees of freedom.
This interpretation could at least be an appropriate starting point in TGD framework.

In TGD Universe physical states correspond to configuration space spinor fields, whose
gamma matrix algebra is constructed in terms of second quantized free induced spinor
fields defined at space-time sheets. The original motivation was the idea that the quantum
states of the Universe correspond to the modes of purely classical free spinor fields in the
infinite-dimensional configuration space of 3-surfaces (the world of classical worlds) pos-
sessing general coordinate invariant (in 4-dimensional sense!) Kähler geometry. Quantum
information-theoretical motivation could have come from the requirement that these fields
must be able to code information about the properties of the point (3-surface, and corre-
sponding space-time sheet). Scalar fields would treat the 3-surfaces as points and are thus
not enough. Induced spinor fields allow however an infinite number of modes: according to
the naive Fourier analyst’s intuition these modes are in one-one correspondence with the
points of the 3-surface. Second quantization gives much more. Also non-local information
about the induced geometry and topology must be coded, and here quantum entanglement
for states generated by the fermionic oscillator operators coding information about the
geometry of 3-surface provides enormous information storage capacity.

In algebraic geometry also the algebra of the imbedding space of algebraic variety divided
by the ideal formed by functions vanishing on the surface codes information about the
surface: for instance, the maximal ideals of this algebra code for the points of the surface
(functions of imbedding space vanishing at a particular point). The function algebra of
the imbedding space indeed plays a key role in the construction of the configuration space-
geometry besides second quantized fermions.

The Clifford algebra generated by the configuration space gamma matrices at a given
point (3-surface) of the configuration space of 3-surfaces could be regarded as a II1-factor
associated with the local tangent space endowed with Hilbert space structure (configuration
space Kähler metric). The counterparts for ei would naturally correspond to the analogs
of projection operators (1 + σi)/2 and thus operators of form (GAB × 1 + ΣAB) formed
as linear combinations of components of the Kähler metric and of the sigma matrices
defined by gamma matrices and contracted with the generators of the isometries of the
configuration space. The addition of single complex degree of freedom corresponds to
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∆N = 2 and r = 4 and the classical limit and would correspond to the addition of single
braid. (r < 4,∆N < 2) would be due to the binding effects.

r = 1 corresponds to ∆N = 0. The first interpretation is in terms of strong binding
so that the addition of particle does not increase the number of degrees of freedom. In
TGD framework r = 1 might also correspond to the addition of zero modes which do not
contribute to the configuration space metric and spinor structure but have a deep physical
significance. (r = 2,∆N = 1) would correspond to strong binding reducing the spinor and
space-time degrees of freedom by a factor of half. r = Φ2 (n = 5) resp. r = 3 (n = 6)
corresponds to ∆Nr ' 1.3885 resp. ∆Nr = 1.585. Using the terminology of quantum field
theories, one might say that in the infinite-dimensional context a given complex bound
state degree of freedom possesses anomalous real dimension r < 2. r ≥ 4 would correspond
to a unbound entanglement and increasingly classical behavior.

14.3.4 About possible space-time correlates for the hierarchy of
II1 sub-factors

By quantum classical correspondence the infinite-dimensional physics at the configuration
space level should have definite space-time correlates. In particular, the dimension r should
have some fractal dimension as a space-time correlate.

1. Quantum classical correspondence

Join along boundaries bonds serve as correlates for bound state formation. The presence
of join along boundaries bonds would lead to a generation of bound states just by reducing
the degrees of freedom to those of connected 3-surface. The bonds would constrain the two
3-surfaces to single space-like section of imbedding space.

This picture would allow to understand the difficulties related to Bethe-Salpeter equations
for bound states based on the assumption that particles are points moving in M4. The re-
striction of particles to time=constant section leads to a successful theory which is however
non-relativistic. The basic binding energy would relate to the entanglement of the states
associated with the bonded 3-surfaces. Since the classical energy associated with the bonds
is positive, the binding energy tends to be reduced as r increases.

By spin glass degeneracy join along boundaries bonds have an infinite number of degrees
of freedom in the ordinary sense. Since the system is infinite-dimensional and quantum
critical, one expects that the number r of degrees freedom associated with a single join
along boundaries bond is universal. Since join along boundaries bonds correspond to the
strands of a braid and are correlates for the bound state formation, the natural guess is that
r = 4cos2(π/n), n = 3, 4, 5, ... holds true. r < 4 should characterize both binding energy
and the dimension of the effective tensor factor introduced by a new join along boundaries
bond.

The assignment of 2 ”bare” and ∆N ≤ 2 renormalized real dimensions to single join along
boundaries bond is consistent with the effective two-dimensionality of anyon systems and
with the very notion of the braid group. The picture conforms also with the fact that the
degrees of freedom in question are associated with metrically 2-dimensional light-like bound-
aries (of say magnetic flux tubes) acting as causal determinants. Also vibrational degrees
of freedom described by Kac-Moody algebra are present and the effective 2-dimensionality
means that these degrees of freedom are not excited and only topological degrees of freedom
coded by the position of the puncture remain.

(r ≥ 4,∆N ≥ 2), if possible at all, would mean that the tensor factor associated with the
join along boundaries bond is effectively more than 4-dimensional due to the excitation
of the vibrational Kac-Moody degrees of freedom. The finite value of r would mean that
most of theme are eliminated also now but that their number is so large that bound state
entanglement is not possible anymore.

The introduction of non-integer dimension could be seen as an effective description of an
infinite-dimensional system as a finite-dimensional system in the spirit of renormalization
group philosophy. The non-unitarity of r ≥ 4 Temperley-Lieb representations could mean
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that they correspond to unbound entanglement unstable against state function reduction
and preparation processes. Since this kind of entanglement does not survive in quantum
jump it is not representable in terms of braid groups.

2. Does r define a fractal dimension of CP2 projection of partonic 2-surface?

On basis of the quantum classical correspondence one expects that r should define some
fractal dimension at the space-time level. Since r varies in the range 1, .., 4 and corresponds
to the fractal dimension of 2-D Clifford algebra the corresponding spinors would have
dimension d =

√
r. There are two options.

i. D = r/2 is suggested on basis of the construction of quantum version of Md.

ii. D = log2(r) is natural on basis of the dimension d = 2D/2 of spinors in D-dimensional
space.

r can be assigned with CP2 degrees of freedom in the model for the quantization of Planck
constant based on the explicit identification of Josephson inclusions in terms of finite sub-
groups of SU(2) ⊂ SU(3). Hence D should relate to the CP2 projection of the partonic
2-surface and one could have D = D(X2), the latter being the average dimension of the
CP2 projection of the partonic 2-surface for the preferred extremals of Kähler action.

Since a strongly interacting non-perturbative phase should be in question, the dimension for
the CP2 projection of the space-time surface must be at least D(X4) = 2 to guarantee that
non-vacuum extremals are in question. This is true for D(X2) = r/2 ≥ 1. The logarithmic
formula D(X2) = log2(r) ≥ 0 gives D(X2) = 0 for n = 3 meaning that partonic 2-surfaces
are vacua: space-time surface can still be a non-vacuum extremal.

As n increases, the number of CP2 points covering a given M4 point and related by the
finite subgroup of G ⊂ SU(2) ⊂ SU(3) defining the inclusion increases so that the fractal
dimension of the CP2 projection is expected to increase also. D(X2) = 2 would correspond
to the space-time surfaces for which partons have topological magnetic charge forcing them
to have a 2-dimensional CP2 projection. There are reasons to believe that the projection
must be homologically non-trivial geodesic sphere of CP2.

14.3.5 Could binding energy spectra reflect the hierarchy of effec-
tive tensor factor dimensions?

If one takes completely seriously the idea that join along boundaries bonds are a correlate
of binding then the spectrum of binding energies might reveal the hierarchy of the fractal
dimensions r(n). Hydrogen atom and harmonic oscillator have become symbols for bound
state systems. Hence it is of interest to find whether the binding energy spectrum of
these systems might be expressed in terms of the ”binding dimension” x(n) = 4 − r(n)
characterizing the deviation of dimension from that at the limit of a vanishing binding
energy. The binding energies of hydrogen atom are in a good approximation given by
E(n)/E(1) = 1/n2 whereas in the case of harmonic oscillator one has E(n)/E0 = 2n + 1.
The constraint n ≥ 3 implies that the principal quantum number must correspond n− 2 in
the case of hydrogen atom and to n− 3 in the case of harmonic oscillator.

Before continuing one must face an obvious objection. By previous arguments different
values of r correspond to different values of ~. The value of ~ cannot however differ for
the states of hydrogen atom. This is certainly true. The objection however leaves open
the possibility that the states of the light-like boundaries of join along boundaries bonds
correspond to reflective level and represent some aspects of the physics of, say, hydrogen
atom.

In the general case the energy spectrum satisfies the condition

EB(n)

EB(3)
=

f(4− r(n))

f(3)
, (14.3.3)

where f is some function. The simplest assumption is that the spectrum of binding energies
EB(n) = E(n)− E(∞) is a linear function of r(n)− 4:
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EB(n)

EB(3)
=

4− r(n)

3
=

4

3
sin2(

π

n
)→ 4π2

3
× 1

n2
. (14.3.4)

In the linear approximation the ratio E(n+ 1)/E(n) approaches (n/n+ 1)2 as in the case
of hydrogen atom but for small values the linear approximation fails badly. An exact
correspondence results for

E(n)
E(1) = 1

n2 ,

n = 1

π arcsin
(√

1−r(n+2)/4
) − 2 .

Also the ionized states with r ≥ 4 would correspond to bound states in the sense that two
particle would be constrained to move in the same space-like section of space-time surface
and should be distinguished from genuinely free states when particles correspond to disjoint
space-time sheets.

For the harmonic oscillator one express E(n)−E(0) instead of E(n)−E(∞) as a function
of x = 4− r and one would have

E(n)
E(0) = 2n+ 1 ,

n = 1

π arcsin
(√

1−r(n+3)/4
) − 3 .

In this case ionized states would not be possible due to the infinite depth of the harmonic
oscillator potential well.

14.3.6 Four-color problem, II1 factors, and anyons

The so called four-color problem can be phrased as a question whether it is possible to
color the regions of a plane map using only four colors in such a manner that no adjacent
regions have the same color (for an enjoyable discussion of the problem see [A61] ). One
might call this kind of coloring complete. There is no loss of generality in assuming that
the map can be represented as a graph with regions represented as triangle shaped faces
of the graph. For the dual graph the coloring of faces becomes coloring of vertices and
the question becomes whether the coloring is possible in such a manner that no vertices at
the ends of the same edge have same color. The problem can be generalized by replacing
planar maps with maps defined on any two-dimensional surface with or without boundary
and arbitrary topology. The four-color problem has been solved with an extensive use of
computer [A57] but it would be nice to understand why the complete coloring with four
colors is indeed possible.

There is a mysterious looking connection between four-color problem and the dimensions
r(n) = 4cos2(π/n), which are in fact known as Beraha numbers in honor of the discoverer of
this connection [A129] . Consider a more general problem of coloring two-dimensional map
using m colors. One can construct a polynomial P (m), so called chromatic polynomial,
which tells the number of colorings satisfying the condition that no neighboring vertices
have the same color. The vanishing of the chromatic polynomial for an integer value of m
tells that the complete coloring using m colors is not possible.

P (m) has also other than integer valued real roots. The strange discovery due to Beraha is
that the numbers B(n) appear as approximate roots of the chromatic polynomial in many
situations. For instance, the four non-integral real roots of the chromatic polynomial of
the truncated icosahedron are very close to B(5), B(7), B(8) and B(9). These findings led
Beraha to formulate the following conjecture. Let Pi be a sequence of chromatic polynomials
for a graph for which the number of vertices approaches infinity. If ri is a root of the
polynomial approaching a well-defined value at the limit i→∞, then the limiting value of
r(i) is Beraha number.
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A physicist’s proof for Beraha’s conjecture based on quantum groups and conformal theory
has been proposed [A129] . It is interesting to look for the a possible physical interpretation
of 4-color problem and Beraha’s conjecture in TGD framework.

i. In TGD framework B(n) corresponds to a renormalized dimension for a 2-spin system
consisting of two qubits, which corresponds to 4 different colors. For B(n) = 4 two spin
1/2 fermions obeying Fermi statistics are in question. Since the system is 2-dimensional,
the general case corresponds to two anyons with fractional spin B(n)/4 giving rise to
B(n) < 4 colors and obeying fractional statistics instead of Fermi statistics. One can
replace coloring problem with the problem whether an ideal antiferro-magnetic lattice
using anyons with fractional spin B(n)/4 is possible energetically. In other words, does
this system form a quantum mechanical bound state even at the limit when the lengths
of the edges approach to zero.

ii. The failure of coloring means that there are at least two neighboring vertices in the
lattice with the property that the spins at the ends of the same edge are in the same
direction. Lattice defect would be in question. At the limit of an infinitesimally short
edge length the failure of coloring is certainly not an energetically favored option for
fermionic spins (m = 4) but is allowed by anyonic statistics for m = B(n) < 4. Thus
one has reasons to expect that when anyonic spin is B(n)/4 the formation of a purely
2-anyon bound states becomes possible and they form at the limit of an infinitesimal
edge length a kind of topological macroscopic quantum phase with a non-vanishing
binding energy. That B(n) are roots of the chromatic polynomial at the continuum
limit would have a clear physical interpretation.

iii. OnlyB(n) < 4 defines a sub-factor of von Neumann algebra allowing unitary Temperley-
Lieb representations. This is consistent with the fact that for m = 4 complete coloring
must exists. The physical argument is that otherwise a macroscopic quantum phase
with non-vanishing binding energy could result at the continuum limit and the upper
bound for r from unitarity would be larger than 4. For m = 4 the completely anti-
ferromagnetic state would represent the ground state and the absence of anyon-pair
condensate would mean a vanishing binding energy.

14.4 Inclusions of II1 and III1 factors

InclusionsN ⊂M of von Neumann algebras have physical interpretation as a mathematical
description for sub-system-system relation. For type I algebras the inclusions are trivial
and tensor product description applies as such. For factors of II1 and III the inclusions
are highly non-trivial. The inclusion of type II1 factors were understood by Vaughan
Jones [A5] and those of factors of type III by Alain Connes [A77] .

Sub-factor N ofM is defined as a closed ∗-stable C-subalgebra ofM. Let N be a sub-factor
of type II1 factor M. Jones index M : N for the inclusion N ⊂ M can be defined as
M : N = dimN (L2(M)) = TrN ′(idL2(M)). One can say that the dimension of completion
of M as N module is in question.

14.4.1 Basic findings about inclusions

What makes the inclusions non-trivial is that the position ofN inMmatters. This position
is characterized in case of hyper-finite II1 factors by indexM : N which can be said to the
dimension ofM as N module and also as the inverse of the dimension defined by the trace
of the projector fromM to N . It is important to notice thatM : N does not characterize
either M or M, only the imbedding.

The basic facts proved by Jones are following [A5] .

i. For pairs N ⊂M with a finite principal graph the values of M : N are given by

a) M : N = 4cos2(π/h) , h ≥ 3 ,

b) M : N ≥ 4 .
(14.4.1)
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the numbers at right hand side are known as Beraha numbers [A129] . The comments
below give a rough idea about what finiteness of principal graph means.

ii. As explained in [B44] , forM : N < 4 one can assign to the inclusion Dynkin graph of
ADE type Lie-algebra g with h equal to the Coxeter number h of the Lie algebra given
in terms of its dimension and dimension r of Cartan algebra r as h = (dimg(g)− r)/r.
The Lie algebras of SU(n), E7 and D2n+1 are however not allowed. ForM : N = 4 one
can assign to the inclusion an extended Dynkin graph of type ADE characterizing Kac
Moody algebra. Extended ADE diagrams characterize also the subgroups of SU(2) and
the interpretation proposed in [A106] is following. The ADE diagrams are associated
with the n =∞ case havingM : N ≥ 4. There are diagrams corresponding to infinite
subgroups: SU(2) itself, circle group U(1), and infinite dihedral groups (generated by
a rotation by a non-rational angle and reflection. The diagrams corresponding to finite
subgroups are extension of An for cyclic groups, of Dn dihedral groups, and of En with
n=6,7,8 for tedrahedron, cube, dodecahedron. ForM : N < 4 ordinary Dynkin graphs
of D2n and E6, E8 are allowed.

The interpretation of [A106] is that the subfactors correspond to inclusions N ⊂M defined
in the following manner.

i. Let G be a finite subgroup of SU(2). Denote by R the infinite-dimensional Clifford
algebras resulting from infinite-dimensional tensor power of M2(C) and by R0 its sub-
algebra obtained by restricting M2(C) element of the first factor to be unit matrix. Let
G act by automorphisms in each tensor factor. G leaves R0 invariant. Denote by RG0
and RG the sub-algebras which remain element wise invariant under the action of G.
The resulting Jones inclusions RG0 ⊂ RG are consistent with the ADE correspondence.

ii. The argument suggests the existence of quantum versions of subgroups of SU(2) for
which representations are truncations of those for ordinary subgroups. The results
have been generalized to other Lie groups.

iii. Also SL(2, C) acts as automorphisms of M2(C). An interesting question is what hap-
pens if one allows G to be any discrete subgroups of SL(2,C). Could this give inclusions
withM : N > 4?. The strong analogy of the spectrum of indices with spectrum of en-
ergies with hydrogen atom would encourage this interpretation: the subgroup SL(2,C)
not reducing to those of SU(2) would correspond to the possibility for the particle to
move with respect to each other with constant velocity.

14.4.2 The fundamental construction and Temperley-Lieb alge-
bras

It was shown by Jones [A92] that for a given Jones inclusion with β =M : N < ∞ there
exists a tower of finite II1 factors Mk for k = 0, 1, 2, .... such that

i. M0 = N , M1 =M,

ii. Mk+1 = EndMk−1
Mk is the von Neumann algebra of operators on L2(Mk) generated

by Mk and an orthogonal projection ek : L2(Mk)→ L2(Mk−1) for k ≥ 1, where Mk

is regarded as a subalgebra of Mk+1 under right multiplication.

It can be shown that Mk+1 is a finite factor. The sequence of projections on M∞ =
∪k≥0Mk satisfies the relations

e2
i = ei , e=

i ei ,
ei = βeiejei for |i− j| = 1 ,
eiej = ejei for |i− j| ≥ 2 .

(14.4.2)

The construction of hyper-finite II1 factor using Clifford algebra C(2) represented by 2× 2
matrices allows to understand the theorem in β = 4 case in a straightforward manner. In
particular, the second formula involving β follows from the identification of x at (k − 1)th

level with (1/β)diag(x, x) at kth level.
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By replacing 2× 2 matrices with
√
β×
√
β matrices one can understand heuristically what

is involved in the more general case. Mk is Mk−1 module with dimension
√
β and Mk+1

is the space of
√
β ×
√
β matrices Mk−1 valued entries acting in Mk. The transition from

Mk toMk−1 linear maps ofMk happens in the transition to the next level. x at (k− 1)th

level is identified as (x/β) × Id√β×√β at the next level. The projection ek picks up the
projection of the matrix with Mk−1 valued entries in the direction of the Id√β×

√
β .

The union of algebras Aβ,k generated by 1, e1, ..., ek defines Temperley-Lieb algebra Aβ
[A140] . This algebra is naturally associated with braids. Addition of one strand to a
braid adds one generator to this algebra and the representations of the Temperley Lieb
algebra provide link, knot, and 3-manifold invariants [A72] . There is also a connection
with systems of statistical physics and with Yang-Baxter algebras [A69] .

A further interesting fact about the inclusion hierarchy is that the elements inMi belonging
to the commutator N ′ of N form finite-dimensional spaces. Presumably the dimension
approaches infinity for n→∞.

14.4.3 Connection with Dynkin diagrams

The possibility to assign Dynkin diagrams (β < 4) and extended Dynkin diagrams (β = 4
to Jones inclusions can be understood heuristically by considering a characterization of so
called bipartite graphs [A107] , [B44] by the norm of the adjacency matrix of the graph.

Bipartite graphs Γ is a finite, connected graph with multiple edges and black and white
vertices such that any edge connects white and black vertex and starts from a white one.
Denote by w(Γ) (b(Γ)) the number of white (black) vertices. Define the adjacency matrix
Λ = Λ(Γ) of size b(Γ)× w(Γ) by

wb,w =

{
m(e) if there exists e such that δe = b− w ,
0 otherwise .

(14.4.3)

Here m(e) is the multiplicity of the edge e.

Define norm ||Γ|| as

||X|| = max{||X||; ||x|| ≤ 1} ,

||Γ|| = ||Λ(Γ)|| =
∣∣∣∣∣∣ 0 Λ(Γ)

Λ(Γ)t 0

∣∣∣∣∣∣ . (14.4.4)

Note that the matrix appearing in the formula is (m + n) × (m + n) symmetric square
matrix so that the norm is the eigenvalue with largest absolute value.

Suppose that Γ is a connected finite graph with multiple edges (sequences of edges are
regarded as edges). Then

i. If ||Γ|| ≤ 2 and if Γ has a multiple edge, ||Γ|| = 2 and Γ = Ã1, the extended Dynkin
diagram for SU(2) Kac Moody algebra.

ii. ||Γ|| < 2 if and only Γ is one of the Dynkin diagrams of A,D,E. In this case ||Γ|| =
2cos(π/h), where h is the Coxeter number of Γ.

iii. ||Γ|| = 2 if and only if Γ is one of the extended Dynkin diagrams Ã, D̃, Ẽ.

This result suggests that one can indeed assign to the Jones inclusions Dynkin diagrams.
To really understand how the inclusions can be characterized in terms bipartite diagrams
would require a deeper understanding of von Neumann algebras. The following argument
only demonstrates that bipartite graphs naturally describe inclusions of algebras.

i. Consider a bipartite graph. Assign to each white vertex linear space W (w) and to
each edge of a linear space W (b, w). Assign to a given black vertex the vector space
⊕δe=b−wW (b, w)⊗W (w) where (b, w) corresponds to an edge ending to b.

ii. Define N as the direct sum of algebras End(W (w)) associated with white vertices
andM as direct sum of algebras ⊕δe=b−wEnd(W (b, w))⊗End(W (w)) associated with
black vertices.
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iii. There is homomorphism N → M defined by imbedding direct sum of white endo-
morphisms x to direct sum of tensor products x with the identity endomorphisms
associated with the edges starting from x.

It is possible to show that Jones inclusions correspond to the Dynkin diagrams of An, D2n,
and E6, E8 and extended Dynkin diagrams of ADE type. In particular, the dual of the
bi-partite graph associated with Mn−1 ⊂ Mn obtained by exchanging the roles of white
and black vertices describes the inclusion Mn ⊂ Mn+1 so that two subsequent Jones
inclusions might define something fundamental (the corresponding space-time dimension is
2× log2(M : N ) ≤ 4.

14.4.4 Indices for the inclusions of type III1 factors

Type III1 factors appear in relativistic quantum field theory defined in 4-dimensional
Minkowski space [B66] . An overall summary of basic results discovered in algebraic quan-
tum field theory is described in the lectures of Longo [A114] . In this case the inclusions
for algebras of observables are induced by the inclusions for bounded regions of M4 in ax-
iomatic quantum field theory. Tomita’s theory of modular Hilbert algebras [A138] , [B31]
forms the mathematical corner stone of the theory.

The basic notion is Haag-Kastler net [A122] consisting of bounded regions of M4. Double
cone serves as a representative example. The von Neumann algebra A(O) is generated by
observables localized in bounded region O. The net satisfies the conditions implied by local
causality:

i. Isotony: O1 ⊂ O2 implies A(O1) ⊂ A(O2).

ii. Locality: O1 ⊂ O′2 impliesA(O1) ⊂ A(O2)′ withO′ defined as {x : 〈x, y〉 < 0 for all y ∈
O}.

iii. Haag duality A(O′)′ = A(O).
Besides this Poincare covariance, positive energy condition, and the existence of vacuum
state is assumed.

DHR (Doplicher-Haag-Roberts) [A128] theory allows to deduce the values of Jones index
and they are squares of integers in dimensions D > 2 so that the situation is rather trivial.
The 2-dimensional case is distinguished from higher dimensional situations in that braid
group replaces permutation group since the paths representing the flows permuting identical
particles can be linked in X2 × T and anyonic statistics [D17, D16] becomes possible. In
the case of 2-D Minkowski space M2 Jones inclusions with M : N < 4 plus a set of
discrete values of M : N in the range (4, 6) are possible. In [A114] some values are given
(M : N = 5, 5.5049..., 5.236...., 5.828...).

At least intersections of future and past light cones seem to appear naturally in TGD
framework such that the boundaries of future/past directed light cones serve as seats for
incoming/outgoing states defined as intersections of space-time surface with these light
cones. III1 sectors cannot thus be excluded as factors in TGD framework. On the other
hand, the construction of S-matrix at space-time level is reduced to II1 case by effective
2-dimensionality.

14.5 TGD and hyper-finite factors of type II1: ideas
and questions

By effective 2-dimensionality of the construction of quantum states the hyper-finite factors
of type II1 fit naturally to TGD framework. In particular, infinite dimensional spinors
define a canonical representations of this kind of factor. The basic question is whether only
hyper-finite factors of type II1 appear in TGD framework. Affirmative answer would allow
to interpret physical M -matrix as time like entanglement coefficients.
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14.5.1 What kind of hyper-finite factors one can imagine in TGD?

The working hypothesis has been that only hyper-finite factors of type II1 appear in TGD.
The basic motivation has been that they allow a new view about M -matrix as an operator
representable as time-like entanglement coefficients of zero energy states so that physical
states would represent laws of physics in their structure. They allow also the introduction
of the notion of measurement resolution directly to the definition of reaction probabilities
by using Jones inclusion and the replacement of state space with a finite-dimensional state
space defined by quantum spinors. This hypothesis is of course just an attractive working
hypothesis and deserves to be challenged.

Configuration space spinors

For configuration space spinors the HFF II1 property is very natural because of the proper-
ties of infinite-dimensional Clifford algebra and the inner product defined by the configura-
tion space geometry does not allow other factors than this. A good guess is that the values
of conformal weights label the factors appearing in the tensor power defining configuration
space spinors. Because of the non-degeneracy and super-symplectic symmetries the density
matrix representing metric must be essentially unit matrix for each conformal weight which
would be the defining characteristic of hyper-finite factor of type II1.

Bosonic degrees of freedom

The bosonic part of the super-symplectic algebra consists of Hamiltonians of CH in one-one
correspondence with those of δM4

± ×CP2. Also the Kac-Moody algebra acting leaving the
light-likeness of the partonic 3-surfaces intact contributes to the bosonic degrees of freedom.
The commutator of these algebras annihilates physical states and there are also Virasoro
conditions associated with ordinary conformal symmetries of partonic 2-surface [K20] . The
labels of Hamiltonians of configuration space and spin indices contribute to bosonic degrees
of freedom.

Hyper-finite factors of type II1 result naturally if the system is an infinite tensor product
finite-dimensional matrix algebra associated with finite dimensional systems [A78] . Unfor-
tunately, neither Virasoro, symplectic nor Kac-Moody algebras do have decomposition into
this kind of infinite tensor product. If bosonic degrees for super-symplectic and super-Kac
Moody algebra indeed give I∞ factor one has HFF if type II∞. This looks the most natural
option but threatens to spoil the beautiful idea about M -matrix as time-like entanglement
coefficients between positive and negative energy parts of zero energy state.

The resolution of the problem is surprisingly simple and trivial after one has discovered
it. The requirement that state is normalizable forces to project M -matrix to a finite-
dimensional sub-space in bosonic degrees of freedom so that the reduction I∞ → In occurs
and one has the reduction II∞ → II1 × In = II1 to the desired HFF.

One can consider also the possibility of taking the limit n → ∞. One could indeed say
that since I∞ factor can be mapped to an infinite tensor power of M(2, C) characterized
by a state which is not trace, it is possible to map this representation to HFF by replacing
state with trace [A78] . The question is whether the forcing the bosonic foot to fermionic
shoe is physically natural. One could also regard the II1 type notion of probability as
fundamental and also argue that it is required by full super-symmetry realized also at the
level of many-particle states rather than mere single particle states.

How the bosonic cutoff is realized?

Normalizability of state requires that projection to a finite-dimensional bosonic sub-space
is carried out for the bosonic part of the M -matrix. This requires a cutoff in quantum
numbers of super-conformal algebras. The cutoff for the values of conformal weight could
be formulated by replacing integers with Zn or with some finite field G(p, 1). The cutoff
for the labels associated with Hamiltonians defined as an upper bound for the dimension
of the representation looks also natural.
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Number theoretical braids which are discrete and finite structures would define space-time
correlate for this cutoff. p-Adic length scale p ' 2k hypothesis could be interpreted as
stating the fact that only powers of p up to pk are significant in p-adic thermodynamics
which would correspond to finite field G(k, 1) if k is prime. This has no consequences for
p-adic mass calculations since already the first two terms give practically exact results for
the large primes associated with elementary particles [K50] .

Finite number of strands for the theoretical braids would serve as a correlate for the reduc-
tion of the representation of Galois group S∞ of rationals to an infinite produce of diagonal
copies of finite-dimensional Galois group so that same braid would repeat itself like a unit
cell of lattice i condensed matter [A24] .

HFF of type III for field operators and HFF of type II1 for states?

One could also argue that the Hamiltonians with fixed conformal weight are included in
fermionic II1 factor and bosonic factor I∞ factor, and that the inclusion of conformal
weights leads to a factor of type III. Conformal weight could relate to the integer appearing
in the crossed product representation III = Z ×cr II∞ of HFF of type III [A78] .

The value of conformal weight is non-negative for physical states which suggests that Z
reduces to semigroup N so that a factor of type III would reduce to a factor of type II∞
since trace would become finite. If unitary process corresponds to an automorphism for
II∞ factor, the action of automorphisms affecting scaling must be uni-directional. Also
thermodynamical irreversibility suggests the same. The assumption that state function
reduction for positive energy part of state implies unitary process for negative energy state
and vice versa would only mean that the shifts for positive and negative energy parts of
state are opposite so that Z → N reduction would still hold true.

HFF of type II1 for the maxima of Kähler function?

Probabilistic interpretation allows to gain heuristic insights about whether and how hyper-
finite factors of type type II1 might be associated with configuration space degrees of
freedom. They can appear both in quantum fluctuating degrees of freedom associated
with a given maximum of Kähler function and in the discrete space of maxima of Kähler
function.

Spin glass degeneracy is the basic prediction of classical TGD and means that instead
of a single maximum of Kähler function analogous to single free energy minimum of a
thermodynamical system there is a fractal spin glass energy landscape with valleys inside
valleys. The discretization of the configuration space in terms of the maxima of Kähler
function crucial for the p-adicization problem, leads to the analog of spin glass energy
landscape and hyper-finite factor of type II1 might be the appropriate description of the
situation.

The presence of the tensor product structure is a powerful additional constraint and some-
thing analogous to this should emerge in configuration space degrees of freedom. Fractality
of the many-sheeted space-time is a natural candidate here since the decomposition of the
original geometric structure to parts and replacing them with the scaled down variant of
original structure is the geometric analog of forming a tensor power of the original structure.

14.5.2 Direct sum of HFFs of type II1 as a minimal option

HFF II1 property for the Clifford algebra of the configuration space means a definite
distinction from the ordinary Clifford algebra defined by the fermionic oscillator operators
since the trace of the unit matrix of the Clifford algebra is normalized to one. This does
not affect the anti-commutation relations at the basic level and delta functions can appear
in them at space-time level. At the level of momentum space I∞ property requires discrete
basis and anti-commutators involve only Kronecker deltas. This conforms with the fact
that HFF of type II1 can be identified as the Clifford algebra associated with a separable
Hilbert space.
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II∞ factor or direct sum of HFFs of type II1?

The expectation is that super-symplectic algebra is a direct sum over HFFs of type II1 la-
beled by the radial conformal weight. In the same manner the algebra defined by fermionic
anti-commutation relations at partonic 2-surface would decompose to a direct sum of al-
gebras labeled by the conformal weight associated with the light-like coordinate of X3

l .
Super-conformal symmetry suggests that also the configuration space degrees of freedom
correspond to a direct sum of HFFs of type II1.

One can of course ask why not II∞ = I∞ × II1 structures so that one would have single
factor rather than a direct sum of factors.

i. The physical motivation is that the direct sum property allow to decompose M-matrix
to direct summands associated with various sectors with weights whose moduli squared
have an interpretation in terms of the density matrix. This is also consistent with p-adic
thermodynamics where conformal weights take the place of energy eigen values.

ii. II∞ property would predict automorphisms scaling the trace by an arbitrary positive
real number λ ∈ R+. These automorphisms would require the scaling of the trace of
the projectors of Clifford algebra having values in the range [0, 1] and it is difficult to
imagine how these automorphisms could be realized geometrically.

How HFF property reflects itself in the construction of geometry of WCW?

The interesting question is what HFF property and finite measurement resolution realizing
itself as the use of projection operators means concretely at the level of the configuration
space geometry.

Super-Hamiltonians define the Clifford algebra of the configuration space. Super-conformal
symmetry suggests that the unavoidable restriction to projection operators instead of com-
plex rays is realized also configuration space degrees of freedom. Of course, infinite precision
in the determination of the shape of 3-surface would be physically a completely unrealistic
idea.

In the fermionic situation the anti-commutators for the gamma matrices associated with
configuration space individual Hamiltonians in 3-D sense are replaced with anti-commutators
where Hamiltonians are replaced with projectors to subspaces of the space spanned by
Hamiltonians. This projection is realized by restricting the anti-commutator to partonic
2-surfaces so that the anti-commutator depends only the restriction of the Hamiltonian to
those surfaces.

What is interesting that the measurement resolution has a concrete particle physical mean-
ing since the parton content of the system characterizes the projection. The larger the
number of partons, the better the resolution about configuration space degrees of freedom
is. The degeneracy of configuration space metric would be interpreted in terms of finite
measurement resolution inherent to HFFs of type II1, which is not due to Jones inclusions
but due to the fact that one can project only to infinite-D subspaces rather than complex
rays.

Effective 2-dimensionality in the sense that configuration space Hamiltonians reduce to
functionals of the partonic 2-surfaces of X3

l rather than functionals of X3
l could be inter-

preted in this manner. For a wide class of Hamiltonians actually effective 1-dimensionality
holds true in accordance with conformal invariance.

The generalization of configuration space Hamiltonians and super-Hamiltonians by allowing
integrals over the 2-D boundaries of the patches of X3

l would be natural and is suggested
by the requirement of discretized 3-dimensionality at the level of configuration space.

By quantum classical correspondence the inclusions of HFFs related to the measurement
resolution should also have a geometric description. Measurement resolution corresponds
to braids in given time scale and as already explained there is a hierarchy of braids in
time scales coming as negative powers of two corresponding to the addition of zero energy
components to positive/negative energy state. Note however that particle reactions under-
stood as decays and fusions of braid strands could also lead to a notion of measurement
resolution.
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14.5.3 Bott periodicity, its generalization, and dimension D = 8 as
an inherent property of the hyper-finite II1 factor

Hyper-finite II1 factor can be constructed as infinite-dimensional tensor power of the Clif-
ford algebra M2(C) = C(2) in dimension D = 2. More precisely, one forms the union of
the Clifford algebras C(2n) = C(2)⊗n of 2n-dimensional spaces by identifying the element
x ∈ C(2n) as block diagonal elements diag(x, x) of C(2(n + 1)). The union of these al-
gebras is completed in weak operator topology and can be regarded as a Clifford algebra
of real infinite-dimensional separable Hilbert space and thus as sub-algebra of I∞. Also
generalizations obtained by replacing complex numbers by quaternions and octions are
possible.

i. The dimension 8 is an inherent property of the hyper-finite II1 factor since Bott peri-
odicity theorem states C(n+8) = Cn(16). In other words, the Clifford algebra C(n+8)
is equivalent with the algebra of 16× 16 matrices with entries in C(n). Or articulating
it still differently: C(n+ 8) can be regarded as 16× 16 dimensional module with C(n)
valued coefficients. Hence the elements in the union defining the canonical representa-
tion of hyper-finite II1 factor are 16n × 16n matrices having C(0), C(2), C(4) or C(6)
valued valued elements.

ii. The idea about a local variant of the infinite-dimensional Clifford algebra defined by
power series of space-time coordinate with Taylor coefficients which are Clifford algebra
elements fixes the interpretation. The representation as a linear combination of the
generators of Clifford algebra of the finite-dimensional space allows quantum general-
ization only in the case of Minkowski spaces. However, if Clifford algebra generators
are representable as gamma matrices, the powers of coordinate can be absorbed to the
Clifford algebra and the local algebra is lost. Only if the generators are represented
as quantum versions of octonions allowing no matrix representation because of their
non-associativity, the local algebra makes sense. From this it is easy to deduce both
quantum and classical TGD.

14.5.4 The interpretation of Jones inclusions in TGD framework

By the basic self-referential property of von Neumann algebras one can consider several
interpretations of Jones inclusions consistent with sub-system-system relationship, and it
is better to start by considering the options that one can imagine.

How Jones inclusions relate to the new view about sub-system?

Jones inclusion characterizes the imbedding of sub-system N to Mand M as a finite-
dimensional N -module is the counterpart for the tensor product in finite-dimensional con-
text. The possibility to expressM asN moduleM/N states fractality and can be regarded
as a kind of self-referential ”Brahman=Atman identity” at the level of infinite-dimensional
systems.

Also the mysterious looking almost identity CH2 = CH for the configuration space of
3-surfaces would fit nicely with the identity M ⊕M = M . M ⊗M ⊂ M in configuration
space Clifford algebra degrees of freedom is also implied and the construction of M as a
union of tensor powers of C(2) suggests that M ⊗M allows M : N = 4 inclusion to M.
This paradoxical result conforms with the strange self-referential property of factors of II1.

The notion of many-sheeted space-time forces a considerable generalization of the notion of
sub-system and simple tensor product description is not enough. Topological picture based
on the length scale resolution suggests even the possibility of entanglement between sub-
systems of un-entangled sub-systems. The possibility that hyper-finite II1-factors describe
the physics of TGD also in bosonic degrees of freedom is suggested by configuration space
super-symmetry. On the other hand, bosonic degrees could naturally correspond to I∞
factor so that hyper-finite II∞ would be the net result.

The most general view is that Jones inclusion describes all kinds of sub-system-system
inclusions. The possibility to assign conformal field theory to the inclusion gives hopes of
rather detailed view about dynamics of inclusion.
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i. The topological condensation of space-time sheet to a larger space-time sheet mediated
by wormhole contacts could be regarded as Jones inclusion. N would correspond to
the condensing space-time sheet,M to the system consisting of both space-time sheets,
and
√
M : N would characterize the number of quantum spinorial degrees of freedom

associated with the interaction between space-time sheets. Note that by general results
M : N characterizes the fractal dimension of quantum group (M : N < 4) or Kac-
Moody algebra (M : N = 4) [B44] .

ii. The branchings of space-time sheets (space-time surface is thus homologically like
branching like of Feynman diagram) correspond naturally to n-particle vertices in TGD
framework. What is nice is that vertices are nice 2-dimensional surfaces rather than
surfaces having typically pinch singularities. Jones inclusion would naturally appear
as inclusion of operator spaces Ni (essentially Fock spaces for fermionic oscillator op-
erators) creating states at various lines as sub-spaces Ni ⊂ M of operators creating
states in common von Neumann factorM. This would allow to construct vertices and
vertices in natural manner using quantum groups or Kac-Moody algebras.
The fundamental N ⊂ M ⊂ M⊗N M inclusion suggests a concrete representation
based on the identification Ni = M , where M is the universal Clifford algebra associ-
ated with incoming line and N is defined by the condition that M/N is the quantum
variant of Clifford algebra of H. N -particle vertices could be defined as traces of
Connes products of the operators creating incoming and outgoing states. It will be
found that this leads to a master formula for S-matrix if the generalization of the old-
fashioned string model duality implying that all generalized Feynman diagrams reduce
to diagrams involving only single vertex is accepted.

iii. If 4-surfaces can branch as the construction of vertices requires, it is difficult to argue
that 3-surfaces and partonic/stringy 2-surfaces could not do the same. As a matter
fact, the master formula for S-matrix to be discussed later explains the branching of
4-surfaces as an apparent affect. Despite this one can consider the possibility that this
kind of joins are possible so that a new kind of mechanism of topological condensation
would become possible. 3-space-sheets and partonic 2-surfaces whose p-adic fractality
is characterized by different p-adic primes could be connected by ”joins” representing
branchings of 2-surfaces. The structures formed by soap film foam provide a very
concrete illustration about what would happen. In the TGD based model of hadrons
[K53] it has been assumed that join along boundaries bonds (JABs) connect quark
space-time space-time sheets to the hadronic space-time sheet. The problem is that, at
least for identical primes, the formation of join along boundaries bond fuses two systems
to single bound state. If JABs are replaced joins, this objection is circumvented.

iv. The space-time correlate for the formation of bound states is the formation of JABs.
Standard intuition tells that the number of degrees of freedom associated with the
bound state is smaller than the number of degrees of freedom associated with the pair
of free systems. Hence the inclusion of the bound state to the tensor product could be
regarded as Jones inclusion. On the other hand, one could argue that the JABs carry
additional vibrational degrees of freedom so that the idea about reduction of degrees
of freedom might be wrong: free system could be regarded as sub-system of bound
state by Jones inclusion. The self-referential holographic properties of von Neumann
algebras allow both interpretations: any system can be regarded as sub-system of any
system in accordance with the bootstrap idea.

v. Maximal deterministic regions inside given space-time sheet bounded by light-like
causal determinants define also sub-systems in a natural manner and also their in-
clusions would naturally correspond to Jones inclusions.

vi. The TGD inspired model for topological quantum computation involves the magnetic
flux tubes defined by join along boundaries bonds connecting space-time sheets having
light-like boundaries. These tubes condensed to background 3-space can become linked
and knotted and code for quantum computations in this manner. In this case the
addition of new strand to the system corresponds to Jones inclusion in the hierarchy
associated with inclusion N ⊂ M. The anyon states associated with strands would
be represented by a finite tensor product of quantum spinors assignable to M/N and
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representing quantum counterpart of H-spinors.

One can regard M : N degrees of freedom correspond to quantum group or Kac-Moody
degrees of freedom. Quantum group degrees of freedom relate closely to the conformal and
topological degrees of freedom as the connection of II1 factors with topological quantum
field theories and braid matrices suggests itself. For the canonical inclusion this factor-
ization would correspond to factorization of quantum H-spinor from configuration space
spinor.

A more detailed study of canonical inclusions to be carried out later demonstrates what
this factorization corresponds at the space-time level to a formation of space-time sheets
which can be regarded as multiple coverings of M4 and CP2 with invariance group G =
Ga × Gb ⊂ SL(2, C) × SU(2), SU(2) ⊂ SU(3). The unexpected outcome is that Planck
constants assignable to M4 and CP2 degrees of freedom depend on the canonical inclusions.
The existence of macroscopic quantum phases with arbitrarily large Planck constants is
predicted.

It would seem possible to assign the M : N degrees quantum spinorial degrees of freedom
to the interface between subsystems represented by N and M. The interface could corre-
spond to the wormhole contacts, joins, JABs, or light-like causal determinants serving as
boundary between maximal deterministic regions, etc... In terms of the bipartite diagrams
representing the inclusions, joins (say) would correspond to the edges connecting white ver-
tices representing sub-system (the entire system without the joins) to black vertices (entire
system).

About the interpretation of M : N degrees of freedom

The Clifford algebra N associated with a system formed by two space-time sheet can be
regarded as 1 ≤M : N ≤ 4-dimensional module having N as its coefficients. It is possible
to imagine several interpretations the degrees of freedom labeled by β.

i. The β = M : N degrees of freedom could relate to the interaction of the space-time
sheets. Beraha numbers appear in the construction of S-matrices of topological quan-
tum field theories and an interpretation in terms of braids is possible. This would
suggest that the interaction between space-time sheets can be described in terms of
conformal quantum field theory and the S-matrices associated with braids describe this
interaction. Jones inclusions would characterize the effective number of active confor-
mal degrees of freedom. At n = 3 limit these degrees of freedom disappear completely
since the conformal field theory defined by the Chern-Simons action describing this
interaction would become trivial (c = 0 as will be found).

ii. The interpretation in terms of imbedding space Clifford algebra would suggest that β-
dimensional Clifford algebra of

√
β-dimensional spinor space is in question. For β = 4

the algebra would be the Clifford algebra of 2-dimensional space. M/N would have
interpretation as complex quantum spinors with components satisfying z1z2 = qz2z1

and its conjugate and having fractal complex dimension
√
β. This would conform with

the effective 2-dimensionality of TGD. For β < 4 the fractal dimension of partonic
quantum spinors defining the basic conformal fields would be reduced and become
d = 1 for n = 3: the interpretation is in terms of strong correlations caused by the
non-commutativity of the components of quantum spinor. For number theoretical
generalizations of infinite-dimensional Clifford algebras Cl(C) obtained by replacing
C with Abelian complexification of quaternions or octonions one would obtain higher-
dimensional spinors.

14.5.5 Configuration space, space-time, and imbedding space and
hyper-finite type II1 factors

The preceding considerations have by-passed the question about the relationship of the
configuration space tangent space to its Clifford algebra. Also the relationship between
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space-time and imbedding space and their quantum variants could be better. In par-
ticular, one should understand how effective 2-dimensionality can be consistent with the
4-dimensionality of space-time.

Super-conformal symmetry and configuration space Poisson algebra as hyper-
finite type II1 factor

It would be highly desirable to achieve also a description of the configuration space degrees
of freedom using von Neumann algebras. Super-conformal symmetry relating fermionic
degrees of freedom and configuration space degrees of freedom suggests that this might be
the case. Super-symplectic algebra has as its generators configuration space Hamiltonians
and their super-counterparts identifiable as CH gamma matrices. Super-symmetry requires
that the Clifford algebra of CH and the Hamiltonian vector fields of CH with symplectic
central extension both define hyper-finite II1 factors. By super-symmetry Poisson bracket
corresponds to an anti-commutator for gamma matrices. The ordinary quantized version
of Poisson bracket is obtained as {Pi, Qj} → [Pi, Qj ] = JijId. Finite trace version results
by assuming that Id corresponds to the projector CH Clifford algebra having unit norm.
The presence of zero modes means direct integral over these factors.

Configuration space gamma matrices anti-commuting to identity operator with unit norm
corresponds to the tangent space T (CH) of CH. Thus it would be not be surprising if
T (CH) could be imbedded in the sigma matrix algebra as a sub-space of operators defined
by the gamma matrices generating this algebra. At least for β = 4 construction of hyper-
finite II1 factor this definitely makes sense.

The dimension of the configuration space defined as the trace of the projection operator
to the sub-space spanned by gamma matrices is obviously zero. Thus configuration space
has in this sense the dimensionality of single space-time point. This sounds perhaps absurd
but the generalization of the number concept implied by infinite primes indeed leads to the
view that single space-time point is infinitely structured in the number theoretical sense
although in the real sense all states of the point are equivalen. The reason is that there is
infinitely many numbers expressible as ratios of infinite integers having unit real norm in
the real sense but having different p-adic norms.

How to understand the dimensions of space-time and imbedding space?

One should be able to understand the dimensions of 3-space, space-time and imbedding
space in a convincing matter in the proposed framework. There is also the question whether
space-time and imbedding space emerge uniquely from the mathematics of von Neumann
algebras alone.

1. The dimensions of space-time and imbedding space

Two sub-sequent inclusions dual to each other define a special kind of inclusion giving
rise to a quantum counterpart of D = 4 naturally. This would mean that space-time is
something which emerges at the level of cognitive states.

The special role of classical division algebras in the construction of quantum TGD [K74]
, D = 8 Bott periodicity generalized to quantum context, plus self-referential property of
type II1 factors might explain why 8-dimensional imbedding space is the only possibility.

State space has naturally quantum dimension D ≤ 8 as the following simple argument
shows. The space of quantum states has quark and lepton sectors which both are super-
symmetric implying D ≤ 4 for each. Since these sectors correspond to different Hamiltonian
algebras (triality one for quarks and triality zero for leptonic sector), the state space has
quantum dimension D ≤ 8.

2. How the lacking two space-time dimensions emerge?

3-surface is the basic dynamical unit in TGD framework. This seems to be in conflict with
the effective 2-dimensionality [K74] meaning that partonic 2-surface code for quantum
states, and with the fact that hyper-finite II1 factors have intrinsic quantum dimension 2.
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A possible resolution of the problem is that the foliation of 3-surface by partonic two-
surfaces defines a one-dimensional direct integral of isomorphic hyper-finite type II1 factors,
and the zero mode labeling the 2-surfaces in the foliation serves as the third spatial coordi-
nate. For a given 3-surface the contribution to the configuration space metric can come only
from 2-D partonic surfaces defined as intersections of 3-D light-like CDs with X7

± [K17] .
Hence the direct integral should somehow relate to the classical non-determinism of Kähler
action.

i. The one-parameter family of intersections of light-like CD with X7
± inside X4 ∩ X7

±
could indeed be basically due to the classical non-determinism of Kähler action. The
contribution to the metric from the normal light-like direction to X3 = X4 ∩ X7

±
can cause the vanishing of the metric determinant

√
g4 of the space-time metric at

X2 ⊂ X3 under some conditions on X2. This would mean that the space-time surface
X4(X3) is not uniquely determined by the minimization principle defining the value
of the Kähler action, and the complete dynamical specification of X3 requires the
specification of partonic 2-surfaces X2

i with
√
g4 = 0.

ii. The known solutions of field equations [K8] define a double foliation of the space-time
surface defined by Hamilton-Jacobi coordinates consisting of complex transversal coor-
dinate and two light-like coordinates for M4 (rather than space-time surface). Number
theoretical considerations inspire the hypothesis that this foliation exists always [K74]
. Hence a natural hypothesis is that the allowed partonic 2-surfaces correspond to the
2-surfaces in the restriction of the double foliation of the space-time surface by partonic
2-surfaces to X3, and are thus locally parameterized by single parameter defining the
third spatial coordinate.

iii. There is however also a second light-like coordinate involved and one might ask whether
both light-like coordinates appear in the direct sum decomposition of II1 factors defin-
ing T (CH). The presence of two kinds of light-like CDs would provide the lacking
two space-time coordinates and quantum dimension D = 4 would emerge at the limit
of full non-determinism. Note that the duality of space-like partonic and light-like
stringy 2-surfaces conforms with this interpretation since it corresponds to a selection
of partonic/stringy 2-surface inside given 3-D CD whereas the dual pairs correspond
to different CDs.

iv. That the quantum dimension would be 2Dq = β < 4 above CP2 length scale conforms
with the fact that non-determinism is only partial and time direction is dynamically
frozen to a high degree. For vacuum extremals there is strong non-determinism but in
this case there is no real dynamics. For CP2 type extremals, which are not vacuum
extremals as far action and small perturbations are considered, and which correspond to
β = 4 there is a complete non-determinism in time direction since the M4 projection
of the extremal is a light-like random curve and there is full 4-D dynamics. Light-
likeness gives rise to conformal symmetry consistent with the emergence of Kac Moody
algebra [K8] .

3. Time and cognition

In a completely deterministic physics time dimension is strictly speaking redundant since
the information about physical states is coded by the initial values at 3-dimensional slice of
space-time. Hence the notion of time should emerge at the level of cognitive representations
possible by to the non-determinism of the classical dynamics of TGD.

Since Jones inclusion means the emergence of cognitive representation, the space-time view
about physics should correspond to cognitive representations provided by Feynman diagram
states with zero energy with entanglement defined by a two-sided projection of the lowest
level S-matrix. These states would represent the ”laws of quantum physics” cognitively.
Also space-time surface serves as a classical correlate for the evolution by quantum jumps
with maximal deterministic regions serving as correlates of quantum states. Thus the
classical non-determinism making possible cognitive representations would bring in time.
The fact that quantum dimension of space-time is smaller than D = 4 would reflect the
fact that the loss of determinism is not complete.
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4. Do space-time and imbedding space emerge from the theory of von Neumann algebras
and number theory?

The considerations above force to ask whether the notions of space-time and imbedding
space emerge from von Neumann algebras as predictions rather than input. The fact that
it seems possible to formulate the S-matrix and its generalization in terms of inherent
properties of infinite-dimensional Clifford algebras suggest that this might be the case.

Inner automorphisms as universal gauge symmetries?

The continuous outer automorphisms ∆it of HFFs of type III are not completely unique and
one can worry about the interpretation of the inner automorphisms. A possible resolution
of the worries is that inner automorphisms act as universal gauge symmetries contain-
ing various super-conformal symmetries as a special case. For hyper-finite factors of type
II1 in the representation as an infinite tensor power of M2(C) this would mean that the
transformations non-trivial in a finite number of tensor factors only act as analogs of local
gauge symmetries. In the representation as a group algebra of S∞ all unitary transforma-
tions acting on a finite number of braid strands act as gauge transformations whereas the
infinite powers P × P × ..., P ∈ Sn, would act as counterparts of global gauge transforma-
tions. In particular, the Galois group of the closure of rationals would act as local gauge
transformations but diagonally represented finite Galois groups would act like global gauge
transformations and periodicity would make possible to have finite braids as space-time
correlates without a loss of information.

Do unitary isomorphisms between tensor powers of II1 define vertices?

What would be left would be the construction of unitary isomorphisms between the tensor
products of the HFFs of type II1⊗In = II1 at the partonic 2-surfaces defining the vertices.
This would be the only new element added to the construction of braiding M -matrices.

As a matter fact, this element is actually not completely new since it generalizes the fusion
rules of conformal field theories, about which standard example is the fusion rule φi =
c jk
i φjφk for primary fields. These fusion rules would tell how a state of incoming HFF

decomposes to the states of tensor product of two outgoing HFFs.

These rules indeed have interpretation in terms of Connes tensor productsM⊗N ...⊗NM
for which the sub-factor N takes the role of complex numbers [A90] so that one has M
becomes N bimodule and ”quantum quantum states” have N as coefficients instead of
complex numbers. In TGD framework this has interpretation as quantum measurement
resolution characterized by N (the group G characterizing leaving the elements of N in-
variant defines the measured quantum numbers).

14.5.6 Quaternions, octonions, and hyper-finite type II1 factors

Quaternions and octonions as well as their hyper counterparts obtained by multiplying
imaginary units by commuting

√
−1 and forming a sub-space of complexified division al-

gebra, are in in a central role in the number theoretical vision about quantum TGD [K74]
. Therefore the question arises whether complexified quaternions and perhaps even oc-
tonions could be somehow inherent properties of von Neumann algebras. One can also
wonder whether the quantum counterparts of quaternions and octonions could emerge nat-
urally from von Neumann algebras. The following considerations allow to get grasp of the
problem.

Quantum quaternions and quantum octonions

Quantum quaternions have been constructed as deformation of quaternions [A119] . The
key observation that the Glebsch Gordan coefficients for the tensor product 3⊗3 = 5⊕⊕3⊕1
of spin 1 representation of SU(2) with itself gives the anti-commutative part of quaternionic
product as spin 1 part in the decomposition whereas the commutative part giving spin 0
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representation is identifiable as the scalar product of the imaginary parts. By combining
spin 0 and spin 1 representations, quaternionic product can be expressed in terms of Glebsh-
Gordan coefficients. By replacing GGC:s by their quantum group versions for group sl(2)q,
one obtains quantum quaternions.

There are two different proposals for the construction of quantum octonions [A70, A1]
. Also now the idea is to express quaternionic and octonionic multiplication in terms of
Glebsch-Gordan coefficients and replace them with their quantum versions.

i. The first proposal [A70] relies on the observation that for the tensor product of j = 3
representations of SU(2) the Glebsch-Gordan coefficients for 7 ⊗ 7 → 7 in 7 ⊗ 7 =
9⊕ 7⊕ 5⊕ 3⊕ 1 defines a product, which is equivalent with the antisymmetric part of
the product of octonionic imaginary units. As a matter fact, the antisymmetry defines
7-dimensional Malcev algebra defined by the anticommutator of octonion units and
satisfying b definition the identity

[[x, y, z] , x] = [x, y, [x, z]] , [x, y, z] ≡ [x, [y, z]] + [y, [z, x]] + [z, [x, y]] .(14.5.1)

7-element Malcev algebra defining derivations of octonionic algebra is the only com-
plex Malcev algebra not reducing to a Lie algebra. The j = 0 part of the product
corresponds also now to scalar product for imaginary units. Octonions are constructed
as sums of j = 0 and j = 3 parts and quantum Glebsch-Gordan coefficients define the
octonionic product.

ii. In the second proposal [A1] the quantum group associated with SO(8) is used. This
representation does not allow unit but produces a quantum version of octonionic triality
assigning to three octonions a real number.

Quaternionic or octonionic quantum mechanics?

There have been numerous attempts to introduce quaternions and octonions to quantum
theory. Quaternionic or octonionic quantum mechanics, which means the replacement of the
complex numbers as coefficient field of Hilbert space with quaternions or octonions, is the
most obvious approach (for example and references to the literature see for instance [A113]
.

In both cases non-commutativity poses serious interpretational problems. In the octonionic
case the non-associativity causes even more serious obstacles [B42, A113] , [B42] .

i. Assuming that an orthonormalized state basis with respect to an octonion valued
inner product has been found, the multiplication of any basis with octonion spoils the
orthonormality. The proposal to circumvent this difficulty discussed in [B42] , [B42]
eliminates non-associativity by assuming that octonions multiply states one by one
(rather than multiplying each other before multiplying the state). Effectively this
means that octonions are replaced with 8× 8-matrices.

ii. The definition of the tensor product leads also to difficulties since associativity is lost
(recall that Yang-Baxter equation codes for associativity in case of braid statistics
[A110] ).

iii. The notion of hermitian conjugation is problematic and forces a selection of a preferred
imaginary unit, which does not look nice. Note however that the local selection of
a preferred imaginary unit is in a key role in the proposed construction of space-
time surfaces as hyper-quaternionic or co-hyper-quaternionic surfaces and allows to
interpret space-time surfaces either as surfaces in 8-D Minkowski space M8 of hyper-
octonions or in M4×CP2. This selection turns out to have quite different interpretation
in the proposed framework.

Hyper-finite factor II1 has a natural Hyper-Kähler structure

In the case of hyper-finite factors of type II1 quaternions a more natural approach is based
on the generalization of the Hyper-Kähler structure rather than quaternionic quantum
mechanics. The reason is that also configuration space tangent space should and is expected
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to have this structure [K17] . The Hilbert space remains a complex Hilbert space but the
quaternionic units are represented as operators in Hilbert space. The selection of the
preferred unit is necessary and natural. The identity operator representing quaternionic
real unit has trace equal to one, is expected to give rise to the series of quantum quaternion
algebras in terms of inclusions N ⊂M having interpretation as N -modules.

The representation of the quaternion units is rather explicit in the structure of hyper-
finite II1 factor. The M : N ≡ β = 4 hierarchical construction can be regarded as Connes
tensor product of infinite number of 4-D Clifford algebras of Euclidian plane with Euclidian
signature of metric (diag(−1,−1)). This algebra is nothing but the quaternionic algebra in
the representation of quaternionic imaginary units by Pauli spin matrices multiplied by i.

The imaginary unit of the underlying complex Hilbert space must be chosen and there
is whole sphere S2 of choices and in every point of configuration space the choice can be
made differently. The space-time correlate for this local choice of preferred hyper-octonionic
unit [K74] . At the level of configuration space geometry the quaternion structure of the
tangent space means the existence of Hyper-Kähler structure guaranteing that configuration
space has a vanishing Einstein tensor. It it would not vanish, curvature scalar would be
infinite by symmetric space property (as in case of loop spaces) and induce a divergence in
the functional integral over 3-surfaces from the expansion of

√
g [K17] .

The quaternionic units for the II1 factor, are simply limiting case for the direct sums of
2× 2 units normalized to one. Generalizing from β = 4 to β < 4, the natural expectation
is that the representation of the algebra as β =M : N -dimensional N -module gives rise to
quantum quaternions with quaternion units defined as infinite sums of

√
β ×
√
β matrices.

At Hilbert space level one has an infinite Connes tensor product of 2-component spinor
spaces on which quaternionic matrices have a natural action. The tensor product of Clifford
algebras gives the algebra of 2×2 quaternionic matrices acting on 2-component quaternionic
spinors (complex 4-component spinors). Thus double inclusion could correspond to (hyper-
)quaternionic structure at space-time level. Note however that the correspondence is not
complete since hyper-quaternions appear at space-time level and quaternions at Hilbert
space level.

Von Neumann algebras and octonions

The octonionic generalization of the Hyper-Kähler manifold does not make sense as such
since octonionic units are not representable as linear operators. The allowance of anti-linear
operators inherently present in von Neumann algebras could however save the situation.
Indeed, the Cayley-Dickson construction for the division algebras (for a nice explanation
see [A61] ), which allows to extend any ∗ algebra, and thus also any von Neumann algebra,
by adding an imaginary unit it and identified as ∗, comes in rescue.

The basic idea of the Cayley-Dickson construction is following. The ∗ operator, call it J ,
representing a conjugation defines an anti-linear operator in the original algebra A. One
can extend A by adding this operator as a new element to the algebra. The conditions
satisfied by J are

a(Jb) = J(a∗b) , (aJ)b = (ab∗)J , (Ja)(bJ−1) = (ab)∗ . (14.5.2)

In the associative case the conditions are equivalent to the first condition.

It is intuitively clear that this addition extends the hyper-Kähler structure to an octonionic
structure at the level of the operator algebra. The quantum version of the octonionic
algebra is fixed by the quantum quaternion algebra uniquely and is consistent with the
Cayley-Dickson construction. It is not clear whether the construction is equivalent with
either of the earlier proposals [A70, A1] . It would however seem that the proposal is
simpler.



14.5. TGD and hyper-finite factors of type II1: ideas and questions 885

Physical interpretation of quantum octonion structure

Without further restrictions the extension by J would mean that vertices contain operators,
which are superpositions of linear and anti-linear operators. This would give superpositions
of states and their time-reversals and mean that state could be a superposition of states
with opposite values of say fermion numbers. The problem disappears if either the linear
operators A or anti-linear operators JA can be used to construct physical states from
vacuum. The fact, that space-time surfaces are either hyper-quaternionic or co-hyper-
quaternionic, is a space-time correlate for this restriction.

The HQ − coHQ duality discussed in [K74] states that the descriptions based on hyper-
quaternionic and co-hyper-quaternionic surfaces are dual to each other. The duality can
have two meanings.

i. The vacuum is invariant under J so that one can use either complexified quaternionic
operators A or their co-counterparts of form JA to create physical states from vacuum.

ii. The vacuum is not invariant under J . This could relate to the breaking of CP and T
invariance known to occur in meson-antimeson systems. In TGD framework two kinds
of vacua are predicted corresponding intuitively to vacua in which either the product of
all positive or negative energy fermionic oscillator operators defines the vacuum state,
and these two vacua could correspond to a vacuum and its J conjugate, and thus to
positive and negative energy states. In this case the two state spaces would not be
equivalent although the physics associated with them would be equivalent.

The considerations of [K74] related to the detailed dynamics of HQ−coHQ duality demon-
strate that the variational principles defining the dynamics of hyper-quaternionic and co-
hyper-quaternionic space-time surfaces are antagonistic and correspond to world as seen
by a conscientous book-keeper on one hand and an imaginative artist on the other hand.
HQ case is conservative: differences measured by the magnitude of Kähler action tend to
be minimized, the dynamics is highly predictive, and minimizes the classical energy of the
initial state. coHQ case is radical: differences are maximized (this is what the construction
of sensory representations would require). The interpretation proposed in [K74] was that
the two space-time dynamics are just different predictions for what would happen (has
happened) if no quantum jumps would occur (had occurred). A stronger assumption is
that these two views are associated with systems related by time reversal symmetry.

What comes in mind first is that this antagonism follows from the assumption that these
dynamics are actually time-reversals of each other with respect to M4 time (the rapid
elimination of differences in the first dynamics would correspond to their rapid enhancement
in the second dynamics). This is not the case so that T and CP symmetries are predicted
to be broken in accordance with the CP breaking in meson-antimeson systems [K47] and
cosmological matter-antimatter asymmetry [K67] .

14.5.7 Does the hierarchy of infinite primes relate to the hierarchy
of II1 factors?

The hierarchy of Feynman diagrams accompanying the hierarchy defined by Jones inclusions
M0 ⊂ M1 ⊂ ... gives a concrete representation for the hierarchy of cognitive dynamics
providing a representation for the material world at the lowest level of the hierarchy. This
hierarchy seems to relate directly to the hierarchy of space-time sheets.

Also the construction of infinite primes [K72] leads to an infinite hierarchy. Infinite primes
at the lowest level correspond to polynomials of single variable x1 with rational coefficients,
next level to polynomials x1 for which coefficients are rational functions of variable x2, etc...
so that a natural ordering of the variables is involved.

If the variables xi are hyper-octonions (subs-space of complexified octonions for which
elements are of form x+

√
−1y, where x is real number and y imaginary octonion and

√
−1

is commuting imaginary unit, this hierarchy of states could provide a realistic representation
of physical states as far as quantum numbers related to imbedding space degrees of freedom
are considered in M8 picture dual to M4×CP2 picture [K74] . Infinite primes are mapped
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to space-time surfaces in a manner analogous to the mapping of polynomials to the loci
of their zeros so that infinite primes, integers, and rationals become concrete geometrical
objects.

Infinite primes are also obtained by a repeated second quantization of a super-symmetric
arithmetic quantum field theory. Infinite rational numbers correspond in this description to
pairs of positive energy and negative energy states of opposite energies having interpreta-
tion as pairs of initial and final states so that higher level states indeed represent transitions
between the states. For these reasons this hierarchy has been interpreted as a correlate for
a cognitive hierarchy coding information about quantum dynamics at lower levels. This
hierarchy has also been assigned with the hierarchy of space-time sheets. Just as the hier-
archy of generalized Feynman diagrams provides self representations of the lowest matter
level and is coded by it, finite primes code the hierarchy of infinite primes.

Infinite primes, integers, and rationals have finite p-adic norms equal to 1, and one can
wonder whether a Hilbert space like structure with dimension given by an infinite prime or
integer makes sense, and whether it has anything to do with the Hilbert space for which
dimension is infinite in the sense of the limiting value for a dimension of sub-space. The
Hilbert spaces with dimension equal to infinite prime would define primes for the tensor
product of these spaces. The dimension of this kind of space defined as any p-adic norm
would be equal to one.

One cannot exclude the possibility that infinite primes could express the infinite dimensions
of hyper-finite III1 factors, which cannot be excluded and correspond to that part of
quantum TGD which relates to the imbedding space rather than space-time surface. Indeed,
infinite primes code naturally for the quantum numbers associated with the imbedding
space. Secondly, the appearance of 7-D light-like causal determinants X7

± = M4
± × CP2

forming nested structures in the construction of S-matrix brings in mind similar nested
structures of algebraic quantum field theory [B66] . If this is were the case, the hierarchy of
Beraha numbers possibly associated with the phase resolution could correspond to hyper-
finite factors of type II1, and the decomposition of space-time surface to regions labeled by
p-adic primes and characterized by infinite primes could correspond to hyper-finite factors
of type III1 and represent imbedding space degrees of freedom.

The state space would in this picture correspond to the tensor products of hyper-finite
factors of type II1 and III1 (of course, also factors In and I∞ are also possible). III1
factors could be assigned to the sub-configuration spaces defined by 3-surfaces in regions of
M4 expressible in terms of unions and intersections of X7

± = M4
± × CP2. By conservation

of four-momentum, bounded regions of this kind are possible only for the states of zero
net energy appearing at the higher levels of hierarchy. These sub-configuration spaces
would be characterized by the positions of the tips of light cones M4

± ⊂M4 involved. This
indeed brings in continuous spectrum of four-momenta forcing to introduce non-separable
Hilbert spaces for momentum eigen states and necessitating III1 factors. Infinities would
be avoided since the dynamics proper would occur at the level of space-time surfaces and
involve only II1 factors.

14.6 Could HFFs of type III have application in TGD
framework?

One can imagine several manners for how HFFs of type III could emerge in TGD although
the proposed view about M -matrix in zero energy ontology suggests that HFFs of type III1
should be only an auxiliary tool at best. Same is suggested with interpretational problems
associated with them. Both TGD inspired quantum measurement theory, the idea about a
variant of HFF of type II1 analogous to a local gauge algebra, and some other arguments,
suggest that HFFs of type III could be seen as a useful idealization allowing to make
non-trivial conjectures both about quantum TGD and about HFFs of type III. Quantum
fields would correspond to HFFs of type III and II∞ whereas physical states (M -matrix)
would correspond to HFF of type II1. I have summarized first the problems of III1 factors
so that reader can decide whether the further reading is worth of it.
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14.6.1 Problems associated with the physical interpretation of III1

factors

Algebraic quantum field theory approach [B41, B66] has led to a considerable understanding
of relativistic quantum field theories in terms of hyper-finite III1 factors. There are however
several reasons to suspect that the resulting picture is in conflict with physical intuition.
Also the infinities of non-trivial relativistic QFTs suggest that something goes wrong.

Are the infinities of quantum field theories due the wrong type of von Neumann
algebra?

The infinities of quantum field theories involve basically infinite traces and it is now known
that the algebras of observables for relativistic quantum field theories for bounded regions
of Minkowski space correspond to hyper-finite III1 algebras, for which non-trivial traces
are always infinite. This might be the basic cause of the divergence problems of relativistic
quantum field theory.

On basis of this observations there is some temptation to think that the finite traces of
hyper-finite II1 algebras might provide a resolution to the problems but not necessarily in
QFT context. One can play with the thought that the subtraction of infinities might be
actually a process in which III1 algebra is transformed to II1 algebra. A more plausible
idea suggested by dimensional regularization is that the elimination of infinities actually
gives rise to II1 inclusion at the limitM : N → 4. It is indeed known that the dimensional
regularization procedure of quantum field theories can be formulated in terms of bi-algebras
assignable to Feynman diagrams and [A79] and the emergence of bi-algebras suggests that
a connection with II1 factors and critical role of dimension D = 4 might exist.

Continuum of inequivalent representations of commutation relations

There is also a second difficulty related to type III algebras. There is a continuum of in-
equivalent representations for canonical commutation relations [A98] . In thermodynamics
this is blessing since temperature parameterizes these representations. In quantum field
theory context situation is however different and this problem has been usually put under
the rug.

Entanglement and von Neumann algebras

In quantum field theories where 4-D regions of space-time are assigned to observables. In
this case hyper-finite type III1 von Neumann factors appear. Also now inclusions make
sense and has been studiedin fact, the parameters characterizing Jones inclusions appear
also now and this due to the very general properties of the inclusions.

The algebras of type III1 have rather counter-intuitive properties from the point of view of
entanglement. For instance, product states between systems having space-like separation
are not possible at all so that one can speak of intrinsic entanglement [A99] . What looks
worse is that the decomposition of entangled state to product states is highly non-unique.

Mimicking the steps of von Neumann one could ask what the notion of observables could
mean in TGD framework. Effective 2-dimensionality states that quantum states can be
constructed using the data given at partonic or stringy 2-surfaces. This data includes also
information about normal derivatives so that 3-dimensionality actually lurks in. In any
case this would mean that observables are assignable to 2-D surfaces. This would suggest
that hyper-finite II1 factors appear in quantum TGD at least as the contribution of single
space-time surface to S-matrix is considered. The contributions for configuration space
degrees of freedom meaning functional (not path-) integral over 3-surfaces could of course
change the situation.

Also in case of II1 factors, entanglement shows completely new features which need not
however be in conflict with TGD inspired view about entanglement. The eigen values
of density matrices are infinitely degenerate and quantum measurement can remove this
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degeneracy only partially. TGD inspired theory of consciousness has led to the identification
of rational (more generally algebraic entanglement) as bound state entanglement stable in
state function reduction. When an infinite number of states are entangled, the entanglement
would correspond to rational (algebraic number) valued traces for the projections to the
eigen states of the density matrix. The symplectic transformations of CP2 are almost
U(1) gauge symmetries broken only by classical gravitation. They imply a gigantic spin
glass degeneracy which could be behind the infinite degeneracies of eigen states of density
matrices in case of II1 factors.

14.6.2 Quantum measurement theory and HFFs of type III

The attempt to interpret the HFFs of type III in terms of quantum measurement theory
based on Jones inclusions leads to highly non-trivial conjectures about these factors.

Could the scalings of trace relate to quantum measurements?

What should be understood is the physical meaning of the automorphism inducing the
scaling of trace. In the representation based of factors based on infinite tensor powers the
action of g should transform single n × n matrix factor with density matrix Id/n to a
density matrix e11 of a pure state.

Obviously the number of degrees of freedom is affected and this can be interpreted in
terms of appearance or disappearance of correlations. Quantization and emergence of
non-commutativity indeed implies the emergence of correlations and effective reduction of
degrees of freedom. In particular, the fundamental quantum Clifford algebra has reduced
dimensionM : N = r ≤ 4 instead of r = 4 since the replacement of complex valued matrix
elements with N valued ones implies non-commutativity and correlations.

The transformation would be induced by the shift of finite-dimensional state to right or
left so that the number of matrix factors overlapping with I∞ part increases or is reduced.
Could it have interpretation in terms of quantum measurement for a quantum Clifford
factor? Could quantum measurement for M/N degrees of freedom reducing the state in
these degrees of freedom to a pure state be interpreted as a transformation of single finite-
dimensional matrix factor to a type I factor inducing the scaling of the trace and could the
scalings associated with automorphisms of HFFs of type III also be interpreted in terms
of quantum measurement?

This interpretation does not as such say anything about HFF factors of type III since only
a decomposition of II1 factor to Ik2 factor and II1 factor with a reduced trace of projector
to the latter. However, one can ask whether the scaling of trace for HFFs of type III
could correspond to a situation in which infinite number of finite-dimensional factors have
been quantum measured. This would correspond to the inclusion N ⊂ M∞ = ∪nMn

where N ⊂M ⊂ ...Mn... defines the canonical inclusion sequence. Physicist can of course
ask whether the presence of infinite number of I2-, or more generally, In-factors is at all
relevant to quantum measurement and it has already become clear that situation at the
level of M -matrix reduces to In.

Could the theory of HHFs of type III relate to the theory of Jones inclusions?

The idea about a connection of HFFs of type III and quantum measurement theory seems
to be consistent with the basic facts about inclusions and HFFs of type III1.

i. Quantum measurement would scale the trace by a factor 2k/
√
M : N since the trace

would become a product for the trace of the projector to the newly born M(2, C)⊗k

factor and the trace for the projection to N given by 1/
√
M : N . The continuous range

of valuesM : N ≥ 4 gives good hopes that all values of λ are realized. The prediction
would be that 2k

√
M : N ≥ 1 holds always true.

ii. The valuesM : N ∈ {rn = 4cos2(π/n)} for which the single M(2, C) factor emerges in
state function reduction would define preferred values of the inverse of λ =

√
M : N/4

parameterizing factors IIIλ. These preferred values vary in the range [1/2, 1].
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iii. λ = 1 at the end of continuum would correspond to HFF III1 and to Jones inclusions
defined by infinite cyclic subgroups dense in U(1) ⊂ SU(2) and this group combined
with reflection. These groups correspond to the Dynkin diagrams A∞ and D∞. Also
the classical values of M : N = n2 characterizing the dimension of the quantum
CliffordM : N are possible. In this case the scaling of trace would be trivial since the
factor n to the trace would be compensated by the factor 1/n due to the disappearance
of M/N factor III1 factor.

iv. Inclusions with M : N = ∞ are also possible and they would correspond to λ = 0 so
that also III0 factor would also have a natural identification in this framework. These
factors correspond to ergodic systems and one might perhaps argue that quantum
measurement in this case would give infinite amount of information.

v. This picture makes sense also physically. p-Adic thermodynamics for the representa-
tions of super-conformal algebra could be formulated in terms of factors of type I∞
and in excellent approximation using factors In. The generation of arbitrary number
of type II1 factors in quantum measurement allow this possibility.

The end points of spectrum of preferred values of λ are physically special

The fact that the end points of the spectrum of preferred values of λ are physically special,
supports the hopes that this picture might have something to do with reality.

i. The Jones inclusion with q = exp(iπ/n), n = 3 (with principal diagram reducing to
a Dynkin diagram of group SU(3)) corresponds to λ = 1/2, which corresponds to
HFF III1 differing in essential manner from factors IIIλ, λ < 1. On the other hand,
SU(3) corresponds to color group which appears as an isometry group and important
subgroup of automorphisms of octonions thus differs physically from the ADE gauge
groups predicted to be realized dynamically by the TGD based view about McKay
correspondence [A24] .

ii. For r = 4 SU(2) inclusion parameterized by extended ADE diagrams M(2, C)⊗2 would
be created in the state function reduction and also this would give λ = 1/2 and scaling
by a factor of 2. Hence the end points of the range of discrete spectrum would corre-
spond to the same scaling factor and same HFF of type III. SU(2) could be interpreted
either as electro-weak gauge group, group of rotations of th geodesic sphere of δM4

±,
or a subgroup of SU(3). In TGD interpretation for McKay correspondence a phase
transition replacing gauge symmetry with Kac-Moody symmetry.

iii. The scalings of trace by factor 2 seem to be preferred physically which should be
contrasted with the fact that primes near prime powers of 2 and with the fact that
quantum phases q = exp(iπ/n) with n equal to Fermat integer proportional to power
of 2 and product of the Fermat primes (the known ones are 5, 17, 257, and 216 + 1)
are in a special role in TGD Universe.

14.6.3 What could one say about II1 automorphism associated
with the II∞ automorphism defining factor of type III?

An interesting question relates to the interpretation of the automorphisms of II∞ factor
inducing the scaling of trace.

i. If the automorphism for Jones inclusion involves the generator of cyclic automorphism
sub-group Zn of II1 factor then it would seem that for other values of λ this group
cannot be cyclic. SU(2) has discrete subgroups generated by arbitrary phase q and
these are dense in U(1) ⊂ SU(2) sub-group. If the interpretation in terms of Jones
inclusion makes sense then the identification λ =

√
M : N/2k makes sense.

ii. If HFF of type II1 is realized as group algebra of infinite symmetric group [A24]
, the outer automorphism induced by the diagonally imbedded finite Galois groups
can induce only integer values of n and Zn would correspond to cyclic subgroups.
This interpretation conforms with the fact that the automorphisms in the completion
of inner automorphisms of HFF of type II1 induce trivial scalings. Therefore only
automorphisms which do not belong to this completion can define HFFs of type III.
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14.6.4 What could be the physical interpretation of two kinds of
invariants associated with HFFs type III?

TGD predicts two kinds of counterparts for S-matrix: M -matrix and U -matrix. Both are
expected to be more or less universal.

There are also two kinds of invariants and automorphisms associated with HFFs of type
III.

i. The first invariant corresponds to the scaling λ ∈]0, 1[ of the trace associated with the
automorphism of factor of II∞. Also the end points of the interval make sense. The
inverse of this scaling accompanies the inverse of this automorphism.

ii. Second invariant corresponds to the time scales t = T0 for which the outer automor-
phism σt reduces to inner automorphism. It turns out that T0 and λ are related by the
formula λiT0 = 1, which gives the allowed values of T0 as T0 = n2π/log(λ) [A78] . This
formula can be understood intuitively by realizing that λ corresponds to the eigenvalue
of the density matrix ∆ = eH in the simplest possible realization of the state φ.

The presence of two automorphisms and invariants brings in mind U matrix characterizing
the unitary process occurring in quantum jump and M -matrix characterizing time like
entanglement.

i. If one accepts the vision based on quantum measurement theory then λ corresponds
to the scaling of the trace resulting when quantum Clifford algebraM/N reduces to a
tensor power of M(2, C) factor in the state function reduction. The proposed interpre-
tation for U process would be as the inverse of state function reduction transforming
this factor back to M/N . Thus U process and state function reduction would corre-
spond naturally to the scaling and its inverse. This picture might apply not only in
single particle case but also for zero energy states which can be seen as states associated
the a tensor power of HFFs of type II1 associated with partons.

ii. The implication is that U process can occur only in the direction in which trace is
reduced. This would suggest that the full III1 factor is not a physical notion and that
one must restrict the group Z in the crossed product Z ×cr II∞ to the group N of
non-negative integers. In this kind of situation the trace is well defined since the traces
for the terms in the crossed product comes as powers λ−n so that the net result is
finite. This would mean a reduction to II∞ factor.

iii. Since time t is a natural parameter in elementary particle physics experiment, one could
argue that σt could define naturally M -matrix. Time parameter would most naturally
correspond to a parameter of scaling affecting all M4

± coordinates rather than linear
time. This conforms also with the fundamental role of conformal transformations and
scalings in TGD framework.

The identification of the full M -matrix in terms of σ does not seem to make sense generally.
It would however make sense for incoming and outgoing number theoretic braids so that
σ could define universal braiding M -matrices. Inner automorphisms would bring in the
dependence on experimental situation. The reduction of the braiding matrix to an inner
automorphism for critical values of t which could be interpreted in terms of scaling by
power of p. This trivialization would be a counterpart for the elimination of propagator
legs from M -matrix element. Vertex itself could be interpreted as unitary isomorphism
between tensor product of incoming and outgoing HFFs of type II1 would code all what is
relevant about the particle reaction.

14.6.5 Does the time parameter t represent time translation or
scaling?

The connection Tn = n2π/log(λ) would give a relationship between the scaling of trace
and value of time parameter for which the outer automorphism represented by σ reduces
to inner automorphism. It must be emphasized that the time parameter t appearing in σ
need not have anything to do with time translation. The alternative interpretation is in
terms of M4

± scaling (implying also time scaling) but one cannot exclude even preferred
Lorentz boosts in the direction of quantization axis of angular momentum.
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Could the time parameter correspond to scaling?

The central role of conformal invariance in quantum TGD suggests that t parameterizes
scaling rather than translation. In this case scalings would correspond to powers of (Kλ)n.
The numerical factor K which cannot be excluded a priori, seems to reduce to K = 1.

i. The scalings by powers of p have a simple realization in terms of the representation
of HFF of type II∞ as infinite tensor power of M(p, C) with suitably chosen densities
matrices in factors to get product of I∞ and II1 factor. These matrix algebras have the
remarkable property of defining prime tensor power factors of finite matrix algebras.
Thus p-adic fractality would reflect directly basic properties of matrix algebras as sug-
gested already earlier. That scalings by powers of p would correspond to automorphism
reducing to inner automorphisms would conform with p-adic fractality.

ii. Also scalings by powers [
√
M : N/2k]n would be physically preferred if one takes pre-

vious arguments about Jones inclusions seriously and if also in this case scalings are
involved. For q = exp(iπ/n), n = 5 the minimal value of n allowing universal topolog-
ical quantum computation would correspond to a scaling by Golden Mean and these
fractal scalings indeed play a key role in living matter. In particular, Golden Mean
makes it visible in the geometry of DNA.

Could the time parameter correspond to time translation?

One can consider also the interpretation of σt as time translation. TGD predicts a hierarchy
of Planck constants parameterized by rational numbers such that integer multiples are
favored. In particular, integers defining ruler and compass polygons are predicted to be in
a very special role physically. Since the geometric time span associated with zero energy
state should scale as Planck constant one expects that preferred values of time t associated
with σ are quantized as rational multiples of some fundamental time scales, say the basic
time scale defined by CP2 length or p-adic time scales.

i. For λ = 1/p, p prime, the time scale would be Tn = nT1, T1 = T0 = 2π/log(p) which
is not what p-adic length scale hypothesis would suggest.

ii. For Jones inclusions one would have Tn/T0 = n2π/log(22k/M : N ). In the limit
when λ becomes very small (the number k of reduced M(2, C) factors is large one
obtains Tn = (n/k)t1, T1 = T0π/log(2). Approximate rational multiples of the basic
length scale would be obtained as also predicted by the general quantization of Planck
constant.

p-Adic thermodynamics from first principles

Quantum field theory at non-zero temperature can be formulated in the functional integral
formalism by replacing the time parameter associated with the unitary time evolution
operator U(t) with a complexified time containing as imaginary part the inverse of the
temperature: t→ t+i~/T . In the framework of standard quantum field theory this is a mere
computational trick but the time parameter associated with the automorphisms σt of HFF
of type III is a temperature like parameter from the beginning, and its complexification
would naturally lead to the analog of thermal QFT.

Thus thermal equilibrium state would be a genuine quantum state rather than fictive but
useful auxiliary notion. Thermal equilibrium is defined separately for each incoming parton
braid and perhaps even braid (partons can have arbitrarily large size). At elementary
particle level p-adic thermodynamics could be in question so that particle massivation would
have first principle description. p-Adic thermodynamics is under relatively mild conditions
equivalent with its real counterpart obtained by the replacement of pL0 interpreted as a
p-adic number with p−L0 interpreted as a real number.



892 Chapter 14. Was von Neumann Right After All?

14.6.6 Could HFFs of type III be associated with the dynamics
in M4

± degrees of freedom?

HFFs of type III could be also assigned with the poorly understood dynamics in M4
±

degrees of freedom which should have a lot of to do with four-dimensional quantum field
theory. Hyper-finite factors of type III1 might emerge when one extends II1 to a local
algebra by multiplying it with hyper-octonions replaced as analog of matrix factor and
considers hyper-quaternionic subalgebra. The resulting algebra would be the analog of
local gauge algebra and the elements of algebra would be analogous to conformal fields
with complex argument replaced with hyper-octonionic, -quaternionic, or -complex one.
Since quantum field theory in M4 gives rise to hyper-finite III1 factors one might guess
that the hyper-quaternionic restriction indeed gives these factors.

The expansion of the local HFF II∞ element as O(m) =
∑
nm

nOn, where M4 coordinate
m is interpreted as hyper-quaternion, could have interpretation as expansion in which On
belongs to N gn in the crossed product N ×cr {gn, n ∈ Z}. The analogy with conformal
fields suggests that the power gn inducing λn fold scaling of trace increases the conformal
weight by n.

One can ask whether the scaling of trace by powers of λ defines an inclusion hierarchy
of sub-algebras of conformal sub-algebras as suggested by previous arguments. One such
hierarchy would be the hierarchy of sub-algebras containing only the generators Om with
conformal weight m ≥ n, n ∈ Z.

It has been suggested that the automorphism ∆ could correspond to scaling inside light-
cone. This interpretation would fit nicely with Lorentz invariance and TGD in general. The
factors IIIλ with λ generating semi-subgroups of integers (in particular powers of primes)
could be of special physical importance in TGD framework. The values of t for which
automorphism reduces to inner automorphism should be of special physical importance
in TGD framework. These automorphisms correspond to scalings identifiable in terms
of powers of p-adic prime p so that p-adic fractality would find an explanation at the
fundamental level.

If the above mentioned expansion in powers of mn of M4
± coordinate makes sense then the

action of σt representing a scaling by pn would leave the elements O invariant or induce
a mere inner automorphism. Conformal weight n corresponds naturally to n-ary p-adic
length scale by uncertainty principle in p-adic mass calculations.

The basic question is the physical interpretation of the automorphism inducing the scaling
of trace by λ and its detailed action in HFF. This scaling could relate to a scaling in
M4 and to the appearance in the trace of an integral over M4 or subspace of it defining
the trace. Fractal structures suggests itself strongly here. At the level of construction of
physical states one always selects some minimum non-positive conformal weight defining
the tachyonic ground state and physical states have non-negative conformal weights. The
interpretation would be as a reduction to HHF of type II∞ or even II1.

14.6.7 Could the continuation of braidings to homotopies involve
∆it automorphisms

The representation of braidings as special case of homotopies might lead from discrete
automorphisms for HFFs type II1 to continuous outer automorphisms for HFFs of type
III1. The question is whether the periodic automorphism of II1 represented as a discrete
sub-group of U(1) would be continued to U(1) in the transition.

The automorphism of II∞ HFF associated with a given value of the scaling factor λ is
unique. If Jones inclusions defined by the preferred values of λ as λ =

√
M : N/2k (see the

previous considerations), then this automorphism could involve a periodic automorphism of
II1 factor defined by the generator of cyclic subgroup Zn forM : N < 4 besides additional
shift transforming II1 factor to I∞ factor and inducing the scaling.
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14.6.8 HFFs of type III as super-structures providing additional
uniqueness?

If the braiding M -matrices are as such highly unique. One could however consider the
possibility that they are induced from the automorphisms σt for the HFFs of type III
restricted to HFFs of type II∞. If a reduction to inner automorphism in HFF of type III
implies same with respect to HFF of type II∞ and even II1, they could be trivial for special
values of time scaling t assignable to the partons and identifiable as a power of prime p
characterizing the parton. This would allow to eliminate incoming and outgoing legs. This
elimination would be the counterpart of the division of propagator legs in quantum field
theories. Particle masses would however play no role in this process now although the
power of padic prime would fix the mass scale of the particle.

14.7 The almost latest vision about the role of HFFs
in TGD

It is clear that at least the hyper-finite factors of type II1 assignable to WCW spinors must
have a profound role in TGD. Whether also HFFS of type III1 appearing also in relativistic
quantum field theories emerge when WCW spinors are replaced with spinor fields is not
completely clear. I have proposed several ideas about the role of hyper-finite factors in TGD
framework. In particular, Connes tensor product is an excellent candidate for defining the
notion of measurement resolution.

In the following this topic is discussed from the perspective made possible by zero energy
ontology and the recent advances in the understanding of M-matrix using the notion of
bosonic emergence. The conclusion is that the notion of state as it appears in the theory
of factors is not enough for the purposes of quantum TGD. The reason is that state in
this sense is essentially the counterpart of thermodynamical state. The construction of
M-matrix might be understood in the framework of factors if one replaces state with its
”complex square root” natural if quantum theory is regarded as a ”complex square root”
of thermodynamics. It is also found that the idea that Connes tensor product could fix
M-matrix is too optimistic but an elegant formulation in terms of partial trace for the no-
tion of M-matrix modulo measurement resolution exists and Connes tensor product allows
interpretation as entanglement between sub-spaces consisting of states not distinguishable
in the measurement resolution used. The partial trace also gives rise to non-pure states
naturally.

14.7.1 Basic facts about factors

In this section basic facts about factors are discussed. My hope that the discussion is
more mature than or at least complementary to the summary that I could afford when I
started the work with factors for more than half decade ago. I of course admit that this
just a humble attempt of a physicist to express physical vision in terms of only superficially
understood mathematical notions.

Basic notions

First some standard notations. Let B(H) denote the algebra of linear operators of Hilbert
space H bounded in the norm topology with norm defined by the supremum of for the
length of the image of a point of unit sphere H. This algebra has a lot of common with
complex numbers in that the counterparts of complex conjugation, order structure and
metric structure determined by the algebraic structure exist. This means the existence in-
volution -that is *- algebra property. The order structure determined by algebraic structure
means following: A ≥ 0 defined as the condition (Aξ, ξ) ≥ 0 is equivalent with A = B∗B.
The algebra has also metric structure ||AB|| ≤ ||A||||B| (Banach algebra property) deter-
mined by the algebraic structure. The algebra is also C∗ algebra: ||A∗A|| = ||A||2 meaning
that the norm is algebraically like that for complex numbers.
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A von Neumann algebraM [A52] is defined as a weakly closed non-degenerate *-subalgebra
of B(H) and has therefore all the above mentioned properties. From the point of view of
physicist it is important that a sub-algebra is in question.

In order to define factors one must introduce additional structure.

i. Let M be subalgebra of B(H) and denote by M′ its commutant defined as the sub-
algebra of B(H) commuting with it and allowing to express B(H) as B(H) =M∨M′.

ii. A factor is defined as a von Neumann algebra satisfying M′′ = M M is called fac-
tor. The equality of double commutant with the original algebra is thus the defining
condition so that also the commutant is a factor. An equivalent definition for factor is
as the condition that the intersection of the algebra and its commutant reduces to a
complex line spanned by a unit operator. The condition that the only operator com-
muting with all operators of the factor is unit operator corresponds to irreducibility in
representation theory.

iii. Some further basic definitions are needed. Ω ∈ H is cyclic if the closure of MΩ is H
and separating if the only element of M annihilating Ω is zero. Ω is cyclic for M if
and only if it is separating for its commutant. In so called standard representation Ω
is both cyclic and separating.

iv. For hyperfinite factors an inclusion hierarchy of finite-dimensional algebras whose union
is dense in the factor exists. This roughly means that one can approximate the algebra
in arbitrary accuracy with a finite-dimensional sub-algebra.

The definition of the factor might look somewhat artificial unless one is aware of the un-
derlying physical motivations. The motivating question is what the decomposition of a
physical system to non-interacting sub-systems could mean. The decomposition of B(H)
to ∨ product realizes this decomposition.

i. Tensor product H = H1⊗H2 is the decomposition according to the standard quantum
measurement theory and means the decomposition of operators in B(H) to tensor
products of mutually commuting operators in M = B(H1) and M′ = B(H2). The
information about M can be coded in terms of projection operators. In this case
projection operators projecting to a complex ray of Hilbert space exist and arbitrary
compact operator can be expressed as a sum of these projectors. For factors of type
I minimal projectors exist. Factors of type In correspond to sub-algebras of B(H)
associated with infinite-dimensional Hilbert space and I∞ to B(H) itself. These factors
appear in the standard quantum measurement theory where state function reduction
can lead to a ray of Hilbert space.

ii. For factors of type II no minimal projectors exists whereas finite projectors exist. For
factors of type II1 all projectors have trace not larger than one and the trace varies
in the range (0, 1]. In this case cyclic vectors Ω exist. State function reduction can
lead only to an infinite-dimensional subspace characterized by a projector with trace
smaller than 1 but larger than zero. The natural interpretation would be in terms of
finite measurement resolution. The tensor product of II1 factor and I∞ is II∞ factor
for which the trace for a projector can have arbitrarily large values. II1 factor has a
unique finite tracial state and the set of traces of projections spans unit interval. There
is uncountable number of factors of type II but hyper-finite factors of type II1 are the
exceptional ones and physically most interesting.

iii. Factors of type III correspond to an extreme situation. In this case the projection
operators E spanning the factor have either infinite or vanishing trace and there exists
an isometry mapping EH to H meaning that the projection operator spans almost
all of H. All projectors are also related to each other by isometry. Factors of type
III are smallest if the factors are regarded as sub-algebras of a fixed B(H) where H
corresponds to isomorphism class of Hilbert spaces. Situation changes when one speaks
about concrete representations. Also now hyper-finite factors are exceptional.

iv. Von Neumann algebras define a non-commutative measure theory. Commutative von
Neumann algebras indeed reduce to L∞(X) for some measure space (X,µ) and vice
versa.
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Weights, states and traces

The notions of weight, state, and trace are standard notions in the theory of von Neumann
algebras.

i. A weight of von Neumann algebra is a linear map from the set of positive elements
(those of form a∗a) to non-negative reals.

ii. A positive linear functional is weight with ω(1) finite.

iii. A state is a weight with ω(1) = 1.

iv. A trace is a weight with ω(aa∗) = ω(a∗a) for all a.

v. A tracial state is a weight with ω(1) = 1.

A factor has a trace such that the trace of a non-zero projector is non-zero and the trace of
projection is infinite only if the projection is infinite. The trace is unique up to a rescaling.
For factors that are separable or finite, two projections are equivalent if and only if they
have the same trace. Factors of type In the values of trace are equal to multiples of 1/n.
For a factor of type I∞ the value of trace are 0, 1, 2, .... For factors of type II1 the values
span the range [0, 1] and for factors of type II∞ n the range [0,∞). For factors of type III
the values of the trace are 0, and ∞.

Tomita-Takesaki theory

Tomita-Takesaki theory is a vital part of the theory of factors. First some definitions.

i. Let ω(x) be a faithful state of von Neumann algebra so that one has ω(xx∗) > 0 for
x > 0. Assume by Riesz lemma the representation of ω as a vacuum expectation value:
ω = (·Ω,Ω), where Ω is cyclic and separating state.

ii. Let

L∞(M) ≡M , L2(M) = H , L1(M) =M∗ , (14.7.1)

whereM∗ is the pre-dual ofM defined by linear functionals inM. One hasM ∗
∗ =M.

iii. The conjugation x→ x∗ is isometric inM and defines a mapM→ L2(M) via x→ xΩ.
The map S0;xΩ→ x∗Ω is however non-isometric.

iv. Denote by S the closure of the anti-linear operator S0 and by S = J∆1/2 its polar
decomposition analogous that for complex number and generalizing polar decompo-
sition of linear operators by replacing (almost) unitary operator with anti-unitary J .
Therefore ∆ = S∗S > 0 is positive self-adjoint and J an anti-unitary involution. The
non-triviality of ∆ reflects the fact that the state is not trace so that hermitian conju-
gation represented by S in the state space brings in additional factor ∆1/2.

v. What x can be is puzzling to physicists. The restriction fermionic Fock space and thus
to creation operators would imply that ∆ would act non-trivially only vacuum state
so that ∆ > 0 condition would not hold true. The resolution of puzzle is the allowance
of tensor product of Fock spaces for which vacua are conjugates: only this gives cyclic
and separating state. This is natural in zero energy ontology.

The basic results of Tomita-Takesaki theory are following.

i. The basic result can be summarized through the following formulas

∆itM∆−it =M , JMJ =M′ .

ii. The latter formula implies thatM andM′ are isomorphic algebras. The first formula
implies that a one parameter group of modular automorphisms characterizes partially
the factor. The physical meaning of modular automorphisms is discussed in [A83, A148]
∆ is Hermitian and positive definite so that the eigenvalues of log(∆) are real but can
be negative. ∆it is however not unitary for factors of type II and III. Physically the
non-unitarity must relate to the fact that the flow is contracting so that hermiticity as
a local condition is not enough to guarantee unitarity.
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iii. ω → σωt = Ad∆it defines a canonical evolution -modular automorphism- associated
with ω and depending on it. The ∆:s associated with different ω:s are related by a
unitary inner automorphism so that their equivalence classes define an invariant of the
factor.

Tomita-Takesaki theory gives rise to a non-commutative measure theory which is highly
non-trivial. In particular the spectrum of ∆ can be used to classify the factors of type II
and III.

Modular automorphisms

Modular automorphisms of factors are central for their classification.

i. One can divide the automorphisms to inner and outer ones. Inner automorphisms
correspond to unitary operators obtained by exponentiating Hermitian Hamiltonian
belonging to the factor and connected to identity by a flow. Outer automorphisms do
not allow a representation as a unitary transformations although log(∆) is formally a
Hermitian operator.

ii. The fundamental group of the type II1 factor defined as fundamental group group
of corresponding II∞ factor characterizes partially a factor of type II1. This group
consists real numbers λ such that there is an automorphism scaling the trace by λ.
Fundamental group typically contains all reals but it can be also discrete and even
trivial.

iii. Factors of type III allow a one-parameter group of modular automorphisms, which can
be used to achieve a partial classification of these factors. These automorphisms define
a flow in the center of the factor known as flow of weights. The set of parameter values
λ for which ω is mapped to itself and the center of the factor defined by the identity
operator (projector to the factor as a sub-algebra of B(H)) is mapped to itself in the
modular automorphism defines the Connes spectrum of the factor. For factors of type
IIIλ this set consists of powers of λ < 1. For factors of type III0 this set contains
only identity automorphism so that there is no periodicity. For factors of type III1

Connes spectrum contains all real numbers so that the automorphisms do not affect
the identity operator of the factor at all.

The modules over a factor correspond to separable Hilbert spaces that the factor acts on.
These modules can be characterized by M-dimension. The idea is roughly that complex rays
are replaced by the sub-spaces defined by the action of M as basic units. M-dimension is
not integer valued in general. The so called standard module has a cyclic separating vector
and each factor has a standard representation possessing antilinear involution J such that
M′ = JMJ holds true (note that J changes the order of the operators in conjugation). The
inclusions of factors define modules having interpretation in terms of a finite measurement
resolution defined by M.

Crossed product as a manner to construct factors of type III

By using so called crossed product [A11] for a group G acting in algebra A one can obtain
new von Neumann algebras. One ends up with crossed product by a two-step generalization
by starting from the semidirect product G / H for groups defined as (g1, h1)(g2, h2) =
(g1h1(g2), h1h2) (note that Poincare group has interpretation as a semidirect product M4 /
SO(3, 1) of Lorentz and translation groups). At the first step one replaces the group H
with its group algebra. At the second step the the group algebra is replaced with a more
general algebra. What is formed is the semidirect product A / G which is sum of algebras
Ag. The product is given by (a1, g1)(a2, g2) = (a1g1(a2), g1g2). This construction works for
both locally compact groups and quantum groups. A not too highly educated guess is that
the construction in the case of quantum groups gives the factorM as a crossed product of
the included factor N and quantum group defined by the factor space M/N .

The construction allows to express factors of type III as crossed products of factors of
type II∞ and the 1-parameter group G of modular automorphisms assignable to any vector
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which is cyclic for both factor and its commutant. The ergodic flow θλ scales the trace of
projector in II∞ factor by λ > 0. The dual flow defined by G restricted to the center of
II∞ factor does not depend on the choice of cyclic vector.

The Connes spectrum - a closed subgroup of positive reals - is obtained as the exponent of
the kernel of the dual flow defined as set of values of flow parameter λ for which the flow
in the center is trivial. Kernel equals to {0} for III0, contains numbers of form log(λ)Z
for factors of type IIIλ and contains all real numbers for factors of type III1 meaning that
the flow does not affect the center.

14.7.2 Inclusions and Connes tensor product

InclusionsN ⊂M of von Neumann algebras have physical interpretation as a mathematical
description for sub-system-system relation. For type I algebras the inclusions are trivial
and tensor product description applies as such. For factors of II1 and III the inclusions
are highly non-trivial. The inclusion of type II1 factors were understood by Vaughan
Jones [A5] and those of factors of type III by Alain Connes [A77] .

Formally sub-factor N of M is defined as a closed ∗-stable C-subalgebra of M. Let N be
a sub-factor of type II1 factor M. Jones index M : N for the inclusion N ⊂ M can be
defined as M : N = dimN (L2(M)) = TrN ′(idL2(M)). One can say that the dimension of
completion of M as N module is in question.

Basic findings about inclusions

What makes the inclusions non-trivial is that the position ofN inMmatters. This position
is characterized in case of hyper-finite II1 factors by indexM : N which can be said to the
dimension ofM as N module and also as the inverse of the dimension defined by the trace
of the projector fromM to N . It is important to notice thatM : N does not characterize
either M or M, only the imbedding.

The basic facts proved by Jones are following [A5] .

i. For pairs N ⊂M with a finite principal graph the values of M : N are given by

a) M : N = 4cos2(π/h) , h ≥ 3 ,

b) M : N ≥ 4 .
(14.7.2)

the numbers at right hand side are known as Beraha numbers [A129] . The comments
below give a rough idea about what finiteness of principal graph means.

ii. As explained in [B44] , forM : N < 4 one can assign to the inclusion Dynkin graph of
ADE type Lie-algebra g with h equal to the Coxeter number h of the Lie algebra given
in terms of its dimension and dimension r of Cartan algebra r as h = (dimg(g)− r)/r.
The Lie algebras of SU(n), E7 and D2n+1 are however not allowed. ForM : N = 4 one
can assign to the inclusion an extended Dynkin graph of type ADE characterizing Kac
Moody algebra. Extended ADE diagrams characterize also the subgroups of SU(2) and
the interpretation proposed in [A106] is following. The ADE diagrams are associated
with the n =∞ case havingM : N ≥ 4. There are diagrams corresponding to infinite
subgroups: SU(2) itself, circle group U(1), and infinite dihedral groups (generated by
a rotation by a non-rational angle and reflection. The diagrams corresponding to finite
subgroups are extension of An for cyclic groups, of Dn dihedral groups, and of En with
n=6,7,8 for tedrahedron, cube, dodecahedron. ForM : N < 4 ordinary Dynkin graphs
of D2n and E6, E8 are allowed.

Connes tensor product

The inclusions The basic idea of Connes tensor product is that a sub-space generated sub-
factor N takes the role of the complex ray of Hilbert space. The physical interpretation is
in terms of finite measurement resolution: it is not possible to distinguish between states
obtained by applying elements of N .
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Intuitively it is clear that it should be possible to decompose M to a tensor product of
factor space M/N and N :

M = M/N ⊗N . (14.7.3)

One could regard the factor space M/N as a non-commutative space in which each point
corresponds to a particular representative in the equivalence class of points defined by N .
The connections between quantum groups and Jones inclusions suggest that this space
closely relates to quantum groups. An alternative interpretation is as an ordinary linear
space obtained by mapping N rays to ordinary complex rays. These spaces appear in the
representations of quantum groups. Similar procedure makes sense also for the Hilbert
spaces in which M acts.

Connes tensor product can be defined in the spaceM⊗M as entanglement which effectively
reduces to entanglement between N sub-spaces. This is achieved if N multiplication from
right is equivalent with N multiplication from left so that N acts like complex numbers
on states. One can imagine variants of the Connes tensor product and in TGD framework
one particular variant appears naturally as will be found.

In the finite-dimensional case Connes tensor product of Hilbert spaces has a rather simple
representation. If the matrix algebra N of n× n matrices acts on V from right, V can be
regarded as a space formed by m× n matrices for some value of m. If N acts from left on
W , W can be regarded as space of n× r matrices.

i. In the first representation the Connes tensor product of spaces V and W consists
of m × r matrices and Connes tensor product is represented as the product VW of
matrices as (VW )mre

mr. In this representation the information about N disappears
completely as the interpretation in terms of measurement resolution suggests. The sum
over intermediate states defined by N brings in mind path integral.

ii. An alternative and more physical representation is as a state∑
n

VmnWnre
mn ⊗ enr

in the tensor product V ⊗W .

iii. One can also consider two spaces V and W in which N acts from right and define
Connes tensor product for A† ⊗N B or its tensor product counterpart. This case
corresponds to the modification of the Connes tensor product of positive and negative
energy states. Since Hermitian conjugation is involved, matrix product does not define
the Connes tensor product now. For m = r case entanglement coefficients should
define a unitary matrix commuting with the action of the Hermitian matrices of N
and interpretation would be in terms of symmetry. HFF property would encourage to
think that this representation has an analog in the case of HFFs of type II1.

iv. Also type In factors are possible and for them Connes tensor product makes sense if
one can assign the inclusion of finite-D matrix algebras to a measurement resolution.

14.7.3 Factors in quantum field theory and thermodynamics

Factors arise in thermodynamics and in quantum field theories [A114, A83, A148] . There
are good arguments showing that in HFFS of III1 appear are relativistic quantum field
theories. In non-relativistic QFTs the factors of type I appear so that the non-compactness
of Lorentz group is essential. Factors of type III1 and IIIλ appear also in relativistic
thermodynamics.

The geometric picture about factors is based on open subsets of Minkowski space. The
basic intuitive view is that for two subsets of M4, which cannot be connected by a classical
signal moving with at most light velocity, the von Neumann algebras commute with each
other so that ∨ product should make sense.

Some basic mathematical results of algebraic quantum field theory [A148] deserve to be
listed since they are suggestive also from the point of view of TGD.
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i. Let O be a bounded region of R4 and define the region of M4 as a union ∪|x|<ε(O+x)
where (O + x) is the translate of O and |x| denotes Minkowski norm. Then every
projection E ∈ M(O) can be written as WW ∗ with W ∈ M(Oε) and W ∗W = 1.
Note that the union is not a bounded set of M4. This almost establishes the type III
property.

ii. Both the complement of light-cone and double light-cone define HFF of type III1.
Lorentz boosts induce modular automorphisms.

iii. The so called split property suggested by the description of two systems of this kind
as a tensor product in relativistic QFTs is believed to hold true. This means that the
HFFs of type III1 associated with causally disjoint regions are sub-factors of factor of
type I∞. This means

M1 ⊂ B(H1)× 1 , M2 ⊂ 1⊗ B(H2) .

An infinite hierarchy of inclusions of HFFS of type III1s is induced by set theoretic
inclusions.

14.7.4 TGD and factors

The following vision about TGD and factors relies heavily on zero energy ontology, TGD
inspired quantum measurement theory, basic vision about quantum TGD, and bosonic
emergence.

The problems

Concerning the role of factors in TGD framework there are several problems of both con-
ceptual and technical character.

1. Conceptual problems

It is safest to start from the conceptual problems and take a role of skeptic.

i. Under what conditions the assumptions of Tomita-Takesaki formula stating the exis-
tence of modular automorphism and isomorphy of the factor and its commutant hold
true? What is the physical interpretation of the formula M′ = JMJ relating factor
and its commutant in TGD framework?

ii. Is the identification M = ∆it sensible is quantum TGD and zero energy ontology,
where M-matrix is ”complex square root” of exponent of Hamiltonian defining ther-
modynamical state and the notion of unitary time evolution is given up? The notion
of state ω leading to ∆ is essentially thermodynamical and one can wonder whether
one should take also a ”complex square root” of ω to get M-matrix giving rise to a
genuine quantum theory.

iii. TGD based quantum measurement theory involves both quantum fluctuating degrees
of freedom assignable to light-like 3-surfaces and zero modes identifiable as classical
degrees of freedom assignable to interior of the space-time sheet. Zero modes have also
fermionic counterparts. State preparation should generate entanglement between the
quantal and classical states. What this means at the level of von Neumann algebras?

iv. What is the TGD counterpart for causal disjointness. At space-time level different
space-time sheets could correspond to such regions whereas at imbedding space level
causally disjoint CDs would represent such regions.

2. Technical problems

There are also more technical questions.

i. What is the von Neumann algebra needed in TGD framework? Does one have a a
direct integral over factors (at least a direct integral over zero modes labeling factors)?
Which factors appear in it? Can one construct the factor as a crossed product of some
group G with a direct physical interpretation and of naturally appearing factor A? Is
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A a HFF of type II∞? assignable to a fixed CD? What is the natural Hilbert space
H in which A acts?

ii. What are the geometric transformations inducing modular automorphisms of II∞ in-
ducing the scaling down of the trace? Is the action of G induced by the boosts in
Lorentz group. Could also translations and scalings induce the action? What is the
factor associated with the union of Poincare transforms of CD? log(∆) is Hermitian
algebraically: what does the non-unitarity of exp(log(∆)it) mean physically?

iii. Could Ω correspond to a vacuum which in conformal degrees of freedom depends on
the choice of the sphere S2 defining the radial coordinate playing the role of complex
variable in the case of the radial conformal algebra. Does ∗-operation inM correspond
to Hermitian conjugation for fermionic oscillator operators and change of sign of super
conformal weights?

The exponent of the modified Dirac action gives rise to the exponent of Kähler function
as Dirac determinant and fermionic inner product defined by fermionic Feynman rules. It
is implausible that this exponent could as such correspond to ω or ∆it having conceptual
roots in thermodynamics rather than QFT. If one assumes that the exponent of the mod-
ified Dirac action defines a ”complex square root” of ω the situation changes. This raises
technical questions relating to the notion of square root of ω.

i. Does the square root of ω in the have a polar decomposition to a product of positive
definite matrix (square root of the density matrix) and unitary matrix and does ω1/2

correspond to the modulus in the decomposition? Does the square root of ∆ have
similar decomposition with modulus equal equal to ∆1/2 in standard picture so that
modular automorphism, which is inherent property of von Neumann algebra, would
not be affected?

ii. ∆it or rather its generalization is defined modulo a unitary operator defined by some
Hamiltonian and is therefore highly non-unique as such. This non-uniqueness applies
also to |∆|. Could this non-uniqueness correspond to the thermodynamical degrees of
freedom?

Zero energy ontology and factors

The first question concerns the identification of the Hilbert space associated with the factors
in zero energy ontology. As the positive or negative energy part of the zero energy state
space or as the entire space of zero energy states? The latter option would look more natural
physically and is forced by the condition that the vacuum state is cyclic and separating.

i. The commutant of HFF given as M′ = JMJ , where J is involution transforming
fermionic oscillator operators and bosonic vector fields to their Hermitian conjugates.
Also conformal weights would change sign in the map which conforms with the view
that the light-like boundaries of CD are analogous to upper and lower hemispheres
of S2 in conformal field theory. The presence of J representing essentially Hermitian
conjugation would suggest that positive and zero energy parts of zero energy states are
related by this formula so that state space decomposes to a tensor product of positive
and negative energy states and M -matrix can be regarded as a map between these two
sub-spaces.

ii. The fact that HFF of type II1 has the algebra of fermionic oscillator operators as a
canonical representation makes the situation puzzling for a novice. The assumption
that the vacuum is cyclic and separating means that neither creation nor annihilation
operators can annihilate it. Therefore Fermionic Fock space cannot appear as the
Hilbert space in the Tomita-Takesaki theorem. The paradox is circumvented if the
action of ∗ transforms creation operators acting on the positive energy part of the state
to annihilation operators acting on negative energy part of the state. If J permutes
the two Fock vacuums in their tensor product, the action of S indeed maps permutes
the tensor factors associated with M and M′.

It is far from obvious whether the identification M = ∆it makes sense in zero energy
ontology.
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i. In zero energy ontology M -matrix defines time-like entanglement coefficients between
positive and negative energy parts of the state. M -matrix is essentially ”complex
square root” of the density matrix and quantum theory similar square root of ther-
modynamics. The notion of state as it appears in the theory of HFFS is however
essentially thermodynamical. Therefore it is good to ask whether the ”complex square
root of state” could make sense in the theory of factors.

ii. Quantum field theory suggests an obvious proposal concerning the meaning of the
square root: one replaces exponent of Hamiltonian with imaginary exponential of action
at T → 0 limit. In quantum TGD the exponent of modified Dirac action giving
exponent of Kähler function as real exponent could be the manner to take this complex
square root. Modified Dirac action can therefore be regarded as a ”square root” of
Kähler action.

iii. The identification M = ∆it relies on the idea of unitary time evolution which is given
up in zero energy ontology based on CDs? Is the reduction of the quantum dynamics
to a flow a realistic idea? As will be found this automorphism could correspond to a
time translation or scaling for either upper or lower light-cone defining CD and can
ask whether ∆it corresponds to the exponent of scaling operator L0 defining single
particle propagator as one integrates over t. Its complex square root would correspond
to fermionic propagator.

iv. In this framework J∆it would map the positive energy and negative energy sectors to
each other. If the positive and negative energy state spaces can identified by isometry
then M = J∆it identification can be considered but seems unrealistic. S = J∆1/2

maps positive and negative energy states to each other: could S or its generalization
appear in M -matrix as a part which gives thermodynamics? The exponent of the
modified Dirac action does not seem to provide thermodynamical aspect and p-adic
thermodynamics suggests strongly the presence exponent of exp(−L0/Tp) with Tp chose
in such manner that consistency with p-adic thermodynamics is obtained. Could the
generalization of J∆n/2 with ∆ replaced with its ”square root” give rise to padic
thermodynamics and also ordinary thermodynamics at the level of density matrix? The
minimal option would be that power of ∆it which imaginary value of t is responsible for
thermodynamical degrees of freedom whereas everything else is dictated by the unitary
S-matrix appearing as phase of the ”square root” of ω.

Zero modes and factors

The presence of zero modes justifies quantum measurement theory in TGD framework and
the relationship between zero modes and HFFS involves further conceptual problems.

i. The presence of zero modes means that one has a direct integral over HFFs labeled
by zero modes which by definition do not contribute to the configuration space line
element. The realization of quantum criticality in terms of modified Dirac action [K15]
suggests that also fermionic zero mode degrees of freedom are present and correspond
to conserved charges assignable to the critical deformations of the pace-time sheets.
Induced Kähler form characterizes the values of zero modes for a given space-time sheet
and the symplectic group of light-cone boundary characterizes the quantum fluctuating
degrees of freedom. The entanglement between zero modes and quantum fluctuating
degrees of freedom is essential for quantum measurement theory. One should under-
stand this entanglement.

ii. Physical intuition suggests that classical observables should correspond to longer length
scale than quantal ones. Hence it would seem that the interior degrees of freedom
outside CD should correspond to classical degrees of freedom correlating with quantum
fluctuating degrees of freedom of CD.

iii. Quantum criticality means that modified Dirac action allows an infinite number of con-
served charges which correspond to deformations leaving metric invariant and there-
fore act on zero modes. Does this super-conformal algebra commute with the super-
conformal algebra associated with quantum fluctuating degrees of freedom? Could
the restriction of elements of quantum fluctuating currents to 3-D light-like 3-surfaces
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actually imply this commutativity. Quantum holography would suggest a duality be-
tween these algebras. Quantum measurement theory suggests even 1-1 correspondence
between the elements of the two super-conformal algebras. The entanglement between
classical and quantum degrees of freedom would mean that prepared quantum states
are created by operators for which the operators in the two algebras are entangled in
diagonal manner.

iv. The notion of finite measurement resolution has become key element of quantum TGD
and one should understand how finite measurement resolution is realized in terms
of inclusions of hyper-finite factors for which sub-factor defines the resolution in the
sense that its action creates states not distinguishable from each other in the resolution
used. The notion of finite measurement resolution suggests that one should speak about
entanglement between sub-factors and corresponding sub-spaces rather than between
states. Connes tensor product would code for the idea that the action of sub-factors is
analogous to that of complex numbers and tracing over sub-factor realizes this idea.

v. Just for fun one can ask whether the duality between zero modes and quantum fluc-
tuating degrees of freedom representing quantum holography could correspond to
M′ = JMJ? This interpretation must be consistent with the interpretation forced by
zero energy ontology. If this crazy guess is correct (very probably not!), both positive
and negative energy states would be observed in quantum measurement but in totally
different manner. Since this identity would simplify enormously the structure of the
theory, it deserves therefore to be shown wrong.

Crossed product construction in TGD framework

The identification of the von Neumann algebra by crossed product construction is the basic
challenge. Consider first the question how HFFs of type II∞ could emerge, how modular
automorphisms act on them, and how one can could understand the non-unitary character
of the ∆it in an apparent conflict with the hermiticity and positivity of ∆.

i. If the number of spinor modes is infinite, the Clifford algebra at a given point of
WCW(CD) (light-like 3-surfaces with ends at the boundaries of CD) defines HFF of
type II1 or possibly a direct integral of them. For a given CD having compact isotropy
group SO(3) leaving the rest frame defined by the tips of CD invariant the factor
defined by Clifford algebra valued fields in WCW(CD) is most naturally HFF of type
II∞. The Hilbert space in which this Clifford algebra acts, consists of spinor fields
in WCW(CD). Also the symplectic transformations of light-cone boundary leaving
light-like 3-surfaces inside CD can be included to G. In fact all conformal algebras
leaving CD invariant could be included in CD.

ii. The downwards scalings of the radial coordinate rM of the light-cone boundary applied
to the basis of WCW (CD) spinor fields could induce modular automorphism. These
scalings reduce the size of the portion of light-cone in which the WCW spinor fields are
non-vanishing and effectively scale down the size of CD. exp(iL0) as algebraic operator
acts as a phase multiplication on eigen states of conformal weight and therefore as
apparently unitary operator. The geometric flow however contracts the CD so that
the interpretation of exp(itL0) as a unitary modular automorphism is not possible.
The scaling down of CD reduces the value of the trace if it involves integral over the
boundary of CD. A similar reduction is implied by the downward shift of the upper
boundary of CD so that also time translations would induce modular automorphism.
These shifts seem to be necessary to define rest energies of positive and negative energy
parts of the zero energy state.

iii. The non-triviality of the modular automorphisms of II∞ factor reflects different choices
of ω. The degeneracy of ω could be due to the non-uniqueness of conformal vacuum
which is part of the definition of ω. The radial Virasoro algebra of light-cone boundary
is generated by Ln = L∗−n, n 6= 0 and L0 = L∗0 and negative and positive frequencies are
in asymmetric position. The conformal gauge is fixed by the choice of SO(3) subgroup
of Lorentz group defining the slicing of light-cone boundary by spheres and the tips of
CD fix SO(3) uniquely. One can however consider also alternative choices of SO(3)
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and each corresponds to a slicing of the light-cone boundary by spheres but in general
the sphere defining the intersection of the two light-cone does not belong to the slicing.
Hence the action of Lorentz transformation inducing different choice of SO(3) can lead
out from the preferred state space so that its representation must be non-unitary unless
Virasoro generators annihilate the physical states. The non-vanishing of the conformal
central charge c and vacuum weight h seems to be necessary and indeed can take place
for super-symplectic algebra and Super Kac-Moody algebra since only the differences
of the algebra elements are assumed to annihilate physical states.

The essential assumption in the above argument is that the number of modes DKΨ = 0
for the induced spinor field is infinite. This assumption is highly non-trivial and need not
hold true always as the detailed considerations of [K28] demonstrate.

i. The Dirac determinant defining the vacuum functional is identified as the product
of generalized eigenvalues of the 3-D dimensional reduction DK,3 of DK to light-like
3-surfaces Y 3

l . A physical analogy for the modified Dirac equation is fermion in a
magnetic field.

ii. When the dimension D of the CP2 projection of the space-time sheet satisfies D > 2,
the counterpart of the Schrödinger amplitude - call it R- can depend on single CP2

coordinate only. For D = 2 (cosmic strings would be the basic example) R can depend
on 2 CP2 coordinates. In this case infinite number of modes are possible and are
analogous to 2-D spherical harmonics in the cross section of the string like object. At
least in the interior of cosmic strings this option seems to be realized so that in this
case the Clifford algebra would be infinite-dimensional.

iii. What is essential is that for string like objects the slicings by light-like 3-surfaces
associated with the wormhole throats at the opposite ends of string like object can
correspond to the same slicing. Hence the situation is expected to be the same for all
string like objects irrespective of the value of D. The coordinate on which R depends
could be analogous to cylindrical angle coordinate and one would have infinite number
of rotational modes. For infinite-dimensional case zeta function regularization must
be used in the definition of Dirac determinant and under rather general conditions on
spectrum reduces to the analytic continuation used to define Riemann Zeta.

iv. For D > 2 and for objects which are not string like objects situation is different.
The slicings by light-like 3-surfaces associated with different wormhole throats must
be defined on finite-sized basins separated by boundaries at which the spinor modes
associated with particular throat must vanish. The modes are therefore restricted to
a finite region of space-time sheet with a boundary. If R is analogous to a radial
mode in constant magnetic field, there is a natural cutoff in oscillator modes which are
analogous harmonic oscillator wave functions and Dirac determinant is automatically
finite. Thus for D > 2 or at least for D = 4- a phase analogous to QFT in M4 - the
number of modes would be finite meaning that the Clifford algebra is finite-dimensional
and one obtains only factor of type In.

Modular automorphism of HFFs type III1 can be induced by several geometric transfor-
mations for HFFs of type III1 obtained using the crossed product construction from II∞
factor by extending CD to a union of its Lorentz transforms.

i. The crossed product would correspond to an extension of II∞ by allowing a union
of some geometric transforms of CD. If one assumes that only CDs for which the
distance between tips is quantized in powers of 2, then scalings of either upper or lower
boundary of CD cannot correspond to these transformations. Same applies to time
translations acting on either boundary but not to ordinary translations. As found, the
modular automorphisms reducing the size of CD could act in HFF of type II∞.

ii. The geometric counterparts of the modular transformations would most naturally cor-
respond to any non-compact one parameter sub-group of Lorentz group as also QFT
suggests. The Lorentz boosts would replace the radial coordinate rM of the light-cone
boundary associated with the radial Virasoro algebra with a new one so that the slicing
of light-cone boundary with spheres would be affected and one could speak of a new
conformal gauge. The temporal distance between tips of CD in the rest frame would
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not be affected. The effect would seem to be however unitary because the transforma-
tion does not only modify the states but also transforms CD.

iii. Since Lorentz boosts affect the isotropy group SO(3) of CD and thus also the conformal
gauge defining the radial coordinate of the light-cone boundary, they affect also the
definition of the conformal vacuum so that also ω is affected so that the interpretation
as a modular automorphism makes sense. The simplistic intuition of the novice suggests
that if one allows wave functions in the space of Lorentz transforms of CD, unitarity
of ∆it is possible. Note that the hierarchy of Planck constants assigns to CD preferred
M2 and thus direction of quantization axes of angular momentum and boosts in this
direction would be in preferred role.

iv. One can also consider the HFF of type IIIλ if the radial scalings by negative powers
of 2 correspond to the automorphism group of II∞ factor as the vision about allowed
CDs suggests. λ = 1/2 would naturally hold true for the factor obtained by allowing
only the radial scalings. Lorentz boosts would expand the factor to HFF of type III1.
Why scalings by powers of 2 would give rise to periodicity should be understood.

The identification of M -matrix as modular automorphism ∆it, where t is complex number
having as its real part the temporal distance between tips of CD quantized as 2n and
temperature as imaginary part, looks at first highly attractive, since it would mean that
M -matrix indeed exists mathematically. The proposed interpretations of modular auto-
morphisms do not support the idea that they could define the S-matrix of the theory. In
any case, the identification as modular automorphism would not lead to a magic universal
formula since arbitrary unitary transformation is involved.

14.7.5 Can one identify M-matrix from physical arguments?

Consider next the identification of M -matrix from physical arguments.

Basic physical picture

The following physical picture could help in the attempt to guess what the complex square
root of ω is and also whether this idea makes sense at all. Consider first quantum TGD
proper.

i. The exponent of Kähler function identified as Kähler action for preferred extremals de-
fines the bosonic vacuum functional appearing in the functional integral over WCW(CD).
The exponent of Kähler function depends on the real part of t identified as Minkowski
distance between the tips of CD. This dependence is not consistent with the depen-
dence of ∆it on t and the natural interpretation is that the vacuum functional can
be included in the definition of the inner product for spinors fields of WCW . More
formally, the exponent of Kähler function defines ω in bosonic degrees of freedom.

ii. One can assign to the modified Dirac action Dirac determinant identified tentatively
as the exponent of Kähler function. This determinant is defined as the product of the
generalized eigenvalues of a 3-dimensional modified Dirac operator assignable to light-
like 3-surfaces. The definition relies on quantum holography involving the slicing of
space-time surface both by light-like 3-surfaces and by string world sheets. Hence also
Kähler coupling strength follows as a prediction so that the theory involves therefore no
free coupling parameters. Kähler function is defined only apart from an additive term
which is sum of holomorphic and anti-holomorphic functions of the configuration space
and this would naturally correspond to the effect of the modular automorphism. I have
proposed that the choices of a particular light-like 3-surface in the slicing of X4 by light-
like 3-surfaces at which vacuum functional is defined as Dirac determinant can differ
by this kind of term having therefore interpretation also as a modular automorphism
for a factor of type II∞.

iii. Quantum criticality -implied by the condition that the modified Dirac action gives rise
to conserved currents assignable to the deformations of the space-time surface - means
the vanishing of the second variation of Kähler action for these deformations. Preferred
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extremals correspond to these 4-surfaces and M8−M4×CP2 duality allows to identify
them also as hyper-quaternionic space-time surfaces.

iv. Second quantized spinor fields are the only quantum fields appearing at the space-
time level. This justifies to the notion of bosonic emergence [K58] , which means that
gauge bosons and possible counterpart of Higgs particle are identified as bound states
of fermion and antifermion at opposite light-like throats of wormhole contact. This
suggests that the M -matrix should allow a formulation solely in terms of the modified
Dirac action.

HFFs and the definition of Dirac determinant

The definition of the Dirac determinant -call it det(D)- discussed in [K15] involves two
assumptions. First, finite measurement resolution is assumed to correspond to a replace-
ment of light-like 3-surfaces with braids whose strands carry fermion number. Secondly, the
quantum holography justifies the assumption about dimensional reduction to a determinant
assignable to 3-D Dirac operator.

i. The finiteness of the trace for HFF of type II1 indeed encourages the question whether
one could define det(D) as the exponent of the trace of the logarithm of 3-D Dirac
operator D3 even without the assumption of finite measurement resolution. The trace
would be induced from the trace of the tensor product of hyper-finite factor of type II1

and factor of type I.

ii. One might wonder whether holography could allow to define det(D) also in terms of
the 4-D modified Dirac operator. The basic problem is of course that only the spinor
fields satisfying D4Ψ = 0 are allowed and eigenvalue equation in standard sense breaks
baryon and lepton number conservation. The critical deformation representing zero
modes might however allow to circumvent this difficulty. The modified Dirac equation
DΨ = 0 holding true for the 4-surfaces obtained as critical deformations can be written
in the form D0Ψ = D0δΨ = −δDΨ, where the subscript 0 refers to the non-deformed
surface and one has δΨ = OΨ0 which involves propagator defined by D4. Maybe one
could define det(D) as the determinant of the operator −δD by identifying it as the
exponent of the trace of the operator log(−δD). This would require a division by the
deformation parameter δt at both sides of the modified Dirac equation and means only
the elimination of an infinite proportionality factor from the determinant.

Bosonic emergence and QFT limit of TGD

The QFT limit of TGD gives further valuable hints about the formulation of quantum TGD
proper. In QFT limit Dirac action coupled to gauge potentials (and possibly the TGD
counterpart of Higgs) defines the theory and bosonic propagators and vertices involving
bosons as external particles emerge as radiative corrections [K58] . There are no free
coupling constants in the theory.

i. The construction involves at the first step the coupling of spinor fields Ψ to fermionic
sources ξ leading to an expression of the effective action as a functional of gauge
potentials and ξ containing the counterpart of YM action in the purely bosonic sector
plus interaction terms representing N-boson vertices. Bosonic dynamics is therefore
generated purely radiatively in accordance with the emergence idea. At the next step
the coupling to external YM currents leads to Feynman rules in the standard manner.

ii. The inverse of the bosonic propagator and N-boson vertices correspond to fermionic
loops and coupling constants are predicted completely in terms of them provided one
can define the loop integrals uniquely.

iii. Fermionic loops do not make sense without cutoff in both mass squared and hyperbolic
angle defining the maximum Lorentz boost which can be applied to a virtual fermion
in the rest system of the virtual gauge boson. Zero energy ontology realized in terms
of a hierarchy of CDs provides a physical justification for the hierarchy of hyperbolic
cutoffs. p-Adic length scale hypothesis (the sizes of CDs come in powers of 2) al-
lows to decompose momentum space to shells corresponding to mass squared intervals
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[n, n + 1) using CP2 mass squared as a unit. The hyperbolic cutoff can depend on
p-adic mass scale and can differ for time-like and space-like momenta: the relationship
between these cutoffs is fixed from the condition that gauge bosons do not generate
mass radiatively. One can find a simple ansatz for the hyperbolic cutoff consistent with
the coupling constant evolution in standard model. The vanishing of all on-mass-shell
N > 2-boson vertices defined by the fermionic loops states their irreducibility to lower
vertices and serves as a candidate for the condition fixing the hyperbolic cutoff as a
function of the p-adic mass scale.

A proposal for M-matrix

This picture can be taken as a template as one tries to to imagine how the construction of
M -matrix could proceed in quantum TGD proper.

i. Modified Dirac action should replace the ordinary Dirac action and define the theory.
The linear couplings of spinors to fermionic external currents are needed. Also bosons
represented as bound states of fermion and antifermion to the analogs of gauge currents
are needed to construct the M -matrix and would correspond to an addition of quantum
part to induced spinor connection. One can consider also the addition of quantum parts
to the induced metric and induced gamma matrices.

ii. The couplings of the induced spinor fields to external sources would be given as con-
tractions of the fermionic sources with conformal super-currents. Conformal currents
would couple to bosonic external currents analogous to external YM currents and M -
matrix would result via the usual procedure leading to generalized Feynman diagrams
for which sub-CDs would contain vertices.

One cannot however argue that everything would be crystal clear.

i. There are two kinds of super-conformal algebras corresponding to quantum fluctuating
degrees of freedom and zero modes. The super-conformal algebra associated with
the zero modes follows from quantum criticality guaranteing the conservation of these
currents. These currents are defined in the interior of the space-time surface. By
quantum holography the quantum fluctuating super-conformal algebra is assigned with
light-like 3-surfaces. Both these algebras form a hierarchy of inclusions identifiable as
counterparts for inclusions of HFFs. Which of the two super-conformal algebras one
should use? Does quantum holography - interpreted as possibility of 1-1 entanglement
between the two kinds of conformal currents for prepared states- mean that one can
use either of them to construct M -matrix? How the dimensional reduction could be
understood in terms of this duality?

ii. The bosonic conserved currents in the interior of X4 implied by quantum criticality
involve a purely local pairing of the induced spinor field and its conjugate. The problem
is that gauge bosons as wormhole throats appearing in the dimensionally reduced
description correspond to a non-local (in CP2 scale) pairing of spinor field and its
conjugate at opposite wormhole throats. Should one accept as a fact that dimensionally
reduced quantum fluctuating counterparts for the purely local zero mode currents are
bi-local?

iii. Only few days after posing these questions a plausible answer to them came through
a resolution of several problems related to the formulation of quantum TGD (see the
section ”Handful of problems with a common resolution” of [K20] ). One important
outcome of the formulation allowing to understand how stringy fermionic propaga-
tors emerge from the theory was that gravitational coupling vanishes for purely local
composites of fermion and antifermion represented by Kac-Moody algebra and super-
conformal algebra associated with critical deformations. Hence the only sensible iden-
tification of bosons seems to be as wormhole throats.

iv. The construction of the bosonic propagators in terms of fermionic loops [K58] as func-
tionals integral over Grassmann variables generalizes. Fermionic loops correspond ge-
ometrically to wormhole contacts having fermion and anti-fermion at their opposite
light-like throats. This implies a cutoff for momentum squared and hyperbolic angle
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of the virtual fermion in the rest system of boson crucial for the absence of loop diver-
gences. Hence bosonic propagation is emergent as is also fermionic propagation which
can be seen as induced by the measurement interaction for momentum. This justifies
the cutoffs due to the finite measurement resolution.

v. It is essential that one first functionally integrates over the fermionic degrees of freedom
and over the small deformations of light-like 3-surfaces and only after that constructs
diagrams from tree diagrams with bosonic and fermionic lines by using generalized
Cutkosky rules. Here the generalization of twistors to 8-D context allowing to regard
massive particles as massless particles in 8-D framework is expected to be a crucial
technical tool possibly allowing to achieve summations over large classes of general-
ized Feynman diagrams. Also the hierarchy of CDs is expected to be crucial in the
construction.

The key idea is the addition of measurement interaction term to the modified Dirac action
coupling to the conserved currents defined by quantum critical deformations for which
the second variation of Kähler action vanishes. There remains a considerable freedom
in choosing the precise form of the measurement interaction but there is a long list of
arguments supporting the identification of the measurement interaction as the one defined
by 3-D Chern-Simons term assignable with wormhole throats so that the dynamics in
the interior of space-time sheet is not affected. This means that 3-D light-like wormhole
throats carry induced spinor field which can be regarded as independent degrees of freedom
having the spinor fields at partonic 2-surfaces as sources and acting as 3-D sources for
the 4-D induced spinor field. The most general measurement interaction would involve
the corresponding coupling also for Kähler action but is not physically motivated. Here
are the arguments in favor of Chern-Simons Dirac action and corresponding measurement
interaction.

i. A correlation between 4-D geometry of space-time sheet and quantum numbers is
achieved by the identification of exponent of Kähler function as Dirac determinant
making possible the entanglement of classical degrees of freedom in the interior of
space-time sheet with quantum numbers.

ii. Cartan algebra plays a key role not only at quantum level but also at the level of space-
time geometry since quantum critical conserved currents vanish for Cartan algebra of
isometries and the measurement interaction terms giving rise to conserved currents are
possible only for Cartan algebras. Furthermore, modified Dirac equation makes sense
only for eigen states of Cartan algebra generators. The hierarchy of Planck constants
realized in terms of the book like structure of the generalized imbedding space assigns
to each CD (causal diamond) preferred Cartan algebra: in case of Poincare algebra
there are two of them corresponding to linear and cylindrical M4 coordinates.

iii. Quantum holography and dimensional reduction hierarchy in which partonic 2-surface
defined fermionic sources for 3-D fermionic fields at light-like 3-surfaces Y 3

l in turn
defining fermionic sources for 4-D spinors find an elegant realization. Effective 2-
dimensionality is achieved if the replacement of light-like wormhole throat X3

l with
light-like 3-surface Y 3

l ”parallel” with it in the definition of Dirac determinant corre-
sponds to the U(1) gauge transformation K → K+f +f for Kähler function of WCW
so that WCW Kähler metric is not affected. Here f is holomorphic function of WCW
(”world of classical worlds”) complex coordinates and arbitrary function of zero mode
coordinates.

iv. An elegant description of the interaction between super-conformal representations re-
alized at partonic 2-surfaces and dynamics of space-time surfaces is achieved since the
values of Cartan charges are feeded to the 3-D Dirac equation which also receives mass
term at the same time. Almost topological QFT at wormhole throats results at the
limit when four-momenta vanish: this is in accordance with the original vision about
TGD as almost topological QFT.

v. A detailed view about the physical role of quantum criticality results. Quantum criti-
cality fixes the values of Kähler coupling strength as the analog of critical temperature.
Quantum criticality implies that second variation of Kähler action vanishes for critical
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deformations and the existence of conserved current except in the case of Cartan alge-
bra of isometries. Quantum criticality allows to fix the values of couplings appearing in
the measurement interaction by using the condition K → K + f + f . p-Adic coupling
constant evolution can be understood also and corresponds to scale hierarchy for the
sizes of causal diamonds (CDs). To achieve internal consistency the quantum critical
deformations for Kähler action must be also quantum critical for Chern-Simons action
which implies that the deformations are orthogonal to Kähler magnetic field at each
light-like 3-surface in the slicing of space-time sheet by light-like 3-surfaces.

vi. CP breaking, irreversibility and the space-time description of dissipation are closely
related. Also the interpretation of preferred extremals of Kähler action in regions
where [DC−S , DC−S,int] = 0 as asymptotic self organization patterns makes sense.
Here DC−S denotes the 3-D modified Dirac operator associated with Chern-Simons
action and DC−S,int to the corresponding measurement interaction term expressible as
superposition of couplings to various observables to critical conserved currents.

vii. A radically new view about matter antimatter asymmetry based on zero energy ontol-
ogy emerges and one could understand the experimental absence of antimatter as being
due to the fact antimatter corresponds to negative energy states. The identification of
bosons as wormhole contacts is the only possible option in this framework.

viii. Almost stringy propagators and a consistency with the identification of wormhole
throats as lines of generalized Feynman diagrams is achieved. The notion of bosonic
emergence leads to a long sought general master formula for the M -matrix elements.
The counterpart for fermionic loop defining bosonic inverse propagator at QFT limit
is wormhole contact with fermion and cutoffs in mass squared and hyperbolic angle for
loop momenta of fermion and antifermion in the rest system of emitting boson have
precise geometric counterpart.

On basis of above considerations it seems that the idea about ”complex square root” of ω
might make sense in quantum TGD and that different measurement interactions correspond
to various choices of ω. Also the modular automorphism would make sense and because
of its non-uniqueness ∆ could bring in the flexibility needed one wants thermodynamics.
Stringy picture forces to ask whether ∆ could in some situation be proportional exp(L0),
where L0 represents as the infinitesimal scaling generator of either super-symplectic alge-
bra or super Kac-Moody algebra (the choice does not matter since the differences of the
generators annihilate physical states in coset construction). This would allow to reproduce
real thermodynamics consistent with p-adic thermodynamics.

In string models exp(iL0τ) is identified as the time evolution operator at single particle level
whose integral over τ defines the propagator. The quantization for the sizes of CDs does
not however allow integration over t in this sense. Could the integration over projectors
with traces differing by scalings parameterized by t correspond to this integral? Or should
one give up this idea since modified Dirac operator defines a propagator in any case?

14.7.6 Finite measurement resolution and HFFs

The finite resolution of quantum measurement leads in TGD framework naturally to the
notion of quantum M -matrix for which elements have values in sub-factor N of HFF rather
than being complex numbers. M-matrix in the factor space M/N is obtained by tracing
over N . The condition that N acts like complex numbers in the tracing implies that M-
matrix elements are proportional to maximal projectors to N so that M-matrix is effectively
a matrix in M/N and situation becomes finite-dimensional. It is still possible to satisfy
generalized unitarity conditions but in general case tracing gives a weighted sum of unitary
M-matrices defining what can be regarded as a square root of density matrix.

About the notion of observable in zero energy ontology

Some clarifications concerning the notion of observable in zero energy ontology are in order.
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i. As in standard quantum theory observables correspond to hermitian operators acting
on either positive or negative energy part of the state. One can indeed define hermitian
conjugation for positive and negative energy parts of the states in standard manner.

ii. Also the conjugation A → JAJ is analogous to hermitian conjugation. It exchanges
the positive and negative energy parts of the states also maps the light-like 3-surfaces at
the upper boundary of CD to the lower boundary and vice versa. The map is induced
by time reflection in the rest frame of CD with respect to the origin at the center of
CD and has a well defined action on light-like 3-surfaces and space-time surfaces. This
operation cannot correspond to the sought for hermitian conjugation since JAJ and
A commute. The formulation of quantum TGD in terms of the modified Dirac action
requires the addition of CP and T breaking fermionic counterpart of instanton term to
the modified Dirac action. An interesting question is what this term means from the
point of view of the conjugation.

iii. Zero energy ontology gives Cartan sub-algebra of the Lie algebra of symmetries a special
status. Only Cartan algebra acting on either positive or negative states respects the
zero energy property but this is enough to define quantum numbers of the state. In
absence of symmetry breaking positive and negative energy parts of the state combine
to form a state in a singlet representation of group. Since only the net quantum
numbers must vanish zero energy ontology allows a symmetry breaking respecting a
chosen Cartan algebra.

iv. In order to speak about four-momenta for positive and negative energy parts of the
states one must be able to define how the translations act on CDs. The most natural
action is a shift of the upper (lower) tip of CD. In the scale of entire CD this trans-
formation induced Lorentz boost fixing the other tip. The value of mass squared is
identified as proportional to the average of conformal weight in p-adic thermodynamics
for the scaling generator L0 for either super-symplectic or Super Kac-Moody algebra.

Inclusion of HFFS as characterizer of finite measurement resolution at the level
of S-matrix

The inclusion N ⊂ M of factors characterizes naturally finite measurement resolution.
This means following things.

i. Complex rays of state space resulting usually in an ideal state function reduction are
replaced by N -rays since N defines the measurement resolution and takes the role
of complex numbers in ordinary quantum theory so that non-commutative quantum
theory results. Non-commutativity corresponds to a finite measurement resolution
rather than something exotic occurring in Planck length scales. The quantum Clifford
algebra M/N creates physical states modulo resolution. The fact that N takes the
role of gauge algebra suggests that it might be necessary to fix a gauge by assigning to
each element of M/N a unique element of M. Quantum Clifford algebra with fractal
dimension β =M : N creates physical states having interpretation as quantum spinors
of fractal dimension d =

√
β. Hence direct connection with quantum groups emerges.

ii. The notions of unitarity, hermiticity, and eigenvalue generalize. The elements of unitary
and hermitian matrices and N -valued. Eigenvalues are Hermitian elements of N and
thus correspond entire spectra of Hermitian operators. The mutual non-commutativity
of eigenvalues guarantees that it is possible to speak about state function reduction for
quantum spinors. In the simplest case of a 2-component quantum spinor this means
that second component of quantum spinor vanishes in the sense that second component
of spinor annihilates physical state and second acts as element of N on it. The non-
commutativity of spinor components implies correlations between then and thus fractal
dimension is smaller than 2.

iii. The intuition about ordinary tensor products suggests that one can decompose Tr in
M as

TrM(X) = TrM/N × TrN (X) . (14.7.4)
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Suppose one has fixed gauge by selecting basis |rk〉 forM/N . In this case one expects
that operator in M defines an operator in M/N by a projection to the preferred
elements of M.

〈r1|X|r2〉 = 〈r1|TrN (X)|r2〉 . (14.7.5)

iv. Scattering probabilities in the resolution defined by N are obtained in the following
manner. The scattering probability between states |r1〉 and |r2〉 is obtained by summing
over the final states obtained by the action of N from |r2〉 and taking the analog of spin
average over the states created in the similar from |r1〉. N average requires a division
by Tr(PN ) = 1/M : N defining fractal dimension of N . This gives

p(r1 → r2) = M : N × 〈r1|TrN (SPNS
†)|r2〉 . (14.7.6)

This formula is consistent with probability conservation since one has∑
r2

p(r1 → r2) = M : N × TrN (SS†) =M : N × Tr(PN ) = 1 . (14.7.7)

v. Unitarity at the level of M/N can be achieved if the unit operator Id for M can
be decomposed into an analog of tensor product for the unit operators of M/N and
N and M decomposes to a tensor product of unitary M-matrices in M/N and N .
For HFFs of type II projection operators of N with varying traces are present and
one expects a weighted sum of unitary M-matrices to result from the tracing having
interpretation in terms of square root of thermodynamics.

vi. This argument assumes that N is HFF of type II1 with finite trace. For HFFs of type
III1 this assumption must be given up. This might be possible if one compensates the
trace over N by dividing with the trace of the infinite trace of the projection operator
to N . This probably requires a limiting procedure which indeed makes sense for HFFs.

Quantum M-matrix

The description of finite measurement resolution in terms of inclusion N ⊂ M seems to
boil down to a simple rule. Replace ordinary quantum mechanics in complex number field
C with that in N . This means that the notions of unitarity, hermiticity, Hilbert space ray,
etc.. are replaced with their N counterparts.

The full M -matrix in M should be reducible to a finite-dimensional quantum M -matrix
in the state space generated by quantum Clifford algebra M/N which can be regarded
as a finite-dimensional matrix algebra with non-commuting N -valued matrix elements.
This suggests that full M -matrix can be expressed as M -matrix with N -valued elements
satisfying N -unitarity conditions.

Physical intuition also suggests that the transition probabilities defined by quantum S-
matrix must be commuting hermitian N -valued operators inside every row and column.
The traces of these operators give N -averaged transition probabilities. The eigenvalue
spectrum of these Hermitian matrices gives more detailed information about details below
experimental resolution. N -hermicity and commutativity pose powerful additional restric-
tions on the M -matrix.

Quantum M -matrix defines N -valued entanglement coefficients between quantum states
with N -valued coefficients. How this affects the situation? The non-commutativity of
quantum spinors has a natural interpretation in terms of fuzzy state function reduction
meaning that quantum spinor corresponds effectively to a statistical ensemble which cannot
correspond to pure state. Does this mean that predictions for transition probabilities must
be averaged over the ensemble defined by ”quantum quantum states”?

Quantum fluctuations and inclusions

Inclusions N ⊂M of factors provide also a first principle description of quantum fluctua-
tions since quantum fluctuations are by definition quantum dynamics below the measure-
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ment resolution. This gives hopes for articulating precisely what the important phrase ”long
range quantum fluctuations around quantum criticality” really means mathematically.

i. Phase transitions involve a change of symmetry. One might hope that the change of
the symmetry group Ga × Gb could universally code this aspect of phase transitions.
This need not always mean a change of Planck constant but it means always a leakage
between sectors of imbedding space. At quantum criticality 3-surfaces would have
regions belonging to at least two sectors of H.

ii. The long range of quantum fluctuations would naturally relate to a partial or total
leakage of the 3-surface to a sector of imbedding space with larger Planck constant
meaning zooming up of various quantal lengths.

iii. For M -matrix in M/N regarded as calN module quantum criticality would mean a
special kind of eigen state for the transition probability operator defined by the M -
matrix. The properties of the number theoretic braids contributing to the M -matrix
should characterize this state. The strands of the critical braids would correspond to
fixed points for Ga ×Gb or its subgroup.

M-matrix in finite measurement resolution

The following arguments relying on the proposed identification of the space of zero energy
states give a precise formulation for M -matrix in finite measurement resolution and the
Connes tensor product involved. The original expectation that Connes tensor product
could lead to a unique M-matrix is wrong. The replacement of ω with its complex square
root could lead to a unique hierarchy of M-matrices with finite measurement resolution and
allow completely finite theory despite the fact that projectors have infinite trace for HFFs
of type III1.

i. In zero energy ontology the counterpart of Hermitian conjugation for operator is re-
placed with M → JMJ permuting the factors. Therefore N ∈ N acting to positive
(negative) energy part of state corresponds to N → N ′ = JNJ acting on negative
(positive) energy part of the state.

ii. The allowed elements of N much be such that zero energy state remains zero energy
state. The superposition of zero energy states involved can however change. Hence
one must have that the counterparts of complex numbers are of form N = JN1J ∨N2,
where N1 and N2 have same quantum numbers. A superposition of terms of this kind
with varying quantum numbers for positive energy part of the state is possible.

iii. The condition that N1i and N2i act like complex numbers in N -trace means that the
effect of JN1iJ ∨ N2i and JN2iJi ∨ N1i to the trace are identical and correspond
to a multiplication by a constant. If N is HFF of type II1 this follows from the
decomposition M = M/N ⊗N and from Tr(AB) = Tr(BA) assuming that M is of
form M = MM/N × PN . Contrary to the original hopes that Connes tensor product
could fix the M-matrix there are no conditions on MM/N which would give rise to a
finite-dimensional M-matrix for Jones inclusions. One can replaced the projector PN
with a more general state if one takes this into account in ∗ operation.

iv. In the case of HFFs of type III1 the trace is infinite so that the replacement of TrN
with a state ωN in the sense of factors looks more natural. This means that the
counterpart of ∗ operation exchanging N1 and N2 represented as SAΩ = A∗Ω involves
∆ via S = J∆1/2. The exchange of N1 and N2 gives altogether ∆. In this case the KMS
condition ωN (AB) = ωN∆A) guarantees the effective complex number property [A23]
.

v. Quantum TGD more or less requires the replacement of ω with its ”complex square
root” so that also a unitary matrix U multiplying ∆ is expected to appear in the
formula for S and guarantee the symmetry. One could speak of a square root of
KMS condition [A23] in this case. The QFT counterpart would be a cutoff involving
path integral over the degrees of freedom below the measurement resolution. In TGD
framework it would mean a cutoff in the functional integral over WCW and for the
modes of the second quantized induced spinor fields and also cutoff in sizes of causal
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diamonds. Discretization in terms of braids replacing light-like 3-surfaces should be
the counterpart for the cutoff.

vi. If one has M -matrix in M expressible as a sum of M -matrices of form MM/N ×MN
with coefficients which correspond to the square roots of probabilities defining density
matrix the tracing operation gives rise to square root of density matrix in M .

Is universal M-matrix possible?

The realization of the finite measurement resolution could apply only to transition proba-
bilities in which N -trace or its generalization in terms of state ωN is needed. One might
however dream of something more.

i. Maybe there exists a universal M-matrix in the sense that the same M-matrix gives
the M-matrices in finite measurement resolution for all inclusions N ⊂M. This would
mean that one can write

M = MM/N ⊗MN (14.7.8)

for any physically reasonable choice of N . This would formally express the idea that
M is as near as possible to M-matrix of free theory. Also fractality suggests itself in
the sense that MN is essentially the same as MM in the same sense as N is same as
M. It might be that the trivial solution M = 1 is the only possible solution to the
condition.

ii. MM/N would be obtained by the analog of TrN or ωN operation involving the ”complex
square root” of the state ω in case of HFFs of type III1. The QFT counterpart would
be path integration over the degrees of freedom below cutoff to get effective action.

iii. Universality probably requires assumptions about the thermodynamical part of the
universal M-matrix. A possible alternative form of the condition is that it holds true
only for canonical choice of ”complex square root” of ω or for the S-matrix part of M :

S = SM/N ⊗ SN (14.7.9)

for any physically reasonable choice N .

iv. In TGD framework the condition would say that the M-matrix defined by the modified
Dirac action gives M-matrices in finite measurement resolution via the counterpart of
integration over the degrees of freedom below the measurement resolution.

An objection against the universality is that if the M-matrix is ”complex square root
of state” cannot be unique and there are infinitely many choices related by a unitary
transformation induced by the flows representing modular automorphism giving rise to new
choices. This would actually be a well-come result and make possible quantum measurement
theory. In the section ”Handful of problems with a common resolution” of [K19] it was
found that one must add to the modified Dirac action a measurement interaction term
characterizing the measured observables. This implies stringy propagation as well as space-
time correlates for quantum numbers characterizing the partonic states. These different
modified Dirac actions would give rise to different Kähler functions. The corresponding
Kähler metrics would not however differ if the real parts of the Kähler functions associated
with the two choices differ by a term f(Z) + f(Z), where Z denotes complex coordinates
of WCW, the Kähler metric remains the same. The function f can depend also on zero
modes. If this is the case then one can allow in given CD superpositions of WCW spinor
fields for which the measurement interactions are different.

Connes tensor product and space-like entanglement

Ordinary linear Connes tensor product makes sense also in positive/negative energy sector
and also now it makes sense to speak about measurement resolution. Hence one can ask
whether Connes tensor product should be posed as a constraint on space-like entanglement.
The interpretation could be in terms of the formation of bound states. The reducibility
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of HFFs and inclusions means that the tensor product is not uniquely fixed and ordinary
entanglement could correspond to this kind of entanglement.

Also the counterpart of p-adic coupling constant evolution would makes sense. The inter-
pretation of Connes tensor product would be as the variance of the states with respect to
some subgroup of U(n) associated with the measurement resolution: the analog of color
confinement would be in question.

2-vector spaces and entanglement modulo measurement resolution

John Baez and collaborators [A58] are playing with very formal looking formal structures
obtained by replacing vectors with vector spaces. Direct sum and tensor product serve
as the basic arithmetic operations for the vector spaces and one can define category of
n-tuples of vectors spaces with morphisms defined by linear maps between vectors spaces
of the tuple. n-tuples allow also element-wise product and sum. They obtain results which
make them happy. For instance, the category of linear representations of a given group
forms 2-vector spaces since direct sums and tensor products of representations as well as
n-tuples make sense. The 2-vector space however looks more or less trivial from the point
of physics.

The situation could become more interesting in quantum measurement theory with finite
measurement resolution described in terms of inclusions of hyper-finite factors of type II1.
The reason is that Connes tensor product replaces ordinary tensor product and brings in
interactions via irreducible entanglement as a representation of finite measurement resolu-
tion. The category in question could give Connes tensor products of quantum state spaces
and describing interactions. For instance, one could multiply M -matrices via Connes tensor
product to obtain category of M -matrices having also the structure of 2-operator algebra.

i. The included algebra represents measurement resolution and this means that the
infinite-D sub-Hilbert spaces obtained by the action of this algebra replace the rays.
Sub-factor takes the role of complex numbers in generalized QM so that one obtains
non-commutative quantum mechanics. For instance, quantum entanglement for two
systems of this kind would not be between rays but between infinite-D subspaces cor-
responding to sub-factors. One could build a generalization of QM by replacing rays
with sub-spaces and it would seem that quantum group concept does more or less this:
the states in representations of quantum groups could be seen as infinite-dimensional
Hilbert spaces.

ii. One could speak about both operator algebras and corresponding state spaces modulo
finite measurement resolution as quantum operator algebras and quantum state spaces
with fractal dimension defined as factor space like entities obtained from HFF by
dividing with the action of included HFF. Possible values of the fractal dimension are
fixed completely for Jones inclusions. Maybe these quantum state spaces could define
the notions of quantum 2-Hilbert space and 2-operator algebra via direct sum and
tensor production operations. Fractal dimensions would make the situation interesting
both mathematically and physically.

Suppose one takes the fractal factor spaces as the basic structures and keeps the information
about inclusion.

i. Direct sums for quantum vectors spaces would be just ordinary direct sums with HFF
containing included algebras replaced with direct sum of included HFFs.

ii. The tensor products for quantum state spaces and quantum operator algebras are not
anymore trivial. The condition that measurement algebras act effectively like complex
numbers would require Connes tensor product involving irreducible entanglement be-
tween elements belonging to the two HFFs. This would have direct physical relevance
since this entanglement cannot be reduced in state function reduction. The category
would defined interactions in terms of Connes tensor product and finite measurement
resolution.

iii. The sequences of super-conformal symmetry breakings identifiable in terms of inclu-
sions of super-conformal algebras and corresponding HFFs could have a natural de-
scription using the 2-Hilbert spaces and quantum 2-operator algebras.
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14.7.7 Questions about quantum measurement theory in zero en-
ergy ontology

In the following some questions about quantum measurement theory are posed. First how-
ever a result about the relationship between U -matrix and M -matrix not known when the
questions were made will be represented. The background allowing a deeper understanding
of this result can be found from [K46] discussing Negentropy Maximization Principle, which
is the basic dynamical principle of TGD inspired theory of consciousness and states that
the information content of conscious experience is maximal.

The relationship between U-matrix and M-matrix

Before proceeding it is a good idea to clarify the relationship between the notions of U -
matrix and M -matrix. If state function reduction associated with time-like entanglement
leads always to a product of positive and negative energy states (so that there is no coun-
terpart of bound state entanglement and negentropic entanglement possible for zero energy
states: these notions are discussed below) U -matrix and can be regarded as a collection of
M -matrices

Um+n−,r+,s− = M(m+, n−)r+,s− (14.7.10)

labeled by the pairs (m+, n−) labelling zero energy states assumed to reduced to pairs
of positive and negative energy states. M -matrix element is the counterpart of S-matrix
element Sr,s in positive energy ontology. Unitarity conditions for U -matrix read as

(UU†)m+n−,r+s− =
∑
k+,l−

M(m+, n−)k+,l−M(r+, s−)k+,l− = δm+r+,n−s− ,

(U†U)m+n−,r+s− =
∑
k+,l−

M(k+, l−)m+,n−M(k+, l−)r+,s− = δm+r+,n−s− .

(14.7.11)

The conditions state that the zero energy states associated with different labels are or-
thogonal as zero energy states and also that the zero energy states defined by the dual
M -matrix

M†(m+, n−)k+,l− ≡M(k+l−)m+,n− (14.7.12)

-perhaps identifiable as phase conjugate states- define an orthonormal basis of zero energy
states.

When time-like binding and negentropic entanglement are allowed also zero energy states
with a label not implying a decomposition to a product state are involved with the unitarity
condition but this does not affect the situation dramatically. As a matter fact, the situation
is mathematically the same as for ordinary S-matrix in the presence of bound states. Here
time-like bound states are analogous to space-like bound states and by definition are unable
to decay to product states (free states). Negentropic entanglement makes sense only for
entanglement probabilities, which are rationals or belong to their algebraic extensions.
This is possible in what might be called the intersection of real and p-adic worlds (partonic
surfaces in question have representation making sense for both real and p-adic numbers).
Number theoretic entropy is obtained by replacing in the Shannon entropy the logarithms
of probabilities with the logarithms of their p-adic norms. They satisfy the same defining
conditions as ordinary Shannon entropy but can be also negative. One can always find
prime p for which the entropy is maximally negative. The interpretation of negentropic
entanglement is in terms of formations of rule or association. Schrödinger cat knows that
it is better to not open the bottle: open bottle-dead cat, closed bottle-living cat and
negentropic entanglement measures this information.
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Fractal hierarchy of state function reductions

In accordance with fractality, the conditions for the Connes tensor product at a given
time scale imply the conditions at shorter time scales. On the other hand, in shorter time
scales the inclusion would be deeper and would give rise to a larger reducibility of the
representation of N inM. Formally, as N approaches to a trivial algebra, one would have
a square root of density matrix and trivial S-matrix in accordance with the idea about
asymptotic freedom.

M -matrix would give rise to a matrix of probabilities via the expression P (P+ → P−) =
Tr[P+M

†P−M ], where P+ and P− are projectors to positive and negative energy energy
N -rays. The projectors give rise to the averaging over the initial and final states inside N
ray. The reduction could continue step by step to shorter length scales so that one would
obtain a sequence of inclusions. If the U -process of the next quantum jump can return the
M -matrix associated with M or some larger HFF, U process would be kind of reversal for
state function reduction.

Analytic thinking proceeding from vision to details; human life cycle proceeding from
dreams and wild actions to the age when most decisions relate to the routine daily activi-
ties; the progress of science from macroscopic to microscopic scales; even biological decay
processes: all these have an intriguing resemblance to the fractal state function reduction
process proceeding to to shorter and shorter time scales. Since this means increasing ther-
mality of M -matrix, U process as a reversal of state function reduction might break the
second law of thermodynamics.

The conservative option would be that only the transformation of intentions to action by U
process giving rise to new zero energy states can bring in something new and is responsible
for evolution. The non-conservative option is that the biological death is the U -process of
the next quantum jump leading to a new life cycle. Breathing would become a universal
metaphor for what happens in quantum Universe. The 4-D body would be lived again and
again.

How quantum classical correspondence is realized at parton level?

Quantum classical correspondence must assign to a given quantum state the most probable
space-time sheet depending on its quantum numbers. The space-time sheet X4(X3) defined
by the Kähler function depends however only on the partonic 3-surface X3, and one must
be able to assign to a given quantum state the most probable X3 - call it X3

max - depending
on its quantum numbers.

X4(X3
max) should carry the gauge fields created by classical gauge charges associated with

the Cartan algebra of the gauge group (color isospin and hypercharge and electromagnetic
and Z0 charge) as well as classical gravitational fields created by the partons. This picture
is very similar to that of quantum field theories relying on path integral except that the
path integral is restricted to 3-surfaces X3 with exponent of Kähler function bringing in
genuine convergence and that 4-D dynamics is deterministic apart from the delicacies due
to the 4-D spin glass type vacuum degeneracy of Kähler action.

Stationary phase approximation selects X3
max if the quantum state contains a phase factor

depending not only on X3 but also on the quantum numbers of the state. A good guess is
that the needed phase factor corresponds to either Chern-Simons type action or an action
describing the interaction of the induced gauge field with the charges associated with the
braid strand. This action would be defined for the induced gauge fields. YM action seems
to be excluded since it is singular for light-like 3-surfaces associated with the light-like
wormhole throats (not only

√
det(g3) but also

√
det(g4) vanishes).

The challenge is to show that this is enough to guarantee that X4(X3
max) carries correct

gauge charges. Kind of electric-magnetic duality should relate the normal components Fni
of the gauge fields in X4(X3

max) to the gauge fields Fij induced at X3. An alternative
interpretation is in terms of quantum gravitational holography. The difference between
Chern-Simons action characterizing quantum state and the fundamental Chern-Simons
type factor associated with the Kähler form would be that the latter emerges as the phase
of the Dirac determinant.
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One is forced to introduce gauge couplings and also electro-weak symmetry breaking via the
phase factor. This is in apparent conflict with the idea that all couplings are predictable.
The essential uniqueness of M -matrix in the case of HFFs of type II1 (at least) however
means that their values as a function of measurement resolution time scale are fixed by
internal consistency. Also quantum criticality leads to the same conclusion. Obviously a
kind of bootstrap approach suggests itself.

14.7.8 How p-adic coupling constant evolution and p-adic length
scale hypothesis emerge from quantum TGD proper?

What p-adic coupling constant evolution really means has remained for a long time more or
less open. The progress made in the understanding of the S-matrix of theory has however
changed the situation dramatically.

M-matrix and coupling constant evolution

The final breakthrough in the understanding of p-adic coupling constant evolution came
through the understanding of S-matrix, or actually M-matrix defining entanglement co-
efficients between positive and negative energy parts of zero energy states in zero energy
ontology [K19] . M-matrix has interpretation as a ”complex square root” of density ma-
trix and thus provides a unification of thermodynamics and quantum theory. S-matrix is
analogous to the phase of Schrödinger amplitude multiplying positive and real square root
of density matrix analogous to modulus of Schrödinger amplitude.

The notion of finite measurement resolution realized in terms of inclusions of von Neumann
algebras allows to demonstrate that the irreducible components of M-matrix are unique
and possesses huge symmetries in the sense that the hermitian elements of included factor
N ⊂M defining the measurement resolution act as symmetries of M-matrix, which suggests
a connection with integrable quantum field theories.

It is also possible to understand coupling constant evolution as a discretized evolution
associated with time scales Tn, which come as octaves of a fundamental time scale: Tn =
2nT0. Number theoretic universality requires that renormalized coupling constants are
rational or at most algebraic numbers and this is achieved by this discretization since the
logarithms of discretized mass scale appearing in the expressions of renormalized coupling
constants reduce to the form log(2n) = nlog(2) and with a proper choice of the coefficient
of logarithm log(2) dependence disappears so that rational number results. Recall that also
the weaker condition Tp = pT0, p prime, would assign secondary p-adic time scales to the
size scale hierarchy of CDs: p ' 2n would result as an outcome of some kind of ”natural
selection” for this option. The highly satisfactory feature would be that p-adic time scales
would reflect directly the geometry of imbedding space and configuration space.

p-Adic coupling constant evolution

An attractive conjecture is that the coupling constant evolution associated with CDs in
powers of 2 implying time scale hierarchy Tn = 2nT0 induces p-adic coupling constant
evolution and explain why p-adic length scales correspond to Lp ∝

√
pR, p ' 2k, R CP2

length scale? This looks attractive but there seems to be a problem. p-Adic length scales
come as powers of

√
2 rather than 2 and the strongly favored values of k are primes and

thus odd so that n = k/2 would be half odd integer. This problem can be solved.

i. The observation that the distance traveled by a Brownian particle during time t satisfies
r2 = Dt suggests a solution to the problem. p-Adic thermodynamics applies because
the partonic 3-surfaces X2 are as 2-D dynamical systems random apart from light-
likeness of their orbit. For CP2 type vacuum extremals the situation reduces to that
for a one-dimensional random light-like curve in M4. The orbits of Brownian particle
would now correspond to light-like geodesics γ3 at X3. The projection of γ3 to a
time=constant section X2 ⊂ X3 would define the 2-D path γ2 of the Brownian particle.
The M4 distance r between the end points of γ2 would be given r2 = Dt. The favored
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values of t would correspond to Tn = 2nT0 (the full light-like geodesic). p-Adic length
scales would result as L2(k) = DT (k) = D2kT0 for D = R2/T0. Since only CP2

scale is available as a fundamental scale, one would have T0 = R and D = R and
L2(k) = T (k)R.

ii. p-Adic primes near powers of 2 would be in preferred position. p-Adic time scale would
not relate to the p-adic length scale via Tp = Lp/c as assumed implicitly earlier but
via Tp = L2

p/R0 =
√
pLp, which corresponds to secondary p-adic length scale. For

instance, in the case of electron with p = M127 one would have T127 = .1 second which
defines a fundamental biological rhythm. Neutrinos with mass around .1 eV would
correspond to L(169) ' 5 µm (size of a small cell) and T (169) ' 1.×104 years. A deep
connection between elementary particle physics and biology becomes highly suggestive.

iii. In the proposed picture the p-adic prime p ' 2k would characterize the thermodynamics
of the random motion of light-like geodesics of X3 so that p-adic prime p would indeed
be an inherent property of X3. For the weaker condition would be Tp = pT0, p prime,
p ' 2n could be seen as an outcome of some kind of ”natural selection”. In this
case, p would a property of CD and all light-like 3-surfaces inside it and also that
corresponding sector of configuration space.

iv. The fundamental role of 2-adicity suggests that the fundamental coupling constant
evolution and p-adic mass calculations could be formulated also in terms of 2-adic
thermodynamics. With a suitable definition of the canonical identification used to
map 2-adic mass squared values to real numbers this is possible, and the differences
between 2-adic and p-adic thermodynamics are extremely small for large values of for
p ' 2k. 2-adic temperature must be chosen to be T2 = 1/k whereas p-adic temperature
is Tp = 1 for fermions. If the canonical identification is defined as∑

n≥0

bn2n →
∑
m≥1

2−m+1
∑

(k−1)m≤n<km

bn2n ,

it maps all 2-adic integers n < 2k to themselves and the predictions are essentially same
as for p-adic thermodynamics. For large values of p ' 2k 2-adic real thermodynamics
with TR = 1/k gives essentially the same results as the 2-adic one in the lowest order
so that the interpretation in terms of effective 2-adic/p-adic topology is possible.

14.7.9 Planar algebras and generalized Feynman diagrams

Planar algebras [A36] are a very general notion due to Vaughan Jones and a special class of
them is known to characterize inclusion sequences of hyper-finite factors of type II1 [A66]
. In the following an argument is developed that planar algebras might have interpretation
in terms of planar projections of generalized Feynman diagrams (these structures are met-
rically 2-D by presence of one light-like direction so that 2-D representation is especially
natural). In [K13] the role of planar algebras and their generalizations is also discussed.

Planar algebra very briefly

First a brief definition of planar algebra.

i. One starts from planar k-tangles obtained by putting disks inside a big disk. Inner disks
are empty. Big disk contains 2k braid strands starting from its boundary and returning
back or ending to the boundaries of small empty disks in the interior containing also
even number of incoming lines. It is possible to have also loops. Disk boundaries
and braid strands connecting them are different objects. A black-white coloring of the
disjoint regions of k-tangle is assumed and there are two possible options (photo and
its negative). Equivalence of planar tangles under diffeomorphisms is assumed.

ii. One can define a product of k-tangles by identifying k-tangle along its outer boundary
with some inner disk of another k-tangle. Obviously the product is not unique when
the number of inner disks is larger than one. In the product one deletes the inner disk
boundary but if one interprets this disk as a vertex-parton, it would be better to keep
the boundary.
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iii. One assigns to the planar k-tangle a vector space Vk and a linear map from the tensor
product of spaces Vki associated with the inner disks such that this map is consistent
with the decomposition k-tangles. Under certain additional conditions the resulting
algebra gives rise to an algebra characterizing multi-step inclusion of HFFs of type II1.

iv. It is possible to bring in additional structure and in TGD framework it seems necessary
to assign to each line of tangle an arrow telling whether it corresponds to a strand of a
braid associated with positive or negative energy parton. One can also wonder whether
disks could be replaced with closed 2-D surfaces characterized by genus if braids are
defined on partonic surfaces of genus g. In this case there is no topological distinction
between big disk and small disks. One can also ask why not allow the strands to get
linked (as suggested by the interpretation as planar projections of generalized Feynman
diagrams) in which case one would not have a planar tangle anymore.

General arguments favoring the assignment of a planar algebra to a generalized
Feynman diagram

There are some general arguments in favor of the assignment of planar algebra to generalized
Feynman diagrams.

i. Planar diagrams describe sequences of inclusions of HFF:s and assign to them a multi-
parameter algebra corresponding indices of inclusions. They describe also Connes
tensor powers in the simplest situation corresponding to Jones inclusion sequence.
Suppose that also general Connes tensor product has a description in terms of planar
diagrams. This might be trivial.

ii. Generalized vertices identified geometrically as partonic 2-surfaces indeed contain Connes
tensor products. The smallest sub-factor N would play the role of complex numbers
meaning that due to a finite measurement resolution one can speak only about N-
rays of state space and the situation becomes effectively finite-dimensional but non-
commutative.

iii. The product of planar diagrams could be seen as a projection of 3-D Feynman diagram
to plane or to one of the partonic vertices. It would contain a set of 2-D partonic
2-surfaces. Some of them would correspond vertices and the rest to partonic 2-surfaces
at future and past directed light-cones corresponding to the incoming and outgoing
particles.

iv. The question is how to distinguish between vertex-partons and incoming and outgoing
partons. If one does not delete the disk boundary of inner disk in the product, the
fact that lines arrive at it from both sides could distinguish it as a vertex-parton
whereas outgoing partons would correspond to empty disks. The direction of the
arrows associated with the lines of planar diagram would allow to distinguish between
positive and negative energy partons (note however line returning back).

v. One could worry about preferred role of the big disk identifiable as incoming or outgoing
parton but this role is only apparent since by compactifying to say S2 the big disk
exterior becomes an interior of a small disk.

A more detailed view

The basic fact about planar algebras is that in the product of planar diagrams one glues
two disks with identical boundary data together. One should understand the counterpart
of this in more detail.

i. The boundaries of disks would correspond to 1-D closed space-like stringy curves at
partonic 2-surfaces along which fermionic anti-commutators vanish.

ii. The lines connecting the boundaries of disks to each other would correspond to the
strands of number theoretic braids and thus to braidy time evolutions. The intersection
points of lines with disk boundaries would correspond to the intersection points of
strands of number theoretic braids meeting at the generalized vertex.
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[Number theoretic braid belongs to an algebraic intersection of a real parton 3-surface
and its p-adic counterpart obeying same algebraic equations: of course, in time direc-
tion algebraicity allows only a sequence of snapshots about braid evolution].

iii. Planar diagrams contain lines, which begin and return to the same disk boundary. Also
”vacuum bubbles” are possible. Braid strands would disappear or appear in pairwise
manner since they correspond to zeros of a polynomial and can transform from complex
to real and vice versa under rather stringent algebraic conditions.

iv. Planar diagrams contain also lines connecting any pair of disk boundaries. Stringy
decay of partonic 2-surfaces with some strands of braid taken by the first and some
strands by the second parton might bring in the lines connecting boundaries of any
given pair of disks (if really possible!).

v. There is also something to worry about. The number of lines associated with disks is
even in the case of k-tangles. In TGD framework incoming and outgoing tangles could
have odd number of strands whereas partonic vertices would contain even number of k-
tangles from fermion number conservation. One can wonder whether the replacement
of boson lines with fermion lines could imply naturally the notion of half-k-tangle
or whether one could assign half-k-tangles to the spinors of the configuration space
(”world of classical worlds”) whereas corresponding Clifford algebra defining HFF of
type II1 would correspond to k-tangles.

14.7.10 Miscellaneous

The following considerations are somewhat out-of-date: hence the title ’Miscellaneous’.

Connes tensor product and fusion rules

One should demonstrate that Connes tensor product indeed produces an M -matrix with
physically acceptable properties.

The reduction of the construction of vertices to that for n-point functions of a conformal
field theory suggest that Connes tensor product is essentially equivalent with the fusion
rules for conformal fields defined by the Clifford algebra elements of CH(CD) (4-surfaces
associated with 3-surfaces at the boundary of causal diamond CD in M4), extended to
local fields in M4 with gamma matrices acting on configuration space spinors assignable to
the partonic boundary components.

Jones speculates that the fusion rules of conformal field theories can be understood in terms
of Connes tensor product [A106] and refers to the work of Wassermann about the fusion of
loop group representations as a demonstration of the possibility to formula the fusion rules
in terms of Connes tensor product [A144] .

Fusion rules are indeed something more intricate that the naive product of free fields ex-
panded using oscillator operators. By its very definition Connes tensor product means a
dramatic reduction of degrees of freedom and this indeed happens also in conformal field
theories.

i. For non-vanishing n-point functions the tensor product of representations of Kac Moody
group associated with the conformal fields must give singlet representation.

ii. The ordinary tensor product of Kac Moody representations characterized by given
value of central extension parameter k is not possible since k would be additive.

iii. A much stronger restriction comes from the fact that the allowed representations must
define integrable representations of Kac-Moody group [A75] . For instance, in case of
SU(2)k Kac Moody algebra only spins j ≤ k/2 are allowed. In this case the quantum
phase corresponds to n = k+2. SU(2) is indeed very natural in TGD framework since
it corresponds to both electro-weak SU(2)L and isotropy group of particle at rest.

Fusion rules for localized Clifford algebra elements representing operators creating physical
states would replace naive tensor product with something more intricate. The naivest
approach would start from M4 local variants of gamma matrices since gamma matrices
generate the Clifford algebra Cl associated with CH(CD). This is certainly too naive an
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approach. The next step would be the localization of more general products of Clifford
algebra elements elements of Kac Moody algebras creating physical states and defining free
on mass shell quantum fields. In standard quantum field theory the next step would be
the introduction of purely local interaction vertices leading to divergence difficulties. In
the recent case one transfers the partonic states assignable to the light-cone boundaries
δM4
±(mi)×CP2 to the common partonic 2-surfaces X2

V along X3
L,i so that the products of

field operators at the same space-time point do not appear and one avoids infinities.

The remaining problem would be the construction an explicit realization of Connes tensor
product. The formal definition states that left and right N actions in the Connes tensor
productM⊗NM are identical so that the elements nm1⊗m2 and m1⊗m2n are identified.
This implies a reduction of degrees of freedom so that free tensor product is not in question.
One might hope that at least in the simplest choices for N characterizing the limitations of
quantum measurement this reduction is equivalent with the reduction of degrees of freedom
caused by the integrability constraints for Kac-Moody representations and dropping away of
higher spins from the ordinary tensor product for the representations of quantum groups. If
fusion rules are equivalent with Connes tensor product, each type of quantum measurement
would be characterized by its own conformal field theory.

In practice it seems safest to utilize as much as possible the physical intuition provided
by quantum field theories. In [K19] a rather precise vision about generalized Feynman
diagrams is developed and the challenge is to relate this vision to Connes tensor product.

Connection with topological quantum field theories defined by Chern-Simons
action

There is also connection with topological quantum field theories (TQFTs) defined by Chern-
Simons action [A146] .

i. The light-like 3-surfaces X3
l defining propagators can contain unitary matrix charac-

terizing the braiding of the lines connecting fermions at the ends of the propagator
line. Therefore the modular S-matrix representing the braiding would become part of
propagator line. Also incoming particle lines can contain similar S-matrices but they
should not be visible in the M -matrix. Also entanglement between different partonic
boundary components of a given incoming 3-surface by a modular S-matrix is possible.

ii. Besides CP2 type extremals MEs with light-like momenta can appear as brehmstrahlung
like exchanges always accompanied by exchanges of CP2 type extremals making possi-
ble momentum conservation. Also light-like boundaries of magnetic flux tubes having
macroscopic size could carry light-like momenta and represent similar brehmstrahlung
like exchanges. In this case the modular S-matrix could make possible topological
quantum computations in q 6= 1 phase [K84] . Notice the somewhat counter intu-
itive implication that magnetic flux tubes of macroscopic size would represent change
in quantum jump rather than quantum state. These quantum jumps can have an
arbitrary long geometric duration in macroscopic quantum phases with large Planck
constant [K24] .

There is also a connection with topological QFT defined by Chern-Simons action allowing
to assign topological invariants to the 3-manifolds [A146] . If the light-like CDs X3

L,i are
boundary components, the 3-surfaces associated with particles are glued together somewhat
like they are glued in the process allowing to construct 3-manifold by gluing them together
along boundaries. All 3-manifold topologies can be constructed by using only torus like
boundary components.

This would suggest a connection with 2+1-dimensional topological quantum field theory
defined by Chern-Simons action allowing to define invariants for knots, links, and braids and
3-manifolds using surgery along links in terms of Wilson lines. In these theories one consider
gluing of two 3-manifolds, say three-spheres S3 along a link to obtain a topologically non-
trivial 3-manifold. The replacement of link with Wilson lines in S3#S3 = S3 reduces the
calculation of link invariants defined in this manner to Chern-Simons theory in S3.

In the recent situation more general structures are possible since arbitrary number of 3-
manifolds are glued together along link so that a singular 3-manifolds with a book like
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structure are possible. The allowance of CDs which are not boundaries, typically 3-D light-
like throats of wormhole contacts at which induced metric transforms from Minkowskian to
Euclidian, brings in additional richness of structure. If the scaling factor of CP2 metric can
be arbitrary large as the quantization of Planck constant predicts, this kind of structure
could be macroscopic and could be also linked and knotted. In fact, topological conden-
sation could be seen as a process in which two 4-manifolds are glued together by drilling
light-like CDs and connected by a piece of CP2 type extremal.

14.8 Fresh view about hyper-finite factors in TGD frame-
work

In the following I will discuss the basic ideas about the role of hyper-finite factors in TGD
with the background given by a work of more than half decade. First I summarize the
input ideas which I combine with the TGD inspired intuitive wisdom about HFFs of type
II1 and their inclusions allowing to represent finite measurement resolution and leading to
notion of quantum spaces with algebraic number valued dimension defined by the index of
the inclusion.

Also an argument suggesting that the inclusions define ”skewed” inclusions of lattices to
larger lattices giving rise to quasicrystals is proposed. The core of the argument is that the
included HFF of type II1 algebra is a projection of the including algebra to a subspace with
dimension D ≤ 1. The projection operator defines the analog of a projection of a bigger
lattice to the included lattice. Also the fact that the dimension of the tensor product is
product of dimensions of factors just like the number of elements in finite group is product
of numbers of elements of coset space and subgroup, supports this interpretation.

One also ends up with a detailed identification of the hyper-finite factors in orbital degrees of
freedom in terms of symplectic group associated with δM4

±×CP2 and the group algebras of
their discrete subgroups define what could be called ”orbital degrees of freedom” for WCW
spinor fields. By very general argument this group algebra is HFF of type II, maybe even
II1.

14.8.1 Crystals, quasicrystals, non-commutativity and inclusions
of hyperfinite factors of type II1

I list first the basic ideas about non-commutative geometries and give simple argument
suggesting that inclusions of HFFs correspond to ”skewed” inclusions of lattices as qua-
sicrystals.

i. Quasicrystals (say Penrose tilings) [A39] can be regarded as subsets of real crystals and
one can speak about ”skewed” inclusion of real lattice to larger lattice as quasicrystal.
What this means that included lattice is obtained by projecting the larger lattice to
some lower-dimensional subspace of lattice.

ii. The argument of Connes concerning definition of non-commutative geometry can be
found in the book of Michel Lapidus at page 200. Quantum space is identified as a
space of equivalence classes. One assigns to pairs of elements inside equivalence class
matrix elements having the element pair as indices (one assumes numerable equivalence
class). One considers irreduble representations of the algebra defined by the matrices
and identifies the equivalent irreducible representations. If I have understood correctly,
the equivalence classes of irreps define a discrete point set representing the equivalence
class and it can often happen that there is just single point as one might expect. This
I do not quite understand since it requires that all irreps are equivalent.

iii. It seems that in the case of linear spaces - von Neumann algebras and accompanying
Hilbert spaces - one obtains a connection with the inclusions of HFFs and corresponding
quantum factor spaces that should exist as analogs of quantum plane. One replaces
matrices with elements labelled by element pairs with linear operators in HFF of type
II1. Index pairs correspond to pairs in linear basis for the HFF or corresponding
Hilbert space.

http://en.wikipedia.org/wiki/Quasicrystal
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iv. Discrete infinite enumerable basis for these operators as a linear space generates a
lattice in summation. Inclusion N ⊂ M defines inclusion of the lattice/crystal for N
to the corresponding lattice of M . Physical intuition suggests that if this inclusion
is ”skewed” one obtains quasicrystal. The fact the index of the inclusion is algebraic
number suggests that the coset space M/N is indeed analogous to quasicrystal.
More precisely, the index of inclusion is defined for hyper-finite factors of type II1
using the fact that quantum trace of unit matrix equals to unity Tr(Id(M)) = 1,
and from the tensor product composition M = (M/N) × N given Tr(Id(M)) = 1 =
Ind(M/N)Tr(P (M → N)), where P (M → N is projection operator from M to N .
Clearly, Ind(M/N) = 1/Tr(P (M → N)) defines index as a dimension of quantum
space M/N .
For Jones inclusions characterized by quantum phases q = exp(i2π/n), n = 3, 4, ...
the values of index are given by Ind(M/N) = 4cos2(π/n), n = 3, 4, .... There is
also another range inclusions Ind(M/N) ≥ 4: note that Tr(P (M → N)) defining
the dimension of N as included sub-space is never larger than one for HFFs of type
II1. The projection operator P (M → N) is obviously the counterpart of the projector
projecting lattice to some lower-dimensional sub-space of the lattice.

v. Jones inclusions are between linear spaces but there is a strong analogy with non-linear
coset spaces since for the tensor product the dimension is product of dimensions and
for discrete coset spaces G/H one has also the product formula n(G) = n(H)×n(G/H)
for the numbers of elements. Noticing that space of quantum amplitudes in discrete
space has dimension equal to the number of elements of the space, one could say that
Jones inclusion represents quantized variant for classical inclusion raised from the level
of discrete space to the level of space of quantum states with the number of elements
of set replaced by dimension. In fact, group algebras of infinite and enumerable groups
defined HFFs of type II under rather general conditions (see below).
Could one generalize Jones inclusions so that they would apply to non-linear coset
spaces analogs of the linear spaces involved ? For instance, could one think of infinite-
dimensional groups G and H for which Lie-algebras defining their tangent spaces can
be regarded as HFFs of type II1? The dimension of the tangent space is dimension
of the non-linear manifold: could this mean that the non-linear infinite-dimensional
inclusions reduce to tangent space level and thus to the inclusions for Lie-algebras
regarded hyper-finite factors of type II1 or more generally, type II? This would would
rise to quantum spaces which have finite but algebraic valued quantum dimension and
in TGD framework take into account the finite measurement resolution.

vi. To concretize this analogy one can check what is the number of points map from 5-D
space containing aperiodic lattice as a projection to a 2-D irrational plane containing
only origin as common point with the 5-D lattice. It is easy to get convinced that the
projection is 1-to-1 so that the number of points projected to a given point is 1. By
the analogy with Jones inclusions this would mean that the included space has same
von Neumann dimension 1 - just like the including one. In this case quantum phase
equals q = exp(i2π/n), n = 3 - the lowest possible value of n. Could one imagine the
analogs of n > 3 inclusions for which the number of points projected to a given point
would be larger than 1? In 1-D case the rational lines y = (k/l)x define 1-D rational
analogs of quasi crystals. The points (x, y) = (m,n), m mod l = 0 are projected
to the same point. The number of points is now infinite and the ratio of points of
2-D lattice and 1-D crystal like structure equals to l and serves as the analog for the
quantum dimension dq = 4cos2(π/n).

To sum up, this this is just physicist’s intuition: it could be wrong or something totally
trivial from the point of view of mathematician. The main message is that the inclusions
of HFFs might define also inclusions of lattices as quasicrystals.

14.8.2 HFFs and their inclusions in TGD framework

In TGD framework the inclusions of HFFs have interpretation in terms of finite measure-
ment resolution. If the inclusions define quasicrystals then finite measurement resolution
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would lead to quasicrystals.

i. The automorphic action of N in M ⊃ N and in associated Hilbert space HM where
N acts generates physical operators and accompanying stas (operator rays and rays)
not distinguishable from the original one. States in finite measurement resolution
correspond to N -rays rather than complex rays. It might be natural to restrict to
unitary elements of N .
This leads to the need to construct the counterpart of coset space M/N and corre-
sponding linear space HM/HN . Physical intuition tells that the indices of inclusions
defining the ”dimension” of M/N are algebraic numbers given by Jones index formula.

ii. Here the above argument would assign to the inclusions also inclusions of lattices as
quasicrystals.

Degrees of freedom for WCW spinor field

Consider first the identification of various kinds of degrees of freedom in TGD Universe.

i. Very roughly, WCW (”world of classical worlds”) spinor is a state generated by fermionic
creation operators from vacuum at given 3-surface. WCW spinor field assigns this kind
of spinor to each 3-surface. WCW spinor fields decompose to tensor product of spin
part (Fock state) and orbital part (”wave” in WCW) just as ordinary spinor fields.

ii. The conjecture motivated by super-symmetry has been that both WCW spinors and
their orbital parts (analogs of scalar field) define HFFs of type II1 in quantum fluctu-
ating degrees of freedom.

iii. Besides these there are zero modes, which by definition do not contribute to WCW
Kähler metric.

A. If the zero zero modes are symplectic invariants, they appear only in conformal fac-
tor of WCW metric. Symplectically invariant zero modes represent purely classical
degrees of freedom - direction of a pointer of measurement apparatus in quantum
measurement - and in given experimental arrangement they entangle with quantum
fluctuating degrees of freedom in one-one manner so that state function reduction
assigns to the outcome of state function reduction position of pointer. I forget
symplectically invariant zero modes and other analogous variables in the following
and concentrate to the degrees of freedom contributing WCW line-element.

B. There are also zero modes which are not symplectic invariants and are analogous to
degrees of freedom generated by the generators of Kac-Moody algebra having van-
ishing conformal weight. They represent ”center of mass degrees of freedom” and
this part of symmetric algebra creates the representations representing the ground
states of Kac-Moody representations. Restriction to these degrees of freedom gives
QFT limit in string theory. In the following I will speak about ”cm degrees of
freedom”.

The general vision about symplectic degrees of freedom (the analog of ”orbital degrees of
freedom” for ordinary spinor field) is following.

i. WCW (assignable to given CD) is a union over the sub-WCWs labeled by zero modes
and each sub-WCW representing quantum fluctuating degrees of freedom and ”cm
degrees of freedom” is infinite-D symmetric space. If symplectic group assignable
to δM4

+ × CP2 acts as as isometries of WCW then ”orbital degrees of freedom” are
parametrized by the symplectic group or its coset space (note that light-cone boundary
is 3-D but radial dimension is light-like so that symplectic - or rather contact structure
- exists).
Let S2 be rM = constant sphere at light-cone boundary (rM is the radial light-like
coordinate fixed apart from Lorentz transformation). The full symplectic group would
act as isometries of WCW but does not - nor cannot do so - act as symmetries of
Kähler action except in the huge vacuum sector of the theory correspond to vacuum
extremals.
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ii. WCW Hamiltonians can be deduced as ”fluxes” of the Hamiltonians of δM4
+ × CP2

taken over partonic 2-surfaces. These Hamiltoanins expressed as products of Hamil-
tonians of S2 and CP2 multiplied by powers rnM . Note that rM plays the role of the
complex coordinate z for Kac-Moody algebras and the group G defining KM is replaced
with symplectic group of S2×CP2. Hamiltonians can be assumed to have well-defined
spin (SO(3)) and color (SU(3)) quantum numbers.

iii. The generators with vanishing radial conformal weight (n = 0) correspond to the
symplectic group of S2×CP2. They are not symplectic invariants but are zero modes.
They would correspond to ”cm degrees of freedom” characterizing the ground states
of representations of the full symplectic group.

Discretization at the level of WCW

The general vision about finite measurement resolution implies discretization at the level
of WCW.

i. Finite measurement resolution at the level of WCW means discretization. Therefore
the symplectic groups of δM4

+ × CP2 resp. S2 × CP2 are replaced by an enumerable
discrete subgroup. WCW is discretized in both quantum fluctuating degrees of freedom
and ”center of mass” degrees of freedom.

ii. The elements of the group algebras of these discrete groups define the ”orbitals parts”
of WCW spinor fields in discretization. I will later develop an argument stating that
they are HFFs of type II - maybe even II1. Note that also function spaces associated
with the coset spaces of these discrete subgroups could be considered.

iii. Discretization applies also in the spin degrees of freedom. Since fermionic Fock basis
generates quantum counterpart of Boolean algebra the interpretation in terms of the
physical correlates of Boolean cognition is motivated (fermion number 1/0 and various
spins in decomposition to a tensor product of lower-dimensional spinors represent bits).
Note that in ZEO fermion number conservation does not pose problems and zero states
actually define what might be regarded as quantum counterparts of Boolean rules
A→ B.

iv. Note that 3-surfaces correspond by the strong form of GCI/holography to collections of
partonic 2-surfaces and string world sheets of space-time surface intersecting at discrete
set of points carrying fermionic quantum numbers. WCW spinors are constructed from
second quantized induced spinor fields and fermionic Fock algebra generates HFF of
type II1.

Does WCW spinor field decompose to a tensor product of two HFFs of type
II1?

The group algebras associated with infinite discrete subgroups of the symplectic group
define the discretized analogs of waves in WCW having quantum fluctuating part and cm
part. The proposal is that these group algebras are HFFs of type II1. The spinorial degrees
of freedom correspond to fermionic Fock space and this is known to be HFF. Therefore
WCW spinor fields would defined tensor product of HFFs of type II1. The interpretation
would be in terms of supersymmetry at the level of WCW. Super-conformal symmetry is
indeed the basic symmetry of TGD so that this result is a physical ”must”. The argument
goes as follows.

i. In non-zero modes WCW is symplectic group of δM4
+×CP2 (call this group just Sympl)

reduces to the analog of Kac-Moody group associated with S2×CP2, where S2 is rM =
constant sphere of light-cone boundary and z is replaced with radial coordinate. The
Hamiltonians, which do not depend on rM would correspond to zero modes and one
could not assign metric to them although symplectic structure is possible. In ”cm
degrees of freedom” one has symplectic group associated with S2 × CP2.

ii. Finite measurement resolution, which seems to be coded already in the structure of
the preferred extremals and of the solutions of the modified Dirac equation, suggests
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strongly that this symplectic group is replaced by its discrete subgroup or symmetric
coset space. What this group is, depends on measurement resolution defined by the
cutoffs inherent to the solutions. These subgroups and coset spaces would define the
analogs of Platonic solids in WCW!

iii. Why the discrete infinite subgroups of Sympl would lead naturally to HFFs of type
II? There is a very general result stating that group algebra of an enumerable discrete
group, which has infinite conjugacy classes, and is amenable so that its regular rep-
resentation in group algebra decomposes to all unitary irreducibles is HFF of type II.
See for examples about HFFs of type II listed in Wikipedia article [A21].

iv. Suppose that the group algebras associated the discrete subgroups Sympl are indeed
HFFs of type II or even type II1. Their inclusions would define finite measurement
resolution the orbital degrees of freedom for WCW spinor fields. Included algebra
would create rays of state space not distinguishable experimentally. The inclusion
would be characterized by the inclusion of the lattice defined by the generators of
included algebra by linearity. One would have inclusion of this lattice to a lattice
associated with a larger discrete group. Inclusions of lattices are however known to
give rise to quasicrystals (Penrose tilings are basic example), which define basic non-
commutative structures. This is indeed what one expects since the dimension of the
coset space defined by inclusion is algebraic number rather than integer.

v. Also in fermionic degrees of freedom finite measurement resolution would be realized
in terms of inclusions of HFFs- now certainly of type II1. Therefore one could obtain
hierarchies of lattices included as quasicrystals.

What about zero modes which are symplectic invariants and define classical variables?
They are certainly discretized too. One might hope that one-one correlation between
zero modes (classical variables) and quantum fluctuating degrees of freedom suggested by
quantum measurement theory allows to effectively eliminate them. Besides zero modes
there are also modular degrees of freedom associated with partonic 2-surfaces defining
together with their 4-D tangent space data basis objects by strong form of holography.
Also these degrees of freedom are automatically discretized. But could one consider finite
measurement resolution also in these degrees of freedom. If the symplectic group of S2×CP2

defines zero modes then one could apply similar argument also in these degrees of freedom
to discrete subgroups of S2 × CP2.

14.8.3 Little Appendix: Comparison of WCW spinor fields with
ordinary second quantized spinor fields

In TGD one identifies states of Hilbert space as WCW spinor fields. The analogy with
ordinary spinor field helps to understand what they are. I try to explain by comparison
with QFT.

Ordinary second quantized spinor fields

Consider first ordinary fermionic QFT in fixed space-time. Ordinary spinor is attached
to an space-time point and there is 2D/2 dimensional space of spin degrees of freedom.
Spinor field attaches spinor to every point of space-time in a continuous/smooth manner.
Spinor fields satisfying Dirac equation define in Euclidian metric a Hilbert space with a
unitary inner product. In Minkowskian case this does not work and one must introduce
second quantization and Fock space to get a unitary inner product. This brings in what is
essentially a basic realization of HFF of type II1 as allowed operators acting in this Fock
space. It is operator algebra rather than state space which is HFF of type II1 but they are
of course closely related.

Classical WCW spinor fields as quantum states

What happens TGD where one has quantum superpositions of 4-surface/3-surfaces by
GCI/partonic 2-surfaces with 4-D tangent space data by strong form of GCI.

http://en.wikipedia.org/wiki/Hyperfinite_type_II_factor
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i. First guess: space-time point is replaced with 3-surface. Point like particle becomes
3-surface representing particle. WCW spinors are fermionic Fock states at this sur-
face. WCW spinor fields are Fock state as a functional of 3-surface. Inner product
decomposes to Fock space inner product plus functional integral over 3-surfaces (no
path integral!). One could speak of quantum multiverse. Not single space-time but
quantum superposition of them. This quantum multiverse character is something new
as compared to QFT.

ii. Second guess: forced by ZEO, by geometrization of Feynman diagrams, etc.

A. 3-surfaces are actually not connected 3-surfaces. They are collections of compo-
nents at both ends of CD and connected to single connected structure by 4-surface.
Components of 3-surface are like incoming and outgoing particles in connected
Feynman diagrams. Lines are identified as regions of Euclidian signature or equiv-
alently as the 3-D light-like boundaries between Minkowskian and Euclidian signa-
ture of the induced metric.

B. Spinors(!!) are defined now by the fermionic Fock space of second quantized induced
spinor fields at these 3-surfaced and by holography at 4-surface. This fermionic
Fock space is assigned to all multicomponent 3-surfaces defined in this manner and
WCW spinor fields are defined as in the first guess. This brings integration over
WCW to the inner product.

iii. Third, even more improved guess: motivated by the solution ansatz for preferred ex-
tremals and for modified Dirac equation [K92] giving a connection with string models.
The general solution ansatz restricts all spinor components but right-handed neutrino
to string world sheets and partonic 2-surfaces: this means effective 2-dimensionality.
String world sheets and partonic 2-surfaces intersect at the common ends of light-
like and space-like braids at ends of CD and at along wormhole throat orbits so that
effectively discretization occurs. This fermionic Fock space replaces the Fock space of
ordinary second quantization.

14.9 Jones inclusions and cognitive consciousness

Configuration space spinors have a natural interpretation in terms of a quantum version of
Boolean algebra. Beliefs of various kinds are the basic element of cognition and obviously
involve a representation of the external world or part of it as states of the system defining the
believer. Jones inclusions mediating unitary mappings between the spaces of configuration
spaces spinors of two systems are excellent candidates for these maps, and it is interesting
to find what one kind of model for beliefs this picture leads to.

The resulting quantum model for beliefs provides a cognitive interpretation for quan-
tum groups and predicts a universal spectrum for the probabilities that a given belief
is true. This spectrum depends only on the integer n characterizing the quantum phase
q = exp(i2π/n) characterizing the Jones inclusion. For n 6=∞ the logic is inherently fuzzy
so that absolute knowledge is impossible. q = 1 gives ordinary quantum logic with qbits
having precise truth values after state function reduction.

14.9.1 Does one have a hierarchy of U- and M-matrices?

U -matrix describes scattering of zero energy states and since zero energy states can be illus-
trated in terms of Feynman diagrams one can say that scattering of Feynman diagrams is
in question. The initial and final states of the scattering are superpositions of Feynman di-
agrams characterizing the corresponding M -matrices which contain also the positive square
root of density matrix as a factor.

The hypothesis that U -matrix is the tensor product of S-matrix part of M -matrix and its
Hermitian conjugate would make U -matrix an object deducible by physical measurements.
One cannot of course exclude that something totally new emerges. For instance, the de-
scription of quantum jumps creating zero energy state from vacuum might require that
U -matrix does not reduce in this manner. One can assign to the U -matrix a square like

http://tgdtheory.com/public_html/tgdgeom/tgdgeom.html#dirasvira
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structure with S-matrix and its Hermitian conjugate assigned with the opposite sides of a
square.

One can imagine of constructing higher level physical states as composites of zero energy
states by replacing the S-matrix with M -matrix in the square like structure. These states
would provide a physical representation of U -matrix. One could define U -matrix for these
states in a similar manner. This kind of hierarchy could be continued indefinitely and the
hierarchy of higher level U and M -matrices would be labeled by a hierarchy of n-cubes,
n = 1, 2,... TGD inspired theory of consciousness suggests that this hierarchy can be
interpreted as a hierarchy of abstractions represented in terms of physical states. This
hierarchy brings strongly in mind also the hierarchies of n-algebras and n-groups and this
forces to consider the possibility that something genuinely new emerges at each step of the
hierarchy. A connection with the hierarchies of infinite primes [K72] and Jones inclusions
are suggestive.

14.9.2 Feynman diagrams as higher level particles and their scat-
tering as dynamics of self consciousness

The hierarchy of inclusions of hyper-finite factors of II1 as counterpart for many-sheeted
space-time lead inevitably to the idea that this hierarchy corresponds to a hierarchy of gen-
eralized Feynman diagrams for which Feynman diagrams at a given level become particles
at the next level. Accepting this idea, one is led to ask what kind of quantum states these
Feynman diagrams correspond, how one could describe interactions of these higher level
particles, what is the interpretation for these higher level states, and whether they can be
detected.

Jones inclusions as analogs of space-time surfaces

The idea about space-time as a 4-surface replicates itself at the level of operator algebra and
state space in the sense that Jones inclusion can be seen as a representation of the operator
algebra N as infinite-dimensional linear sub-space (surface) of the operator algebra M.
This encourages to think that generalized Feynman diagrams could correspond to image
surfaces in II1 factor having identification as kind of quantum space-time surfaces.

Suppose that the modular S-matrices are representable as the inner automorphisms ∆(Mit
k

assigned to the external lines of Feynman diagrams. This would mean that N ⊂Mk moves
inside calMk along a geodesic line determined by the inner automorphism. At the vertex the
factors calMk to fuse alongN to form a Connes tensor product. Hence the copies ofN move
insideMk like incoming 3-surfaces in H and fuse together at the vertex. Since allMk are
isomorphic to a universal factorM, many-sheeted space-time would have a kind of quantum
image inside II1 factor consisting of pieces which are d =M : N/2-dimensional quantum
spaces according to the identification of the quantum space as subspace of quantum group
to be discussed later. In the case of partonic Clifford algebras the dimension would be
indeed d ≤ 2.

The hierarchy of Jones inclusions defines a hierarchy of S-matrices

It is possible to assign to a given Jones inclusion N ⊂ M an entire hierarchy of Jones
inclusions M0 ⊂ M1 ⊂ M2..., M0 = N , M1 = M . A possible interpretation for these
inclusions would be as a sequence of topological condensations.

This sequence also defines a hierarchy of Feynman diagrams inside Feynman diagrams.
The factor M containing the Feynman diagram having as its lines the unitary orbits of
N under ∆M becomes a parton in M1 and its unitary orbits under ∆M1

define lines of
Feynman diagrams in M1. The concrete representation for M -matrix or projection of it to
some subspace as entanglement coefficients of partons at the ends of a braid assignable to
the space-like 3-surface representing a vertex of a higher level Feynman diagram. In this
manner quantum dynamics would be coded and simulated by quantum states.
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The outcome can be said to be a hierarchy of Feynman diagrams within Feynman diagrams,
a fractal structure for which many particle scattering events at a given level become particles
at the next level. The particles at the next level represent dynamics at the lower level:
they have the property of ”being about” representing perhaps the most crucial element
of conscious experience. Since net conserved quantum numbers can vanish for a system
in TGD Universe, this kind of hierarchy indeed allows a realization as zero energy states.
Crossing symmetry can be understood in terms of this picture and has been applied to
construct a model for M -matrix at high energy limit [K19] .

One might perhaps say that quantum space-time corresponds to a double inclusion and
that further inclusions bring in N -parameter families of space-time surfaces.

Higher level Feynman diagrams

The lines of Feynman diagram in Mn+1 are geodesic lines representing orbits of Mn and
this kind of lines meet at vertex and scatter. The evolution along lines is determined
by ∆Mn+1 . These lines contain within themselves Mn Feynman diagrams with similar
structure and the hierarchy continues down to the lowest level at which ordinary elementary
particles are encountered.

For instance, the generalized Feynman diagrams at the second level are ribbon diagrams
obtained by thickening the ordinary diagrams in the new time direction. The interpre-
tation as ribbon diagrams crucial for topological quantum computation and suggested to
be realizable in terms of zero energy states in [K84] is natural. At each level a new time
parameter is introduced so that the dimension of the diagram can be arbitrarily high. The
dynamics is not that of ordinary surfaces but the dynamics induced by the ∆Mn .

Quantum states defined by higher level Feynman diagrams

The intuitive picture is that higher level quantum states corresponds to the self reflective
aspect of existence and must provide representations for the quantum dynamics of lower
levels in their own structure. This dynamics is characterized by M -matrix whose elements
have representation in terms of Feynman diagrams.

i. These states correspond to zero energy states in which initial states have ”positive en-
ergies” and final states have ”negative energies”. The net conserved quantum numbers
of initial and final state partons compensate each other. Gravitational energies, and
more generally gravitational quantum numbers defined as absolute values of the net
quantum numbers of initial and final states do not vanish. One can say that thoughts
have gravitational mass but no inertial mass.

ii. States in sub-spaces of positive and negative energy states are entangled with entan-
glement coefficients given by M -matrix at the level below.

To make this more concrete, consider first the simplest non-trivial case. In this case the
particles can be characterized as ordinary Feynman diagrams, or more precisely as scatter-
ing events so that the state is characterized by Ŝ = PinSPout, where S is S-matrix and Pin
resp. Pout is the projection to a subspace of initial resp. final states. An entangled state
with the projection of S-matrix giving the entanglement coefficients is in question.

The larger the domains of projectors Pin and Pout, the higher the representative capacity
of the state. The norm of the non-normalized state Ŝ is Tr(ŜŜ†) ≤ 1 for II1 factors, and
at the limit Ŝ = S the norm equals to 1. Hence, by II1 property, the state always entangles
infinite number of states, and can in principle code the entire S-matrix to entanglement
coefficients.

The states in which positive and negative energy states are entangled by a projection of
S-matrix might define only a particular instance of states for which conserved quantum
numbers vanish. The model for the interaction of Feynman diagrams discussed below
applies also to these more general states.
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The interaction of Mn Feynman diagrams at the second level of hierarchy

What constraints can one pose to the higher level reactions? How Feynman diagrams
interact? Consider first the scattering at the second level of hierarchy (M1), the first level
M0 being assigned to the interactions of the ordinary matter.

i. Conservation laws pose constraints on the scattering at level M1. The Feynman di-
agrams can transform to new Feynman diagrams only in such a manner that the net
quantum numbers are conserved separately for the initial positive energy states and
final negative energy states of the diagram. The simplest assumption is that positive
energy matter and negative energy matter know nothing about each other and effec-
tively live in separate worlds. The scattering matrix form Feynman diagram like states
would thus be simply the tensor product S ⊗ S†, where S is the S-matrix character-
izing the lowest level interactions and identifiable as unitary factor of M -matrix for
zero energy states. Reductionism would be realized in the sense that, apart from the
new elements brought in by ∆Mn defining single particle free dynamics, the lowest
level would determine in principle everything occurring at the higher level providing
representations about representations about... for what occurs at the basic level. The
lowest level would represent the physical world and higher levels the theory about it.

ii. The description of hadronic reactions in terms of partons serves as a guide line when
one tries to understand higher level Feynman diagrams. The fusion of hadronic space-
time sheets corresponds to the verticesM1. In the vertex the analog of parton plasma
is formed by a process known as parton fragmentation. This means that the partonic
Feynman diagrams belonging to disjoint copies ofM0 find themselves inside the same
copy ofM0. The standard description would apply to the scattering of the initial resp.
final state partons.

iii. After the scattering of partons hadronization takes place. The analog of hadronization
in the recent case is the organization of the initial and final state partons to groups Ii
and Fi such that the net conserved quantum numbers are same for Ii and Fi. These
conditions can be satisfied if the interactions in the plasma phase occur only between
particles belonging to the clusters labeled by the index i. Otherwise only single particle
states in M1 would be produced in the reactions in the generic case. The cluster
decomposition of S-matrix to a direct sum of terms corresponding to partitions of
the initial state particles to clusters which do not interact with each other obviously
corresponds to the ”hadronization”. Therefore no new dynamics need to be introduced.

iv. One cannot avoid the question whether the parton picture about hadrons indeed cor-
responds to a higher level physics of this kind. This would require that hadronic
space-time sheets carry the net quantum numbers of hadrons. The net quantum num-
bers associated with the initial state partons would be naturally identical with the
net quantum numbers of hadron. Partons and they negative energy conjugates would
provide in this picture a representation of hadron about hadron. This kind of interpre-
tation of partons would make understandable why they cannot be observed directly.
A possible objection is that the net gravitational mass of hadron would be three times
the gravitational mass deduced from the inertial mass of hadron if partons feed their
gravitational fluxes to the space-time sheet carrying Earth’s gravitational field.

v. This picture could also relate to the suggested duality between string and parton pic-
tures [K74] . In parton picture hadron is formed from partons represented by space-like
2-surfaces X2

i connected by join along boundaries bonds. In string picture partonic
2-surfaces are replaced with string orbits. If one puts positive and negative energy
particles at the ends of string diagram one indeed obtains a higher level representation
of hadron. If these pictures are dual then also in parton picture positive and negative
energies should compensate each other. Interestingly, light-like 3-D causal determi-
nants identified as orbits of partons could be interpreted as orbits of light like string
word sheets with ”time” coordinate varying in space-like direction.

Scattering of Feynman diagrams at the higher levels of hierarchy

This picture generalizes to the description of higher level Feynman diagrams.
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i. Assume that higher level vertices have recursive structure allowing to reduce the Feyn-
man diagrams to ordinary Feynman diagrams by a procedure consisting of finite steps.

ii. The lines of diagrams are classified as incoming or outgoing lines according to whether
the time orientation of the line is positive or negative. The time orientation is associated
with the time parameter tn characterizing the automorphism ∆itn

M\ . The incoming and

outgoing net quantum numbers compensate each other. These quantum numbers are
basically the quantum numbers of the state at the lowest level of the hierarchy.

iii. In the vertices the Mn+1 particles fuse and Mn particles form the analog of quark
gluon plasma. The initial and final state particles of Mn Feynman diagram scatter
independently and the S-matrix Sn+1 describing the process is tensor product Sn⊗S†n.
By the clustering property of S-matrix, this scattering occurs only for groups formed by
partons formed by the incoming and outgoing particlesMn particles and each outgoing
Mn+1 line contains and irreducible Mn diagram. By continuing the recursion one
finally ends down with ordinary Feynman diagrams.

14.9.3 Logic, beliefs, and spinor fields in the world of classical
worlds

Beliefs can be characterized as Boolean value maps βi(p) telling whether i believes in
proposition p or not. Additional structure is brought in by introducing the map λi(p)
telling whether p is true or not in the environment of i. The task is to find quantum
counterpart for this model.

Configuration space spinors as logic statements

In TGD framework the infinite-dimensional configuration space (CH) spinor fields defined
in CH, the ”world of classical worlds”, describe quantum states of the Universe [K15] . CH
spinor field can be regarded as a state in infinite-dimensional Fock space and are labeled by
a collection of various two valued indices like spin and weak isospin. The interpretation is
as a collection of truth values of logic statements one for each fermionic oscillator operator
in the state. For instance, spin up and down would correspond to two possible truth values
of a proposition characterized by other quantum numbers of the mode.

The hierarchy of space-time sheet could define a physical correlate for the hierarchy of
higher order logics (statements about statements about...). The space-time sheet containing
N fermions topologically condensed at a larger space-time sheet behaves as a fermion or
boson depending on whether N is odd or even. This hierarchy has also a number theoretic
counterpart: the construction of infinite primes [K72] corresponds to a repeated second
quantization of a super-symmetric quantum field theory.

Quantal description of beliefs

The question is whether TGD inspired theory of consciousness allows a fundamental de-
scription of beliefs.

i. Beliefs define a model about some subsystem of universe constructed by the believer.
This model can be understood as some kind of representation of real word in the state
space representing the beliefs.

ii. One can wonder what is the difference between real and p-adic variants of CH spinor
fields and whether they could represent reality and beliefs about reality. CH spinors
(as opposed to spinor fields) are constructible in terms of fermionic oscillator operators
and seem to be universal in the sense that one cannot speak about p-adic and real CH
spinors as different objects. Real/ p-adic spinor fields however have real/p-adic space-
time sheets as arguments. This would suggest that there is no fundamental difference
between the logic statements represented by p-adic and real CH spinors.

These observations suggest a more concrete view about how beliefs emerge physically.
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The idea that p-adic CH spinor fields could serve as representations of beliefs and real CH
spinor fields as representations of reality looks very nice but the fact that the outcomes of
p-adic-to-real phase transition and its reversal are highly non-predictable does not support
it as such.

Quantum statistical determinism could however come into rescue. Belief could be repre-
sented as an ensemble of p-adic mental images resulting in transitions of real mental images
representing reality to p-adic states. p-Adic ensemble average would represent the belief.

It is not at all clear whether real-to-padic transitions can occur at high enough rate since
p-adic-to-real transition are expected to be highly irreversible. The real initial states much
have nearly vanishing quantum numbers emitted in the transition to p-adic state to guar-
antee conservation laws (p-adic conservation laws hold true only piecewise since conserved
quantities are pseudo constants). The system defined by an ensemble of real Boolean men-
tal images representing reality would automatically generate a p-adic variant representing
a belief about reality.

p-Adic CH spinors can also represent the cognitive aspects of intention whereas p-adic
space-time sheets would represent its geometric aspects reflected in sensory experience.p-
Adic space-time sheet could also serve only as a space-time correlate for the fundamental
representation of intention in terms of p-adic CH spinor field. This view is consistent with
the proposed identification of beliefs since the transitions associated with intentions resp.
beliefs would be p-adic-to-real resp. real-to-padic.

14.9.4 Jones inclusions for hyperfinite factors of type II1 as a
model for symbolic and cognitive representations

Consider next a more detailed model for how cognitive representations and beliefs are
realized at quantum level. This model generalizes trivially to symbolic representations.

The Clifford algebra of gamma matrices associated with CH spinor fields corresponds to a
von Neumann algebra known as hyper-finite factor of type II1. The mathematics of these
algebras is extremely beautiful and reproduces basic mathematical structures of modern
physics (conformal field theories, quantum groups, knot and braid groups,....) from the
mere assumption that the world of classical worlds possesses infinite-dimensional Kähler
geometry and allows spinor structure.

The almost defining feature is that the infinite-dimensional unit matrix of the Clifford
algebra in question has by definition unit trace. Type II1 factors allow also what are
known as Jones inclusions of Clifford algebras N ⊂ M. What is special to II1 factors
is that the induced unitary mappings between spinor spaces are genuine inclusions rather
than 1-1 maps.

The S-matrix associated with the real-to-p-adic quantum transition inducing belief from
reality would naturally define Jones inclusion of CH Clifford algebra N associated with
the real space-time sheet to the Clifford algebra M associated with the p-adic space-time
sheet. The moduli squared of S-matrix elements would define probabilities for pairs or real
and belief states.

In Jones inclusion N ⊂ M the factor N is included in factor M such that M can be
expressed as N -module over quantum space M/N which has fractal dimension given by
Jones indexM : N = 4cos2(π/n) ≤ 4, n = 3, 4, .... varying in the range [1, 4]. The interpre-
tation is as the fractal dimension corresponding to a dimension of Clifford algebra acting
in d =

√
M : N -dimensional spinor space: d varies in the range [1, 2]. The interpretation

in terms of a quantal variant of logic is natural.

Probabilistic beliefs

For M : N = 4 (n = ∞) the dimension of spinor space is d = 2 and one can speak about
ordinary 2-component spinors with N -valued coefficients representing generalizations of
qubits. Hence the inclusion of a given N -spinor as M-spinor can be regarded as a belief
on the proposition and for the decomposition to a spinor in N-module M/N involves for
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each index a choiceM/N spinor component selecting super-position of up and down spins.
Hence one has a superposition of truth values in general and one can speak only about
probabilistic beliefs. It is not clear whether one can choose the basis in such a manner
thatM/N spinor corresponds always to truth value 1. Since CH spinor field is in question
and even if this choice might be possible for a single 3-surface, it need not be possible for
deformations of it so that at quantum level one can only speak about probabilistic beliefs.

Fractal probabilistic beliefs

For d < 2 the spinor space associated with M/N can be regarded as quantum plane
having complex quantum dimension d with two non-commuting complex coordinates z1

and z2 satisfying z1z2 = qz2z1 and z1z2 = qz2z1. These relations are consistent with
hermiticity of the real and imaginary parts of z1 and z2 which define ordinary quantum
planes. Hermiticity also implies that one can identify the complex conjugates of zi as
Hermitian conjugates.

The further commutation relations [z1, z2] = [z2, z1] = 0 and [z1, z1] = [z2, z2] = r give a
closed algebra satisfying Jacobi identities. One could argue that r ≥ 0 should be a function
r(n) of the quantum phase q = exp(i2π/n) vanishing at the limit n → ∞ to guarantee
that the algebra becomes commutative at this limit and truth values can be chosen to be
non-fuzzy. r = sin(π/n) would be the simplest choice. As will be found, the choice of
r(n) does not however affect at all the spectrum for the probabilities of the truth values.
n =∞ case corresponding to non-fuzzy quantum logic is also possible and must be treated
separately: it corresponds to Kac Moody algebra instead of quantum groups.

The non-commutativity of complex spinor components means that z1 and z2 are not inde-
pendent coordinates: this explains the reduction of the number of the effective number of
truth values to d < 2. The maximal reduction occurs to d = 1 for n = 3 so that there is
effectively only single truth value and one could perhaps speak about taboo or dogma or
complete disappearance of the notions of truth and false (this brings in mind reports about
meditative states: in fact n = 3 corresponds to a phase in which Planck constant becomes
infinite so that the system is maximally quantal).

As non-commuting operators the components of d-spinor are not simultaneously measur-
able for d < 2. It is however possible to measure simultaneously the operators describing
the probabilities z1z1 and z2z2 for truth values since these operators commute. An inher-
ently fuzzy Boolean logic would be in question with the additional feature that the spinorial
counterparts of statement and its negation cannot be regarded as independent observables
although the corresponding probabilities satisfy the defining conditions for commuting ob-
servables.

If one can speak of a measurement of probabilities for d < 2, it differs from the ordinary
quantum measurement in the sense that it cannot involve a state function reduction to
a pure qubit meaning irreducible quantal fuzziness. One could speak of fuzzy qbits or
fqbits (or quantum qbits) instead of qbits. This picture would provide the long sought
interpretation for quantum groups.

The previous picture applies to all representations M1 ⊂ M2, where M1 and M2 denote
either real or p-adic Clifford algebras for some prime p. For instance, real-real Jones inclu-
sion could be interpreted as symbolic representations assignable to a unitary mapping of
the states of a subsystem M1 of the external world to the state space M2 of another real
subsystem. p1 → p2 unitary inclusions would in turn map cognitive representations to cog-
nitive representations. There is a strong temptation to assume that these Jones inclusions
define unitary maps realizing universe as a universal quantum computer mimicking itself
at all levels utilizing cognitive and symbolic representations. Subsystem-system inclusion
would naturally define one example of Jones inclusion.

The spectrum of probabilities of truth values is universal

It is actually possible to calculate the spectrum of the probabilities of truth values with
rather mild additional assumptions.
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i. Since the Hermitian operators X1 = (z1z1 + z1z1)/2 and X2 = (z2z2 + z2z2)/2 com-
mute, physical states can be chosen to be eigen states of these operators and it is pos-
sible to assign to the truth values probabilities given by p1 = X1/R

2 and p2 = X2/R
2,

R2 = X1 +X2.

ii. By introducing the analog of the harmonic oscillator vacuum as a state |0〉 satisfy-
ing z1|0〉 = z2|0〉 = 0, one obtains eigen states of X1 and X2 as states |n1, n2〉 =

z1
n1
z2
n2 |0〉, n1 ≥ 0, n2 ≥ 0. The eigenvalues of X1 and X2 are given by a modified

harmonic oscillator spectrum as (1/2 + n1q
n2)r and (1/2 + n2q

n1)r. The reality of
eigenvalues (hermiticity) is guaranteed if one has n1 = N1n and n1 = N2n and im-
plies that the spectrum of eigen states gets increasingly thinner for n→∞. This must
somehow reflect the fractal dimension. The fact that large values of oscillator quantum
numbers n1 and n2 correspond to the classical limit suggests that modulo condition
guarantees approximate classicality of the logic for n→∞.

iii. The probabilities p1 and p2 for the truth values given by (p1, p2) = (1/2 +N1n, 1/2 +
N2n)/[1 + (N1 +N2)n] are rational and allow an interpretation as both real and p-adic
numbers. All states are are inherently fuzzy and only at the limits N1 � N2 and
N2 � N1 non-fuzzy states result. As noticed, n = ∞ must be treated separately and
corresponds to an ordinary non-fuzzy qbit logic. At n → ∞ limit one has (p1, p2) =
(N1, N2)/(N1, N2): at this limit N1 = 0 or N2 = 0 states are non-fuzzy.

How to define variants of belief quantum mechanically?

Probabilities of true and false for Jones inclusion characterize the plausibility of the belief
and one can ask whether this description is enough to characterize states such as knowledge,
misbelief, doubt, delusion, and ignorance. The truth value of βi(p) is determined by the
measurement of probability assignable to Jones inclusion on the p-adic side. The truth value
of λi(p) is determined by a similar measurement on the real side. β and λ appear completely
symmetrically and one can consider all kinds of triplets M1 ⊂ M2 ⊂ M3 assuming that
there exist unitary S-matrix like maps mediating a sequence M1 ⊂ M2 ⊂ M3 of Jones
inclusions. Interestingly, the hierarchies of Jones inclusions are a key concept in the theory
of hyper-finite factors of type II1 and pair of inclusions plays a fundamental role.

Let us restrict the consideration to the situation whenM1 corresponds to a real subsystem
of the external world, M2 its real representation by a real subsystem, and M3 to p-adic
cognitive representation of M3. Assume that both real and p-adic sides involve a preferred
state basis for qubits representing truth and false.

Assume first that both M1 ⊂ M2 and M2 ⊂ M3 correspond to d = 2 case for which
ordinary quantum measurement or truth value is possible giving outcome true or false.
Assume further that the truth values have been measured in both M2 and M3.

i. Knowledge corresponds to the proposition βi(p) ∧ λi(p).
ii. Misbelief to the proposition βi(p)∧ 6= λi(p).

Knowledge and misbelief would involve both the measurement of real and p-adic prob-
abilities .

iii. Assume next that one has d < 2 formM2 ⊂M3. Doubt can be regarded neither belief
or disbelief: βi(p)∧ 6= βi( 6= p): belief is inherently fuzzy although proposition can be
non-fuzzy.
Assume next that truth values in M1 ⊂ M2 inclusion corresponds to d < 2 so that
the basic propositions are inherently fuzzy.

iv. Delusion is a belief which cannot be justified: βi(p) ∧ λi(p)∧ 6= λ(6= p)). This case is
possible if d = 2 holds true for M2 ⊂ M3. Note that also misbelief that cannot be
shown wrong is possible.
In this case truth values cannot be quantum measured for M1 ⊂ M2 but can be
measured for M2 ⊂M3. Hence the states are products of pure M3 states with fuzzy
M2 states.

v. Ignorance corresponds to the proposition βi(p)∧ 6= βi(6= p) ∧ λi(p)∧ 6= λ( 6= p)). Both
real representational states and belief states are inherently fuzzy.
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Quite generally, only for d1 = d2 = 2 ideal knowledge and ideal misbelief are possible.
Fuzzy beliefs and logics approach to ordinary one at the limit n → ∞, which according
to the proposal of [K66] corresponds to the ordinary value of Planck constant. For other
cases these notions are only approximate and quantal approach allows to characterize the
goodness of the approximation. A new kind of inherent quantum uncertainty of knowl-
edge is in question and one could speak about a Uncertainty Principle for cognition and
symbolic representations. Also the unification of symbolic and various kinds of cognitive
representations deserves to be mentioned.

14.9.5 Intentional comparison of beliefs by topological quantum
computation?

Intentional comparison would mean that for a given initial state also the final state of the
quantum jump is fixed. This requires the ability to engineer S-matrix so that it leads from
a given state to single state only. Any S-matrix representing permutation of the initial
states fulfills these conditions. This condition is perhaps unnecessarily strong.

Quantum computation is basically the engineering of S-matrix so that it represents a super-
position of parallel computations. In TGD framework topological quantum computation
based on the braiding of magnetic flux tubes would be represented as an evolution char-
acterized by braid [K84] . The dynamical evolution would be associated with light-like
boundaries of braids. This evolution has dual interpretations either as a limit of time
evolution of quantum state (program running) or a quantum state satisfying conformal
invariance constraints (program code).

The dual interpretation would mean that conformally invariant states are equivalent with
engineered time evolutions and topological computation realized as braiding connecting
the quantum states to be compared (beliefs represented as many-fermion states at the
boundaries of magnetic flux tubes) could give rise to conscious computational comparison
of beliefs. The complexity of braiding would give a measure for how much the states to be
compared differ.

Note that quantum computation is defined by a unitary map which could also be interpreted
as symbolic representation of states of system M1 as states of system M2 mediated by the
braid of join along boundaries bonds connecting the two space-time sheets in question and
having light-like boundaries. These considerations suggest that the idea about S-matrix
of the Universe should be generalized so that the dynamics of the Universe is dynamics of
mimicry described by an infinite collection of fermionic S-matrices representable in terms
of Jones inclusions.

14.9.6 The stability of fuzzy qbits and quantum computation

The stability of fqbits against state function reduction might have deep implications for
quantum computation since quantum spinors would be stable against state function reduc-
tion induced by the perturbations inducing de-coherence in the normal situation. If this is
really true, and if the only dangerous perturbations are those inducing the phase transition
to qbits, the implications for quantum computation could be dramatic. Of course, the
rigidity of qbits could be just another way to say that topological quantum computations
are stable against thermal perturbations not destroying anyons [K84] .

The stability of fqbits could also be another manner to state the stability of rational, or
more generally algebraic, bound state entanglement against state function reduction, which
is one of the basic hypothesis of TGD inspired theory of consciousness [K45] . For sequences
of Jones inclusions or equivalently, for multiple Connes tensor products, one would obtain
tensor products of quantum spinors making possible arbitrary complex configurations of
fqbits. Anyonic braids in topological quantum computation would have interpretation as
representations for this kind of tensor products.



14.9. Jones inclusions and cognitive consciousness 935

14.9.7 Fuzzy quantum logic and possible anomalies in the experi-
mental data for the EPR-Bohm experiment

The experimental data for EPR-Bohm experiment [J2] excluding hidden variable interpre-
tations of quantum theory. What is less known that the experimental data indicates about
possibility of an anomaly challenging quantum mechanics [J3] . The obvious question is
whether this anomaly might provide a test for the notion of fuzzy quantum logic inspired
by the TGD based quantum measurement theory with finite measurement resolution.

The anomaly

The experimental situation involves emission of two photons from spin zero system so that
photons have opposite spins. What is measured are polarizations of the two photons with
respect to polarization axes which differ from standard choice of this axis by rotations
around the axis of photon momentum characterized by angles α and β. The probabilities
for observing polarizations (i, j), where i, j is taken Z2 valued variable for a convenience
of notation are Pij(α, β), are predicted to be P00 = P11 = cos2(α− β)/2 and P01 = P10 =
sin2(α− β)/2.

Consider now the discrepancies.

i. One has four identities Pi,i+Pi,i+1 = Pii+Pi+1,i = 1/2 having interpretation in terms
of probability conservation. Experimental data of [J2] are not consistent with this
prediction [J1] and this is identified as the anomaly.

ii. The QM prediction E(α, β) =
∑
i(Pi,i−Pi,i+1) = cos(2(α−β) is not satisfied neither:

the maxima for the magnitude of E are scaled down by a factor ' .9. This deviation
is not discussed in [J1] .

Both these findings raise the possibility that QM might not be consistent with the data. It
turns out that fuzzy quantum logic predicted by TGD and implying that the predictions
for the probabilities and correlation must be replaced by ensemble averages, can explain
anomaly b) but not anomaly a). A ”mundane” explanation for anomaly a) is proposed.

Predictions of fuzzy quantum logic for the probabilities and correlations

1. The description of fuzzy quantum logic in terms statistical ensemble

The fuzzy quantum logic implies that the predictions Pi,j for the probabilities should be
replaced with ensemble averages over the ensembles defined by fuzzy quantum logic. In
practice this means that following replacements should be carried out:

Pi,j → P 2Pi,j + (1− P )2Pi+1,j+1

+ P (1− P ) [Pi,j+1 + Pi+1,j ] . (14.9.1)

Here P is one of the state dependent universal probabilities/fuzzy truth values for some
value of n characterizing the measurement situation. The concrete predictions would be
following

P0,0 = P1,1 → A
cos2(α− β)

2
+B

sin2(α− β)

2

= (A−B)
cos2(α− β)

2
+
B

2
,

P0,1 = P1,0 → A
sin2(α− β)

2
+B

cos2(α− β)

2

= (A−B)
sin2(α− β)

2
+
B

2
,

A = P 2 + (1− P )2 , B = 2P (1− P ) . (14.9.2)
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The prediction is that the graphs of probabilities as a function as function of the angle α−β
are scaled by a factor 1−4P (1−P ) and shifted upwards by P (1−P ). The value of P , and
one might hope even the value of n labeling Jones inclusion and the integer m labeling the
quantum state might be deducible from the experimental data as the upward shift. The
basic prediction is that the maxima of curves measuring probabilities P(i, j) have minimum
at B/2 = P (1− P ) and maximum is scaled down to (A−B)/2 = 1/2− 2P (1− P ).

If the P is same for all pairs i, j, the correlation E =
∑
i(Pii − Pi,i+1) transforms as

E(α, β) → [1− 4P (1− P )]E(α, β) . (14.9.3)

Only the normalization of E(α, β) as a function of α − β reducing the magnitude of E
occurs. In particular the maximum/minimum of E are scaled down from E = ±1 to
E = ±(1− 4P (1− P )).

From the figure 1b) of [J1] the scaling down indeed occurs for magnitudes of E with same
amount for minimum and maximum. Writing P = 1−ε one has A−B ' 1−4ε and B ' 2ε
so that the maximum is in the first approximation predicted to be at 1 − 4ε. The graph
would give 1 − P ' ε ' .025. Thus the model explains the reduction of the magnitude
for the maximum and minimum of E which was not however considered to be an anomaly
in [J3, J1] .

A further prediction is that the identities P (i, i) + P (i + 1, i) = 1/2 should still hold true
since one has Pi,i + Pi,i+1 = (A − B)/2 + B = 1. This is implied also by probability
conservation. The four curves corresponding to these identities do not however co-incide as
the figure 6 of [J1] demonstrates. This is regarded as the basic anomaly in [J3, J1] . From
the same figure it is also clear that below α−β < 10 degrees P++ = P−− ∆P+− = −∆P−+

holds true in a reasonable approximation. After that one has also non-vanishing ∆Pii
satisfying ∆P++ = −∆P−−. This kind of splittings guarantee the identity

∑
ij Pij = 1.

These splittings are not visible in E.

Since probability conservation requires Pii + Pii+1 = 1, a mundane explanation for the
discrepancy could be that the failure of the conditions Pi,i + Pii+1 = 1 means that the
measurement efficiency is too low for P+− and yields too low values of P+− + P−− and
P+− + P++. The constraint

∑
ij Pij = 1 would then yield too high value for P−+. Similar

reduction of measurement efficiency for P++ could explain the splitting for α − β > 10
degrees.

Clearly asymmetry with respect to exchange of photons or of detectors is in question.

i. The asymmetry of two photon state with respect to the exchange of photons could
be considered as a source of asymmetry. This would mean that the photons are not
maximally entangled. This could be seen as an alternative ”mundane” explanation.

ii. The assumption that the parameter P is different for the detectors does not change
the situation as is easy to check.

iii. One manner to achieve splittings which resemble observed splittings is to assume that
the value of the probability parameter P depends on the polarization pair: P = P (i, j)
so that one has (P (−,+), P (+,−)) = (P + ∆, P − ∆) and (P (−,−), P (+,+)) =
(P + ∆1, P − ∆1). ∆ ' .025 and ∆1 ' ∆/2 could produce the observed splittings
qualitatively. One would however always have P (i, i) + P (i, i + 1) ≥ 1/2. Only if
the procedure extracting the correlations uses the constraint

∑
i,j Pij = 1 effectively

inducing a constant shift of Pij downwards an asymmetry of observed kind can result.
A further objection is that there are no special reason for the values of P (i, j) to satisfy
the constraints.

2. Is it possible to say anything about the value of n in the case of EPR-Bohm experiment?

To explain the reduction of the maximum magnitudes of the correlation E from 1 to ∼ .9 in
the experiment discussed above one should have p1 ' .9. It is interesting to look whether
this allows to deduce any information about the valued of n. At the limit of large values of
Nin one would have (N1−N2)/(N1 +N2) ' .4 so that one cannot say anything about n in
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this case. (N1, N2) = (3, 1) satisfies the condition exactly. For n = 3, the smallest possible
value of n, this would give p1 ' .88 and for n = 4 p1 = .41. With high enough precision
it might be possible to select between n = 3 and n = 4 options if small values of Ni are
accepted.

14.9.8 Category theoretic formulation for quantum measurement
theory with finite measurement resolution?

I have been trying to understand whether category theory might provide some deeper
understanding about quantum TGD, not just as a powerful organizer of fuzzy thoughts
but also as a tool providing genuine physical insights. Marni Dee Sheppeard (or Kea in her
blog Arcadian Functor at http://kea-monad.blogspot.com/) is also interested in categories
but in much more technical sense. Her dream is to find a category theoretical formulation
of M-theory as something, which is not the 11-D something making me rather unhappy as
a physicist with second foot still deep in the muds of low energy phenomenology.

Locales, frames, Sierpinski topologies and Sierpinski space

The ideas below popped up when Kea mentioned in M-theory lesson 51 the notions of
locale and frame [A16] . In Wikipedia I learned that complete Heyting algebras, which
are fundamental to category theory, are objects of three categories with differing arrows.
CHey, Loc and its opposite category Frm (arrows reversed). Complete Heyting algebras
are partially ordered sets which are complete lattices. Besides the basic logical operations
there is also algebra multiplication (I have considered the possible role of categories and
Heyting algebras in TGD in [K14] ). From Wikipedia I also learned that locales and the
dual notion of frames form the foundation of pointless topology [A38] . These topologies
are important in topos theory which does not assume axiom of choice.

The so called particular point topology [A32] assumes a selection of single point but I
have the physicist’s feeling that it is otherwise rather near to pointless topology. Sierpinski
topology [A45] is this kind of topology. Sierpinski topology is defined in a simple manner:
the set is open only if it contains a given preferred point p. The dual of this topology
defined in the obvious sense exists also. Sierpinski space consisting of just two points 0 and
1 is the universal building block of these topologies in the sense that a map of an arbitrary
space to Sierpinski space provides it with Sierpinski topology as the induced topology. In
category theoretical terms Sierpinski space is the initial object in the category of frames
and terminal object in the dual category of locales. This category theoretic reductionism
looks highly attractive.

Particular point topologies, their generalization, and number theoretical braids

Pointless, or rather particular point topologies might be very interesting from physicist’s
point of view. After all, every classical physical measurement has a finite space-time res-
olution. In TGD framework discretization by number theoretic braids replaces partonic
2-surface with a discrete set consisting of algebraic points in some extension of rationals:
this brings in mind something which might be called a topology with a set of particular
algebraic points. Could this preferred set belongs to any open set in the particular point
topology appropriate in this situation?

Perhaps the physical variant for the axiom of choice could be restricted so that only sets
of algebraic points in some extension of rationals can be chosen freely and the choices is
defined by the intersection of p-adic and real partonic 2-surfaces and in the framework of
TGD inspired theory of consciousness would thus involve the interaction of cognition and
intentionality with the material world. The extension would depend on the position of the
physical system in the algebraic evolutionary hierarchy defining also a cognitive hierarchy.
Certainly this would fit very nicely to the formulation of quantum TGD unifying real and
p-adic physics by gluing real and p-adic number fields to single super-structure via common
algebraic points.



938 Chapter 14. Was von Neumann Right After All?

Analogs of particular point topologies at the level of state space: finite mea-
surement resolution

There is also a finite measurement resolution in Hilbert space sense not taken into account
in the standard quantum measurement theory based on factors of type I. In TGD framework
one indeed introduces quantum measurement theory with a finite measurement resolution
so that complex rays become included hyper-finite factors of type II1 (HFFs).

i. Could topology with particular algebraic points have a generalization allowing a cate-
gory theoretic formulation of the quantum measurement theory without states identi-
fied as complex rays?

ii. How to achieve this? In the transition of ordinary Boolean logic to quantum logic
in the old fashioned sense (von Neuman again!) the set of subsets is replaced with
the set of subspaces of Hilbert space. Perhaps this transition has a counterpart as
a transition from Sierpinski topology to a structure in which sub-spaces of Hilbert
space are quantum sub-spaces with complex rays replaced with the orbits of subalgebra
defining the measurement resolution. Sierpinski space {0,1} would in this generalization
be replaced with the quantum counterpart of the space of 2-spinors. Perhaps one should
also introduce q-category theory with Heyting algebra being replaced with q-quantum
logic.

Fuzzy quantum logic as counterpart for Sierpinksi space

The program formulated above might indeed make sense. The lucky association induced
by Kea’s blog was to the ideas about fuzzy quantum logic realized in terms of quantum
2-spinor that I had developed a couple of years ago. Fuzzy quantum logic would reflect the
finite measurement resolution. I just list the pieces of the argument.

Spinors and qbits: Spinors define a quantal variant of Boolean statements, qbits. One
can however go further and define the notion of quantum qbit, qqbit. I indeed did this for
couple of years ago (the last section of this chapter).

Q-spinors and qqbits: For q-spinors the two components a and b are not commuting
numbers but non-Hermitian operators: ab = qba, q a root of unity. This means that one
cannot measure both a and b simultaneously, only either of them. aa† and bb† however
commute so that probabilities for bits 1 and 0 can be measured simultaneously. State
function reduction is not possible to a state in which a or b gives zero. The interpretation
is that one has q-logic is inherently fuzzy: there are no absolute truths or falsehoods.
One can actually predict the spectrum of eigenvalues of probabilities for say 1. Obviously
quantum spinors would be state space counterparts of Sierpinski space and for q 6= 1 the
choice of preferred spinor component is very natural. Perhaps this fuzzy quantum logic
replaces the logic defined by the Heyting algebra.

Q-locale: Could one think of generalizing the notion of locale to quantum locale by using
the idea that sets are replaced by sub-spaces of Hilbert space in the conventional quantum
logic. Q-openness would be defined by identifying quantum spinors as the initial object,
q-Sierpinski space. a (resp. b for the dual category) would define q-open set in this space.
Q-open sets for other quantum spaces would be defined as inverse images of a (resp. b)
for morphisms to this space. Only for q=1 one could have the q-counterpart of rather
uninteresting topology in which all sets are open and every map is continuous.

Q-locale and HFFs: The q-Sierpinski character of q-spinors would conform with the very
special role of Clifford algebra in the theory of HFFs, in particular, the special role of Jones
inclusions to which one can assign spinor representations of SU(2). The Clifford algebra
and spinors of the world of classical worlds identifiable as Fock space of quark and lepton
spinors is the fundamental example in which 2-spinors and corresponding Clifford algebra
serves as basic building brick although tensor powers of any matrix algebra provides a
representation of HFF.

Q-measurement theory: Finite measurement resolution (q-quantum measurement the-
ory) means that complex rays are replaced by sub-algebra rays. This would force the
Jones inclusions associated with SU(2) spinor representation and would be characterized
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by quantum phase q and bring in the q-topology and q-spinors. Fuzzyness of qqbits of
course correlates with the finite measurement resolution.

Q-n-logos: For other q-representations of SU(2) and for representations of compact groups
(Appendix) one would obtain something which might have something to do with quantum
n-logos, quantum generalization of n-valued logic. All of these would be however less funda-
mental and induced by q-morphisms to the fundamental representation in terms of spinors
of the world of classical worlds. What would be however very nice that if these q-morphisms
are constructible explicitly it would become possible to build up q-representations of vari-
ous groups using the fundamental physical realization - and as I have conjectured [K63] -
McKay correspondence and huge variety of its generalizations would emerge in this manner.

The analogs of Sierpinski spaces: The discrete subgroups of SU(2), and quite generally,
the groups Zn associated with Jones inclusions and leaving the choice of quantization axes
invariant, bring in mind the n-point analogs of Sierpinski space with unit element defining
the particular point. Note however that n ≥ 3 holds true always so that one does not
obtain Sierpinski space itself. If all these n preferred points belong to any open set it would
not be possible to decompose this preferred set to two subsets belonging to disjoint open
sets. Recall that the generalized imbedding space related to the quantization of Planck
constant is obtained by gluing together coverings M4 × CP2 →M4 × CP2/Ga ×Gb along
their common points of base spaces. The topology in question would mean that if some
point in the covering belongs to an open set, all of them do so. The interpretation would
be that the points of fiber form a single inseparable quantal unit.

Number theoretical braids identified as as subsets of the intersection of real and p-adic vari-
ants of algebraic partonic 2-surface define a second candidate for the generalized Sierpinski
space with a set of preferred points.

14.10 Appendix: Inclusions of hyper-finite factors of
type II1

Many names have been assigned to inclusions: Jones, Wenzl, Ocneacnu, Pimsner-Popa,
Wasserman [A76] . It would seem to me that the notion Jones inclusion includes them all
so that various names would correspond to different concrete realizations of the inclusions
conjugate under outer automorphisms.

i. According to [A76] for inclusions with M : N ≤ 4 (with A
(1)
1 excluded) there exists a

countable infinity of sub-factors with are pairwise non inner conjugate but conjugate
to N .

ii. Also for any finite group G and its outer action there exists uncountably many sub-
factors which are pairwise non inner conjugate but conjugate to the fixed point algebra
of G [A76] . For any amenable group G the the inclusion is also unique apart from
outer automorphism [A90] .

Thus it seems that not only Jones inclusions but also more general inclusions are unique
apart from outer automorphism.

Any *-endomorphism σ, which is unit preserving, faithful, and weakly continuous, defines
a sub-factor of type II1 factor [A76] . The construction of Jones leads to a atandard
inclusion sequence N ⊂ M ⊂ M1 ⊂ .... This sequence means addition of projectors ei,
i < 0, having visualization as an addition of braid strand in braid picture. This hierarchy
exists for all factors of type II. At the limit M∞ = ∪iMi the braid sequence extends
from −∞ to ∞. Inclusion hierarchy can be understood as a hierarchy of Connes tensor
powers M ⊗N M.... ⊗N M. Also the ordinary tensor powers of hyper-finite factors of
type II1 (HFF) as well as their tensor products with finite-dimensional matrix algebras are
isomorphic to the original HFF so that these objects share the magic of fractals.

Under certain assumptions the hierarchy can be continued also in opposite direction. For
a finite index an infinite inclusion hierarchy of factors results with the same value of index.
σ is said to be basic if it can be extended to *-endomorphisms fromM1 toM. This means
that the hierarchy of inclusions can be continued in the opposite direction: this means
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elimination of strands in the braid picture. For finite factors (as opposed to hyper-finite
ones) there are no basic *-endomorphisms of M having fixed point algebra of non-abelian
G as a sub-factor [A76] .

14.10.1 Jones inclusions

For hyper-finite factors of type II1 Jones inclusions allow basic *-endomorphism. They
exist for all values of M : N = r with r ∈ {4cos2(π/n)|n ≥ 3} ∩ [4,∞) [A76] . They are
defined for an algebra defined by projectors ei, i ≥ 1. All but nearest neighbor projectors
commute. λ = 1/r appears in the relations for the generators of the algebra given by
eiejei = λei, |i − j| = 1. N ⊂ M is identified as the double commutator of algebra
generated by ei, i ≥ 2.

This means that principal graph and its dual are equivalent and the braid defined by
projectors can be continued not only to −∞ but that also the dropping of arbitrary number
of strands is possible [A76] . It would seem that ADE property of the principal graph
meaning single root length codes for the duality in the case of r ≤ 4 inclusions.

Irreducibility holds true for r < 4 in the sense that the intersection of Q′∩P = P ′∩P = C.
For r ≥ 4 one has dim(Q′ ∩ P ) = 2. The operators commuting with Q contain besides
identify operator of Q also the identify operator of P . Q would contain a single finite-
dimensional matrix factor less than P in this case. Basic *-endomorphisms with σ(P ) = Q is
σ(ei) = ei+1. The difference between genuine symmetries of quantum TGD and symmetries
which can be mimicked by TGD could relate to the irreducibility for r < 4 and raise these
inclusions in a unique position. This difference could partially justify the hypothesis [K27]
that only the groups Ga×Gb ⊂ SU(2)×SU(2) ⊂ SL(2, C)×SU(3) define orbifold coverings
of H± = M4

± × CP2 → H±/Ga ×Gb.

14.10.2 Wassermann’s inclusion

Wasserman’s construction of r = 4 factors clarifies the role of the subgroup of G ⊂ SU(2)
for these inclusions. Also now r = 4 inclusion is characterized by a discrete subgroup
G ⊂ SU(2) and is given by (1 ⊗ M)G ⊂ (M2(C) × M)G. According to [A76] Jones
inclusions are irreducible also for r = 4. The definition of Wasserman inclusion for r = 4
seems however to imply that the identity matrices of both MG and (M(2, C) ⊗ M)G

commute with MG so that the inclusion should be reducible for r = 4.

Note that G leaves both the elements of N and M invariant whereas SU(2) leaves the
elements of N invariant. M(2, C) is effectively replaced with the orbifold M(2, C)/G, with
G acting as automoprhisms. The space of these orbits has complex dimension d = 4 for
finite G.

For r < 4 inclusion is defined as MG ⊂M . The representation of G as outer automorphism
must change step by step in the inclusion sequence ... ⊂ N ⊂ M ⊂ ... since otherwise G
would act trivially as one proceeds in the inclusion sequence. This is true since each step
brings in additional finite-dimensional tensor factor in which G acts as automorphisms so
that although M can be invariant under GM it is not invariant under GN .

These two inclusions might accompany each other in TGD based physics. One could
consider r < 4 inclusion N = MG ⊂ M with G acting non-trivially in M/N quantum
Clifford algebra. N would decompose by r = 4 inclusion to N1 ⊂ N with SU(2) taking
the role of G. N/N1 quantum Clifford algebra would transform non-trivially under SU(2)
but would be G singlet.

In TGD framework the G-invariance for SU(2) representations means a reduction of S2

to the orbifold S2/G. The coverings H± → H±/Ga × Gb should relate to these double
inclusions and SU(2) inclusion could mean Kac-Moody type gauge symmetry for N . Note
that the presence of the factor containing only unit matrix should relate directly to the
generator d in the generator set of affine algebra in the McKay construction [A24] . The

physical interpretation of the fact that almost all ADE type extended diagrams (D
(1)
n must

have n ≥ 4) are allowed for r = 4 inclusions whereas D2n+1 and E6 are not allowed for
r < 4, remains open.
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14.10.3 Generalization from SU(2) to arbitrary compact group

The inclusions with index M : N < 4 have one-dimensional relative commutant N ′ ∪
M. The most obvious conjecture that M : N ≥ 4 corresponds to a non-trivial relative
commutant is wrong. The index for Jones inclusion is identifiable as the square of quantum
dimension of the fundamental representation of SU(2). This identification generalizes to
an arbitrary representation of arbitrary compact Lie group.

In his thesis Wenzl [A145] studied the representations of Hecke algebras Hn(q) of type
An obtained from the defining relations of symmetric group by the replacement e2

i =
(q − 1)ei + q. Hn is isomorphic to complex group algebra of Sn if q is not a root of
unity and for q = 1 the irreducible representations of Hn(q) reduce trivially to Young’s
representations of symmetric groups. For primitive roots of unity q = exp(i2π/l), l = 4, 5...,
the representations of Hn(∞) give rise to inclusions for which index corresponds to a
quantum dimension of any irreducible representation of SU(k), k ≥ 2. For SU(2) also the
value l = 3 is allowed for spin 1/2 representation.

The inclusions are obtained by dropping the first m generators ek from H∞(q) and tak-
ing double commutant of both H∞ and the resulting algebra. The relative commutant
corresponds to Hm(q). By reducing by the minimal projection to relative commutant one
obtains an inclusion with a trivial relative commutant. These inclusions are analogous to
a discrete states superposed in continuum. Thus the results of Jones generalize from the
fundamental representation of SU(2) to all representations of all groups SU(k), and in fact
to those of general compact groups as it turns out.

The generalization of the formula for index to square of quantum dimension of an irreducible
representation of SU(k) reads as

M : N =
∏

1≤r<s≤k

sin2 ((λr − λs + s− r)π/l)
sin2 ((s− r)n/l)

. (14.10.1)

Here λr is the number of boxes in the rth row of the Yang diagram with n boxes character-
izing the representations and the condition 1 ≤ k ≤ l− 1 holds true. Only Young diagrams
satisfying the condition l − k = λ1 − λrmax are allowed.

The result would allow to restrict the generalization of the imbedding space in such a
manner that only cyclic group Zn appears in the covering of M4 → M4/Ga or CP2 →
CP2/Gb factor. Be as it may, it seems that quantum representations of any compact Lie
group can be realized using the generalization of the imbedding space. In the case of SU(2)
the interpretation of higher-dimensional quantum representations in terms of Connes tensor
products of 2-dimensional fundamental representations is highly suggestive.

The groups SO(3, 1)×SU(3) and SL(2, C)×U(2)ew have a distinguished position both in
physics and quantum TGD and the vision about physics as a generalized number theory
implies them. Also the general pattern for inclusions selects these groups, and one can
say that the condition that all possible statistics are realized is guaranteed by the choice
M4 × CP2.

i. n > 2 for the quantum counterparts of the fundamental representation of SU(2) means
that braid statistics for Jones inclusions cannot give the usual fermionic statistics. That
Fermi statistics cannot ”emerge” conforms with the role of infinite-D Clifford algebra
as a canonical representation of HFF of type II1. SO(3, 1) as isometries of H gives
Z2 statistics via the action on spinors of M4 and U(2) holonomies for CP2 realize Z2

statistics in CP2 degrees of freedom.

ii. n > 3 for more general inclusions in turn excludes Z3 statistics as braid statistics in the
general case. SU(3) as isometries induces a non-trivial Z3 action on quark spinors but
trivial action at the imbedding space level so that Z3 statistics would be in question.





Chapter 15

Does TGD Predict Spectrum of
Planck Constants?

15.1 Introduction

The quantization of Planck constant has been the basic them of TGD since 2005 and the
perspective in the earlier version of this chapter reflected the situation for about year and
one half after the basic idea stimulated by the finding of Nottale [E10] that planetary
orbits could be seen as Bohr orbits with enormous value of Planck constant given by
~gr = GM1M2/v0, v0 ' 2−11 for the inner planets. The general form of ~gr is dictated by
Equivalence Principle. This inspired the ideas that quantization is due to a condensation of
ordinary matter around dark matter concentrated near Bohr orbits and that dark matter
is in macroscopic quantum phase in astrophysical scales.

The second crucial empirical input were the anomalies associated with living matter. Men-
tion only the effects of ELF radiation at EEG frequencies on vertebrate brain and anomalous
behavior of the ionic currents through cell membrane. If the value of Planck constant is
large, the energy of EEG photons is above thermal energy and one can understand the
effects on both physiology and behavior. If ionic currents through cell membrane have
large Planck constant the scale of quantum coherence is large and one can understand the
observed low dissipation in terms of quantum coherence.

As almost all chapters of the books, also this chapter should be seen as a story about
evolution of ideas rather than final summary. I have moved some purely mathematical
speculations to second chapter to keep emphasis on TGD inspired physics.

15.1.1 The evolution of mathematical ideas

From the beginning the basic challenge -besides the need to deduce a general formula for the
quantized Planck constant- was to understand how the quantization of Planck constant is
mathematically possible. From the beginning it was clear that since particles with different
values of Planck constant cannot appear in the same vertex, a generalization of space-time
concept is needed to achieve this.

During last five years or so many deep ideas -both physical and mathematical- related to
the construction of quantum TGD have emerged and this has led to a profound change
of perspective in this and also other chapters. The overall view about TGD is described
briefly in [L9] .

i. For more than five years ago I realized that von Neumann algebras known as hyperfinite
factors of type II1 (HFFs) are highly relevant for quantum TGD since the Clifford
algebra of configuration space (”world of classical worlds”, WCW) is direct sum over
HFFs. Jones inclusions are particular class of inclusions of HFFs and quantum groups
are closely related to them. This led to the conviction that Jones inclusions can provide
a detailed understanding of what is involved and predict very simple spectrum for
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Planck constants associated with M4 and CP2 degrees of freedom (later I replaced M4

by its light cone M4
± and finally with the causal diamond CD defined as intersection

of future and past light-cones of M4). The idea about connection with Jones inclusion
can be however questioned and is left another chapter.

ii. The notion of zero energy ontology replaces physical states with zero energy states
consisting of pairs of positive and negative energy states at the light-like boundaries
δM4
± ×CP2 of CDs forming a fractal hierarchy containing CDs within CDs. In stan-

dard ontology zero energy state corresponds to a physical event, say particle reaction.
This led to the generalization of S-matrix to M-matrix identified as Connes tensor
product characterizing time like entanglement between positive and negative energy
states. M-matrix is product of square root of density matrix and unitary S-matrix
just like Schrödinger amplitude is product of modulus and phase, which means that
thermodynamics becomes part of quantum theory and thermodynamical ensembles are
realized as single particle quantum states. This led also to a solution of long standing
problem of understanding how geometric time of the physicist is related to the ex-
perienced time identified as a sequence of quantum jumps interpreted as moments of
consciousness [L4] in TGD inspired theory of consciousness which can be also seen as
a generalization of quantum measurement theory [L7] .

iii. Another closely related idea was the emergence of measurement resolution as the ba-
sic element of quantum theory. Measurement resolution is characterized by inclusion
M⊂ N of HFFs withM characterizing the measurement resolution in the sense that
the action of M creates states which cannot be distinguished from each other within
measurement resolution used. Hence complex rays of state space are replaced withM
rays. One of the basic challenges is to define the nebulous factor space N/M having
finite fractional dimension N :M given by the index of inclusion. It was clear that this
space should correspond to quantum counterpart of Clifford algebra of world of classi-
cal worlds reduced to a finite-quantum dimensional algebra by the finite measurement
resolution [K15] .

iv. The realization that light-like 3-surfaces at which the signature of induced metric of
space-time surface changes from Minkowskian to Euclidian are ideal candidates for ba-
sic dynamical objects besides light-like boundaries of space-time surface was a further
decisive step or progress. This led to vision that quantum TGD is almost topological
quantum field theory (”almost” because light-likeness brings in induced metric) char-
acterized by Chern-Simons action for induced Kähler gauge potential of CP2. Together
with zero energy ontology this led to the generalization of the notion of Feynman di-
agram to a light-like 3-surface for which lines correspond to light-like 3-surfaces and
vertices to 2-D partonic surface at which these 3-D surface meet. This means a strong
departure from string model picture. The interaction vertices should be given by N-
point functions of a conformal field theory with second quantized induced spinor fields
defining the basic fields in terms of which also the gamma matrices of world of classical
worlds could be constructed as super generators of super conformal symmetries [K15]
.

v. By quantum classical correspondence finite measurement resolution should have a
space-time correlate. The obvious guess was that this correlate is discretization at
the level of construction of M-matrix. In almost-TQFT context the effective replace-
ment of light-like 3-surface with braids defining basic objects of TQFTs is the obvious
guess. Also number theoretic universality necessary for the p-adicization of quantum
TGD by a process analogous to the completion of rationals to reals and various p-adic
number fields requires discretization since only rational and possibly some algebraic
points of the imbedding space (in suitable preferred coordinates) allow interpretation
both as real and p-adic points. It was clear that the construction of M-matrix boils to
the precise understanding of number theoretic braids [K15] .

vi. The interaction with M-theory dualities [K70] led to a handful of speculations about
dualities possible in TGD framework, and one of these dualities- M8−M4×CP2 duality
- eventually led to a unique identification of number theoretic braids. The dimensions
of partonic 2-surface, space-time, and imbedding space strongly suggest that classi-
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cal number fields, or more precisely their complexifications might help to understand
quantum TGD. If the choice of imbedding space is unique because of uniqueness of
infinite-dimensional Kähler geometric existence of world of classical worlds then stan-
dard model symmetries coded by M4 × CP2 should have some deeper meaning and
the most obvious guess is that M4×CP2 can be understood geometrically. SU(3) be-
longs to the automorphism group of octonions as well as hyper-octonions M8 identified
by subspace of complexified octonions with Minkowskian signature of induced metric.
This led to the discovery that hyper-quaternionic 4-surfaces in M8 can be mapped to
M4×CP2 provided their tangent space contains preferred M2 ⊂M4 ⊂M4×E4. Years
later I realized that the map generalizes so that M2 can depend on the point of X4.
The interpretation of M2(x) is both as a preferred hyper-complex (commutative) sub-
space of M8 and as a local plane of non-physical polarizations so that a purely number
theoretic interpretation of gauge conditions emerges in TGD framework. This led to a
rapid progress in the construction of the quantum TGD. In particular, the challenge
of identifying the preferred extremal of Kähler action associated with a given light-like
3-surface X3

l could be solved and the precise relation between M8 and M4 × CP2

descriptions was understood [K15] .

vii. Also the challenge of reducing quantum TGD to the physics of second quantized in-
duced spinor fields found a resolution recently [K15] . For years ago it became clear
that the vacuum functional of the theory must be the Dirac determinant associated
with the induced spinor fields so that the theory would predict all coupling parameters
from quantum criticality. Even more, the vacuum functional should correspond to the
exponent of Kähler action for a preferred extremal. The problem was that the gener-
alized eigenmodes of Chern-Simons Dirac operator allow a generalized eigenvalues to
be arbitrary functions of two coordinates in the directions transversal to the light-like
direction of X3

l . The progress in the understanding of number theoretic compactifica-
tion however allowed to understand how the information about the preferred extremal
of Kähler action is coded to the spectrum of eigen modes.
The basic idea is simple and I actually discovered it for more than half decade ago
but forgot! The generalized eigen modes of 3-D Chern-Simons Dirac operator DC−S
correspond to the zero modes of a 4-D modified Dirac operator defined by Kähler
action localized to X3

l so that induced spinor fields can be seen as 4-D spinorial shock
waves. The led to a concrete interpretation of the eigenvalues as analogous to cyclotron
energies of fermion in classical electro-weak magnetic fields defined by the induced
spinor connection and a connection with anyon physics emerges by 2-dimensionality
of the evolving system. Also it was possible to identify the boundary conditions for
the preferred extremal of Kähler action -analog of Bohr orbit- at X3

l and also to the
vision about how general coordinate invariance allows to use any light-like 3-surface
X3 ⊂ X4(X3

l ) instead of using only wormhole throat to second quantize induced spinor
field.

viii. It became as a total surprise that due to the huge vacuum degeneracy of induced
spinor fields the number of generalized eigenmodes identified in this manner was finite.
The good news was that the theory is manifestly finite and zeta function regulariza-
tion is not needed to define the Dirac determinant. The manifest finiteness had been
actually must-be-true from the beginning. The apparently bad news was that the
Clifford algebra of WCW world constructed from the oscillator operators is bound to
be finite-dimensional. The resolution of the paradox comes from the realization that
this algebra represents the somewhat mysterious coset space N/M so that finite mea-
surement resolution and the notion inclusion are coded by the vacuum degeneracy of
Kähler action and the maximally economical description in terms of inclusions emerges
automatically.

ix. A unique identification of number theoretic braids became also possible and relates to
the construction of the generalized imbedding space by gluing together singular cover-
ings and factor spaces of CD\M2 and CP2\S2

I to form a book like structure. Here M2

is preferred plane of M4 defining quantization axis of energy and angular momentum
and S2

I is one of the two geodesic sphere of CP2. The interpretation of the selection
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of these sub-manifolds is as a geometric correlate for the selection of quantization axes
and CD defining basic sector of world of classical worlds is replaced by a union cor-
responding to these choices. Number theoretic braids come in too variants dual to
each other, and correspond to the intersection of M2 and M4 projection of X3

l on one
hand and S2

I and CP2 projection of X3
l on the other hand. This is simplest option and

would mean that the points of number theoretic braid belong to M2 (S2
I ) and are thus

quantum critical although entire X2 at the boundaries of CD belongs to a fixed page
of the Big Book. This means solution of a long standing problem of understanding in
what sense TGD Universe is quantum critical. The phase transitions changing Planck
constant correspond to tunneling represented geometrically by a leakage of partonic
2-surface from a page of Big Book to another one.

x. Few years ago came the realization that it could be only effective but have same prac-
tical implications. The basic observation was that the effective hierarchy need not be
postulated separately but follows as a prediction from the vacuum degeneracy of Kähler
action. In this formulation Planck constant at fundamental level has its standard value
and its effective values come as its integer multiples so that one should write ~eff = n~
rather than ~ = n~0 as I have done. For most practical purposes the states in question
would behave as if Planck constant were an integer multiple of the ordinary one. This
reduces the understanding of the effective hierarchy of Planck constants to quantum
variant of multi-furcations for the dynamics of preferred extremals of Kähler action.
The number of branches of multifurcation defines the integer n in ~eff = n~.

15.1.2 The evolution of physical ideas

The evolution of physical ideas related to the hierarchy of Planck constants and dark matter
as a hierarchy of phases of matter with non-standard value of Planck constants was much
faster than the evolution of mathematical ideas and quite a number of applications have
been developed during last five years.

i. The basic idea was that ordinary matter condenses around dark matter which is a
phase of matter characterized by non-standard value of Planck constant.

ii. The realization that non-standard values of Planck constant give rise to charge and spin
fractionization and anyonization led to the precise identification of the prerequisites of
anyonic phase [K59] . If the partonic 2-surface, which can have even astrophysical size,
surrounds the tip of CD, the matter at the surface is anyonic and particles are confined
at this surface. Dark matter could be confined inside this kind of light-like 3-surfaces
around which ordinary matter condenses. If the radii of the basic pieces of these nearly
spherical anyonic surfaces - glued to a connected structure by flux tubes mediating
gravitational interaction - are given by Bohr rules, the findings of Nottale [E10] can
be understood. Dark matter would resemble to a high degree matter in black holes
replaced in TGD framework by light-like partonic 2-surfaces with minimum size of
order Schwarstchild radius rS of order scaled up Planck length: rS ∼

√
~G. Black

hole entropy being inversely proportional to ~ is predicted to be of order unity so that
dramatic modification of the picture about black holes is implied.

iii. Darkness is a relative concept and due to the fact that particles at different pages
of book cannot appear in the same vertex of the generalized Feynman diagram. The
phase transitions in which partonic 2-surface X2 during its travel along X3

l leaks to
different page of book are however possible and change Planck constant so that particle
exchanges of this kind allow particles at different pages to interact. The interactions
are strongly constrained by charge fractionization and are essentially phase transitions
involving many particles. Classical interactions are also possible. This allows to con-
clude that we are actually observing dark matter via classical fields all the time and
perhaps have even photographed it [K77] , [I6] .

iv. Perhaps the most fascinating applications are in biology. The anomalous behavior
ionic currents through cell membrane (low dissipation, quantal character, no change
when the membrane is replaced with artificial one) has a natural explanation in terms
of dark supra currents. This leads to a vision about how dark matter and phase
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transitions changing the value of Planck constant could relate to the basic functions
of cell, functioning of DNA and aminoacids, and to the mysteries of bio-catalysis.
This leads also a model for EEG interpreted as a communication and control tool of
magnetic body containing dark matter and using biological body as motor instrument
and sensory receptor. One especially shocking outcome is the emergence of genetic
code of vertebrates from the model of dark nuclei as nuclear strings [L3, K77] , [L3] .

15.1.3 Brief summary about the generalization of the imbedding
space concept

A brief summary of the basic vision in order might help reader to assimilate the more
detailed representation about the generalization of imbedding space, which has turned to
be only a useful auxiliary tool of the theory rather than basic postulate.

i. The original belief was that the hierarchy of Planck constants cannot be realized with-
out generalizing the notions of imbedding space and space-time since particles with
different values of Planck constant cannot appear in the same interaction vertex. This
suggests some kind of book like structure for both M4 and CP2 factors of the gener-
alized imbedding space is suggestive. It has turned out that the view about hierarchy
of Planck constants as effective hierarchy allows to regard the singular coverings of
imbedding space as the natural auxiliary tool to describe the quantum view about
multi-furcations of preferred extremals.

ii. Schrödinger equation suggests that Planck constant corresponds to a scaling factor
of M4 metric whose value labels different pages of the book. The scaling of M4

coordinate so that original metric results in M4 factor is possible so that the scaling of ~
corresponds to the scaling of the size of causal diamond CD defined as the intersection
of future and past directed light-cones. The light-like 3-surfaces having their 2-D
and light-boundaries of CD are in a key role in the realization of zero energy states.
The infinite-D spaces formed by these 3-surfaces define the fundamental sectors of the
configuration space (world of classical worlds). Since the scaling of CD does not simply
scale space-time surfaces, the coding of radiative corrections to the geometry of space-
time sheets becomes possible and Kähler action can be seen as expansion in powers of
~/~0.

iii. Quantum criticality of TGD Universe is one of the key postulates of quantum TGD.
The most important implication is that Kähler coupling strength is analogous to critical
temperature. The exact realization of quantum criticality would be in terms of critical
sub-manifolds of M4 and CP2 common to all sectors of the generalized imbedding
space. Quantum criticality would mean that the two kinds of number theoretic braids
assignable to M4 and CP2 projections of the partonic 2-surface belong by the definition
of number theoretic braids to these critical sub-manifolds. At the boundaries of CD
associated with positive and negative energy parts of zero energy state in given time
scale partonic two-surfaces belong to a fixed page of the Big Book whereas light-like
3-surface decomposes into regions corresponding to different values of Planck constant
much like matter decomposes to several phases at thermodynamical criticality.

15.1.4 Basic physical picture as it is now

The basic phenomenological rules are simple and remained roughly the same during years.

i. The phases with non-standard values of effective Planck constant are identified as dark
matter. The motivation comes from the natural assumption that only the particles with
the same value of effective Planck can appear in the same vertex. One can illustrate
the situation in terms of the book metaphor. Imbedding spaces with different values
of Planck constant form a book like structure and matter can be transferred between
different pages only through the back of the book where the pages are glued together.
One important implication is that light exotic charged particles lighter than weak
bosons are possible if they have non-standard value of Planck constant. The standard
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argument excluding them is based on decay widths of weak bosons and has led to a
neglect of large number of particle physics anomalies [K78].

ii. Large effective or real value of Planck constant scales up Compton length - or at least
de Broglie wave length - and its geometric correlate at space-time level identified as
size scale of the space-time sheet assignable to the particle. This could correspond to
the Kähler magnetic flux tube for the particle forming consisting of two flux tubes at
parallel space-time sheets and short flux tubes at ends with length of order CP2 size.
This rule has far reaching implications in quantum biology and neuroscience since
macroscopic quantum phases become possible as the basic criterion stating that macro-
scopic quantum phase becomes possible if the density of particles is so high that parti-
cles as Compton length sized objects overlap. Dark matter therefore forms macroscopic
quantum phases. One implication is the explanation of mysterious looking quantal ef-
fects of ELF radiation in EEG frequency range on vertebrate brain: E = hf implies
that the energies for the ordinary value of Planck constant are much below the thermal
threshold but large value of Planck constant changes the situation. Also the phase
transitions modifying the value of Planck constant and changing the lengths of flux
tubes (by quantum classical correspondence) are crucial as also reconnections of the
flux tubes.
The hierarchy of Planck constants suggests also a new interpretation for FQHE (frac-
tional quantum Hall effect) [K59] in terms of anyonic phases with non-standard value
of effective Planck constant realized in terms of the effective multi-sheeted covering of
imbedding space: multi-sheeted space-time is to be distinguished from many-sheeted
space-time.
In astrophysics and cosmology the implications are even more dramatic. It was Not-
tale [E10] who first introduced the notion of gravitational Planck constant as ~gr =
GMm/v0, v0 < 1 has interpretation as velocity light parameter in units c = 1. This
would be true for GMm/v0 ≥ 1. The interpretation of ~gr in TGD framework is as
an effective Planck constant associated with space-time sheets mediating gravitational
interaction between masses M and m. The huge value of ~gr means that the integer
~gr/~0 interpreted as the number of sheets of covering is gigantic and that Universe pos-
sesses gravitational quantum coherence in super-astronomical scales for masses which
are large. This changes the view about gravitons and suggests that gravitational radia-
tion is emitted as dark gravitons which decay to pulses of ordinary gravitons replacing
continuous flow of gravitational radiation.

iii. Why Nature would like to have large effective value of Planck constant? A possible
answer relies on the observation that in perturbation theory the expansion takes in
powers of gauge couplings strengths α = g2/4π~. If the effective value of ~ replaces its
real value as one might expect to happen for multi-sheeted particles behaving like single
particle, α is scaled down and perturbative expansion converges for the new particles.
One could say that Mother Nature loves theoreticians and comes in rescue in their
attempts to calculate. In quantum gravitation the problem is especially acute since the
dimensionless parameter GMm/~ has gigantic value. Replacing ~ with ~gr = GMm/v0

the coupling strength becomes v0 < 1.

15.1.5 Space-time correlates for the hierarchy of Planck constants

The hierarchy of Planck constants was introduced to TGD originally as an additional
postulate and formulated as the existence of a hierarchy of imbedding spaces defined as
Cartesian products of singular coverings of M4 and CP2 with numbers of sheets given by
integers na and nb and ~ = n~0. n = nanb.

With the advent of zero energy ontology, it became clear that the notion of singular cov-
ering space of the imbedding space could be only a convenient auxiliary notion. Singular
means that the sheets fuse together at the boundary of multi-sheeted region. The effective
covering space emerges naturally from the vacuum degeneracy of Kähler action meaning
that all deformations of canonically imbedded M4 in M4×CP2 have vanishing action up to
fourth order in small perturbation. This is clear from the fact that the induced Kähler form

http://tgdtheory.com/public_html/paddark/paddark.html#anyontgd
http://arxiv.org/abs/astro-ph/0310036
http://arxiv.org/abs/astro-ph/0310036
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is quadratic in the gradients of CP2 coordinates and Kähler action is essentially Maxwell
action for the induced Kähler form. The vacuum degeneracy implies that the correspon-
dence between canonical momentum currents ∂LK/∂(∂αh

k) defining the modified gamma
matrices [K92] and gradients ∂αh

k is not one-to-one. Same canonical momentum current
corresponds to several values of gradients of imbedding space coordinates. At the partonic
2-surfaces at the light-like boundaries of CD carrying the elementary particle quantum
numbers this implies that the two normal derivatives of hk are many-valued functions of
canonical momentum currents in normal directions.

Multi-furcation is in question and multi-furcations are indeed generic in highly non-linear
systems and Kähler action is an extreme example about non-linear system. What multi-
furcation means in quantum theory? The branches of multi-furcation are obviously anal-
ogous to single particle states. In quantum theory second quantization means that one
constructs not only single particle states but also the many particle states formed from
them. At space-time level single particle states would correspond to N branches bi of
multi-furcation carrying fermion number. Two-particle states would correspond to 2-fold
covering consisting of 2 branches bi and bj of multi-furcation. N−particle state would cor-
respond to N -sheeted covering with all branches present and carrying elementary particle
quantum numbers. The branches co-incide at the partonic 2-surface but since their normal
space data are different they correspond to different tensor product factors of state space.
Also now the factorization N = nanb occurs but now na and nb would relate to branching
in the direction of space-like 3-surface and light-like 3-surface rather than M4 and CP2 as
in the original hypothesis.

In light of this the working hypothesis adopted during last years has been too limited:
for some reason I ended up to propose that only N -sheeted covering corresponding to a
situation in which all N branches are present is possible. Before that I quite correctly
considered more general option based on intuition that one has many-particle states in
the multi-sheeted space. The erratic form of the working hypothesis has not been used in
applications.

Multi-furcations relate closely to the quantum criticality of Kähler action. Feigenbaum bi-
furcations represent a toy example of a system which via successive bifurcations approaches
chaos. Now more general multi-furcations in which each branch of given multi-furcation can
multi-furcate further, are possible unless on poses any additional conditions. This allows
to identify additional aspect of the geometric arrow of time. Either the positive or negative
energy part of the zero energy state is ”prepared” meaning that single n-sub-furcations
of N -furcation is selected. The most general state of this kind involves superposition of
various n-sub-furcations.

In this chapter I try to summarize the evolution of the ideas related to Planck constant
without systematic attempt to achieve complete internal consistency. I have left the sum-
mary about the recent views to the end of the chapter and the reader might find it a good
idea to begin from this section.

15.2 Experimental input

In this section basic experimental inputs suggesting a hierarchy of Planck constants and
the identification of dark matter as phases with non-standard value of Planck constant are
discussed.

15.2.1 Hints for the existence of large ~ phases

Quantum classical correspondence suggests the identification of space-time sheets identifi-
able as quantum coherence regions. Since they can have arbitrarily large sizes, phases with
arbitrarily large quantum coherence lengths and arbitrarily long de-coherence times seem
to be possible in TGD Universe. In standard physics context this seems highly implausible.
If Planck constant can have arbitrarily large values, the situation changes since Compton

http://en.wikipedia.org/wiki/Logistic_map
http://en.wikipedia.org/wiki/Logistic_map
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lengths and other quantum scales are proportional to ~. Dark matter is excellent candidate
for large ~ phases.

The expression for ~gr in the model explaining the Bohr orbits for planets is of form
~gr = GM1M2/v0 [K66] . This suggests that the interaction is associated with some kind
of interface between the systems, perhaps join along boundaries connecting the space-time
sheets associated with systems possessing gravitational masses M1 and M2. Also a large
space-time sheet carrying the mutual classical gravitational field could be in question. This
argument generalizes to the case ~/~0 = Q1Q2α/v0 in case of generic phase transition to a
strongly interacting phase with α describing gauge coupling strength.

There exist indeed some experimental indications for the existence of phases with a large
~.

i. With inspiration coming from the finding of Nottale [E10] I have proposed an expla-
nation of dark matter as a macroscopic quantum phase with a large value of ~ [K66]
. Any interaction, if sufficiently strong, can lead to this kind of phase. The increase
of ~ would make the fine structure constant α in question small and guarantee the
convergence of perturbation series.

ii. Living matter could represent a basic example of large ~ phase [K23, K5] . Even
ordinary condensed matter could be ”partially dark” in many-sheeted space-time [K25]
. In fact, the realization of hierarchy of Planck constants leads to a considerably weaker
notion of darkness stating that only the interaction vertices involving particles with
different values of Planck constant are impossible and that the notion of darkness is
relative notion. For instance, classical interactions and photon exchanges involving a
phase transition changing the value of ~ of photon are possible in this framework.

iii. There is claim about a detection in RHIC (Relativistic Heavy Ion Collider in Brookhaven)
of states behaving in some respects like mini black holes [C15]. These states could have
explanation as color flux tubes at Hagedorn temperature forming a highly tangled state
and identifiable as stringy black holes of strong gravitation. The strings would carry a
quantum coherent color glass condensate, and would be characterized by a large value
of ~ naturally resulting in confinement phase with a large value of αs [K67] . The
progress in hadronic mass calculations led to a concrete model of color glass conden-
sate of single hadron as many-particle state of super-symplectic gluons [K53, K47] -
something completely new from the point of QCD - responsible for non-perturbative
aspects of hadron physics. In RHIC events these color glass condensate would fuse to
single large condensate. This condensate would be present also in ordinary black-holes
and the blackness of black-hole would be darkness.

iv. I have also discussed a model for cold fusion based on the assumption that nucleons can
be in large ~ phase. In this case the relevant strong interaction strength is Q1Q2αem
for two nucleon clusters inside nucleus which can increase ~ so large that the Compton
length of protons becomes of order atomic size and nuclear protons form a macroscopic
quantum phase [K25, K23] .

15.2.2 Quantum coherent dark matter and ~
The argument based on gigantic value of ~gr explaining darkness of dark mater is attractive
but one should be very cautious.

Consider first ordinary QEde =
√
α4π~ appears in vertices so that perturbation expansion

in powers of
√
~ basically. This would suggest that large ~ leads to large effects. All

predictions are however in powers of alpha and large ~ means small higher order corrections.
What happens can be understood on basis of dimensional analysis. For instance, cross
sections are proportional to (~/m)2, where m is the relevant mass and the remaining factor
depends on α = e2/(4π~) only. In the more general case tree amplitudes with n vertices
are proportional to en and thus to ~n/2 and loop corrections give only powers of α which
get smaller when ~ increases. This must relate to the powers of 1/~ from the integration
measure associated with the momentum loop integrals affected by the change of α.

Consider now the effects of the scaling of ~. The scaling of Compton lengths and other
quantum kinematical parameters is the most obvious effect. An obvious effect is due to
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the change of ~ in the commutation relations and in the change of unit of various quantum
numbers. In particular, the right hand side of oscillator operator commutation and anti-
commutation relations is scaled. A further effect is due to the scaling of the eigenvalues of
the modified Dirac operator ~ΓαDα.

The exponent exp(K) of Kähler function K defining perturbation series in the configuration
space degrees of freedom is proportional to 1/g2

K and does not depend on ~ at all if there is
only single Planck constant. The propagator is proportional to g2

K . This can be achieved
also in QED by absorbing e from vertices to e2 in photon propagator. Hence it would seem
that the dependence on αK (and ~) must come from vertices which indeed involve Jones
inclusions of the II1 factors of the incoming and outgoing lines.

This however suggests that the dependence of the scattering amplitudes on ~ is purely
kinematical so that all higher radiative corrections would be absent. This seems to leave
only one option: the scale factors of covariant CD and CP2 metrics can vary and might
have discrete spectrum of values.

i. The invariance of Kähler action with respect to overall scaling of metric however allows
to keep CP2 metric fixed and consider only a spectrum for the scale factors of M4

metric.

ii. The first guess motivated by Schrödinger equation is that the scaling factor of covariant
CD metric corresponds the ratio r2 = (~/~0)2. This would mean that the value of
Kähler action depends on r2. The scaling of M4 coordinate by r the metric reduces to
the standard form but if causal diamonds with quantized temporal distance between
their tips are the basic building blocks of the configuration space geometry as zero
energy ontology requires, this scaling of ~ scales the size of CD by r so that genuine
effect results since M4 scalings are not symmetries of Kähler action.

iii. In this picture r would code for radiative corrections to Kähler function and thus space-
time physics. Even in the case that the radiative corrections to the configuration space
functional integral vanish, as suggested by quantum criticality, they would be actually
taken into account.

This kind of dynamics is not consistent with the original view about imbedding space
and forces to generalize the notion of imbedding spaces since it is clear that particles
with different Planck constants cannot appear in the same vertex of Feynman diagram.
Somehow different values of Planck constant must be analogous to different pages of book
having almost copies of imbedding space as pages. A possible resolution of the problem
cames from the realization that the fundamental structure might be the inclusion hierarchy
of number theoretical Clifford algebras from which entire TGD could emerge including
generalization of the imbedding space concept.

15.2.3 The phase transition changing the value of Planck constant
as a transition to non-perturbative phase

A phase transition increasing ~ as a transition guaranteing the convergence of
perturbation theory

The general vision is that a phase transition increasing ~ occurs when perturbation theory
ceases to converge. Very roughly, this would occur when the parameter x = Q1Q2α becomes
larger than one. The net quantum numbers for ”spontaneously magnetized” regions provide
new natural units for quantum numbers. The assumption that standard quantization rules
prevail poses very strong restrictions on allowed physical states and selects a subspace of
the original configuration space. One can of course, consider the possibility of giving up
these rules at least partially in which case a spectrum of fractionally charged anyon like
states would result with confinement guaranteed by the fractionization of charges.

The necessity of large ~ phases has been actually highly suggestive since the first days
of quantum mechanics. The classical looking behavior of macroscopic quantum systems
remains still a poorly understood problem and large ~ phases provide a natural solution of
the problem.
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In TGD framework quantum coherence regions correspond to space-time sheets. Since their
sizes are arbitrarily large the conclusion is that macroscopic and macro-temporal quantum
coherence are possible in all scales. Standard quantum theory definitely fails to predict
this and the conclusion is that large ~ phases for which quantum length and time scales
are proportional to ~ and long are needed.

Somewhat paradoxically, large ~ phases explain the effective classical behavior in long
length and time scales. Quantum perturbation theory is an expansion in terms of gauge
coupling strengths inversely proportional to ~ and thus at the limit of large ~ classical
approximation becomes exact. Also the Coulombic contribution to the binding energies of
atoms vanishes at this limit. The fact that we experience world as a classical only tells that
large ~ phase is essential for our sensory perception. Of course, this is not the whole story
and the full explanation requires a detailed anatomy of quantum jump.

The criterion for the occurrence of the phase transition increasing the value of
~

In the case of planetary orbits the large value of ~gr = 2GM/v0 makes possible to apply
Bohr quantization to planetary orbits. This leads to a more general idea that the phase
transition increasing ~ occurs when the system consisting of interacting units with charges
Qi becomes non-perturbative in the sense that the perturbation series in the coupling
strength αQiQj , where α is the appropriate coupling strength and QiQj represents the
maximum value for products of gauge charges, ceases to converge. Thus Mother Nature
would resolve the problems of theoretician. A primitive formulation for this criterion is the
condition αQiQj ≥ 1.

The first working hypothesis was the existence of dark matter hierarchies with ~ = λk~0,
k = 0, 1, ..., λ = n/v0 or λ = 1/nv0, v0 ' 2−11. This rule turned out to be quite too specific.
The mathematically plausible formulation predicts that in principle any rational value for
r = ~(M4)/~(CP2) is possible but there are certain number theoretically preferred values
of r such as those coming powers of 2.

15.3 A generalization of the notion of imbedding space
as a realization of the hierarchy of Planck constants

In the following the basic ideas concerning the realization of the hierarchy of Planck con-
stants are summarized and after that a summary about generalization of the imbedding
space is given. In [K59] the important delicacies associated with the Kähler structure of
generalized imbedding space are discussed. The background for the recent vision is quite
different from that for half decade ago. Zero energy ontology and the notion of causal
diamond, number theoretic compactification leading to the precise identification of number
theoretic braids, the realization of number theoretic universality, and the understanding of
the quantum dynamics at the level of modified Dirac action fix to a high degree the vision
about generalized imbedding space.

15.3.1 Basic ideas

The first key idea in the geometric realization of the hierarchy of Planck constants emerges
from the study of Schrödinger equation and states that Planck constant appears a scaling
factor of M4 metric. Second key idea is the connection with Jones inclusions inspiring
an explicit formula for Planck constants. For a long time this idea remained heuristic
must-be-true feeling but the recent view about quantum TGD provide a justification for it.

Scaling of Planck constant and scalings of CD and CP2 metrics

The key property of Schrödinger equation is that kinetic energy term depends on ~ whereas
the potential energy term has no dependence on it. This makes the scaling of ~ a non-trivial
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transformation. If the contravariant metric scales as r = ~/~0 the effect of scaling of Planck
constant is realized at the level of imbedding space geometry provided it is such that it is
possible to compare the regions of generalized imbedding space having different value of
Planck constant.

In the case of Dirac equation same conclusion applies and corresponds to the minimal
substitution p− eA→ i~∇− eA. Consider next the situation in TGD framework.

i. The minimal substitution p− eA→ i~∇− eA does not make sense in the case of CP2

Dirac operator since, by the non-triviality of spinor connection, one cannot choose the
value of ~ freely. In fact, spinor connection of CP2 is defined in such a manner that
spinor connection corresponds to the quantity ~eQA, where denotes A gauge potential,
and there is no natural manner to separate ~e from it.

ii. The contravariant CD metric scales like ~2. In the case of Dirac operator in M4×CP2

one can assign separate Planck constants to Poincare and color algebras and the scalings
of CD and CP2 metrics induce scalings of corresponding values of ~2. As far as Kähler
action is considered, CP2 metric could be always thought of being scaled to its standard
form.

iii. Dirac equation gives the eigenvalues of wave vector squared k2 = kiki rather than four-
momentum squared p2 = pipi in CD degrees of freedom and its analog in CP2 degrees
of freedom. The values of k2 are proportional to 1/r2 so that p2 does not depend on
it for pi = ~ki: analogous conclusion applies in CP2 degrees of freedom. This gives
rise to the invariance of mass squared and the desired scaling of wave vector when ~
changes.

This consideration generalizes to the case of the induced gamma matrices and induced met-
ric in X4, modified Dirac operator, and Kähler action which carry dynamical information
about the ratio r = ~eff/~0.

Kähler function codes for a perturbative expansion in powers of ~(CD)/~(CP2)

Suppose that one accepts that the spectrum of CD resp. CP2 Planck constants is ac-
companied by a hierarchy of overall scalings of covariant CD (causal diamond) metric
by (~(M4)/~0)2 and CP2 metric by (~(CP2)/~0)2 followed by overall scaling by r2 =
(~0/~(CP2))2 so that CP2 metric suffers no scaling and difficulties with isometric gluing
procedure of sectors are avoided.

The first implication of this picture is that the modified Dirac operator determined by the
induced metric and spinor structure depends on r in a highly nonlinear manner but there
is no dependence on the overall scaling of the H metric. This in turn implies that the
fermionic oscillator algebra used to define configuration space spinor structure and metric
depends on the value of r. Same is true also for Kähler action and configuration space
Kähler function. Hence Kähler function is analogous to an effective action expressible as
infinite series in powers of r.

This interpretation allows to overcome the paradox caused by the hypothesis that loop
corrections to the functional integral over configuration space defined by the exponent of
Kähler function serving as vacuum functional vanish so that tree approximation is exact.
This would imply that all higher order corrections usually interpreted in terms of perturba-
tive series in powers of 1/~ vanish. The paradox would result from the fact that scattering
amplitudes would not receive higher order corrections and classical approximation would
be exact.

The dependence of both states created by Super Kac-Moody algebra and the Kähler func-
tion and corresponding propagator identifiable as contravariant configuration space metric
would mean that the expressions for scattering amplitudes indeed allow an expression in
powers of r. What is so remarkable is that the TGD approach would be non-perturbative
from the beginning and ”semiclassical” approximation, which might be actually exact, au-
tomatically would give a full expansion in powers of r. This is in a sharp contrast to the
usual quantization approach.
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Jones inclusions and hierarchy of Planck constants

From the beginning it was clear that Jones inclusions of hyper-finite factors of type II1
are somehow related to the hierarchy of Planck constants. The basic motivation for this
belief has been that configuration space Clifford algebra provides a canonical example of
hyper-finite factor of type II1 and that Jones inclusion of these Clifford algebras is excellent
candidate for a first principle description of finite measurement resolution.

Consider the inclusion N ⊂ M of hyper-finite factors of type II1 [K86] . A deep result
is that one can express M as N : M-dimensional module over N with fractal dimension
N :M = Bn.

√
bn represents the dimension of a space of spinor space renormalized from

the value 2 corresponding to n = ∞ down to
√
bn = 2cos(π/n) varying thus in the range

[1, 2]. Bn in turn would represent the dimension of the corresponding Clifford algebra.
The interpretation is that finite measurement resolution introduces correlations between
components of quantum spinor implying effective reduction of the dimension of quantum
spinors providing a description of the factor space N/M.

This would suggest that somehow the hierarchy of Planck constants must represent finite
measurement resolution and since phase factors coming as roots of unity are naturally as-
sociated with Jones inclusions the natural guess was that angular resolution and coupling
constant evolution associated with it is in question. This picture would suggest that the re-
alization of the hierarchy of Planck constant in terms of a book like structure of generalized
imbedding space provides also a geometric realization for a hierarchy of Jones inclusions.

The notion of number theoretic braid and realization that the modified Dirac operator has
only finite number of generalized eigenmodes -thanks to the vacuum degeneracy of Kähler
action- finally led to the understanding how the notion of finite measurement resolution
is coded to the Kähler action and the realized in practice by second quantization of in-
duced spinor fields and how these spinor fields endowed with q-anticommutation relations
give rise to a representations of finite-quantum dimensional factor spaces N/M associated
with the hierarchy of Jones inclusions having generalized imbedding space as space-time
correlate. This means enormous simplification since infinite-dimensional spinor fields in
infinite-dimensional world of classical worlds are replaced with finite-quantum-dimensional
spinor fields in discrete points sets provided by number theoretic braids.

The study of a concrete model for Jones inclusions in terms of finite subgroups G of SU(2)
defining sub-algebras of infinite-dimensional Clifford algebra as fixed point sub-algebras
leads to what looks like a correct track concerning the understanding of quantization of
Planck constants.

The ADE diagrams of An and D2n characterize cyclic and dihedral groups whereas those
of E6 and E8 characterize tedrahedral and icosahedral groups. This approach leads to the
hypothesis that the scaling factor of Planck constant assignable to Poincare (color) algebra
corresponds to the order of the maximal cyclic subgroup of Gb ⊂ SU(2) (Ga ⊂ SL(2, C))
acting as symmetry of space-time sheet in CP2 (CD) degrees of freedom. It predicts
arbitrarily large CD and CP2 Planck constants in the case of An and D2n under rather
general assumptions.

There are two manners for how Ga and Gb can act as symmetries corresponding to Gi
coverings and factors spaces. These coverings and factor spaces are singular and associated
with spaces ĈD\M2 and CP2\S2

I , where S2
I is homologically trivial geodesic sphere of CP2.

The physical interpretation is that M2 and S2
I fix preferred quantization axes for energy

and angular moment and color quantum numbers so that also a connection with quantum
measurement theory emerges.

15.3.2 The vision

A brief summary of the basic vision behind the generalization of the imbedding space
concept needed to realize the hierarchy of Planck constants is in order before going to the
detailed representation.

i. The hierarchy of Planck constants cannot be realized without generalizing the notions
of imbedding space and space-time because particles with different values of Planck



15.3. A generalization of the notion of imbedding space as a realization of the hierarchy
of Planck constants 955

constant cannot appear in the same interaction vertex. Some kind of book like structure
for the generalized imbedding space forced also by p-adicization but in different sense
is suggestive. Both M4 and CP2 factors would have the book like structure so that a
Cartesian product of books would be in question.

ii. The study of Schrödinger equation suggests that Planck constant corresponds to a
scaling factor of CD metric whose value labels different pages of the book. The scaling
of M4 coordinate so that original metric results in CD factor is possible so that the
interpretation for scaled up value of ~ is as scaling of the size of causal diamond CD.

iii. The light-like 3-surfaces having their 2-D and light-boundaries of CD are in a key
role in the realization of zero energy states, and the infinite-D spaces of light-like
3-surfaces inside scaled variants of CD define the fundamental building brick of the
configuration space (world of classical worlds). Since the scaling of CD does not simply
scale space-time surfaces the effect of scaling on classical and quantum dynamics is non-
trivial and a coupling constant evolution results and the coding of radiative corrections
to the geometry of space-time sheets becomes possible. The basic geometry of CD
suggests that the allowed sizes of CD come in the basic sector ~ = ~0 as powers of two.
This predicts p-adic length scale hypothesis and lead to number theoretically universal
discretized p-adic coupling constant evolution. Since the scaling is accompanied by a
formation of singular coverings and factor spaces, different scales are distinguished at
the level of topology. p-Adic length scale hierarchy affords similar characterization of
length scales in terms of effective topology.

iv. The idea that TGD Universe is quantum critical in some sense is one of the key postu-
lates of quantum TGD. The basic ensuing prediction is that Kähler coupling strength
is analogous to critical temperature. Quantum criticality in principle fixes the p-adic
evolution of various coupling constants also the value of gravitational constant. The
exact realization of quantum criticality would be in terms of critical sub-manifolds of
M4 and CP2 common to all sectors of the generalized imbedding space. Quantum criti-
cality of TGD Universe means that the two kinds of number theoretic braids assignable
to M4 and CP2 projections of the partonic 2-surface belong by the very definition of
number theoretic braids to these critical sub-manifolds. At the boundaries of CD as-
sociated with positive and negative energy parts of zero energy state in a given time
scale partonic two-surfaces belong to a fixed page of the Big Book whereas light-like
3-surface decomposes to regions corresponding to different values of Planck constant
much like matter decomposes to several phases at criticality.

The connection with Jones inclusions was originally a purely heuristic guess, and it took half
decade to really understand why and how they are involved. The notion of measurement
resolution is the key concept.

i. The key observation is that Jones inclusions are characterized by a finite subgroup
G ⊂ SU(2) and the this group also characterizes the singular covering or factor spaces
associated with CD or CP2 so that the pages of generalized imbedding space could
indeed serve as correlates for Jones inclusions.

ii. The dynamics of Kähler action realizes finite measurement resolution in terms of finite
number of modes of the induced spinor field automatically implying cutoffs to the
representations of various super-conformal algebras typical for the representations of
quantum groups associated with Jones inclusions. The interpretation of the Clifford
algebra spanned by the fermionic oscillator operators is as a realization for the concept
of the factor space N/M of hyper-finite factors of type II1 identified as the infinite-
dimensional Clifford algebra N of the configuration space and included algebra M
determining the finite measurement resolution for angle measurement in the sense
that the action of this algebra on zero energy state has no detectable physical effects.
M takes the role of complex numbers in quantum theory and makes physics non-
commutative. The resulting quantum Clifford algebra has anti-commutation relations
dictated by the fractionization of fermion number so that unit becomes r = ~/~0.
SU(2) Lie algebra transforms to its quantum variant corresponding to the quantum
phase q = exp(i2π/r).
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iii. G invariance for the elements of the included algebra can be interpreted in terms of
finite measurement resolution in the sense that action by G invariant Clifford algebra el-
ement has no detectable effects. Quantum groups realize this view about measurement
resolution for angle measurement. The G-invariance of the physical states created by
fermionic oscillator operators which by definition are not G invariant guarantees that
quantum states as a whole have non-fractional quantum numbers so that the leakage
between different pages is possible in principle. This hypothesis is consistent with the
TGD inspired model of quantum Hall effect [K59] .

iv. Concerning the formula for Planck constant in terms of the integers na and nb charac-
terizing orders of the maximal cyclic subgroups of groups Ga and Gb defining coverings
and factor spaces associated with CD and CP2 the basic constraint is that the overall
scaling of H metric has no effect on physics. What matters is the ratio of Planck
constants r = ~(M4)/~(CP2) appearing as a scaling factor of M4 metric. This leaves
two options if one requires that the Planck constant defines a homomorphism. The
model for dark gravitons suggests a unique choice between these two options but one
must keep still mind open for the alternative.

v. Jones inclusions appear as two variants corresponding to N :M < 4 and N :M = 4.
The tentative interpretation is in terms of singular G-factor spaces and G-coverings
of M4 and CP2 in some sense. The alternative interpretation assigning the inclusions
to the two different geodesic spheres of CP2 would mean asymmetry between M4 and
CP2 degrees of freedom and is therefore not convincing.

vi. The natural question is why the hierarchy of Planck constants is needed. Is it really
necessary? Number theoretic Universality suggests that this is the case. One must be
able to define the notion of angle -or at least the notion of phase and of trigonometric
functions- also in the p-adic context. All that one can achieve naturally is the notion of
phase defined as a root of unity and introduced by allowing algebraic extension of p-adic
number field by introducing the phase. In the framework of TGD inspired theory of
consciousness this inspires a vision about cognitive evolution as the gradual emergence
of increasingly complex algebraic extensions of p-adic numbers and involving also the
emergence of improved angle resolution expressible in terms of phases exp(i2π/n) up to
some maximum value of n. The coverings and factor spaces would realize these phases
purely geometrically and quantum phases q assignable to Jones inclusions would realize
them algebraically. Besides p-adic coupling constant evolution based on the hierarchy
of p-adic length scales there would be coupling constant evolution with respect to ~
and associated with angular resolution.

15.3.3 Hierarchy of Planck constants and the generalization of the
notion of imbedding space

In the following the recent view about structure of imbedding space forced by the quanti-
zation of Planck constant is summarized. The question is whether it might be possible in
some sense to replace H or its Cartesian factors by their necessarily singular multiple cov-
erings and factor spaces. One can consider two options: either M4 or the causal diamond
CD. The latter one is the more plausible option from the point of view of WCW geometry.

The evolution of physical ideas about hierarchy of Planck constants

The evolution of the physical ideas related to the hierarchy of Planck constants and dark
matter as a hierarchy of phases of matter with non-standard value of Planck constants was
much faster than the evolution of mathematical ideas and quite a number of applications
have been developed during last five years.

i. The starting point was the proposal of Nottale [E10] that the orbits of inner planets
correspond to Bohr orbits with Planck constant ~gr = GMm/v0 and outer planets with
Planck constant ~gr = 5GMm/v0, v0/c ' 2−11. The basic proposal [K66] was that
ordinary matter condenses around dark matter which is a phase of matter characterized
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by a non-standard value of Planck constant whose value is gigantic for the space-
time sheets mediating gravitational interaction. The interpretation of these space-
time sheets could be as magnetic flux quanta or as massless extremals assignable to
gravitons.

ii. Ordinary particles possibly residing at these space-time sheet have enormous value of
Compton length meaning that the density of matter at these space-time sheets must be
very slowly varying. The string tension of string like objects implies effective negative
pressure characterizing dark energy so that the interpretation in terms of dark energy
might make sense [K67] . TGD predicted a one-parameter family of Robertson-Walker
cosmologies with critical or over-critical mass density and the ”pressure” associated
with these cosmologies is negative.

iii. The quantization of Planck constant does not make sense unless one modifies the view
about standard space-time is. Particles with different Planck constant must belong to
different worlds in the sense local interactions of particles with different values of ~ are
not possible. This inspires the idea about the book like structure of the imbedding space
obtained by gluing almost copies of H together along common ”back” and partially
labeled by different values of Planck constant.

iv. Darkness is a relative notion in this framework and due to the fact that particles at
different pages of the book like structure cannot appear in the same vertex of the
generalized Feynman diagram. The phase transitions in which partonic 2-surface X2

during its travel along X3
l leaks to another page of book are however possible and

change Planck constant. Particle (say photon -) exchanges of this kind allow particles
at different pages to interact. The interactions are strongly constrained by charge
fractionization and are essentially phase transitions involving many particles. Classical
interactions are also possible. It might be that we are actually observing dark matter
via classical fields all the time and perhaps have even photographed it [K77] .

v. The realization that non-standard values of Planck constant give rise to charge and spin
fractionization and anyonization led to the precise identification of the prerequisites of
anyonic phase [K59] . If the partonic 2-surface, which can have even astrophysical size,
surrounds the tip of CD, the matter at the surface is anyonic and particles are confined
at this surface. Dark matter could be confined inside this kind of light-like 3-surfaces
around which ordinary matter condenses. If the radii of the basic pieces of these nearly
spherical anyonic surfaces - glued to a connected structure by flux tubes mediating
gravitational interaction - are given by Bohr rules, the findings of Nottale [E10] can
be understood. Dark matter would resemble to a high degree matter in black holes
replaced in TGD framework by light-like partonic 2-surfaces with a minimum size of
order Schwartschild radius rS of order scaled up Planck length lPl =

√
~grG = GM .

Black hole entropy is inversely proportional to ~ and predicted to be of order unity so
that dramatic modification of the picture about black holes is implied.

vi. Perhaps the most fascinating applications are in biology. The anomalous behavior
ionic currents through cell membrane (low dissipation, quantal character, no change
when the membrane is replaced with artificial one) has a natural explanation in terms
of dark supra currents. This leads to a vision about how dark matter and phase
transitions changing the value of Planck constant could relate to the basic functions
of cell, functioning of DNA and aminoacids, and to the mysteries of bio-catalysis.
This leads also a model for EEG interpreted as a communication and control tool of
magnetic body containing dark matter and using biological body as motor instrument
and sensory receptor. One especially amazing outcome is the emergence of genetic
code of vertebrates from the model of dark nuclei as nuclear strings [L3, K77] , [L3] .

The most general option for the generalized imbedding space

Simple physical arguments pose constraints on the choice of the most general form of the
imbedding space.

i. The fundamental group of the space for which one constructs a non-singular covering
space or factor space should be non-trivial. This is certainly not possible for M4,
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CD, CP2, or H. One can however construct singular covering spaces. The fixing of
the quantization axes implies a selection of the sub-space H4 = M2 × S2 ⊂ M4 ×
CP2, where S2 is geodesic sphere of CP2. M̂4 = M4\M2 and ĈP 2 = CP2\S2 have
fundamental group Z since the codimension of the excluded sub-manifold is equal to
two and homotopically the situation is like that for a punctured plane. The exclusion
of these sub-manifolds defined by the choice of quantization axes could naturally give
rise to the desired situation.

ii. CP2 allows two geodesic spheres which left invariant by U(2 resp. SO(3). The first
one is homologically non-trivial. For homologically non-trivial geodesic sphere H4 =
M2 × S2 represents a straight cosmic string which is non-vacuum extremal of Kähler
action (not necessarily preferred extremal). One can argue that the many-valuedness of
~ is un-acceptable for non-vacuum extremals so that only homologically trivial geodesic
sphere S2 would be acceptable. One could go even further. If the extremals in M2 ×
CP2 can be preferred non-vacuum extremals, the singular coverings of M4 are not
possible. Therefore only the singular coverings and factor spaces of CP2 over the
homologically trivial geodesic sphere S2 would be possible. This however looks a non-
physical outcome.

A. The situation changes if the extremals of type M2×Y 2, Y 2 a holomorphic surface of
CP3, fail to be hyperquaternionic. The tangent space M2 represents hypercomplex
sub-space and the product of the modified gamma matrices associated with the
tangent spaces of Y 2 should belong to M2 algebra. This need not be the case in
general.

B. The situation changes also if one reinterprets the gluing procedure by introducing
scaled up coordinates for M4 so that metric is continuous at M2 × CP2 but CDs
with different size have different sizes differing by the ratio of Planck constants and
would thus have only piece of lower or upper boundary in common.

iii. For the more general option one would have four different options corresponding to
the Cartesian products of singular coverings and factor spaces. These options can be
denoted by C−C, C−F , F −C, and F −F , where C (F ) signifies for covering (factor
space) and first (second) letter signifies for CD (CP2) and correspond to the spaces
(ĈD×̂Ga) × ( ˆCP2×̂Gb), (ĈD×̂Ga) × ˆCP2/Gb, ĈD/Ga × ( ˆCP2×̂Gb), and ĈD/Ga ×

ˆCP2/Gb.

iv. The groupsGi could correspond to cyclic groups Zn. One can also consider an extension
by replacing M2 and S2 with its orbit under more general group G (say tedrahedral,
octahedral, or icosahedral group). One expects that the discrete subgroups of SU(2)
emerge naturally in this framework if one allows the action of these groups on the
singular sub-manifolds M2 or S2. This would replace the singular manifold with a set
of its rotated copies in the case that the subgroups have genuinely 3-dimensional action
(the subgroups which corresponds to exceptional groups in the ADE correspondence).
For instance, in the case of M2 the quantization axes for angular momentum would
be replaced by the set of quantization axes going through the vertices of tedrahedron,
octahedron, or icosahedron. This would bring non-commutative homotopy groups into
the picture in a natural manner.

About the phase transitions changing Planck constant

There are several non-trivial questions related to the details of the gluing procedure and
phase transition as motion of partonic 2-surface from one sector of the imbedding space to
another one.

i. How the gluing of copies of imbedding space at M2 ×CP2 takes place? It would seem
that the covariant metric of CD factor proportional to ~2 must be discontinuous at the
singular manifold since only in this manner the idea about different scaling factor of CD
metric can make sense. On the other hand, one can always scale the M4 coordinates
so that the metric is continuous but the sizes of CDs with different Planck constants
differ by the ratio of the Planck constants.
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ii. One might worry whether the phase transition changing Planck constant means an
instantaneous change of the size of partonic 2-surface in M4 degrees of freedom. This
is not the case. Light-likeness in M2 × S2 makes sense only for surfaces X1 × D2 ⊂
M2×S2, where X1 is light-like geodesic. The requirement that the partonic 2-surface
X2 moving from one sector of H to another one is light-like at M2×S2 irrespective of
the value of Planck constant requires that X2 has single point of M2 as M2 projection.
Hence no sudden change of the size X2 occurs.

iii. A natural question is whether the phase transition changing the value of Planck con-
stant can occur purely classically or whether it is analogous to quantum tunneling.
Classical non-vacuum extremals of Chern-Simons action have two-dimensional CP2

projection to homologically non-trivial geodesic sphere S2
I . The deformation of the

entire S2
I to homologically trivial geodesic sphere S2

II is not possible so that only com-
binations of partonic 2-surfaces with vanishing total homology charge (Kähler magnetic
charge) can in principle move from sector to another one, and this process involves fu-
sion of these 2-surfaces such that CP2 projection becomes single homologically trivial
2-surface. A piece of a non-trivial geodesic sphere S2

I of CP2 can be deformed to that
of S2

II using 2-dimensional homotopy flattening the piece of S2 to curve. If this homo-
topy cannot be chosen to be light-like, the phase transitions changing Planck constant
take place only via quantum tunnelling. Obviously the notions of light-like homotopies
(cobordisms) are very relevant for the understanding of phase transitions changing
Planck constant.

How one could fix the spectrum of Planck constants?

The question how the observed Planck constant relates to the integers na and nb defining
the covering and factors spaces, is far from trivial and I have considered several options.
The basic physical inputs are the condition that scaling of Planck constant must correspond
to the scaling of the metric of CD (that is Compton lengths) on one hand and the scaling
of the gauge coupling strength g2/4π~ on the other hand.

i. One can assign to Planck constant to both CD and CP2 by assuming that it appears in
the commutation relations of corresponding symmetry algebras. Algebraist would ar-
gue that Planck constants ~(CD) and ~(CP2) must define a homomorphism respecting
multiplication and division (when possible) by Gi. This requires r(X) = ~(X)~0 = n
for covering and r(X) = 1/n for factor space or vice versa.

ii. If one assumes that ~2(X), X = M4, CP2 corresponds to the scaling of the covariant
metric tensor gij and performs an over-all scaling of H-metric allowed by the Weyl
invariance of Kähler action by dividing metric with ~2(CP2), one obtains the scaling
of M4 covariant metric by r2 ≡ ~2/~2

0 = ~2(M4)/~2(CP2) whereas CP2 metric is not
scaled at all.

iii. The condition that ~ scales as na is guaranteed if one has ~(CD) = na~0. This
does not fix the dependence of ~(CP2) on nb and one could have ~(CP2) = nb~0

or ~(CP2) = ~0/nb. The intuitive picture is that nb- fold covering gives in good
approximation rise to nanb sheets and multiplies YM action action by nanb which is
equivalent with the ~ = nanb~0 if one effectively compresses the covering to CD×CP2.
One would have ~(CP2) = ~0/nb and ~ = nanb~0. Note that the descriptions using
ordinary Planck constant and coverings and scaled Planck constant but contracting
the covering would be alternative descriptions.
This gives the following formulas r ≡ ~/~0 = r(M4)/r(CP2) in various cases.

C − C F − C C − F F − F

r nanb
na
nb

nb
na

1
nanb

Preferred values of Planck constants

Number theoretic considerations favor the hypothesis that the integers corresponding to
Fermat polygons constructible using only ruler and compass and given as products nF =
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2k
∏
s Fs, where Fs = 22s + 1 are distinct Fermat primes, are favored. The reason would

be that quantum phase q = exp(iπ/n) is in this case expressible using only iterated square
root operation by starting from rationals. The known Fermat primes correspond to s =
0, 1, 2, 3, 4 so that the hypothesis is very strong and predicts that p-adic length scales have
satellite length scales given as multiples of nF of fundamental p-adic length scale. nF = 211

corresponds in TGD framework to a fundamental constant expressible as a combination of
Kähler coupling strength, CP2 radius and Planck length appearing in the expression for the
tension of cosmic strings, and the powers of 211 was proposed to define favored as values
of na in living matter [K24] .

The hypothesis that Mersenne primes Mk = 2k − 1, k ∈ {89, 107, 127}, and Gaussian
Mersennes MG,k = (1 + i)k − 1, k ∈ {113, 151, 157, 163, 167, 239, 241..} (the number theo-
retical miracle is that all the four p-adic length scales sith k ∈ {151, 157, 163, 167} are in the
biologically highly interesting range 10 nm-2.5 µm) define scaled up copies of electro-weak
and QCD type physics with ordinary value of ~ and that these physics are induced by dark
variants of corresponding lower level physics leads to a prediction for the preferred values
of r = 2kd , kd = ki−kj , and the resulting picture finds support from the ensuing models for
biological evolution and for EEG [K24] . This hypothesis - to be referred to as Mersenne
hypothesis - replaces the rather ad hoc proposal r = ~/~0 = 211k for the preferred values
of Planck constant.

How Planck constants are visible in Kähler action?

~(M4) and ~(CP2) appear in the commutation and anticommutation relations of various
superconformal algebras. Only the ratio of M4 and CP2 Planck constants appears in
Kähler action and is due to the fact that the M4 and CP2 metrics of the imbedding space
sector with given values of Planck constants are proportional to the corresponding Planck.
This implies that Kähler function codes for radiative corrections to the classical action,
which makes possible to consider the possibility that higher order radiative corrections to
functional integral vanish as one might expect at quantum criticality. For a given p-adic
length scale space-time sheets with all allowed values of Planck constants are possible.
Hence the spectrum of quantum critical fluctuations could in the ideal case correspond to
the spectrum of ~ coding for the scaled up values of Compton lengths and other quantal
lengths and times. If so, large ~ phases could be crucial for understanding of quantum
critical superconductors, in particular high Tc superconductors.

15.4 Updated view about the hierarchy of Planck con-
stants

During last years the work with TGD proper has transformed from the discovery of brave
visions to the work of clock smith. The challenge is to fill in the details, to define various
notions more precisely, and to eliminate the numerous inconsistencies.

Few years has passed from the latest formulation for the hierarchy of Planck constant.
The original hypothesis was that the hierarchy is real. In this formulation the imbedding
space was replaced with its covering space assumed to decompose to a Cartesian product
of singular finite-sheeted coverings of M4 and CP2.

Few years ago came the realization that it could be only effective but have same practical
implications. The basic observation was that the effective hierarchy need not be postulated
separately but follows as a prediction from the vacuum degeneracy of Kähler action. In this
formulation Planck constant at fundamental level has its standard value and its effective
values come as its integer multiples so that one should write ~eff = n~ rather than ~ = n~0

as I have done. For most practical purposes the states in question would behave as if Planck
constant were an integer multiple of the ordinary one. It was no more necessary to assume
that the covering reduces to a Cartesian product of singular coverings of M4 and CP2 but
for some reason I kept this assumption.
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It seems that the time is ripe for checking whether some polishing of this formulation
might be needed. In particular, the work with TGD inspired quantum biology suggests a
close connection between the hierarchy of Planck constants and negentropic entanglement.
Also the connection with anyons and charge fractionalization has remained somewhat fuzzy
[K59]. In particular, it seems that the formulation based on multi-furcations of space-time
surfaces to N branches is not general enough: the N branches are very much analogous
to single particle states and second quantization allowing all 0 < n ≤ N -particle states
for given N rather than only N -particle states looks very natural: as a matter fact, this
interpretation was the original one and led to the very speculative and fuzzy notion of
N -atom, which I later more or less gave up. Quantum multi-furcation could be the root
concept implying the effective hierarchy of Planck constants, anyons and fractional charges,
and related notions- even the notions of N -nuclei, N -atoms, and N -molecules.

15.4.1 Basic physical ideas

The basic phenomenological rules are simple and there is no need to modify them.

i. The phases with non-standard values of effective Planck constant are identified as dark
matter. The motivation comes from the natural assumption that only the particles with
the same value of effective Planck can appear in the same vertex. One can illustrate
the situation in terms of the book metaphor. Imbedding spaces with different values
of Planck constant form a book like structure and matter can be transferred between
different pages only through the back of the book where the pages are glued together.
One important implication is that light exotic charged particles lighter than weak
bosons are possible if they have non-standard value of Planck constant. The standard
argument excluding them is based on decay widths of weak bosons and has led to a
neglect of large number of particle physics anomalies [K78].

ii. Large effective or real value of Planck constant scales up Compton length - or at least
de Broglie wave length - and its geometric correlate at space-time level identified as
size scale of the space-time sheet assignable to the particle. This could correspond to
the Kähler magnetic flux tube for the particle forming consisting of two flux tubes at
parallel space-time sheets and short flux tubes at ends with length of order CP2 size.
This rule has far reaching implications in quantum biology and neuroscience since
macroscopic quantum phases become possible as the basic criterion stating that macro-
scopic quantum phase becomes possible if the density of particles is so high that parti-
cles as Compton length sized objects overlap. Dark matter therefore forms macroscopic
quantum phases. One implication is the explanation of mysterious looking quantal ef-
fects of ELF radiation in EEG frequency range on vertebrate brain: E = hf implies
that the energies for the ordinary value of Planck constant are much below the thermal
threshold but large value of Planck constant changes the situation. Also the phase
transitions modifying the value of Planck constant and changing the lengths of flux
tubes (by quantum classical correspondence) are crucial as also reconnections of the
flux tubes.
The hierarchy of Planck constants suggests also a new interpretation for FQHE (frac-
tional quantum Hall effect) [K59] in terms of anyonic phases with non-standard value
of effective Planck constant realized in terms of the effective multi-sheeted covering of
imbedding space: multi-sheeted space-time is to be distinguished from many-sheeted
space-time.

iii. In astrophysics and cosmology the implications are even more dramatic if one believes
that also ~gr correponds to effective Planck constant interpreted as number of sheets of
multi-furcation. It was Nottale [E10] who first introduced the notion of gravitational
Planck constant as ~gr = GMm/v0, v0 < 1 has interpretation as velocity light param-
eter in units c = 1. This would be true for GMm/v0 ≥ 1. The interpretation of ~gr in
TGD framework is as an effective Planck constant associated with space-time sheets
mediating gravitational interaction between masses M and m. The huge value of ~gr
means that the integer ~gr/~0 interpreted as the number of sheets of covering is gigan-
tic and that Universe possesses gravitational quantum coherence in super-astronomical

http://tgdtheory.com/public_html/paddark/paddark.html#anyontgd
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scales for masses which are large. This would suggest that gravitational radiation is
emitted as dark gravitons which decay to pulses of ordinary gravitons replacing con-
tinuous flow of gravitational radiation.
It must be however emphasized that the interpretation of ~gr could be different, and
it will be found that one can develop an argument demonstrating how ~gr with a
correct order of magnitude emerges from the effective space-time metric defined by the
anticommutators appearing in the modified Dirac equation.

iv. Why Nature would like to have large effective value of Planck constant? A possible
answer relies on the observation that in perturbation theory the expansion takes in
powers of gauge couplings strengths α = g2/4π~. If the effective value of ~ replaces its
real value as one might expect to happen for multi-sheeted particles behaving like single
particle, α is scaled down and perturbative expansion converges for the new particles.
One could say that Mother Nature loves theoreticians and comes in rescue in their
attempts to calculate. In quantum gravitation the problem is especially acute since the
dimensionless parameter GMm/~ has gigantic value. Replacing ~ with ~gr = GMm/v0

the coupling strength becomes v0 < 1.

15.4.2 Space-time correlates for the hierarchy of Planck constants

The hierarchy of Planck constants was introduced to TGD originally as an additional
postulate and formulated as the existence of a hierarchy of imbedding spaces defined as
Cartesian products of singular coverings of M4 and CP2 with numbers of sheets given by
integers na and nb and ~ = n~0. n = nanb.

With the advent of zero energy ontology, it became clear that the notion of singular cov-
ering space of the imbedding space could be only a convenient auxiliary notion. Singular
means that the sheets fuse together at the boundary of multi-sheeted region. The effective
covering space emerges naturally from the vacuum degeneracy of Kähler action meaning
that all deformations of canonically imbedded M4 in M4×CP2 have vanishing action up to
fourth order in small perturbation. This is clear from the fact that the induced Kähler form
is quadratic in the gradients of CP2 coordinates and Kähler action is essentially Maxwell
action for the induced Kähler form. The vacuum degeneracy implies that the correspon-
dence between canonical momentum currents ∂LK/∂(∂αh

k) defining the modified gamma
matrices [K92] and gradients ∂αh

k is not one-to-one. Same canonical momentum current
corresponds to several values of gradients of imbedding space coordinates. At the partonic
2-surfaces at the light-like boundaries of CD carrying the elementary particle quantum
numbers this implies that the two normal derivatives of hk are many-valued functions of
canonical momentum currents in normal directions.

Multi-furcation is in question and multi-furcations are indeed generic in highly non-linear
systems and Kähler action is an extreme example about non-linear system. What multi-
furcation means in quantum theory? The branches of multi-furcation are obviously anal-
ogous to single particle states. In quantum theory second quantization means that one
constructs not only single particle states but also the many particle states formed from
them. At space-time level single particle states would correspond to N branches bi of
multi-furcation carrying fermion number. Two-particle states would correspond to 2-fold
covering consisting of 2 branches bi and bj of multi-furcation. N−particle state would cor-
respond to N -sheeted covering with all branches present and carrying elementary particle
quantum numbers. The branches co-incide at the partonic 2-surface but since their normal
space data are different they correspond to different tensor product factors of state space.
Also now the factorization N = nanb occurs but now na and nb would relate to branching
in the direction of space-like 3-surface and light-like 3-surface rather than M4 and CP2 as
in the original hypothesis.

In light of this the working hypothesis adopted during last years has been too limited:
for some reason I ended up to propose that only N -sheeted covering corresponding to a
situation in which all N branches are present is possible. Before that I quite correctly
considered more general option based on intuition that one has many-particle states in
the multi-sheeted space. The erratic form of the working hypothesis has not been used in



15.4. Updated view about the hierarchy of Planck constants 963

applications.

Multi-furcations relate closely to the quantum criticality of Kähler action. Feigenbaum bi-
furcations represent a toy example of a system which via successive bifurcations approaches
chaos. Now more general multi-furcations in which each branch of given multi-furcation can
multi-furcate further, are possible unless on poses any additional conditions. This allows
to identify additional aspect of the geometric arrow of time. Either the positive or negative
energy part of the zero energy state is ”prepared” meaning that single n-sub-furcations
of N -furcation is selected. The most general state of this kind involves superposition of
various n-sub-furcations.

15.4.3 Basic phenomenological rules of thumb in the new frame-
work

It is important to check whether or not the refreshed view about dark matter is consistent
with existent rules of thumb.

i. The interpretation of quantized multi-furcations as WCW anyons explains also why
the effective hierarchy of Planck constants defines a hierarchy of phases which are dark
relative to each other. This is trivially true since the phases with different number of
branches in multi-furcation correspond to disjoint regions of WCW so that the particles
with different effective value of Planck constant cannot appear in the same vertex.

ii. The phase transitions changing the value of Planck constant are just the multi-furcations
and can be induced by changing the values of the external parameters controlling the
properties of preferred extremals. Situation is very much the same as in any non-linear
system.

iii. In the case of massless particles the scaling of wavelength in the effective scaling of
~ can be understood if dark n-photons consist of n photons with energy E/n and
wavelength nλ.

iv. For massive particle it has been assumed that masses for particles and they dark
counterparts are same and Compton wavelength is scaled up. In the new picture this
need not be true. Rather, it would seem that wave length are same as for ordinary
electron.
On the other hand, p-adic thermodynamics predicts that massive elemenetary particles
are massless most of the time. ZEO predicts that even virtual wormhole throats are
massless. Could this mean that the picture applying on massless particle should apply
to them at least at relativistic limit at which mass is negligible. This might be the case
for bosons but for fermions also fermion number should be fractionalized and this is
not possible in the recent picture. If one assumes that the n-electron has same mass
as electron, the mass for dark single electron state would be scaled down by 1/n. This
does not look sensible unless the p-adic length defined by prime is scaled down by this
fact in good approximation.
This suggests that for fermions the basic scaling rule does not hold true for Compton
length λc = ~m. Could it however hold for de-Broglie lengths λ = ~/p defined in terms
of 3-momentum? The basic overlap rule for the formation of macroscopic quantum
states is indeed formulated for de Broglie wave length. One could argue that an 1/N -
fold reduction of density that takes place in the delocalization of the single particle
states to the N branches of the cover, implies that the volume per particle increases by
a factor N and single particle wave function is delocalized in a larger region of 3-space.
If the particles reside at effectively one-dimensional 3-surfaces - say magnetic flux tubes
- this would increase their de Broglie wave length in the direction of the flux tube and
also the length of the flux tube. This seems to be enough for various applications.

One important notion in TGD inspired quantum biology is dark cyclotron state.

i. The scaling ~ → k~ in the formula En = (n + 1/2)~eB/m implies that cyclotron
energies are scaled up for dark cyclotron states. What this means microscopically has
not been obvious but the recent picture gives a rather clearcut answer. One would have
k-particle state formed from cyclotron states in N -fold branched cover of space-time

http://en.wikipedia.org/wiki/Logistic_map
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surface. Each branch would carry magnetic field B and ion or electron. This would
give a total cyclotron energy equal to kEn. These cyclotron states would be excited
by k-photons with total energy E = khf and for large enough value of k the energies
involved would be above thermal threshold. In the case of Ca++ one has f = 15 Hz
in the field Bend = .2 Gauss. This means that the value of ~ is at least the ratio of
thermal energy at room temperature to E = hf . The thermal frequency is of order
1012 Hz so that one would have k ' 1011. The number branches would be therefore
rather high.

ii. It seems that this kinds of states which I have called cyclotron Bose-Einstein con-
densates could make sense also for fermions. The dark photons involved would be
Bose-Einstein condensates of k photons and wall of them would be simultaneously ab-
sorbed. The biological meaning of this would be that a simultaneous excitation of large
number of atoms or molecules can take place if they are localized at the branches of
N -furcation. This would make possible coherent macroscopic changes. Note that also
Cooper pairs of electrons could be n = 2-particle states associated with N -furcation.

There are experimental findings suggesting that photosynthesis involves delocalized exci-
tations of electrons and it is interesting so see whether this could be understood in this
framework.

i. The TGD based model relies on the assumption that cyclotron states are involved and
that dark photons with the energy of visible photons but with much longer wavelength
are involved. Single electron excitations (or single particle excitations of Cooper pairs)
would generate negentropic entanglement automatically.

ii. If cyclotron excitations are the primary ones, it would seem that they could be induced
by dark n-photons exciting all n electrons simultaneously. n-photon should have energy
of a visible photon. The number of cyclotron excited electrons should be rather large
if the total excitation energy is to be above thermal threshold. In this case one could
not speak about cyclotron excitation however. This would require that solar photons
are transformed to n-photons in N -furcation in biosphere.

iii. Second - more realistic looking - possibility is that the incoming photons have energy
of visible photon and are therefore n = 1 dark photons delocalized to the branches of
the N -furcation. They would induce delocalized single electron excitation in WCW
rather than 3-space.

15.4.4 Charge fractionalization and anyons

It is easy to see how the effective value of Planck constant as an integer multiple of its
standard value emerges for multi-sheeted states in second quantization. At the level of
Kähler action one can assume that in the first approximation the value of Kähler action for
each branch is same so that the total Kähler action is multiplied by n. This corresponds
effectively to the scaling αK → αK/n induced by the scaling ~0 → n~0.

Also effective charge fractionalization and anyons emerge naturally in this framework.

i. In the ordinary charge fractionalization the wave function decomposes into sharply
localized pieces around different points of 3-space carrying fractional charges summing
up to integer charge. Now the same happens at at the level of WCW (”world of classical
worlds”) rather than 3-space meaning that wave functions in E3 are replaced with wave
functions in the space-time of 3-surfaces (4-surfaces by holography implied by General
Coordinate Invariance) replacing point-like particles. Single particle wave function in
WCW is a sum of N sharply localized contributions: localization takes place around
one particular branch of the multi-sheeted space time surface. Each branch carries a
fractional charge q/N for teh analogs of plane waves.
Therefore all quantum numbers are additive and fractionalization is only effective and
observable in a localization of wave function to single branch occurring with probability
p = 1/N from which one can deduce that charge is q/N .

ii. The is consistent with the proposed interpretation of dark photons/gravitons since they
could carry large spin and this kind of situation could decay to bunches of ordinary

http://en.wikipedia.org/wiki/Fractional_quantum_Hall_effect
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photons/gravitons. It is also consistent with electromagnetic charge fractionalization
and fractionalization of spin.

iii. The original - and it seems wrong - argument suggested what might be interpreted as
a genuine fractionalization for orbital angular momentum and also of color quantum
numbers, which are analogous to orbital angular momentum in TGD framework. The
observation was that a rotation through 2π at space-time level moving the point along
space-time surface leads to a new branch of multi-furcation and N + 1:th branch cor-
responds to the original one. This suggests that angular momentum fractionalization
should take place for M4 angle coordinate φ because for it 2π rotation could lead to a
different sheet of the effective covering.
The orbital angular momentum eigenstates would correspond to waves exp(iφm/N),
m = 0, 2, ..., N −1 and the maximum orbital angular momentum would correspond the
sum

∑N−1
m=0 m/N = (N − 1)/2. The sum of spin and orbital angular momentum be

therefore fractional.
The different prediction is due to the fact that rotations are now interpreted as flows
rotating the points of 3-surface along 3-surface rather than rotations of the entire
partonic surface in imbedding space. In the latter interpretation the rotation by 2π
does nothing for the 3-surface. Hence fractionalization for the total charge of the
single particle states does not take place unless one adopts the flow interpretation.
This view about fractionalization however leads to problems with fractionalization of
electromagnetic charge and spin for which there is evidence from fractional quantum
Hall effect.

15.4.5 Negentropic entanglement between branches of multi-furcations

The application of negentropic entanglement and effective hierarchy of Planck constants
to photosynthesis and metabolism [K39] suggests that these two notions might be closely
related. Negentropic entanglement is possible for rational (and even algebraic) entangle-
ment probabilities. If one allows number theoretic variant of Shannon entropy based on
the p-adic norm for the probability appearing as argument of logarithm [K46], it is quite
possible to have negative entanglement entropy and the interpretation is as genuine infor-
mation carried by entanglement. The superposition of state pairs ai⊗ bi in entangled state
would represent instances of a rule. In the case of Schrödinger cat the rule states that it
is better to not open the bottle: understanding the rule consciously however requires that
cat is somewhat dead! Entanglement provides information about the relationship between
two systems. Shannon entropy represents lack of information about single particle state.

Negentropic entanglement would replace metabolic energy as the basic quantity mak-
ing life possible. Metabolic energy could generate negentropic entanglement by exciting
biomolecules to negentropically entangled states. ATP providing the energy for generating
the metabolic entanglement could also itself carry negentropic entanglement, and transfer
it to the target by the emission of large ~ photons.

How the large ~ photons could carry negentropic entanglement?

i. In zero energy ontology large ~ photons could carry the negentropic entanglement as
entanglement between positive and negative energy parts of the photon state.

ii. The negentropic entanglement of large ~ photon could be also associated with its
positive or energy part or both. Large ~eff = n~ photon with n-fold energy E = n×hf
is n-sheeted structure consisting of n-photons with energy E = hf delocalized in the
discrete space formed by the N space-time sheets. The n single photon states can
entangle and since the branches effectively form a discrete space, rational and algebraic
entanglement is very natural. There are many options for how this could happen. For
instance, for N -fold branching the superposition of all N !/(N − n)!n! states obtained
by selecting n branches are possible and the resulting state is entangled state. If this
interpretation is correct, the vacuum degeneracy and multi-furcations implied by it
would the quintessence of life.

iii. The identification of negentropic entanglement as entanglement between branches of
a multi-furcation is not the only possible option. The proposal is that non-localized

http://tgdtheory.com/public_html/hologram/hologram.html#metab
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single particle excitations of cyclotron condensate at magnetic flux tubes give rise to
negentropic entanglement relevant to living matter. Dark photons could transfer the
negentropic entanglement possibly assignable to electron pairs of ATP molecule.

iv. The negentropic entanglement associated with cyclotron condensate could be associ-
ated with the branches of the large ~ variant of the condensate. In this case single
particle excitation would not be sum of single particle excitations at various positions
of 3-space but at various sheet of covering representing points of WCW. If each of the
n branches carries 1/n:th part of electron one would have an anyonic state in WCW.

v. One can also make a really crazy question. Could it be that ATP and various bio-
molecules form n-particle states at the n-sheet of N -furcations and that the bio-
chemistry involves simultaneous reactions of large numbers of biomolecules at these
sheets? If so, the chemical reactions would take place as large number of copies.

Note that in this picture the breaking of time reversal symmetry [K4] in the presence
of metabolic energy feed would be accompanied by evolution involving repeated multi-
furcations leading to increased complexity. TGD based view about the arrow of time
implies that for a given CD this evolution has definite direction of time. At the level
of ensemble it implies second law but at the level of individual system means increasing
complexity.

15.4.6 Dark variants of nuclear and atomic physics

During years I have in rather speculative spirit considered the possibility of dark variants of
nuclear and atomic - and perhaps even molecular physics. Also the notion of dark cyclotron
state is central in the quantum model of living matter. One such notion is the idea that
dark nucleons could realize vertebrate genetic code [K80].

Before the real understanding what charge fractionalization means it was possible to imag-
ine several variants of say dark atoms depending on whether both nuclei and electrons are
dark or whether only electrons are dark and genuinely fractionally charged. The recent pic-
ture however fixes these notions completely. Basic building bricks are just ordinary nuclei
and atoms and they form n-particle states associated with n-branches of N -furcation with
n = 1, ..., N . The fractionalization for a single particle state delocalized completely to the
discrete space of N branches as the analog of plane wave means that single branch carriers
charge 1/N .

The new element is the possibility of n-particle states populating n branches of the N -
furcation: note that there is superposition over the states corresponding to different se-
lections of these n branches. N − k and k-nuclei/atoms are in sense conjugates of each
other and they can fuse to form N -nuclei/N -atoms which in fermionic case are analogous
to Fermi sea with all states filled.

Bio-molecules seem to obey symbolic dynamics which does not depend much on the chem-
ical properties: this has motivated various linguistic metaphors applied in bio-chemistry
to describe the interactions between DNA and related molecules. This motivated the wild
speculation was that N -atoms and even N -molecules could make possible the emergence
of symbolic representations with n ≤ N serving as a name of atom/molecule and that k-
and N − k atom/molecule would be analogous to opposite sexes in that there would be
strong tendency for them to fuse together to form N -atom/-molecule. For instance, in
bio-catalysis k- and N − k-atoms/molecules would be paired. The recent picture about n
and N − k atoms seems to be consistent with these speculations which I had already given
up as too crazy. It is difficult to avoid even the speculation that bio-chemistry could re-
place chemical reactions with their n-multiples. Synchronized quantum jumps would allow
to avoid the distastrous effects of state function reductions on quantum coherence. The
second manner to say the same thing is that the effective value of Planck constant is large.
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15.4.7 What about the relationship of gravitational Planck con-
stant to ordinary Planck constant?

Gravitational Planck constant is given by the expression ~gr = GMm/v0, where v0 < 1
has interpretation as velocity parameter in the units c = 1. Can one interpret also ~gr
as effective value of Planck constant so that its values would correspond to multifurcation
with a gigantic number of sheets. This does not look reasonable.

Could one imagine any other interpretation for ~gr? Could the two Planck constants
correspond to inertial and gravitational dichotomy for four-momenta making sense also for
angular momentum identified as a four-vector? Could gravitational angular momentum
and the momentum associated with the flux tubes mediating gravitational interaction be
quantized in units of ~gr naturally?

i. Gravitational four-momentum can be defined as a projection of theM4-four-momentum
to space-time surface. It’s length can be naturally defined by the effective metric gαβeff
defined by the anticommutators of the modified gamma matrices. Gravitational four-
momentum appears as a measurement interaction term in the modified Dirac action
and can be restricted to the space-like boundaries of the space-time surface at the ends
of CD and to the light-like orbits of the wormhole throats and which induced 4- metric
is effectively 3-dimensional.

ii. At the string world sheets and partonic 2-surfaces the effective metric degenerates to
2-D one. At the ends of braid strands representing their intersection, the metric is
effectively 4-D. Just for definiteness assume that the effective metric is proportional to
the M4 metric or rather - to its M2 projection: gkleff = K2mkl.
One can express the length squared for momentum at the flux tubes mediating the
gravitational interaction between massive objects with masses M and m as

gαβeffpαpβ = gαβeff∂αh
k∂βh

lpkpl ≡ gkleffpkpl = n2 ~2

L2
. (15.4.1)

Here L would correspond to the length of the flux tube mediating gravitational inter-
action and pk would be the momentum flowing in that flux tube. gkleff = K2mkl would
give

p2 =
n2~2

K2L2
.

~gr could be identifed in this simplified situation as ~gr = ~/K.

iii. Nottale’s proposal requires K = GMm/v0 for the space-time sheets mediating grav-
itational interacting between massive objects with masses M and m. This gives the
estimate

pgr =
GMm

v0

1

L
. (15.4.2)

For v0 = 1 this is of the same order of magnitude as the exchanged momentum if grav-
itational potential gives estimate for its magnitude. v0 is of same order of magnitude
as the rotation velocity of planet around Sun so that the reduction of v0 to v0 ' 2−11

in the case of inner planets does not mean that the propagation velocity of gravitons
is reduced.

iv. Nottale’s formula requires that the order of magnitude for the components of the energy
momentum tensor at the ends of braid strands at partonic 2-surface should have value
GMm/v0. Einstein’s equations T = κG+Λg give a further constraint. For the vacuum
solutions of Einstein’s equations with a vanishing cosmological constant the value of hgr
approaches infinity. At the flux tubes mediating gravitational interaction one expects
T to be proportional to the factor GMm simply because they mediate the gravitational
interaction.

v. One can consider similar equation for gravitational angular momentum:

gαβeffLαLβ = gkleffLkLl = l(l + 1)~2 . (15.4.3)
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This would give under the same simplifying assumptions

L2 = l(l + 1)
~2

K2
. (15.4.4)

This would justify the Bohr quantization rule for the angular momentum used in the
Bohr quantization of planetary orbits.

One might counter argue that if gravitational 4- momentum square is proportional to
inertial 4-momentum squared, then Equivalence Principle implies that hgr can have only
single value. In ZEO however all wormhole throats - also virtual - are massless and the
argument fails. The varying hgr can be assigned only with longitudinal and transversal
momentum squared separately but not to the ratio of gravitational and inertial 4-momenta
squared which both vanish.

Maybe the proposed connection might make sense in some more refined formulation. In
particular the proportionality between mkl

eff = Kmkl could make sense as a quantum
average. Also the fact, that the constant v0 varies, could be understood from the dynamical
character of mkl

eff .

15.4.8 How the effective hierarchy of Planck constants could reveal
itself in condensed matter physics

Anderson - one of the gurus of condensed matter physics - has stated that there exists no
theory of condensed matter: experiments produce repeatedly surprises and theoreticians
do their best to explain them in the framework of existing quantum theory.

This suggests that condensed matter physics might allow room even for new physics. In-
deed, the model for fractional quantum Hall effect (FQHE) [K59] strengthened the feeling
that the many-sheeted physics of TGD could play a key role in condensed matter physics
often thought to be a closed chapter in physics. One implication would be that space-
time regions with Euclidian signature of the induced metric would represent the space-time
sheet assignable to condensed matter object as a whole as analog of a line of a generalized
Feynman diagram. Also the hierarchy of effective Planck constants ~eff = n~ appears in
the model of FQHE.

The recent discussion of possibility of quantum description of psychokinesis [L15] boils down
to a model for intentional action based on the notion of magnetic flux tube carrying dark
matter and dark photons and inducing macroscopic quantum superpositions of magnetic
bubbles of ferromagnet with opposite magnetization. As a by-product the model leads
to the proposal that the conduction electrons responsible for ferromagnetism are actually
dark (in the sense of having large value of effective Planck constant) and assignable to
a multi-sheeted singular covering of space-time sheet assignable to second quantization
multifurcation of the preferred extremal of Kähler action made possible by its huge vacuum
degeneracy.

What might be the signatures for ~eff = n~ states in condensed matter physics and could
one interpret some exotic phenomena of condensed matter physics in terms of these states
for electrons?

i. The basic signature for the many-electron states associated with multi-sheeted covering
is a sharp peak in the density of states due to the presence of new degrees of freedom.
In ferromagnets this kind of sharp peak is indeed observed at Fermi energy [D5].

ii. In the theory of super-conductivity Cooper pairs are identified as bosons. In TGD
framework all bosons - also photons - emerge as wormhole contacts with throats car-
rying fermion and antifermion. I have always felt uneasy with the assumption that
two-fermion states obey exact Bose-Einstein statistics at the level of oscillator op-
erators: they are after all two-fermion states. The sheets of multi-sheeted covering
resulting in a multifurcation could however carry both photons identified as fermion-
antifermion pairs and Cooper pairs and this could naturally give rise to Bose-Einstein
statistics in strong sense and also be involved with Bose-Einstein condensates. The
maximum number of photons/Cooper pairs in the Bose-Einstein condensate would be

http://www.tcd.ie/Physics/Magnetism/Lectures/5006/5006-5.pdf
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given by the number of sheets. Note that in zero energy ontology also the counterparts
of coherent states of Cooper pairs are possible: in positive energy ontology they have
ill-defined fermion number and also this has made me feel uneasy.

iii. Majorana fermions [D3] have become one of the hot topics of condensed matter physics
recently.

A. Majorana particles are actually quasiparticles which can be said to be half-electrons
and half-holes. In the language of anyons would would have charge fractionization
e→ e/2. The oscillator operator a†(E) creating the hole with energy E defined as
the difference of real energy and Fermi energy equals to the annihilation operator
a(−E) creating a hole: a†(E) = a(−E). If the energy of excitation is E = 0 one
obtains a†(0) = a(−0).
Since oscillator operators generate a Clifford algebra just like gamma matrices do,
one can argue that one has Majorana fermions at the level of Fock space rather
than at the level of spinors. Note that one cannot define Fock vacuum as a state
annihilated by a(0). Since the creation of particle generates a hole equal to particle
for E = 0, Majorana particles come always in pairs. A fusion of two Majorana
particles produces an ordinary fermion.

B. Purely mathematically Majorana fermion as a quasiparticle would be highly anal-
ogous to covariantly constant right-handed neutrino spinor in TGD with vanishing
four-momentum. Note that right-handed neutrino allows 4-dimensional modes as
a solution of the modified Dirac equation whereas other spinor modes localized to
partonic 2-surfaces and string world sheets. The recent view is however that covari-
antly constant right-handed neutrino cannot not give rise to the TGD counterpart
of standard space-time SUSY.

C. In TGD framework the description that suggests itself is in terms of bifurcation of
space-time sheet. Charge -e/2 states would be electrons delocalized to two sheets.
Charge fractionization would occur in the sense that both sheets would carry charge
-e/2. Bifurcation could also carry two electrons giving charge -e at both sheets.
Two-sheeted analog of Cooper pair would be in question. Ordinary Cooper pair
would in turn be localized in single sheet of a multifurcation. The two-sheeted
analog of Cooper pair could be regarded as a pair of Majorana particles if the
measured charge of electron corresponds to its charge at single sheet of bifurcation
(this assumption made also in the case of FQHE is crucial!). Whether this is the
case, remains unclear to me.

D. Fractional Josephson effect in which the current carriers of Josephson current be-
come electrons or quasiparticles with the quantum numbers of electron has been
suggested to serve as a signature of Majorana quasiparticles [D4]. An explana-
tion consistent with above assumption is as a two-sheeted analog of Cooper pair
associated with a bifurcated space-time sheets.
If the measurements of Josephson current measure the current associated with
single branch of bifurcation the unit of Josephson current is indeed halved from
-2e to -e. These 2-sheeted Cooper pairs behave like dark matter with respect to
ordinary matter so that dissipation free current flow would become possible.
Note that ordinary Cooper pair Bose-Einstein condensate would correspond to N-
furcation with N identified as the number of Cooper pairs in the condensate if
the above speculation is correct. Fractional Josephson effect generated in exter-
nal field would correspond to a formation of mini Bose-Einstein condensates in
this framework and also smaller fractional charges are expected. In this case the
interpretation as Majorana fermion does not seem to make sense.

15.4.9 Summary

The hierarchy of Planck constants reduces to second quantization of multi-furcations in
TGD framework and the hierarchy is only effective. Anyonic physics and effective charge
fractionalization are consequences of second quantized multi-furcations. This framework
also provides quantum version for the transition to chaos via quantum multi-furcations

http://en.wikipedia.org/wiki/Majorana_fermion
http://arxiv.org/pdf/1204.4212v2.pdf
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and living matter represents the basic application. The key element of dynamics of TGD
is vacuum degeneracy of Kähler action making possible quantum criticality having the
hierarchy of multi-furcations as basic aspect. The potential problems relate to the question
whether the effective scaling of Planck constant involves scaling of ordinary wavelength or
not. For particles confined inside linear structures such as magnetic flux tubes this seems
to be the case.

There is also an intriguing connection with the vision about physics as generalized number
theory. The conjecture that the preferred extremals of Kähler action consist of quaternionic
or co-quaternionic regions led to a construction of them using iteration and also led to the
hierarchy of multi-furcations [K92]. Therefore it seems that the dynamics of preferred
extremals might indeed reduce to associativity/co-associativity condition at space-time
level , to commutativity/co-commutativity condition at the level of string world sheets and
partonic 2-surfaces, and to reality at the level of stringy curves (conformal invariance makes
stringy curves causal determinants [K87] so that conformal dynamics represents conformal
evolution) [K74].

15.5 Vision about dark matter as phases with non-
standard value of Planck constant

15.5.1 Dark rules

It is useful to summarize the basic phenomenological view about dark matter.

The notion of relative darkness

The essential difference between TGD and more conventional models of dark matter is that
darkness is only relative concept.

i. Generalized imbedding space forms a book like structure and particles at different
pages of the book are dark relative to each other since they cannot appear in the same
vertex identified as the partonic 2-surface along which light-like 3-surfaces representing
the lines of generalized Feynman diagram meet.

ii. Particles at different space-time sheets act via classical gauge field and gravitational
field and can also exchange gauge bosons and gravitons (as also fermions) provided
these particles can leak from page to another. This means that dark matter can be
even photographed [I6] . This interpretation is crucial for the model of living matter
based on the assumption that dark matter at magnetic body controls matter visible to
us. Dark matter can also suffer a phase transition to visible matter by leaking between
the pages of the Big Book.

iii. The notion of standard value ~0 of ~ is not a relative concept in the sense that it
corresponds to rational r = 1. In particular, the situation in which both CD and
CP2 correspond to trivial coverings and factor spaces would naturally correspond to
standard physics.

Is dark matter anyonic?

In [K59] a detailed model for the Kähler structure of the generalized imbedding space is
constructed. What makes this model non-trivial is the possibility that CP2 Kähler form
can have gauge parts which would be excluded in full imbedding space but are allowed
because of singular covering/factor-space property. The model leads to the conclusion
that dark matter is anyonic if the partonic 2-surface, which can have macroscopic or even
astrophysical size, encloses the tip of CD within it. Therefore the partonic 2-surface is
homologically non-trivial when the tip is regarded as a puncture. Fractional charges for
anyonic elementary particles imply confinement to the partonic 2-surface and the particles
can escape the two surface only via reactions transforming them to ordinary particles. This
would mean that the leakage between different pages of the big book is a rare phenomenon.
This could partially explain why dark matter is so difficult to observe.

http://tgdtheory.com/public_html/tgdgeom/tgdgeom.html#dirasvira
http://tgdtheory.com/public_html/tgdquant/tgdquant.html#Yangian
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Field body as carrier of dark matter

The notion of ”field body” implied by topological field quantization is essential. There
would be em, Z0, W , gluonic, and gravitonic field bodies, each characterized by its one
prime. The motivation for considering the possibility of separate field bodies seriously is
that the notion of induced gauge field means that all induced gauge fields are expressible
in terms of four CP2 coordinates so that only single component of a gauge potential allows
a representation as and independent field quantity. Perhaps also separate magnetic and
electric field bodies for each interaction and identifiable as flux quanta must be considered.
This kind of separation requires that the fermionic content of the flux quantum (say fermion
and anti-fermion at the ends of color flux tube) is such that it conforms with the quantum
numbers of the corresponding boson.

What is interesting that the conceptual separation of interactions to various types would
have a direct correlate at the level of space-time topology. From a different perspective in-
spired by the general vision that many-sheeted space-time provides symbolic representations
of quantum physics, the very fact that we make this conceptual separation of fundamental
interactions could reflect the topological separation at space-time level.

p-Adic mass calculations for quarks encourage to think that the p-adic length scale charac-
terizing the mass of particle is associated with its electromagnetic body and in the case of
neutrinos with its Z0 body. Z0 body can contribute also to the mass of charged particles
but the contribution would be small. It is also possible that these field bodies are purely
magnetic for color and weak interactions. Color flux tubes would have exotic fermion and
anti-fermion at their ends and define colored variants of pions. This would apply not only
in the case of nuclear strings but also to molecules and larger structures so that scaled
variants of elementary particles and standard model would appear in all length scales as
indeed implied by the fact that classical electro-weak and color fields are unavoidable in
TGD framework.

One can also go further and distinguish between magnetic field body of free particle for
which flux quanta start and return to the particle and ”relative field” bodies associated
with pairs of particles. Very complex structures emerge and should be essential for the
understanding the space-time correlates of various interactions. In a well-defined sense
they would define space-time correlate for the conceptual analysis of the interactions into
separate parts. In order to minimize confusion it should be emphasized that the notion of
field body used in this chapter relates to those space-time correlates of interactions, which
are more or less static and related to the formation of bound states.

15.5.2 Phase transitions changing Planck constant

The general picture is that p-adic length scale hierarchy corresponds to p-adic coupling
constant evolution and hierarchy of Planck constants to the coupling constant evolution
related to phase resolution. Both evolutions imply a book like structure of the generalized
imbedding space.

Transition to large ~ phase and failure of perturbation theory

One of the first ideas was that the transition to large ~ phase occurs when perturbation
theory based on the expansion in terms of gauge coupling constant ceases to converge:
Mother Nature would take care of the problems of theoretician. The transition to large ~
phase obviously reduces the value of gauge coupling strength α ∝ 1/~ so that higher orders
in perturbation theory are reduced whereas the lowest order ”classical” predictions remain
unchanged. A possible quantitative formulation of the criterion is that maximal 2-particle
gauge interaction strength parameterized as Q1Q2α satisfies the condition Q1Q2α ' 1.

A justification for this picture would be that in non-perturbative phase large quantum
fluctuations are present (as functional integral formalism suggests). At space-time level
this could mean that space-time sheet is near to a non-deterministic vacuum extremal -at
least if homologically trivial geodesic sphere defines the number theoretic braids. At certain
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critical value of coupling constant strength one expects that the transition amplitude for
phase transition becomes very large. The resulting phase would be of course different from
the original since typically charge fractionization would occur.

One should understand why the failure of the perturbation theory (expected to occur for
αQ1Q2 > 1) induces the reduction of Clifford algebra, scaling down of CP2 metric, and
whether the G-symmetry is exact or only approximate. A partial understanding already
exists. The discrete G symmetry and the reduction of the dimension of Clifford algebra
would have interpretation in terms of a loss of degrees of freedom as a strongly bound state
is formed. The multiple covering of M4

± accompanying strong binding can be understood
as an automatic consequence of G-invariance. A concrete realization for the binding could
be charge fractionization which would not allow the particles bound on large light-like
3-surface to escape without transformation to ordinary particles.

Two examples perhaps provide more concrete view about this idea.

i. The proposed scenario can reproduce the huge value of the gravitational Planck con-
stant. One should however develop a convincing argument why non-perturbative phase
for the gravitating dark matter leads to a formation of Ga× covering of CD\M2 ×
CP2\S2

I with the huge value of ~eff = na/nb ' GM1M2/v0. The basic argument is
that the dimensionless parameter αgr = GM1M2/4π~ should be so small that per-
turbation theory works. This gives ~gr ≥ GM1M2/4π so that order of magnitude is
predicted correctly.

ii. Color confinement represents the simplest example of a transition to a non-perturbative
phase. In this case A2 and n = 3 would be the natural option. The value of Planck
constant would be 3 times higher than its value in perturbative QCD. Hadronic space-
time sheets would be 3-fold coverings of M4

± and baryonic quarks of different color
would reside on 3 separate sheets of the covering. This would resolve the color statistics
paradox suggested by the fact that induced spinor fields do not possess color as spin
like quantum number and by the facts that for orbifolds different quarks cannot move
in independent CP2 partial waves assignable to CP2 cm degrees of freedom as in
perturbative phase.

The mechanism of phase transition and selection rules

The mechanism of phase transition is at classical level similar to that for ordinary phase
transitions. The partonic 2-surface decomposes to regions corresponding to difference val-
ues of ~ at quantum criticality in such a manner that regions in which induced Kähler
form is non-vanishing are contained within single page of imbedding space. It might be
necessary to assume that only a region corresponding to single value of ~ is possible for
partonic 2-surfaces and δCD × CP2 so that quantum criticality would be associated with
the intermediate state described by the light-like 3-surface. One could also see the phase
transition as a leakage of X2 from given page to another: this is like going through a closed
door through a narrow slit between door and floor. By quantum criticality the points of
number theoretic braid are already in the slit.

As in the case of ordinary phase transitions the allowed phase transitions must be consistent
with the symmetries involved. This means that if the state is invariant under the maximal
cyclic subgroups Ga and Gb then also the final state must satisfy this condition. This gives
constraints to the orders of maximal cyclic subgroups Za and Zb for initial and final state:
n(Zai) resp. n(Zbi)) must divide n(Zaf ) resp. n(Zbf or vice versa in the case that factors of
Zi do not leave invariant the states. If this is the case similar condition must hold true for
apppropriate subgroups. In particular, powers of prime Zpn , n = 1, 2, ... define hierarchies
of allowed phase transitions.

15.5.3 Coupling constant evolution and hierarchy of Planck con-
stants

If the overall vision is correct, quantum TGD would be characterized by two kinds of cou-
plings constant evolutions. p-Adic coupling constant evolution would correspond to length
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scale resolution and the evolution with respect to Planck constant to phase resolution. Both
evolution would have number theoretic interpretation.

Evolution with respect to phase resolution

The coupling constant evolution in phase resolution in p-adic degrees of freedom corre-
sponds to emergence of algebraic extensions allowing increasing variety of phases exp(i2π/n)
expressible p-adically. This evolution can be assigned to the emergence of increasingly com-
plex quantum phases and the increase of Planck constant.

One expects that quantum phases q = exp(iπ/n) which are expressible using only iterated
square root operation are number theoretically very special since they correspond to alge-
braic extensions of p-adic numbers obtained by an iterated square root operation, which
should emerge first. Therefore systems involving these values of q should be especially
abundant in Nature. That arbitrarily high square roots are involved as becomes clear by
studying the case n = 2k: cos(π/2k) =

√
[1 + cos(π/2k−1)]/2.

These polygons are obtained by ruler and compass construction and Gauss showed that
these polygons, which could be called Fermat polygons, have nF = 2k

∏
s Fns sides/vertices:

all Fermat primes Fns in this expression must be different. The analog of the p-adic
length scale hypothesis emerges since larger Fermat primes are near a power of 2. The
known Fermat primes Fn = 22n + 1 correspond to n = 0, 1, 2, 3, 4 with F0 = 3, F1 = 5,
F2 = 17, F3 = 257, F4 = 65537. It is not known whether there are higher Fermat primes.
n = 3, 5, 15-multiples of p-adic length scales clearly distinguishable from them are also
predicted and this prediction is testable in living matter. I have already earlier considered
the possibility that Fermat polygons could be of special importance for cognition and for
biological information processing [K54] .

This condition could be interpreted as a kind of resonance condition guaranteing that scaled
up sizes for space-time sheets have sizes given by p-adic length scales. The numbers nF
could take the same role in the evolution of Planck constant assignable with the phase
resolution as Mersenne primes have in the evolution assignable to the p-adic length scale
resolution.

The Dynkin diagrams of exceptional Lie groups E6 and E8 are exceptional as subgroups
of rotation group in the sense that they cannot be reduced to symmetry transformations
of plane. They correspond to the symmetry group S4 × Z2 of tedrahedron and A5 × Z2 of
dodecahedron or its dual polytope icosahedron (A5 is 60-element subgroup of S5 consisting
of even permutations). Maximal cyclic subgroups are Z4 and Z5 and and thus their orders
correspond to Fermat polygons. Interestingly, n = 5 corresponds to minimum value of n
making possible topological quantum computation using braids and also to Golden Mean.

Is there a correlation between the values of p-adic prime and Planck constant?

The obvious question is whether there is a correlation between p-adic length scale and
the value of Planck constant. One-to-one correspondence is certainly excluded but loose
correlation seems to exist.

i. In [K3] the information about the number theoretic anatomy of Kähler coupling strength
is combined with input from p-adic mass calculations predicting αK to be the value
of fine structure constant at the p-adic length scale associated with electron. One can
also develop an explicit expression for gravitational constant assuming its renormaliza-
tion group invariance on basis of dimensional considerations and this model leads to a
model for the fraction of volume of the wormhole contact (piece of CP2 type extremal)
from the volume of CP2 characterizing gauge boson and for similar volume fraction for
the piece of the CP2 type vacuum extremal associated with fermion.

ii. The requirement that gravitational constant is renormalization group invariant implies
that the volume fraction depends logarithmically on p-adic length scale and Planck
constant (characterizing quantum scale). The requirement that this fraction in the
range (0, 1) poses a correlation between the rational characterizing Planck constant
and p-adic length scale. In particular, for space-time sheets mediating gravitational
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interaction Planck constant must be larger than ~0 above length scale which is about
.1 Angstrom. Also an upper bound for ~ for given p-adic length scale results but is
very large. This means that quantum gravitational effects should become important
above atomic length scale [K3] .

15.6 Some applications

Below some applications of the hierarchy of Planck constants as a model of dark matter
are briefly discussed. The range of applications varying from elementary particle physics to
cosmology and I hope that this will convince the reader that the idea has strong physical
motivations.

15.6.1 A simple model of fractional quantum Hall effect

The generalization of the imbedding space suggests that it could possible to understand
fractional quantum Hall effect [D2] at the level of basic quantum TGD. This section rep-
resents the first rough model of QHE constructed for a couple of years ago is discussed.
Needless to emphasize, the model represents only the basic idea and involves ad hoc as-
sumption about charge fractionization.

Recall that the formula for the quantized Hall conductance is given by

σ = ν × e2

h
,

ν =
n

m
. (15.6.1)

Series of fractions in ν = 1/3, 2/5, 3/7, 4/9, 5/11, 6/13, 7/15..., 2/3, 3/5, 4/7, 5/9, 6/11, 7/13...,
5/3, 8/5, 11/7, 14/9...4/3, 7/5, 10/7, 13/9..., 1/5, 2/9, 3/13..., 2/7, 3/11..., 1/7.... with odd
denominator have been observed as are also ν = 1/2 and ν = 5/2 states with even denom-
inator [D2] .

The model of Laughlin [D16] cannot explain all aspects of FQHE. The best existing model
proposed originally by Jain is based on composite fermions resulting as bound states of elec-
tron and even number of magnetic flux quanta [D14] . Electrons remain integer charged but
due to the effective magnetic field electrons appear to have fractional charges. Composite
fermion picture predicts all the observed fractions and also their relative intensities and the
order in which they appear as the quality of sample improves.

The generalization of the notion of imbedding space suggests the possibility to interpret
these states in terms of fractionized charge, spin, and electron number. There are 2×2 = 4
combinations of covering and factors spaces of CP2 and three of them can lead to the
increase of Planck constant. Besides this one can consider two options for the formula of
Planck constant so that which the very meager theoretical background one can make only
guesses. In the following a model based on option II for which the number of states is
conserved in the phase transition changing ~.

i. The easiest manner to understand the observed fractions is by assuming that both
CD and CP2 correspond to covering spaces so that both spin and electric charge and
fermion number are fractionized. This means that e in electronic charge density is
replaced with fractional charge. Quantized magnetic flux is proportional to e and the
question is whether also here fractional charge appears. Assume that this does not
occur.

ii. With this assumption the expression for the Planck constant becomes for Option II as
r = ~/~0 = na/nb and charge and spin units are equal to 1/nb and 1/na respectively.
This gives ν = nna/nb. The values m = 2, 3, 5, 7, .. are observed. Planck constant
can have arbitrarily large values. There are general arguments stating that also spin
is fractionized in FQHE.
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iii. Both ν = 1/2 and ν = 5/2 state has been observed [D2, D11] . The fractionized charge
is e/4 in the latter case [D11, D18] . Since ni > 3 holds true if coverings and factor
spaces are correlates for Jones inclusions, this requires na = 4 and nb = 8 for ν = 1/2
and nb = 4 and na = 10 for ν = 5/2. Correct fractionization of charge is predicted. For
nb = 2 also Z2 would appear as the fundamental group of the covering space. Filling
fraction 1/2 corresponds in the composite fermion model and also experimentally to
the limit of zero magnetic field [D14] . nb = 2 is inconsistent with the observed
fractionization of electric charge for ν = 5/2 and with the vision inspired by Jones
inclusions.

iv. A possible problematic aspect of the TGD based model is the experimental absence
of even values of nb except nb = 2 (Laughlin’s model predicts only odd values of
n). A possible explanation is that by some symmetry condition possibly related to
fermionic statistics (as in Laughlin model) na/nb must reduce to a rational with an
odd denominator for nb > 2. In other words, one has na ∝ 2r, where 2r the largest
power of 2 divisor of nb.

v. Large values of na emerge as B increases. This can be understood from flux quan-
tization. One has e

∫
BdS = n~(M4) = nna~0. By using actual fractional charge

eF = e/nb in the flux factor would give eF
∫
BdS = n(na/nb)~0 = n~. The interpreta-

tion is that each of the na sheets contributes one unit to the flux for e. Note that the
value of magnetic field in given sheet is not affected so that the build-up of multiple
covering seems to keep magnetic field strength below critical value.

vi. The understanding of the thermal stability is not trivial. The original FQHE was
observed in 80 mK temperature corresponding roughly to a thermal energy of T ∼ 10−5

eV. For graphene the effect is observed at room temperature. Cyclotron energy for
electron is (from fe = 6 × 105 Hz at B = .2 Gauss) of order thermal energy at room
temperature in a magnetic field varying in the range 1-10 Tesla. This raises the question
why the original FQHE requires so low temperature. The magnetic energy of a flux
tube of length L is by flux quantization roughly e2B2S ∼ Ec(e)meL (~0 = c = 1)
and exceeds cyclotron roughly by a factor L/Le, Le electron Compton length so that
thermal stability of magnetic flux quanta is not the explanation. A possible explanation
is that since FQHE involves several values of Planck constant, it is quantum critical
phenomenon and is characterized by a critical temperature. The differences of the
energies associated with the phase with ordinary Planck constant and phases with
different Planck constant would characterize the transition temperature.

As already noticed, it is possible to imagine several other options and the assumption
about charge fractionization -although consistent with fractionization for ν = 5/2, is rather
adhoc. Therefore the model can be taken as a warm-up exercise only. In [K59] , where
the delicacies of Kähler structure of generalized imbedding space are discussed, also a more
detailed of QHE is discussed.

15.6.2 Gravitational Bohr orbitology

The basic question concerns justification for gravitational Bohr orbitology [K66] . The basic
vision is that visible matter identified as matter with ~ = ~0 (na = nb = 1) concentrates
around dark matter at Bohr orbits for dark matter particles. The question is what these
Bohr orbits really mean. Should one in improved approximation relate Bohr orbits to 3-
D wave functions for dark matter as ordinary Bohr rules would suggest or do the Bohr
orbits have some deeper meaning different from that in wave mechanics. Anyonic variants
of partonic 2-surfaces with astrophysical size are a natural guess for the generalization of
Bohr orbits.

Dark matter as large ~ phase

D. Da Rocha and Laurent Nottale have proposed that Schrödinger equation with Planck
constant ~ replaced with what might be called gravitational Planck constant ~gr = GmM

v0
(~ = c = 1). v0 is a velocity parameter having the value v0 = 144.7 ± .7 km/s giving
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v0/c = 4.6×10−4. This is rather near to the peak orbital velocity of stars in galactic halos.
Also subharmonics and harmonics of v0 seem to appear. The support for the hypothesis
coming from empirical data is impressive [K66] .

Nottale and Da Rocha believe that their Schrödinger equation results from a fractal hydro-
dynamics. Many-sheeted space-time however suggests astrophysical systems are not only
quantum systems at larger space-time sheets but correspond to a gigantic value of gravita-
tional Planck constant. The gravitational (ordinary) Schrödinger equation -or at least Bohr
rules with appropriate interpretation - would provide a solution of the black hole collapse
(IR catastrophe) problem encountered at the classical level. The resolution of the problem
inspired by TGD inspired theory of living matter is that it is the dark matter at larger
space-time sheets which is quantum coherent in the required time scale.

Prediction for the parameter v0

One of the key questions relate to the value of the parameter v0. Before the introduction of
the hierarchy of Planck constants I proposed that the value of the parameter v0 assuming
that cosmic strings and their decay remnants are responsible for the dark matter. The har-
monics of v0 can be understood as corresponding to perturbations replacing cosmic strings
with their n-branched coverings so that tension becomes n-foldmuch like the replacement of
a closed orbit with an orbit closing only after n turns. 1/n-sub-harmonic would result when
a magnetic flux tube split into n disjoint magnetic flux tubes. The planetary mass ratios
can be produced with an accuracy better than 10 per cent assuming ruler and compass
phases.

Further predictions

The study of inclinations (tilt angles with respect to the Earth’s orbital plane) leads to
a concrete model for the quantum evolution of the planetary system. Only a stepwise
breaking of the rotational symmetry and angular momentum Bohr rules plus Newton’s
equation (or geodesic equation) are needed, and gravitational Shrödinger equation holds
true only inside flux quanta for the dark matter.

i. During pre-planetary period dark matter formed a quantum coherent state on the
(Z0) magnetic flux quanta (spherical cells or flux tubes). This made the flux quantum
effectively a single rigid body with rotational degrees of freedom corresponding to a
sphere or circle (full SO(3) or SO(2) symmetry).

ii. In the case of spherical shells associated with inner planets the SO(3) → SO(2) sym-
metry breaking led to the generation of a flux tube with the inclination determined
by m and j and a further symmetry breaking, kind of an astral traffic jam inside the
flux tube, generated a planet moving inside flux tube. The semiclassical interpretation
of the angular momentum algebra predicts the inclinations of the inner planets. The
predicted (real) inclinations are 6 (7) resp. 2.6 (3.4) degrees for Mercury resp. Venus).
The predicted (real) inclination of the Earth’s spin axis is 24 (23.5) degrees.

iii. The v0 → v0/5 transition allowing to understand the radii of the outer planets in the
model of Da Rocha and Nottale can be understood as resulting from the splitting of
(Z0) magnetic flux tube to five flux tubes representing Earth and outer planets except
Pluto, whose orbital parameters indeed differ dramatically from those of other planets.
The flux tube has a shape of a disk with a hole glued to the Earth’s spherical flux shell.
It is important to notice that effectively a multiplication n → 5n of the principal
quantum number is in question. This allows to consider also alternative explanations.
Perhaps external gravitational perturbations have kicked dark matter from the orbit
or Earth to n = 5k, k = 2, 3, ..., 7 orbits: the fact that the tilt angles for Earth and all
outer planets except Pluto are nearly the same, supports this explanation. Or perhaps
there exist at least small amounts of dark matter at all orbits but visible matter is
concentrated only around orbits containing some critical amount of dark matter and
these orbits satisfy n mod 5 = 0 for some reason.
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iv. A remnant of the dark matter is still in a macroscopic quantum state at the flux quanta.
It couples to photons as a quantum coherent state but the coupling is extremely small
due to the gigantic value of ~gr scaling alpha by ~/~gr: hence the darkness.
The rather amazing coincidences between basic bio-rhythms and the periods associ-
ated with the states of orbits in solar system suggest that the frequencies defined by
the energy levels of the gravitational Schrödinger equation might entrain with various
biological frequencies such as the cyclotron frequencies associated with the magnetic
flux tubes. For instance, the period associated with n = 1 orbit in the case of Sun is
24 hours within experimental accuracy for v0.

Comparison with Bohr quantization of planetary orbits

The predictions of the generalization of the p-adic length scale hypothesis are consistent
with the TGD based model for the Bohr quantization of planetary orbits and some new
non-trivial predictions follow.

i. The model can explain the enormous values of gravitational Planck constant ~gr/~0 ='
GMm/v0) = na/nb. The favored values of this parameter should correspond to
nFa/nFb so that the mass ratios m1/m2 = nFa,1nFb,2/nFb,1nFa,2 for planetary masses
should be preferred. The general prediction GMm/v0 = na/nb is of course not testable.

ii. Nottale [E10] has suggested that also the harmonics and sub-harmonics of ~gr are
possible and in fact required by the model for planetary Bohr orbits (in TGD framework
this is not absolutely necessary [K66] ). The prediction is that favored values of n should
be of form nF = 2k

∏
Fi such that Fi appears at most once. In Nottale’s model for

planetary orbits as Bohr orbits in solar system [K66] n = 5 harmonics appear and are
consistent with either nF,a → F1nFa or with nF,b → nFb/F1 if possible.

The prediction for the ratios of planetary masses can be tested. In the table below are the
experimental mass ratios rexp = m(pl)/m(E), the best choice of rR = [nF,a/nF,b] ∗X, X
common factor for all planets, and the ratios rpred/rexp = nF,a(planet)nF,b(Earth)/nF,a(Earth)nF,b(planet).
The deviations are at most 2 per cent.

planet Me V E M J

y 213×5
17 211 × 17 29 × 5× 17 28 × 17 223×5

7

y/x 1.01 .98 1.00 .98 1.01
planet S U N P

y 214 × 3× 5× 17 221×5
17

217×17
3

24×17
3

y/x 1.01 .98 .99 .99

Table 1. The table compares the ratios x = m(pl)/(m(E) of planetary mass to the mass
of Earth to prediction for these ratios in terms of integers nF associated with Fermat
polygons. y gives the best fit for the allowed factors of the known part y of the rational
nF,a/nF,b = yX characterizing planet, and the ratios y/x. Errors are at most 2 per cent.

A stronger prediction comes from the requirement that GMm/v0 equals to n = nFa/nF,b
nF = 2k

∏
k Fnk , where Fi = 22i + 1, i = 0, 1, 2, 3, 4 is Fibonacci prime. The fit using

solar mass and Earth mass gives nF = 2254 × 5 × 17 for 1/v0 = 2044, which within the
experimental accuracy equals to the value 211 = 2048 whose powers appear as scaling factors
of Planck constant in the model for living matter [K24] . For v0 = 4.6× 10−4 reported by
Nottale the prediction is by a factor 16/17.01 too small (6 per cent discrepancy).

A possible solution of the discrepancy is that the empirical estimate for the factor GMm/v0

is too large since m contains also the the visible mass not actually contributing to the grav-
itational force between dark matter objects whereas M is known correctly. The assumption
that the dark mass is a fraction 1/(1 + ε) of the total mass for Earth gives
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1 + ε =
17

16
(15.6.2)

in an excellent approximation. This gives for the fraction of the visible matter the estimate
ε = 1/16 ' 6 per cent. The estimate for the fraction of visible matter in cosmos is about 4
per cent so that estimate is reasonable and would mean that most of planetary and solar
mass would be also dark (as a matter dark energy would be in question).

That v0(eff) = v0/(1− ε) ' 4.6×10−4 equals with v0(eff) = 1/(27×F2) = 4.5956×10−4

within the experimental accuracy suggests a number theoretical explanation for the visible-
to-dark fraction.

The original unconsciously performed identification of the gravitational and inertial Planck
constants leads to some confusing conclusions but it seems that the new view about the
quantization of Planck constants resolves these problems and allows to see ~gr as a special
case of ~I .

i. ~gr is proportional to the product of masses of interacting systems and not a uni-
versal constant like ~. One can however express the gravitational Bohr conditions as
a quantization of circulation

∮
v · dl = n(GM/v0)~0 so that the dependence on the

planet mass disappears as required by Equivalence Principle. This would suggest that
gravitational Bohr rules relate to velocity rather than inertial momentum as is indeed
natural. The quantization of circulation is consistent with the basic prediction that
space-time surfaces are analogous to Bohr orbits.

ii. ~gr seems to characterize a relationship between planet and central mass and quite
generally between two systems with the property that smaller system is topologically
condensed at the space-time sheet of the larger system. Thus it would seem that ~gr is
not a universal constant and cannot correspond to a special value of ordinary Planck
constant. Certainly this would be the case if ~I is quantized as λk-multiplet of ordinary
Planck constant with λ ' 211.

The recent view about the quantization of Planck constant in terms of coverings of CD
seems to resolve these problems.

i. The integer quantization of Planck constants is consistent with the huge values of
gravitational Planck constant within experimental resolution and the killer test for
~ = ~gr emerges if one takes seriously the stronger prediction ~gr = nF,a/nF,b.

ii. One can also regard ~gr as ordinary Planck constant ~eff associated with the space-
time sheet along which the masses interact provided each pair (M,mi) of masses is
characterized by its own sheets. These sheets could correspond to flux tube like struc-
tures carrying the gravitational flux of dark matter. If these sheets corresponds to
nFa -fold covering of CD, one can understand ~gr as a particular instance of the ~eff .

Quantum Hall effect and dark anyonic systems in astrophysical scales

Bohr orbitology could be understood if dark matter concentrates on 2-dimensional partonic
surfaces usually assigned with elementary particles and having size of order CP2 radius.
The interpretation is in terms of wormhole throats assignable to topologically condensed
CP2 type extremals (fermions) and pairs of them assignable to wormhole contacts (gauge
bosons). Wormhole throat defines the light-like 3-surface at which the signature of metric
of space-time surface changes from Minkowskian to Euclidian.

Large value of Planck constant would allow partons with astrophysical size. Since anyonic
systems are 2-dimensional, the natural idea is that dark matter corresponds to systems
carrying large fermion number residing at partonic 2-surfaces of astrophysical size and
that visible matter condenses around these. Not only black holes but also ordinary stars,
planetary systems, and planets could correspond at the level of dark matter to atom like
structures consisting of anyonic 2-surfaces which can have complex topology (flux tubes
associated with planetary orbits connected by radial flux tubes to the central spherical
anyonic surface) . Charge and spin fractionization are key features of anyonic systems and
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Jones inclusions inspiring the generalization of imbedding space indeed involve quantum
groups central in the modeling of anyonic systems. Hence one has could hopes that a
coherent theoretical picture could emerge along these lines.

This seems to be the case. Anyons and charge and spin fractionization are discussed in
detail [K59] and leads to a precise identification of the delicacies involved with the Kähler
gauge potential of CP2 Kähler form in the sectors of the generalized imbedding space
corresponding to various pages of boook like structures assignable to CD and CP2. The
basic outcome is that anyons correspond geometrically to partonic 2-surfaces at the light-
like boundaries of CD containing the tip of CD inside them. This is what gives rise to
charge fractionization and also to confinement like effects since elementary particles in
anyonic states cannot as such leak to the other pages of the generalized imbedding space.
Ga and Gb invariance of the states imply that fractionization occurs only at single particle
level and total charge is integer valued.

This picture is much more flexible that that based on Ga symmetries of CD orbifold since
partonic 2-surfaces do not possess any orbifold symmetries in CD sector anymore. In this
framework various astrophysical structures such as spokes and circles would be parts of
anyonic 2-surfaces with complex topology representing quantum geometrically quantum
coherence in the scale of say solar system. Planets would have formed by the condensation
of ordinary matter in the vicinity of the anyonic matter. This would predict stars, planetary
system, and even planets to have onion-like structure consisting of shells at the level of dark
matter. Similar conclusion is suggested also by purely classical model for the final state of
star predicting that matter is strongly concentrated at the surface of the star [K79] .

Anyonic view about blackholes

A new element to the model of black hole comes from the vision that black hole horizon as
a light-like 3-surface corresponds to a light-like orbit of light-like partonic 2-surface. This
allows two kinds of black holes. Fermion like black hole would correspond to a deformed
CP2 type extremal which Euclidian signature of metric and topologically condensed at a
space-time sheet with a Minkowskian signature. Boson like black hole would correspond to
a wormhole contact connecting two space-time sheets with Minkowskian signature. Worm-
hole contact would be a piece deformed CP2 type extremal possessing two light-like throats
defining two black hole horizons very near to each other. It does not seem absolutely nec-
essary to assume that the interior metric of the black-hole is realized in another space-time
sheet with Minkowskian signature.

Second new element relates to the value of Planck constant. For ~gr = 4GM2 the

Planck length LP (~) =
√
~G equals to Schwartschild radius and Planck mass equals to

MP (~) =
√
~/G = 2M . If the mass of the system is below the ordinary Planck mass:

M ≤ mP (~0)/2 =
√
~0/4G, gravitational Planck constant is smaller than the ordinary

Planck constant.

Black hole surface contains ultra dense matter so that perturbation theory is not expected
to converge for the standard value of Planck constant but do so for gravitational Planck
constant. If the phase transition increasing Planck constant is a friendly gesture of Nature
making perturbation theory convergent, one expects that only the black holes for which
Planck constant is such that GM2/4π~ < 1 holds true are formed. Black hole entropy
-being proportional to 1/~- is of order unity so that TGD black holes are not very entropic.

If the partonic 2-surface surrounds the tip of causal diamond CD, the matter at its surface
is in anyonic state with fractional charges. Anyonic black hole can be seen as single gigantic
elementary particle stabilized by fractional quantum numbers of the constituents preventing
them from escaping from the system and transforming to ordinary visible matter. A huge
number of different black holes are possible for given value of ~ since there is infinite variety
of pairs (na, nb) of integers giving rise to same value of ~.

One can imagine that the partonic surface is not exact sphere except for ideal black holes but
contains large number of magnetic flux tubes giving rise to handles. Also a pair of spheres
with different radii can be considered with surfaces of spheres connected by braided flux
tubes. The braiding of these handles can represent information and one can even consider
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the possibility that black hole can act as a topological quantum computer. There would
be no sharp difference between the dark parts of black holes and those of ordinary stars.
Only the volume containing the complex flux tube structures associated with the orbits of
planets and various objects around star would become very small for black hole so that the
black hole might code for the topological information of the matter collapsed into it.

15.6.3 Accelerating periods of cosmic expansion as phase transi-
tions increasing the value of Planck constant

There are several pieces of evidence for accelerated expansion, which need not mean cos-
mological constant, although this is the interpretation adopted in [E4, E2] . Quantum
cosmology predicts that astrophysical objects do not follow cosmic expansion except in
jerk-wise quantum leaps increasing the value of the gravitational Planck constant. This
assumption provides explanation for the apparent cosmological constant. Also planets are
predicted to expand in this manner. This provides a new version of Expanding Earth the-
ory originally postulated to explain the intriguing findings suggesting that continents have
once formed a connected continent covering the entire surface of Earth but with radius
which was one half of the recent one.

The four pieces of evidence for accelerated expansion

1. Supernovas of type Ia

Supernovas of type Ia define standard candles since their luminosity varies in an oscillatory
manner and the period is proportional to the luminosity. The period gives luminosity and
from this the distance can be deduced by using Hubble’s law: d = cz/H0, H0 Hubble’s
constant. The observation was that the farther the supernova was the more dimmer it was
as it should have been. In other words, Hubble’s constant increased with distance and the
cosmic expansion was accelerating rather than decelerating as predicted by the standard
matter dominated and radiation dominated cosmologies.

2. Mass density is critical and 3-space is flat

It is known that the contribution of ordinary and dark matter explaining the constant
velocity of distance stars rotating around galaxy is about 25 per cent from the critical
density. Could it be that total mass density is critical?

From the anisotropy of cosmic microwave background one can deduce that this is the case.
What criticality means geometrically is that 3-space defined as surface with constant value
of cosmic time is flat. This reflects in the spectrum of microwave radiation. The spots
representing small anisotropies in the microwave background temperature is 1 degree and
this correspond to flat 3-space. If one had dark matter instead of dark energy the size of
spot would be .5 degrees!

Thus in a cosmology based on general relativity cosmological constant remains the only
viable option. The situation is different in TGD based quantum cosmology based on sub-
manifold gravity and hierarchy of gravitational Planck constants.

3. The energy density of vacuum is constant in the size scale of big voids

It was observed that the density of dark energy would be constant in the scale of 108 light
years. This length scale corresponds to the size of big voids containing galaxies at their
boundaries.

4. Integrated Sachs-Wolf effect

Also so called integrated Integrated Sachs-Wolf effect supports accelerated expansion. Very
slow variations of mass density are considered. These correspond to gravitational potentials.
Cosmic expansion tends to flatten them but mass accretion to form structures compensates
this effect so that gravitational potentials are unaffected and there is no effect of CMB.
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Situation changes if dark matter is replaced with dark energy the accelerated expansion
flattening the gravitational potentials wins the tendency of mass accretion to make them
deeper. Hence if photon passes by an over-dense region, it receives a little energy. Similarly,
photon loses energy when passing by an under-dense region. This effect has been observed.

Accelerated expansion in classical TGD

The minimum TGD based explanation for accelerated expansion involves only the fact that
the imbeddings of critical cosmologies correspond to accelerated expansion. A more detailed
model allows to understand why the critical cosmology appears during some periods.

The first observation is that critical cosmologies (flat 3-space) imbeddable to 8-D imbedding
space H correspond to negative pressure cosmologies and thus to accelerating expansion.
The negativity of the counterpart of pressure in Einstein tensor is due to the fact that
space-time sheet is forced to be a 4-D surface in 8-D imbedding space. This condition is
analogous to a force forcing a particle at the surface of 2-sphere and gives rise to what
could be called constraint force. Gravitation in TGD is sub-manifold gravitation whereas
in GRT it is manifold gravitation. This would be minimum interpretation involving no
assumptions about what mechanism gives rise to the critical periods.

Accelerated expansion and hierarchy of Planck constants

One can go one step further and introduce the hierarchy of Planck constants. The basic
difference between TGD and GRT based cosmologies is that TGD cosmology is quantum
cosmology. Smooth cosmic expansion is replaced by an expansion occurring in discrete
jerks corresponding to the increase of gravitational Planck constant. At space-time level
this means the replacement of 8-D imbedding space H with a book like structure containing
almost-copies of H with various values of Planck constant as pages glued together along
critical manifold through which space-time sheet can leak between sectors with different
values of ~. This process is the geometric correlate for the the phase transition changing
the value of Planck constant.

During these phase transition periods critical cosmology applies and predicts automatically
accelerated expansion. Neither genuine negative pressure due to ”quintessence” nor cosmo-
logical constant is needed. Note that quantum criticality replaces inflationary cosmology
and predicts a unique cosmology apart from single parameter. Criticality also explains the
fluctuations in microwave temperature as long range fluctuations characterizing criticality.

Accelerated expansion and flatness of 3-cosmology

Observations 1) and 2) about super-novae and critical cosmology (flat 3-space) are consis-
tent with this cosmology. In TGD dark energy must be replaced with dark matter because
the mass density is critical during the phase transition. This does not lead to wrong sized
spots since it is the increase of Planck constant which induces the accelerated expansion
understandable also as a constraint force due to imbedding to H.

The size of large voids is the characteristic scale

The TGD based model in its simplest form model assigns the critical periods of expansion
to large voids of size 108 ly. Also larger and smaller regions can express similar periods
and dark space-time sheets are expected to obey same universal ”cosmology” apart from
a parameter characterizing the duration of the phase transition. Observation 3) that just
this length scale defines the scale below which dark energy density is constant is consistent
with TGD based model.

The basic prediction is jerkwise cosmic expansion with jerks analogous to quantum tran-
sitions between states of atom increasing the size of atom. The discovery of large voids
with size of order 108 ly but age much longer than the age of galactic large voids conforms
with this prediction. One the other hand, it is known that the size of galactic clusters has
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not remained constant in very long time scale so that jerkwise expansion indeed seems to
occur.

Do cosmic strings with negative gravitational mass cause the phase transition
inducing accelerated expansion

Quantum classical correspondence is the basic principle of quantum TGD and suggest
that the effective antigravity manifested by accelerated expansion might have some kind of
concrete space-time correlate. A possible correlate is super heavy cosmic string like objects
at the center of large voids which have negative gravitational mass under very general
assumptions. The repulsive gravitational force created by these objects would drive galaxies
to the boundaries of large voids. At some state the pressure of galaxies would become too
strong and induce a quantum phase transition forcing the increase of gravitational Planck
constant and expansion of the void taking place much faster than the outward drift of the
galaxies. This process would repeat itself. In the average sense the cosmic expansion would
not be accelerating.

15.6.4 Phase transition changing Planck constant and expanding
Earth theory

TGD predicts that cosmic expansion at the level of individual astrophysical systems does
not take place continuously as in classical gravitation but through discrete quantum phase
transitions increasing gravitational Planck constant and thus various quantum length and
time scales. The reason would be that stationary quantum states for dark matter in as-
trophysical length scales cannot expand. One would have the analog of atomic physics in
cosmic scales. Increases of ~ by a power of two are favored in these transitions but also
other scalings are possible.

This has quite far reaching implications.

i. These periods have a highly unique description in terms of a critical cosmology for the
expanding space-time sheet. The expansion is accelerating. The accelerating cosmic
expansion can be assigned to this kind of phase transition in some length scale (TGD
Universe is fractal). There is no need to introduce cosmological constant and dark
energy would be actually dark matter.

ii. The recently observed void which has same size of about 108 light years as large voids
having galaxies near their boundaries but having an age which is much higher than
that of the large voids, would represent one example of jerk-wise expansion.

iii. This picture applies also to solar system and planets might be perhaps seen as having
once been parts of a more or less connected system, the primordial Sun. The Bohr
orbits for inner and outer planets correspond to gravitational Planck constant which
is 5 times larger for outer planets. This suggests that the space-time sheet of outer
planets has suffered a phase transition increasing the size scale by a factor of 5. Earth
can be regarded either as n=1 orbit for Planck constant associated with outer planets or
n= 5 orbit for inner planetary system. This might have something to do with the very
special position of Earth in planetary system. One could even consider the possibility
that both orbits are present as dark matter structures. The phase transition would
also explain why n=1 and n=2 Bohr orbits are absent and one only n=3,4, and 5 are
present.

iv. Also planets should have experienced this kind of phase transitions increasing the
radius: the increase by a factor two would be the simplest situation.

The obvious question - that I did not ask - is whether this kind of phase transition might
have occurred for Earth and led from a completely granite covered Earth - Pangeia without
seas - to the recent Earth. Neither it did not occur to me to check whether there is any
support for a rapid expansion of Earth during some period of its history.

Situation changed when my son visited me last Saturday and told me about a Youtube
video [F7] by Neal Adams, an American comic book and commercial artist who has also
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produced animations for geologists. We looked the amazing video a couple of times and I
looked it again yesterday. The video is very impressive artwork but in the lack of references
skeptic probably cannot avoid the feeling that Neal Adams might use his highly developed
animation skills to cheat you. I found also a polemic article [F1] of Adams but again
the references were lacking. Perhaps the reason of polemic tone was that the concrete
animation models make the expanding Earth hypothesis very convincing but geologists
refuse to consider seriously arguments by a layman without a formal academic background.

The claims of Adams

The basic claims of Adams were following.

i. The radius of Earth has increased during last 185 million years (dinosaurs [I1] appeared
for about 230 million years ago) by about factor 2. If this is assumed all continents
have formed at that time a single super-continent, Pangeia, filling the entire Earth
surface rather than only 1/4 of it since the total area would have grown by a factor of
4. The basic argument was that it is very difficult to imagine Earth with 1/4 of surface
containing granite and 3/4 covered by basalt. If the initial situation was covering by
mere granite -as would look natural- it is very difficult for a believer in thermodynamics
to imagine how the granite would have gathered to a single connected continent.

ii. Adams claims that Earth has grown by keeping its density constant, rather than ex-
panded, so that the mass of Earth has grown linearly with radius. Gravitational
acceleration would have thus doubled and could provide a partial explanation for the
disappearance of dinosaurs: it is difficult to cope in evolving environment when you
get slower all the time.

iii. Most of the sea floor is very young and the areas covered by the youngest basalt are
the largest ones. This Adams interprets this by saying that the expansion of Earth is
accelerating. The alternative interpretation is that the flow rate of the magma slows
down as it recedes from the ridge where it erupts. The upper bound of 185 million
years for the age of sea floor requires that the expansion period - if it is already over -
lasted about 185 million years after which the flow increasing the area of the sea floor
transformed to a convective flow with subduction so that the area is not increasing
anymore.

iv. The fact that the continents fit together - not only at the Atlantic side - but also at the
Pacific side gives strong support for the idea that the entire planet was once covered by
the super-continent. After the emergence of subduction theory this evidence as been
dismissed.

v. I am not sure whether Adams mentions the following objections [F2] . Subduction
only occurs on the other side of the subduction zone so that the other side should show
evidence of being much older in the case that oceanic subduction zones are in question.
This is definitely not the case. This is explained in plate tectonics as a change of the
subduction direction. My explanation would be that by the symmetry of the situation
both oceanic plates bend down so that this would represent new type of boundary not
assumed in the tectonic plate theory.

vi. As a master visualizer Adams notices that Africa and South-America do not actually
fit together in absence of expansion unless one assumes that these continents have
suffered a deformation. Continents are not easily deformable stuff. The assumption of
expansion implies a perfect fit of all continents without deformation.

Knowing that the devil is in the details, I must admit that these arguments look rather
convincing to me and what I learned from Wikipedia articles supports this picture.

The critic of Adams of the subduction mechanism

The prevailing tectonic plate theory [F5] has been compared to the Copernican revolution
in geology. The theory explains the young age of the seafloor in terms of the decomposition
of the litosphere to tectonic plates and the convective flow of magma to which oceanic
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tectonic plates participate. The magma emerges from the crests of the mid ocean ridges
representing a boundary of two plates and leads to the expansion of sea floor. The variations
of the polarity of Earth’s magnetic field coded in sea floor provide a strong support for the
hypothesis that magma emerges from the crests.

The flow back to would take place at so called oceanic trenches [F3] near continents which
represent the deepest parts of ocean. This process is known as subduction. In subduc-
tion oceanic tectonic plate bends and penetrates below the continental tectonic plate, the
material in the oceanic plate gets denser and sinks into the magma. In this manner the
oceanic tectonic plate suffers a metamorphosis returning back to the magma: everything
which comes from Earth’s interior returns back. Subduction mechanism explains elegantly
formation of mountains [F4] (orogeny), earth quake zones, and associated zones of volcanic
activity [F6] .

Adams is very polemic about the notion of subduction, in particular about the assumption
that it generates steady convective cycle. The basic objections of Adams against subduction
are following.

i. There are not enough subduction zones to allow a steady situation. According to
Adams, the situation resembles that for a flow in a tube which becomes narrower. In
a steady situation the flow should accelerate as it approaches subduction zones rather
than slow down. Subduction zones should be surrounded by large areas of sea floor
with constant age. Just the opposite is suggested by the fact that the youngest portion
of sea-floor near the ridges is largest. The presence of zones at which both ocean plates
bend down could improve the situation. Also jamming of the flow could occur so
that the thickness of oceanic plate increases with the distance from the eruption ridge.
Jamming could increase also the density of the oceanic plate and thus the effectiveness
of subduction.

ii. There is no clear evidence that subduction has occurred at other planets. The usual
defense is that the presence of sea is essential for the subduction mechanism.

iii. One can also wonder what is the mechanism that led to the formation of single super
continent Pangeia covering 1/4 of Earth’s surface. How probable the gathering of all
separate continents to form single cluster is? The later events would suggest that just
the opposite should have occurred from the beginning.

Expanding Earth theories are not new

After I had decided to check the claims of Adams, the first thing that I learned is that
Expanding Earth theory [F2] , whose existence Adams actually mentions, is by no means
new. There are actually many of them.

The general reason why these theories were rejected by the main stream community was
the absence of a convincing physical mechanism of expansion or of growth in which the
density of Earth remains constant.

i. 1888 Yarkovski postulated some sort of aether absorbed by Earth and transforming
to chemical elements (TGD version of aether could be dark matter). 1909 Mantovani
postulated thermal expansion but no growth of the Earth’s mass.

ii. Paul Dirac’s idea about changing Planck constant led Pascual Jordan in 1964 to a
modification of general relativity predicting slow expansion of planets. The recent
measurement of the gravitational constant imply that the upper bound for the relative
change of gravitational constant is 10 time too small to produce large enough rate
of expansion. Also many other theories have been proposed but they are in general
conflict with modern physics.

iii. The most modern version of Expanding Earth theory is by Australian geologist Samuel
W. Carey. He calculated that in Cambrian period (about 500 million years ago) all
continents were stuck together and covered the entire Earth. Deep seas began to evolve
then.
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Summary of TGD based theory of Expanding Earth

TGD based model differs from the tectonic plate model but allows subduction which can-
not imply considerable back-flow of magma. Let us sum up the basic assumptions and
implications.

i. The expansion is or was due to a quantum phase transition increasing the value of
gravitational Planck constant and forced by the cosmic expansion in the average sense.

ii. Tectonic plates do not participate to the expansion and therefore new plate must be
formed and the flow of magma from the crests of mid ocean ridges is needed. The
decomposition of a single plate covering the entire planet to plates to create the mid
ocean ridges is necessary for the generation of new tectonic plate. The decomposition
into tectonic plates is thus prediction rather than assumption.

iii. The expansion forced the decomposition of Pangeia super-continent covering entire
Earth for about 530 million years ago to split into tectonic plates which began to recede
as new non-expanding tectonic plate was generated at the ridges creating expanding
sea floor. The initiation of the phase transition generated formation of deep seas.

iv. The eruption of plasma from the crests of ocean ridges generated oceanic tectonic plates
which did not participate to the expansion by density reduction but by growing in size.
This led to a reduction of density in the interior of the Earth roughly by a factor 1/8.
From the upper bound for the age of the seafloor one can conclude that the period
lasted for about 185 million years after which it transformed to convective flow in
which the material returned back to the Earth interior. Subduction at continent-ocean
floor boundaries and downwards double bending of tectonic plates at the boundaries
between two ocean floors were the mechanisms. Thus tectonic plate theory would be
more or less the correct description for the recent situation.

v. One can consider the possibility that the subducted tectonic plate does not transform
to magma but is fused to the tectonic layer below continent so that it grows to an
iceberg like structure. This need not lead to a loss of the successful predictions of plate
tectonics explaining the generation of mountains, earthquake zones, zones of volcanic
activity, etc...

vi. From the video of Adams it becomes clear that the tectonic flow is East-West asym-
metric in the sense that the western side is more irregular at large distances from the
ocean ridge at the western side. If the magma rotates with slightly lower velocity than
the surface of Earth (like liquid in a rotating vessel), the erupting magma would rotate
slightly slower than the tectonic plate and asymmetry would be generated.

vii. If the planet has not experienced a phase transition increasing the value of Planck con-
stant, there is no need for the decomposition to tectonic plates and one can understand
why there is no clear evidence for tectonic plates and subduction in other planets. The
conductive flow of magma could occur below this plate and remain invisible.

The biological implications might provide a possibility to test the hypothesis.

i. Great steps of progress in biological evolution are associated with catastrophic geo-
logical events generating new evolutionary pressures forcing new solutions to cope in
the new situation. Cambrian explosion indeed occurred about 530 years ago (the book
”Wonderful Life” of Stephen Gould [I3] explains this revolution in detail) and led to
the emergence of multicellular creatures, and generated huge number of new life forms
living in seas. Later most of them suffered extinction: large number of phylae and
groups emerged which are not present nowadays.
Thus Cambrian explosion is completely exceptional as compared to all other dramatic
events in the evolution in the sense that it created something totally new rather than
only making more complex something which already existed. Gould also emphasizes
the failure to identify any great change in the environment as a fundamental puzzle of
Cambrian explosion. Cambrian explosion is also regarded in many quantum theories
of consciousness (including TGD) as a revolution in the evolution of consciousness:
for instance, micro-tubuli emerged at this time. The periods of expansion might be
necessary for the emergence of multicellular life forms on planets and the fact that they
unavoidably occur sooner or later suggests that also life develops unavoidably.
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ii. TGD predicts a decrease of the surface gravity by a factor 1/4 during this period.
The reduction of the surface gravity would have naturally led to the emergence of
dinosaurs 230 million years ago as a response coming 45 million years after the acceler-
ated expansion ceased. Other reasons led then to the decline and eventual catastrophic
disappearance of the dinosaurs. The reduction of gravity might have had some gradu-
ally increasing effects on the shape of organisms also at microscopic level and manifest
itself in the evolution of genome during expansion period.

iii. A possibly testable prediction following from angular momentum conservation (ωR2 =
constant) is that the duration of day has increased gradually and was four times
shorter during the Cambrian era. For instance, genetically coded bio-clocks of simple
organisms during the expansion period could have followed the increase of the length
of day with certain lag or failed to follow it completely. The simplest known circadian
clock is that of the prokaryotic cyanobacteria. Recent research has demonstrated that
the circadian clock of Synechococcus elongatus can be reconstituted in vitro with just
the three proteins of their central oscillator. This clock has been shown to sustain a
22 hour rhythm over several days upon the addition of ATP: the rhythm is indeed
faster than the circadian rhythm. For humans the average innate circadian rhythm is
however 24 hours 11 minutes and thus conforms with the fact that human genome has
evolved much later than the expansion ceased.

iv. Scientists have found a fossil of a sea scorpion with size of 2.5 meters [I7] , which has
lived for about 10 million years for 400 million years ago in Germany. The gigantic size
would conform nicely with the much smaller value of surface gravity at that time. The
finding would conform nicely with the much smaller value of surface gravity at that
time. Also the emergence of trees could be understood in terms of a gradual growth of
the maximum plant size as the surface gravity was reduced. The fact that the oldest
known tree fossil is 385 million years old [I5] conforms with this picture.

Did intra-terrestrial life burst to the surface of Earth during Cambrian expan-
sion?

The possibility of intra-terrestrial life [K30] is one of the craziest TGD inspired ideas about
the evolution of life and it is quite possible that in its strongest form the hypothesis is
unrealistic. One can however try to find what one obtains from the combination of the IT
hypothesis with the idea of pre-Cambrian granite Earth. Could the harsh pre-Cambrian
conditions have allowed only intra-terrestrial multicellular life? Could the Cambrian ex-
plosion correspond to the moment of birth for this life in the very concrete sense that the
magma flow brought it into the day-light?

i. Gould emphasizes the mysterious fact that very many life forms of Cambrian explosion
looked like final products of a long evolutionary process. Could the eruption of magma
from the Earth interior have induced a burst of intra-terrestrial life forms to the Earth’s
surface? This might make sense: the life forms living at the bottom of sea do not need
direct solar light so that they could have had intra-terrestrial origin. It is quite possible
that Earth’s mantle contained low temperature water pockets, where the complex life
forms might have evolved in an environment shielded from meteoric bombardment and
UV radiation.

ii. Sea water is salty. It is often claimed that the average salt concentration inside cell is
that of the primordial sea: I do not know whether this claim can be really justified. If
the claim is true, the cellular salt concentration should reflect the salt concentration
of the water inside the pockets. The water inside water pockets could have been salty
due to the diffusion of the salt from ground but need not have been same as that for
the ocean water (higher than for cell interior and for obvious reasons). Indeed, the
water in the underground reservoirs in arid regions such as Sahara is salty, which is
the reason for why agriculture is absent in these regions. Note also that the cells of
marine invertebrates are osmoconformers able to cope with the changing salinity of the
environment so that the Cambrian revolutionaries could have survived the change in
the salt concentration of environment.
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iii. What applies to Earth should apply also to other similar planets and Mars [E3] is very
similar to Earth. The radius is .533 times that for Earth so that after quantum leap
doubling the radius and thus Schumann frequency scale (7.8 Hz would be the lowest
Schumann frequency) would be essentially same as for Earth now. Mass is .131 times
that for Earth so that surface gravity would be .532 of that for Earth now and would
be reduced to .131 meaning quite big dinosaurs! have learned that Mars probably
contains large water reservoirs in it’s interior and that there is an un-identified source
of methane gas usually assigned with the presence of life. Could it be that Mother
Mars is pregnant and just waiting for the great quantum leap when it starts to expand
and gives rise to a birth of multicellular life forms. Or expressing freely how Bible
describes the moment of birth: in the beginning there was only darkness and water
and then God saidLet the light come!

To sum up, TGD would provide only the long sought mechanism of expansion and a possible
connection with the biological evolution. It would be indeed fascinating if Planck constant
changing quantum phase transitions in planetary scale would have profoundly affected the
biosphere.

15.6.5 Allais effect as evidence for large values of gravitational
Planck constant?

Allais effect [E1, E5] is a fascinating gravitational anomaly associated with solar eclipses.
It was discovered originally by M. Allais, a Nobelist in the field of economy, and has been
reproduced in several experiments but not as a rule. The experimental arrangement uses
so called paraconical pendulum, which differs from the Foucault pendulum in that the
oscillation plane of the pendulum can rotate in certain limits so that the motion occurs
effectively at the surface of sphere.

Experimental findings

Consider first a brief summary of the findings of Allais and others [E5] .

a) In the ideal situation (that is in the absence of any other forces than gravitation of Earth)
paraconical pendulum should behave like a Foucault pendulum. The oscillation plane of
the paraconical pendulum however begins to rotate.

b) Allais concludes from his experimental studies that the orbital plane approach always
asymptotically to a limiting plane and the effect is only particularly spectacular during the
eclipse. During solar eclipse the limiting plane contains the line connecting Earth, Moon,
and Sun. Allais explains this in terms of what he calls the anisotropy of space.

c) Some experiments carried out during eclipse have reproduced the findings of Allais, some
experiments not. In the experiment carried out by Jeverdan and collaborators in Romania
it was found that the period of oscillation of the pendulum decreases by ∆f/f ' 5× 10−4

[E1, E7] which happens to correspond to the constant v0 = 2−11 appearing in the formula
of the gravitational Planck constant. It must be however emphasized that the overall
magnitude of ∆f/f varies by five orders of magnitude. Even the sign of ∆f/f varies from
experiment to experiment.

d) There is also quite recent finding by Popescu and Olenici, which they interpret as a
quantization of the plane of oscillation of paraconical oscillator during solar eclipse [E11] .

TGD based models for Allais effect

I have already earlier proposed an explanation of the effect in terms of classical Z0 force
[K6] . If the Z0 charge to mass ratio of pendulum varies and if Earth and Moon are Z0

conductors, the resulting model is quite flexible and one might hope it could explain the
high variation of the experimental results.

The rapid variation of the effect during the eclipse is however a problem for this approach
and suggests that gravitational screening or some more general interference effect might be
present. Gravitational screening alone cannot however explain Allais effect.
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A model based on the idea that gravitational interaction is mediated by topological light
rays (MEs) and that gravitons correspond to a gigantic value of the gravitational Planck
constant however explains the Allais effect as an interference effect made possible by macro-
scopic quantum coherence in astrophysical length scales. Equivalence Principle fixes the
model to a high degree and one ends up with an explicit formula for the anomalous grav-
itational acceleration and the general order of magnitude and the large variation of the
frequency change as being due to the variation of the distance ratio rS,P /rM,P (S,M ,and
P refer to Sun, Moon, and pendulum respectively). One can say that the pendulum acts
as an interferometer.

15.6.6 Applications to elementary particle physics, nuclear physics,
and condensed matter physics

The hierarchy of Planck constants could have profound implications for even elementary
particle physics since the strong constraints on the existence of new light particles coming
from the decay widths of intermediate gauge bosons can be circumvented because direct
decays to dark matter are not possible. On the other hand, if light scaled versions of
elementary particles exist they must be dark since otherwise their existence would be visible
in these decay widths. The constraints on the existence of dark nuclei and dark condensed
matter are much milder. Cold fusion and some other anomalies of nuclear and condensed
matter physics - in particular the anomalies of water- might have elegant explanation in
terms of dark nuclei.

Leptohadron hypothesis

TGD suggests strongly the existence of lepto-hadron [K78] . Lepto-hadrons are bound
states of color excited leptons and the anomalous production of e+e− pairs in heavy ion
collisions finds a nice explanation as resulting from the decays of lepto-hadrons with basic
condensate level k = 127 and having typical mass scale of one MeV . The recent indi-
cations on the existence of a new fermion with quantum numbers of muon neutrino and
the anomaly observed in the decay of orto-positronium give further support for the lepto-
hadron hypothesis. There is also evidence for anomalous production of low energy photons
and e+e− pairs in hadronic collisions.

The identification of lepto-hadrons as a particular instance in the predicted hierarchy of
dark matters interacting directly only via graviton exchange allows to circumvent the lethal
counter arguments against the lepto-hadron hypothesis (Z0 decay width and production
of colored lepton jets in e+e− annihilation) even without assumption about the loss of
asymptotic freedom.

PCAC hypothesis and its sigma model realization lead to a model containing only the
coupling of the lepto-pion to the axial vector current as a free parameter. The prediction
for e+e− production cross section is of correct order of magnitude only provided one assumes
that lepto-pions (or electro-pions) decay to lepto-nucleon pair e+

exe
−
ex first and that lepto-

nucleons, having quantum numbers of electron and having mass only slightly larger than
electron mass, decay to lepton and photon. The peculiar production characteristics are
correctly predicted. There is some evidence that the resonances decay to a final state
containing n > 2 particle and the experimental demonstration that lepto-nucleon pairs are
indeed in question, would be a breakthrough for TGD.

During 18 years after the first published version of the model also evidence for colored µ
has emerged [C24] . Towards the end of 2008 CDF anomaly [C8] gave a strong support
for the colored excitation of τ . The lifetime of the light long lived state identified as a
charged τ -pion comes out correctly and the identification of the reported 3 new particles as
p-adically scaled up variants of neutral τ -pion predicts their masses correctly. The observed
muon jets can be understood in terms of the special reaction kinematics for the decays of
neutral τ -pion to 3 τ -pions with mass scale smaller by a factor 1/2 and therefore almost at
rest. A spectrum of new particles is predicted. The discussion of CDF anomaly [K78] led
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to a modification and generalization of the original model for lepto-pion production and
the predicted production cross section is consistent with the experimental estimate.

Cold fusion, plasma electrolysis, and burning salt water

The article of Kanarev and Mizuno [D15] reports findings supporting the occurrence of cold
fusion in NaOH and KOH hydrolysis. The situation is different from standard cold fusion
where heavy water D2O is used instead of H2O.

In nuclear string model nucleon are connected by color bonds representing the color mag-
netic body of nucleus and having length considerably longer than nuclear size. One can
consider also dark nuclei for which the scale of nucleus is of atomic size [L3] , [L3] . In
this framework can understand the cold fusion reactions reported by Mizuno as nuclear
reactions in which part of what I call dark proton string having negatively charged color
bonds (essentially a zoomed up variant of ordinary nucleus with large Planck constant)
suffers a phase transition to ordinary matter and experiences ordinary strong interactions
with the nuclei at the cathode. In the simplest model the final state would contain only
ordinary nuclear matter. The generation of plasma in plasma electrolysis can be seen as a
process analogous to the positive feedback loop in ordinary nuclear reactions.

Rather encouragingly, the model allows to understand also deuterium cold fusion and leads
to a solution of several other anomalies.

i. The so called lithium problem of cosmology (the observed abundance of lithium is by a
factor 2.5 lower than predicted by standard cosmology [E6] ) can be resolved if lithium
nuclei transform partially to dark lithium nuclei.

ii. The so called H1.5O anomaly of water [D7, D6, D9, D19] can be understood if 1/4 of
protons of water forms dark lithium nuclei or heavier dark nuclei formed as sequences
of these just as ordinary nuclei are constructed as sequences of 4He and lighter nuclei in
nuclear string model. The results force to consider the possibility that nuclear isotopes
unstable as ordinary matter can be stable dark matter.

iii. The mysterious behavior burning salt water [D1] can be also understood in the same
framework.

iv. The model explains the nuclear transmutations observed in Kanarev’s plasma electrol-
ysis. This kind of transmutations have been reported also in living matter long time
ago [C14, C23] . Intriguingly, several biologically important ions belong to the reaction
products in the case of NaOH electrolysis. This raises the question whether cold nu-
clear reactions occur in living matter and are responsible for generation of biologically
most important ions.

15.6.7 Applications to biology and neuroscience

The notion of field or magnetic body regarded as carrier of dark matter with large Planck
constant and quantum controller of ordinary matter is the basic idea in the TGD inspired
model of living matter.

Do molecular symmetries in living matter relate to non-standard values of
Planck constant?

Water is exceptional element and the possibility that Ga as symmetry of singular factor
space of CD in water and living matter is intriguing.

i. There is evidence for an icosahedral clustering in [D13] [D8] . Synaptic contacts con-
tain clathrin molecules which are truncated icosahedrons and form lattice structures
and are speculated to be involved with quantum computation like activities possibly
performed by microtubules. Many viruses have the shape of icosahedron. One can ask
whether these structures could be formed around templates formed by dark matter cor-
responding to 120-fold covering of CP2 points by CD points and having ~(CP2) = 5~0

perhaps corresponding color confined light dark quarks. Of course, a similar covering
of CD points by CP2 could be involved.
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ii. It should be noticed that single nucleotide in DNA double strands corresponds to a
twist of 2π/10 per single DNA triplet so that 10 DNA strands corresponding to length
L(151) = 10 nm (cell membrane thickness) correspond to 3 × 2π twist. This could
be perhaps interpreted as evidence for group C10 perhaps making possible quantum
computation at the level of DNA.

iii. What makes realization of Ga as a symmetry of singular factor space of CD is that the
biomolecules most relevant for the functioning of brain (DNA nucleotides, aminoacids
acting as neurotransmitters, molecules having hallucinogenic effects) contain aromatic
5- and 6-cycles.

These observations led to an identification of the formula for Planck constant (two alterna-
tives were allowed by the condition that Planck constant is algebraic homomorphism) which
was not consistent with the model for dark gravitons. If one accepts the proposed formula
of Planck constant, the dark space-time sheets with large Planck constant correspond to
factor spaces of both ĈD\M2 and of CP2\S2

I . This identification is of course possible and
it remains to be seen whether it leads to any problems. For gravitational space-time sheets
only coverings of both CD and CP2 make sense and the covering group Ga has very large
order and does not correspond to geometric symmetries analogous to those of molecules.

High Tc super-conductivity in living matter

The model for high Tc super-conductivity realized as quantum critical phenomenon predicts
the basic scales of cell membrane [K11] from energy minimization and p-adic length scale
hypothesis. This leads to the vision that cell membrane and possibly also its scaled up dark
fractal variants define Josephson junctions generating Josephson radiation communicating
information about the nearby environment to the magnetic body.

Any model of high Tc superconductivity should explain various strange features of high Tc
superconductors. One should understand the high value of Tc, the ambivalent character of
high Tc super conductors suggesting both BCS type Cooper pairs and exotic Cooper pairs
with non-vanishing spin, the existence of pseudogap temperature Tc1 > Tc and scaling
law for resistance for Tc ≤ T < Tc1 , the role of fluctuating charged stripes which are anti-
ferromagnetic defects of a Mott insulator, the existence of a critical doping, etc... [D21, D20]
.

There are reasons to believe that high Tc super-conductors correspond to quantum crit-
icality in which at least two (cusp catastrophe as in van der Waals model), or possibly
three or even more phases, are competing. A possible analogy is provided by the triple
critical point for water vapor, liquid phase and ice coexist. Instead of long range thermal
fluctuations long range quantum fluctuations manifesting themselves as fluctuating stripes
are present [D21] .

The TGD based model for high Tc super-conductivity [K11] relies on the notions of quan-
tum criticality, general ideas of catastrophe theory, dynamical Planck constant, and many-
sheeted space-time. The 4-dimensional spin glass character of space-time dynamics deriving
from the vacuum degeneracy of the Kähler action defining the basic variational principle
would realize space-time correlates for quantum fluctuations.

i. Two kinds of super-conductivities and ordinary non-super-conducting phase would be
competing at quantum criticality at Tc and above it only one super-conducting phase
and ordinary conducting phase located at stripes representing ferromagnetic defects
making possible formation of S = 1 Cooper pairs.

ii. The first super-conductivity would be based on exotic Cooper pairs of large ~ dark
electrons with ~ = 211~0 and able to have spin S = 1, angular momentum L = 2, and
total angular momentum J = 2. Second type of super-conductivity would be based on
BCS type Cooper pairs having vanishing spin and bound by phonon interaction. Also
they have large ~ so that gap energy and critical temperature are scaled up in the same
proportion. The exotic Cooper pairs are possible below the pseudo gap temperature
Tc1 > Tc but are unstable against decay to BCS type Cooper pairs which above Tc are
unstable against a further decay to conduction electrons flowing along stripes. This
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would reduce the exotic super-conductivity to finite conductivity obeying the observed
scaling law for resistance.

iii. The mere assumption that electrons of exotic Cooper pairs feed their electric flux to
larger space-time sheet via two elementary particle sized wormhole contacts rather than
only one wormhole contacts implies that the throats of wormhole contacts defining
analogs of Higgs field must carry quantum numbers of quark and anti-quark. This
inspires the idea that cylindrical space-time sheets, the radius of which turns out to be
about about 5 nm, representing zoomed up dark electrons of Cooper pair with Planck
constant ~ = 211~0 are colored and bound by a scaled up variant of color force to
form a color confined state. Formation of Cooper pairs would have nothing to do with
direct interactions between electrons. Thus high Tc super-conductivity could be seen
as a first indication for the presence of scaled up variant of QCD in mesoscopic length
scales.

This picture leads to a concrete model for high Tc superconductors as quantum critical
superconductors [K11] . p-Adic length scale hypothesis stating that preferred p-adic primes
p ' 2k, k integer, with primes (in particular Mersenne primes) preferred, makes the model
quantitative.

i. An unexpected prediction is that coherence length ξ is actually ~eff/~0 = 211 times
longer than the coherence length 5-10 Angstroms deduced theoretically from gap energy
using conventional theory and varies in the range 1 − 5 µm, the cell nucleus length
scale. Hence type I super-conductor would be in question with stripes as defects of
anti-ferromagnetic Mott insulator serving as duals for the magnetic defects of type I
super-conductor in nearly critical magnetic field.

ii. At quantitative level the model reproduces correctly the four poorly understood photon
absorption lines and allows to understand the critical doping ratio from basic principles.

iii. The current carrying structures have structure locally similar to that of axon including
the double layered structure of cell membrane and also the size scales are predicted
to be same. One of the characteristic absorption lines has energy of .05 eV which
corresponds to the Josephson energy for neuronal membrane for activation potential
V = 50 mV. Hence the idea that axons are high Tc superconductors is highly suggestive.
Dark matter hierarchy coming in powers ~/~0 = 2k11 suggests hierarchy of Josephson
junctions needed in TGD based model of EEG [K24] .

Magnetic body as a sensory perceiver and intentional agent

The hypothesis that dark magnetic body serves as an intentional agent using biological
body as a motor instrument and sensory receptor is consistent with Libet’s findings about
strange time delays of consciousness. Magnetic body would carry cyclotron Bose-Einstein
condensates of various ions. Magnetic body must be able to perform motor control and
receive sensory input from biological body.

Cell membrane would be a natural sensor providing information about cell interior and
exterior to the magnetic body and dark photons at appropriate frequency range would
naturally communicate this information. The strange quantitative co-incidences with the
physics of cell membrane and high Tc super-conductivity support the idea that Josephson
radiation generated by Josephson currents of dark electrons through cell membrane is
responsible for this communication [K24] .

Also fractally scaled up versions of cell membrane at higher levels of dark matter hierarchy
(in particular those corresponding to powers n = 2k11) are possible and the model for EEG
indeed relies on this hypothesis. The thickness for the fractal counterpart of cell membrane
thickness would be 244 fold and of order of depth of ionosphere! Although this looks weird
it is completely consistent with the notion of magnetic body as an intentional agent.

Motor control would be most naturally performed via genome: this is achieved if flux
sheets traverse through DNA strands. Flux quantization for large values of Planck constant
requires rather large widths for the flux sheets. If flux sheet contains sequences of genomes
like the page of book contains lines of text, a coherent gene expression becomes possible at
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level of organs and even populations and one can speak about super- and hyper-genomes.
Introns might relate to the collective gene expression possibly realized electromagnetically
rather than only chemically [K11, K12] .

Dark cyclotron radiation with photon energy above thermal energy could be used for co-
ordination purposes at least. The predicted hierarchy of copies of standard model physics
leads to ask whether also dark copies of electro-weak gauge bosons and gluons could be im-
portant in living matter. As already mentioned, dark W bosons could make possible charge
entanglement and non-local quantum bio-control by inducing voltage differences and thus
ionic currents in living matter.

The identification of plasmoids as rotating magnetic flux structures carrying dark ions and
electrons as primitive life forms is natural in this framework. There exists experimental
support for this identification [I4] but the main objection is the high temperature involved:
this objection could be circumvented if large ~ phase is involved. A model for the pre-biotic
evolution relying also on this idea is discussed in [K30] .

At the level of biology there are now several concrete applications leading to a rich spec-
trum of predictions. Magnetic flux quanta would carry charged particles with large Planck
constant.

i. The shortening of the flux tubes connecting biomolecules in a phase transition reducing
Planck constant could be a basic mechanism of bio-catalysis and explain the mysterious
ability of biomolecules to find each other. Similar process in time direction could
explain basic aspects of symbolic memories as scaled down representations of actual
events.

ii. The strange behavior of cell membrane suggests that a dominating portion of important
biological ions are actually dark ions at magnetic flux tubes so that ionic pumps and
channels are needed only for visible ions. This leads to a model of nerve pulse explaining
its unexpected thermodynamical properties with basic properties of Josephson currents
making it un-necessary to use pumps to bring ions back after the pulse. The model
predicts automatically EEG as Josephson radiation and explains the synchrony of both
kHz radiation and of EEG.

iii. The DC currents of Becker could be accompanied by Josephson currents running along
flux tubes making possible dissipation free energy transfer and quantum control over
long distances and meridians of chinese medicine could correspond to these flux tubes.

iv. The model of DNA as topological quantum computer assumes that nucleotides and
lipids are connected by ordinary or ”wormhole” magnetic flux tubes acting as strands
of braid and carrying dark matter with large Planck constant. The model leads to
a new vision about TGD in which the assignment of nucleotides to quarks allows to
understood basic regularities of DNA not understood from biochemistry.

v. Each physical system corresponds to an onionlike hierarchy of field bodies characterized
by p-adic primes and value of Planck constant. The highest value of Planck constant
in this hierarchy provides kind of intelligence quotient characterizing the evolutionary
level of the system since the time scale of planned action and memory correspond to
the temporal distance between tips of corresponding causal diamond (CD). Also the
spatial size of the system correlates with the Planck constant. This suggests that great
evolutionary leaps correspond to the increase of Planck constant for the highest level
of hierarchy of personal magnetic bodies. For instance, neurons would have much more
evolved magnetic bodies than ordinary cells.

vi. At the level of DNA this vision leads to an idea about hierarchy of genomes. Magnetic
flux sheets traversing DNA strands provide a natural mechanism for magnetic body to
control the behavior of biological body by controlling gene expression. The quantization
of magnetic flux states that magnetic flux is proportional to ~ and thus means that the
larger the value of ~ is the larger the width of the flux sheet is. For larger values of ~
single genome is not enough to satisfy this condition. This leads to the idea that the
genomes of organs, organism, and even population, can organize like lines of text at
the magnetic flux sheets and form in this manner a hierarchy of genomes responsible
for a coherent gene expression at level of cell, organ, organism and population and
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perhaps even entire biosphere. This would also provide a mechanism by which collective
consciousness would use its biological body - biosphere.

DNA as topological quantum computer

I ended up with the recent model of tqc in bottom-up manner and this representation is
followed also in the text. The model which looks the most plausible one relies on two
specific ideas.

i. Sharing of labor means conjugate DNA would do tqc and DNA would ”print” the
outcome of tqc in terms of mRNA yielding amino-acids in the case of exons. RNA could
result also in the case of introns but not always. The experience about computers and
the general vision provided by TGD suggests that introns could express the outcome of
tqc also electromagnetically in terms of standardized field patterns as Gariaev’s findings
suggest [I2] . Also speech would be a form of gene expression. The quantum states
braid (in zero energy ontology) would entangle with characteristic gene expressions.
This argument turned out to be based on a slightly wrong belief about DNA: later I
learned that both strand and its conjugate are transcribed but in different directions.
The symmetry breaking in the case of transcription is only local which is also visible
in DNA replication as symmetry breaking between leading and lagging strand. Thus
the idea about entire leading strand devoted to printing and second strand to tqc must
be weakened appropriately.

ii. The manipulation of braid strands transversal to DNA must take place at 2-D surface.
Here dancing metaphor for topological quantum computation [C19] generalizes. The
ends of the space-like braid are like dancers whose feet are connected by thin threads
to a wall so that the dancing pattern entangles the threads. Dancing pattern defines
both the time-like braid, the running of classical tqc program and its representation as
a dynamical pattern. The space-like braid defined by the entangled threads represents
memory storage so that tqc program is automatically written to memory as the braiding
of the threads during the tqc. The inner membrane of the nuclear envelope and cell
membrane with entire endoplasmic reticulum included are good candidates for dancing
halls. The 2-surfaces containing the ends of the hydrophobic ends of lipids could be
the parquets and lipids the dancers. This picture seems to make sense.

One ends up to the model also in top-down manner.

i. Darwinian selection for which standard theory of self-organization [B15] provides a
model, should apply also to tqc programs. Tqc programs should correspond to asymp-
totic self-organization patterns selected by dissipation in the presence of metabolic
energy feed. The spatial and temporal pattern of the metabolic energy feed character-
izes the tqc program - or equivalently - sub-program call.

ii. Since braiding characterizes the tqc program, the self-organization pattern should cor-
respond to a hydrodynamical flow or a pattern of magnetic field inducing the braiding.
Braid strands must correspond to magnetic flux tubes of the magnetic body of DNA.
If each nucleotide is transversal magnetic dipole it gives rise to transversal flux tubes,
which can also connect to the genome of another cell.

iii. The output of tqc sub-program is probability distribution for the outcomes of state
function reduction so that the sub-program must be repeated very many times. It is
represented as four-dimensional patterns for various rates (chemical rates, nerve pulse
patterns, EEG power distributions,...) having also identification as temporal densities
of zero energy states in various scales. By the fractality of TGD Universe there is
a hierarchy of tqc’s corresponding to p-adic and dark matter hierarchies. Programs
(space-time sheets defining coherence regions) call programs in shorter scale. If the
self-organizing system has a periodic behavior each tqc module defines a large number
of almost copies of itself asymptotically. Generalized EEG could naturally define this
periodic pattern and each period of EEG would correspond to an initiation and halting
of tqc. This brings in mind the periodically occurring sol-gel phase transition inside
cell near the cell membrane.
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iv. Fluid flow must induce the braiding which requires that the ends of braid strands must
be anchored to the fluid flow. Recalling that lipid mono-layers of the cell membrane
are liquid crystals and lipids of interior mono-layer have hydrophilic ends pointing
towards cell interior, it is easy to guess that DNA nucleotides are connected to lipids
by magnetic flux tubes and hydrophilic lipid ends are stuck to the flow.

v. The topology of the braid traversing cell membrane cannot affected by the hydrody-
namical flow. Hence braid strands must be split during tqc. This also induces the
desired magnetic isolation from the environment. Halting of tqc reconnects them and
make possible the communication of the outcome of tqc.

vi. There are several problems related to the details of the realization. How nucleotides
A,T,C,G are coded to strand color and what this color corresponds to? The prediction
that wormhole contacts carrying quark and anti-quark at their ends appear in all
length scales in TGD Universe resolves the problem. How to split the braid strands
in a controlled manner? High Tc super conductivity provides a partial understanding
of the situation: braid strand can be split only if the supra current flowing through it
vanishes. From the proportionality of Josephson current to the quantity sin(

∫
2eV dt)

it follows that a suitable voltage pulse V induces DC supra-current and its negative
cancels it. The conformation of the lipid controls whether it it can follow the flow
or not. How magnetic flux tubes can be cut without breaking the conservation of
the magnetic flux? The notion of wormhole magnetic field saves the situation now:
after the splitting the flux returns back along the second space-time sheet of wormhole
magnetic field.

To sum up, it seems that essentially all new physics involved with TGD based view about
quantum biology enter to the model in crucial manner.

Quantum model of nerve pulse and EEG

In this article a unified model of nerve pulse and EEG is discussed.

i. In TGD Universe the function of EEG and its variants is to make possible communi-
cations from the cell membrane to the magnetic body and the control of the biological
body by the magnetic body via magnetic flux sheets traversing DNA by inducing gene
expression. This leads to the notions of super- and hyper-genome predicting coherent
gene expression at level of organs and population.

ii. The assignment the predicted ranged classical weak and color gauge fields to dark
matter hierarchy was a crucial step in the evolution of the model, and led among
other things to a model of high Tc superconductivity predicting the basic scales of
cell, and also to a generalization of EXG to a hierarchy of ZXGs, WXGs, and GXGs
corresponding to Z0, W bosons and gluons.

iii. Dark matter hierarchy and the associated hierarchy of Planck constants plays a key role
in the model. For instance, in the case of EEG Planck constant must be so large that the
energies of dark EEG photons are above thermal energy at physiological temperatures.
The assumption that a considerable fraction of the ionic currents through the cell
membrane are dark currents flowing along the magnetic flux tubes explains the strange
findings about ionic currents through cell membrane. Concerning the model of nerve
pulse generation, the newest input comes from the model of DNA as a topological
quantum computer and experimental findings challenging Hodgkin-Huxley model as
even approximate description of the situation.

iv. The identification of the cell interior as gel phase containing most of water as struc-
tured water around cytoskeleton - rather than water containing bio-molecules as solutes
as assumed in Hodkin-Huxley model - allows to understand many of the anomalous
behaviors associated with the cell membrane and also the different densities of ions
in the interior and exterior of cell at qualitative level. The proposal of Pollack that
basic biological functions involve phase transitions of gel phase generalizes in TGD
framework to a proposal that these phase transitions are induced by quantum phase
transitions changing the value of Planck constant. In particular, gel-sol phase transition
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for the peripheral cytoskeleton induced by the primary wave would accompany nerve
pulse propagation. This view about nerve pulse is not consistent with Hodkin-Huxley
model.

The model leads to the following picture about nerve pulse and EEG.

i. The system would consist of two superconductors- microtubule space-time sheet and
the space-time sheet in cell exterior- connected by Josephson junctions represented by
magnetic flux tubes defining also braiding in the model of tqc. The phase difference be-
tween two super-conductors would obey Sine-Gordon equation allowing both standing
and propagating solitonic solutions. A sequence of rotating gravitational penduli cou-
pled to each other would be the mechanical analog for the system. Soliton sequences
having as a mechanical analog penduli rotating with constant velocity but with a
constant phase difference between them would generate moving kHz synchronous os-
cillation. Periodic boundary conditions at the ends of the axon rather than chemistry
determine the propagation velocities of kHz waves and kHz synchrony is an automatic
consequence since the times taken by the pulses to travel along the axon are multiples
of same time unit. Also moving oscillations in EEG range can be considered and would
require larger value of Planck constant in accordance with vision about evolution as
gradual increase of Planck constant.

ii. During nerve pulse one pendulum would be kicked so that it would start to oscillate
instead of rotating and this oscillation pattern would move with the velocity of kHz soli-
ton sequence. The velocity of kHz wave and nerve pulse is fixed by periodic boundary
conditions at the ends of the axon implying that the time spent by the nerve pulse in
traveling along axon is always a multiple of the same unit: this implies kHz synchrony.
The model predicts the value of Planck constant for the magnetic flux tubes associated
with Josephson junctions and the predicted force caused by the ionic Josephson cur-
rents is of correct order of magnitude for reasonable values of the densities of ions. The
model predicts kHz em radiation as Josephson radiation generated by moving soliton
sequences. EEG would also correspond to Josephson radiation: it could be generated
either by moving or standing soliton sequences (latter are naturally assignable to neu-
ronal cell bodies for which ~ should be correspondingly larger): synchrony is predicted
also now.

15.7 Appendix

15.7.1 About inclusions of hyper-finite factors of type II1

Many names have been assigned to inclusions: Jones, Wenzl, Ocneacnu, Pimsner-Popa,
Wasserman [A76] . It would seem to me that the notion Jones inclusion includes them all
so that various names would correspond to different concrete realizations of the inclusions
conjugate under outer automorphisms.

i. According to [A76] for inclusions with M : N ≤ 4 (with A
(1)
1 excluded) there exists a

countable infinity of sub-factors with are pairwise non inner conjugate but conjugate
to N .

ii. Also for any finite group G and its outer action there exists uncountably many sub-
factors which are pairwise non inner conjugate but conjugate to the fixed point algebra
of G [A76] . For any amenable group G the the inclusion is also unique apart from
outer automorphism [A90] .

Thus it seems that not only Jones inclusions but also more general inclusions are unique
apart from outer automorphism.

Any *-endomorphism σ, which is unit preserving, faithful, and weakly continuous, defines
a sub-factor of type II1 factor [A76] . The construction of Jones leads to a atandard
inclusion sequence N ⊂ M ⊂ M1 ⊂ .... This sequence means addition of projectors ei,
i < 0, having visualization as an addition of braid strand in braid picture. This hierarchy
exists for all factors of type II. At the limit M∞ = ∪iMi the braid sequence extends
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from −∞ to ∞. Inclusion hierarchy can be understood as a hierarchy of Connes tensor
powers M ⊗N M.... ⊗N M. Also the ordinary tensor powers of hyper-finite factors of
type II1 (HFF) as well as their tensor products with finite-dimensional matrix algebras are
isomorphic to the original HFF so that these objects share the magic of fractals.

Under certain assumptions the hierarchy can be continued also in opposite direction. For
a finite index an infinite inclusion hierarchy of factors results with the same value of index.
σ is said to be basic if it can be extended to *-endomorphisms fromM1 toM. This means
that the hierarchy of inclusions can be continued in the opposite direction: this means
elimination of strands in the braid picture. For finite factors (as opposed to hyper-finite
ones) there are no basic *-endomorphisms of M having fixed point algebra of non-abelian
G as a sub-factor [A76] .

1. Jones inclusions

For hyper-finite factors of type II1 Jones inclusions allow basic *-endomorphism. They exist
for all values of M : N = r with r ∈ {4cos2(π/n)|n ≥ 3} ∩ [4,∞) [A76] . They are defined
for an algebra defined by projectors ei, i ≥ 1. All but nearest neighbor projectors commute.
λ = 1/r appears in the relations for the generators of the algebra given by eiejei = λei,
|i − j| = 1. N ⊂ M is identified as the double commutator of algebra generated by ei,
i ≥ 2.

This means that principal graph and its dual are equivalent and the braid defined by
projectors can be continued not only to −∞ but that also the dropping of arbitrary number
of strands is possible [A76] . It would seem that ADE property of the principal graph
meaning single root length codes for the duality in the case of r ≤ 4 inclusions.

Irreducibility holds true for r < 4 in the sense that the intersection of Q′∩P = P ′∩P = C.
For r ≥ 4 one has dim(Q′ ∩ P ) = 2. The operators commuting with Q contain besides
identify operator of Q also the identify operator of P . Q would contain a single finite-
dimensional matrix factor less than P in this case. Basic *-endomorphisms with σ(P ) = Q is
σ(ei) = ei+1. The difference between genuine symmetries of quantum TGD and symmetries
which can be mimicked by TGD could relate to the irreducibility for r < 4 and raise these
inclusions in a unique position. This difference could partially justify the hypothesis that
only the groups Ga × Gb ⊂ SU(2) × SU(2) ⊂ SL(2, C) × SU(3) define orbifold coverings
of H± = CD × CP2 → H±/Ga ×Gb.

2. Wasserman’s inclusion

Wasserman’s construction of r = 4 factors clarifies the role of the subgroup of G ⊂ SU(2)
for these inclusions. Also now r = 4 inclusion is characterized by a discrete subgroup
G ⊂ SU(2) and is given by (1 ⊗ M)G ⊂ (M2(C) × M)G. According to [A76] Jones
inclusions are irreducible also for r = 4. The definition of Wasserman inclusion for r = 4
seems however to imply that the identity matrices of both MG and (M(2, C) ⊗ M)G

commute with MG so that the inclusion should be reducible for r = 4.

Note that G leaves both the elements of N and M invariant whereas SU(2) leaves the
elements of N invariant. M(2, C) is effectively replaced with the orbifold M(2, C)/G, with
G acting as automoprhisms. The space of these orbits has complex dimension d = 4 for
finite G.

For r < 4 inclusion is defined as MG ⊂M . The representation of G as outer automorphism
must change step by step in the inclusion sequence ... ⊂ N ⊂ M ⊂ ... since otherwise G
would act trivially as one proceeds in the inclusion sequence. This is true since each step
brings in additional finite-dimensional tensor factor in which G acts as automorphisms so
that although M can be invariant under GM it is not invariant under GN .

These two inclusions might accompany each other in TGD based physics. One could
consider r < 4 inclusion N = MG ⊂ M with G acting non-trivially in M/N quantum
Clifford algebra. N would decompose by r = 4 inclusion to N1 ⊂ N with SU(2) taking
the role of G. N/N1 quantum Clifford algebra would transform non-trivially under SU(2)
but would be G singlet.

In TGD framework the G-invariance for SU(2) representations means a reduction of S2

to the orbifold S2/G. The coverings H± → H±/Ga × Gb should relate to these double
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inclusions and SU(2) inclusion could mean Kac-Moody type gauge symmetry for N . Note
that the presence of the factor containing only unit matrix should relate directly to the
generator d in the generator set of affine algebra in the McKay construction. The physical

interpretation of the fact that almost all ADE type extended diagrams (D
(1)
n must have

n ≥ 4) are allowed for r = 4 inclusions whereas D2n+1 and E6 are not allowed for r < 4,
remains open.

15.7.2 Generalization from SU(2) to arbitrary compact group

The inclusions with index M : N < 4 have one-dimensional relative commutant N ′ ∪
M. The most obvious conjecture that M : N ≥ 4 corresponds to a non-trivial relative
commutant is wrong. The index for Jones inclusion is identifiable as the square of quantum
dimension of the fundamental representation of SU(2). This identification generalizes to
an arbitrary representation of arbitrary compact Lie group.

In his thesis Wenzl [A145] studied the representations of Hecke algebras Hn(q) of type
An obtained from the defining relations of symmetric group by the replacement e2

i =
(q − 1)ei + q. Hn is isomorphic to complex group algebra of Sn if q is not a root of
unity and for q = 1 the irreducible representations of Hn(q) reduce trivially to Young’s
representations of symmetric groups. For primitive roots of unity q = exp(i2π/l), l = 4, 5...,
the representations of Hn(∞) give rise to inclusions for which index corresponds to a
quantum dimension of any irreducible representation of SU(k), k ≥ 2. For SU(2) also the
value l = 3 is allowed for spin 1/2 representation.

The inclusions are obtained by dropping the first m generators ek from H∞(q) and tak-
ing double commutant of both H∞ and the resulting algebra. The relative commutant
corresponds to Hm(q). By reducing by the minimal projection to relative commutant one
obtains an inclusion with a trivial relative commutant. These inclusions are analogous to
a discrete states superposed in continuum. Thus the results of Jones generalize from the
fundamental representation of SU(2) to all representations of all groups SU(k), and in fact
to those of general compact groups as it turns out.

The generalization of the formula for index to square of quantum dimension of an irreducible
representation of SU(k) reads as

M : N =
∏

1≤r<s≤k

sin2 ((λr − λs + s− r)π/l)
sin2 ((s− r)n/l)

. (15.7.1)

Here λr is the number of boxes in the rth row of the Yang diagram with n boxes character-
izing the representations and the condition 1 ≤ k ≤ l− 1 holds true. Only Young diagrams
satisfying the condition l − k = λ1 − λrmax are allowed.

The result would allow to restrict the generalization of the imbedding space in such a
manner that only cyclic group Zn appears in the covering of M4 → M4/Ga or CP2 →
CP2/Gb factor. Be as it may, it seems that quantum representations of any compact Lie
group can be realized using the generalization of the imbedding space. In the case of SU(2)
the interpretation of higher-dimensional quantum representations in terms of Connes tensor
products of 2-dimensional fundamental representations is highly suggestive.

The groups SO(3, 1)×SU(3) and SL(2, C)×U(2)ew have a distinguished position both in
physics and quantum TGD and the vision about physics as a generalized number theory
implies them. Also the general pattern for inclusions selects these groups, and one can
say that the condition that all possible statistics are realized is guaranteed by the choice
M4 × CP2.

i. n > 2 for the quantum counterparts of the fundamental representation of SU(2) means
that braid statistics for Jones inclusions cannot give the usual fermionic statistics. That
Fermi statistics cannot ”emerge” conforms with the role of infinite-D Clifford algebra
as a canonical representation of HFF of type II1. SO(3, 1) as isometries of H gives
Z2 statistics via the action on spinors of M4 and U(2) holonomies for CP2 realize Z2

statistics in CP2 degrees of freedom.
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ii. n > 3 for more general inclusions in turn excludes Z3 statistics as braid statistics in the
general case. SU(3) as isometries induces a non-trivial Z3 action on quark spinors but
trivial action at the imbedding space level so that Z3 statistics would be in question.



Chapter 16

Mathematical Speculations
about the Hierarchy of Planck
Constants

16.1 Introduction

I decided to separate the purely mathematical speculations about the hierarchy of Planck
constants (actually only effective hierarchy if the recent interpretation is correct) from the
material describing the physical ideas, key mathematical concepts, and the basic appli-
cations. These mathematical speculations emerged during the first stormy years in the
evolution of the ideas about Planck constant and must be taken with a big grain of salt.
I feel myself rather conservative as compared to the fellow who produced this stuff for 7
years ago. This all is of course very relative. Many readers might experience this recent
me as a reckless speculator.

The first highly speculative topic discussed in this chapter is about possible connection of
the hierarchy of Planck constants with Jones inclusions.

i. The connection with Jones inclusions was originally a purely heuristic guess based on
the observation that the finite groups characterizing Jones inclusion characterize also
pages of the Big Book. The key observation is that Jones inclusions are characterized
by a finite subgroup G ⊂ SU(2) and that this group also characterizes the singular
covering or factor spaces associated with CD or CP2 so that the pages of generalized
imbedding space could indeed serve as correlates for Jones inclusions. The elements of
the included algebra M are invariant under the action of G and M takes the role of
complex numbers in the resulting non-commutative quantum theory.

ii. The understanding of quantum TGD at parton level led to the realization that the
dynamics of Kähler action realizes finite measurement resolution in terms of finite
number of modes of the induced spinor field. This automatically implies cutoffs to the
representations of various super-conformal algebras typical for the representations of
quantum groups closely associated with Jones inclusions [K7] . The Clifford algebra
spanned by the fermionic oscillator operators would provide a realization for the factor
space N/M of hyper-finite factors of type II1 identified as the infinite-dimensional
Clifford algebra N of the configuration space and included algebra M determining
the finite measurement resolution. The resulting quantum Clifford algebra has anti-
commutation relations dictated by the fractionization of fermion number so that its unit
becomes r = ~/~0. SU(2) Lie algebra transforms to its quantum variant corresponding
to the quantum phase q = exp(i2π/r).

iii. Jones inclusions appear as two variants corresponding to N :M < 4 and N :M = 4.
The tentative interpretation is in terms of singular G-factor spaces and G-coverings
of M4 or CP2 in some sense. The alternative interpretation in terms of two geodesic
spheres of CP2 would mean asymmetry between M4 and CP2 degrees of freedom.

999
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iv. Number theoretic Universality suggests an answer why the hierarchy of Planck con-
stants is necessary. One must be able to define the notion of angle -or at least the
notion of phase and of trigonometric functions- also in p-adic context. All that one
can achieve naturally is the notion of phase defined as root of unity and introduced by
allowing algebraic extension of p-adic number field by introducing the phase if needed.
In the framework of TGD inspired theory of consciousness this inspires a vision about
cognitive evolution as the gradual emergence of increasingly complex algebraic exten-
sions of p-adic numbers and involving also the emergence of improved angle resolution
expressible in terms of phases exp(i2π/n) up to some maximum value of n. The cov-
erings and factor spaces would realize these phases geometrically and quantum phases
q naturally assignable to Jones inclusions would realize them algebraically. Besides
p-adic coupling constant evolution based on hierarchy of p-adic length scales there
would be coupling constant evolution with respect to ~ and associated with angular
resolution.

There are also speculations relating to the hierarchy of Planck constants, Mc-Kay corre-
spondence, and Jones inclusions. Even Farey sequences, Riemmann hypothesis and and
N-tangles are discussed. Depending on reader these speculations might be experienced as
irritating or entertaining. It would be interesting to go this stuff through in the light of
recent understanding of the effective hierarchy of Planck constants to see what portion of
its survives.

16.2 Jones inclusions and generalization of the imbed-
ding space

The original motivation for the generalization of the imbedding space was the idea that the
pages of the Big Book would provide correlates for Jones inclusions. In the following an
attempt to formulate this vision more precisely is carried out.

16.2.1 Basic facts about Jones inclusions

Here only basic facts about Jones inclusions are discussed. Appendix contains a more
detailed discussion of inclusions of HFFs.

Jones inclusions defined by subgroups of SL(2, C)× SU(2)

Jones inclusions with M : N < 4 have representation as RG0 ⊂ RG with G a discrete
subgroup of SU(2). SO(3) or SU(2) can be interpreted as acting in CP2 as rotations. On
quantum spinors the action corresponds to double cover of G.

A more general choice for G would be as a discrete subgroup Ga×Gb ⊂ SL(2, C)×SU(2)×
SU(2). Poincare invariance suggests that the subgroup of SL(2, C) reduces either to a
discrete subgroup of SU(2) and in the case that the rotation are genuinely 3-dimensional
(E6, E8), the only possible interpretation would be as isotropy group of a particle at rest.
When the group acts on plane as in case of An and D2n, it could be also assigned to a
massless particle.

If the group involves boosts it contains an infinite number of elements and it is not clear
whether this kind of situation is physically sensible. In this case Jones inclusion could be
interpreted as an inclusion for the tensor product of G invariant algebras associated with
CD and CP2 degrees of freedom and one would have M : N =M : N (Ga)×M : N (Gb).
Since the index increases as the order of G increases one has reasons to expect that in the
case of Ga = SL(2, C) Na =∞ implies larger M : N (Ga) > 4.

A possible interpretation is that the valuesM : N ≤ 4 are analogous to bound state energies
so that a discrete rotation group acting in the relative rotational degrees of freedom can
act as a symmetry group whereas the values M : N > 4 are analogous to ionized states
for which particles are almost freely moving with respect to each other with a constant
velocity.
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When one restricts the coefficients to G-invariant elements of Clifford algebra the Clifford
field is G-invariant under the natural action of G. This allows two interpretations. Either
the Clifford field is G invariant or that the Clifford field is defined in orbifold CD/Ga ×
CP2/Gb. CD/Ga is obtained by replacing hyperboloid Ha (t2 − x2 − y2 − z2 = a2) with
Ha/Ga. These spaces have been considered as cosmological models having 3-space with
finite volume [K67] (also a lattice like structure could be in question).

The quantum phases associated with sub-groups of SU(2)

It is natural to identify quantum phase as that defined by the maximal cyclic subgroup
for finite subgroups of SU(2) and infinite subgroups of SL(2, C). Before continuing a brief
summary about quantum phases associated with finite subgroups of SU(2) is in order.
E6 corresponds to N = 24 and n = 3 and E8 to icosahedron with N = 120, n = 5 and
Golden mean and the minimal value of n making possible universal topological quantum
computer [K84] .

Dn and An have orders 2n and n + 1 and act as symmetry groups of n-polygon and have
n-element cyclic group as a maximal cyclic subgroup. For double covers the orders are
twice this. Thus An resp. D2n correspond to q = exp(iπ/n) resp. q = exp(iπ/2n). Note
that the restriction n ≥ 3 means geometrically that only non-trivial polygons are allowed.

16.2.2 Jones inclusions and the hierarchy of Planck constants

The anyonic arguments for the quantization of Planck constant suggest that one can assign
separate scalings of Planck constant to CD and CP2 degrees of freedom and that these
scalings in turn reflect as scalings of M4± and CP2 metrics. This is definitely not in
accordance with the original TGD vision based on uniqueness of imbedding space but
makes sense if space-time and imbedding space are emergent concepts as the hierarchy of
number theoretical von Neumann algebra inclusions indeed suggests. Indeed, the scaling
factors of CD and CP2 metric remain non-fixed by the general uniqueness arguments since
Cartesian product is in question.

Hierarchy of Planck constants and choice of quantization axis

Jones inclusions seem to relate in a natural manner to the selection of quantization axis.

i. In the case of CD the orbifold singularity is for all groupsGa except E6 and E8 the time-
like plane M2 corresponding to a radial ray through origin defining the quantization
axis of angular momentum and intersecting light-cone boundary along a preferred light-
like ray. For E6 and E8 (tedrahedral and icosahedral symmetries) the singularity
consists of planes M2 related by symmetries of G sharing time-like line M1 and in this
case there are several alternative identifications of the quantization axes as axis around
which the maximal cyclic subgroup acts as rotations.

ii. From this it should be obvious that Jones inclusions represented in this manner would
relate very closely to the selection of quantization axes and provide a geometric rep-
resentation for this selection at the level of space-time and configuration space. The
existence of the preferred direction of quantization at a given level of dark matter level
should have observable consequences. For instance, in cosmology this could mean a
breaking of perfect rotational symmetry at dark matter space-time sheets. The inter-
pretation would be as a quantum effect in cosmological length scales. An interesting
question is whether the observed asymmetry of cosmic microwave background could
have interpretation as a quantum effect in cosmological length and time scales.

Do factor spaces and coverings correspond to the two kinds of Jones inclusions?

What could be the interpretation of the singular coverings and and factor spaces? If both
geodesic spheres of CP2 are allowedM : N = 4 could correspond to the allowance of cosmic
strings and other analogous objects. This option is however asymmetric with respect to CD
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and CP2 and the more plausible option is that the two kinds of Jones inclusions correspond
to singular factor spaces and coverings.

i. Jones inclusions appear in two varieties corresponding to M : N < 4 and M : N = 4
and one can assign a hierarchy of subgroups of SU(2) with both of them. In particular,
their maximal Abelian subgroups Zn label these inclusions. The interpretation of Zn
as invariance group is natural forM : N < 4 and it naturally corresponds to the coset
spaces. For M : N = 4 the interpretation of Zn has remained open. Obviously the
interpretation of Zn as the homology group defining covering would be natural.

ii. For covering spaces one would however obtain the degrees of freedom associated with
the discrete fiber and the degrees of freedom in question would not disappear completely
and would be characterized by the discrete subgroup of SU(2). For anyons the non-
trivial homotopy of plane brings in non-trivial connection with a flat curvature and
the non-trivial dynamics of topological QFTs. Also now one might expect similar non-
trivial contribution to appear in the spinor connection of ĈD×̂Ga and ĈP 2×̂Gb. In
conformal field theory models non-trivial monodromy would correspond to the presence
of punctures in plane. This picture is also consistent with the G singlets of the quantum
states despite the fact that fermionic oscillator operators belong to non-trivial irreps
of G.

Coverings and factors spaces form an algebra like structure

It is easy to see that coverings and factor spaces defining the pages of the Big Book form
an algebra like structure.

i. For factor spaces the unit for quantum numbers like orbital angular momentum is
multiplied by na resp. nb and for coverings it is divided by this number. These two
kind of spaces are in a well defined sense obtained by multiplying and dividing the
factors of Ĥ by Ga resp. Gb and multiplication and division are expected to relate to
Jones inclusions with M : N < 4 and M : N = 4, which both are labeled by a subset
of discrete subgroups of SU(2).

ii. The discrete subgroups of SU(2) with fixed quantization axis possess a well defined
multiplication with product defined as the group generated by forming all possible
products of group elements as elements of SU(2). This product is commutative and
all elements are idempotent and thus analogous to projectors. Trivial group G1, two-
element group G2 consisting of reflection and identity, the cyclic groups Zp, p prime,
and tedrahedral, octahedral, and icosahedral groups are the generators of this algebra.

By commutativity one can regard this algebra as an 11-dimensional module having natural
numbers as coefficients (”rig”). The trivial group G1, two-element group G2 generated by
reflection, and tedrahedral, octahedral, and icosahedral groups define 5 generating elements
for this algebra. The products of groups other than trivial group define 10 units for this
algebra so that there are 11 units altogether. The groups Zp generate a structure analogous
to natural numbers acting as analog of coefficients of this structure. Clearly, one has effec-
tively 11-dimensional commutative algebra in 1-1 correspondence with the 11-dimensional
”half-lattice” N11 (N denotes natural numbers). Leaving away reflections, one obtains N7.
The projector representation suggests a connection with Jones inclusions. An interesting
question concerns the possible Jones inclusions assignable to the subgroups containing in-
finitely manner elements. Reader has of course already asked whether dimensions 11, 7 and
their difference 4 might relate somehow to the mathematical structures of M-theory with 7
compactified dimensions. One could introduce generalized configuration space spinor fields
in the configuration space labeled by sectors of H with given quantization axes. By intro-
ducing Fourier transform in N11 one would formally obtain an infinite-component field in
11-D space.



16.2. Jones inclusions and generalization of the imbedding space 1003

Connection between Jones inclusions, hierarchy of Planck constants, and finite
number of spinor modes

The original generalization of the imbedding space to accommodate the hierarchy of Planck
constants was based on the idea that the singular coverings and factor spaces associated
with the causal diamond CD and CP2, which appears as factors of CD×CP2 correspond
somehow to Jones inclusions, and that the integers na and nb characterizing the orders
of maximal cyclic groups of groups Ga and Gb associated with the two Cartesian factors
correspond to quantum phases q = exp(i2π/ni) in such a manner that singular factor spaces
correspond to Jones inclusions with index M : N < 4 and coverings to those with index
M : N = 4.

Since Jones inclusions are interpreted in terms of finite measurement resolution, the mathe-
matical realization of this heuristic picture should rely on the same concept realized also by
the fact that the number of non-zero modes for induced spinor fields is finite. This allows
to consider two possible interpretations.

i. The finite number of modes defines an approximation to the hyper-finite factor of type
II1 defined by configuration space Clifford algebra.

ii. The Clifford algebra spanned by fermionic oscillator operators is quantum Clifford
algebra and corresponds to the somewhat nebulous object N/M associated with the
inclusion M ⊂ N and coding the finite measurement resolution to a finite quantum
dimension of the Clifford algebra. The fact that quantum dimension is smaller than the
actual dimension would reflect correlations between spinor components so that they
are not completely independent.

If the latter interpretation is correct then second quantized induced spinor fields should
obey quantum variant of anticommutation relations reducing to ordinary anticommutation
relations only for na = nb = 0 (no singular coverings nor factor spaces). This would give
the desired connection between inclusions and hierarchy of Planck constants. It is possible
to have infinite number of quantum group like structure for ~ = ~0.

There are two quantum phases q and one should understand what is the phase that appears
in the quantum variant of anti-commutation relations. A possible resolution of the problem
relies on the observation that there are two kinds of number theoretic braids. The first kind
of number theoretic braid is defined as the intersection of M+ (or light-like curve of δM4

+

in more general case) and of δM4
+ projection of X2. Second of braid is defined as the

intersection of CP2 projection of X2 of homologically non-trivial sphere S2
II of CP2. The

intuitive expectation is that these dual descriptions apply for light-like 3-surfaces associated
resp. co-associative regions of space-time surface and that both descriptions apply at
wormhole throats. The duality of these descriptions is guaranteed also at wormhole throats
if physical Planck constant is given by ~ = r~0, r = ~(M4)/~(CP2), so that only the ratio
of the two Planck constants matters in commutation relations. This would suggest that it
is q = exp(i2π/r), which appears in quantum variant of anti-commutation relations of the
induced spinor fields.

The action of Ga ×Gb on configuration space spinors and spinor fields

The first question is what kind of measurement resolution is in question. In zero energy
ontology the included states would typically correspond to insertion of zero energy states
to the positive or negative part of the physical state in time scale below the time resolution
defined by the time scale assignable to the smallest CD present in the zero energy state.
Does the description in terms of G invariance apply in this case or does it relate only to
time and length scale resolution whereas hierarchy of Planck constants would relate to angle
resolution? Assume that this is the case.

The second question is how the idea about M as an included algebra defining finite mea-
surement resolution and G invariance as a symmetry defining M as the included algebra
relate to each other.

i. One cannot say that G creates states, which cannot be distinguished from each other.
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Rather G-invariant elements ofM create states whose presence in the state cannot be
detected.

ii. For covering space option M represents states which are invariant under discrete sub-
group of SU(2) acting in the covering. States with integer spin would be below mea-
surement resolution and only factional spins of form j/n would be observable. For
factor space optionM would represents states which are invariant under discrete sub-
group of SU(2) acting in H-say states with spin. States with spin which is multiple
of n would be below measurement resolution. The situation would be very similar to
each other. Number theoretic considerations and the fact that the number of fermionic
oscillator operators is finite suggest that that for coverings the condition Lz < 1 and
for factor spaces the condition Lz < n is satisfied by the generators of Clifford alge-
bra regarded as irreducible representation of G. For factor spaces the interpretation
could be in terms of finite angular resolution ∆φ ≤ 2π/n excluding angular momenta
Lz ≥ n. For coverings the resolution would be related to rotations (or rather, braid-
ings) as multiples of 2π: multiples m2π m ≥ n cannot be distinguished from m mod n
multiples.

iii. The minimal assumption is that integer orbital angular momenta are excluded for
coverings and n-multiples are excluded for factors spaces. The stronger assumption
would be that there is angular momentum cutoff. This point is however very delicate.
The states with j > n can be obtained as tensor products of representations with
j = m. If entanglement is present one cannot anymore express the state as a product
of M element and N element so that the states j > n created in this manner would
not be equivalent with those with j mod n. The replacement of the ordinary tensor
product with Connes tensor product would indeed generate automatically entangled
states and one could interpret Connes tensor product as a manner to create only the
allowed states.

iv. For quantum groups allow only finite number of representations up to some maximum
spin determined by the integer n characterizing quantum phase q. This would mean
angular momentum cutoff leaving only a finite number of representations of quantum
group [K7] . This fits nicely with what one obtains in the case of factor spaces. For
coverings the new element is that the unit of spin becomes 1/n: otherwise the situ-
ation seems to be similar. Quantum group like structure is obtained if the fermionic
oscillator operators satisfy the quantum version of anti-commutation relations. The
algebra would be very similar except that the orbital angular momentum labeling os-
cillator operators has different unit. Oscillator operators are naturally in irreducible
representations of G and only the non-trivial representations of G are allowed.

v. Besides Jones inclusions corresponding to M : N < 4 there are inclusions with M :
N = 4 to which one can also assign quantum phases. It would be natural to assign
covering spaces and factor spaces to these two kinds of inclusions. For the minimal
option excluding only the orbital angular momentum which are integers or multiples
of n the fraction of excluded states is very small for coverings so that M : N = 4
is natural for this option. M : N < 4 would in turn correspond naturally to factor
spaces.

vi. Since the two kinds of number theoretic braids correspond to points which belong to
M2 or S2, one might argue that several quantum anticommutation relations must be
satisfied simultaneously. This is not the case since the eigen modes of DC−S and hence
also oscillator operators code information about partonic surface X2 itself and also
about X4(X3

l ) rather than being purely local objects. In the case of covering space
the oscillator operators can be arranged to irreducible representations of G and in the
case of factor space the oscillator operators are G-invariant.

One must distinguish between G invariance for configuration space spinors and spinor fields.

i. In the case of factor spaces 3-surface are G invariant so that there is no difference
between spinors and spinor fields as far as G is considered. Irreducible representations
of G would correspond to the superpositions of G-transforms of oscillator operators for
a fixed G-invariant X3

l .
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ii. For covering space option G-invariance would mean that 3-surface is a mere G-fold
copy of single 3-surface. There is no obvious reason to assume this. Hence one cannot
separate spinorial degrees of freedom from configuration space degrees of freedom since
G affects both the spin degrees of freedom and the 3-surface. Irreducible represen-
tations of G would correspond to genuine configuration space spinor fields involving
a superposition of G-transforms of also X3

l . The presence of both orbital and spin
degrees of freedom could provide alternative explanation for why M : N = 4 holds
true for covering space option.

If the fermionic oscillator algebra is interpreted as a representation for N/M, allowed
fermionic oscillator operators belong to non-trivial irreps of G. One can however ask
whether the many-fermion states created by these operators are G-invariant for some
physical reason so that one would have kind of G-confinement forcing the states to be
many-fermion states with standard unit of quantum numbers for coverings and integer
multiples of n for factor spaces. This would conform with the ideas that anyonicity is a
microscopic property not visible at the level of entire state and that many-fermion systems
in the anyonic state resulting in strong coupling limit for ordinary value of ~ are in question.
The processes changing the value of Planck constant would be phase transitions involving
all fermions of the G-invariant state and would be slow for this reason. This would also
contribute to the invisibility of dark matter.

16.2.3 Questions

What is the role of dimensions?

Could the dimensions of CD and CP2 and the dimensions of spaces defined by the choice
of the quantization axes play a fundamental role in the construction from the constraint
that the fundamental group is non-trivial?

i. Suppose that the sub-manifold in question is geodesic sub-manifold containing the
orbits of its points under Cartan subgroup defining quantization axes. A stronger
assumption would be that the orbit of maximal compact subgroup is in question.

ii. For M2n Cartan group contains translations in time direction with orbit M1 and
Cartan subgroup of SO(2n − 1) and would be Mn so that M̂2n would have a trivial
fundamental group for n > 2. Same result applies in massless case for which one has
SO(1, 1) × SO(2n − 2) acts as Cartan subgroup. The orbit under maximal compact
subgroup would not be in question.

iii. For CP2 homologically non-trivial geodesic sphere CP1 contains orbits of the Cartan
subgroup. For CPn = SU(n + 1)/SU(n) × U(1) having real dimension 2n the sub-
manifold CPn−1 contains orbits of the Cartan subgroup and defines a sub-manifold
with codimension 2 so that the dimensional restriction does not appear.

iv. For spheres Sn−1 = SO(n)/SO(n− 1) the dimension is n− 1 and orbit of SO(n− 1)
of point left fixed by Cartan subgroup SO(2)× .. would for n = 2 consist of two points
and Sn−2 in more general case. Again co-dimension 2 condition would be satisfied.

What about holes of the configuration space?

One can raise analogous questions at the level of configuration space geometry. Vacuum ex-
tremals correspond to Lagrangian sub-manifolds Y 2 ⊂ CP2 with vanishing induced Kähler
form. They correspond to singularities of the configuration space (”world of classical
worlds”) and configuration space spinor fields should vanish for the vacuum extremals.
Effectively this would mean a hole in configuration space, and the question is whether this
hole could also naturally lead to the introduction of covering spaces and factor spaces of the
configuration spaces. How much information about the general structure of the theory just
this kind of decomposition might allow to deduce? This kind of singularities are infinite-
dimensional variants of those discussed in catastrophe theory and this suggests that their
understanding might be crucial.
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Are more general inclusions of HFFs possible?

The proposed scenario could be criticized because discrete subgroups of SU(2) are in a
preferred position. The Jones inclusions considered correspond to quantum spinor repre-
sentations of various quantum groups SU(2)q, q = exp(i2π/n). This explains the result
M : N ≤ 4. These representations are certainly in preferred role as far as configuration
space spinor fields are considered but it is possible to assign a hierarchy of inclusions of
HFFs labeled by quantum phase q with arbitrary representation of an arbitrary compact Lie
group. These inclusions would be analogous to discrete states in the continuumM : N > 4.

Since the inclusions are characterized by single quantum phase q = exp(i2π/n) in the case
of compact Lie groups (Appendix), one can ask whether more general discrete groups than
subgroups of SU(2) should be allowed. The inclusions of HFFs associated with higher
dimensional Lie groups have M : N > 4 and are analogous to bound states in continuum
(Appendix). In the case of CP2 this would allow to consider much more general sub-groups.

The question is therefore whether some principle selects subgroups of SU(2). There are
indeed good arguments supporting the hypothesis that only discrete Abelian subgroups of
SU(2) are possible.

i. The notion of number theoretic braid allows only the only subgroups of rotation group
leaving M2 invariant and sub-groups of SU(3) leaving geodesic sphere S2

i invariant.
This would drop groups having genuinely 3-D action. In the case of SU(3) discrete
subgroups of SO(3) or U(2) remain under consideration. The geodesic sphere of type
II is however analogous to North/South pole of S2 and second phase factor associated
with the coordinates (ξ1, ξ2) becomes redundant since (|ξ1|2 +|ξ2|2)1/2 becomes infinite
at S2

II so that ξ1/ξ2 becomes appropriate coordinate. Hence action of U(2) reduces to
that of SU(2) since ξ1 and ξ2 correspond to same value of color hyper charge associated
with U(1).

ii. A physically attractive possibility is that Ga × Gb leaves the choice of quantization
axes invariant. This condition makes sense also for coverings. This would leave only
Abelian groups into consideration and drop D2n, E6, and E8. It is quite possible that
only these groups define sectors of the generalized imbedding space. This means that
Gb = Zn1

×Zn2
⊂ U(1)I×U(1)Y ⊂ SU(2)×U(1)Y and even more general subgroups of

SU(3) (if non-commutativity is allowed) are a priori possible. Again the first argument
reduces the list to cyclic subgroups of SU(2).

iii. The products of groups Zn are also number theoretically in a very special position
since they relate naturally to the finite cyclic extensions and also to the maximal
Abelian extension of rationals. With this restriction on Ga × Gb one can consider
the hypothesis that elementary particles correspond are maximally quantum critical
systems left invariant by all groups Ga ×Gb respecting a given choice of quantization
axis and implying that darkness is associated only to field bodies and Planck constant
becomes characterizer of interactions rather than elementary particles themselves.

16.3 Some mathematical speculations

16.3.1 The content of McKay correspondence in TGD framework

The possibility to assign Dynkin diagrams with the inclusions of II1 algebras is highly
suggestive concerning possible physical interpretations. The basic findings are following.

i. For β =M : N < 4 Dynkin diagrams code for the inclusions and correspond to simply
laced Lie algebras. SU(2), D2n+1, and E7 are excluded.

ii. Extended ADE Dynkin diagrams coding for simply laced ADE Kac Moody algebras
appear at β = 4. Also SU(2) Kac Moody algebra appears.

Does TGD give rise to ADE hierarchy of gauge theories

The first question is whether any finite subgroup G ⊂ SU(2) acting in CP2 degrees of
freedom could somehow give rise to multiplets of the corresponding gauge group having
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interactions described by a gauge theory. Orbifold picture suggests that might be the case.

i. The ”sheets” for the space-time sheet forming an N(G)-fold cover of CD are in one-
one correspondence with group G. This degeneracy gives rise to additional states and
these states correspond to the group algebra having basis given by group characters
χ(g). One obtains irreducible representations of G with degeneracies given by their
dimensions. Altogether one obtains N(G) states in this manner. In the case of A(n)
the number of these states is n + 1, the number of the states of the fundamental
representation of SU(n+ 1). In the same manner, for D2n the number of these states
equals to the number of states in the fundamental representation of D2n. It seems that
the rule is quite general. Thus these representations would in the case of fermions give
the states of the fundamental representation of the corresponding gauge group.

ii. From fermion and antifermion states one can construct in a similar manner pairs giving
N(G)2 states defining in the case of A(n) n2−1-dimensional gauge boson multiplet plus
singlet. Also other groups must give boson multiplet plus possible other multiplets.
For instance, for D(4) the number of states is 64 and boson multiplet is 8-dimensional
so that many other spin 1 states result.

iii. These findings give hopes that the orbifold multiplets could be modelled by a gauge
theory based on corresponding gauge group. What is nice that this huge hierarchy of
gauge theories is associated with dark matter so that the predictivity and falsifiability
are not lost unlike in M-theory.

Does one obtain also a hierarchy of conformal theories with ADE Kac Moody
symmetry?

Consider next the question Kac Moody interactions correspond to extended ADE diagrams
are possible.

i. In this case the notion of orbifold seems to break down since the symmetry related
points form a continuum SU(2) and space-time surface would become 6-dimensional
if the CD projection is 4-dimensional. If one takes space-time as something which
emerges, one could take this possibility half seriously. A more natural natural possi-
bility is that CD projection is 2-dimensional geodesic sphere in which case one would
have string like objects so that conformal field theory with Kac-Moody algebra would
emerge naturally.

ii. The new degrees of freedom would define 2-dimensional continuum and it would not
be completely surprising if conformal field theory based on ADE Kac Moody algebra
could describe the situation. One possibility is that these continua for different in-
clusions correspond to SU(2) decompose to an N(G)-fold covers of S2/G orbifold so
that also now groups G would be involved with the Jones inclusions, which might pro-
vide a hint about how to construct them. S2/G would play the role of stringy world
sheet for the conformal field theory in question. This effective re-arrangement of the
topology S2 might be due to the fact that conformal fields possess G symmetry which
effectively groups points of S2 to n(G)-multiplets. The localized representations of the
Lie group corresponding to G would correspond to the multiplets obtained from the
representations of group algebra of G as in previous case.

iii. The formula for the scaling factor of CD metric would give infinite scaling factor if one
identifies the scaling factor as maximal order of cyclic subgroup of SU(2). As a matter
fact there is no finite cyclic subgroup of this kind. The solution to the problem would
be identification of the scaling factor as the order of the maximal cyclic subgroup of
G so that the scaling factors would be same for the two situations related by McKay
correspondence.

Generalization to CD degrees of freedom

One can ask whether the proposed picture generalizes formally also the case of CD.
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i. In this case quantum groups would correspond to discrete subgroups G ⊂ SL(2, C).
Kac Moody group would correspond to G-Kac Moody algebra made local with respect
to SL(2, C) orbit in CD divided by G. These orbits are 3-dimensional hyperboloids
Ha with a constant value of light cone proper time a so that the division by G gives
fundamental domain Ha/G with a finite 3-volume.

ii. The 4-dimensionality of space-time would require 1-dimensional CP2 projection. Vac-
uum extremals of Kähler action would be in question. Robertson-Walker metric have
1-dimensional CP2 projection and carry non-vanishing density of gravitational mass so
that in this sense the theory would be non-trivial. G would label different lattice like
cosmologies defined by tesselations with fundamental domain Ha/G.

iii. The multiplets of G would correspond to collections of points, one from each cells
of the lattice like structure. Macroscopic quantum coherence would be realized in
cosmological scales. If one takes seriously the vision about the role of short distance
p-adic physics as a generator of long range correlations of the real physics reflected as
p-adic fractality, this idea does not look so weird anymore.
Complexified modular group SL(2, Z + iZ) and its subgroups are interesting as far as
p-adicization is considered. The principal congruence subgroups Γ(N) of SL(2, Z+iZ)
which are unit matrices modulo N define normal subgroups of the complex modular
group and are especially interesting candidates for groups G ⊂ SL(2, C). The group
Γ(N = pk) labeling fundamental domains of the tesselation Ha/Γ(N = pk) defines a
mathematically attractive candidate for a point set associated with the intersections
of p-adic space-time sheets with real space-time sheets. Also analogous groups for
algebraic extensions of Z are interesting.
The simplest discrete subgroup of SL(2,C) with infinite number of elements would
corresponds to powers of boost to single direction and correspond at the non-relativistic
limit to multiples of basic velocity. This could also give rise to quantization of cosmic
recession velocities. There is evidence for the quantization of cosmic recession velocities
(for a model in which single object produces quantized redshifts see [K21] ) and it
is interesting to see whether they could be interpreted in terms of the lattice like
periodicity in cosmological length scales implied by the effective reduction of physics
to M4

+/Gn. In [E9] the values z = 2.63, 3.45, 4.47 of cosmic red shift are listed. These
correspond to recession velocities v = (z2 − 1)/(z2 + 1) are (0.75,0.85,0.90). The
corresponding hyperbolic angles are given by η = acosh(1/(1 − v2)) and the values
of η are (1.46, 1.92, 2.39). The differences η(2) − η(1) = .466 and η(3) − η(2) = .467
are same within experimental uncertainties. One has however η(n)/(η(2) − η(1)) =
(3.13, 4.13, 5.13) instead of (3, 4, 5). A possible interpretation is in terms of the velocity
of the observer with respect to the frame in which quantization of η happens.

Quantitative support for the interpretation

A more detailed analysis of the situation gives support for the proposed vision.

i. A given value of quantum group deformation parameter q = exp(iπ/n) makes sense
for any Lie algebra but now a preferred Lie-algebra is assigned to a given value of
quantum deformation parameter. At the limit β = 4 when quantum deformation
parameter becomes trivial, the gauge symmetry is replaced by Kac Moody symmetry.

ii. The prediction is that Kac-Moody central extension parameter should vanish for β < 4.
There is an intriguing relationship to formula for the quantum phase qKM associated
with (possibly trivial) Kac-Moody central extension and the phase defined by ADE
diagram

qKM = exp(iφ) , φ1 = π
k+hv ,

qJones = exp(iφ) , φ = π
h

In the first formula sum of Kac-Moody central extension parameter k and dual Coxeter
number hv appears whereas Coxeter number h appears in the second formula. Internal
consistency requires
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k + hv = h . (16.3.1)

It is easy see that the dual Coxeter number hv and Coxeter number h given by h =
(dim(g)− r)/r, where r is the dimension of Cartan algebra of g, are identical for ADE
algebras so that the Kac-Moody central extension parameter k must indeed vanish.
For SO(2n + 1), Sp(n), G2, and F4 the condition h = hv does not hold true but one
has h(n) = 2n = hv+1 for SO(2n+1), h(n) = 2n = 2(hv−1) for Sp(n), h = 6 = hv+2
for G2, and h = 12 = hv + 3 for F4.
What is intriguing that G2, which seems to play a fundamental role in the dual for-
mulation of quantum TGD based on the identification of space-times as surfaces in
hyper-octonionic space M8 [K74] is not allowed. As a matter fact, G2 → SU(3) re-
duction occurs also in the dual formulation based on G2/SU(3) coset model and is
required by the separate conservation of quark and lepton numbers predicted by TGD.
ADE groups would be associated with the interaction between space-time sheets rather
than entire dynamics and need not have anything to do with the Kac-Moody algebra
associated with color and electro-weak interactions appearing in the construction of
physical states [K43] .

iii. There seems to be a concrete connection with conformal field theories. This connection
would allow to understand the emergence of quantum groups appearing naturally in
these theories. Quite generally, the conformal central extension parameter for unitary
Virasoro representations resulting by Sugawara construction from Kac Moody repre-
sentations satisfies either of the conditions

c ≥ kdim(g)

k + hv
+ 1 ,

c =
kdim(g)

k + hv
+ 1− 6

(h− 1)h
. (16.3.2)

For k = 0, which should be interesting for β < 4, the second formula reduces to

c = 1− 6

(h− 1)h
. (16.3.3)

The formula gives the values of c for minimal conformal field theories with finite number
of conformal fields and real conformal weights. Indeed, h in this formula seems to
correspond to the same h as appearing in the expression β ≡M : N = 4cos2(π/h) .
β = 3, h = 6 corresponds to three-state Potts model with c = 4/5 which should thus
have a gauge group for which Coxeter number is 6: the group should be either SU(6) or
SO(8). Two-state Potts model, that is Ising model with β = 2, h = 4 would correspond
to c = 1/2 and to a gauge group SU(4) or SO(4). For h = 3 (”one-state Potts model”)
with group SU(3) one would have c = 0 and vanishing conformal anomaly so that
conformal degrees of freedom would become pure gauge degrees of freedom.

These observations give support for the following picture.

i. Quite generally, the number of states of the generalized β-state Potts model has an
interpretation as the dimension β = M : N of M as N -module. Besides the models
with integer number of states there is an infinite number of models for which the
number of states is not an integer. The conditions c ≤ 1 guaranteing real conformal
weights and β ≤ 4 correspond to each other for these models.

ii. β > 4 Potts models would be formally obtained by allowing h to be imaginary in the
defining formula for M : N . In this case c would be however complex so that the
theory would not be unitary.

iii. For minimal models with (β < 4, c < 1) Kac-Moody central extension parameter is
vanishing so that Kac Moody algebra indeed acts like gauge symmetries and gauge
symmetries would be in question. (β = 4, c = 1) would define a ”four-state Potts
model” with infinite-dimensional unitary group acting as a gauge group. On the other
hand, the appearance of extended ADE Dynkin diagrams suggests strongly that this
limit is not realized but that β = M : N = 4 corresponds to k = 1 conformal field
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theory allowing Kac Moody symmetries for any ADE group, which as simply-laced
groups allows vertex operator construction. The appearance of kdim(g)/(k+ g) in the
more general formula would thus code the Kac Moody group whereas for β < 4 ADE
diagram codes for the preferred gauge group characterizing the minimal CFT.

iv. The possibility that any ADE gauge group or Kac-Moody group can characterize the
interaction between space-time sheets conforms with the idea about Universe as a Topo-
logical Quantum Computer able to simulate any conceivable quantum dynamics. Of
course, one cannot exclude the possibility that only electro-weak and color symmetries
are realized in this manner.

Ga as a symmetry group of magnetic body and McKay correspondence

The group Ga ⊂ SU(2) ⊂ SL(2, C) means exact rotational symmetry realized in terms of
CD coverings of CP2. The 5 and 6-cycles in biochemistry (sugars, DNA,....) are excellent
candidates for these symmetries. For very large values of Planck constant, say for the values
~(CD)/~(CP2) = GMm/v0 = (na/nb)~0, v0 = 2−11, required by the model for planetary
orbits as Bohr orbits [K66] , Ga is huge and corresponds to either Zna or in the case of even
value of na to the group generated by Zn and reflection acting on plane and containing 2na
elements.

The notion of magnetic body seems to provide the only conceivable candidate for a geo-
metric object possessing Ga as symmetries. In the first approximation the magnetic field
associated with a dark matter system is expected to be modellable as a dipole field having
rotational symmetry around the dipole axis. Topological quantization means that this field
decomposes into flux tube like structures related by the rotations of Zn or D2n. Dark
particles would have wave functions delocalized to this set of these flux quanta and span
group algebra of Ga. Magnetic flux quanta are indeed assumed to mediate gravitational
interactions in the TGD based model for the quantization of radii of planetary orbits and
this explains the dependence of ~gr on the masses of planet and central object [K66] .

For the model of dark matter hierarchy appearing in the model of living matter one has
na = 211k, k = 1, 2, 3, .., 7 for cyclotron time scales below life cycle for a magnetic field
Bd = .2 Gauss at k = 4 level of hierarchy (the field strength is fixed by the model for
the effects of ELF em fields on vertebrate brain at harmonics of cyclotron frequencies of
biologically important ions [K24] ). Note that Bd scales as 2−11k from the requirement that
cyclotron energy is constant.

ADE correspondence between subgroups of SU(2) and Lie groups in ADE hierarchy encour-
ages to consider the possibility that TGD could mimic ADE hierarchy of gauge theories. In
the case of Ga this would mean that many fermion states constructed from single fermion
states, which are in one-one correspondence with the elements of Ga group algebra, would
define multiplets of the gauge group corresponding to the Dynkin diagram characterizing
Ga: for instance, SU(na) in the case of Zna . Fermion multiplet would contain na states and
gauge boson multiplet n2

a − 1 states. This would provide enormous information processing
capacity since for na = 211k fermion multiplet would code exactly 11k bits of information.
Magnetic body could represent binary information using the many-particle states belonging
to the representations of say SU(na) at its flux tubes.

16.3.2 Jones inclusions, the large N limit of SU(N) gauge theories
and AdS/CFT correspondence

The framework based on Jones inclusions has an obvious resemblance with larger N limit
of SU(N) gauge theories and also with the celebrated AdS/CFT correspondence [B49] so
that a more detailed comparison is in order.

Large N limit of gauge theories and series of Jones inclusions

The large N limit of SU(N) gauge field theories has as definite resemblance with the
series of Jones inclusions with the integer n ≥ 3 characterizing the quantum phase q =
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exp(iπ/n) and the order of the maximal cyclic subgroup of the subgroup of SU(2) defining
the inclusion. Recall that all ADE groups except D2n+1 and E7 are allowed (SU(2) is
excluded since it would correspond to n = 2).

The limiting procedure keeps the value of g2N fixed. Rather remarkably, this is equivalent
with keeping αN constant but assuming ~ to scale as n = N . Thus the quantization of
Planck constants would provide a physical laboratory for the testing of large N limit.

The observation suggesting a description of YM theories in terms of closed strings is that
Feynman diagrams can be interpreted as being imbedded at closed 2-surfaces of minimal
genus guaranteing that the internal lines meet except in vertices. The contribution of genus
g diagrams is proportional to Ng−1 at the large N limit. The interpretation in terms of
closed partonic 2-surfaces is highly suggestive and the Ng−1 should come from the multiple
covering property of CP2 by N CD-points (or vice versa) with the finite subgroup of
G ⊂ SU(2) defining the Jones inclusion and acting as symmetries of the surface.

Analogy between stacks of branes and multiple coverings of CD and CP2

An important aspect of AdS/CFT dualities is a prediction of an infinite hierarchy of gauge
groups, which as such is as interesting as the claimed dualities. The prediction relies on the
notion Dp-branes. Dp-branes are p+1-dimensional surfaces of the target space at which the
ends of open strings can end. In the simplest situation one considers N parallel p-branes
at the limit when the distances between branes characterized by an expectation value of
Higgs fields approach zero to obtain what is called N-stack of branes. There are N2 different
strings connecting the branes and the heuristic idea is that they correspond to gauge bosons
of U(N) gauge theory. Note that the requirement that AdS/CFT dualities exist forces the
introduction of branes and the optimistic interpretation is that a non-perturbative effect
of still unknown M-theory is in question. In the limit of an ideal stack one assumes that
U(N) gauge theory at the brane representing the stack is obtained. The branes must also
carry a p-form defining gauge potential for a closed p + 1-form. This Ramond charge is
quantized and its value equals to N .

Consider now the group Ga × Gb ⊂ SL(2, C) × SU(2) ⊂ SU(3) defining double Jones
inclusion and implying the scalings ~(M4) → n(Gb)~(M4) and ~(CP2) → n(Ga)~(CP2).
These space-time surfaces define n(Ga)-fold multiple coverings of CP2 and n(Gb)-fold mul-
tiple coverings of CD. In CP2 degrees of freedom the collection of Gb-related partonic
2-surfaces (/3-surfaces/4-surfaces) is highly analogous to the stack of branes. In CD de-
grees of freedom the stack of copies of surface typically correspond to along a circle (An, D2n

or at vertices of tedrahedron or isosahedron.

In TGD framework the interpretation strings are not needed to define gauge fields. The
group algebra of G realized as discrete plane waves at G-orbit gives rise to representa-
tions of G. The hypothesis supported by few examples is that these additional degrees of
freedom allow to construct multiplets of the gauge group assignable to the ADE diagram
characterizing the inclusion.

AdS/CFT duality

AdS/CFT duality is a further aspect of the brane construction. The dual description of
the situation is in terms of a string theory in a background in which N -brane acts as a
macroscopic object giving rise to a black-hole like object in (say) 10-dimensional target
space. This background has the form AdS5×X5, where AdS5 is 5-dimensional hyperboloid
of M6 and thus allows SO(4, 2) as isometries. X5 is compact constant curvature space. S5

gives rise to N = 4 SUSY in M4 with M4 interpreted as a brane. The first support for the
dualities comes from the symmetries: for instance, the N = 4 super-symmetrized isometries
of AdS5 × S5 are same as the symmetries of 4-dimensional N = 4 SUSY for p = 3 branes.
N-branes can be used as models for black holes in target space and black-hole entropy can
be calculated using either target space picture or conformal field theory at brane and the
results turn out be the same.

Does the TGD equivalent of this duality exists in some sense?
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i. As far as partonic 2-surfaces identified as 1-branes are considered, conformal field
theory description is trivially true. In TGD framework the analog of Ramond charges
are the integers na and nb characterizing the multipliticies of the maximal Abelian
subgroups having clear topological meaning. This conforms with the observation that
large N limit of the gauge field theories can be formulated in terms of closed surfaces
at which the Feynman diagrams are imbedded without self crossings. It seems that the
integers na and nb characterizing the Jones inclusion naturally take the role of Ramond
charge: this does not of course exclude the possibility they can be expressed as fluxes
at space-time level as will be indeed found.

ii. Conformal field theory description can be generalized in the sense that one replaces the
n(Ga)×n(Gb) partonic surfaces with single one and describes the new states as primary
fields arranged into representations of the ADE group in question. This would mean
that the standard model gauge group extends by additional factor which is however
non-trivially related to it.

iii. If one can accept the idea that the conformal field theory description for partons gives
rise to M4 gauge theory as an approximate description, it is not too difficult to imagine
that also ADE hierarchy of gauge theories results as a description of the exotic states.
One can say that CFT in p-brane is replaced now with CFT on partonic 2-surface
(1-brane) analogous to a closed string.

iv. In the minimal interpretation there is no need to add strings connecting the branches
of the double covering of the partonic 2-surface whose function is essentially that of
making possible gauge bosons as fermion anti-fermion pairs. One could of course
imagine gauge fluxes as counterparts of strings but just the fact that G-invariance
dictates the configurations completely forces to question this kind of dynamics.

v. There is no reason to expect the emergence of N = 4 super-symmetric field theory
in M4 as in the case of super-string models. The reasons should be already obvious:
super-conformal generators G anticommute to L0 proportional to mass squared rather
than four-momentum and the spectrum extended by Ga×Gb degeneracy contains more
states.

One can of course ask whether higher values of p could make sense in TGD framework.

i. It seems that the light-like orbits of the partonic 2-surfaces defining 2-branes do not
bring in anything new since the generalized conformal invariance makes it possible the
restriction to a 2-dimensional cross section of the light like causal determinant.

ii. The idea of regarding space-time surface X4 as a 3-brane in H in which some kind
of conformal field theory is defined is in conflict with the basis ideas of TGD. The
role of X4 interior is to provide classical correlates for quantum dynamics to make
possible quantum measurement theory and also introduce correlations between partonic
2-surfaces even in the case that partonic conformal dynamics reduces to a topological
string theory. It is quantum classical correspondence which corresponds to this duality.

What is the counterpart of the Ramond charge in TGD?

The condition that there exist a p-form defining p + 1-gauge field with p-charge equal to
na or nb is a rather stringent additional condition also in TGD framework. For n <∞ this
kind of charge is defined by Jones inclusion and represented topologically so that Ramond
charge is not needed in n < ∞ case. By the earlier arguments one must however be
able to assign integers na and nb also to G = SU(2) inclusions with Kac-Moody algebra
characterized by an extended ADE diagram with the phases qi = exp(iπ/ni) relating to
the monodromy of the theory. Since Jones inclusion does not define in this case the value
of n <∞ in any obvious manner, the counterpart of the Ramond charge is needed.

i. For partonic 2-surfaces ordinary gauge potential would define this form and the condi-
tion would state that magnetic flux equals to n so that the anyonic partonic two-surfaces
would be homologically non-trivial in CP2 degrees of freedom. String ends would define
basic example of this situation. This would be the case also in M4

+ degrees of freedom:
the partonic 2-surface would essentially wind na times around the tip of δCD and the
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gauge field in question would be monopole magnetic field in δCD. This kind of situ-
ation need not correspond to anything cosmological since future and past light-cones
appear in the basic definition of the scattering amplitudes.

ii. For p = 3 Chern-Simons action for the induced CP2 Kähler form associated with the
partonic 2-surface indeed defines this kind of charge. Ramond charge should be simply
N . CP2 type extremals or their small deformations satisfy this constraint and are
indeed very natural in elementary particle physics context but too restrictive in a more
general context.

Note that the light-like orbits of non-deformed CP2 extremals have light-like random curve
as an M4 projection and the conformal symmetries of M4 obviously respect light-likeness
property. Hence SO(4, 2) symmetry characterizing AdS5/CFT is not excluded but would
be broken by p-adic thermodynamics and by TGD based Higgs mechanism involving the
identification of inertial momentum as average value of non-conserved gravitational mo-
mentum parallel to the light-like zitterbewegung orbit.

Can one speak about black hole like structures in TGD framework?

For AdS/CFT correspondence there is also a dynamical coupling to the target space metric.
The coupling to H-metric is present also now since the overall scalings of the CD resp.
CP2 metrics by nb resp. by na are involved. This applies to when multiple covering is
used explicitly. In the description in which one replaces the multiple covering by ordinary
M4 ×CP2, the metric suffers a genuine change and something analogous to the black-hole
type metrics encountered in AsS/CFT correspondence might be encountered.

Consider as an example an na-fold covering of CP2 points by M4 points (ADE diagram
Ana−1). The n-fold covering means only n2π rotation for the phase angle ψ of CP2 complex
coordinate leads to the original point. The replacement ψ → ψ/na gives rise to what would
look like ordinary M4 × CP2 but with a modified CP2 metric. The metric components
containing ψ as index are scaled down by 1/na or 1/n2

a. Notice that Ψ effectively disappears
from the dynamics at the large na limit.

If one uses an effective description in which covering is eliminated the metric is indeed
affected at the level of imbedding space black hole like structures at the level of dynamic
space might make emerge also in TGD framework at large N limit since the masses of the
objects in question become large and CP2 metric is scaled by N so that CP2 has very large
size at this limit. This need not lead to any inconsistencies if these phases are interpreted
as dark matter. At the elementary particle level p-adic thermodynamics predicts that p-
adic entropy is proportional to thermal mass squared which implies elementary particle
black-hole analogy.

Other dualities

Also quantum classical correspondence defines in a loose sense a duality justifying the
basic assumptions of quantum measurement theory. The light-like orbits of 2-D partons
are characterized by a generalization of ordinary 2-D conformal invariance so that CFT
part of the duality would be very natural. The dynamical target space would be replaced
with the space-time surface X4 with a dynamical metric providing classical correlates for
the quantum dynamics at partonic 2-surfaces. The duality in this sense cannot be however
exact since classical dynamics cannot fully represent quantum dynamics.

Classical description is not expected to be unique. The basic condition on space-time
surfaces assignable to a given configuration of partonic 2-surfaces associated with the surface
X3
V defining S-matrix element are posed by quantum classical correspondence. Both hyper-

quaternionic and co-hyper-quaternionic space-time surfaces are acceptable and this would
define a fundamental duality.

A concrete example about this HQ-coHQ duality would be the equivalence of space-time
descriptions using 4-D CP2 type extremals and 4-D string like objects connecting them. If
one restricts to CP2 type extremals and string like objects of from X2×Y 2, the target space
reduces effectively to M4 and the dynamical degrees of freedom correspond in both cases to
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transversal M4 degrees of freedom. Note that for CP2 type extremals the conditions stating
that random light-likeness of the M4 projection of the CP2 type extremal are equivalent
to Virasoro conditions. CP2 type extremals could be identified as co-HQ surfaces whereas
stringlike objects would correspond to HQ aspect of the duality.

HQ-coHQ provides dual classical descriptions of same phenomena. Particle massivation
would be a basic example. Higgs mechanism in a gauge theory description based on CP2

type extremals would rely on zitterbewegung implying that the average value of gravita-
tional mass identified as inertial mass is non-vanishing and is discussed already. Higgs
field would be assigned to the wormhole contacts. The dual description for the massivation
would be in terms of string tension and mass squared would be proportional to the distance
between G-related points of CP2.

These observations would suggest that also a super-conformal algebra containing SL(2, R)×
SU(2)L×U(1) or its compact version exists and corresponds to a trivial inclusion. This is
indeed the case [A56] . The so called large N = 4 super-conformal algebra contains energy
momentum current, 2+2 super generators G, SU(2) × SU(2) × U(1) Kac-Moody algebra
(both SU(2) and SL(2,R) could be interpreted as acting on M4 spin degrees of freedom,
and 2 spin 1/2 fermionic currents having interpretation in terms of right handed neutrinos
corresponding to two H-chiralities. Interestingly, the scalar generator is now missing.

16.3.3 Could McKay correspondence and Jones inclusions relate
to each other?

The understanding of Langlands correspondence for general reductive Lie groups in TGD
framework seems to require some physical mechanism allowing the emergence of these
groups in TGD based physics. The physical idea would be that quantum dynamics of
TGD is able to emulate the dynamics of any gauge theory or even stringy dynamics of
conformal field theory having Kac-Moody type symmetry and that this emulation relies
on quantum deformations induced by finite measurement resolution described in terms of
Jones inclusions of sub-factors characterized by group G leaving elements of sub-factor
invariant. Finite measurement resolution would would result simply from the fact that
only quantum numbers defined by the Cartan algebra of G are measured.

There are good reasons to expect that infinite Clifford algebra has the capacity needed to
realize representations of an arbitrary Lie group. It is indeed known that that any quantum
group characterized by quantum parameter which is root of unity or positive real number
can be assigned to Jones inclusion [A90] . For q = 1 this would gives ordinary Lie groups.
In fact, all amenable groups define unique sub-factor and compact Lie groups are amenable
ones.

It was so called McKay correspondence [A106] which originally stimulated the idea about
TGD as an analog of Universal Turing machine able to mimic both ADE type gauge
theories and theories with ADE type Kac-Moody symmetry algebra. This correspondence
and its generalization might also provide understanding about how general reductive groups
emerge. In the following I try to cheat the reader to believe that the tensor product of
representations of SU(2) Lie algebras for Connes tensor powers of M could induce ADE
type Lie algebras as quantum deformations for the direct sum of n copies of SU(2) algebras
This argument generalizes also to the case of other compact Lie groups.

About McKay correspondence

McKay correspondence [A106] relates discrete finite subgroups of SU(2) ADE groups. A
simple description of the correspondences is as follows [A106].

i. Consider the irreps of a discrete subgroup G ⊂ SU(2) which correspond to irreps of G
and can be obtained by restricting irreducible representations of SU(2) to those of G.
The irreducible representations of SU(2) define the nodes of the graph.

ii. Define the lines of graph by forming a tensor product of any of the representations
appearing in the diagram with a doublet representation which is always present unless
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the subgroup is 2-element group. The tensor product regarded as that for SU(2)
representations gives representations j− 1/2, and j+ 1/2 which one can decompose to
irreducibles of G so that a branching of the graph can occur. Only branching to two
branches occurs for subgroups yielding extended ADE diagrams. For the linear portions
of the diagram the spins of corresponding SU(2) representations increase linearly as
.., j, j + 1/2, j + 1, ...

One obtains extended Dynkin diagrams of ADE series representing also Kac-Moody alge-
bras giving An, Dn, E6, E7, E8. Also A∞ and A−∞,∞ are obtained in case that subgroups
are infinite. The Dynkin diagrams of non-simply laced groups Bn (SO(2n+ 1)), Cn (sym-
plectic group Sp(2n) and quaternionic group Sp(n)), and exceptional groups G2 and F4

are not obtained.

ADE Dynkin diagrams labeling Lie groups instead of Kac-Moody algebras and having one
node less, do not appear in this context but appear in the classification of Jones inclusions
for M : N < 4. As a matter fact, ADE type Dynkin diagrams appear in very many
contexts as one can learn from John Baez’s This Week’s Finds [A50] .

i. The classification of integral lattices in Rn having a basis of vectors whose length
squared equals 2

ii. The classification of simply laced semisimple Lie groups.

iii. The classification of finite sub-groups of the 3-dimensional rotation group.

iv. The classification of simple singularities . In TGD framework these singularities could
be assigned to origin for orbifold CP2/G, G ⊂ SU(2).

v. The classification of tame quivers.

Principal graphs for Connes tensor powers M

The thought provoking findings are following.

i. The so called principal graphs characterizing M : N = 4 Jones inclusions for G =
SU(2) are extended Dynkin diagrams characterizing ADE type affine (Kac-Moody)
algebras. Dn is possible only for n ≥ 4.

ii. M : N < 4 Jones inclusions correspond to ordinary ADE type diagrams for a subset
of simply laced Lie groups (all roots have same length) An (SU(n)), D2n (SO(2n)),
and E6 and E8. Thus D2n+1 (SO(2n + 2)) and E7 are not allowed. For instance, for
G = S3 the principal graph is not D3 Dynkin diagram.

The conceptual background behind principal diagram is necessary if one wants to under-
stand the relationship with McKay correspondence.

i. The hierarchy of higher commutations defines an invariant of Jones inclusion N ⊂M.
Denoting by N ′ the commutant of N one has sequences of horizontal inclusions defined
as C = N ′ ∩ N ⊂ N ′ ∩M ⊂ N ′ ∩M1 ⊂ ... and C = M′ ∩M ⊂ M′ ∩M1 ⊂ ....
There is also a sequence of vertical inclusions M′ ∩Mk ⊂ N ′ ∩Mk. This hierarchy
defines a hierarchy of Temperley-Lieb algebras [A140] assignable to a finite hierarchy of
braids. The commutants in the hierarchy are direct sums of finite-dimensional matrix
algebras (irreducible representations) and the inclusion hierarchy can be described in
terms of decomposition of irreps of kth level to irreps of (k − 1)th level irreps. These
decomposition can be described in terms of Bratteli diagrams [A69] .

ii. The information provided by infinite Bratteli diagram can be coded by a much simpler
bi-partite diagram having a preferred vertex. For instance, the number of 2k-loops
starting from it tells the dimension of kth level algebra. This diagram is known as
principal graph.

Principal graph emerges also as a concise description of the fusion rules for Connes tensor
powers of M.

i. It is natural to decompose the Connes tensor powers [A106]Mk =M⊗N ...⊗NM to
irreducible M−M, N −M, M−N , or N −N bi-modules. If M : N is finite this
decomposition involves only finite number of terms. The graphical representation of
these decompositions gives rise to Bratteli diagram.
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ii. IfN has finite depth the information provided by Bratteli diagram can be represented in
nutshell using principal graph. The edges of this bipartite graph connectM−N vertices
to vertices describing irreducible N −N representations resulting in the decomposition
of M−N irreducibles. If this graph is finite, N is said to have finite depth.

A mechanism assigning to tensor powers Jones inclusions ADE type gauge
groups and Kac-Moody algebras

The earliest proposals inspired by the hierarchy of Jones inclusions is that in M : N < 4
case it might be possible to construct ADE representations of gauge groups or quantum
groups and inM : N = 4 using the additional degeneracy of states implied by the multiple-
sheeted cover H → H/Ga × Gb associated with space-time correlates of Jones inclusions.
Either Ga or Gb would correspond to G. In the following this mechanism is articulated
in a more refined manner by utilizing the general properties of generators of Lie-algebras
understood now as a minimal set of elements of algebra from which the entire algebra can
be obtained by repeated commutation operator (I have often used ” Lie algebra generator”
as an synonym for ”Lie algebra element”). This set is finite also for Kac-Moody algebras.

1. Two observations

The explanation to be discussed relies on two observations.

i. McKay correspondence for subgroups of G (M : N = 4) resp. its variants (M : N <
4) and its counterpart for Jones inclusions means that finite-dimensional irreducible
representations of allowed G ⊂ SU(2) label both the Cartan algebra generators and the
Lie (Kac-Moody) algebra generators of t+ and t− in the decomposition g = h⊕t+⊕t−,
where h is the Lie algebra of maximal compact subgroup.

ii. Second observation is related to the generators of Lie-algebras and their quantum
counterparts (see Appendix for the explicit formulas for the generators of various al-
gebras considered). The observation is that each Cartan algebra generator of Lie-
and quantum group algebras, corresponds to a triplet of generators defining an SU(2)
sub-algebra. The Cartan algebra of affine algebra contains besides Lie group Cartan
algebra also a derivation d identifiable as an infinitesimal scaling operator L0 measur-
ing the conformal weight of the Kac-Moody generators. d is exceptional in that it does
not give rise to a triplet. It corresponds to the preferred node added to the Dynkin
diagram to get the extended Dynkin diagram.

2. Is ADE algebra generated as a quantum deformation of tensor powers of SU(2) Lie
algebras representations?

The ADE type symmetry groups could result as an effect of finite quantum resolution
described by inclusions of HFFs in TGD inspired quantum measurement theory.

i. The description of finite resolution typically leads to quantization since complex rays of
state space are replaced as N rays. Hence operators, which would commute for an ideal
resolution cease to do so. Therefore the algebra SU(2)⊗ ...⊗SU(2) characterized by n
mutually commuting triplets, where n is the number of copies of SU(2) algebra in the
original situation and identifiable as quantum algebra appearing in M tensor powers
with M interpreted as N module, could suffer quantum deformation to a simple Lie
algebra with 3n Cartan algebra generators. Also a deformation to a quantum group
could occur as a consequence.

ii. This argument makes sense also for discrete groupsG ⊂ SU(2) since the representations
of G realized in terms of configuration space spinors extend to the representations of
SU(2) naturally.

iii. Arbitrarily high tensor powers of M are possible and one can wonder why only finite-
dimensional Lie algebra results. The fact that N has finite depth as a sub-factor means
that the tensor products in tensor powers of N are representable by a finite Dynkin
diagram. Finite depth could thus mean that there is a periodicity involvedthe kn
tensor powers decomposes to representations of a Lie algebra with 3n Cartan algebra
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generators. Thus the additional requirement would be that the number of tensor powers
of M is multiple of n.

3. Space-time correlate for the tensor powers M⊗N ...⊗N M

By quantum classical correspondence there should exist space-time correlate for the for-
mation of tensor powers of M regarded as N module. A concrete space-time realization
for this kind of situation in TGD would be based on n-fold cyclic covering of H implied
by the H → H/Ga × Gb bundle structure in the case of say Gb. The sheets of the cyclic
covering would correspond to various factors in the n-fold tensor power of SU(2) and one
would obtain a Lie algebra, affine algebra or its quantum counterpart with n Cartan algebra
generators in the process naturally. The number n for space-time sheets would be also a
space-time correlate for the finite depth of N as a factor.

Configuration space spinors could provide fermionic representations of G ⊂ SU(2). The
Dynkin diagram characterizing tensor products of representations of G ⊂ SU(2) with
doublet representation suggests that tensor products of doublet representations associated
with n sheets of the covering could realize the Dynkin diagram.

Singlet representation in the Dynkin diagram associated with irreps of G would not give rise
to an SU(2) sub-algebra in ADE Lie algebra and would correspond to the scaling generator.
For ordinary Dynkin diagram representing gauge group algebra scaling operator would be
absent and therefore also the exceptional node. Thus the difference between (M : N = 4)
and (M : N < 4) cases would be that in the Kac-Moody group would reduce to gauge
groupM : N < 4 because Kac-Moody central charge k and therefore also Virasoro central
charge resulting in Sugawara construction would vanish.

4. Do finite subgroups of SU(2) play some role also in M : N = 4 case?

One can ask wonder the possible interpretation for the appearance of extended Dynkin
diagrams in (M : N = 4) case. Do finite subgroups G ⊂ SU(2) associated with extended
Dynkin diagrams appear also in this case. The formal analog for H → Ga × Gb bundle
structure would be H → H/Ga × SU(2). This would mean that the geodesic sphere of
CP2 would define the fiber. The notion of number theoretic braid meaning a selection of
a discrete subset of algebraic points of the geodesic sphere of CP2 suggests that SU(2)
actually reduces to its subgroup G also in this case.

5. Why Kac-Moody central charge can be non-vanishing only for M : N = 4?

From the physical point of view the vanishing of Kac-Moody central charge forM : N < 4
is easy to understand. If parton corresponds to a homologically non-trivial geodesic sphere,
space-time surface typically represents a string like object so that the generation of Kac-
Moody central extension would relate directly to the homological non-triviality of partons.
For instance, cosmic strings are string like objects of form X2 × Y 2, where X2 is minimal
surface of M2 and Y 2 is a holomorphic sub-manifold of CP2 reducing to a homologically
non-trivial geodesic sphere in the simplest situation. A conjecture that deserves to be
shown wrong is that central charge k is proportional/equal to the absolute value of the
homology (Kähler magnetic) charge h.

6. More general situation

McKay correspondence generalizes also to the case of subgroups of higher-dimensional Lie
groups [A106]. The argument above makes sense also for discrete subgroups of more general
compact Lie groups H since also they define unique sub-factors. In this case, algebras
having Cartan algebra with nk generators, where n is the dimension of Cartan algebra of
H, would emerge in the process. Thus there are reasons to believe that TGD could emulate
practically any dynamics having gauge group or Kac-Moody type symmetry. An interesting
question concerns the interpretation of non-ADE type principal graphs associated with
subgroups of SU(2).

7. Flavor groups of hadron physics as a support for HFF?
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The deformation assigning to an n-fold tensor power of representations of Lie group G with
k-dimensional Cartan algebra a representation of a Lie group with nk-dimensional Cartan
algebra could be also seen as a dynamically generated symmetry. If quantum measure-
ment is characterized by the choice of Lie group G defining measured quantum numbers
and defining Jones inclusion characterizing the measurement resolution, the measurement
process itself would generate these dynamical symmetries. Interestingly, the flavor symme-
try groups of hadron physics cannot be justified from the structure of the standard model
having only electro-weak and color group as fundamental symmetries. In TGD frame-
work flavor group SU(n) could emerge naturally as a fusion of n quark doublets to form a
representation of SU(n).

16.3.4 Farey sequences, Riemann hypothesis, tangles, and TGD

Farey sequences allow an alternative formulation of Riemann Hypothesis and subsequent
pairs in Farey sequence characterize so called rational 2-tangles. In TGD framework Farey
sequences relate very closely to dark matter hierarchy, which inspires ”Platonia as the
best possible world in the sense that cognitive representations are optimal” as the basic
variational principle of mathematics. This variational principle supports RH.

Possible TGD realizations of tangles, which are considerably more general objects than
braids, are considered. One can assign to a given rational tangle a rational number a/b
and the tangles labeled by a/b and c/d are equivalent if ad − bc = ±1 holds true. This
means that the rationals in question are neighboring members of Farey sequence. Very
light-hearted guesses about possible generalization of these invariants to the case of general
N -tangles are made.

Farey sequences

Some basic facts about Farey sequences [A14] demonstrate that they are very interesting
also from TGD point of view.

i. Farey sequence FN is defined as the set of rationals 0 ≤ q = m/n ≤ 1 satisfying the
conditions n ≤ N ordered in an increasing sequence.

ii. Two subsequent terms a/b and c/d in FN satisfy the condition ad − bc = 1 and thus
define and element of the modular group SL(2, Z).

iii. The number |F (N)| of terms in Farey sequence is given by

|F (N)| = |F (N − 1)|+ φ(N − 1) . (16.3.4)

Here φ(n) is Euler’s totient function giving the number of divisors of n. For primes
one has φ(p) = 1 so that in the transition from p to p+ 1 the length of Farey sequence
increases by one unit by the addition of q = 1/(p+ 1) to the sequence.

The members of Farey sequence FN are in one-one correspondence with the set of quantum
phases qn = exp(i2π/n), 0 ≤ n ≤ N . This suggests a close connection with the hierarchy
of Jones inclusions, quantum groups, and in TGD context with quantum measurement
theory with finite measurement resolution and the hierarchy of Planck constants involving
the generalization of the imbedding space. Also the recent TGD inspired ideas about the
hierarchy of subgroups of the rational modular group with subgroups labeled by integers
N and in direct correspondence with the hierarchy of quantum critical phases [K20] would
naturally relate to the Farey sequence.

Riemann Hypothesis and Farey sequences

Farey sequences are used in two equivalent formulations of the Riemann hypothesis. Sup-
pose the terms of FN are an,N , 0 < n ≤ |FN |. Define

dn,N = an,N −
n

|FN |
.
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In other words, dn,N is the difference between the n:th term of the N :th Farey sequence,
and the n:th member of a set of the same number of points, distributed evenly on the unit
interval. Franel and Landau proved that both of the following statements

∑
n=1,...,|FN |

|dn,N | = O(Nr) for any r > 1/2 ,

∑
n=1,...,|FN |

d2
n,N = O(Nr) for any r > 1 . (16.3.5)

are equivalent with Riemann hypothesis.

One could say that RH would guarantee that the numbers of Farey sequence provide the best
possible approximate representation for the evenly distributed rational numbers n/|FN |.

Farey sequences and TGD

Farey sequences seem to relate very closely to TGD.

i. The rationals in the Farey sequence can be mapped to the roots of unity by the map q →
exp(i2πq). The numbers 1/|FN | are in turn mapped to the numbers exp(i2π/|FN |),
which are also roots of unity. The statement would be that the algebraic phases
defined by Farey sequence give the best possible approximate representation for the
phases exp(in2π/|FN |) with evenly distributed phase angle.

ii. In TGD framework the phase factors defined by FN corresponds to the set of quantum
phases corresponding to Jones inclusions labeled by q = exp(i2π/n), n ≤ N , and thus
to the N lowest levels of dark matter hierarchy. There are actually two hierarchies
corresponding to M4 and CP2 degrees of freedom and the Planck constant appearing
in Schrödinger equation corresponds to the ratio na/nb defining quantum phases in
these degrees of freedom. Zna×nb appears as a conformal symmetry of ”dark” partonic
2-surfaces and with very general assumptions this implies that there are only in TGD
Universe [K20, K18] .

iii. The fusion of physics associated with various number fields to single coherent whole
requires algebraic universality. In particular, the roots of unity, which are complex
algebraic numbers, should define approximations to continuum of phase factors. At
least the S-matrix associated with p-adic-to-real transitions and more generally p1 → p2

transitions between states for which the partonic space-time sheets are p1- resp. p2-
adic can involve only this kind of algebraic phases. One can also say that cognitive
representations can involve only algebraic phases and algebraic numbers in general. For
real-to-real transitions and real-to-padic transitions U-matrix might be non-algebraic
or obtained by analytic continuation of algebraic U-matrix. S-matrix is by definition
diagonal with respect to number field and similar continuation principle might apply
also in this case.

iv. The subgroups of the hierarchy of subgroups of the modular group with rational ma-
trix elements are labeled by integer N and relate naturally to the hierarchy of Farey
sequences. The hierarchy of quantum critical phases is labeled by integers N with
quantum phase transitions occurring only between phases for which the smaller inte-
ger divides the larger one [K20] .

Interpretation of RH in TGD framework

Number theoretic universality of physics suggests an interpretation for the Riemann hy-
pothesis in TGD framework. RH would be equivalent to the statement that the Farey
numbers provide best possible approximation to the set of rationals k/|FN | or to the state-
ment that the roots of unity contained by FN define the best possible approximation for
the roots of unity defined as exp(ik2π/|FN |) with evenly spaced phase angles. The roots
of unity allowed by the lowest N levels of the dark matter hierarchy allows the best possi-
ble approximate representation for algebraic phases represented exactly at |FN |:th level of
hierarchy.
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A stronger statement would be that the Platonia, where RH holds true would be the
best possible world in the sense that algebraic physics behind the cognitive representations
would allow the best possible approximation hierarchy for the continuum physics (both
for numbers in unit interval and for phases on unit circle). Platonia with RH would be
cognitive paradise.

One could see this also from different view point. ”Platonia as the cognitively best possible
world” could be taken as the ”axiom of all axioms”: a kind of fundamental variational
principle of mathematics. Among other things it would allow to conclude that RH is true:
RH must hold true either as a theorem following from some axiomatics or as an axiom in
itself.

Could rational N-tangles exist in some sense?

The article of Kauffman and Lambropoulou [A112] about rational 2-tangles having com-
mutative sum and product allowing to map them to rationals is very interesting from TGD
point of view. The illustrations of the article are beautiful and make it easy to get the
gist of various ideas. The theorem of the article states that equivalent rational tangles
giving trivial tangle in the product correspond to subsequent Farey numbers a/b and c/d
satisfying ad− bc = ±1 so that the pair defines element of the modular group SL(2,Z).

1. Rational 2-tangles

i. The basic observation is that 2-tangles are 2-tangles in both ”s- and t-channels”. Prod-
uct and sum can be defined for all tangles but only in the case of 2-tangles the sum,
which in this case reduces to product in t-channel obtained by putting tangles in se-
ries, gives 2-tangle. The so called rational tangles are 2-tangles constructible by using
addition of ±[1] on left or right of tangle and multiplication by ±[1] on top or bottom.
Product and sum are commutative for rational 2-tangles but the outcome is not a ra-
tional 2-tangle in the general case. One can also assign to rational 2-tangle its negative
and inverse. One can map 2-tangle to a number which is rational for rational tangles.
The tangles [0], [∞], ±[1], ±1/[1], ±[2], ±[1/2] define so called elementary rational
2-tangles.

ii. In the general case the sum of M− and N−tangles is M +N − 2-tangle and combines
various N−tangles to a monoidal structure. Tensor product like operation giving
M +N -tangle looks to me physically more natural than the sum.

iii. The reason why general 2-tangles are non-commutative although 2-braids obviously
commute is that 2-tangles can be regarded as sequences of N−tangles with 2-tangles
appearing only as the initial and final state: N is actually even for intermediate states.
Since N > 2-braid groups are non-commutative, non-commutativity results. It would
be interesting to know whether braid group representations have been used to construct
representations of N−tangles.

2. Does generalization to N >> 2 case exist?

One can wonder whether the notion of rational tangle and the basic result of the article
about equivalence of tangles might somehow generalize to the N > 2 case.

i. Could the commutativity of tangle product allow to characterize the N > 2 general-
izations of rational 2-tangles. The commutativity of product would be a space-time
correlate for the commutativity of the S-matrices defining time like entanglement be-
tween the initial and final quantum states assignable to the N -tangle. For 2-tangles
commutativity of the sum would have an analogous interpretation. Sum is not a very
natural operation for N-tangles for N > 2. Commutativity means that the represen-
tation matrices defined as products of braid group actions associated with the various
intermediate states and acting in the same representation space commute. Only in
very special cases one can expect commutativity for tangles since commutativity is lost
already for braids.
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ii. The representations of 2-tangles should involve the subgroups of N -braid groups of
intermediate braids identifiable as Galois groups of N :th order polynomials in the re-
alization as number theoretic tangles. Could non-commutative 2-tangles be character-
ized by algebraic numbers in the extensions to which the Galois groups are associated?
Could the non-commutativity reflect directly the non-commutativity of Galois groups
involved? Quite generally one can ask whether the invariants should be expressible
using algebraic numbers in the extensions of rationals associated with the intermediate
braids.

iii. Rational 2-tangles can be characterized by a rational number obtained by a projective
identification [a, b]T → a/b from a rational 2-spinor [a, b]T to which SL(2(N-1),Z) acts.
Equivalence means that the columns [a, b]T and [c, d]T combine to form element of
SL(2,Z) and thus defining a modular transformation. Could more general 2-tangles
have a similar representation but in terms of algebraic integers?

iv. Could N -tangles be characterized by N − 1 2(N − 1)-component projective column-

spinors [a1
i , a

2
i , .., a

2(N−1)
i ]T , i = 1, ...N − 1 so that only the ratios aki /a

2(N−1)
i ≤ 1

matter? Could equivalence for them mean that the N − 1 spinors combine to form
N − 1 + N − 1 columns of SL(2(N − 1), Z) matrix. Could N -tangles quite generally
correspond to collections of projective N − 1 spinors having as components algebraic
integers and could ad− bc = ±1 criterion generalize? Note that the modular group for
surfaces of genus g is SL(2g,Z) so that N − 1 would be analogous to g and 1 ≤ N ≥ 3-
braids would correspond to g ≤ 2 Riemann surfaces.

v. Dark matter hierarchy leads naturally to a hierarchy of modular sub-groups of SL(2, Q)
labeled by N (the generator τ → τ + 2 of modular group is replaced with τ → τ +
2/N). What might be the role of these subgroups and corresponding subgroups of
SL(2(N − 1), Q). Could they arise in ”anyonization” when one considers quantum
group representations of 2-tangles with twist operation represented by an N :th root of
unity instead of phase U satisfying U2 = 1?

How tangles could be realized in TGD Universe?

The article of Kauffman and Lambropoulou stimulated the question in what senses N -
tangles could be be realized in TGD Universe as fundamental structures.

1. Tangles as number theoretic braids?

The strands of number theoretical N−braids correspond to roots of N:th order polynomial
and if one allows time evolutions of partonic 2-surface leading to the disappearance or
appearance of real roots N−tangles become possible. This however means continuous
evolution of roots so that the coefficients of polynomials defining the partonic 2-surface can
be rational only in initial and final state but not in all intermediate ”virtual” states.

2. Tangles as tangled partonic 2-surfaces?

Tangles could appear in TGD also in second manner.

i. Partonic 2-surfaces are sub-manifolds of a 3-D section of space-time surface. If partonic
2-surfaces have genus g > 0 the handles can become knotted and linked and one obtains
besides ordinary knots and links more general knots and links in which circle is replaced
by figure eight and its generalizations obtained by adding more circles (eyeglasses for
N−eyed creatures).

ii. Since these 2-surfaces are space-like, the resulting structures are indeed tangles rather
than only braids. Tangles made of strands with fixed ends would result by allowing
spherical partons elongate to long strands with fixed ends. DNA tangles would the
basic example, and are discussed also in the article. DNA sequences to which I have
speculatively assigned invisible (dark) braid structures might be seen in this context
as space-like ”written language representations” of genetic programs represented as
number theoretic braids.
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16.3.5 Only the quantum variants of M4 and M8 emerge from local
hyper-finite II1 factors

Super-symmetry suggests that the representations of CH Clifford algebraM as N module
M/N should have bosonic counterpart in the sense that the coordinate for M8 repre-
sentable as a particular M2(Q) element should have quantum counterpart. Same would
apply to M4 coordinate representable as M2(C) element. Quantum matrix representation
of M/N as SLq(2, F ) matrix, F = C,H is the natural candidate for this representation.
As a matter fact, this guess is not quite correct. It is the interpretation of M2(C) as
a quaternionic quantum algebra whose generalization to the octonionic quantum algebra
works.

Quantum variants of MD exist for all dimensions but only spaces M4 and M8 and their
linear sub-spaces emerge from hyper-finite factors of type II1. This is due to the non-
associativity of the octonionic representation of the gamma matrices making it impossible
to absorb the powers of the octonionic coordinate to the Clifford algebra element so that
the local algebra character would disappear. Even more: quantum coordinates for these
spaces are commutative operators so that their spectra define ordinary M4 and M8 which
are thus already quantal concepts.

The commutation relations for M2,q(C) matrices

(
a b
c d

)
,

(16.3.6)

read as

ab = qba , ac = qac , bd = qdb , cd = qdc ,
[ad, da] = (q − q−1)bc , bc = cb .

(16.3.7)

These relations can be extended by postulating complex conjugates of these relations
for complex conjugates a†, b†, c†, d† plus the following non-vanishing commutators of type
[x, y†]:

[a, a†] = [b, b†] = [c, c†] = [d, d†] = 1 . (16.3.8)

The matrices representing M4 point must be expressible as sums of Pauli spin matrices.
This can be represented as following conditions on physical states

O|phys〉 = 0 ,

O ∈ {a− a†, d− d†, b− c†, c− b†} . (16.3.9)

For instance, the first two conditions follow from the reality of Pauli sigma matrices
σx, σy, σz. These conditions are compatible only if the operators O commute. This is
the case and means also that the operators representing M4 coordinates commute and it is
possible to define quantum states for which M4 coordinates have well-defined eigenvalues
so that ordinary M4 emerges purely quantally from quaternions whose real coefficients are
made non-Hermitian operators to obtain operator complexificiation of quaternions. Also
the quantum states in which M4 coordinates are emerge naturally.

M2,q(C) matrices define the quantum analog of C4 and one can wonder whether other
linear sub-spaces can be defined consistently or whether M4

q and thus Minkowski signature
is unique. This seems to be the case. For instance, the replacement a− a→ a+ a making
also time variable Euclidian is impossible since [a + a, d − d] = 2(q − q−1)bc does not
vanish. The observation that M4 coordinates can be regarded as eigenvalues of commuting
observables proves that quantum CD and its orbifold description are equivalent.
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What about M8: does it have analogous description? The representation of M4 point as
M2(C) matrix can be interpreted a combination of 4-D gamma matrices defining hyper-
quaternionic units. Hyper-octonionic units indeed have anticommutation relations of gamma
matrices of M8 and would give classical representation of M8. The counterpart of M2,q(C)
would thus be obtained by replacing the coefficients of hyper-octonionic units with oper-
ators satisfying the generalization of M2,q(C) commutation relations. One should identify
the reality conditions and find whether they are mutually consistent.

Introduce the coefficients of E4 gamma matrices having interpretation as quaterionic units
as

a0 = ix(a+ d) , a3 = x(a− d) ,
a1 = x(b+ c) , a2 = x(ib− c) ,
x = 1√

2
,

and write the commutations relations for them to see how the generalization should be
performed.

The selections of commutative and quaternionic sub-algebras of octonion space are fun-
damental for TGD and quantum octonionic algebra should reflect these selections in its
structure. In the case of quaternions the selection of commutative sub-algebra implies
the breaking of 4-D Lorentz symmetry. In the case of octonions the selection of quaternion
sub-algebra should induce the breaking of 8-D Lorentz symmetry. Quaternionic sub-algebra
obeys the commutations of Mq(2, C) whereas the coefficients in in the complement com-
mute mutually and quantum commute with the complex sub-algebra. This nails down the
commutation relations completely:

[a0, a3] = −i(q − q−1)(a2
1 + a2

2) ,

[ai, aj ] = 0 , i, j 6= 0, 3 ,

a0ai = qaia0 , i 6= 0, 3 ,

a3ai = qaia3 , i 6= 0, 3 . (16.3.10)

Checking that M8 indeed corresponds to commutative subspace defined by the eigenvalues
of operators is straightforward.

The argument generalizes easily to other dimensions D ≥ 4 but now quaternionic and
octonionic units must be replaced by gamma matrices and an explicit matrix representation
can be introduced. These gamma matrices can be included as a tensor factor to the infinite-
dimensional Clifford algebra so that the local Clifford algebra reduces to a mere Clifford
algebra. The units of quantum octonions which are just ordinary octonion units do not
however allow matrix representation so that this reduction is not possible and imbedding
space and space-time indeed emerge genuinely. The non-associativity of octonions would
determine the laws of physics in TGD Universe!

Thus the special role of classical number fields and uniqueness of space-time and imbed-
ding space dimensions becomes really manifest only when a quantal deformation of the
quaternionic and octonionic matrix algebras is performed. It is possible to construct the
quantal variants of the coset spaces M4×E4/Ga×Gb by simply posing restrictions on the
of eigen states of the commuting coordinate operators. Also the quantum variants of the
space-time surface and quite generally, manifolds obtained from linear spaces by geometric
constructions become possible.





Chapter 1

Appendix

A-1 Introduction

In its original form this chapter contained brave speculations about the equivalence of loop
diagrams with tree diagrams proposed to generalize the duality of hadronic string models.
It however turned out that this picture has no obvious connection with the generalized
Feynman diagrams- a notion which emerged years later. Since the physical interpretation
and mathematical framework of quantum TGD has now reached relatively mature and
stable state, I decided that it is time to drop out these speculations and leave only the hard
mathematical facts as appendix possibly useful also for the reader.

A-2 Hopf algebras and ribbon categories as basic struc-
tures

In this section the basic notions related to Hopf algebras and categories are discussed from
TGD point of view. Examples are left to appendix. The new element is the graphical
representation of the axioms leading to the idea about the equivalent of loop diagrams and
tree diagrams based on general algebraic axioms.

A-2.1 Hopf algebras and ribbon categories very briefly

An algebraic formulation generalizing braided Hopf algebras and related structures to what
might be called quantum category would involve the replacement of the co-product of Hopf
algebras with morphism of quantum category having as its objects the Clifford algebras
associated with configuration space spinor structure for various 3-topologies. The corre-
sponding Fock spaces would would define algebra modules and the objects of the category
would consists of pairs of algebras and corresponding modules. The underlying primary
structure would be second quantized free induced spinor fields associated with 3-surfaces
with various 3-topologies and generalized conformal structures.

1. Bi-algebras

Bi-algebras have two algebraic operations. Besides ordinary multiplication µ : H⊗H → H
there is also co-multiplication ∆ : H → H ⊗H. Algebra satisfies the associativity axiom
(Ass): a(bc) = (ab)c, or more formally, µ(id ⊗ µ) = µ(µ ⊗ id), and the unit axiom (Un)
stating that there is morphism η : k → A mapping the unit of A to the unit of field k.
Commutativity axiom (Co) ab = ba translates to µ ⊗ τ ≡ µop = µ, where τ permutes
factors in tensor product A⊗A.

∆ satisfies mirror images of these axioms. Co-associativity axiom (Coass) reads as (∆ ⊗
id)∆ = (id⊗∆)∆, co-unit axiom (Coun) states existence of morphism ε : k → C mapping
the unit of A to that of k, and co-commutativity (Coco) reads as τ ◦∆ ≡ ∆op = ∆. For
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a bi-algebra H also additional axioms are satisfied: in particular, ∆ (µ) acts as algebra
(bi-algebra) morphism. When represented graphically, this constraint states that a box
diagram is equivalent to a tree diagram as will be found and served as the stimulus for the
idea that loop diagrams might be equivalent with tree diagrams.

Left and right algebra modules and algebra representations are defined in an obvious manner
and satisfy associativity and unit axioms. A left co-module corresponds a pair (V,∆V )
where the co-action ∆N : V → A ⊗ V satisfies co-associativity and co-unit axioms. Right
co-module is defined in an analogous manner.

Particle fusion A ⊗ B → C corresponds to µ: A ⊗ B → C = AB. Co-multiplication ∆
corresponds time reversal C → A ⊗ B of this process, which is kind of a time-reversal
for multiplication. The generalization would mean that µ and ∆ become morphisms µ :
B⊗C → A and ∆ : A→ B⊗C, where A,B,C are objects of the quantum category. They
could be either representations of same algebra or even different algebras.

2. Drinfeld’s quantum double

Drinfeld’s quantum double [A110] is a braided Hopf algebra obtained by combining Hopf al-
gebra (H,µ,∆, η, ε, S,R) and its dual H? to a larger Hopf algebra known as quasi-triangular
Hopf algebra satisfying ∆ = R∆opR−1, where ∆op(a) is obtained by permuting the two
tensor factors. Duality means existence of a scalar product and the two algebras correspond
to Hermitian conjugates of each other.

In TGD framework the physical states associated with these algebras have opposite energies
since in TGD framework antimatter (or matter depending on the phase of matter) corre-
sponds to negative energy states. The states of the Universe would correspond to states
with vanishing conserved quantum numbers, and in concordance with crossing symmetry,
particle reactions could be interpreted as transitions generating zero energy states from
vacuum.

The notion of duality [A110] is needed to define an inner product and S-matrix. Essentially
Dirac’s bra-ket formalism is in question. The so called evaluation map ev : V ⊗ V ? → k
defined as ev(vi⊗vj) = 〈vi, vj〉 = δij defines an inner product in any Hopf algebra module.
The inverse of this map is the linear map k → V defined by δv(1) = vi ⊗ vi. For a
tensor category with unit I, field k is replaced with unit I, and left duality these maps
are replaced with maps bV : I → V ⊗ V ? and dV = V ⊗ V ? → I. Right duality is
defined in an analogous manner. The map dV assigns to a given zero energy state S-
matrix element. Algebra morphism property bV (ab) = bV (a)bV (b) would mean that the
outcome is essentially the counterpart of free field theory Feynman diagram. This diagram
is convoluted with the S-matrix element coded to the entanglement coefficients between
positive and negative energy particles of zero energy state.

3. Ribbon algebras and ribbon categories

The so called ribbon algebra [A110] is obtained by replacing one-dimensional strands with
ribbons and adding to the algebra the so called twist operation θ acting as a morphism
in algebra and in any algebra module. Twist allows to introduce the notion of trace, in
particular quantum trace.

The thickening of one-dimensional strands to 2-dimensional ribbons is especially natural
in TGD framework, and corresponds to a replacement of points of time=constant section
of 4-surface with one-dimensional curves along which the S-matrix defined by R-matrix
is constant. Ribbon category is defined in an obvious manner. There is also a more
general definition of ribbon category with objects identified as representations of a given
algebra and allowing morphisms with arbitrary number of incoming and outgoing strands
having interpretation as many-particle vertices in TGD framework. The notion of quantum
category defined as a generalization of a ribbon category involving the generalization of
algebra product and co-product as morphisms between different objects of the category
and allowing objects to correspond different algebras might catch the essentials of the
physics of TGD Universe.
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A-2.2 Algebras, co-algebras, bi-algebras, and related structures

It is useful to formulate the notions of algebra, co-algebra, bi-algebra, and Hopf algebra in
order to understand how they might help in attempt to formulate more precisely the view
about what generalized Feynman diagrams could mean. Since I am a novice in the field of
quantum groups, the definitions to be represented are more or less as such from the book
”Quantum Groups” of Christian Kassel [A110] with some material (such as the construction
of Drinfeld double) taken from [A71]. What is new is a graphical representation of algebra
axioms and the proposal that algebra and co-algebra operations have interpretation in
terms of generalized Feynman diagrams.

In the following considerations the notation idk for the isomorphism k → k ⊗ k defined by
x→ x⊗ x and its inverse will be used.

Algebras

Algebra can be defined as a triple (A,µ, η), where A is a vector space over field k and
µ : A ⊗ A → A and η : k → A are linear maps satisfying the following axioms (Ass) and
(Un).

(Ass): The square

A⊗A⊗A A⊗A

A⊗A A

............................................................... ............
µ⊗ id

............................................................... ............
µ

.................................
.....
.......
.....id⊗ µ

.................................
.....
.......
.....µ

(A-2.1)

commutes.

(Un): The diagram

k ⊗A A⊗A A⊗ k

A

........................................................................................ ............
η ⊗ id

...........................................................................

id⊗ η................................................................................................................................................................................... .........
...

∼= ...........................................
.....
.......
.....
µ

................................................................................................................................................................................
...
............

∼=
(A-2.2)

commutes. Note that η imbeds field k to A.

(Comm) If algebra is commutative, the triangle

A⊗A A⊗A

A

........................................................................................ ............
τA,A

.............................................................................................. ........
....

µ
..........................................................................................

....
............

µ

(A-2.3)

commutes. Here τA,A is the flip switching the factors: τA,A(a⊗ a′) = a′ ⊗ a.

A morphism of algebras f : (A,µ, η)→ (A′, µ′, η′) is a linear map A→ A′ such that

µ′ ◦ (f ⊗ f) = f ◦ µ, and f ◦ η = η′ .

A graphical representation of the algebra axioms is obtained by assigning to the field k a
dashed line to be referred as a vacuum line in the sequel and to A a full line, to η a vertex
× at which k-line changes to A-line. The product µ can be represented as 3-particle vertex
in which algebra lines fuse together. The three axioms (Ass), (Un) and (Comm) can are
expressed graphically in figure A-2.2.

Note that associativity axiom implies that two tree diagrams not equivalent as Feynman
diagrams are equivalent in the algebraic sense.
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/Users/mattipitkanen/Desktop/tgd/figuresold/algebra.png

Figure 1: Graphical representation for the axioms of algebra. a) a(bc) = (ab)c, b) ab = ba, c)
ka = µ(η(k), a) and ak = µ(a, η(k)).

Co-algebras

The definition of co-algebra is obtained by systematically reversing the directions of arrows
in the previous diagrams.

A co-algebra is a triple(C,∆, ε), where C is a vector space over field k and ∆ : C → C ⊗C
and ε : C → k are linear maps satisfying the following axioms (Coass) and (Coun).

(Coass): The square

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

..................................................... ............
∆

..................................................... ............
∆⊗ id

.................................
.....
.......
.....∆

.................................
.....
.......
.....id⊗∆

(A-2.4)

commutes.

(Coun): The diagram

k ⊗ C C ⊗ C C ⊗ k

C

....................................................................................................

ε⊗ id
............................................................... ............
id⊗ ε

................
................

................
................

................
................

................
................

................
................

...............................

∼= .......
.......
.......
.......
.......
.............
............

∆
................

................
................

................
................

................
................

................
................

................
...................
............

∼=

(A-2.5)

commutes. The map ∆ is called co-product or co-multiplication whereas ε is called the
counit. The commutative diagram state that the co-product is co-associative and that
co-unit commutes with co-product.

(Cocomm) If co-algebra is commutative, the triangle

C

C ⊗ C C ⊗ C

.................................................................................................
....
............

∆

..................................................................................................... ........
....

∆

........................................................................................ ............
τC,C

(A-2.6)
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commutes. Here τC,C is the flip switching the factors: τC,C(c⊗ c′) = c′ ⊗ c.
A morphism of co-algebras f : (C,∆, ε)→ (C ′,∆′, ε′) is a linear map C → C ′ such that

(f ⊗ f) ◦∆ = ∆′ ◦ f , and ε = ε′ ◦ f .

It is straightforward to define notions like co-ideal and co-factor algebra by starting from
the notions of ideal and factor algebra. A very useful notation is Sweedler’s sigma notation
for ∆(x), x ∈ C as element of C ⊗ C :

∆(x) =
∑
i

x′i ⊗ x′′i ≡
∑
{x}

x′ ⊗ x′′ .

Also co-algebra axioms allow graphical representation. One assigns to ε a vertex × at which
C-line changes to k-line: the interpretation is as an absorption of a particle by vacuum.
The co-product ∆ can be represented as 3-particle vertex in which C-line decays to two
C-lines. The graphical representation of the three axioms (Coass), (Coun), and (Cocomm)
is related to the representation of algebra axioms by ”time reversal”, that is turning the
diagrams for the algebra axioms upside down (see figure A-2.2).

/Users/mattipitkanen/Desktop/tgd/figuresold/coalgebra.png

Figure 2: Graphical representation for the axioms of co-algebra is obtained by turning the rep-
resentation for algebra axioms upside down. a) (id ⊗ ∆)∆ = (∆ ⊗ id)∆, b) ∆ = ∆op, c)
(ε⊗ id) ◦∆ = (id⊗ ε) ◦∆ = id.

Bi-algebras

Consider next a vector space H equipped simultaneously with an algebra structure (H,µ, η)
and a co-algebra structure (H,∆, ε). There are some compatibility conditions between these
two structures. H ⊗H can be given the induced structures of a tensor product of algebras
and of co-algebras.

The following two statements are equivalent.
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i. The maps µ and η are morphisms of co-algebras. For µ this means that the diagrams

H ⊗H H

(H ⊗H)⊗ (H ⊗H) H ⊗H

............................................................... ............
µ

............................................................... ............
µ⊗ µ

...................................................................................
.....
.......
.....

(id⊗ τ ⊗ id)⊗ (∆⊗∆)

...................................................................................
.....
.......
.....

∆

(A-2.7)

and

H ⊗H k ⊗ k

H k

................................................................................................................. ............
ε⊗ ε

................................................................................................................. ............
ε

...................................................................................
.....
.......
.....

µ

...................................................................................
.....
.......
.....

id

(A-2.8)

commute. For η this means that the diagrams

k H

k ⊗ k H ⊗H

................................................................................................................. ............
η

................................................................................................................. ............
η ⊗ η

...................................................................................
.....
.......
.....

id

...................................................................................
.....
.......
.....

∆

k H

k

................................................................................................................................................................... ............
η

........................................................................................................................... .......
.....

id

......................................................................................................................
.....
............

ε

(A-2.9)

commute.

ii. The maps ∆ and ε are morphisms of algebras.
For ∆ this means that diagrams

H ⊗H (H ⊗H)⊗ (H ⊗H)

H H ⊗H

............................................................... ............
∆⊗∆

............................................................... ............
∆

...................................................................................
.....
.......
.....

µ

...................................................................................
.....
.......
.....

(µ⊗ µ)(id⊗ τ ⊗ id)

(A-2.10)

and

k H

k ⊗ k H ⊗H

................................................................................................................. ............
η

................................................................................................................. ............
η ⊗ η

...................................................................................
.....
.......
.....

id

...................................................................................
.....
.......
.....

∆

(A-2.11)

commute.

For ε this means that the diagrams

H ⊗H k ⊗ k

H k

................................................................................................................. ............
ε⊗ ε

................................................................................................................. ............
ε

...................................................................................
.....
.......
.....

µ

...................................................................................
.....
.......
.....

id

k H

k

................................................................................................................................................................... ............
η

........................................................................................................................... .......
.....

id

......................................................................................................................
.....
............

ε

(A-2.12)
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commute. The proof of the theorem involves the comparison of the commutative diagrams
expressing both statements to see that they are equivalent.

The theorem inspires the following definition.

Definition: A bi-algebra is a quintuple (H,µ, η,∆, ε), where (H,µ, η) is an algebra and
(H,∆, ε) is co-algebra satisfying the mutually equivalent conditions of the previous theo-
rem. A morphisms of bi-algebras is a morphism for the underlying algebra and bi-algebra
structures.

An element x ∈ H is known as primitive if one has ∆(x) = 1 ⊗ x + x ⊗ 1 and have
ε(x) = 0. The subspace of primitive elements is closed with respect to the commutator
[x, y] = xy− yx. Note that for primitive elements µ ◦∆ = 2idH holds true so that µ/2 acts
as the left inverse of ∆.

Given a vector space V , there exists a unique bi-algebra structure on the tensor algebra
T (V ) such that ∆(v) = 1⊗v+v⊗1 and ε(v) = 0 for any element v of V . By the symmetry
of ∆ this bi-algebra structure is co-commutative and corresponds to the ”classical limit”.
Also the Grassmann algebra associated with V allows bi-algebra structure defined in the
same manner.

Figure A-2.2 provides a representation for the axioms of bi-algebra stating that ∆ and
ε act as algebra morphisms of algebra and or equivalent that µ and η act as co-algebra
morphisms. The axiom stating that ∆ (µ) is algebra (co-algebra) morphism implies that
scattering diagrams differing by a box loop are equivalent. The statement that µ is co-
algebra morphism reads (id ⊗ µ ⊗ id)(∆ ⊗ ∆) = ∆ ◦ µ whereas the mirror statement
∆(ab) = ∆(a)∆(b) for ∆ reads as ∆ ◦ µ = µ(∆⊗∆) and gives rise to the same graph.

/Users/mattipitkanen/Desktop/tgd/figuresold/bialgebra.png

Figure 3: Graphical representation for the conditions guaranteing that µ and η (∆ and ε) act as
homomorphisms of co-algebra (algebra). a)(id ⊗ µ ⊗ id)(∆ ⊗∆) = ∆ ◦ µ, b) ε ◦ µ = id ◦ (ε ⊗ ε), c)
∆ ◦ η = µ⊗ ◦idk, d) ε ◦ η = idk.

Hopf algebras

Given an algebra (A,µ, η) and co-algebra (C,∆, ε), one can define a bilinear map, the
convolution on the vector space Hom(C,A) of linear maps from C to A. By definition, if
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f and g are such linear maps, then the convolution f ? g is the composition of the maps

C C ⊗ C A⊗A A...................................... ............

∆
............................ ............

f ⊗ g
...................................... ............

µ (A-2.13)

Using Sweedler’s sigma notion one has

f ? g(x) =
∑
{x}

f(x′)g(x′′) . (A-2.14)

It can be shown that the triple (Hom(C,A), ?,∆, η ◦ ε) is an algebra and that the map
ΛC,A : A⊗ C? → Hom(C,A) defined as

ΛC,A(a⊗ γ)(c) = γ(c)a

is a morphism of algebras, where C? is the dual of the finite-dimensional co-algebra C.

For A = C the result gives a mathematical justification for the crossing symmetry inspired
re-interpretation of the unitary S-matrix interpreted usually as an element of Hom(A,A)
as a state generated by element of A ⊗ A? from the vacuum |vac〉 = |vacA〉 ⊗ |vacA?〉.
This corresponds to the interpretation of the reaction ai|vacA〉 → af |vacA〉 as a transition
creating state ai ⊗ a?f |vac〉 with vanishing conserved quantum numbers from vacuum.

With these prerequisites one can introduce the notion of Hopf algebra. Let (H,µ, η,∆, ε)
be a bi-algebra. An endomorphism S of H is called an antipode for the bi-algebra H if

S ? idH = idH ? S = η ◦ ε .

A Hopf algebra is a bi-algebra with an antipode. A morphism of a Hopf algebra is a
morphism between the underlying bi-algebras commuting with the antipodes.

The graphical representation of the antipode axiom is given in the figure below.

/Users/mattipitkanen/Desktop/tgd/figuresold/antipode.png

Figure 4: Graphical representation of antipode axiom S ? idH = idH ? S = η ◦ ε.

The notion of scalar product central for physical applications boils down to the notion
of duality. Duality between Hopf algebras U and H means the existence of a morphism
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x → Ψ(x): H → U? defined by a bilinear form 〈u, x〉 = Ψ(x)(u) on U × H, which is a
bi-algebra morphism. This means that the conditions

〈uv, x〉 = 〈u⊗ v,∆(x)〉 , 〈u, xy〉 = 〈∆(u), x⊗ y〉 ,

〈1, x〉 = ε(x) , 〈u, 1〉 = ε(u) ,

〈S(u), x〉 = 〈u, S(x)〉

(A-2.15)

are satisfied. The first condition on multiplication and co-multiplication, when expressed
graphically, states that the decay x→ u⊗ v can be regarded as time reversal for the fusion
of u⊗ v → x. Second condition has analogous interpretation.

/Users/mattipitkanen/Desktop/tgd/figuresold/duality1.png

Figure 5: Graphical representation of the duality condition 〈uv, x〉 = 〈u⊗ v,∆(x)〉 .

Modules and comodules

Left and right algebra modules and algebra representations are defined in an obvious manner
and satisfy associativity and unit axioms having diagrammatic representation similar to
that for corresponding algebra axioms.

A left co-module corresponds a pair (V,∆V ), where the co-action ∆N : V → C⊗V satisfies
co-associativity axiom (idC⊗∆N )◦∆N = (∆⊗idN )◦∆N and co-unit axiom (ε⊗id)◦∆N =
idN . A right co-module is defined in an analogous manner. It is convenient to introduce
Sweedlers’s notation for ∆N as ∆N =

∑
{c} xC ⊗ xN .

One can define module and comodule morphisms and tensor product of modules and co-
modules in a rather obvious manner. The module N could be also algebra, call it A, in
which case µA and ηA are assumed to act as H-comodule morphisms.

The standard example is quantum plane A = M(2)q is the free algebra generated variables
x, y subject to to relations yx = qxy and having coefficients in k. The action of ∆A reads
as

∆A

(
x
y

)
=

(
a b
c d

)
⊗
(
x
y

)
.
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∆A defines algebra morphism fromA to SL(2)q⊗A: ∆a(yx) = ∆A(y)∆A(x) = q∆A(x)∆A(y) =
∆(qxy).

Braided bi-algebras

∆op = τH,H◦∆ defines the opposite co-algebra Hop of H. A braided bi-algebra (H,µ, η,∆, ε)
is called quasi-co-commutative (or quasi-triangular) if there exists an element R of algebra
H ⊗H such that for all x ∈ H one has

∆op = R∆R−1 .

One can express R in the form

R =
∑
i

si ⊗ ti .

It is convenient to denote by Rij the R matrix acting in ith and jth tensor factors of nth

tensor power of H. More precisely, Rij can be defined as an operator acting in an n-fold
tensor power of H by the formula Rij = y(1) ⊗ y(2) ⊗ ... ⊗ y(p), p ≤ n, y(ki) = si and
y(kj) = tj , y

(k) = 1 otherwise. For instance, one has R13 =
∑
i si ⊗ 1⊗ ti.

With these prerequisites one can define a braided bi-algebra as a quasi-commutative bi-
algebra (H,µ, η,∆, ε, S, S−1, R) as an algebra with a preferred element R ∈ H⊗H satisfying
the two relations

(∆⊗ idH)(R) = R13R23 ,

(idH ⊗∆)(R) = R13R12 .

(A-2.16)

Braided bi-algebras, known also as quasi-triangular bi-algebras, are central in the theory
of quantum groups, R-matrices, and braid groups. By a direct calculations one can verify
the following relations.

i. Yang-Baxter equations

R12R13R23 = R23R13R12 , (A-2.17)

and the relation

(ε⊗ idH)(R) = 1 (A-2.18)

hold true.

ii. Since H has an invertible antipode S, one has

(S ⊗ idH)(R) = R−1 = (idH ⊗ S−1)(R) ,

(S ⊗ S)(R) = R . (A-2.19)

The graphical representation of the Yang-Baxter equation in terms of the relations of braid
group generators is given in the figure A-2.2.

Ribbon algebras

Let H be a braided Hopf algebra with a universal matrix R =
∑
i si ⊗ ti and set u =∑

i S(ti)si. It can be shown that u is invertible with the inverse u−1 =
∑
siS

2(ti) and
that uS(u) = S(u)u is central element in H. Furthermore, one has ε(u) = 1 and ∆(u) =
(R21R)−1(u⊗ u), and the antipode is given for any x ∈ H by S2(x) = uxu−1.

Ribbon algebra has besides R ∈ H⊗H also a second preferred element called θ. A braided
Hopf algebra is called ribbon algebra if there exists a central element θ of H satisfying the
relations
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/Users/mattipitkanen/Desktop/tgd/figuresold/yb.png

Figure 6: Graphical representation of Yang-Baxter equation R12R13R23 = R23R13R12.

∆(θ) = (R21R)−1(θ ⊗ θ) , ε(θ) = 1 , S(θ) = θ . (A-2.20)

It can be shown that θ2 acts like S(u)u on any finite-dimensional module [A110] .

Drinfeld’s quantum double

Drinfeld’s quantum double construction allows to build a quasi-triangular Hopf algebra by
starting from any Hopf algebra H and its dual H?, which exists in a finite-dimensional
case always, and as a vector space is isomorphic with H. Besides duality normal ordering
is second ingredient of the construction. Physically the generators of the algebra and its
dual correspond to creation and annihilation operator type operators. Drinfeld’s quantum
double construction is represented in a very general manner in [A110] . A construction easier
to understand by a physicist is discussed in [A71]. For this reason this representation is
summarized here although the style differs from the representation of [A110] followed in
the other parts of appendices.

Consider first what is known.

i. Duality means the existence of basis {ea} for H and {ea} for H? and inner product (or
evaluation as it is called in [A110] ) ev : H?⊗H → k defined as ev(eaeb) ≡ 〈ea, eb〉 = δab
and its inverse δ : k → H? ⊗ H defined by δ(1) = eaea. One can extend the inner
product to an inner product in the tensor product (H?⊗H?)⊗ (H ⊗H) in an obvious
manner.

ii. The product (co-product) in H (H?) coincides with the co-product (product) in H?

(H) in the sense that one has

〈ec, eaeb〉 = mc
ab = 〈∆(ec), eb ⊗ ea〉 ,

〈eaeb, ec〉 = µabc = 〈ea ⊗ eb,∆(ec)〉 ,
(A-2.21)

These equations are quite general expressions for the duality expressed graphically in
figure A-2.2.

iii. The antipodes S for H and H? can be represented as matrices
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SH(ea) = S b
a eb , SH?(ea) = (S−1)abe

b . (A-2.22)

The task is to construct algebra product µ and co-algebra product ∆, unit η and co-unit ε,
antipode, and R-matrix R for for H⊗H?. The natural basis for H⊗H? consists of ea⊗eb.

i. Co-product ∆ is simply the product of co-products

∆(eae
b) = ∆(ea)∆(eb) = mb

vuµ
cd
a ece

u ⊗ edev . (A-2.23)

ii. Product µ involves normal ordering prescription allowing to transform products eaeb
(elements of H? ⊗ H) to combinations of basis elements eae

b (elements of H ⊗ H?.
This map must be consistent with the requirement that co-product acts as an algebra
morphism. Drinfeld’s normal ordering prescription, or rather a map cH?,H : H?⊗H →
H ⊗H? is given by

cH?,H(eaeb) = Racbdece
d , Racbd = mx

kdm
a
xuµ

vy
b µ

ck
y (S−1)uvece

d . (A-2.24)

The details of the formula are far from being obvious: the axioms of tensor category
with duality to be discussed later might allow to relate RH?,H to RH,H and this might
help to understand the origin of the expression. Normal ordering map can be inter-
preted as braid operation exchanging H and H? and the matrix defining the map could
be regarded as R-matrix RH⊗H? .

iii. The universal R-matrix is given by

R = (ea ⊗ idH?)⊗ (idH ⊗ ea) , (A-2.25)

where the summation convention is applied. One can show that R∆ = ∆opR by a
direct calculation.

iv. The antipode SH⊗H? follows from the product of antipodes for H and H? using the
fact that antipode is antihomomorphism using the normal ordering prescription

SH⊗H?(eae
b) = cH?,H(S(eb)S(ea)) . (A-2.26)

Quasi-Hopf algebras and Drinfeld associator

Braided Hopf algebras are quasi-commutative in the sense that one has ∆op = R∆R−1.
Also the strict co-associativity can be given up and this means that one has

(∆⊗ id)∆ = Φ(id⊗∆)Φ−1 , (A-2.27)

where Φ ∈ H ⊗H ⊗H is known as Drinfeld’s associator and appears in the of conformal
fields theories. If the resulting structure satisfies also the so called Pentagon Axiom (to be
discussed later, see Eq. A-2.36 and figure A-2.3), it is called quasi-Hopf algebra. Pentagon
Axiom boils down to the condition

(id⊗ id⊗∆)(Φ)(∆⊗ id⊗ id)(Φ) = (id⊗ Φ)(id⊗ id⊗∆)(Φ)(Φ⊗ id) . (A-2.28)

The Yang-Baxter equation for quasi-Hopf algebra reads as

R12Φ312R13Φ−1
1322R23Φ123 = Φ321R23Φ−1

231R13Φ213R12Φ123 . (A-2.29)

The left-hand side arises from a sequence of transformations

(12)3 1(23) 1(32) (31)2 3(12) 3(12) 3(21)............................................................... ............
Φ123

............................................................... ............
R23

.......................................................... ............
Φ−1

132
.......................................................... ............
R13

.......................................................... ............
Φ312

.......................................................... ............
R12

.
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The right-hand side arises from the sequence

(12)3 (21)3 2(13) 2(31) (23)1 (32)1 3(21)............................................................... ............
R12

............................................................... ............
Φ213

.......................................................... ............
R13

.......................................................... ............
Φ−1

231
.......................................................... ............
R23

.......................................................... ............
Φ321

.

One can produce new quasi-Hopf algebras by gauge (or twist) transformations using in-
vertible element Ω ∈ H ⊗H called twist operator

∆(a) → Ω∆(a)Ω−1 ,

Φ → Ω23(id⊗∆)(Ω)Φ(∆⊗ id)(Ω−1)Ω−1
12 ,

R → ΩRΩ−1 . (A-2.30)

Quasi-Hopf algebras appear in conformal field theories and correspond quantum universal
enveloping algebras divided by their centralizer. Consider as an example the R-matrix
Rj1,j2 relating j1⊗ j2 and j2⊗ j1 representations ∆j1,j2(a) and ∆j2,j1(a) of the co-product
∆ of U(sl(2))q. ∆j,j(a) commutes with Rjj for all elements of the quantum group. The
action of gi = qRjj acting in ith and (i+ 1)th tensor factors extends to the representation
(Vj)

×n in an obvious manner. From the Yang-Baxter equation it follows that the operators
gi define a representation of braid group Bn:

gigi+1gi = gi+1gigi+1 ,

gigj = gjgi , for |j − k| ≥ 2 . (A-2.31)

Under certain conditions the braid group generators generate the whole centralizer Cnq for
the representation of quantum group. For instance, this occurs for j = 1/2. In this case
the additional condition

g2
i = (q2 − 1)gi + q2 × 1 , (A-2.32)

so that the centralizer is isomorphic with the Hecke algebra Hn(q), which can be regarded
as a q-deformation of permutation group Sn.

The result generalizes. In Wess-Zumino-Witten model based on group G the relevant
algebraic structure is U(Gq)/C

n(q). This is quasi-Hopf algebra and the so called Drinfeld
associator characterizes the quasi-associativity.

A-2.3 Tensor categories

Hopf algebras and related structures do not seem to be quite enough in order to formulate
elegantly the construction of S-matrix in TGD framework. A more general structure known
as a braided tensor category with left duality and twist operation making the category to
a ribbon category is needed. The algebra product µ and co-product ∆ must be generalized
so that they appear as morphisms µA⊗B→C and ∆A→B⊗C : this gives hopes of describing
3-vertices algebraically. It is not clear whether one can assume single underlying algebra so
that objects would correspond to different representations of this algebra or whether one
allow even non-isomorphic algebras.

In the tensor category the tensor products of objects and corresponding morphisms belong
to the category. In a braided category the objects U ⊗ V and V ⊗ U are related by a
braiding morphism. The notion of braided tensor category appears naturally in topological
and conformal quantum field theories and seems to be an appropriate tool also in TGD
context. The basic category theoretical notions are discussed in [A110] and I have already
earlier considered category theory as a possible tool in the construction of quantum TGD
and TGD inspired theory of consciousness [K14] .

In braided tensor categories one introduces the braiding morphism cV,W : V ⊗W → W ⊗
V , which is closely related to R-matrix. In categories allowing duality arrows with both
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directions are allowed ad diagrams analogous to pair creation from vacuum are possible.
In ribbon categories one introduces also the twist operation θV as a morphism of object
and the ΘW satisfies the axiom: θV⊗W = (θV ⊗ θW )cW,V cV,W . One can also introduce
morphisms with arbitrary number of incoming lines and outgoing lines and visualize them
as boxes, coupons. Isotopy principle, originally related to link and knot diagrams provides a
powerful tool allowing to interpret the basic axioms of ribbon categories in terms of isotopy
invariance of the diagrams and to invent theorems by just isotoping.

Categories, functors, natural transformations

Categories [A110, A117, A131, A104] are roughly collections of objects A, B, C... and
morphisms f(A→ B) between objects A and B such that decomposition of two morphisms
is always defined. Identity morphisms map objects to objects. Examples of categories
are open sets of some topological spaces with continuous maps between them acting as
morphisms, linear spaces with linear maps between them acting as morphisms, groups
with group homomorphisms taking the role of morphisms. Practically any collection of
mathematical structures can be regarded as a category. Morphisms can be very general:
for instance, partial ordering a ≤ b can define a morphism f(A→ B).

Functors between categories map objects to objects and morphisms to morphisms so that
a product of morphisms is mapped to the product of the images and identity morphism is
mapped to identity morphism. Functor F : C → D commutes also with the maps s and b
assigning to a morphism f : V →W its source s(f) = V and target b(f) = W .

A natural transformation between functors F and G from C → C′ is a family of morphisms
η(V ) : F (V ) → G(V ) in C′ indexed by objects V of C such that for any morphisms
f : V →W in C, the square

F (V ) G(V )

F (W ) G(W )

............................................................... ............
η(V )

............................................................... ............
η(W )

.................................
.....
.......
.....F (f)

.................................
.....
.......
.....G(f)

(A-2.33)

commutes.

The functor F : C → D is said to be equivalence of categories if there exists a functor
G : D → C such and natural isomorphisms

η : idD → FG and θ : GF → idCFG .

The notion of adjoint functor is a more general notion than equivalence of categories. In
this case η and θ are natural transformations but not necessary natural isomorphisms in
such a manner that the composite maps

F (V ) (FGF )(V ) F (V )

G(W ) (GFG)(W ) G(W )

............................................................... ............
η(F (V ))

............................................................... ............
F (θ(V ))

............................................................... ............
G(η(W ))

............................................................... ............
θ(G(W )))

(A-2.34)

are identify morphisms for all objects V in C and W in D.

The product C = AB for objects of categories is defined by the requirement that there exist
projection morphisms πA and πB from C to A and B and that for any object D and pair of
morphisms f(D → A) and g(D → B) there exist morphism h(D → C) such that one has
f = πAh and g = πBh. Graphically this corresponds to a square diagram in which pairs
A,B and C,D correspond to the pairs formed by opposite vertices of the square and arrows
DA and DB correspond to morphisms f and g, arrows CA and CB to the morphisms πA
and πB and the arrow h to the diagonal DC. Examples of product categories are Cartesian
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products of topological spaces, linear spaces, differentiable manifolds, groups, etc. The
tensor products of linear spaces and algebras provides an especially interesting example of
product in the recent case. One can define also more advanced concepts such as limits and
inverse limits. Also the notions of sheafs, presheafs, and topos are important.

Tensor categories

Let C be a category. Tensor product ⊗ is a functor from C × C to C if

i. there is an object V ⊗W associated with any pair (V,W ) of objects of C
ii. there is an morphism f ⊗ g associated with any pair (f, g) of morphisms of C such that

s(f ⊗ g) = s(f)⊗ s(g) and b(f ⊗ g) = b(f)⊗ b(g),

iii. if f ′ and g′ are morphisms such that s(f ′) = b(f) and s(g′) = b(g) then
(f ′ ⊗ g′) ◦ (f ⊗ g) = (f ′ ◦ f)⊗ (g′ ◦ g) ,

iv. idV⊗W = idW⊗V .
Any functor with these properties is called tensor product. The tensor product of
vector spaces provides the most familiar example of a tensor product functor.
In figure 3(b)iv the general rules for graphical representations of morphisms are given.

/Users/mattipitkanen/Desktop/tgd/figuresold/morphisms.png

Figure 7: The graphical representation of morphisms. a) g◦f : V →W , b) f⊗g, c) f : U1⊗ ...⊗Um →
V1 ⊗ ....⊗ Vn.

An associativity constraint for the tensor product is a natural isomorphism

a : ⊗(⊗× id)→ ⊗(id×⊗) .
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On basis of general definition of natural isomorphisms (see Eq. A-2.33) one can conclude
that for any triple (U, V,W ) of objects of C there exists an isomorphism

(U ⊗ V )⊗W U ⊗ (V ⊗W )

(U ′ ⊗ V ′)⊗W ′ U ′ ⊗ (V ′ ⊗W ′)

...................................... ............
aU,V,W

........................................................................................ ............
aU ′,V ′,W ′

............................................................................................................
.....
.......
.....

(f ⊗ g)⊗ h

............................................................................................................
.....
.......
.....

f ⊗ (g ⊗ h)

(A-2.35)

Associativity constraints satisfies Pentagon Axiom [A110] if the following diagrams com-
mutes.

U ⊗ (V ⊗W )⊗X ((U ⊗ V )⊗W ))⊗X

U ⊗ ((V ⊗W )⊗X) U ⊗ (V ⊗ (W ⊗X))

(U ⊗ V )⊗ (W ⊗X)

...........................................................................

aU,V,W ⊗ idX

............................................................... ............
idU ⊗ aV,W,X

..................................................................................................................................................................................................................................................................
.....
.......
.....

aU,V⊗W,X

............................................................................................................
.....
.......
.....

aU⊗V,W,X

............................................................................................................
.....
.......
.....

aU,V,W⊗X

(A-2.36)

Pentagon axiom has been already mentioned while discussing the definition of quasi-Hopf
algebras. In figure A-2.3 are graphical illustrations of associativity morphism a(U, V,W ),
Triangle Axiom, and Pentagon Axiom are given.

/Users/mattipitkanen/Desktop/tgd/figuresold/pentagon.png

Figure 8: Graphical representations of a) the associativity isomorphism aU,V,W , b) Triangle Axiom,
c) Pentagon Axiom.

Assume that an object I is fixed in the category. A left unit constraint with respect to I
is a natural isomorphism
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l : ⊗(I × id)→ id

By Eq. A-2.33 this means that for any object V of C there exists an isomorphism

lV : I ⊗ V → V (A-2.37)

such that

I ⊗ V V

I ⊗ V ′ V ′

............................................................... ............
lV

............................................................... ............
lV ′

.................................
.....
.......
.....idI ⊗ f

.................................
.....
.......
.....f

(A-2.38)

The right unit constraint r : ⊗(id × I) → id can be defined in a completely analogous
manner.

Given an associativity constraint a, and left and right unit constraints l, r with respect to
an object I, one can say that the Triangle Axiom is satisfies if the triangle

(V ⊗ I)⊗W V ⊗ (I ⊗W )

V ⊗W

............................................................... ............
aV,I,W

.................................................................................................................................... .........
...

rV ⊗ idW
.................................................................................................................................

...
............ idW ⊗ lW

(A-2.39)

commutes (see figure A-2.3).

These ingredients lead allow to define tensor category (C, I, a, l, r) as a category C which
is equipped with a tensor product ⊗ : C × C → C satisfying associativity constraint a, left
unit constraint l and right unit constraint r with respect to I, such that Pentagon Axiom
and Triangle Axiom are satisfied.

The definition of a tensor functor F : C → D involves also additional isomorphisms. φ0 :
I → F (I) satisfies commutative diagrams involving right and left unit constraints l and r.
The family of isomorphisms

φ2(U, V ) : F (U)⊗ F (V )→ F (U ⊗ V )

satisfies a commutative diagram stating that φ2 commutes with associativity constraints.
The interested reader can consult [A110] for details. One can also define the notions of
natural tensor transformation, natural tensor isomorphism, and tensor equivalence between
tensor categories by applying the general category theoretical tools.

Keeping track of associativity isomorphisms is obviously a rather heavy burden. Fortu-
nately, it can be shown that one can assign to a tensor category C a strictly associative (or
briefly, strict) tensor category which is tensor equivalent of C.

Braided tensor categories

Braided tensor categories satisfy also commutativity constraint c besides associativity con-
straint a. Denote by τ : C × C → C × C the flip functor defined by τ(V,W ) = (W,V ).
Commutativity constraint is a natural isomorphism

c : ⊗ → ⊗τ .

This means that for any pair (V,W ) of objects there exists isomorphism

cV,W : V ⊗W →W ⊗ V
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such that the square

V ⊗W W ⊗ V

V ′ ⊗W ′ W ′ ⊗ V ′

............................................................... ............
cV,W

............................................................... ............
cV ′,W ′

.................................
.....
.......
.....f ⊗ g

.................................
.....
.......
.....g ⊗ f

(A-2.40)

commutes.

The commutativity constraint satisfies Hexagon Axiom if the two hexagonal diagrams

(H1)

U ⊗ (V ⊗W ) (V ⊗W )⊗ U

(U ⊗ V )⊗W V ⊗ (W ⊗ U)

(V ⊗ U)⊗W V ⊗ (U ⊗W )

..................................................................................................................................................................................................................... ............
cU,V⊗W

..................................................................................................................................................................................................................... ............
aV,U,W

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...............
............

aU,V,W

.....................................................................................................................
...
.......
.....

aV,W,U

.....................................................................................................................
...
.......
.....

cU,V ⊗ idW

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...............
............

idV ⊗ cU,W

(A-2.41)

and (H2)

(U ⊗ V )⊗W W ⊗ (U ⊗ V )

U ⊗ (V ⊗W ) (W ⊗ U)⊗ V

U ⊗ (W ⊗ V ) (U ⊗W )⊗ V

..................................................................................................................................................................................................................... ............
cU⊗V,W

..................................................................................................................................................................................................................... ............
a−1
U,W,V

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...............
............

a−1
U,V,W

.....................................................................................................................
...
.......
.....

a−1
W,U,V

.....................................................................................................................
...
.......
.....

idU ⊗ cV,W

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...............
............

cU,W ⊗ idV

(A-2.42)

commute.

The braiding operation cV,W and the association operation a(U, V,W ), and pentagon and
hexagon axioms are illustrated in the figure A-2.3 below.

Duality and tensor categories

The notion of a dual of the finite-dimensional vector space as a space of linear maps from V
to field k can lifted to a concept applying for tensor category. A strict (strictly associative)
tensor category (C,⊗, I) with unit object I is said to possess left duality if for each object
V of C there exists an object V ? and morphisms

bV : I → V ⊗ V ? and dV : V ? ⊗ V → I

such that

(id⊗ dV )(bV ⊗ idV ) = idV and (dV ⊗ idV ?)(idV ? ⊗ bV ) = idV ? . (A-2.43)
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/Users/mattipitkanen/Desktop/tgd/figuresold/hexagon.png

Figure 9: Graphical representations a) of the braiding morphism cV,W and its inverse c−1
V,W , b) of

naturality of cV,W , c) of First Hexagon Axiom.

One can define the transpose of f in terms of bV and dV . The idea how this is achieved is
obvious from figure A-2.3.

f? = (dV ⊗ idU?)(idV ? ⊗ f ⊗ idU?)(idV ? ⊗ bU ) . (A-2.44)

Also the braiding operation cV ?,W can be expressed in terms of c−1
V,W , bV and dV by using

the isotopy of Fig. A-2.3:

cV ?,W = (dV ⊗ idW⊗V ?)(idV ? ⊗ c−1
V,W ⊗ idV ?)(idV ?⊗W ⊗ bV ) . (A-2.45)

Drinfeld quantum double can be regarded as a tensor product of Hopf algebra and its dual
and in this case one can introduce morphisms evH : H ⊗H? → k defined as ei ⊗ ej → δij
defining inner product and its inverse δ : k → H⊗H defined as 1→ eiei, where summation
over i is understood. For categories these morphisms are generalized to morphism dV from
objects V of category to unit object I and bV from I to object of category. The elements of
H and H? are described as strands with opposite directions, whereas dV and bV correspond
to annihilation and creation of strand–anti-strand pair as show in figure A-2.3.

Ribbon categories

According to the definition of [A110] ribbon category is a strict braided tensor category
(C,⊗, I) with a left duality with a family of natural morphisms θV : V → V indexed by
the objects V of C satisfying the conditions

θV⊗W = θV ⊗ θW cW,V cV,W ,

θV ? = (θV )? (A-2.46)

for all objects V,W of C. The naturality of twist means for for any morphisms f : V →W
one has θW f = fθV . The graphical representation for the axioms and is in Fig. A-2.3.
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/Users/mattipitkanen/Desktop/tgd/figuresold/duality.png

Figure 10: Graphical representations a) of the morphisms bV and dV , b) of the transpose f?, c) of
braiding operation cV ?,W expressed in terms of cV,W .

The existence of the twist operation provides C with right duality necessary in order to
define trace (see Fig. A-2.3).

d′V = (idV ? ⊗ θV )cV,V ?bV ,

b′V = dV cV,V ?(θV ⊗ idV ?) . (A-2.47)

One can define quantum trace for any endomorphisms f of ribbon category:

trq(f) = d′V (f ⊗ idV ?)bV = dV cV,V ?(θV f ⊗ idV ?)bV . (A-2.48)

Again the graphical representation is the best manner to understand the definition, see
figure A-2.3. Quantum trace has the basic properties of trace: trq(fg) = trq(gf), trq(f ⊗
g) = trq(f)trq(g), trq(f) = trq(f

?). The proof of these properties is easiest using isotropy
principle.

The quantum dimension of an object V of ribbon category can be defined as the quantum
trace for the identity morphism of V : dimq(V ) = trq(idV ) = d′V bV . Quantum dimension
is represented as a vacuum bubble. Quantum dimension satisfies the conditions dimq(V ⊗
W ) = dimq(V )dimq(W ) and dimq(V ) = dimq(V

?).

A more general definition of ribbon category inspired by the considerations of [A71] is ob-
tained by allowing the generalization of morphisms µ and ∆ so that they become morphisms
µA⊗B→C and ∆C→A⊗B of ribbon category. Graphically the general morphism with arbi-
trary number of incoming outgoing strands can be represented as a box or ”coupon”. An
important special case of ribbon categories consists of modules over braided Hopf algebras
allowing ribbon algebra structure.
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Figure 11: Graphical representations a) of θV⊗W = θV ⊗ θW cW,V cV,W , b) of θV ? = (θV )?, c) of
θW f = fθV , d) of right duality for a ribbon category.

A-3 Axiomatic approach to S-matrix based on the no-
tion of quantum category

This section can be regarded as an attempt of a physicists with some good intuitions and
intentions but rather poor algebraic skills to formulate basic axioms about S-matrix in
terms of what might be called quantum category. The basic result is an interpretation
for the equivalence of loop diagrams with tree diagrams as a consequence of basic algebra
and co-algebra axioms generalized to the level of tensor category. The notion of quantum
category emerges naturally as a generalization of ribbon category, when algebra product
and co-algebra product are interpreted as morphisms between different objects of the ribbon
category.

The general picture suggest that the operations ∆ and µ generalized to algebra homo-
morphisms A → B ⊗ C and A ⊗ B → C in a tensor category whose objects are either
representations of an algebra or even algebras might provide an appropriate mathematical
tool for saying something interesting about S-matrix in TGD Universe. These algebras need
not necessarily be bi-algebras. In the following it is demonstrated that the equivalence of
loop diagrams to tree diagrams follows from suitably generalized bi-algebra axioms. Also
the interpretation of various morphisms involved with Hopf algebra structure is discussed.

A-3.1 ∆ and µ and the axioms eliminating loops

The first task is to find a physical interpretation for the basic algebraic operations and
how the basic algebra axioms might allow to eliminate loops. The physical interpretation
of morphisms ∆ and µ as algebra or category morphisms has been already discussed. As
already found, the condition that ∆ (µ) acts as an algebra (co-algebra) morphism leads to
a condition stating that a box graph for 2-particle scattering is equivalent with tree graph.
It is interesting to identify the corresponding conditions in the case of self energy loops and
vertex corrections.

The condition
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Figure 12: Graphical representations of a) trq(f), b) of trq(fg) = trq(gf), c) of tr(f⊗g) = tr(f)tr(g).

µB⊗C→A ◦∆A→B⊗C = K × idA , (A-3.1)

where K is a numerical factor, is a natural additional condition stating that a line with a self
energy loop is equivalent with a line without the loop. The condition is illustrate in figure
A-3.1. For the co-commutative tensor algebra T (V ) of vector space with ∆(x) = 1⊗x+x⊗1
one would have K = 2 for the generators of T (V ). For a product of n generators one has
K = 2n.

The condition ∆A→B⊗C ◦ µB⊗C→A = K × idA cannot hold true since multiplication is not
an irreversible process. If this were the case one could reduce tree diagrams to collections
of free propagator lines.

In quantum field theories also vertex corrections are a source of divergences. The require-
ment that the graph representing a vertex correction is equivalent with a simple tree graph
representing a decay gives an additional algebraic condition. For bi-algebras the condition
would read

(µ⊗ id) ◦ (∆⊗ id) ◦∆ = K∆ , (A-3.2)

where K is a simple multiplicative factor. In fact, for the co-commutative tensor algebra
T (V ) of vector space the left hand side would be 3 × ∆(x) giving K = 3 for generators
T (V ). The condition is illustrated in figure A-3.1.

Using the standard formulas of appendix for quantum groups one finds that in the case of
Uq(sl(2)) the condition µ◦∆(X) = KXX, KX constant, is not true in general. Rather, one
has µ◦∆(X) = XKX(qH/2+q−H/2, q1/2, q−1/2). The action on the vacuum state is however
proportional to that of X, being given by KX(2, 1, 1)X. The function KX for a given X
can be deduced from µ ◦∆(X±) = qH/2X±+X±q

−H/2 = X±(q±1/2 + qH/2 + q−H/2). The
eigen states of Cartan algebra generators are expected to be eigen states of µ ◦∆ also in
the case of a general quantum group. µ ◦∆ is analogous to a single particle operator like
kinetic energy and its action on multi-particle state is a sum over all tensor factors with
µ ◦∆ applied to each of them. For eigen states of µ ◦∆ the projective equivalence of loop
diagrams with tree diagrams would make sense.
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Figure 13: Graphical representations for the conditions a) (id⊗µ⊗ id)(∆⊗∆) = ∆◦µ, b) µB⊗C→A ◦
∆A→B⊗C = K × idA, and c) (µ⊗ id) ◦ (∆⊗ id) ◦∆ = K ×∆.

Since self energy loops, vertex corrections, and box diagrams represent the basic divergences
of renormalizable quantum field theories, these axioms raise the hope that the basic infinities
of quantum field theories could be eliminated by the basic axioms for the morphisms of
quantum category.

There are also morphisms related to the topology changes in which the 3-surface remains
connected. For instance, processes in which the number of boundary components can
change could be of special relevance if the family replication phenomenon reduces to the
boundary topology. Also 3-topology can change. The experience with topological quantum
field theories [A146] , stimulates the hope that the braid group representations of the
topological invariants of 3-topology might be of help in the construction of S-matrix.

The equivalence of loop diagrams with tree diagrams must have algebraic formulation using
the language of standard quantum field theory. In the third section it was indeed found that
thanks to the presence of the emission of vacuons, the equivalence of loop diagrams with
tree diagrams corresponds to the vanishing of loop corrections in the standard quantum
field theory framework. Furthermore, the non-cocommutative Hopf algebra of Feynman
diagrams discussed in [A82] becomes co-commutative when the loop corrections vanish
so that TGD program indeed has an elegant algebraic formulation also in the standard
framework.
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A-3.2 The physical interpretation of non-trivial braiding and quasi-
associativity

The exchange of the tensor factors by braiding could also correspond to a physically non-
trivial but unitary operation as it indeed does in anyon physics [D12, D17] . What would
differentiate between elementary particles and anyons would be the non-triviality of the
super-canonical and Super Kac-Moody conformal central extensions which have the same
origin (addition of a multiplication by a multiple of the Hamiltonian of a canonical transfor-
mation to the action of isometry generator). The proposed interpretation of braiding acting
in the complex plane in which the conformal weights of the elements of the super-canonical
algebra represent punctures justifies the non-triviality. Hexagon Axioms would state that
two generalized Feynman diagrams involving exchanges, dissociations and re-associations
are equivalent.

An interesting question is whether the association (A,B)→ (A⊗ B) could be interpreted
as a formation of bound state entanglement between A and B. A possible space-time
correlate for association is topological condensation of A and B to the same space-time
sheet. Association would be trivial if all particles are at same space-time sheet X4 but
non-trivial if some subset of particles condense at an intermediate space-time sheet Y 4

condensing in turn at X4.

Be as it may, association isomorphisms aA,B,C would state that the state space obtained
by binding A with bound bound states (B ⊗ C) is unitarily related with the state space
obtained by binding (A ⊗ B) bound states with C. With this interpretation Pentagon
axiom would state that two generalized Feynman diagrams depicted in figure A-2.3 leading
from initial to final to final state by dissociation and reassociation are equivalent.

A-3.3 Generalizing the notion of bi-algebra structures at the level
of configuration space

Configuration space of 3-surfaces decomposes into sectors corresponding to different 3-
topologies. Also other signatures might be involved and I have proposed that the sectors
are characterized by the collection of p-adic primes labelling space-time sheets of the 3-
surface and that a given space-time surface could be characterized by an infinite prime
or integer. The general problem is to continue various geometric structures from a given
sector A of configuration space to other sector B.

An especially interesting special case corresponds to a continuation from 1-particle sector to
two-particle sector or vice versa and corresponds to TGD variant of 3-vertex. All these con-
tinuations involve the imbedding of a structure associated with the sector A to a structure
associated with sector B. For the continuation from 1-particle sector to 2-particle sector
the map is analogous to co-algebra homomorphism ∆. For the reverse continuation it is
analogous to the algebra product µ. Now however one does not have maps ∆ : A→ A⊗A
and µ : A ⊗ A → A but ∆ : A → B ⊗ C and µ : B ⊗ C → A unless the algebras are
isomorphic. µ ◦∆ = id should hold true as an additional condition but ∆ ◦ µ = id cannot
hold true since product maps many pairs to the same element.

Continuation of the configuration space spinor structure

The basic example of a structure to be continued is configuration space spinor structure.
Configuration space spinor fields in different sectors should be related to each other. The
isometry generators and gamma matrices of configuration space span a super-canonical
algebra. The continuation requires that the super algebra basis of different sectors are
related. Also vacua must be related. Isometry generators correspond to bosonic generators
of the super-canonical algebra. There is also a natural extension of the super-canonical
algebra defined by the Poisson structure of the configuration space.

This view suggests that in the first approximation one could see the construction of S-matrix
as following process.
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i. Incoming/outgoing states correspond to positive/negative energy states localized to
the sectors of configuration space with fixed 3-topologies.

ii. In order to construct an S-matrix matrix element between two states localized in sec-
tors A and B, one must continue the state localized in A to B or vice versa and
calculate overlap. The continuation involves a sequence of morphisms mapping vari-
ous structures between sectors. In particular, topological transformations describing
particle decay and fusion are possible so that the analogs of product µ and co-product
∆ are involved. The construction of three-manifold topological invariants [A146] in
topological quantum field theories provides concrete ideas about how to proceed.

iii. The S-matrix element describing a particular transition can be expressed as any path
leading from the sector A to B or vice versa. There is a huge symmetry very much
analogous to the independence of the final result of the analytic continuation on the
path chosen since generalized Feynman graphs allow all moves changing intermediate
topologies so that initial and final 3-topologies are same. Generalized conformal in-
variance probably also poses restrictions on possible paths of continuation. In the path
integral approach one would have simply sum over all these equivalent paths and thus
encounter the fundamental difficulties related to the infinite-dimensional integration.

iv. Quantum classical correspondence suggests that the continuation operation has a space-
time correlate. That is, the absolute minimum of Kähler action going through the initial
and final 3-sheets defines a sequence of transitions changing the topology of 3-sheet.
The localization to a particular sector of course selects particular absolute minimum.
There are two possible interpretations. Either the continuation from A is not possible
to all possible sectors but only to those with 3-topologies appearing in X4, or the
absolute minimum represents some kind of minimal continuation involving minimum
amount of calculational labor.

v. Quantum classical correspondence and the possibility to represent the rows of S-matrix
as zero energy quantum states suggests that the paths for continuation can be also
represented at the space-time level, perhaps in terms of braided join along boundaries
bonds connecting two light like 3-surfaces representing the initial and final states of
particle reaction. Since light like 3-surfaces are metrically two-dimensional and al-
low conformal invariance, this suggests a connection with braid diagrams in the sense
that it should be possible to regard the paths connecting sectors of configuration space
consisting of unions of disjoint 3-surfaces (corresponding interacting 4-surfaces are con-
nected) as generalized braids for which also decay and fusion for the strands of braid are
possible. Quantum algebra structure and effective metric 2-dimensionality of the light
like 3-surfaces suggests different braidings for join along boundaries bonds connecting
boundaries of 3-surfaces define non-equivalent 3-surfaces.

Co-multiplication and second quantized induced spinor fields

At the microscopic level the construction of S-matrix reduces to understanding what hap-
pens for the classical spinor fields in a vertex, which corresponds to an incoming 3-surface
A decaying to two outgoing 3-surfaces B and C. At the classical level incoming spinor field
A develops into a spinor fields B and C expressible as linear combinations of appropriate
spinor basis. At quantum level one must understand how the Fock space defined by the
incoming spinor fields of A is mapped to the tensor product of Fock spaces of B and C.
The idea about the possible importance of co-algebras came with the realization that this
mapping is obviously is very much like a co-product. Co-algebras and bi-algebras possess-
ing both algebra and co-algebra structure indeed suggest a general approach giving hopes
of understanding how Feynman diagrammatics generalizes to TGD framework.

The first guess is that fermionic oscillator operators are mapped by the imbedding ∆ to a
superposition of operators a†Bn ⊗ IdC and IdB ⊗ a†Cn with obvious formulas for Hermitian
conjugates. ∆ induces the mapping of higher Fock states and the construction of S-matrix
should reduce to the construction of this map.

∆ is analogous to the definition for co-product operation although there is also an obvious
difference due to the fact that ∆ imbeds algebra A to B⊗C rather than to A⊗A. Only in
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the case that the algebras are isomorphic, the situation reduces to that for Hopf algebras.
Category theoretical approach however allows to consider a more general situation in which
∆ is a morphism in the category of Fock algebras associated with 3-surfaces.

∆ preserves fermion number and should respect Fock algebra structure, in particular com-
mute with the anti-commutation relations of fermionic oscillator operators. The basis of
fermionic oscillator operators would naturally correspond to fermionic super-canonical gen-
erators in turn defining configuration space gamma matrices.

Since any leg can be regarded as incoming leg, strong consistency conditions result on the
coefficients in the expression

∆(a†An) = C(A,B) m
n a†Bm ⊗ IdC + C(A,C) m

n IdB ⊗ a†Cm (A-3.3)

by forming the cyclic permutations inA,B,C. This option corresponds to the co-commutative
situation and quantum group structure. If identity matrices are replaced with something
more general, co-product becomes non-cocommutative.

A-3.4 Ribbon category as a fundamental structure?

There exists a generalization of the braided tensor category inspired by the axiomatic
approach to topological quantum field theories which seems to almost catch the proposed
mathematical requirements. This category is also called ribbon [A9] [A130] but in more
general sense than it is defined in [A110] .

One adds to the tangle diagrams (braid diagrams with both directions of strands and
possibility of strand–anti-strand annihilation) also ”coupons”, which are boxes representing
morphisms with arbitrary numbers of incoming and outgoing strands. As a special case
3-particle vertices are obtained. The strands correspond to representations of a fixed Hopf
algebra H.

In the recent case it would seem safest to postulate that strands correspond to algebras,
which can be different because of the potential dependence of the details of Fock algebra
on 3-topology and other properties of 3-surface. For instance, configuration space metric
defined by anti-commutators of the gamma matrices is degenerate for vacuum extremals
so that the infinite Clifford algebra is definitely ”smaller” than for surfaces with D ≥ 3-
dimensional CP2 projection.

One might feel that the full ribbon algebra is an un-necessary luxury since only 3-particle
vertices are needed since higher vertices describing decays of 3-surfaces can be decomposed
to 3-vertices in the generic case. On the other hand, many-sheeted space-time and p-adic
fractality suggest that coupons with arbitrary number of incoming and outgoing strands
are needed in order to obtain the p-adic hierarchy of length scale dependent theories.

The situation would be the same as in the effective quantum field theories involving ar-
bitrarily high vertices and would require what might be called universal algebra allowing
n-ary multiplications and co-multiplications rather than only binary ones. Also strands
within strands hierarchy is strongly suggestive and would require a fractal generalization of
the ribbon algebra. Note that associativity and commutativity conditions for morphisms
which more than three incoming and outgoing lines would force to generalize the notion
of R-matrix and would bring in conditions stating that more complex loop diagrams are
equivalent with tree diagrams.

A-3.5 Minimal models and TGD

Quaternion conformal invariance with non-vanishing c and k for anyons is highly attractive
option and minimal super-conformal field theories attractive candidate since they describe
critical systems and TGD Universe is indeed a quantum critical system.
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Rational conformal field theories and TGD

The highest weight representations of Virasoro algebra are known as Verma modules con-
taining besides the ground state with conformal weight ∆ the states generated by Virasoro
generators Ln, n ≥ 0. For some values of ∆ Verma module contains states with conformal
weight ∆ + l annihilated by Virasoro generators Ln, n ≥ 1. In this case the number of
primary fields is reduced since Virasoro algebra acts as a gauge algebra. The conformal
weights ∆ of the Verma modules allowing null states are given by the Kac formula

∆mm′ = ∆0 +
1

4
(α+m+ α−m

′)2 , m,m′ ∈ {1, 2...} , (A-3.4)

∆0 =
1

24
(c− 1) ,

α± =

√
1− c±

√
25− c√

24
. (A-3.5)

The descendants
∏
n≥1 L

kn
n |∆〉 annihilated by Ln, n > 0, have conformal weights at level

l =
∑
n nkn = mm′.

In the general case the operator products of primary fields satisfying these conditions form
an algebra spanned by infinitely many primary fields. The situation changes if the central
charge c satisfies the condition

c = 1− 6(p′ − p)2

pp′
, (A-3.6)

where p and p′ are mutually prime positive integers satisfying p < p′. In this case the Kac
weights are rational

∆m,m′ =
(mp′ −m′p)2 − (p′ − p)2)

4pp′
, 0 < m < p , 0 < m′ < p′ .

(A-3.7)

Obviously, the number of primary fields is finite. This option does not seem to be realistic
in TGD framework were super-conformal invariance is realized.

For N = 1 super-conformal invariance the unitary representations have central extension
and conformal weights given by

c =
3

2
(1− 8

m(m+ 2)
) ,

∆p,q(NS) =
[(m+ 2)p)−mq)]2 − 4

8m(m+ 2)
, 0 ≤ p ≤ m , 1 ≤ q ≤ m+ 2 .

(A-3.8)

For Ramond representations the conformal weights are

∆p,q(R) = ∆(NS) +
1

16
. (A-3.9)

The states with vanishing conformal weights correspond to light elementary particles and
the states with p = q have vanishing conformal weight in NS sector. Also this option is
non-realistic since in TGD framework super-generators carry fermion number so that G
cannot be a Hermitian operator.

N = 2 super-conformal algebra is the most interesting one from TGD point of view since it
involves also a bosonic U(1) charge identifiable as fermion number and G±(z) indeed carry
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U(1) charge1. Hence one has N = 2 super-conformal algebra is generated by the energy
momentum tensor T (z), U(1) current J(z), and super generators G±(z). U(1) current
would correspond to fermion number and super generators would involve contraction of co-
variantly constant neutrino spinor with second quantized induced spinor field. The further
facts that N = 2 algebra is associated naturally with Kähler geometry, that the partition
functions associated with N = 2 super-conformal representations are modular invariant,
and that N = 2 algebra defines so called chiral ring defining a topological quantum field
theory [A71], lend further support for the belief that N = 2 super-conformal algebra acts
in super-canonical degrees of freedom.

The values of c and conformal weights for N = 2 super-conformal field theories are given
by

c =
3k

k + 2
,

∆l,m(NS) =
l(l + 2)−m2

4(k + 2)
, l = 0, 1, ..., k ,

qm =
m

k + 2
, m = −l,−l + 2, ...., l − 2, l . (A-3.10)

qm is the fractional value of the U(1) charge, which would now correspond to a fractional
fermion number. For k = 1 one would have q = 0, 1/3,−1/3, which brings in mind anyons.
∆l=0,m=0 = 0 state would correspond to a massless state with a vanishing fermion number.
Note that SU(2)k Wess-Zumino model has the same value of c but different conformal
weights. More information about conformal algebras can be found from the appendix
of [A71].

For Ramond representation L0−c/24 or equivalentlyG0 must annihilate the massless states.
This occurs for ∆ = c/24 giving the condition k = 2

[
l(l + 2)−m2

]
(note that k must be

even and that (k, l,m) = (4, 1, 1) is the simplest non-trivial solution to the condition). Note
the appearance of a fractional vacuum fermion number qvac = ±c/12 = ±k/4(k + 2). I
have proposed that NS and Ramond algebras could combine to a larger algebra containing
also lepto-quark type generators.

Quaternion conformal invariance [K15] encourages to consider the possibility of super-
symmetrizing also spin and electro-weak spin of fermions. In this case the conformal algebra
would extend to a direct sum of Ramond and NS N = 8 algebras associated with quarks and
leptons. This algebra in turn extends to a larger algebra if lepto-quark generators acting
as half odd-integer Virasoro generators are allowed. The algebra would contain spin and
electro-weak spin as fermionic indices. Poincare and color Kac-Moody generators would
act as symplectically extended isometry generators on configuration space Hamiltonians
expressible in terms of Hamiltonians of X3

l × CP2. Electro-weak and color Kac-Moody
currents have conformal weight h = 1 whereas T and G have conformal weights h = 2 and
h = 3/2.

The experience with N = 4 super-conformal invariance suggests that the extended algebra
requires the inclusion of also second quantized induced spinor fields with h = 1/2 and their
super-partners with h = 0 and realized as fermion-antifermion bilinears. Since G and Ψ are
labelled by 2×4 spinor indices, super-partners would correspond to 2×(3+1) = 8 massless
electro-weak gauge boson states with polarization included. Their inclusion would make the
theory highly predictive since induced spinor and electro-weak fields are the fundamental
fields in TGD.

In TGD framework both quark and lepton numbers correspond to NS and Ramond type
representations, which in conformal field theories can be assigned to the topologies of
complex plane and cylinder. This would suggest that a given three-surface allows either
NS or Ramond representation and is either leptonic or quark like but one must be very
cautious with this kind of conclusion. Interestingly, NS and Ramond type representations

1I realized that TGD super-conformal algebra corresponds to N = 2 algebra while writing this and proposed it earlier
as a generalization of super-conformal algebra!
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allow a symmetry acting as a spectral flow in the indices of the generators and transforming
NS and Ramond type representations continuously to each other [A71]. The flow acts as

Ln → Ln + αJn +
c

6
α2δn,0

Jn → Jn +
c

3
αδn,0 ,

G±n → G±n±α . (A-3.11)

The choice α = ±1/2 transforms NS representation to Ramond representation. The idea
that leptons could be transformed to quarks in a continuous manner does not sound at-
tractive in TGD framework. Note that the action of Super Kac-Moody Virasoro algebra
in the space of super-canonical conformal weights can be interpreted as a spectral flow.

Co-product for Super Kac-Moody and Super Virasoro algebras

By the previous considerations the quantized conformal weights z1, z2, z3 of super-canonical
generators defining punctures of 2-surface should correspond to line punctures of 3-surface.
One cannot avoid the thought that these line punctures should meet at single point so that
three-vertex would have also quantum field theoretical interpretation.

Each point zk corresponds to its own Virasoro algebra Vk = {Lzk)
n } and Kac-Moody algebra

Jk = {Jzk)
n } defined by Laurent series of T (z) and J(z) at zk. Also super-generators are

involved. To minimize notational labor denote by X
zk)
n , k = 1, 2, 3 the generators in

question.

The co-algebra product for Super-Virasoro and Super-Kac-Moody involves in the case of

fusion A1 ⊗ A2 → A3 a co-algebra product assigning to the generators X
z3)
n direct sum

of generators of X
z1)
k and X

z2)
l . The most straightforward approach is to express the

generators X
z3)
n in terms of generators X

z1)
k and X

z2)
l . This is achieved by using the

expressions for generators as residy integrals of energy momentum tensor and Kac Moody
currents. For Virasoro generators this is carried out explicitly in [A71]. The resulting
co-product conserves the value of central extension whereas for the naive co-product this
would not be the case. Obviously, the geometric co-product does not conserve conformal
weight.

A-4 Some examples of bi-algebras and quantum groups

The appendix summarizes briefly the simplest bi- and Hopf algebras and some basic con-
structions related to quantum groups.

A-4.1 Hecke algebra and Temperley-Lieb algebra

Braid group is accompanied by several algebras. For Hecke algebra, which is particular
case of braid algebra, one has

en+1enen+1 = enen+1en ,

e2
n = (t− 1)en + t . (A-4.1)

The algebra reduces to that for symmetric group for t = 1.

Hecke algebra can be regarded as a discrete analog of Kac Moody algebra or loop algebra
with G replaced by Sn. This suggests a connection with Kac-Moody algebras and imbed-
ding of Galois groups to Kac-Moody group. t = pn corresponds to a finite field. Fractal
dimension t = M : N relates naturally to braid group representations: fractal dimension
of quantum quaternions might be appropriate interpretation. t=1 gives symmetric group.
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Infinite braid group could be seen as a quantum variant of Galois group for algebraic closure
of rationals.

Temperley-Lieb algebra assignable with Jones inclusions of hyper-finite factors of type II1
with M : N < 4 is given by the relations

en+1enen+ 1 = en+1

enen+1en = en ,

e2
n = ten , , t = −

√
M : N = −2cos(π/n) , n = 3, 4, ... (A-4.2)

The conditions involving three generators differ from those for braid group algebra since en
are now proportional to projection operators. An alternative form of this algebra is given
by

en+1enen+ 1 = ten+1

enen+1en = ten ,

e2
n = en = e∗n , , t = −

√
M : N = −2cos(π/n) , n = 3, 4, ... (A-4.3)

This representation reduces to that for Temperley-Lieb algebra with obvious normalization
of projection operators. These algebras are somewhat analogous to function fields but
the value of coordinate is fixed to some particular values. An analogous discretization for
function fields corresponds to a formation of number theoretical braids.

A-4.2 Simplest bi-algebras

Let k(x1, .., xn) denote the free algebra of polynomials in variables xi with coefficients in
field k. xi can be regarded as points of a set. The algebra Hom(k(x1, ..., xn), A) of algebra
homomorphisms k(x1, ..., xn) → A can be identified as An since by the homomorphism
property the images f(xi) of the generators x1, ...xn determined the homomorphism com-
pletely. Any commutative algebra A can be identified as the Hom(k[x], A) with a particular
homomorphism corresponding to a line in A determined uniquely by an element of A.

The matrix algebra M(2) can be defined as the polynomial algebra k(a, b, c, d). Matrix
multiplication can be represented universally as an algebra morphism ∆ from from M2 =
k(a, b, c, d) to M⊗2

2 = k(a′, a′′, b′, b′′, c′, c′′, d′, d′′) to k(a, b, c, d) in matrix form as

∆

(
a b
c d

)
=

(
a′ b′

c′ d′

)(
a′′ b′′

c′′ d′′

)
.

This morphism induces algebra multiplication in the matrix algebra M2(A) for any com-
mutative algebra A.

M(2), GL(2) and SL(2) provide standard examples about bi-algebras. SL(2) can be defined
as a commutative algebra by dividing free polynomial algebra k(a, b, c, d) spanned by the
generators a, b, c, d by the ideal det− 1 = ad− bc− 1 = 0 expressing that the determinant
of the matrix is one. In the matrix representation µ and η are defined in obvious manner
and µ gives powers of the matrix

A =

(
a b
c d

)
.

∆, counit ε, and antipode S can be written in case of SL(2) as
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(
∆(a) ∆(b)
∆(c) ∆(d)

)
=

(
a b
c d

)
⊗
(
a b
c d

)
,

(
ε(a) ε(b)
ε(c) ε(d)

)
=

(
1 0
0 1

)
.

S

(
a b
c d

)
= (ad− bc)−1

(
d −b
−c a

)
.

Note that matrix representation is only an economical manner to summarize the action of
∆ on the generators a, b, c, d of the algebra. For instance, one has ∆(a) = a→ a⊗a+ b⊗ c.
The resulting algebra is both commutative and co-commutative.

SL(2)q can be defined as a Hopf algebra by dividing the free algebra generated by elements
a, b, c, d by the relations

ba = qab , db = qbd ,
ca = qac , dc = qcd ,
bc = cb , ad− da = (q−1 − 1)bc ,

and the relation
detq = ad− q−1bc = 1

stating that the quantum determinant of SL(2)q matrix is one.

µ, η,∆, ε are defined as in the case of SL(2). Antipode S is defined by

S

(
a b
c d

)
= det−1

q

(
d −qb

−q−1c a

)
.

The relations above guarantee that it defines quantum inverse of A. For q an nth root
of unity, S2n = id holds true which signals that these parameter values are somehow
exceptional. This result is completely general.

Given an algebra, the R point of SLq(2) is defined as a four-tuple (A,B,C,D) in R4

satisfying the relations defining the point of SLq(2). One can say that R-points provide
representations of the universal quantum algebra SLq(2).

A-4.3 Quantum group Uq(sl(2))

Quantum group Uq(sl(2)) or rather, quantum enveloping algebra of sl(2), can be con-
structed by applying Drinfeld’s quantum double construction (to avoid confusion note that
the quantum Hopf algebra associated with SL(2) is the quantum analog of a commutative
algebra generated by powers of a 2× 2 matrix of unit determinant).

The commutation relations of sl(2) read as

[X+, X−] = H , [H,X±] = ±2X± . (A-4.4)

Uq(sl(2)) allows co-algebra structure given by

∆(J) = J ⊗ 1 + 1⊗ J , S(J) = −J , ε(J) = 0 , J = X±, H ,

S(1) = 1 , ε(1) = 1 .
(A-4.5)

The enveloping algebras of Borel algebras U(B±) generated by {1, X+, H} {1, X−, hH}
define the Hopf algebra H and its dual H? in Drinfeld’s construction. h could be called
Planck’s constant vanishes at the classical limit. Note that H? reduces to {1, X−} at this
limit. Quantum deformation parameter q is given by exp(2h). The duality map ? : H → H?

reads as
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a→ a? , ab = (ab)? = b?a? ,
1→ 1 , H → H? = hH , X+ → (X+)? = hX− .

(A-4.6)

The commutation relations of Uq(sl(2) read as

[X+, X−] = qH−q−H
q−q−1 , [H,X±] = ±2X± . (A-4.7)

Co-product ∆, antipode S, and co-unit ε differ from those U(sl(2)) only in the case of X±:

∆(X±) = X± ⊗ qH/2 + q−H/2 ⊗X± ,

S(X±) = −q±1X± .
(A-4.8)

When q is not a root of unity, the universal R-matrix is given by

R = q
H⊗H

2

∑∞
n=0

(1−q−2)n

[n]q !
q
n(1−n)

2 q
nH
2 Xn

+ ⊗ q−
nH
2 Xn

− . (A-4.9)

When q is m:th root of unity the q-factorial [n]q! vanishes for n ≥ m and the expansion
does not make sense.

For q not a root of unity the representation theory of quantum groups is essentially the
same as of ordinary groups. When q is mth root of unity, the situation changes. For
l = m = 2n nth powers of generators span together with the Casimir operator a sub-
algebra commuting with the whole algebra providing additional numbers characterizing
the representations. For l = m = 2n + 1 same happens for mth powers of Lie-algebra
generators. The generic representations are not fully reducible anymore. In the case of
Uq(sl(2)) irreducibility occurs for spins n < l only. Under certain conditions on q it is
possible to decouple the higher representations from the theory. Physically the reduction
of the number of representations to a finite number means a symmetry analogous to a
gauge symmetry. The phenomenon resembles the occurrence of null vectors in the case of
Virasoro and Kac Moody representations and there indeed is a deep connection between
quantum groups and Kac-Moody algebras [A71].

One can wonder what is the precise relationship between Uq(sl(2) and SLq(2) which both
are quantum groups using loose terminology. The relationship is duality. This means the
existence of a morphism x→ Ψ(x) Mq(2)→ U?q defined by a bilinear form 〈u, x〉 = Ψ(x)(u)
on Uq ×Mq(2), which is bi-algebra morphism. This means that the conditions

〈uv, x〉 = 〈u⊗ v,∆(x)〉 , 〈u, xy〉 = 〈∆(u), x⊗ y〉 ,

〈1, x〉 = ε(x) , 〈u, 1〉 = ε(u)

are satisfied. It is enough to find Ψ(x) for the generators x = A,B,C,D of Mq(2) and show
that the duality conditions are satisfied. The representation

ρ(E) =

(
0 1
0 0

)
, ρ(F ) =

(
0 0
1 0

)
, ρ(K = qH) =

(
q 0
0 q−1

)
,

extended to a representation

ρ(u) =

(
A(u) B(u)
C(u) D(u)

)
of arbitrary element u of Uq(sl(2) defines for elements in U?q . It is easy to guess that
A(u), B(u), C(u), D(u), which can be regarded as elements of U?q , can be regarded also as
R points that is images of the generators a, b, c, d of SLq(2) under an algebra morphism
SLq(2)→ U?q .
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A-4.4 General semisimple quantum group

The Drinfeld’s construction of quantum groups applies to arbitrary semi-simple Lie algebra
and is discussed in detail in [A71]. The construction relies on the use of Cartan matrix.

Quite generally, Cartan matrix A = {aij} is n×n matrix satisfying the following conditions:

i) A is indecomposable, that is does not reduce to a direct sum of matrices.

ii) aij ≤ 0 holds true for i < j.

iii) aij = 0 is equivalent with aij = 0.

A can be normalized so that the diagonal components satisfy aii = 2.

The generators ei, fi, ki satisfying the commutations relations

kikj = kjki , kiej = q
aij
i ejki ,

kifj = q
−aij
i ejki , eifj − fjei = δij

ki−k−1
i

qi−q−1
i

,
(A-4.10)

and so called Serre relations

∑1−aij
l=0 (−1)l

[
1− aij

l

]
qi

e
1−aij−l
i eje

l
i = 0, i 6= j ,∑1−aij

l=0 (−1)l
[

1− aij
l

]
qi

f
1−aij−l
i fjf

l
i = 0 , i 6= j .

(A-4.11)

Here qi = qDi where one has Diaij = aijDi. Di = 1 is the simplest choice in this case.

Comultiplication is given by

∆(ki) = ki ⊗ ki , (A-4.12)

∆(ei) = ei ⊗ ki + 1⊗ ei , (A-4.13)

∆(fi) = fi ⊗ 1 + k−1
i ⊗ 1 . (A-4.14)

(A-4.15)

The action of antipode S is defined as

S(ei) = −eik−1
i , S(fi) = −kifi , S(ki) = −k−1

i . (A-4.16)

A-4.5 Quantum affine algebras

The construction of Drinfeld and Jimbo generalizes also to the case of untwisted affine
Lie algebras, which are in one-one correspondence with semisimple Lie algebras. The
representations of quantum deformed affine algebras define corresponding deformations of
Kac-Moody algebras. In the following only the basic formulas are summarized and the
reader not familiar with the formalism can consult a more detailed treatment can be found
in [A71].

1. Affine algebras

The Cartan matrix A is said to be of affine type if the conditions det(A) = 0 and aijaji ≥ 4
(no summation) hold true. There always exists a diagonal matrix D such that B = DA is
symmetric and defines symmetric bilinear degenerate metric on the affine Lie algebra.

The Dynkin diagrams of affine algebra of rank l have l+ 1 vertices (so that Cartan matrix
has one null eigenvector). The diagrams of semisimple Lie-algebras are sub-diagrams of
affine algebras. From the (l + 1)× (l + 1) Cartan matrix of an untwisted affine algebra Â
one can recover the l × l Cartan matrix of A by dropping away 0:th row and column.

For instance, the algebra A1
1, which is affine counterpart of SL(2), has Cartan matrix aij
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A =

(
2 −2
−2 2

)
with a vanishing determinant.

Quite generally, in untwisted case quantum algebra Uq(Ĝl) as 3(l + 1) generators ei, fi, ki
(i = 0, 1, .., l) satisfying the relations of Eq. A-4.11 for Cartan matrix of G(1). Affine
quantum group is obtained by adding to Uq(Ĝl) a derivation d satisfying the relations

[d, ei] = δi0ei , [d, fi] = δi0fi, [d, ki] = 0 . (A-4.17)

with comultiplication ∆(d) = d⊗ 1 + 1⊗ d.

2. Kac Moody algebras

The undeformed extension Ĝl associated with the affine Cartan matrix G(1)
l is the Kac

Moody algebra associated with the group G obtained as the central extension of the corre-
sponding loop algebra. The loop algebra is defined as

L(G) = G ⊗ C
[
t, t−1

]
, (A-4.18)

where C
[
t, t−1

]
is the algebra of Laurent polynomials with complex coefficients. The Lie

bracket is

[x× P, y ⊗Q] = [x, y]⊗ PQ . (A-4.19)

The non-degenerate bilinear symmetric form (, ) in Gl induces corresponding form in L(Gl)
as (x⊗ P, y ⊗Q) = (x, y)PQ.

A two-cocycle on L(Gl) is defined as

Ψ(a, b) = Res(
da

dt
, b) , (A-4.20)

where the residue of a Laurent is defined as Res(
∑
n ant

n) = a−1. The two-cocycle satisfies
the conditions

Ψ(a, b) = −Ψ(b, a) ,

Ψ([a, b] , c) + Ψ([b, c] , a) + Ψ([c, a] , b) = 0 . (A-4.21)

The two-cocycle defines the central extension of loop algebra L(Gl) to Kac Moody algebra
L(Gl) ⊗ Cc, where c is a new central element commuting with the loop algebra. The new
bracket is defined as [, ] + Ψ(, )c. The algebra L̃(Gl) is defined by adding the derivation d
which acts as td/dt measuring the conformal weight.

The standard basis for Kac Moody algebra and corresponding commutation relations are
given by

Jxn = x⊗ tn ,

[Jxn , J
y
m] = J

[x,y]
n+m + nδm+n,0c . (A-4.22)

The finite dimensional irreducible representations of G defined representations of Kac
Moody algebra with a vanishing central extension c = 0. The highest weight represen-
tations are characterized by highest weight vector |v〉 such that
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Jxn |v〉 = 0, n > 0 ,

c|v〉 = k|v〉 . (A-4.23)

3. Quantum affine algebras

Drinfeld has constructed the quantum affine extension Uq(Gl) using quantum double con-
struction. The construction of generators uses almost the same basic formulas as the
construction of semi-simple algebras. The construction involves the automorphism Dt :
Uq(G̃l)⊗ C

[
t, t−1

]
→ Uq(G̃l)⊗ C

[
t, t−1

]
given by

Dt(ei) = tδi0ei , Dt(fi) = tδi0fi ,
Dt(ki) = ki Dt(d) = d ,

(A-4.24)

and the co-product

∆t(a) = (Dt ⊗ 1)∆(a) , ∆op
t (a) = (Dt ⊗ 1)∆op(a) , (A-4.25)

where the ∆(a) is the co-product defined by the same general formula as applying in the
case of semi-simple Lie algebras. The universal R-matrix is given by

R(t) = (Dt ⊗ 1)R , (A-4.26)

and satisfies the equations

R(t)∆t(a) = ∆op
t (a)R ,

(∆z ⊗ id)R(u) = R13(zu)R23(u) ,

(id⊗∆u)R(zu) = R13(z)R12(zu) ,

R12(t)R13(tw)R23(w) = R23(w)R13(tw)R12(t) .

(A-4.27)

The infinite-dimensional representations of affine algebra give representations of Kac-Moody
algebra when one restricts the consideration to generations ei, fi, ki, i > 0.

A-5 Basic properties of CP2 and elementary facts about
p-adic numbers

A-5.1 CP2 as a manifold

CP2, the complex projective space of two complex dimensions, is obtained by identifying
the points of complex 3-space C3 under the projective equivalence

(z1, z2, z3) ≡ λ(z1, z2, z3) . (A-5.1)

Here λ is any non-zero complex number. Note that CP2 can be also regarded as the coset
space SU(3)/U(2). The pair zi/zj for fixed j and zi 6= 0 defines a complex coordinate chart
for CP2. As j runs from 1 to 3 one obtains an atlas of three oordinate charts covering CP2,
the charts being holomorphically related to each other (e.g. CP2 is a complex manifold).
The points z3 6= 0 form a subset of CP2 homoeomorphic to R4 and the points with z3 = 0
a set homeomorphic to S2. Therefore CP2 is obtained by ”adding the 2-sphere at infinity
to R4”.
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Besides the standard complex coordinates ξi = zi/z3 , i = 1, 2 the coordinates of Eguchi
and Freund [A137] will be used and their relation to the complex coordinates is given by

ξ1 = z + it ,

ξ2 = x+ iy . (A-5.2)

These are related to the ”spherical coordinates” via the equations

ξ1 = rexp(i
(Ψ + Φ)

2
)cos(

Θ

2
) ,

ξ2 = rexp(i
(Ψ− Φ)

2
)sin(

Θ

2
) . (A-5.3)

The ranges of the variables r,Θ,Φ,Ψ are [0,∞], [0, π], [0, 4π], [0, 2π] respectively.

Considered as a real four-manifold CP2 is compact and simply connected, with Euler num-
ber Euler number 3, Pontryagin number 3 and second b = 1.

A-5.2 Metric and Kähler structure of CP2

In order to obtain a natural metric for CP2, observe that CP2 can be thought of as a set of
the orbits of the isometries zi → exp(iα)zi on the sphere S5:

∑
ziz̄i = R2. The metric of

CP2 is obtained by projecting the metric of S5 orthogonally to the orbits of the isometries.
Therefore the distance between the points of CP2 is that between the representative orbits
on S5.

The line element has the following form in the complex coordinates

ds2 = gab̄dξ
adξ̄b , (A-5.4)

where the Hermitian, in fact Kähler metric gab̄ is defined by

gab̄ = R2∂a∂b̄K , (A-5.5)

where the function K, Kähler function, is defined as

K = log(F ) ,

F = 1 + r2 . (A-5.6)

The Kähler function for S2 has the same form. It gives the S2 metric dzdz/(1 + r2)2

related to its standard form in spherical coordinates by the coordinate transformation
(r, φ) = (tan(θ/2), φ).

The representation of the CP2 metric is deducible from S5 metric is obtained by putting
the angle coordinate of a geodesic sphere constant in it and is given

ds2

R2
=

(dr2 + r2σ2
3)

F 2
+
r2(σ2

1 + σ2
2)

F
, (A-5.7)

where the quantities σi are defined as

r2σ1 = Im(ξ1dξ2 − ξ2dξ1) ,

r2σ2 = −Re(ξ1dξ2 − ξ2dξ1) ,

r2σ3 = −Im(ξ1dξ̄1 + ξ2dξ̄2) . (A-5.8)
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R denotes the radius of the geodesic circle of CP2. The vierbein forms, which satisfy the
defining relation

skl = R2
∑
A

eAk e
A
l , (A-5.9)

are given by

e0 = dr
F , e1 = rσ1√

F
,

e2 = rσ2√
F

, e3 = rσ3

F .
(A-5.10)

The explicit representations of vierbein vectors are given by

e0 = dr
F , e1 = r(sinΘcosΨdΦ+sinΨdΘ)

2
√
F

,

e2 = r(sinΘsinΨdΦ−cosΨdΘ)

2
√
F

, e3 = r(dΨ+cosΘdΦ)
2F .

(A-5.11)

The explicit representation of the line element is given by the expression

ds2/R2 =
dr2

F 2
+

r2

4F 2
(dΨ + cosΘdΦ)2 +

r2

4F
(dΘ2 + sin2ΘdΦ2) .

(A-5.12)

The vierbein connection satisfying the defining relation

deA = −V AB ∧ eB , (A-5.13)

is given by

V01 = − e
1

r , V23 = e1

r ,

V02 = − e
2

r , V31 = e2

r ,
V03 = (r − 1

r )e3 , V12 = (2r + 1
r )e3 .

(A-5.14)

The representation of the covariantly constant curvature tensor is given by

R01 = e0 ∧ e1 − e2 ∧ e3 , R23 = e0 ∧ e1 − e2 ∧ e3 ,
R02 = e0 ∧ e2 − e3 ∧ e1 , R31 = −e0 ∧ e2 + e3 ∧ e1 ,
R03 = 4e0 ∧ e3 + 2e1 ∧ e2 , R12 = 2e0 ∧ e3 + 4e1 ∧ e2 .

(A-5.15)

Metric defines a real, covariantly constant, and therefore closed 2-form J

J = −igab̄dξadξ̄b , (A-5.16)

the so called Kähler form. Kähler form J defines in CP2 a symplectic structure because it
satisfies the condition

JkrJ
rl = −skl . (A-5.17)

The form J is integer valued and by its covariant constancy satisfies free Maxwell equations.
Hence it can be regarded as a curvature form of a U(1) gauge potential B carrying a
magnetic charge of unit 1/2g (g denotes the gauge coupling). Locally one has therefore
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J = dB , (A-5.18)

where B is the so called Kähler potential, which is not defined globally since J describes
homological magnetic monopole.

It should be noticed that the magnetic flux of J through a 2-surface in CP2 is proportional
to its homology equivalence class, which is integer valued. The explicit representations of
J and B are given by

B = 2re3 ,

J = 2(e0 ∧ e3 + e1 ∧ e2) =
r

F 2
dr ∧ (dΨ + cosΘdΦ) +

r2

2F
sinΘdΘdΦ .

(A-5.19)

The vierbein curvature form and Kähler form are covariantly constant and have in the
complex coordinates only components of type (1,1).

Useful coordinates for CP2 are the so called canonical coordinates in which Kähler potential
and Kähler form have very simple expressions

B =
∑
k=1,2

PkdQk ,

J =
∑
k=1,2

dPk ∧ dQk . (A-5.20)

The relationship of the canonical coordinates to the ”spherical” coordinates is given by the
equations

P1 = − 1

1 + r2
,

P2 =
r2cosΘ

2(1 + r2)
,

Q1 = Ψ ,

Q2 = Φ . (A-5.21)

A-5.3 Spinors in CP2

CP2 doesn’t allow spinor structure in the conventional sense [A121] . However, the cou-
pling of the spinors to a half odd multiple of the Kähler potential leads to a respectable
spinor structure. Because the delicacies associated with the spinor structure of CP2 play a
fundamental role in TGD, the arguments of Hawking are repeated here.

To see how the space can fail to have an ordinary spinor structure consider the parallel
transport of the vierbein in a simply connected space M . The parallel propagation around
a closed curve with a base point x leads to a rotated vierbein at x: eA = RABe

B and one
can associate to each closed path an element of SO(4).

Consider now a one-parameter family of closed curves γ(v) : v ∈ (0, 1) with the same base
point x and γ(0) and γ(1) trivial paths. Clearly these paths define a sphere S2 in M and
the element RAB(v) defines a closed path in SO(4). When the sphere S2 is contractible to
a point e.g., homologically trivial, the path in SO(4) is also contractible to a point and
therefore represents a trivial element of the homotopy group Π1(SO(4)) = Z2.

For a homologically nontrivial 2-surface S2 the associated path in SO(4) can be homo-
topically nontrivial and therefore corresponds to a nonclosed path in the covering group
Spin(4) (leading from the matrix 1 to -1 in the matrix representation). Assume this is the
case.



A-6. CP2 geometry and standard model symmetries 1063

Assume now that the space allows spinor structure. Then one can parallel propagate also
spinors and by the above construction associate a closed path of Spin(4) to the surface S2.
Now, however this path corresponds to a lift of the corresponding SO(4) path and cannot
be closed. Thus one ends up with a contradiction.

From the preceding argument it is clear that one could compensate the non-allowed −1-
factor associated with the parallel transport of the spinor around the sphere S2 by coupling
it to a gauge potential in such a way that in the parallel transport the gauge potential
introduces a compensating −1-factor. For a U(1) gauge potential this factor is given by the
exponential exp(i2Φ) , where Φ is the magnetic flux through the surface. This factor has
the value −1 provided the U(1) potential carries half odd multiple of Dirac charge 1/2g.
In case of CP2 the required gauge potential is half odd multiple of the Kähler potential
B defined previously. In the case of M4 × CP2 one can in addition couple the spinor
components with different chiralities independently to an odd multiple of B/2.

A-5.4 Geodesic sub-manifolds of CP2

Geodesic sub-manifolds are defined as sub-manifolds having common geodesic lines with
the imbedding space. As a consequence the second fundamental form of the geodesic
manifold vanishes, which means that the tangent vectors hkα (understood as vectors of
H) are covariantly constant quantities with respect to the covariant derivative taking into
account that the tangent vectors are vectors both with respect to H and X4.

In [A101] a general characterization of the geodesic sub-manifolds for an arbitrary sym-
metric space G/H is given. Geodesic sub-manifolds are in 1-1-correspondence with the so
called Lie triple systems of the Lie-algebra g of the group G. The Lie triple system t is
defined as a subspace of g characterized by the closedness property with respect to double
commutation

[X, [Y,Z]] ∈ t for X,Y, Z ∈ t . (A-5.22)

SU(3) allows, besides geodesic lines, two nonequivalent (not isometry related) geodesic
spheres. This is understood by observing that SU(3) allows two nonequivalent SU(2)
algebras corresponding to subgroups SO(3) (orthogonal 3 × 3 matrices) and the usual
isospin group SU(2). By taking any subset of two generators from these algebras, one
obtains a Lie triple system and by exponentiating this system, one obtains a 2-dimensional
geodesic sub-manifold of CP2.

Standard representatives for the geodesic spheres of CP2 are given by the equations

S2
I : ξ1 = ξ̄2 or equivalently (Θ = π/2,Ψ = 0) ,

S2
II : ξ1 = ξ2 or equivalently (Θ = π/2,Φ = 0) .

The non-equivalence of these sub-manifolds is clear from the fact that isometries act as
holomorphic transformations in CP2. The vanishing of the second fundamental form is
also easy to verify. The first geodesic manifold is homologically trivial: in fact, the induced
Kähler form vanishes identically for S2

I . S2
II is homologically nontrivial and the flux of the

Kähler form gives its homology equivalence class.

A-6 CP2 geometry and standard model symmetries

A-6.1 Identification of the electro-weak couplings

The delicacies of the spinor structure of CP2 make it a unique candidate for space S. First,
the coupling of the spinors to the U(1) gauge potential defined by the Kähler structure
provides the missing U(1) factor in the gauge group. Secondly, it is possible to couple
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different H-chiralities independently to a half odd multiple of the Kähler potential. Thus
the hopes of obtaining a correct spectrum for the electromagnetic charge are considerable.
In the following it will be demonstrated that the couplings of the induced spinor connection
are indeed those of the GWS model [B43] and in particular that the right handed neutrinos
decouple completely from the electro-weak interactions.

To begin with, recall that the space H allows to define three different chiralities for spinors.
Spinors with fixed H-chirality e = ±1, CP2-chirality l, r and M4-chirality L,R are defined
by the condition

ΓΨ = eΨ ,

e = ±1 , (A-6.1)

where Γ denotes the matrix Γ9 = γ5 × γ5, 1 × γ5 and γ5 × 1 respectively. Clearly, for a
fixed H-chirality CP2- and M4-chiralities are correlated.

The spinors with H-chirality e = ±1 can be identified as quark and lepton like spinors
respectively. The separate conservation of baryon and lepton numbers can be understood
as a consequence of generalized chiral invariance if this identification is accepted. For
the spinors with a definite H-chirality one can identify the vielbein group of CP2 as the
electro-weak group: SO(4) = SU(2)L × SU(2)R.

The covariant derivatives are defined by the spinorial connection

A = V +
B

2
(n+1+ + n−1−) . (A-6.2)

Here V and B denote the projections of the vielbein and Kähler gauge potentials respec-
tively and 1+(−) projects to the spinor H-chirality +(−). The integers n± are odd from
the requirement of a respectable spinor structure.

The explicit representation of the vielbein connection V and of B are given by the equations

V01 = − e
1

r , V23 = e1

r ,

V02 = − e
2

r , V31 = e2

r ,
V03 = (r − 1

r )e3 , V12 = (2r + 1
r )e3 ,

(A-6.3)

and

B = 2re3 , (A-6.4)

respectively. The explicit representation of the vielbein is not needed here.

Let us first show that the charged part of the spinor connection couples purely left handedly.
Identifying Σ0

3 and Σ1
2 as the diagonal (neutral) Lie-algebra generators of SO(4), one finds

that the charged part of the spinor connection is given by

Ach = 2V23I
1
L + 2V13I

2
L , (A-6.5)

where one have defined

I1
L =

(Σ01 − Σ23)

2
,

I2
L =

(Σ02 − Σ13)

2
. (A-6.6)

Ach is clearly left handed so that one can perform the identification
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W± =
2(e1 ± ie2)

r
, (A-6.7)

where W± denotes the charged intermediate vector boson.

Consider next the identification of the neutral gauge bosons γ and Z0 as appropriate linear
combinations of the two functionally independent quantities

X = re3 ,

Y =
e3

r
, (A-6.8)

appearing in the neutral part of the spinor connection. We show first that the mere re-
quirement that photon couples vectorially implies the basic coupling structure of the GWS
model leaving only the value of Weinberg angle undetermined.

To begin with let us define

γ̄ = aX + bY ,

Z̄0 = cX + dY , (A-6.9)

where the normalization condition

ad− bc = 1 ,

is satisfied. The physical fields γ and Z0 are related to γ̄ and Z̄0 by simple normalization
factors.

Expressing the neutral part of the spinor connection in term of these fields one obtains

Anc = [(c+ d)2Σ03 + (2d− c)2Σ12 + d(n+1+ + n−1−)]γ̄

+ [(a− b)2Σ03 + (a− 2b)2Σ12 − b(n+1+ + n−1−)]Z̄0 .

(A-6.10)

Identifying Σ12 and Σ03 = 1× γ5Σ12 as vectorial and axial Lie-algebra generators, respec-
tively, the requirement that γ couples vectorially leads to the condition

c = −d . (A-6.11)

Using this result plus previous equations, one obtains for the neutral part of the connection
the expression

Anc = γQem + Z0(I3
L − sin2θWQem) . (A-6.12)

Here the electromagnetic charge Qem and the weak isospin are defined by

Qem = Σ12 +
(n+1+ + n−1−)

6
,

I3
L =

(Σ12 − Σ03)

2
. (A-6.13)

The fields γ and Z0 are defined via the relations
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γ = 6dγ̄ =
6

(a+ b)
(aX + bY ) ,

Z0 = 4(a+ b)Z̄0 = 4(X − Y ) . (A-6.14)

The value of the Weinberg angle is given by

sin2θW =
3b

2(a+ b)
, (A-6.15)

and is not fixed completely. Observe that right handed neutrinos decouple completely from
the electro-weak interactions.

The determination of the value of Weinberg angle is a dynamical problem. The angle is
completely fixed once the YM action is fixed by requiring that action contains no cross term
of type γZ0. Pure symmetry non-broken electro-weak YM action leads to a definite value
for the Weinberg angle. One can however add a symmetry breaking term proportional to
Kähler action and this changes the value of the Weinberg angle.

To evaluate the value of the Weinberg angle one can express the neutral part Fnc of the
induced gauge field as

Fnc = 2R03Σ03 + 2R12Σ12 + J(n+1+ + n−1−) , (A-6.16)

where one has

R03 = 2(2e0 ∧ e3 + e1 ∧ e2) ,

R12 = 2(e0 ∧ e3 + 2e1 ∧ e2) ,

J = 2(e0 ∧ e3 + e1 ∧ e2) , (A-6.17)

in terms of the fields γ and Z0 (photon and Z- boson)

Fnc = γQem + Z0(I3
L − sin2θWQem) . (A-6.18)

Evaluating the expressions above one obtains for γ and Z0 the expressions

γ = 3J − sin2θWR03 ,

Z0 = 2R03 . (A-6.19)

For the Kähler field one obtains

J =
1

3
(γ + sin2θWZ

0) . (A-6.20)

Expressing the neutral part of the symmetry broken YM action

Lew = Lsym + fJαβJαβ ,

Lsym =
1

4g2
Tr(FαβFαβ) , (A-6.21)

where the trace is taken in spinor representation, in terms of γ and Z0 one obtains for the
coefficient X of the γZ0 cross term (this coefficient must vanish) the expression
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X = − K

2g2
+
fp

18
,

K = Tr
[
Qem(I3

L − sin2θWQem)
]
, (A-6.22)

In the general case the value of the coefficient K is given by

K =
∑
i

[
− (18 + 2n2

i )sin
2θW

9

]
, (A-6.23)

where the sum is over the spinor chiralities, which appear as elementary fermions and ni
is the integer describing the coupling of the spinor field to the Kähler potential. The cross
term vanishes provided the value of the Weinberg angle is given by

sin2θW =
9
∑
i 1

(fg2 + 2
∑
i(18 + n2

i ))
. (A-6.24)

In the scenario where both leptons and quarks are elementary fermions the value of the
Weinberg angle is given by

sin2θW =
9

( fg
2

2 + 28)
. (A-6.25)

The bare value of the Weinberg angle is 9/28 in this scenario, which is quite close to the
typical value 9/24 of GUTs [B73] .

A-6.2 Discrete symmetries

The treatment of discrete symmetries C, P, and T is based on the following requirements:
a) Symmetries must be realized as purely geometric transformations.
b) Transformation properties of the field variables should be essentially the same as in the
conventional quantum field theories [B28] .

The action of the reflection P on spinors of is given by

Ψ → PΨ = γ0 ⊗ γ0Ψ . (A-6.26)

in the representation of the gamma matrices for which γ0 is diagonal. It should be noticed
that W and Z0 bosons break parity symmetry as they should since their charge matrices
do not commute with the matrix of P.

The guess that a complex conjugation in CP2 is associated with T transformation of the
physicist turns out to be correct. One can verify by a direct calculation that pure Dirac
action is invariant under T realized according to

mk → T (Mk) ,

ξk → ξ̄k ,

Ψ → γ1γ3 ⊗ 1Ψ . (A-6.27)

The operation bearing closest resemblance to the ordinary charge conjugation corresponds
geometrically to complex conjugation in CP2:

ξk → ξ̄k ,

Ψ → Ψ†γ2γ0 ⊗ 1 . (A-6.28)

As one might have expected symmetries CP and T are exact symmetries of the pure Dirac
action.
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A-7 Basic facts about induced gauge fields

Since the classical gauge fields are closely related in TGD framework, it is not possible
to have space-time sheets carrying only single kind of gauge field. For instance, em fields
are accompanied by Z0 fields for extremals of Kähler action. Weak forces is however
absent unless the space-time sheets contains topologically condensed exotic weakly charged
particles responding to this force. Same applies to classical color forces. The fact that
these long range fields are present forces to assume that there exists a hierarchy of scaled
up variants of standard model physics identifiable in terms of dark matter.

Classical em fields are always accompanied by Z0 field and some components of color gauge
field. For extremals having homologically non-trivial sphere as a CP2 projection em and Z0

fields are the only non-vanishing electroweak gauge fields. For homologically trivial sphere
only W fields are non-vanishing. Color rotations does not affect the situation.

For vacuum extremals all electro-weak gauge fields are in general non-vanishing although
the net gauge field has U(1) holonomy by 2-dimensionality of the CP2 projection. Color
gauge field has U(1) holonomy for all space-time surfaces and quantum classical correspon-
dence suggest a weak form of color confinement meaning that physical states correspond
to color neutral members of color multiplets.

A-7.1 Induced gauge fields for space-times for which CP2 projec-
tion is a geodesic sphere

If one requires that space-time surface is an extremal of Kähler action and has a 2-
dimensional CP2 projection, only vacuum extremals and space-time surfaces for which
CP2 projection is a geodesic sphere, are allowed. Homologically non-trivial geodesic sphere
correspond to vanishing W fields and homologically non-trivial sphere to non-vanishing W
fields but vanishing γ and Z0. This can be verified by explicit examples.

r =∞ surface gives rise to a homologically non-trivial geodesic sphere for which e0 and e3

vanish imply the vanishing of W field. For space-time sheets for which CP2 projection is
r =∞ homologically non-trivial geodesic sphere of CP2 one has

γ = (
3

4
− sin2(θW )

2
)Z0 ' 5Z0

8
.

The inducedW fields vanish in this case and they vanish also for all geodesic sphere obtained
by SU(3) rotation.

Im(ξ1) = Im(ξ2) = 0 corresponds to homologically trivial geodesic sphere. A more general
representative is obtained by using for the phase angles of standard complex CP2 coor-
dinates constant values. In this case e1 and e3 vanish so that the induced em, Z0, and
Kähler fields vanish but induced W fields are non-vanishing. This holds also for surfaces
obtained by color rotation. Hence one can say that for non-vacuum extremals with 2-D
CP2 projection color rotations and weak symmetries commute.

A-7.2 Space-time surfaces with vanishing em, Z0, or Kähler fields

In the following the induced gauge fields are studied for general space-time surface without
assuming the extremal property. In fact, extremal property reduces the study to the study
of vacuum extremals and surfaces having geodesic sphere as a CP2 projection and in this
sense the following arguments are somewhat obsolete in their generality.

Space-times with vanishing em, Z0, or Kähler fields

The following considerations apply to a more general situation in which the homologically
trivial geodesic sphere and extremal property are not assumed. It must be emphasized that
this case is possible in TGD framework only for a vanishing Kähler field.

Using spherical coordinates (r,Θ,Ψ,Φ) for CP2, the expression of Kähler form reads as
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J =
r

F 2
dr ∧ (dΨ + cos(Θ)dΦ) +

r2

2F
sin(Θ)dΘ ∧ dΦ ,

F = 1 + r2 . (A-7.1)

The general expression of electromagnetic field reads as

Fem = (3 + 2p)
r

F 2
dr ∧ (dΨ + cos(Θ)dΦ) + (3 + p)

r2

2F
sin(Θ)dΘ ∧ dΦ ,

p = sin2(ΘW ) , (A-7.2)

where ΘW denotes Weinberg angle.

a) The vanishing of the electromagnetic fields is guaranteed, when the conditions

Ψ = kΦ ,

(3 + 2p)
1

r2F
(d(r2)/dΘ)(k + cos(Θ)) + (3 + p)sin(Θ) = 0 , (A-7.3)

hold true. The conditions imply that CP2 projection of the electromagnetically neutral
space-time is 2-dimensional. Solving the differential equation one obtains

r =

√
X

1−X
,

X = D

[
| (k + u

C
|
]ε

,

u ≡ cos(Θ) , C = k + cos(Θ0) , D =
r2
0

1 + r2
0

, ε =
3 + p

3 + 2p
, (A-7.4)

where C and D are integration constants. 0 ≤ X ≤ 1 is required by the reality of r. r = 0
would correspond to X = 0 giving u = −k achieved only for |k| ≤ 1 and r = ∞ to X = 1
giving |u+ k| = [(1 + r2

0)/r2
0)](3+2p)/(3+p) achieved only for

sign(u+ k)× [
1 + r2

0

r2
0

]
3+2p
3+p ≤ k + 1 ,

where sign(x) denotes the sign of x.

The expressions for Kähler form and Z0 field are given by

J = − p

3 + 2p
Xdu ∧ dΦ ,

Z0 = −6

p
J . (A-7.5)

The components of the electromagnetic field generated by varying vacuum parameters are
proportional to the components of the Kähler field: in particular, the magnetic field is
parallel to the Kähler magnetic field. The generation of a long range Z0 vacuum field is a
purely TGD based feature not encountered in the standard gauge theories.

b) The vanishing of Z0 fields is achieved by the replacement of the parameter ε with ε = 1/2
as becomes clear by considering the condition stating that Z0 field vanishes identically. Also

the relationship Fem = 3J = − 3
4
r2

F du ∧ dΦ is useful.

c) The vanishing Kähler field corresponds to ε = 1, p = 0 in the formula for em neutral
space-times. In this case classical em and Z0 fields are proportional to each other:
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Z0 = 2e0 ∧ e3 =
r

F 2
(k + u)

∂r

∂u
du ∧ dΦ = (k + u)du ∧ dΦ ,

r =

√
X

1−X
, X = D|k + u| ,

γ = −p
2
Z0 . (A-7.6)

For a vanishing value of Weinberg angle (p = 0) em field vanishes and only Z0 field remains
as a long range gauge field. Vacuum extremals for which long range Z0 field vanishes but
em field is non-vanishing are not possible.

The effective form of CP2 metric for surfaces with 2-dimensional CP2 projection

The effective form of the CP2 metric for a space-time having vanishing em,Z0, or Kähler
field is of practical value in the case of vacuum extremals and is given by

ds2
eff = (srr(

dr

dΘ
)2 + sΘΘ)dΘ2 + (sΦΦ + 2ksΦΨ)dΦ2 =

R2

4
[seffΘΘdΘ2 + seffΦΦ dΦ2] ,

seffΘΘ = X ×
[
ε2(1− u2)

(k + u)2
× 1

1−X
+ 1−X

]
,

seffΦΦ = X ×
[
(1−X)(k + u)2 + 1− u2

]
, (A-7.7)

and is useful in the construction of vacuum imbedding of, say Schwartchild metric.

Topological quantum numbers

Space-times for which either em, Z0, or Kähler field vanishes decompose into regions char-
acterized by six vacuum parameters: two of these quantum numbers (ω1 and ω2) are
frequency type parameters, two (k1 and k2 ) are wave vector like quantum numbers, two of
the quantum numbers (n1 and n2) are integers. The parameters ωi and ni will be referred
as electric and magnetic quantum numbers. The existence of these quantum numbers is
not a feature of these solutions alone but represents a much more general phenomenon
differentiating in a clear cut manner between TGD and Maxwell’s electrodynamics.

The simplest manner to avoid surface Kähler charges and discontinuities or infinities in the
derivatives of CP2 coordinates on the common boundary of two neighboring regions with
different vacuum quantum numbers is topological field quantization, 3-space decomposes
into disjoint topological field quanta, 3-surfaces having outer boundaries with possibly
macroscopic size.

Under rather general conditions the coordinates Ψ and Φ can be written in the form

Ψ = ω2m
0 + k2m

3 + n2φ+ Fourier expansion ,

Φ = ω1m
0 + k1m

3 + n1φ+ Fourier expansion . (A-7.8)

m0,m3 and φ denote the coordinate variables of the cylindrical M4 coordinates) so that
one has k = ω2/ω1 = n2/n1 = k2/k1. The regions of the space-time surface with given
values of the vacuum parameters ωi,ki and ni and m and C are bounded by the surfaces
at which space-time surface becomes ill-defined, say by r > 0 or r <∞ surfaces.

The space-time surface decomposes into regions characterized by different values of the
vacuum parameters r0 and Θ0. At r =∞ surfaces n2,ω2 and m can change since all values
of Ψ correspond to the same point of CP2: at r = 0 surfaces also n1 and ω1 can change
since all values of Φ correspond to same point of CP2, too. If r = 0 or r =∞ is not in the
allowed range space-time surface develops a boundary.
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This implies what might be called topological quantization since in general it is not possible
to find a smooth global imbedding for, say a constant magnetic field. Although global
imbedding exists it decomposes into regions with different values of the vacuum parameters
and the coordinate u in general possesses discontinuous derivative at r = 0 and r = ∞
surfaces. A possible manner to avoid edges of space-time is to allow field quantization
so that 3-space (and field) decomposes into disjoint quanta, which can be regarded as
structurally stable units a 3-space (and of the gauge field). This doesn’t exclude partial
join along boundaries for neighboring field quanta provided some additional conditions
guaranteing the absence of edges are satisfied.

For instance, the vanishing of the electromagnetic fields implies that the condition

Ω ≡ ω2

n2
− ω1

n1
= 0 , (A-7.9)

is satisfied. In particular, the ratio ω2/ω1 is rational number for the electromagnetically
neutral regions of space-time surface. The change of the parameter n1 and n2 (ω1 and
ω2) in general generates magnetic field and therefore these integers will be referred to as
magnetic (electric) quantum numbers.

A-8 p-Adic numbers and TGD

A-8.1 p-Adic number fields

p-Adic numbers (p is prime: 2,3,5,...) can be regarded as a completion of the rational
numbers using a norm, which is different from the ordinary norm of real numbers [A67] .
p-Adic numbers are representable as power expansion of the prime number p of form:

x =
∑
k≥k0

x(k)pk, x(k) = 0, ...., p− 1 . (A-8.1)

The norm of a p-adic number is given by

|x| = p−k0(x) . (A-8.2)

Here k0(x) is the lowest power in the expansion of the p-adic number. The norm differs
drastically from the norm of the ordinary real numbers since it depends on the lowest pinary
digit of the p-adic number only. Arbitrarily high powers in the expansion are possible since
the norm of the p-adic number is finite also for numbers, which are infinite with respect to
the ordinary norm. A convenient representation for p-adic numbers is in the form

x = pk0ε(x) , (A-8.3)

where ε(x) = k + .... with 0 < k < p, is p-adic number with unit norm and analogous to
the phase factor exp(iφ) of a complex number.

The distance function d(x, y) = |x−y|p defined by the p-adic norm possesses a very general
property called ultra-metricity:

d(x, z) ≤ max{d(x, y), d(y, z)} . (A-8.4)

The properties of the distance function make it possible to decompose Rp into a union of
disjoint sets using the criterion that x and y belong to same class if the distance between
x and y satisfies the condition
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d(x, y) ≤ D . (A-8.5)

This division of the metric space into classes has following properties:

a) Distances between the members of two different classes X and Y do not depend on the
choice of points x and y inside classes. One can therefore speak about distance function
between classes.

b) Distances of points x and y inside single class are smaller than distances between different
classes.

c) Classes form a hierarchical tree.

Notice that the concept of the ultra-metricity emerged in physics from the models for spin
glasses and is believed to have also applications in biology [B61] . The emergence of p-adic
topology as the topology of the effective space-time would make ultra-metricity property
basic feature of physics.

A-8.2 Canonical correspondence between p-adic and real numbers

The basic challenge encountered by p-adic physicist is how to map the predictions of the
p-adic physics to real numbers. p-Adic probabilities provide a basic example in this respect.
Identification via common rationals and canonical identification and its variants have turned
out to play a key role in this respect.

Basic form of canonical identification

There exists a natural continuous map I : Rp → R+ from p-adic numbers to non-negative
real numbers given by the ”pinary” expansion of the real number for x ∈ R and y ∈ Rp
this correspondence reads

y =
∑
k>N

ykp
k → x =

∑
k<N

ykp
−k ,

yk ∈ {0, 1, .., p− 1} . (A-8.6)

This map is continuous as one easily finds out. There is however a little difficulty associated
with the definition of the inverse map since the pinary expansion like also decimal expansion
is not unique (1 = 0.999...) for the real numbers x, which allow pinary expansion with finite
number of pinary digits

x =

N∑
k=N0

xkp
−k ,

x =

N−1∑
k=N0

xkp
−k + (xN − 1)p−N + (p− 1)p−N−1

∑
k=0,..

p−k .

(A-8.7)

The p-adic images associated with these expansions are different

y1 =

N∑
k=N0

xkp
k ,

y2 =

N−1∑
k=N0

xkp
k + (xN − 1)pN + (p− 1)pN+1

∑
k=0,..

pk

= y1 + (xN − 1)pN − pN+1 , (A-8.8)
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so that the inverse map is either two-valued for p-adic numbers having expansion with
finite pinary digits or single valued and discontinuous and non-surjective if one makes
pinary expansion unique by choosing the one with finite pinary digits. The finite pinary
digit expansion is a natural choice since in the numerical work one always must use a pinary
cutoff on the real axis.

The topology induced by canonical identification

The topology induced by the canonical identification in the set of positive real numbers
differs from the ordinary topology. The difference is easily understood by interpreting the
p-adic norm as a norm in the set of the real numbers. The norm is constant in each interval
[pk, pk+1) (see Fig. A-8.2) and is equal to the usual real norm at the points x = pk: the
usual linear norm is replaced with a piecewise constant norm. This means that p-adic
topology is coarser than the usual real topology and the higher the value of p is, the coarser
the resulting topology is above a given length scale. This hierarchical ordering of the p-adic
topologies will be a central feature as far as the proposed applications of the p-adic numbers
are considered.

Ordinary continuity implies p-adic continuity since the norm induced from the p-adic topol-
ogy is rougher than the ordinary norm. p-Adic continuity implies ordinary continuity from
right as is clear already from the properties of the p-adic norm (the graph of the norm is
indeed continuous from right). This feature is one clear signature of the p-adic topology.

Figure 14: The real norm induced by canonical identification from 2-adic norm.

The linear structure of the p-adic numbers induces a corresponding structure in the set
of the non-negative real numbers and p-adic linearity in general differs from the ordinary
concept of linearity. For example, p-adic sum is equal to real sum only provided the
summands have no common pinary digits. Furthermore, the condition x+p y < max{x, y}
holds in general for the p-adic sum of the real numbers. p-Adic multiplication is equivalent
with the ordinary multiplication only provided that either of the members of the product
is power of p. Moreover one has x ×p y < x × y in general. The p-Adic negative −1p
associated with p-adic unit 1 is given by (−1)p =

∑
k(p− 1)pk and defines p-adic negative

for each real number x. An interesting possibility is that p-adic linearity might replace the
ordinary linearity in some strongly nonlinear systems so these systems would look simple
in the p-adic topology.

These results suggest that canonical identification is involved with some deeper mathemat-
ical structure. The following inequalities hold true:

(x+ y)R ≤ xR + yR ,

|x|p|y|R ≤ (xy)R ≤ xRyR , (A-8.9)
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where |x|p denotes p-adic norm. These inequalities can be generalized to the case of (Rp)
n

(a linear vector space over the p-adic numbers).

(x+ y)R ≤ xR + yR ,

|λ|p|y|R ≤ (λy)R ≤ λRyR , (A-8.10)

where the norm of the vector x ∈ Tnp is defined in some manner. The case of Euclidian
space suggests the definition

(xR)2 = (
∑
n

x2
n)R . (A-8.11)

These inequalities resemble those satisfied by the vector norm. The only difference is the
failure of linearity in the sense that the norm of a scaled vector is not obtained by scaling
the norm of the original vector. Ordinary situation prevails only if the scaling corresponds
to a power of p.

These observations suggests that the concept of a normed space or Banach space might
have a generalization and physically the generalization might apply to the description of
some non-linear systems. The nonlinearity would be concentrated in the nonlinear behavior
of the norm under scaling.

Modified form of the canonical identification

The original form of the canonical identification is continuous but does not respect sym-
metries even approximately. This led to a search of variants which would do better in this
respect. The modification of the canonical identification applying to rationals only and
given by

IQ(q = pk × r

s
) = pk × I(r)

I(s)
(A-8.12)

is uniquely defined for rationals, maps rationals to rationals, has also a symmetry under
exchange of target and domain. This map reduces to a direct identification of rationals
for 0 ≤ r < p and 0 ≤ s < p. It has turned out that it is this map which most naturally
appears in the applications. The map is obviously continuous locally since p-adically small
modifications of r and s mean small modifications of the real counterparts.

Canonical identification is in a key role in the successful predictions of the elementary
particle masses. The predictions for the light elementary particle masses are within extreme
accuracy same for I and IQ but IQ is theoretically preferred since the real probabilities
obtained from p-adic ones by IQ sum up to one in p-adic thermodynamics.

Generalization of number concept and notion of imbedding space

TGD forces an extension of number concept: roughly a fusion of reals and various p-adic
number fields along common rationals is in question. This induces a similar fusion of
real and p-adic imbedding spaces. Since finite p-adic numbers correspond always to non-
negative reals n-dimensional space Rn must be covered by 2n copies of the p-adic variant
Rnp of Rn each of which projects to a copy of Rn+ (four quadrants in the case of plane). The
common points of p-adic and real imbedding spaces are rational points and most p-adic
points are at real infinity.

For a given p-adic space-time sheet most points are literally infinite as real points and the
projection to the real imbedding space consists of a discrete set of rational points: the
interpretation in terms of the unavoidable discreteness of the physical representations of
cognition is natural. Purely local p-adic physics implies real p-adic fractality and thus long



range correlations for the real space-time surfaces having enough common points with this
projection.

p-Adic fractality means that M4 projections for the rational points of space-time surface
X4 are related by a direct identification whereas CP2 coordinates of X4 at these points are
related by I, IQ or some of its variants implying long range correlates for CP2 coordinates.
Since only a discrete set of points are related in this manner, both real and p-adic field
equations can be satisfied and there are no problems with symmetries. p-Adic effective
topology is expected to be a good approximation only within some length scale range
which means infrared and UV cutoffs. Also multi-p-fractality is possible.
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