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Preface

This book belongs to a series of online books summarizing the recent state Topological Geometro-
dynamics (TGD) and its applications. TGD can be regarded as a unified theory of fundamental
interactions but is not the kind of unified theory as so called GUTs constructed by graduate stu-
dents at seventies and eighties using detailed recipes for how to reduce everything to group theory.
Nowadays this activity has been completely computerized and it probably takes only a few hours to
print out the predictions of this kind of unified theory as an article in the desired format. TGD is
something different and I am not ashamed to confess that I have devoted the last 32 years of my life
to this enterprise and am still unable to write The Rules.

I got the basic idea of Topological Geometrodynamics (TGD) during autumn 1978, perhaps it
was October. What I realized was that the representability of physical space-times as 4-dimensional
surfaces of some higher-dimensional space-time obtained by replacing the points of Minkowski space
with some very small compact internal space could resolve the conceptual difficulties of general rela-
tivity related to the definition of the notion of energy. This belief was too optimistic and only with
the advent of what I call zero energy ontology the understanding of the notion of Poincare invariance
has become satisfactory.

It soon became clear that the approach leads to a generalization of the notion of space-time with
particles being represented by space-time surfaces with finite size so that TGD could be also seen as
a generalization of the string model. Much later it became clear that this generalization is consistent
with conformal invariance only if space-time is 4-dimensional and the Minkowski space factor of
imbedding space is 4-dimensional.

It took some time to discover that also the geometrization of also gauge interactions and elementary
particle quantum numbers could be possible in this framework: it took two years to find the unique
internal space providing this geometrization involving also the realization that family replication
phenomenon for fermions has a natural topological explanation in TGD framework and that the
symmetries of the standard model symmetries are much more profound than pragmatic TOE builders
have believed them to be. If TGD is correct, main stream particle physics chose the wrong track leading
to the recent deep crisis when people decided that quarks and leptons belong to same multiplet of the
gauge group implying instability of proton.

There have been also longstanding problems.

e Gravitational energy is well-defined in cosmological models but is not conserved. Hence the
conservation of the inertial energy does not seem to be consistent with the Equivalence Princi-
ple. Furthermore, the imbeddings of Robertson-Walker cosmologies turned out to be vacuum
extremals with respect to the inertial energy. About 25 years was needed to realize that the sign
of the inertial energy can be also negative and in cosmological scales the density of inertial energy
vanishes: physically acceptable universes are creatable from vacuum. Eventually this led to the
notion of zero energy ontology which deviates dramatically from the standard ontology being
however consistent with the crossing symmetry of quantum field theories. In this framework the
quantum numbers are assigned with zero energy states located at the boundaries of so called
causal diamonds defined as intersections of future and past directed light-cones. The notion of
energy-momentum becomes length scale dependent since one has a scale hierarchy for causal
diamonds. This allows to understand the non-conservation of energy as apparent. Equivalence
Principle generalizes and has a formulation in terms of coset representations of Super-Virasoro
algebras providing also a justification for p-adic thermodynamics.

e From the beginning it was clear that the theory predicts the presence of long ranged classical
electro-weak and color gauge fields and that these fields necessarily accompany classical electro-
magnetic fields. It took about 26 years to gain the maturity to admit the obvious: these fields
are classical correlates for long range color and weak interactions assignable to dark matter.
The only possible conclusion is that TGD physics is a fractal consisting of an entire hierarchy
of fractal copies of standard model physics. Also the understanding of electro-weak massivation
and screening of weak charges has been a long standing problem, and 32 years was needed to
discover that what I call weak form of electric-magnetic duality gives a satisfactory solution of
the problem and provides also surprisingly powerful insights to the mathematical structure of
quantum TGD.
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I started the serious attempts to construct quantum TGD after my thesis around 1982. The
original optimistic hope was that path integral formalism or canonical quantization might be enough
to construct the quantum theory but the first discovery made already during first year of TGD was that
these formalisms might be useless due to the extreme non-linearity and enormous vacuum degeneracy
of the theory. This turned out to be the case.

e [t took some years to discover that the only working approach is based on the generalization
of Einstein’s program. Quantum physics involves the geometrization of the infinite-dimensional
"world of classical worlds” (WCW) identified as 3-dimensional surfaces. Still few years had
to pass before I understood that general coordinate invariance leads to a more or less unique
solution of the problem and implies that space-time surfaces are analogous to Bohr orbits. Still
a coupled of years and I discovered that quantum states of the Universe can be identified as
classical spinor fields in WCW. Only quantum jump remains the genuinely quantal aspect of
quantum physics.

e During these years TGD led to a rather profound generalization of the space-time concept.
Quite general properties of the theory led to the notion of many-sheeted space-time with sheets
representing physical subsystems of various sizes. At the beginning of 90s I became dimly
aware of the importance of p-adic number fields and soon ended up with the idea that p-adic
thermodynamics for a conformally invariant system allows to understand elementary particle
massivation with amazingly few input assumptions. The attempts to understand p-adicity from
basic principles led gradually to the vision about physics as a generalized number theory as
an approach complementary to the physics as an infinite-dimensional spinor geometry of WCW
approach. One of its elements was a generalization of the number concept obtained by fusing real
numbers and various p-adic numbers along common rationals. The number theoretical trinity
involves besides p-adic number fields also quaternions and octonions and the notion of infinite
prime.

e TGD inspired theory of consciousness entered the scheme after 1995 as I started to write a book
about consciousness. Gradually it became difficult to say where physics ends and consciousness
theory begins since consciousness theory could be seen as a generalization of quantum measure-
ment theory by identifying quantum jump as a moment of consciousness and by replacing the
observer with the notion of self identified as a system which is conscious as long as it can avoid
entanglement with environment. ”Everything is conscious and consciousness can be only lost”
summarizes the basic philosophy neatly. The idea about p-adic physics as physics of cognition
and intentionality emerged also rather naturally and implies perhaps the most dramatic gener-
alization of the space-time concept in which most points of p-adic space-time sheets are infinite
in real sense and the projection to the real imbedding space consists of discrete set of points.
One of the most fascinating outcomes was the observation that the entropy based on p-adic
norm can be negative. This observation led to the vision that life can be regarded as something
in the intersection of real and p-adic worlds. Negentropic entanglement has interpretation as
a correlate for various positively colored aspects of conscious experience and means also the
possibility of strongly correlated states stable under state function reduction and different from
the conventional bound states and perhaps playing key role in the energy metabolism of living
matter.

e One of the latest threads in the evolution of ideas is only slightly more than six years old.
Learning about the paper of Laurent Nottale about the possibility to identify planetary orbits
as Bohr orbits with a gigantic value of gravitational Planck constant made once again possible to
see the obvious. Dynamical quantized Planck constant is strongly suggested by quantum classical
correspondence and the fact that space-time sheets identifiable as quantum coherence regions can
have arbitrarily large sizes. During summer 2010 several new insights about the mathematical
structure and interpretation of TGD emerged. One of these insights was the realization that
the postulated hierarchy of Planck constants might follow from the basic structure of quantum
TGD. The point is that due to the extreme non-linearity of the classical action principle the
correspondence between canonical momentum densities and time derivatives of the imbedding
space coordinates is one-to-many and the natural description of the situation is in terms of local
singular covering spaces of the imbedding space. One could speak about effective value of Planck



constant coming as a multiple of its minimal value. The implications of the hierarchy of Planck
constants are extremely far reaching so that the significance of the reduction of this hierarchy to
the basic mathematical structure distinguishing between TGD and competing theories cannot
be under-estimated.

From the point of view of particle physics the ultimate goal is of course a practical construction
recipe for the S-matrix of the theory. I have myself regarded this dream as quite too ambitious taking
into account how far reaching re-structuring and generalization of the basic mathematical structure
of quantum physics is required. It has indeed turned out that the dream about explicit formula
is unrealistic before one has understood what happens in quantum jump. Symmetries and general
physical principles have turned out to be the proper guide line here. To give some impressions about
what is required some highlights are in order.

e With the emergence of zero energy ontology the notion of S-matrix was replaced with M-matrix
which can be interpreted as a complex square root of density matrix representable as a diagonal
and positive square root of density matrix and unitary S-matrix so that quantum theory in zero
energy ontology can be said to define a square root of thermodynamics at least formally.

e A decisive step was the strengthening of the General Coordinate Invariance to the requirement
that the formulations of the theory in terms of light-like 3-surfaces identified as 3-surfaces at
which the induced metric of space-time surfaces changes its signature and in terms of space-like
3-surfaces are equivalent. This means effective 2-dimensionality in the sense that partonic 2-
surfaces defined as intersections of these two kinds of surfaces plus 4-D tangent space data at
partonic 2-surfaces code for the physics. Quantum classical correspondence requires the coding
of the quantum numbers characterizing quantum states assigned to the partonic 2-surfaces to
the geometry of space-time surface. This is achieved by adding to the modified Dirac action a
measurement interaction term assigned with light-like 3-surfaces.

e The replacement of strings with light-like 3-surfaces equivalent to space-like 3-surfaces means
enormous generalization of the super conformal symmetries of string models. A further general-
ization of these symmetries to non-local Yangian symmetries generalizing the recently discovered
Yangian symmetry of N' = 4 supersymmetric Yang-Mills theories is highly suggestive. Here the
replacement of point like particles with partonic 2-surfaces means the replacement of conformal
symmetry of Minkowski space with infinite-dimensional super-conformal algebras. Yangian sym-
metry provides also a further refinement to the notion of conserved quantum numbers allowing
to define them for bound states using non-local energy conserved currents.

e A further attractive idea is that quantum TGD reduces to almost topological quantum field
theory. This is possible if the Kéhler action for the preferred extremals defining WCW Kéhler
function reduces to a 3-D boundary term. This takes place if the conserved currents are so called
Beltrami fields with the defining property that the coordinates associated with flow lines extend
to single global coordinate variable. This ansatz together with the weak form of electric-magnetic
duality reduces the Kahler action to Chern-Simons term with the condition that the 3-surfaces
are extremals of Chern-Simons action subject to the constraint force defined by the weak form
of electric magnetic duality. It is the latter constraint which prevents the trivialization of the
theory to a topological quantum field theory. Also the identification of the Kéahler function of
WCW as Dirac determinant finds support as well as the description of the scattering amplitudes
in terms of braids with interpretation in terms of finite measurement resolution coded to the
basic structure of the solutions of field equations.

e In standard QFT Feynman diagrams provide the description of scattering amplitudes. The
beauty of Feynman diagrams is that they realize unitarity automatically via the so called
Cutkosky rules. In contrast to Feynman’s original beliefs, Feynman diagrams and virtual parti-
cles are taken only as a convenient mathematical tool in quantum field theories. QFT approach
is however plagued by UV and IR divergences and one must keep mind open for the possibility
that a genuine progress might mean opening of the black box of the virtual particle.

In TGD framework this generalization of Feynman diagrams indeed emerges unavoidably. Light-
like 3-surfaces replace the lines of Feynman diagrams and vertices are replaced by 2-D partonic
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2-surfaces. Zero energy ontology and the interpretation of parton orbits as light-like ”wormbhole
throats” suggests that virtual particle do not differ from on mass shell particles only in that
the four- and three- momenta of wormhole throats fail to be parallel. The two throats of the
wormhole defining virtual particle would contact carry on mass shell quantum numbers but
for virtual particles the four-momenta need not be parallel and can also have opposite signs of
energy. Modified Dirac equation suggests a number theoretical quantization of the masses of the
virtual particles. The kinematic constraints on the virtual momenta are extremely restrictive
and reduce the dimension of the sub-space of virtual momenta and if massless particles are
not allowed (IR cutoff provided by zero energy ontology naturally), the number of Feynman
diagrams contributing to a particular kind of scattering amplitude is finite and manifestly UV
and IR finite and satisfies unitarity constraint in terms of Cutkosky rules. What is remarkable
that fermionic propagatos are massless propagators but for on mass shell four-momenta. This
gives a connection with the twistor approach and inspires the generalization of the Yangian
symmetry to infinite-dimensional super-conformal algebras.

What I have said above is strongly biased view about the recent situation in quantum TGD and
I have left all about applications to the introductions of the books whose purpose is to provide a
bird’s eye of view about TGD as it is now. This vision is single man’s view and doomed to contain
unrealistic elements as I know from experience. My dream is that young critical readers could take
this vision seriously enough to try to demonstrate that some of its basic premises are wrong or to
develop an alternative based on these or better premises. I must be however honest and tell that 32
years of TGD is a really vast bundle of thoughts and quite a challenge for anyone who is not able to
cheat himself by taking the attitude of a blind believer or a light-hearted debunker trusting on the
power of easy rhetoric tricks.

Matti Pitkanen

Hanko,
September 15, 2010
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Chapter 1

Introduction

1.1 Basic Ideas of TGD

The basic physical picture behind TGD was formed as a fusion of two rather disparate approaches:
namely TGD is as a Poincare invariant theory of gravitation and TGD as a generalization of the
old-fashioned string model.

1.1.1 Background

T(opological) G(eometro)D(ynamics) is one of the many attempts to find a unified description of basic
interactions. The development of the basic ideas of TGD to a relatively stable form took time of about
half decade [K3]. The great challenge is to construct a mathematical theory around these physically
very attractive ideas and I have devoted the last twenty-three years for the realization of this dream
and this has resulted in seven online books about TGD and eight online books about TGD inspired
theory of consciousness and of quantum biology.

Quantum T (opological) G(eometro)D(ynamics) as a classical spinor geometry for infinite-dimensional
configuration space, p-adic numbers and quantum TGD, and TGD inspired theory of consciousness
and of quantum biology have been for last decade of the second millenium the basic three strongly
interacting threads in the tapestry of quantum TGD.

For few years ago the discussions with Tony Smith initiated a fourth thread which deserves the
name "T'GD as a generalized number theory’. The basic observation was that classical number fields
might allow a deeper formulation of quantum TGD. The work with Riemann hypothesis made time
ripe for realization that the notion of infinite primes could provide, not only a reformulation, but a
deep generalization of quantum TGD. This led to a thorough and extremely fruitful revision of the
basic views about what the final form and physical content of quantum TGD might be. Together with
the vision about the fusion of p-adic and real physics to a larger coherent structure these sub-threads
fused to the ”physics as generalized number theory” th

A further thread emerged from the realization that by quantum classical correspondence TGD
predicts an infinite hierarchy of macroscopic quantum systems with increasing sizes, that it is not at
all clear whether standard quantum mechanics can accommodate this hierarchy, and that a dynam-
ical quantized Planck constant might be necessary and certainly possible in TGD framework. The
identification of hierarchy of Planck constants whose values TGD ”predicts” in terms of dark matter
hierarchy would be natural. This also led to a solution of a long standing puzzle: what is the proper
interpretation of the predicted fractal hierarchy of long ranged classical electro-weak and color gauge
fields. Quantum classical correspondences allows only single answer: there is infinite hierarchy of p-
adically scaled up variants of standard model physics and for each of them also dark hierarchy. Thus
TGD Universe would be fractal in very abstract and deep sense.

Every updating of the books makes me frustrated as I see how badly the structure of the repre-
sentation reflects my bird’s eye of view as it is at the moment of updating. At this time I realized
that the chronology based identification of the threads is quite natural but not logical and it is much
more logical to see p-adic physics, the ideas related to classical number fields, and infinite primes
as sub-threads of a thread which might be called ”physics as a generalized number theory”. In the
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following I adopt this view. This reduces the number of threads to four! I am not even sure about
the number of threads! Be patient!

TGD forces the generalization of physics to a quantum theory of consciousness, and represent
TGD as a generalized number theory vision leads naturally to the emergence of p-adic physics as
physics of cognitive representations. The seven online books [K87, [K68|, [K59) [K54), K69l K78 [K'T5]
about TGD and eight online books about TGD inspired theory of consciousness and of quantum
biology [K82| K14l K64, [K12| K39l K46l [K49, [K74] are warmly recommended to the interested reader.

1.1.2 TGD as a Poincare invariant theory of gravitation

The first approach was born as an attempt to construct a Poincare invariant theory of gravitation.
Space-time, rather than being an abstract manifold endowed with a pseudo-Riemannian structure, is
regarded as a surface in the 8-dimensional space H = M3 CP,, where M* denotes Minkowski space and
CP, = SU(3)/U(2) is the complex projective space of two complex dimensions [A62] [A52] [A59] [A50].

The identification of the space-time as a submanifold [A48] [A61] of M* x CP, leads to an ex-
act Poincare invariance and solves the conceptual difficulties related to the definition of the energy-
momentum in General Relativity.

It soon however turned out that submanifold geometry, being considerably richer in structure
than the abstract manifold geometry, leads to a geometrization of all basic interactions. First, the
geometrization of the elementary particle quantum numbers is achieved. The geometry of C' P; explains
electro-weak and color quantum numbers. The different H-chiralities of H-spinors correspond to the
conserved baryon and lepton numbers. Secondly, the geometrization of the field concept results. The
projections of the C'Py spinor connection, Killing vector fields of C'P, and of H-metric to four-surface
define classical electro-weak, color gauge fields and metric in X*.

1.1.3 TGD as a generalization of the hadronic string model

The second approach was based on the generalization of the mesonic string model describing mesons
as strings with quarks attached to the ends of the string. In the 3-dimensional generalization 3-
surfaces correspond to free particles and the boundaries of the 3- surface correspond to partons in
the sense that the quantum numbers of the elementary particles reside on the boundaries. Various
boundary topologies (number of handles) correspond to various fermion families so that one obtains
an explanation for the known elementary particle quantum numbers. This approach leads also to a
natural topological description of the particle reactions as topology changes: for instance, two-particle
decay corresponds to a decay of a 3-surface to two disjoint 3-surfaces.

This decay vertex does not however correspond to a direct generalization of trouser vertex of
string models. Indeed, the important difference between TGD and string models is that the analogs
of string world sheet diagrams do not describe particle decays but the propagation of particles via
different routes. Particle reactions are described by generalized Feynman diagrams for which 3-D
light-like surface describing particle propagating join along their ends at vertices. As 4-manifolds the
space-time surfaces are therefore singular like Feynman diagrams as 1-manifolds.

1.1.4 Fusion of the two approaches via a generalization of the space-time
concept

The problem is that the two approaches to TGD seem to be mutually exclusive since the orbit of a
particle like 3-surface defines 4-dimensional surface, which differs drastically from the topologically
trivial macroscopic space-time of General Relativity. The unification of these approaches forces a
considerable generalization of the conventional space-time concept. First, the topologically trivial 3-
space of General Relativity is replaced with a ”topological condensate” containing matter as particle
like 3-surfaces "glued” to the topologically trivial background 3-space by connected sum operation.
Secondly, the assumption about connectedness of the 3-space is given up. Besides the ”topological
condensate” there could be ”vapor phase” that is a ”"gas” of particle like 3-surfaces (counterpart of
the ”baby universies” of GRT) and the nonconservation of energy in GRT corresponds to the transfer
of energy between the topological condensate and vapor phase.

What one obtains is what I have christened as many-sheeted space-time. One particular aspect
is topological field quantization meaning that various classical fields assignable to a physical system
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correspond to space-time sheets representing the classical fields to that particular system. One can
speak of the field body of a particular physical system. Field body consists of topological light rays,
and electric and magnetic flux quanta. In Maxwell’s theory system does not possess this kind of
field identity. The notion of magnetic body is one of the key players in TGD inspired theory of
consciousness and quantum biology.

This picture became more detailed with the advent of zero energy ontology (ZEQO). The basic notion
of ZEO is causal diamond (CD) identified as the Cartesian product of C'P, and of the intersection
of future and past directed light-cones and having scale coming as an integer multiple of C P, size is
fundamental. C'Ds form a fractal hierarchy and zero energy states decompose to products of positive
and negative energy parts assignable to the opposite boundaries of C'D defining the ends of the space-
time surface. The counterpart of zero energy state in positive energy ontology is in terms of initial
and final states of a physical event, say particle reaction.

General Coordinate Invariance allows to identify the basic dynamical objects as space-like 3-
surfaces at the ends of space-time surface at boundaries of C'D: this means that space-time sur-
face is analogous to Bohr orbit. An alternative identification is as light-like 3-surfaces at which the
signature of the induced metric changes from Minkowskian to Euclidian and interpreted as lines of
generalized Feynman diagrams. Also the Euclidian 4-D regions would have similar interpretation. The
requirement that the two interpretations are equivalent, leads to a strong form of General Coordinate
Invariance. The outcome is effective 2-dimensionality stating that the partonic 2-surfaces identified
as intersections of the space-like ends of space-time surface and light-like wormhole throats are the
fundamental objects. That only effective 2-dimensionality is in question is due to the effects caused by
the failure of strict determinism of Kahler action. In finite length scale resolution these effects can be
neglected below UV cutoff and above IR cutoff. One can also speak about strong form of holography.

There is a further generalization of the space-time concept inspired by p-adic physics forcing a
generalization of the number concept through the fusion of real numbers and various p-adic number
fields. Also the hierarchy of Planck constants forces a generalization of the notion of space-time.

A very concise manner to express how TGD differs from Special and General Relativities could
be following. Relativity Principle (Poincare Invariance), General Coordinate Invariance, and Equiva-
lence Principle remain true. What is new is the notion of sub-manifold geometry: this allows to realize
Poincare Invariance and geometrize gravitation simultaneously. This notion also allows a geometriza-
tion of known fundamental interactions and is an essential element of all applications of TGD ranging
from Planck length to cosmological scales. Sub-manifold geometry is also crucial in the applications
of TGD to biology and consciousness theory.

The worst objection against TGD is the observation that all classical gauge fields are expressible in
terms of four imbedding space coordinates only- essentially C' P, coordinates. The linear superposition
of classical gauge fields taking place independently for all gauge fields is lost. This would be a
catastrophe without many-sheeted space-time. Instead of gauge fields, only the effects such as gauge
forces are superposed. Particle topologically condenses to several space-time sheets simultaneously
and experiences the sum of gauge forces. This transforms the weakness to extreme economy: in a
typical unified theory the number of primary field variables is countered in hundreds if not thousands,
now it is just four.

1.2 The threads in the development of quantum TGD

The development of TGD has involved several strongly interacting threads: physics as infinite-
dimensional geometry; TGD as a generalized number theory, the hierarchy of Planck constants inter-
preted in terms of dark matter hierarchy, and TGD inspired theory of consciousness. In the following
these threads are briefly described.

1.2.1 Quantum TGD as spinor geometry of World of Classical Worlds

A turning point in the attempts to formulate a mathematical theory was reached after seven years
from the birth of TGD. The great insight was "Do not quantize”. The basic ingredients to the new
approach have served as the basic philosophy for the attempt to construct Quantum TGD since then
and have been the following ones:
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1. Quantum theory for extended particles is free(!), classical(!) field theory for a generalized
Schrédinger amplitude in the configuration space C'H consisting of all possible 3-surfaces in
H. 7All possible” means that surfaces with arbitrary many disjoint components and with
arbitrary internal topology and also singular surfaces topologically intermediate between two
different manifold topologies are included. Particle reactions are identified as topology changes
[A58,[A65,[A66]. For instance, the decay of a 3-surface to two 3-surfaces corresponds to the decay
A — B+ C. Classically this corresponds to a path of configuration space leading from 1-particle
sector to 2-particle sector. At quantum level this corresponds to the dispersion of the gener-
alized Schrédinger amplitude localized to 1-particle sector to two-particle sector. All coupling
constants should result as predictions of the theory since no nonlinearities are introduced.

2. During years this naive and very rough vision has of course developed a lot and is not anymore
quite equivalent with the original insight. In particular, the space-time correlates of Feynman
graphs have emerged from theory as Euclidian space-time regions and the strong form of General
Coordinate Invariance has led to a rather detailed and in many respects un-expected visions.
This picture forces to give up the idea about smooth space-time surfaces and replace space-
time surface with a generalization of Feynman diagram in which vertices represent the failure of
manifold property. I have also startd introduced the word "world of classical worlds” (WCW)
instead of rather formal ”configuration space”. I hope that ”WCW?” does not induce despair in
the reader having tendency to think about the technicalities involved!

3. WCW is endowed with metric and spinor structure so that one can define various metric related
differential operators, say Dirac operator, appearing in the field equations of the theory. The
most ambitious dream is that zero energy states correspond to a complete solution basis for the
Dirac operator of WCW so that this classical free field theory would dictate M-matrices which
form orthonormal rows of what I call U-matrix. Given M-matrix in turn would decompose to a
product of a hermitian density matrix and unitary S-matrix.

M-matrix would define time-like entanglement coefficients between positive and negative energy
parts of zero energy states (all net quantum numbers vanish for them) and can be regarded as a
hermitian quare root of density matrix multiplied by a unitary S-matrix. Quantum theory would
be in well-defined sense a square root of thermodynamics. The orthogonality and hermiticity
of the complex square roots of density matrices commuting with S-matrix means that they
span infinite-dimensional Lie algebra acting as symmetries of the S-matrix. Therefore quantum
TGD would reduce to group theory in well-defined sense: its own symmetries would define the
symmetries of the theory. In fact the Lie algebra of Hermitian M-matrices extends to Kac-
Moody type algebra obtained by multiplying hermitian square roots of density matrices with
powers of the S-matrix. Also the analog of Yangian algebra involving only non-negative powers
of S-matrix is possible.

4. By quantum classical correspondence the construction of WCW spinor structure reduces to the
second quantization of the induced spinor fields at space-time surface. The basic action is so
called modified Dirac action in which gamma matrices are replaced with the modified gamma
matrices defined as contractions of the canonical momentum currents with the imbedding space
gamma matrices. In this manner one achieves super-conformal symmetry and conservation of
fermionic currents among other things and consistent Dirac equation. This modified gamma
matrices define as anticommutators effective metric, which might provide geometrization for
some basic observables of condensed matter physics. The conjecture is that Dirac determinant
for the modified Dirac action gives the exponent of Kahler action for a preferred extremal
as vacuum functional so that one might talk about bosonic emergence in accordance with the
prediction that the gauge bosons and graviton are expressible in terms of bound states of fermion
and antifermion.

The evolution of these basic ideas has been rather slow but has gradually led to a rather beautiful
vision. One of the key problems has been the definition of Kéhler function. Kahler function is Kahler
action for a preferred extremal assignable to a given 3-surface but what this preferred extremal is?
The obvious first guess was as absolute minimum of Kéhler action but could not be proven to be right
or wrong. One big step in the progress was boosted by the idea that TGD should reduce to almost
topological QFT in which braids wold replace 3-surfaces in finite measurement resolution, which could
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be inherent property of the theory itself and imply discretization at partonic 2-surfaces with discrete
points carrying fermion number.

1. TGD as almost topological QFT vision suggests that Kahler action for preferred extremals
reduces to Chern-Simons term assigned with space-like 3-surfaces at the ends of space-time
(recall the notion of causal diamond (CD)) and with the light-like 3-surfaces at which the
signature of the induced metric changes from Minkowskian to Euclidian. Minkowskian and
Euclidian regions would give at wormhole throats the same contribution apart from coefficients
and in Minkowskian regions the /g4 factor would be imaginary so that one would obtain sum of
real term identifiable as K&hler function and imaginary term identifiable as the ordinary action
giving rise to interference effects and stationary phase approximation central in both classical
and quantum field theory. Imaginary contribution - the presence of which I realized only after
33 years of TGD - could also havetopological interpretation as a Morse function. On physical
side the emergence of Euclidian space-time regions is something completely new and leads to a
dramatic modification of the ideas about black hole interior.

2. The manner to achieve the reduction to Chern-Simons terms is simple. The vanishing of Coulom-
bic contribution to Kéhler action is required and is true for all known extremals if one makes a
general ansatz about the form of classical conserved currents. The so called weak form of electric-
magnetic duality defines a boundary condition reducing the resulting 3-D terms to Chern-Simons
terms. In this manner almost topological QFT results. But only ”almost” since the Lagrange
multiplier term forcing electric-magnetic duality implies that Chern-Simons action for preferred
extremals depends on metric.

3. A further quite recent hypothesis inspired by effective 2-dimensionality is that Chern-Simons
terms reduce to a sum of two 2-dimensional terms. An imaginary term proportional to the total
area of Minkowskian string world sheets and a real tem proportional to the total area of partonic
2-surfaces or equivalently strings world sheets in Euclidian space-time regions. Also the equality
of the total areas of strings world sheets and partonic 2-surfaces is highly suggestive and would
realize a duality between these two kinds of objects. String world sheets indeed emerge naturally
for the proposed ansatz defining preferred extremals. Therefore Kéhler action would have very
stringy character apart from effects due to the failure of the strict determinism meaning that
radiative corrections break the effective 2-dimensionality.

1.2.2 TGD as a generalized number theory

Quantum T(opological)D(ynamics) as a classical spinor geometry for infinite-dimensional configu-
ration space, p-adic numbers and quantum TGD, and TGD inspired theory of consciousness, have
been for last ten years the basic three strongly interacting threads in the tapestry of quantum TGD.
The fourth thread deserves the name "TGD as a generalized number theory’. It involves three sep-
arate threads: the fusion of real and various p-adic physics to a single coherent whole by requiring
number theoretic universality discussed already, the formulation of quantum TGD in terms of hyper-
counterparts of classical number fields identified as sub-spaces of complexified classical number fields
with Minkowskian signature of the metric defined by the complexified inner product, and the notion
of infinite prime.

p-Adic TGD and fusion of real and p-adic physics to single coherent whole

The p-adic thread emerged for roughly ten years ago as a dim hunch that p-adic numbers might be
important for TGD. Experimentation with p-adic numbers led to the notion of canonical identification
mapping reals to p-adics and vice versa. The breakthrough came with the successful p-adic mass
calculations using p-adic thermodynamics for Super-Virasoro representations with the super-Kac-
Moody algebra associated with a Lie-group containing standard model gauge group. Although the
details of the calculations have varied from year to year, it was clear that p-adic physics reduces not
only the ratio of proton and Planck mass, the great mystery number of physics, but all elementary
particle mass scales, to number theory if one assumes that primes near prime powers of two are in a
physically favored position. Why this is the case, became one of the key puzzless and led to a number
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of arguments with a common gist: evolution is present already at the elementary particle level and
the primes allowed by the p-adic length scale hypothesis are the fittest ones.

It became very soon clear that p-adic topology is not something emerging in Planck length scale
as often believed, but that there is an infinite hierarchy of p-adic physics characterized by p-adic
length scales varying to even cosmological length scales. The idea about the connection of p-adics
with cognition motivated already the first attempts to understand the role of the p-adics and inspired
"Universe as Computer’ vision but time was not ripe to develop this idea to anything concrete (p-adic
numbers are however in a central role in TGD inspired theory of consciousness). It became however
obvious that the p-adic length scale hierarchy somehow corresponds to a hierarchy of intelligences and
that p-adic prime serves as a kind of intelligence quotient. Ironically, the almost obvious idea about
p-adic regions as cognitive regions of space-time providing cognitive representations for real regions
had to wait for almost a decade for the access into my consciousness.

There were many interpretational and technical questions crying for a definite answer.

1. What is the relationship of p-adic non-determinism to the classical non-determinism of the
basic field equations of TGD? Are the p-adic space-time region genuinely p-adic or does p-adic
topology only serve as an effective topology? If p-adic physics is direct image of real physics,
how the mapping relating them is constructed so that it respects various symmetries? Is the
basic physics p-adic or real (also real TGD seems to be free of divergences) or both? If it is both,
how should one glue the physics in different number field together to get The Physics? Should
one perform p-adicization also at the level of the configuration space of 3-surfaces? Certainly
the p-adicization at the level of super-conformal representation is necessary for the p-adic mass
calculations.

2. Perhaps the most basic and most irritating technical problem was how to precisely define p-adic
definite integral which is a crucial element of any variational principle based formulation of the
field equations. Here the frustration was not due to the lack of solution but due to the too large
number of solutions to the problem, a clear symptom for the sad fact that clever inventions
rather than real discoveries might be in question. Quite recently I however learned that the
problem of making sense about p-adic integration has been for decades central problem in the
frontier of mathematics and a lot of profound work has been done along same intuitive lines
as | have proceeded in TGD framework. The basic idea is certainly the notion of algebraic
continuation from the world of rationals belonging to the intersection of real world and various
p-adic worlds.

Despite these frustrating uncertainties, the number of the applications of the poorly defined p-adic
physics growed steadily and the applications turned out to be relatively stable so that it was clear
that the solution to these problems must exist. It became only gradually clear that the solution of
the problems might require going down to a deeper level than that represented by reals and p-adics.

The key challenge is to fuse various p-adic physics and real physics to single larger structures.
This has inspired a proposal for a generalization of the notion of number field by fusing real numbers
and various p-adic number fields and their extensions along rationals and possible common algebraic
numbers. This leads to a generalization of the notions of imbedding space and space-time concept and
one can speak about real and p-adic space-time sheets. The quantum dynamics should be such that
it allows quantum transitions transforming space-time sheets belonging to different number fields to
each other. The space-time sheets in the intersection of real and p-adic worlds are of special interest
and the hypothesis is that living matter resides in this intersection. This leads to surprisingly detailed
predictions and far reaching conjectures. For instance, the number theoretic generalization of entropy
concept allows negentropic entanglement central for the applications to living matter.

The basic principle is number theoretic universality stating roughly that the physics in various
number fields can be obtained as completion of rational number based physics to various number
fields. Rational number based physics would in turn describe physics in finite measurement resolution
and cognitive resolution. The notion of finite measurement resolution has become one of the basic
principles of quantum TGD and leads to the notions of braids as representatives of 3-surfaces and
inclusions of hyper-finite factors as a representation for finite measurement resolution.
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The role of classical number fields

The vision about the physical role of the classical number fields relies on the notion of number theoretic
compactifiction stating that space-time surfaces can be regarded as surfaces of either M8 or M* x CP;.
As surfaces of M? identifiable as space of hyper-octonions they are hyper-quaternionic or co-hyper-
quaternionic- and thus maximally associative or co-associative. This means that their tangent space
is either hyper-quaternionic plane of M?® or an orthogonal complement of such a plane. These surface
can be mapped in natural manner to surfaces in M* x C'P, [K81] provided one can assign to each point
of tangent space a hyper-complex plane M?(x) C M*. One can also speak about M8 — H duality.

This vision has very strong predictive power. It predicts that the extremals of Kéahler action
correspond to either hyper-quaternionic or co-hyper-quaternionic surfaces such that one can assign
to tangent space at each point of space-time surface a hyper-complex plane M?(z) C M*. As a
consequence, the M* projection of space-time surface at each point contains M?(z) and its orthogonal
complement. These distributions are integrable implying that space-time surface allows dual slicings
defined by string world sheets Y2 and partonic 2-surfaces X2. The existence of this kind of slicing
was earlier deduced from the study of extremals of Kéhler action and christened as Hamilton-Jacobi
structure. The physical interpretation of M?(x) is as the space of non-physical polarizations and the
plane of local 4-momentum.

One can fairly say, that number theoretical compactification is responsible for most of the under-
standing of quantum TGD that has emerged during last years. This includes the realization of Equiv-
alence Principle at space-time level, dual formulations of TGD as Minkowskian and Euclidian string
model type theories, the precise identification of preferred extremals of K&hler action as extremals
for which second variation vanishes (at least for deformations representing dynamical symmetries)
and thus providing space-time correlate for quantum criticality, the notion of number theoretic braid
implied by the basic dynamics of Kahler action and crucial for precise construction of quantum TGD
as almost-topological QFT, the construction of configuration space metric and spinor structure in
terms of second quantized induced spinor fields with modified Dirac action defined by Kéahler action
realizing automatically the notion of finite measurement resolution and a connection with inclusions
of hyper-finite factors of type II; about which Clifford algebra of configuration space represents an
example.

The two most important number theoretic conjectures relate to the preferred extremals of Kahler
action. The general idea is that classical dynamics for the preferred extremals of Kahler action should
reduce to number theory: space-time surfaces should be either associative or co-associative in some
sense.

1. The first meaning for associativity (co-associativity) would be that tangent (normal) spaces of
space-time surfaces are quaternionic in some sense and thus associative. This can be formu-
lated in terms of octonionic representation of the imbedding space gamma matrices possible in
dimension D = 8 and states that induced gamma matrices generate quaternionic sub-algebra at
each space-time point. It seems that induced rather than modified gamma matrices must be in
question.

2. Second meaning for associative (co-associativity) would be following. In the case of complex
numbers the vanishing of the real part of real-analytic function defines a 1-D curve. In oct-
nionic case one can decompose octonion to sum of quaternion and quaternion multiplied by an
octonionic imaginary unit. Quaternionicity could mean that space-time surfaces correspond to
the vanishing of the imaginary part of the octonion real-analytic function. Co-quaternionicity
would be defined in an obvious manner. Octonionic real analytic functions form a function field
closed also with respect to the composition of functions. Space-time surfaces would form the
analog of function field with the composition of functions with all operations realized as algebraic
operations for space-time surfaces. Co-associaty could be perhaps seen as an additional feature
making the algebra in question also co-algebra.

3. The third conjecture is that these conjectures are equivalent.

Infinite primes

The discovery of the hierarchy of infinite primes and their correspondence with a hierarchy defined by a
repeatedly second quantized arithmetic quantum field theory gave a further boost for the speculations
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about TGD as a generalized number theory. The work with Riemann hypothesis led to further ideas.

After the realization that infinite primes can be mapped to polynomials representable as surfaces
geometrically, it was clear how TGD might be formulated as a generalized number theory with infinite
primes forming the bridge between classical and quantum such that real numbers, p-adic numbers, and
various generalizations of p-adics emerge dynamically from algebraic physics as various completions of
the algebraic extensions of rational (hyper-)quaternions and (hyper-)octonions. Complete algebraic,
topological and dimensional democracy would characterize the theory.

What is especially satisfying is that p-adic and real regions of the space-time surface could emerge
automatically as solutions of the field equations. In the space-time regions where the solutions of
field equations give rise to in-admissible complex values of the imbedding space coordinates, p-adic
solution can exist for some values of the p-adic prime. The characteristic non-determinism of the p-
adic differential equations suggests strongly that p-adic regions correspond to 'mind stuff’, the regions
of space-time where cognitive representations reside. This interpretation implies that p-adic physics
is physics of cognition. Since Nature is probably an extremely brilliant simulator of Nature, the
natural idea is to study the p-adic physics of the cognitive representations to derive information about
the real physics. This view encouraged by TGD inspired theory of consciousness clarifies difficult
interpretational issues and provides a clear interpretation for the predictions of p-adic physics.

1.2.3 Hierarchy of Planck constants and dark matter hierarchy

By quantum classical correspondence space-time sheets can be identified as quantum coherence regions.
Hence the fact that they have all possible size scales more or less unavoidably implies that Planck
constant must be quantized and have arbitrarily large values. If one accepts this then also the idea
about dark matter as a macroscopic quantum phase characterized by an arbitrarily large value of
Planck constant emerges naturally as does also the interpretation for the long ranged classical electro-
weak and color fields predicted by TGD. Rather seldom the evolution of ideas follows simple linear
logic, and this was the case also now. In any case, this vision represents the fifth, relatively new thread
in the evolution of TGD and the ideas involved are still evolving.

Dark matter as large h phase

D. Da Rocha and Laurent Nottale [E175] have proposed that Schrodinger equation with Planck
constant & replaced with what might be called gravitational Planck constant &g, = G’Z}T}M (h=c=1).
vp is a velocity parameter having the value vy = 144.7 + .7 km/s giving vg/c = 4.6 x 10~%. This is
rather near to the peak orbital velocity of stars in galactic halos. Also subharmonics and harmonics
of vy seem to appear. The support for the hypothesis coming from empirical data is impressive.

Nottale and Da Rocha believe that their Schrodinger equation results from a fractal hydrodynamics.
Many-sheeted space-time however suggests astrophysical systems are not only quantum systems at
larger space-time sheets but correspond to a gigantic value of gravitational Planck constant. The
gravitational (ordinary) Schrodinger equation would provide a solution of the black hole collapse (IR
catastrophe) problem encountered at the classical level. The resolution of the problem inspired by
TGD inspired theory of living matter is that it is the dark matter at larger space-time sheets which
is quantum coherent in the required time scale [K72] .

TGD predicts correctly the value of the parameter vy assuming that cosmic strings and their decay
remnants are responsible for the dark matter. The harmonics of vy can be understood as corresponding
to perturbations replacing cosmic strings with their n-branched coverings so that tension becomes
n2-fold: much like the replacement of a closed orbit with an orbit closing only after n turns. 1/n-
sub-harmonic would result when a magnetic flux tube split into n disjoint magnetic flux tubes. Also
a model for the formation of planetary system as a condensation of ordinary matter around quantum
coherent dark matter emerges [K72] .

The values of Planck constants postulated by Nottale are gigantic and it is natural to assign them
to the space-time sheets mediating gravitational interaction and identifiable as magnetic flux tubes
(quanta). The magnetic energy of these flux quanta would correspond to dark energy and magnetic
tension would give rise to negative ”pressure” forcing accelerate cosmological expansion. This leads
to a rather detailed vision about the evolution of stars and galaxies identified as bubbles of ordinary
and dark matter inside magnetic flux tubes identifiable as dark energy.
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Hierarchy of Planck constants from the anomalies of neuroscience biology

The quantal effects of ELF em fields on vertebrate brain have been known since seventies. ELF em
fields at frequencies identifiable as cyclotron frequencies in magnetic field whose intensity is about 2/5
times that of Earth for biologically important ions have physiological effects and affect also behavior.
What is intriguing that the effects are found only in vertebrates (to my best knowledge). The energies
for the photons of ELF em fields are extremely low - about 10710 times lower than thermal energy
at physiological temperatures- so that quantal effects are impossible in the framework of standard
quantum theory. The values of Planck constant would be in these situations large but not gigantic.

This inspired the hypothesis that these photons correspond to so large value of Planck constant
that the energy of photons is above the thermal energy. The proposed interpretation was as dark
photons and the general hypothesis was that dark matter corresponds to ordinary matter with non-
standard value of Planck constant. If only particles with the same value of Planck constant can appear
in the same vertex of Feynman diagram, the phases with different value of Planck constant are dark
relative to each other. The phase transitions changing Planck constant can however make possible
interactions between phases with different Planck constant but these interactions do not manifest
themselves in particle physics. Also the interactions mediated by classical fields should be possible.
Dark matter would not be so dark as we have used to believe.

Also the anomalies of biology support the view that dark matter might be a key player in living
matter.

Does the hierarchy of Planck constants reduce to the vacuum degeneracy of Kahler
action?

This starting point led gradually to the recent picture in which the hierarchy of Planck constants
is postulated to come as integer multiples of the standard value of Planck constant. Given integer
multiple i = nhy of the ordinary Planck constant A is assigned with a multiple singular covering
of the imbedding space [K30]. One ends up to an identification of dark matter as phases with non-
standard value of Planck constant having geometric interpretation in terms of these coverings providing
generalized imbedding space with a book like structure with pages labelled by Planck constants or
integers characterizing Planck constant. The phase transitions changing the value of Planck constant
would correspond to leakage between different sectors of the extended imbedding space. The question
is whether these coverings must be postulated separately or whether they are only a convenient
auxiliary tool.

The simplest option is that the hierarchy of coverings of imbedding space is only effective. Many-
sheeted coverings of the imbedding space indeed emerge naturally in TGD framework. The huge
vacuum degeneracy of Kahler action implies that the relationship between gradients of the imbedding
space coordinates and canonical momentum currents is many-to-one: this was the very fact forcing to
give up all the standard quantization recipes and leading to the idea about physics as geometry of the
”world of classical worlds”. If one allows space-time surfaces for which all sheets corresponding to the
same values of the canonical momentum currents are present, one obtains effectively many-sheeted
covering of the imbedding space and the contributions from sheets to the Kahler action are identical.
If all sheets are treated effectively as one and the same sheet, the value of Planck constant is an integer
multiple of the ordinary one. A natural boundary condition would be that at the ends of space-time
at future and past boundaries of causal diamond containing the space-time surface, various branches
co-incide. This would raise the ends of space-time surface in special physical role.

Dark matter as a source of long ranged weak and color fields

Long ranged classical electro-weak and color gauge fields are unavoidable in TGD framework. The
smallness of the parity breaking effects in hadronic, nuclear, and atomic length scales does not however
seem to allow long ranged electro-weak gauge fields. The problem disappears if long range classical
electro-weak gauge fields are identified as space-time correlates for massless gauge fields created by
dark matter. Also scaled up variants of ordinary electro-weak particle spectra are possible. The
identification explains chiral selection in living matter and unbroken U(2).,, invariance and free color
in bio length scales become characteristics of living matter and of bio-chemistry and bio-nuclear
physics. A possible solution of the matter antimatter asymmetry is based on the identification of also
antimatter as dark matter.
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1.2.4 TGD as a generalization of physics to a theory consciousness

General coordinate invariance forces the identification of quantum jump as quantum jump between
entire deterministic quantum histories rather than time=constant snapshots of single history. The
new view about quantum jump forces a generalization of quantum measurement theory such that
observer becomes part of the physical system. Thus a general theory of consciousness is unavoidable
outcome. This theory is developed in detail in the books [K82] [K14] [K64, K12l (K39 [K46| [K49, [K'74]

Quantum jump as a moment of consciousness

The identification of quantum jump between deterministic quantum histories (configuration space
spinor fields) as a moment of consciousness defines microscopic theory of consciousness. Quantum
jump involves the steps

\I/l—>U\I/Z—>\IJf s

where U is informational ”time development” operator, which is unitary like the S-matrix charac-
terizing the unitary time evolution of quantum mechanics. U is however only formally analogous to
Schrodinger time evolution of infinite duration although there is no real time evolution involved. It is
not however clear whether one should regard U-matrix and S-matrix as two different things or not: U-
matrix is a completely universal object characterizing the dynamics of evolution by self-organization
whereas S-matrix is a highly context dependent concept in wave mechanics and in quantum field
theories where it at least formally represents unitary time translation operator at the limit of an in-
finitely long interaction time. The S-matrix understood in the spirit of superstring models is however
something very different and could correspond to U-matrix.

The requirement that quantum jump corresponds to a measurement in the sense of quantum field
theories implies that each quantum jump involves localization in zero modes which parameterize also
the possible choices of the quantization axes. Thus the selection of the quantization axes performed
by the Cartesian outsider becomes now a part of quantum theory. Together these requirements imply
that the final states of quantum jump correspond to quantum superpositions of space-time surfaces
which are macroscopically equivalent. Hence the world of conscious experience looks classical. At
least formally quantum jump can be interpreted also as a quantum computation in which matrix U
represents unitary quantum computation which is however not identifiable as unitary translation in
time direction and cannot be ’engineered’.

Can one say anything about the unitary process? Zero energy states correspond in positive energy
ontology to physical events and break time reversal invariance. This because either the positive
or negative energy part of the state is prepared whereas the second end of C'D corresponds to a
superposition of (negative/positive energy) states with varying particle numbers and single particle
quantum numbers just as in ordinary particle physics experiment. State function reduction must
change the roles of the ends of CDs. Therefore U-matrix should correspond to the unitary matrix
relating zero energy state basis prepared at different ends of C'D and state function reduction would
be equivalent with state preparation.

The basic objection is that the arrow of geometric time alternates at imbedding space level but
we know that arrow of time is universal. What one can say about the arrow of time at space-time
level? Quantum classical correspondence requires that quantum mechanical irreversibility corresponds
to irreversibility at space-time level. If the observer is analogous to an inhabitant of Flatland gaining
information only about space-time surface, he or she is not able to discover that the arrow of time
alternates at the level of imbedding space. The inhabitant of a folded bath towel is not able to
observer the folding of the towel! Only by observing systems for which the imbedding space arrow of
time is opposite, observer can discover the alternation. Living systems indeed behave as if they would
contain space-time sheets with opposite arrow of geometric time (self-organization). Phase conjugate
light beam is second example of this.

The notion of self

The concept of self is absolutely essential for the understanding of the macroscopic and macro-temporal
aspects of consciousness. Self corresponds to a subsystem able to remain un-entangled under the



1.2. The threads in the development of quantum TGD 11

sequential informational 'time evolutions’ U. Exactly vanishing entanglement is practically impossible
in ordinary quantum mechanics and it might be that 'vanishing entanglement’ in the condition for
self-property should be replaced with ’subcritical entanglement’. On the other hand, if space-time
decomposes into p-adic and real regions, and if entanglement between regions representing physics in
different number fields vanishes, space-time indeed decomposes into selves in a natural manner.

It is assumed that the experiences of the self after the last 'wake-up’ sum up to single average
experience. This means that subjective memory is identifiable as conscious, immediate short term
memory. Selves form an infinite hierarchy with the entire Universe at the top. Self can be also
interpreted as mental images: our mental images are selves having mental images and also we represent
mental images of a higher level self. A natural hypothesis is that self S experiences the experiences
of its subselves as kind of abstracted experience: the experiences of subselves S; are not experienced
as such but represent kind of averages (S;;) of sub-subselves S;;. Entanglement between selves, most
naturally realized by the formation of join along boundaries bonds between cognitive or material space-
time sheets, provides a possible a mechanism for the fusion of selves to larger selves (for instance, the
fusion of the mental images representing separate right and left visual fields to single visual field) and
forms wholes from parts at the level of mental images.

An attractive possibility suggested by zero energy ontology is that the notions of self and quantum
jump reduce to each other and that a fractal hierarchy of quantum jumps within quantum jumps
is enough. C'Ds would serve as imbedding space correlates of selves and quantum jumps would be
followed by cascades of state function reductions beginning from given C'D and proceeding downwards
to the smaller scales (smaller C'Ds). State function reduction cascades could also take place in parallel
branches of the quantum state. One ends up with concrete ideas about how the arrow of geometric
time is induced from that of subjective time defined by the experiences induced by the sequences
of quantum jumps for sub-selves of self. One ends also ends up with concrete ideas about how the
localization of the contents of sensory experience and cognition to the upper boundaries of C'D could
take place.

Relationship to quantum measurement theory

The third basic element relates TGD inspired theory of consciousness to quantum measurement theory.
The assumption that localization occurs in zero modes in each quantum jump implies that the world
of conscious experience looks classical. It also implies the state function reduction of the standard
quantum measurement theory as the following arguments demonstrate (it took incredibly long time
to realize this almost obvious fact!).

1. The standard quantum measurement theory a la von Neumann involves the interaction of brain
with the measurement apparatus. If this interaction corresponds to entanglement between mi-
croscopic degrees of freedom m with the macroscopic effectively classical degrees of freedom M
characterizing the reading of the measurement apparatus coded to brain state, then the reduc-
tion of this entanglement in quantum jump reproduces standard quantum measurement theory
provide the unitary time evolution operator U acts as flow in zero mode degrees of freedom and
correlates completely some orthonormal basis of configuration space spinor fields in non-zero
modes with the values of the zero modes. The flow property guarantees that the localization is
consistent with unitarity: it also means 1-1 mapping of quantum state basis to classical variables
(say, spin direction of the electron to its orbit in the external magnetic field).

2. Since zero modes represent classical information about the geometry of space-time surface
(shape, size, classical Kéhler field,...), they have interpretation as effectively classical degrees
of freedom and are the TGD counterpart of the degrees of freedom M representing the reading
of the measurement apparatus. The entanglement between quantum fluctuating non-zero modes
and zero modes is the TGD counterpart for the m — M entanglement. Therefore the localization
in zero modes is equivalent with a quantum jump leading to a final state where the measurement
apparatus gives a definite reading.

This simple prediction is of utmost theoretical importance since the black box of the quantum
measurement theory is reduced to a fundamental quantum theory. This reduction is implied by the
replacement of the notion of a point like particle with particle as a 3-surface. Also the infinite-
dimensionality of the zero mode sector of the configuration space of 3-surfaces is absolutely essential.
Therefore the reduction is a triumph for quantum TGD and favors TGD against string models.



12 Chapter 1. Introduction

Standard quantum measurement theory involves also the notion of state preparation which reduces
to the notion of self measurement. Each localization in zero modes is followed by a cascade of self
measurements leading to a product state. This process is obviously equivalent with the state prepa-
ration process. Self measurement is governed by the so called Negentropy Maximization Principle
(NMP) stating that the information content of conscious experience is maximized. In the self mea-
surement the density matrix of some subsystem of a given self localized in zero modes (after ordinary
quantum measurement) is measured. The self measurement takes place for that subsystem of self for
which the reduction of the entanglement entropy is maximal in the measurement. In p-adic context
NMP can be regarded as the variational principle defining the dynamics of cognition. In real context
self measurement could be seen as a repair mechanism allowing the system to fight against quantum
thermalization by reducing the entanglement for the subsystem for which it is largest (fill the largest
hole first in a leaking boat).

Selves self-organize

The fourth basic element is quantum theory of self-organization based on the identification of quantum
jump as the basic step of self-organization [K70] . Quantum entanglement gives rise to the generation
of long range order and the emergence of longer p-adic length scales corresponds to the emergence of
larger and larger coherent dynamical units and generation of a slaving hierarchy. Energy (and quantum
entanglement) feed implying entropy feed is a necessary prerequisite for quantum self-organization.
Zero modes represent fundamental order parameters and localization in zero modes implies that the
sequence of quantum jumps can be regarded as hopping in the zero modes so that Haken’s classical
theory of self organization applies almost as such. Spin glass analogy is a further important element:
self-organization of self leads to some characteristic pattern selected by dissipation as some valley of
the ”energy” landscape.

Dissipation can be regarded as the ultimate Darwinian selector of both memes and genes. The
mathematically ugly irreversible dissipative dynamics obtained by adding phenomenological dissipa-
tion terms to the reversible fundamental dynamical equations derivable from an action principle can be
understood as a phenomenological description replacing in a well defined sense the series of reversible
quantum histories with its envelope.

Classical non-determinism of Kahler action

The fifth basic element are the concepts of association sequence and cognitive space-time sheet. The
huge vacuum degeneracy of the Kéhler action suggests strongly that the absolute minimum space-time
is not always unique. For instance, a sequence of bifurcations can occur so that a given space-time
branch can be fixed only by selecting a finite number of 3-surfaces with time like(!) separations on the
orbit of 3-surface. Quantum classical correspondence suggest an alternative formulation. Space-time
surface decomposes into maximal deterministic regions and their temporal sequences have interpre-
tation a space-time correlate for a sequence of quantum states defined by the initial (or final) states
of quantum jumps. This is consistent with the fact that the variational principle selects preferred
extremals of Kahler action as generalized Bohr orbits.

In the case that non-determinism is located to a finite time interval and is microscopic, this sequence
of 3-surfaces has interpretation as a simulation of a classical history, a geometric correlate for contents
of consciousness. When non-determinism has long lasting and macroscopic effect one can identify it as
volitional non-determinism associated with our choices. Association sequences relate closely with the
cognitive space-time sheets defined as space-time sheets having finite time duration and psychological
time can be identified as a temporal center of mass coordinate of the cognitive space-time sheet. The
gradual drift of the cognitive space-time sheets to the direction of future force by the geometry of the
future light cone explains the arrow of psychological time.

p-Adic physics as physics of cognition and intentionality

The sixth basic element adds a physical theory of cognition to this vision. TGD space-time decomposes
into regions obeying real and p-adic topologies labelled by primes p = 2, 3,5, .... p-Adic regions obey
the same field equations as the real regions but are characterized by p-adic non-determinism since
the functions having vanishing p-adic derivative are pseudo constants which are piecewise constant
functions. Pseudo constants depend on a finite number of positive pinary digits of arguments just like
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numerical predictions of any theory always involve decimal cutoff. This means that p-adic space-time
regions are obtained by gluing together regions for which integration constants are genuine constants.
The natural interpretation of the p-adic regions is as cognitive representations of real physics. The
freedom of imagination is due to the p-adic non-determinism. p-Adic regions perform mimicry and
make possible for the Universe to form cognitive representations about itself. p-Adic physics space-
time sheets serve also as correlates for intentional action.

A more more precise formulation of this vision requires a generalization of the number concept
obtained by fusing reals and p-adic number fields along common rationals (in the case of algebraic
extensions among common algebraic numbers). This picture is discussed in [K80] . The application
this notion at the level of the imbedding space implies that imbedding space has a book like structure
with various variants of the imbedding space glued together along common rationals (algebraics). The
implication is that genuinely p-adic numbers (non-rationals) are strictly infinite as real numbers so
that most points of p-adic space-time sheets are at real infinity, outside the cosmos, and that the
projection to the real imbedding space is discrete set of rationals (algebraics). Hence cognition and
intentionality are almost completely outside the real cosmos and touch it at a discrete set of points
only.

This view implies also that purely local p-adic physics codes for the p-adic fractality characterizing
long range real physics and provides an explanation for p-adic length scale hypothesis stating that
the primes p ~ 2¥, k integer are especially interesting. It also explains the long range correlations
and short term chaos characterizing intentional behavior and explains why the physical realizations
of cognition are always discrete (say in the case of numerical computations). Furthermore, a concrete
quantum model for how intentions are transformed to actions emerges.

The discrete real projections of p-adic space-time sheets serve also space-time correlate for a logical
thought. It is very natural to assign to p-adic pinary digits a p-valued logic but as such this kind
of logic does not have any reasonable identification. p-Adic length scale hypothesis suggest that the
p = 2F —n pinary digits represent a Boolean logic B* with k elementary statements (the points of the
k-element set in the set theoretic realization) with n taboos which are constrained to be identically
true.

p-Adic and dark matter hierarchies and hierarchy of moments of consciousness

Dark matter hierarchy assigned to a spectrum of Planck constant having arbitrarily large values brings
additional elements to the TGD inspired theory of consciousness.

1. Macroscopic quantum coherence can be understood since a particle with a given mass can in
principle appear as arbitrarily large scaled up copies (Compton length scales as f). The phase
transition to this kind of phase implies that space-time sheets of particles overlap and this makes
possible macroscopic quantum coherence.

2. The space-time sheets with large Planck constant can be in thermal equilibrium with ordinary
ones without the loss of quantum coherence. For instance, the cyclotron energy scale associated
with EEG turns out to be above thermal energy at room temperature for the level of dark matter
hierarchy corresponding to magnetic flux quanta of the Earth’s magnetic field with the size scale
of Earth and a successful quantitative model for EEG results [K20] .

Dark matter hierarchy leads to detailed quantitative view about quantum biology with several
testable predictions [K26] . The general prediction is that Universe is a kind of inverted Mandel-
brot fractal for which each bird’s eye of view reveals new structures in long length and time scales
representing scaled down copies of standard physics and their dark variants. These structures would
correspond to higher levels in self hierarchy. This prediction is consistent with the belief that 75 per
cent of matter in the universe is dark.

1. Living matter and dark matter

Living matter as ordinary matter quantum controlled by the dark matter hierarchy has turned out
to be a particularly successful idea. The hypothesis has led to models for EEG predicting correctly the
band structure and even individual resonance bands and also generalizing the notion of EEG [K26]
. Also a generalization of the notion of genetic code emerges resolving the paradoxes related to the
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standard dogma [K47, [K26] . A particularly fascinating implication is the possibility to identify great
leaps in evolution as phase transitions in which new higher level of dark matter emerges [K26] .

It seems safe to conclude that the dark matter hierarchy with levels labelled by the values of
Planck constants explains the macroscopic and macro-temporal quantum coherence naturally. That
this explanation is consistent with the explanation based on spin glass degeneracy is suggested by
following observations. First, the argument supporting spin glass degeneracy as an explanation of
the macro-temporal quantum coherence does not involve the value of /i at all. Secondly, the failure
of the perturbation theory assumed to lead to the increase of Planck constant and formation of
macroscopic quantum phases could be precisely due to the emergence of a large number of new degrees
of freedom due to spin glass degeneracy. Thirdly, the phase transition increasing Planck constant has
concrete topological interpretation in terms of many-sheeted space-time consistent with the spin glass
degeneracy.

2. Dark matter hierarchy and the notion of self

The vision about dark matter hierarchy leads to a more refined view about self hierarchy and
hierarchy of moments of consciousness [K25 [K26] . The larger the value of Planck constant, the
longer the subjectively experienced duration and the average geometric duration T'(k) o< i of the
quantum jump.

Quantum jumps form also a hierarchy with respect to p-adic and dark hierarchies and the geometric
durations of quantum jumps scale like i. Dark matter hierarchy suggests also a slight modification of
the notion of self. Each self involves a hierarchy of dark matter levels, and one is led to ask whether
the highest level in this hierarchy corresponds to single quantum jump rather than a sequence of
quantum jumps. The averaging of conscious experience over quantum jumps would occur only for
sub-selves at lower levels of dark matter hierarchy and these mental images would be ordered, and
single moment of consciousness would be experienced as a history of events. The quantum parallel
dissipation at the lower levels would give rise to the experience of flow of time. For instance, hadron
as a macro-temporal quantum system in the characteristic time scale of hadron is a dissipating system
at quark and gluon level corresponding to shorter p-adic time scales. One can ask whether even entire
life cycle could be regarded as a single quantum jump at the highest level so that consciousness would
not be completely lost even during deep sleep. This would allow to understand why we seem to know
directly that this biological body of mine existed yesterday.

The fact that we can remember phone numbers with 5 to 9 digits supports the view that self corre-
sponds at the highest dark matter level to single moment of consciousness. Self would experience the
average over the sequence of moments of consciousness associated with each sub-self but there would
be no averaging over the separate mental images of this kind, be their parallel or serial. These mental
images correspond to sub-selves having shorter wake-up periods than self and would be experienced as
being time ordered. Hence the digits in the phone number are experienced as separate mental images
and ordered with respect to experienced time.

8. The time span of long term memories as signature for the level of dark matter hierarchy

The basic question is what time scale can one assign to the geometric duration of quantum jump
measured naturally as the size scale of the space-time region about which quantum jump gives con-
scious information. This scale is naturally the size scale in which the non-determinism of quantum
jump is localized. During years I have made several guesses about this time scales but zero energy
ontology and the vision about fractal hierarchy of quantum jumps within quantum jumps leads to a
unique identification.

Causal diamond as an imbedding space correlate of self defines the time scale 7 for the space-
time region about which the consciousness experience is about. The temporal distances between the
tips of C'D as come as integer multiples of C' P, length scales and for prime multiples correspond to
what I have christened as secondary p-adic time scales. A reasonable guess is that secondary p-adic
time scales are selected during evolution and the primes near powers of two are especially favored.
For electron, which corresponds to Mersenne prime Mjo; = 2127 — 1 this scale corresponds to .1
seconds defining the fundamental time scale of living matter via 10 Hz biorhythm (alpha rhythm).
The unexpected prediction is that all elementary particles correspond to time scales possibly relevant
to living matter.

Dark matter hierarchy brings additional finesse. For the higher levels of dark matter hierarchy 7
is scaled up by %i/fy. One could understand evolutionary leaps as the emergence of higher levels at
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the level of individual organism making possible intentionality and memory in the time scale defined
T.

Higher levels of dark matter hierarchy provide a neat quantitative view about self hierarchy and
its evolution. Various levels of dark matter hierarchy would naturally correspond to higher levels in
the hierarchy of consciousness and the typical duration of life cycle would give an idea about the level
in question. The level would determine also the time span of long term memories as discussed in [K26]
. The emergence of these levels must have meant evolutionary leap since long term memory is also
accompanied by ability to anticipate future in the same time scale. This picture would suggest that
the basic difference between us and our cousins is not at the level of genome as it is usually understood
but at the level of the hierarchy of magnetic bodies [K47, [K26]. In fact, higher levels of dark matter
hierarchy motivate the introduction of the notions of super-genome and hyper-genome. The genomes
of entire organ can join to form super-genome expressing genes coherently. Hyper-genomes would
result from the fusion of genomes of different organisms and collective levels of consciousness would
express themselves via hyper-genome and make possible social rules and moral.

1.3 Bird’s eye of view about the topics of the book
This book is mostly devoted to what might be called classical TGD.

1. In a well-defined sense classical TGD defined as the dynamics of space-time surfaces determining
them as kind of generalized Bohr orbits can be regarded as an exact part of quantum theory
and assuming quantum classical correspondence has served as an extremely valuable guideline
in the attempts to interpret TGD, to form a view about what TGD really predicts, and to to
guess what the underlying quantum theory could be and how it deviates from standard quantum
theory.

2. The notions of many-sheeted space-time, topological field quantization and the notion of field/magnetic
body, follow from simple topological considerations. The observation that space-time sheets can
have arbitrarily large sizes and their interpretation as quantum coherence regions forces to con-
clude that in TGD Universe macroscopic and macro-temporal quantum coherence are possible in
arbitrarily long scales. Also long ranged classical color and electro-weak fields are an unavoidable
prediction.

3. It took a considerable time to make the obvious conclusion: TGD Universe is fractal containing
fractal copies of standard model physics at various space-time sheets and labeled by the collection
of p-adic primes assignable to elementary particles and by the level of dark matter hierarchy
characterized partially by the value of Planck constant labeling the pages of the book like
structure formed by singular covering spaces of the imbedding space M4 x CPy glued together
along a four-dimensional back. Particles at different pages are dark relative to each other
since purely local interactions defined in terms of the vertices of Feynman diagram involve only
particles at the same page.

4. The new view about energy and time justified by the notion of zero energy ontology means that
the sign of inertial energy depends on the time orientation of the space-time sheet and that
negative energy space-time sheets serve as correlates for communications to the geometric past.
This alone leads to profoundly new views about metabolism, long term memory, and realization
of intentional action.

1.3.1 The implications deriving from the topology of space-time surface
and from the properties of induced gauge fields

1. The general properties of Kahler action, in particular its vacuum degeneracy and failure of the
classical determinism in the conventional sense, have rather far reaching implications. Space-time
surfaces as a generalization of Bohr orbit provide not only a representation of quantum states
but also sequences of quantum jumps and thus contents of consciousness. Vacuum degeneracy
implies spin glass degeneracy in 4-D sense reflecting quantum criticality which is the fundamental
characteristic of TGD Universe.
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2. The detailed study of the simplest extremals of Kéhler action interpreted as correlates for asymp-
totic self organization patterns provides additional insights [K11] . C'P, type extremals repre-
senting elementary particles, cosmic strings, vacuum extremals, topological light rays (" massless
extremal”, ME), flux quanta of magnetic and electric fields represent the basic extremals. Pairs
of wormhole throats identifiable as parton pairs define a completely new kind of particle carrying
only color quantum numbers in ideal case and I have proposed their interpretation as quantum
correlates for Boolean cognition. MEs and flux quanta of magnetic and electric fields are of
special importance in living matter.

This general picture serves as a cornerstone of also TGD inspired view about cosmology and
astrophysics. For obvious reasons the newest ideas developed during last year and still developing (in
particular, the vision about dark matter) are not discussed in full depth yet.

1.3.2 Many-sheeted cosmology

The many-sheeted space-time concept, the new view about the relationship between inertial and
gravitational four-momenta, the basic properties of the paired cosmic strings, the existence of the
limiting temperature, the assumption about the existence of the vapor phase dominated by cosmic
strings, and quantum criticality imply a rather detailed picture of the cosmic evolution, which differs
from that provided by the standard cosmology in several respects but has also strong resemblances
with inflationary scenario.

Basic deviations from standard cosmology

The most important differences between TGD based and standard cosmology are following.

1. Many-sheetedness implies cosmologies inside cosmologies Russian doll like structure with a spec-
trum of Hubble constants.

2. TGD cosmology is also genuinely quantal: each quantum jump in principle recreates each sub-
cosmology in 4-dimensional sense: this makes possible a genuine evolution in cosmological length
scales so that the use of anthropic principle to explain why fundamental constants are tuned for
life is not necessary.

3. The new view about energy means that inertial energy is negative for space-time sheets with
negative time orientation and that the density of inertial energy vanishes in cosmological length
scales. Therefore any cosmology is in principle creatable from vacuum and the problem of initial
values of cosmology disappears. The density of matter near the initial moment is dominated by
cosmic strings approaches to zero so that big bang is transformed to a silent whisper amplified
to a relatively big bang.

4. Dark matter hierarchy with dynamical quantized Planck constant implies the presence of dark
space-time sheets which differ from non-dark ones in that they define multiple coverings of M.
Quantum coherence of dark matter in the length scale of space-time sheet involved implies that
even in cosmological length scales Universe is more like a living organism than a thermal soup
of particles.

5. Sub-critical and over-critical Robertson-Walker cosmologies are fixed completely from the imbed-
dability requirement apart from a single parameter characterizing the duration of the period after
which transition to sub-critical cosmology necessarily occurs. The fluctuations of the microwave
background reflect the quantum criticality of the critical period rather than amplification of
primordial fluctuations by exponential expansion. This and also the finite size of the space-time
sheets predicts deviations from the standard cosmology.

Cosmic strings

Cosmic strings belong to the basic extremals of the Kéhler action. The string tension of the cosmic
strings is T~ .2 x 107%/G and slightly smaller than the string tension of the GUT strings and this
makes them very interesting cosmologically. Concerning the understanding of cosmic strings a decisive
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breakthrough came through the identification of gravitational four-momentum as the difference of
inertial momenta associated with matter and antimatter and the realization that the net inertial
energy of the Universe vanishes. This forced to conclude cosmological constant in TGD Universe is
non-vanishing. p-Adic length fractality predicts that A scales as 1/L?(k) as a function of the p-adic
scale characterizing the space-time sheet. The recent value of the cosmological constant comes out
correctly. The gravitational energy density described by the cosmological constant is identifiable as
that associated with topologically condensed cosmic strings and of magnetic flux tubes to which they
are gradually transformed during cosmological evolution.

p-Adic fractality and simple quantitative observations lead to the hypothesis that pairs of cosmic
strings are responsible for the evolution of astrophysical structures in a very wide length scale range.
Large voids with size of order 108 light years can be seen as structures containing knotted and linked
cosmic string pairs wound around the boundaries of the void. Galaxies correspond to same structure
with smaller size and linked around the supra-galactic strings. This conforms with the finding that
galaxies tend to be grouped along linear structures. Simple quantitative estimates show that even
stars and planets could be seen as structures formed around cosmic strings of appropriate size. Thus
Universe could be seen as fractal cosmic necklace consisting of cosmic strings linked like pearls around
longer cosmic strings linked like...

1.3.3 Dark matter and quantization of gravitational Planck constant

The notion of gravitational Planck constant having gigantic value is perhaps the most radical idea
related to the astrophysical applications of TGD. D. Da Rocha and Laurent Nottale have proposed
that Schrodinger equation with Planck constant /i replaced with what might be called gravitational
Planck constant g, = GZ;M (h=c=1). v is a velocity parameter having the value vg = 144.7 +.7
km/s giving vg/c = 4.6 x 10~%. This is rather near to the peak orbital velocity of stars in galactic
halos. Also subharmonics and harmonics of vy seem to appear. The support for the hypothesis coming
from empirical data is impressive.

Nottale and Da Rocha believe that their Schrodinger equation results from a fractal hydrodynamics.
Many-sheeted space-time however suggests astrophysical systems are not only quantum systems at
larger space-time sheets but correspond to a gigantic value of gravitational Planck constant. The
gravitational (ordinary) Schrédinger equation would provide a solution of the black hole collapse (IR
catastrophe) problem encountered at the classical level. The resolution of the problem inspired by
TGD inspired theory of living matter is that it is the dark matter at larger space-time sheets which
is quantum coherent in the required time scale.

TGD predicts correctly the value of the parameter vy assuming that cosmic strings and their decay
remnants are responsible for the dark matter. The harmonics of vy can be understood as corresponding
to perturbations replacing cosmic strings with their n-branched coverings so that tension becomes
n2-fold: much like the replacement of a closed orbit with an orbit closing only after n turns. 1/n-
sub-harmonic would result when a magnetic flux tube split into n disjoint magnetic flux tubes. An
attractive solution of the matter antimatter asymmetry is based on the identification of also antimatter
as dark matter.

1.3.4 The topics of the book

The topics of the book are organized as follows.

1. In the first part of the book extremals of Kéhler action are discussed and the notions of many-
sheeted space-time and topological condensation and evaporation are introduced.

2. In the second part of the book many-sheeted-cosmology and astrophysics are summarized. Cos-
mic strings and their deformations are basic objects of TGD inspired cosmology and are therefore
treated in a separate chapter. p-Adic and dark matter hierarchies imply that TGD inspired cos-
mology has a kind of Russian doll structure containing cosmologies within cosmologies. In a
chapter about TGD inspired cosmology the imbeddings of Robertson-Walker cosmology are stud-
ied. Both critical and over-critical cosmology are found to be unique apart from the parameter
characterizing its duration.

The idea about dark matter hierarchy with levels labeled by the values of Planck constant was
originally motivated by the observation that planetary orbits could be interpreted as Bohr orbits
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with enormous value of Planck constant whose value is fixed to a high degree by Equivalence
Principle. One ends up to a rather detailed view about macroscopically quantum coherent dark
matter in astrophysics and cosmology. In particular, dark matter could be in anyonic phase
at light-like 2-surfaces with complex topology and astrophysical size and visible matter would
condense around it. Dark matter hierarchy allows to interpret critical cosmologies as correlates
for the phase transitions increasing Planck constant and involving a relatively rapid expansion
of space-time sheets. The quantum counterpart of the smooth cosmological expansion would be
a series of phase transitions increasing the value of Planck constant and these phase transitions
are predicted to take place also at planetary level, which provides a new theoretical basis for
Expanding Earth hypothesis and suggests totally unexpected connections between biology and

geology.

3. The third part of the book includes some old chapters about possible implications of TGD for
condensed matter physics written for at least about 15 years ago at least and updated only
slightly. The phases of C'P, complex coordinates could define phases of order parameters of
macroscopic quantum phases so that the deviations of induced gauge field concept from the
standard one could have direct experimental implications visible for instance in the properties of
living matter and even in hydrodynamics. For instance, Z° magnetic gauge field could make itself
visible in hydrodynamics and also Z° magnetic vortices could be involved with super-fluidity.

1.4 The contents of the book

In the first part of the book extremals of Ké&hler action are discussed and the notions of many-sheeted
space-time and topological condensation and evaporation are introduced. In the second part many-
sheeted-cosmology and astrophysics are summarized. The third part of the book includes some old
chapters about possible implications of TGD for condensed matter physics written for at least about
15 years ago at least and updated only slightly. There is a lot of material about applications of classical
TGD in its recent form to say living matter but its inclusion would have led to an explosion: this
material can from seven online books about TGD [K87, [K68| [K69, K78l K59, [K54, [K75] and eight
online books about TGD inspired theory of consciousness and quantum biology [K82) K14l K64 [K12|
K39, [K46| (K49, [K74] are warmly recommended for the reader willing to get overall view about what
is involved.

1.4.1 PART I: The notion of many-sheeted space-time
Basic extremals of the Kahler action

The physical interpretation of the Kéhler function and the TGD based space-time concept are the
basic themes of this book. The aim is to develop what might be called classical TGD at fundamental
level. The strategy is simple: try to guess the general physical consequences of the configuration space
geometry and of the TGD based gauge field concept and study the simplest extremals of Kahler action
and try to abstract general truths from their properties.

The fundamental underlying assumptions are the following:

1. The 4-surface associated with given 3-surface defined by Kéhler function K as a preferred
extremal of the Kéhler action is identifiable as a classical space-time. Number theoretically
preferred extremals would decompose to hyper-quaternionic and co-hyper-quaternionic regions.
The reduction of the classical theory to the level of the modified Dirac action implies that
the preferred extremals are critical in the sense of allowing infinite number of deformations for
which the second variation of Kéhler action vanishes [?] It is not clear whether criticality and
hyper-quaternionicity are consistent with each other.

Due to the preferred extremal property classical space-time can be also regarded as a generalized
Bohr orbit so that the quantization of the various parameters associated with a typical extremal
of the Kéhler action is expected to take place in general. In TGD quantum states corresponds to
quantum superpositions of these classical space-times so that this classical space-time is certainly
not some kind of effective quantum average space-time.



1.4. The contents of the book 19

2. The bosonic vacuum functional of the theory is the exponent of the Kéahler function Qg =
erp(K). This assumption is the only assumption about the dynamics of the theory and is
necessitated by the requirement of divergence cancellation in perturbative approach.

3. Renormalization group invariance and spin glass analogy. The value of the Kéhler coupling
strength is such that the vacuum functional exp(K) is analogous to the exponent exp(H/T)
defining the partition function of a statistical system at critical temperature. This allows K&hler
coupling strength to depend on zero modes of the configuration space metric and as already
found there is very attractive hypothesis determining completely the dependence of the Kéhler
coupling strength on the zero modes based on p-adic considerations motivated by the spin glass
analogy.

4. In spin degrees of freedom the massless Dirac equation for the induced spinor fields with modified
Dirac action defines classical theory: this is in complete accordance with the proposed definition
of the configuration space spinor structure.

The geometrization of the classical gauge fields in terms of the induced gauge field concept is also
important concerning the physical interpretation. Electro-weak gauge potentials correspond to the
space-time projections of the spinor connection of C'P,, gluonic gauge potentials to the projections
of the Killing vector fields of C'P, and gravitational field to the induced metric. The topics to be
discussed in this part of the book are summarized briefly in the following.

What the selection of preferred extremals of Kéhler action might mean has remained a long stand-
ing problem and real progress occurred only quite recently (I am writing this towards the end of year
2003).

1. The vanishing of Lorentz 4-force for the induced Kéhler field means that the vacuum 4-currents
are in a mechanical equilibrium. Lorentz 4-force vanishes for all known solutions of field equations
which inspires the hypothesis that all preferred extremals of Kahler action satisfy the condition.
The vanishing of the Lorentz 4-force in turn implies local conservation of the ordinary energy
momentum tensor. The corresponding condition is implied by Einstein’s equations in General
Relativity. The hypothesis would mean that the solutions of field equations are what might
be called generalized Beltrami fields. The condition implies that vacuum currents can be non-
vanishing only provided the dimension D¢ p, of the C'P, projection of the space-time surface is
less than four so that in the regions with Deop, = 4, Maxwell’s vacuum equations are satisfied.

2. The hypothesis that Kahler current is proportional to a product of an arbitrary function % of
CP; coordinates and of the instanton current generalizes Beltrami condition and reduces to it
when electric field vanishes. Instanton current has a vanishing divergence for Dop, < 4, and
Lorentz 4-force indeed vanishes. Four 4-dimensional projection the scalar function multiplying
the instanton current can make it divergenceless. The remaining task would be the explicit
construction of the imbeddings of these fields and the demonstration that field equations can be
satisfied.

3. By quantum classical correspondence the non-deterministic space-time dynamics should mimic
the dissipative dynamics of the quantum jump sequence. Beltrami fields appear in physical appli-
cations as asymptotic self organization patterns for which Lorentz force and dissipation vanish.
This suggests that preferred extemals of Kahler action correspond to space-time sheets which at
least asymptotically satisfy the generalized Beltrami conditions so that one can indeed assign to
the final 3-surface a unique 4-surface apart from effects related to non-determinism. Preferred
extremal property abstracted to purely algebraic generalized Beltrami conditions makes sense
also in the p-adic context.

This chapter is mainly devoted to the study of the basic extremals of the Kéahler action besides
the detailed arguments supporting the view that the preferred extrema satisfy generalized Beltrami
conditions at least asymptotically.

The newest results discussed in the last section about the weak form of electric-magnetic duality
suggest strongly that Beltrami property is general and together with the weak form of electric-magnetic
duality allows a reduction of quantum TGD to almost topological field theory with Kéhler function
allowing expression as a Chern-Simons term.
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The surprising implication of the duality is that Kéhler form of C' P, must be replaced with that for
52 x C'P; in order to obtain a configuration space metric which is non-trivial in M* degrees of freedom.
This modification implies much richer vacuum structure than the original Kéhler action which is a
good news as far as the description of classical gravitational fields in terms of small deformations
of vacuum extremals with the four-momentum density of the topologically condensed matter given
by Einstein’s equations is considered. The breaking of Lorentz invariace from SO(3,1) to SO(3) is
implied already by the geometry of C'D but is extremely small for a given causal diamond (CD). Since
a wave function over the Lorentz boosts and translates of C'D is allowed, there is no actual breaking
of Poincare invariance at the level of the basic theory. Beltrami property leads to a rather explicit
construction of the general solution of field equations based on the hydrodynamic picture implying
that single particle quantum numbers are conserved along flow lines defined by the instanton current.
The construction generalizes also to the fermionic sector.

General View About Physics in Many-Sheeted Space-Time: Part I

This chapter is first part of the discussion devoted to the notion of many-sheeted space-time. The
notion of many-sheeted space-time used is roughly that as it was around 1990 and text only refers
to the recent picture when needed. Topological condensation and somewhat questionable notion
of topological evaporation represent the basic new concepts of TGD and an attempt to formulate a
general qualitative theory of the topological condensation and evaporation and TGD based space-time
concept is made.

The fusion of real and various p-adic physics to single coherent whole by generalizing the notion of
number, the generalization of the notion of the imbedding space to allow a mathematical representation
of dark matter hierarchy based on dynamical and quantized Planck constant, parton level formulation
of TGD using light-like 3-surfaces as basic dynamical objects, and so called zero energy ontology force
to generalizes considerably the view about space-time. These developments are discussed in the next
chapter.

The topics to be discussed in the sequel will be following.

1. The general structure of topological condensate

The question what 3-space looks like in various scales and end up to a purely topological description
for the generation of structures. Topological arguments imply a finite size for non-vacuum 3-surfaces
and the conservation of the gauge and gravitational fluxes requires that 3-surface feeds these fluxes to a
larger 3-surface via # contacts situated near the boundaries of the 3-surface. Renormalization group
invariance (RGI) hypothesis suggests that 3-surfaces with all sizes are important in the functional
integral and this leads to the idea of the many-sheeted space-time with hierarchical, fractal like
structure such that each level of the hierarchy corresponds to a characteristic length scale.

2. Topological field quantization

The general space-time picture suggested by RGI hypothesis can be justified mathematically. Due
to the compactness of C'P,, a general space-time surface representable as a map M* — CP, decom-
poses into regions, ”topological field quanta”, characterized by certain vacuum quantum numbers and
3-surface is in general unstable against the decay to disjoint components along the boundaries of the
field quanta.

Topological field quanta have finite size depending on the values of the vacuum quantum numbers:
the size increases as the values of the vacuum quantum numbers increase. Topological field quantum
is therefore a good candidate for a quantum coherent system provided some Bose Einstein condensate
or quantum coherent state is available. The BE condensate or coherent state of the light # contacts
(wormhole contacts) near the boundaries of the topological field quantum is a good candidate in this
respect.

The requirement of the gauge charge conservation in implies the hierarchical structure of the
topological condensate: gauge fluxes must go somewhere from the outer boundaries of the topological
field quantum with finite size and this ’somewhere’ must be a larger topological field quantum, which
in turn feeds its gauge fluxes to a larger topological field quantum,.... Of course, the nonlinearity of
the theory could allow vacuum charge densities which can cancel the net charge near boundaries. The
recent view about quantum TGD however supports the conclusion that vacuum currents are light-like
and do not contribute to charge renormalization. This provides a justification for the notion of p-adic
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coupling constant evolution.

Topological field quanta allow discrete scalings as a dynamical symmetry. p-Adic length scale
hypothesis states that the allowed scaling factors correspond to powers of |/p, where the prime p
satisfies p ~ 2F k integer with prime values favored. p-Adic fractality (actually multi-p-fractality)
can be justified more rigorously by a precise formulation for the fusion of real and various p-adic
physics based on the generalization of the notion of number.

3. General physical consequences of new view about space-time

The physical consequences of the new space-time picture are nontrivial at all length scales.

1. A natural interpretation for the hierarchical structure is in terms of bound state formation.
Quarks condense to form hadrons, nucleons condense to form atomic nuclei, nuclei and electrons
condense to form atoms, how atoms condense to form molecules, and so on. One ends up with
a general picture for the topology of 3-space associated with, say, solid state and with the idea
that even the macroscopic bodies of the everyday world correspond to topologically condensed
3-surfaces.

2. The join of 3-surfaces along their boundaries defines a new kind of interaction, which has in fact
has been used in phenomenological modeling of chemical reactions. Usually chemical bond is
believed to result from Schrédinger equation. At the macroscopic level this interaction is rather
familiar to us since it means that two macroscopic bodies just touch each other.

3. In TGD context there are purely topological necessary conditions for quantum coherence and a
topological description for dissipative phenomena. The formation of the join along boundaries
bonds plays a decisive role in the description and this process provides a universal manner to
generate macroscopic quantum systems. There is also a topological description for the formation
of the supra phases and the phase of the order parameter of the supra phase ground state contains
information about the homotopy of the join along boundaries condensate.

4. Gauge bosons and Higgs boson as wormhole contacts

The proper understanding of the concepts of gauge charges and fluxes and their gravitational
counterparts in TGD space-time has taken a lot of efforts.

1. Wormbhole (#-) contact is the key notion. Wormhole contacts can be regarded as particles
carrying classical charges defined by the gauge fluxes but behaving as extremely tiny dipoles
quantum mechanically in the case that gauge charge is conserved. Gauge fluxes and gauge
charges assignable to light-like 3-D surfaces (wormhole throats, elementary particle horizons,
causal determinants) surrounding a topologically condensed C'P; type extremals can be identi-
fied as the quantum numbers assignable to fermionic oscillator operators generating the state
associated with horizon (wormhole throat) identifiable as a parton.

2. Quantum classical correspondence requires that commuting classical gauge charges are quantized
and this is expected to be true by the generalized Bohr orbit property of the space-time surface.

3. Both gauge bosons and Higgs boson must be identified as wormhole contacts whereas elementary
fermions correspond to wormhole throats associated with topologically condensed C' P, type vac-
uum extremals. Gravitons in turn correspond to string like objects formed by pairs of wormhole
contacts connected by a flux tube.

5. The interpretation of long range weak and color gauge fields

In TGD gravitational fields are accompanied by long ranged electro-weak and color gauge fields.
The only possible interpretation is that there exists a p-adic hierarchy of color and electro-weak physics
such that weak bosons are massless below the p-adic length scale determining the mass scale of weak
bosons. By quantum classical correspondence classical long ranged gauge fields serve as space-time
correlates for gauge bosons below the p-adic length scale in question.

The unavoidable long ranged electro-weak and color gauge fields are created by dark matter and
dark particles can screen dark nuclear electro-weak charges below the weak scale. Above this scale
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vacuum screening occurs as for ordinary weak interactions. Dark gauge bosons are massless below
the appropriate p-adic length scale but massive above it and U(2)c,, is broken only in the fermionic
sector. For dark copies of ordinary fermions masses are essentially identical with those of ordinary
fermions.

This interpretation is consistent with the standard elementary particle physics for visible matter
apart from predictions such as the possibility of p-adically scaled up versions of ordinary quarks
predicted to appear already in ordinary low energy hadron physics. The most interesting implications
are seen in longer length scales. Dark variants of ordinary valence quarks and gluons and a scaled
up copy of ordinary quarks and gluons are predicted to emerge already in ordinary nuclear physics.
Chiral selection in living matter suggests that dark matter is an essential component of living systems
so that non-broken U(2)¢, symmetry and and free color in bio length scales become characteristics
of living matter and of bio-chemistry and bio-nuclear physics. An attractive solution of the matter
antimatter asymmetry is based on the identification of also antimatter as dark matter.

In this chapter the above vision is discussed in detail. As an application a simple model of color
confinement is discussed using the general properties of the induced (classical) color gauge field, in
particular the fact that its holonomy group is Abelian.

General View About Physics in Many-Sheeted Space-Time: Part II

This chapter, which is second part of a summary about the recent view about many-sheeted space-
time, provides a summary of the developments in TGD that have occurred during last few years (the
year I am writing this is 2007). The most important steps of progress are following ones.

1. Parton level formulation of quantum TGD

The formulation of quantum TGD at partonic level identifying fundamental objects as light-like
3-surfaces having also interpretation as random light-like orbits of 2-D partons having arbitrarily large
size. This picture reduces quantum TGD to an almost-topological quantum field theory and leads
to a dramatic understanding of S-matrix. A generalization of Feynman diagrams emerges obtained
by replacing lines of Feynman diagram with light-like 3-surfaces meeting along their ends at vertices.
This picture is different from that of string models and means also a generalization of the view about
space-time and 3-surface since these surfaces cannot be assumed to be a smooth manifold anymore.

2. Zero energy ontology

In zero energy ontology physical states are creatable from vacuum and have vanishing net quantum
numbers, in particular energy. Zero energy states can be decomposed to positive and negative energy
parts with definite geometro-temporal separation, call it 7', and having interpretation in terms of
initial and final states of particle reactions. Zero energy ontology is consistent with ordinary positive
energy ontology at the limit when the time scale of the perception of observer is much shorter than
T.

Zero energy ontology leads to the view about S-matrix as a characterizer of time-like entanglement
associated with the zero energy state and a generalization of S-matrix to what might be called M-
matrix emerges. M-matrix is complex square root of density matrix expressible as a product of real
valued "modulus” and unitary matrix representing phase and can be seen as a matrix valued gener-
alization of Schréodinger amplitude. Also thermodynamics becomes an inherent element of quantum
theory in this approach.

8. Fusion of real and p-adic physics to single one

The fusion of p-adic physics and real physics to single coherent whole requires generalization of the
number concept obtained by gluing reals and various p-adic number fields along common algebraic
numbers. This leads to a new vision about how cognition and intentionality make themselves visible
in real physics via long range correlations realized via the effective p-adicity of real physics. The
success of the p-adic length scale hypothesis and p-adic mass calculations suggest that cognition and
intentionality are present already at elementary particle level. This picture leads naturally to an
effective discretization of the real physics at the level of S-matrix and relying on the notion of umber
theoretic braid.

4. Dark matter hierarchy and hierarchy of Planck constants
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Dark matter revolution with levels of the hierarchy labeled by values of Planck constant forces a
further generalization of the notion of imbedding space and thus of space-time. One can say, that
imbedding space is a book like structure obtained by gluing together infinite number of copies of the
imbedding space like pages of a book: two copies characterized by singular discrete bundle structure are
glued together along 4-dimensional set of common points. These points have physical interpretation
in terms of quantum criticality. Particle states belonging to different sectors (pages of the book) can
interact via field bodies representing space-time sheets which have parts belonging to two pages of
this book.

5. Equivalence Principle and evolution of gravitational constant

Before saying anything about evolution of gravitational constant one must understand whether
it is a fundamental constant or prediction of quantum TGD. Also one should understand whether
Equivalence Principle holds true and if so, in what sense. Also the identification of gravitational and
inertial masses seems to be necessary.

1. The coset construction for super-symplectic and super Kac-Moody algebras implies Equivalence
Principle in the sense that four-momenta assignable to the Super Virasoro generators of the two
algebras are identical. The challenge is to understand this result in more concrete terms.

2. The progress made in the understanding of number theoretical compactification led to a dramatic
progress in the construction of configuration space geometry and spinor structure in terms of
the modified Dirac operator associated with light-like 3-surfaces appearing in the slicing of the
preferred extremal X(X7) of Kihler action to light-like 3-surfaces Y;® "parallel” to X;. Even
more the M* projection is predicted to have a slicing into 2-dimensional stringy worldsheets
having M?(z) C M* as a tangent space at point .

3. By dimensional reduction one can assign to any stringy slice Y2 a stringy action obtained by
integrating Kahler action over the transversal degrees of freedom labeling the copies of Y2.
One can assign length scale evolution to the string tension 7'(z), which in principle can depend
on the point of the string world sheet and thus evolves. T'(z) is not identifiable as inverse of
gravitational constant but by general arguments proportional to 1/ Lf,, where L,, is p-adic length
scale.

4. Gravitational constant can be understood as a product of Lf) with the exponential of the
Kahler action for the two pieces of C P, type vacuum extremals representing wormhole con-
tacts assignable to graviton connected by the string world sheets. The volume of the typical
CP, type extremal associated with the graviton increases with L,, so that the exponential factor
decreases reducing the growth due to the increase of L,. Hence G could be RG invariant in p-
adic coupling constant evolution. It does not make sense to formulate evolution of gravitational
constant at space-time level and gravitational constant characterizes given C'D.

5. Gravitational mass is assigned to the stringy world sheet and should be identical with the inertial
mass identified as Noether charge assignable to the preferred extremal. By construction there
are good hopes that for a proper choice of G gravitational and inertial masses are identical.

6. Renormalization group equations for gauge couplings at space-time level

Renormalization group evolution equations for gauge couplings at given space-time sheet are dis-
cussed using quantum classical correspondence. For known extremals of Kahler action gauge couplings
are RG invariants inside single space-time sheet, which supports the view that discrete p-adic coupling
constant evolution replaces the ordinary coupling constant evolution.

7. Quantitative predictions for the values of coupling constants

The latest progress in the understanding of p-adic coupling constant evolution comes from a
formula for Kéhler coupling strength ax in terms of Dirac determinant of the modified Dirac operator
associated with Kahler action.

The formula for ak fixes its number theoretic anatomy and also that of other coupling strengths.
The assumption that simple rationals (p-adicization) are involved can be combined with the input
from p-adic mass calculations and with an old conjecture for the formula of gravitational constant
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allowing to express it in terms of C' P, length scale and Kéhler action of topologically condensed C Py
type vacuum extremal. The prediction is that ok is renormalization group invariant and equals to the
value of fine structure constant at electron length scale characterized by Mjs7. Although Newton’s
constant is proportional to p-adic length scale squared it can be RG invariant thanks to exponential
reduction due to the presence of the exponent of Kahler action associated with the two C'P, type
vacuum extremals representing the wormhole contacts associated with graviton. The number theoretic
anatomy of R?/G allows to consider two options. For the first one only M7 gravitons are possible
number theoretically. For the second option gravitons corresponding to p ~ 2* are possible.

A relationship between electromagnetic and color coupling constant evolutions based on the for-
mula 1/aem + 1/as = 1/ak is suggested by the induced gauge field concept, and would mean that
the otherwise hard-to-calculate evolution of color coupling strength is fixed completely. The predicted
value of o at intermediate boson length scale is correct.

In this chapter the above topics are discussed in detail. Also the possible role of so called super-
symplectic gauge bosons in the understanding of non-perturbative phase of QCD and black-hole
physics is discussed.

Coupling Constant Evolution in Quantum TGD
This chapter summarizes the recent views about p-adic coupling constant evolution.
1. The most recent view about coupling constant evolution

Zero energy ontology, the construction of M-matrix as time like entanglement coefficients defining
Connes tensor product characterizing finite measurement resolution in terms of inclusion of hyper-finite
factors of type IIy, the realization that symplectic invariance of N-point functions provides a detailed
mechanism eliminating UV divergences, and the understanding of the relationship between super-
canonical and super Kac-Moody symmetries: these are the pieces of the puzzle whose combination
makes possible a rather concrete vision about coupling constant evolution in TGD Universe and one
can even speak about rudimentary form of generalized Feynman rules.

2. Equivalence Principle and evolution of gravitational constant

Before saying anything about evolution of gravitational constant one must understand whether
it is a fundamental constant or prediction of quantum TGD. Also one should understand whether
Equivalence Principle holds true and if so, in what sense. Also the identification of gravitational and
inertial masses seems to be necessary.

1. The coset construction for super-symplectic and super Kac-Moody algebras implies Equivalence
Principle in the sense that four-momenta assignable to the Super Virasoro generators of the two
algebras are identical. The challenge is to understand this result in more concrete terms.

2. The progress made in the understanding of number theoretical compactification led to a dramatic
progress in the construction of configuration space geometry and spinor structure in terms of
the modified Dirac operator associated with light-like 3-surfaces appearing in the slicing of the
preferred extremal X (X ) of Kihler action to light-like 3-surfaces Y} "parallel” to X?. Even
more the M* projection is predicted to have a slicing into 2-dimensional stringy worldsheets
having M?(xz) C M* as a tangent space at point .

3. By dimensional reduction one can assign to any stringy slice Y2 a stringy action obtained by
integrating Kahler action over the transversal degrees of freedom labeling the copies of Y2.
One can assign length scale evolution to the string tension 7'(x), which in principle can depend
on the point of the string world sheet and thus evolves. T'(z) is not identifiable as inverse of
gravitational constant but by general arguments proportional to 1/ Lf,, where L,, is p-adic length
scale.

4. Gravitational constant can be understood as a product of LIQ) with the exponential of the
Kahler action for the two pieces of CP, type vacuum extremals representing wormhole con-
tacts assignable to graviton connected by the string world sheets. The volume of the typical
CP; type extremal associated with the graviton increases with L, so that the exponential factor
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decreases reducing the growth due to the increase of L,. Hence G could be RG invariant in p-
adic coupling constant evolution. It does not make sense to formulate evolution of gravitational
constant at space-time level and gravitational constant characterizes given C'D.

5. Gravitational mass is assigned to the stringy world sheet and should be identical with the inertial
mass identified as Noether charge assignable to the preferred extremal. By construction there
are good hopes that for a proper choice of G gravitational and inertial masses are identical.

8. The RG invariance of gauge couplings inside causal diamond

Quantum classical correspondence suggests that the notion of p-adic coupling constant evolution
should have space-time correlate. Zero energy ontology suggests that this counterpart is realized
in terms of C'Ds in the sense that coupling constant evolution has formulation at space-time level
inside C'D of given size scale and that RG invariance holds true for this evolution. Number theoretic
compactification forces to conclude that space-time surfaces has slicing into light-like 3-surfaces Y;*:
this prediction is consistent with that is known about the extremals. General Coordinate Invariance
requires that basic theory can be formulated by replacing the light-like 3-surface X 13 associated with
wormbhole throats with any surface Y;?> appearing in the associated slicing.

The natural identification for the renormalization group parameter is as the light-like coordinate
labeling different light-like slices. The light-likeness of the RG parameter suggests RG invariance.
Quantum classical correspondence requires that the classical gauge fluxes to X 13 selected by stationary
phase approximation correspond to the expectation values of g@),, where g is coupling constant and
Qg4 the expectation (eigen) value of corresponding charge matrix in the state in question. If the gauge
currents are light-like and in direction of Y;* as they are for known extremals under proper selection
of X?, RG invariance follows because Abelian gauge fluxes are conserved due to the absence of the
component of vacuum current in the direction of slicing.

In principle TGD predicts the values of all coupling constants including also the value of Kéhler
coupling strength which follows from the identification of K&hler action of the preferred extremal
X4(X}) of Kihler action as Dirac determinant associated with modified Dirac action. Hence Kéhler
coupling strength could have several values. Quantum criticality in the strongest form however mo-
tivates the hypothesis that g% is invariant under p-adic coupling constant evolution and evolution
under evolution associated with the hierarchy of Planck constants.

4. Quantitative predictions for the values of coupling constants

The latest progress in the understanding of p-adic coupling constant evolution comes from a
formula for Kéhler coupling strength a ik in terms of Dirac determinant of the modified Dirac operator
associated with C' — S action. The progress came from the realization about how that data about
preferred extremal of Kéahler action is feeded into the eigenvalue spectrum, which - due to the almost
topological character of C'— S action - is otherwise far from fixed.

The formula for ay fixes its number theoretic anatomy and also that of other coupling strengths.
The assumption that simple rationals (p-adicization) are involved can be combined with the input
from p-adic mass calculations and with an old conjecture for the formula of gravitational constant
allowing to express it in terms of C'P; length scale and Kahler action of topologically condensed C'P;,
type vacuum extremal. The prediction is that a is renormalization group invariant and equals to the
value of fine structure constant at electron length scale characterized by Mjo7. Newton’s constant is
proportional to p-adic length scale squared and ordinary gravitons correspond to Mjs7. The number
theoretic anatomy of R?/G allows to consider two options. For the first one only M;a7 gravitons are
possible number theoretically. For the second option gravitons corresponding to p ~ 2* are possible.

A relationship between electromagnetic and color coupling constant evolutions based on the for-
mula 1/ae, + 1/as = 1/ak is suggested by the induced gauge field concept, and would mean that
the otherwise hard-to-calculate evolution of color coupling strength is fixed completely. The predicted
value of o at intermediate boson length scale is correct.

5. p-Adic length scale evolution of gauge couplings

Understanding the dependence of gauge couplings constants on p-adic prime is one of the basic
challenges of quantum TGD. The problem has been poorly understood even at the conceptual level
to say nothing about concrete calculations. The generalization of the motion of S-matrix to that of
M-matrix changed however the situation. M-matrix is always defined with respect to measurement
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resolution characterized in terms of an inclusion of von Neumann algebra. Coupling constant evolution
reduces to a discrete evolution involving only octaves of T'(k) = 2*T} of the fundamental time scale
To = R, where R CP, scale. p-Adic length scale L(k) is related to T'(k) by L?(k) = T'(k)Tp. p-Adic
length scale hypothesis p ~ 2*. k integer, is automatic prediction of the theory. There is also a close
connection with the description of coupling constant evolution in terms of radiative corrections.

If RG invariance at given space-time sheet holds true, the question arises whether it is possible to
understand p-adic coupling constant evolution at space-time level and why certain p-adic primes are
favored.

1. Simple considerations lead to the idea that M* scalings of the intersections of 3-surfaces defined
by the intersections of space-time surfaces with light-cone boundary induce transformations of
space-time surface identifiable as RG transformations. If sufficiently small they leave gauge
charges invariant: this seems to be the case for known extremals which form scaling invariant
families. When the scaling corresponds to a ratio ps/p1, p2 > pi1, bifurcation would become
possible replacing pi-adic effective topology with ps-adic one.

2. Stability considerations determine whether p-adic topology is actually realized and could explain
why primes near powers of 2 are favored. The renormalization of coupling constant would be
dictated by the requirement that Q;/g? remains invariant.

1.4.2 PART II: Many-Sheeted Cosmology, and Astrophysics
The Relationship Between TGD and GRT

In this chapter the recent view about TGD as Poincare invariant theory of gravitation is discussed.
Radically new views about ontology were necessary before it was possible to see what had been there
all the time. Zero energy ontology states that all physical states have vanishing net quantum numbers.
The hierarchy of dark matter identified as macroscopic quantum phases labeled by arbitrarily large
values of Planck constant is second aspect of the new ontology.

1. Is Equivalence Principle satisfied in TGD?

Whether or not Equivalence Principle holds true in TGD Universe has been a long standing issue.
The source of problems was the attempt to deduce the formulation of Equivalence Principle in the
framework provided by General Relativity framework rather than in string model like context. There
were several steps in the enlightment process.

1. First came the conviction that coset representation for super-symplectic and super Kac-Moody
algebras provides extremely general formulation of Equivalence Principle in which inertial and
gravitational four-momenta are replaced with Super Virasoro generators of two algebras whose
differences annihilate physical states. This idea came for years before becoming aware of its
importance and I simply forgot it.

2. Next came the realization of the fundamental role of number theoretical compactification provid-
ing a number theoretical interpretation of M* x C'P, and thus also of standard model quantum
numbers. This lead to the identification of the preferred extremals of Kéahler action and to
the formulation of quantum TGD in terms of second quantized induced spinors fields. One of
conclusion was that dimensional reduction for preferred extremals of Kahler action- if they have
the properties required by theoretic compactification- leads to string model with string tension
which is however not proportional to the inverse of Newton’s constant but to Lf), p-adic length
scale squared and thus gigantic. The connection between gravitational constant and Lf, comes
from an old argument that I discovered about two decades ago and which allowed to predict the
value of Kahler coupling strength by using as input electron mass and p-adic mass calculations.
In this framework the role of Planck length as a fundamental length scale is taken by C P, size
so that Planck length scale loses its magic role as a length scale in which usual views about
space-time geometry cease to hold true.

3. The next step was the realization that zero energy ontology allows to avoid the paradox implied
in positive energy ontology by the fact that gravitational energy is not conserved but inertial
energy identified as Noether charge is. Energy conservation is always in some length scale in
zero energy ontology.
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4. As a matter fact, there was still one step. I had to become fully aware that the identification of
gravitational four-momentum in terms of Einstein tensor makes sense only in long length scales.
This is of course trivial but for some reason I did not realize that this fact resolves the paradoxes
associated with objects like cosmic strings.

To sum up, the understanding of Equivalence Principle in TGD context required quite many
discoveries of mostly mathematical character: the understanding of the super-conformal symmetries
of quantum TGD, the discovery of zero energy ontology, the identification of preferred extremals of
Kahler action by requiring number theoretical compactification, and the discovery that dimensional
reduction allows to formulate quantum in terms of slicing of space-time surface by stringy word sheets.

2. The problem of cosmological constant

A further implication of dark matter hierarchy is that astrophysical systems correspond to station-
ary states analogous to atoms and do not participate to cosmic expansion in a continuous manner but
via discrete quantum phase transitions in which gravitational Planck constant increases. By quantum
criticality of these phase transitions critical cosmologies are excellent candidates for the modeling of
these transitions. Imbeddable critical (and also over-critical) cosmologies are unique apart from a
parameter determining their duration and represent accelerating cosmic expansion so that there is no
need to introduce cosmological constant.

It indeed turns out possible to understand these critical phases in terms of quantum phase transition
increasing the size of large modeled in terms of cosmic strings. A possible mechanism driving the
strings to the boundaries of large voids could be repulsive interaction due to net charges of strings.
Also repulsive gravitational acceleration could do this. In this framework cosmological constant like
parameter does not characterize the density of dark energy but that of dark matter identifiable as
quantum phases with large Planck constant.

A further problem is that the naive estimate for the cosmological constant is predicted to be by
a factor 1020 larger than its value deduced from the accelerated expansion of the Universe. In TGD
framework the resolution of the problem comes naturally from the fact that large voids are quantum
systems which follow the cosmic expansion only during the quantum critical phases.

p-Adic fractality predicting that cosmological constant is reduced by a power of 2 in phase transi-
tions occurring at times T'(k) o< 2k/2 which correspond to p-adic time scales. These phase transitions
would naturally correspond to quantum phase transitions increasing the size of the large voids during
which critical cosmology predicting accelerated expansion naturally applies. On the average A(k)
behaves as 1/a?, where a is the light-cone proper time. This predicts correctly the order of magnitude
for observed value of A.

3. Topics of the chapter

The topics discussed in the chapter are following.

1. The basic principles of GRT (General Coordinate Invariance, Equivalence Principle, and Machian
Principle) are discussed from TGD point of view.

2. The theory is applied to the vacuum extremal embeddings of Reissner-Nordstrém and Schwartschild
metric.

3. A model for the final state of a star, which indicates that Z" force, presumably created by dark
matter, might have an important role in the dynamics of the compact objects. During year 2003,
more than decade after the formulation of the model, the discovery of the connection between
supernovas and gamma ray bursts provided strong support for the predicted axial magnetic and
Z° magnetic flux tube structures predicted by the model for the final state of a rotating star.
Two years later the interpretation of the predicted long range weak forces as being caused by
dark matter emerged.

The progress in understanding of hadronic mass calculations has led to the identification of so
called super-symplectic bosons and their super-counterparts as basic building blocks of hadrons.
This notion leads also to a microscopic description of neutron stars and black-holes in terms of
highly entangled string like objects in Hagedorn temperature and in very precise sense analogous
to gigantic hadrons.
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4. A brief summary about cosmic strings, which form a corner stone of TGD inspired cosmology,
is given.

5. Allais effect is interpreted as interference effect made possible by gigantic value of gravitational
Planck constant assignable to space-time sheets mediating gravitational interaction. There is
experimental evidence for gravimagnetic fields in rotating superconductors which are by 20
orders of magnitudes stronger than predicted by general relativity. A TGD based explanation
of these observations is proposed. Also the predicted anomalous time dilation due to warping
of space-time sheet and possible even for gravitational vacua is discussed.

Cosmic strings

Cosmic strings belong to the basic extremals of the Kéhler action. The upper bound for string tension
of the cosmic strings is T' =~ .5 x 107/G and in the same range as the string tension of GUT strings
and this makes them very interesting cosmologically although TGD cosmic strings have otherwise
practically nothing to do with their GUT counterparts.

1. Basic ideas

The understanding of cosmic strings has developed only slowly and has required dramatic modifi-
cations of existing views.

1. Zero energy ontology implies that the inertial energy and all quantum numbers of the Universe
vanishes and physical states are zero energy states decomposing into pairs of positive and nega-
tive energy states localizable to the light-like boundaries of causal diamonds defined as intersec-
tions of future and past directed light-cones. Positive energy ontology is a good approximation
under certain assumptions.

2. Dark matter hierarchy whose levels are labeled by gigantic values of gravitational Planck constant
associated with dark matter is second essential piece of the picture.

3. The second variation of Kéhler action vanishes for preferred extremals - at least the second vari-
ations associated with dynamical symmetries. This guarantees that Noether currents assignable
to the modified Dirac action are conserved. The properties of the preferred extremals allow a
dimensional reduction providing formulations of quantum TGD in terms of dual slicings of space-
time surface by string word sheets and partonic 2-surfaces. Stringy picture allows a formulation
Equivalence Principle at space-time level. The realization that general relativistic formulation
of Equivalence Principle holds true only in long length scales resolves various paradoxes, which
have plagued quantum TGD from the beginning.

4. The basic question whether one can model the exterior region of the topologically condensed
cosmic string using General Relativity. The exterior metric of the cosmic string corresponds
to a small deformation of a vacuum extremal. The angular defect and surplus associated with
the exterior metrics extremizing curvature scalar can be much smaller than assuming vacuum
Einstein’s equations. The conjecture is that the exterior metric of galactic string conforms with
the Newtonian intuitions and thus explains the constant velocity spectrum of distant stars if
one assumes that galaxies are organized to linear structures along long strings like pearls in a
necklace.

2. Critical and over-critical cosmologies involve accelerated cosmic expansion

In TGD framework critical and over-critical cosmologies are unique apart from single parame-
ter telling their duration and predict the recently discovered accelerated cosmic expansion. Critical
cosmologies are naturally associated with quantum critical phase transitions involving the change of
gravitational Planck constant. A natural candidate for such a transition is the increase of the size of
a large void as galactic strings have been driven to its boundary. During the phase transitions con-
necting two stationary cosmologies (extremals of curvature scalar) also determined apart from single
parameter, accelerated expansion is predicted to occur. These transitions are completely analogous
to quantum transitions at atomic level.
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The proposed microscopic model predicts that the TGD counterpart of the quantity p + 3p for
cosmic strings is negative during the phase transition which implies accelerated expansion. Dark
energy is replaced in TGD framework with dark matter indeed predicted by TGD and its fraction is
.74 as in standard scenario. Cosmological constant thus characterizes phenomenologically the density
of dark matter rather than energy in TGD Universe.

The sizes of large voids stay constant during stationary periods which means that also cosmological
constant is piecewise constant. p-Adic length fractality predicts that A scales as 1/L?(k) as a function
of the p-adic scale characterizing the space-time sheet of void. The order of magnitude for the recent
value of the cosmological constant comes out correctly. The gravitational energy density described by
the cosmological constant is identifiable as that associated with topologically condensed cosmic strings
and of magnetic flux tubes to which they are gradually transformed during cosmological evolution.

3. Cosmic strings and generation of structures

1. In zero energy ontology cosmic strings must be created from vacuum as zero energy states
consisting of pairs of strings with opposite time orientation and inertial energy.

2. The counterpart of Hawking radiation provides a mechanism by which cosmic strings can gen-
erate ordinary matter. The splitting of cosmic strings followed by a ”burning” of the string
ends provides a second manner to generate visible matter. Matter-antimatter symmetry would
result if antimatter is inside cosmic strings and matter in the exterior region. A justification
for CP asymmetry comes from basic quantum TGD. One can add to Ké&hler function of the
configuration space an imaginary part defined by instanton term J A J. This term does not
affect Kéhler metric but implies CP breaking.

3. Zero energy ontology has deep implications for the cosmic and ultimately also for biological
evolution (magnetic flux tubes paly a fundamental role in TGD inspired biology and cosmic
strings are limiting cases of them). The arrows of geometric time are opposite for the strings
and also for positive energy matter and negative energy antimatter. This implies a competition
between two dissipative time developments proceeding in different directions of geometric time
and looking self-organization and even self-assembly from the point of view of each other. This
resolves paradoxes created by gravitational self-organization contra second law of thermodynam-
ics. So called super-symplectic matter at cosmic strings implies large p-adic entropy resolves the
well-known entropy paradox.

4. p-Adic fractality and simple quantitative observations lead to the hypothesis that cosmic strings
are responsible for the evolution of astrophysical structures in a very wide length scale range.
Large voids with size of order 10® light years can be seen as structures cosmic strings wound
around the boundaries of the void. Galaxies correspond to same structure with smaller size and
linked around the supra-galactic strings. This conforms with the finding that galaxies tend to be
grouped along linear structures. Simple quantitative estimates show that even stars and planets
could be seen as structures formed around cosmic strings of appropriate size. Thus Universe
could be seen as fractal cosmic necklace consisting of cosmic strings linked like pearls around
longer cosmic strings linked like...

4. Cosmic strings, gamma ray bursts, and supernovae

During year 2003 two important findings related to cosmic strings were made.

1. A correlation between supernovae and gamma ray bursts was observed.

2. Evidence that some unknown particles of mass m ~ 2m, and decaying to gamma rays and/or
electron positron pairs annihilating immediately serve as signatures of dark matter. These
findings challenge the identification of cosmic strings and/or their decay products as dark matter,
and also the idea that gamma ray bursts correspond to cosmic fire crackers formed by the
decaying ends of cosmic strings.

This forces the updating of the more than decade old rough vision about topologically condensed
cosmic strings and about gamma ray bursts described in this chapter. According to the updated
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model, cosmic strings transform in topological condensation to magnetic flux tubes about which
they represent a limiting case. Primordial magnetic flux tubes forming ferro-magnet like structures
become seeds for gravitational condensation leading to the formation of stars and galaxies. The TGD
based model for the asymptotic state of a rotating star as dynamo leads to the identification of the
predicted magnetic flux tube at the rotation axis of the star as Z° magnetic flux tube of primordial
origin. Besides Z° magnetic flux tube structure also magnetic flux tube structure exists at different
space-time sheet but is in general not parallel to the Z° magnetic structure. This structure cannot
have primordial origin (the magnetic field of star can even flip its polarity).

The flow of matter along Z° magnetic (rotation) axis generates synchrotron radiation, which
escapes as a precisely targeted beam along magnetic axis and leaves the star. The identification is
as the rotating light beam associated with ordinary neutron stars. During the core collapse leading
to the supernova this beam becomes gamma ray burst. The mechanism is very much analogous to
the squeezing of the tooth paste from the tube. The fact that all nuclei are fully ionized Z° ions, the
Z9 charge unbalance caused by the ejection of neutrinos, and the radial compression make the effect
extremely strong so that there are hopes to understand the observed incredibly high polarization of
80 4+ 20 per cent.

TGD suggests the identification of particles of mass m ~ 2m, accompanying dark matter as lepto-
pions formed by color excited leptons, and topologically condensed at magnetic flux tubes having
thickness of about lepto-pion Compton length. Lepto-pions would serve as signatures of dark matter
whereas dark matter itself would correspond to the magnetic energy of topologically condensed cosmic
strings transformed to magnetic flux tubes.

TGD inspired cosmology

A proposal for what might be called TGD inspired cosmology is made. The basic ingredient of this
cosmology is the TGD counter part of the cosmic string. It is found that many-sheeted space-time
concept, the new view about the relationship between inertial and gravitational four-momenta, the
basic properties of the cosmic strings, zero energy ontology, the hierarchy of dark matter with levels
labeled by arbitrarily large values of Planck constant: the existence of the limiting temperature (as
in string model, too), the assumption about the existence of the vapor phase dominated by cosmic
strings, and quantum criticality imply a rather detailed picture of the cosmic evolution, which differs
from that provided by the standard cosmology in several respects but has also strong resemblances
with inflationary scenario.

TGD inspired cosmology in its recent form relies on an ontology differing dramatically from that
of GRT based cosmologies. Zero energy ontology states that all physical states have vanishing net
quantum numbers so that all matter is creatable from vacuum. The hierarchy of dark matter identified
as macroscopic quantum phases labeled by arbitrarily large values of Planck constant is second aspect
of the new ontology. The values of the gravitational Planck constant assignable to space-time sheets
mediating gravitational interaction are gigantic. This implies that TGD inspired late cosmology might
decompose into stationary phases corresponding to stationary quantum states in cosmological scales
and critical cosmologies corresponding to quantum transitions changing the value of the gravitational
Planck constant and inducing an accelerated cosmic expansion.

1. Zero energy ontology

The construction of quantum theory leads naturally to zero energy ontology stating that everything
is creatable from vacuum. Zero energy states decompose into positive and negative energy parts having
identification as initial and final states of particle reaction in time scales of perception longer than the
geometro-temporal separation T' of positive and negative energy parts of the state. If the time scale
of perception is smaller than 7', the usual positive energy ontology applies.

In zero energy ontology inertial four-momentum is a quantity depending on the temporal time
scale T used and in time scales longer than T the contribution of zero energy states with parameter
Ty < T to four-momentum vanishes. This scale dependence alone implies that it does not make sense
to speak about conservation of inertial four-momentum in cosmological scales. Hence it would be
in principle possible to identify inertial and gravitational four-momenta and achieve strong form of
Equivalence Principle. It however seems that this is not the correct approach to follow.

2. Dark matter hierarchy and hierarchy of Planck constants
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Dark matter revolution with levels of the hierarchy labeled by values of Planck constant forces a
further generalization of the notion of imbedding space and thus of space-time. One can say, that
imbedding space is a book like structure obtained by gluing together infinite number of copies of the
imbedding space like pages of a book: two copies characterized by singular discrete bundle structure are
glued together along 4-dimensional set of common points. These points have physical interpretation
in terms of quantum criticality. Particle states belonging to different sectors (pages of the book) can
interact via field bodies representing space-time sheets which have parts belonging to two pages of
this book.

8. Quantum criticality

TGD Universe is quantum counterpart of a statistical system at critical temperature. As a con-
sequence, topological condensate is expected to possess hierarchical, fractal like structure containing
topologically condensed 3-surfaces with all possible sizes. Both Kéahler magnetized and Kéhler elec-
tric 3-surfaces ought to be important and string like objects indeed provide a good example of Kahler
magnetic structures important in TGD inspired cosmology. In particular space-time is expected to be
many-sheeted even at cosmological scales and ordinary cosmology must be replaced with many-sheeted
cosmology. The presence of vapor phase consisting of free cosmic strings containing topologically con-
densed fermions is second crucial aspect of TGD inspired cosmology.

Quantum criticality of TGD Universe, which corresponds to the vanishing of second variation of
Kahler action for preferred extremals - at least of the variations related to dynamical symmetries-
supports the view that many-sheeted cosmology is in some sense critical. Criticality in turn suggests
fractality. Phase transitions, in particular the topological phase transitions giving rise to new space-
time sheets, are (quantum) critical phenomena involving no scales. If the curvature of the 3-space does
not vanish, it defines scale: hence the flatness of the cosmic time=constant section of the cosmology
implied by the criticality is consistent with the scale invariance of the critical phenomena. This
motivates the assumption that the new space-time sheets created in topological phase transitions are
in good approximation modelable as critical Robertson-Walker cosmologies for some period of time
at least.

These phase transitions are between stationary quantum states having stationary cosmologies as
space-time correlates: also these cosmologies are determined uniquely apart from single parameter.

4. Only sub-critical cosmologies are globally imbeddable

TGD allows global imbedding of subcritical cosmologies. A partial imbedding of one-parameter
families of critical and overcritical cosmologies is possible. The infinite size of the horizon for the
imbeddable critical cosmologies is in accordance with the presence of arbitrarily long range fluctuations
at criticality and guarantees the average isotropy of the cosmology. Imbedding is possible for some
critical duration of time. The parameter labeling these cosmologies is scale factor characterizing the
duration of the critical period. These cosmologies have the same optical properties as inflationary
cosmologies. Critical cosmology can be regarded as a ’Silent Whisper amplified to Bang’ rather than
'Big Bang’ and transformed to hyperbolic cosmology before its imbedding fails. Split strings decay
to elementary particles in this transition and give rise to seeds of galaxies. In some later stage the
hyperbolic cosmology can decompose to disjoint 3-surfaces. Thus each sub-cosmology is analogous to
biological growth process leading eventually to death.

5. Fractal many-sheeted cosmology

The critical cosmologies can be used as a building blocks of a fractal cosmology containing cos-
mologies containing ... cosmologies. p-Adic length scale hypothesis allows a quantitative formulation
of the fractality. Fractal cosmology predicts cosmos to have essentially same optic properties as in-
flationary scenario but avoids the prediction of unknown vacuum energy density. Fractal cosmology
explains the paradoxical result that the observed density of the matter is much lower than the critical
density associated with the largest space-time sheet of the fractal cosmology. Also the observation
that some astrophysical objects seem to be older than the Universe, finds a nice explanation.

6. Cosmic strings as basic building blocks of TGD inspired cosmology

Cosmic strings are the basic building blocks of TGD inspired cosmology and all structures including
large voids, galaxies, stars, and even planets can be seen as pearls in a cosmic fractal necklaces
consisting of cosmic strings containing smaller cosmic strings linked around them containing... During
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cosmological evolution the cosmic strings are transformed to magnetic flux tubes with smaller Kéhler
string tension and these structures are also key players in TGD inspired quantum biology.

The observed large voids would contain galactic cosmic strings at their boundaries. These voids
would participate cosmic expansion only in average sense. During stationary periods the quantum
states would be modelable using stationary cosmologies and during phase transitions increasing grav-
itational Planck constant and thus size of the large void they critical cosmologies would be the ap-
propriate description. The acceleration of cosmic expansion predicted by critical cosmologies can be
naturally assigned with these periods. Classically the quantum phase transition would be induced
when galactic strings are driven to the boundary of the large void. The mechanism forcing the phase
transition could be repulsive Coulomb energy associated with dark matter at strings if cosmic strings
generate net em charge as a consequence of CP breaking (antimatter could reside inside cosmic strings)
or a repulsive gravitational acceleration. The large values of Planck constant are crucial for under-
standing of living matter so that gravitation would play fundamental role also in the evolution of life
and intelligence.

Many-sheeted fractal cosmology containing both hyperbolic and critical space-time sheets based
on cosmic strings suggests an explanation for several puzzles of GRT based cosmology such as dark
matter problem, origin of matter antimatter asymmetry, the problem of cosmological constant and
mechanism of accelerated expansion, the problem of several Hubble constants, and the existence of
stars apparently older than the Universe. Under natural assumptions TGD predicts same optical
properties of the large scale Universe as inflationary scenario does. The recent balloon experiments
however favor TGD inspired cosmology.

TGD and Astrophysics

In this chapter some applications of TGD based view about cosmology and astrophysics are discussed.

1. p-Adic length scale hypothesis can be applied in astrophysical length scales, too and some
examples of possible applications are discussed. One of the most interesting implications of p-
adicity is the possibility of series of phase transitions changing the value of cosmological constant
behaving as A oc 1/L?(k) as a function of p-adic length scale characterizing the size of the space-
time sheet.

2. A model for the solar magnetic field as a bundle of topological magnetic flux tubes is constructed
and a model of Sunspot cycle is proposed. This model is also shown to explain the mysteriously
high temperature of solar corona and also some other mysterious phenomena related to the
solar atmosphere. A direct connection with the TGD based explanation of the dark energy as
magnetic and Z° magnetic energy of the magnetic flux tubes containing dark matter as ordinary
matter, emerges. The matter in the solar corona is simply dark matter leaked from the highly
curved portions of the magnetic flux tubes to the space-time sheets where it becomes visible.
The generation of anomalous Z° charge caused by the runoff of dark neutrinos in Super Nova
could provide a first principle explanation for the avoidance of collapse to black-hole in Super
Nova explosion.

3. D. Da Rocha and Laurent Nottale have proposed that Schrodinger equation with Planck constant
R replaced with what might be called gravitational Planck constant fg, = G’,ZJM (h=c=1). v
is a velocity parameter having the value vy = 144.7 4 .7 km/s giving vo/c = 4.6 x 10~4. This
is rather near to the peak orbital velocity of stars in galactic halos. Also subharmonics and
harmonics of vy seem to appear. The support for the hypothesis coming from empirical data is

impressive.

Nottale and Da Rocha believe that their Schrédinger equation results from a fractal hydrody-
namics. Many-sheeted space-time however suggests astrophysical systems are not only quantum
systems at larger space-time sheets but correspond to a gigantic value of gravitational Planck
constant. The gravitational (ordinary) Schrédinger equation would provide a solution of the
black hole collapse (IR catastrophe) problem encountered at the classical level. The resolution
of the problem inspired by TGD inspired theory of living matter is that it is the dark matter at
larger space-time sheets which is quantum coherent in the required time scale.

I have proposed already earlier the possibility that Planck constant is quantized.
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(a) The spectrum would given in terms of integers n characterizing the quantum phases
q = exp(im/n). The Planck constants associated with M* and CP, degrees of freedom
are predicted to be different in general and arbitrarily large values of Planck constants
are possible so that A, = GMm/vy can be understood in this framework. The general
philosophy would be that when the quantum system would become non-perturbative, a
phase transition increasing the value of i occurs to preserve the perturbative character.
This would apply to QCD and to atoms with Z > 137 as well.

(b) The model explaining Nottale’s findings led later to the generalization of the notion of
imbedding space involving a book like structure in both M* and C P, degrees of freedom.
The particles at different pages of the book cannot appear in the same vertex of Feynman
diagram. This might be called relative darkness. Interactions via classical fields and ex-
change of particles leaking between pages are however possible. This distinguishes between
TGD based model and more conventional models of dark matter.

(¢) The integers n which correspond to polygons constructible using ruler and compass are
number theoretically preferred. This gives very strong constraints on planetary masses,
their general mass scale, and also on the value of vg. The constraints are satisfied with
accuracy better than 10 per cent.

(d) TGD predicts correctly the value of the parameter vy assuming that cosmic strings and their
decay remnants are responsible for the dark matter. The harmonics of vy can be understood
as corresponding to perturbations replacing cosmic strings with their n-branched coverings
so that tension becomes n?-fold: much like the replacement of a closed orbit with an orbit
closing only after n turns. 1/n-sub-harmonic would result when a magnetic flux tube split
into n disjoint magnetic flux tubes.

4. Long ranged classical electro-weak and color gauge fields are unavoidable in TGD framework.
The smallness of the parity breaking effects in hadronic, nuclear, and atomic length scales does
not however seem to allow long ranged electro-weak gauge fields. The problem disappears if
long range classical electro-weak gauge fields are identified as space-time correlates for massless
gauge fields created by dark matter. The identification explains chiral selection in living matter
and unbroken U(2)e,, invariance and free color in bio length scales become characteristics of
living matter and of bio-chemistry and bio-nuclear physics. An attractive solution of the matter
antimatter asymmetry is based on the identification of also antimatter as dark matter.

5. The last section of the chapter is devoted to some astrophysical and cosmological anomalies such
as the apparent shrinking of solar system observed by Masreliez, Pioneer anomaly and Flyby
anomaly.

Quantum Astrophysics

The vision that the quantum dynamics for dark matter is behind the formation of the visible structures
suggests that the formation of the astrophysical structures could be understood as a consequence of
gravitational Bohr rules. The origin of these rules has remained a little bit mysterious until the
discovery that the hierarchy of Planck constants relates very closely to anyons and fractionization of
quantum numbers.

1. Key element is the notion of partonic 2-surface, which for large values of Planck constant can
have astrophysical size. This surface contains dark matter in anyonic many particle state if
it surrounds the tip of so called causal diamond (the intersection of future and past directed
light-cones). Also flux tubes surrounding the orbits of planets and other astrophysical objects
containing dark matter would be connected by radial flux tubes to central anyonic 2-surface so
that the entire system would be anyonic and quantum coherent in astrophysical scale. Visible
matter is condensed around these dark matter structures.

2. Since space-times are 4-surfaces in H = M* x CP, (or rather, its generalization to a book like
structure), gravitational Bohr rules can be formulated in a manner which is general coordinate
invariant and Lorentz invariant.
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3. The value of the parameter vy appearing in gravitational Planck constant varies and this leads

to a weakened form of Equivalence Principle stating that v is same for given connected anyonic
2-surface, which can have very complex topology. In the case of solar system inner planets
would be connected to an anyonic surface assignable to Sun and outer planets with different
value of vy to an anyonic surface assignable to Sun and inner planets as a whole. If one accepts
ruler-and-compass hypothesis for allowed values of Planck constant very powerful predictions
follow.

This general conceptual framework is applied to build simple models in some concrete examples.

1. Concerning Bohr orbitology in astrophysical length scales, the basic observation is that in the

case of a straight cosmic string creating a gravitational potential of form v?/p Bohr quantization
does not pose any conditions on the radii of the circular orbits so that a continuous mass
distribution is possible. This situation is obviously exceptional. If one however accepts the TGD
based vision that the very early cosmology was cosmic string dominated and that elementary
particles were generated in the decay of cosmic strings, this situation might have prevailed at
very early times. If so, the differentiation of a continuous density of ordinary matter to form
the observed astrophysical structures would correspond to an approach to a stationary situation
governed by Bohr rules for dark matter and in the first approximation one could neglect the
intermediate stages.

. This general picture is applied by considering some simple models for astrophysical systems in-

volving planar structures. There are several universal predictions. Velocity spectrum is universal
and only the Bohr radii depend on the choice of mass distribution. The inclusion of cosmic string
implies that the system associated with the central mass is finite. Quite generally dark parts of
astrophysical objects have shell like structure like atoms as do also ring like structures.

. p-Adic length scale hypothesis provides a manner to obtain a realistic model for the central

objects meaning a structure consisting of shells coming as half octaves of the basic radius: this
obviously relates to Titius-Bode law. Also a simple model for planetary rings is obtained. Bohr
orbits do not follow cosmic expansion which is obtained only in the average sense if phase
transitions reducing the value of basic parameter vy occur at preferred values of cosmic time.
This explains why vy has different values and also the decomposition of planetary system to
outer and inner planets with different values of vy.

TGD Universe is quantum critical and quantum criticality corresponds very naturally to what has

been identified as the transition region to quantum chaos.

1. The basic formulation of quantum TGD is consistent with what has been learned from the

properties of quantum chaotic systems and quantum chaotic scattering. Wave functions are
concentrated around Bohr orbits in the limit of quantum chaos, which is just what dark matter
picture assumes.

. The model for the emission and detection of dark gravitons allows to conclude that the transition

to chaos via generation of sub-harmonics of fundamental frequency spoiling the original exact
periodicity corresponds to a sequence of phase transitions in which Planck constant transforms
from integer to a rational number whose denominator increases as chaos is approached. This
gives a precise characterization for the phase transitions leading to quantum chaos in general.

. In this framework the chaotic motion of astrophysical object becomes the counterpart of quan-

tum chaotic scattering and the description in terms of classical chaos is predicted to fail. By
Equivalence Principle the value of the mass of the object does not matter at all so that the mo-
tion of sufficiently light objects in solar system might be understandable only as quantum chaotic
scattering. The motion of gravitationally unbound comets and rings of Saturn and Jupiter and
the collisions of galactic structures known to exhibit the presence of cart-wheel like structures
define possible applications.

Gravitational radiation can be emitted either in transitions between Bohr orbits or in the tran-

sitions which reduce Planck constant by increasing the velocity parameter vg < 1. The estimate for
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the average radiation power requires an estimate for the transition time (transition rate). Quantum
classical correspondence does not allow the radiation power to depend on vy. This fixes the expression
for transition time highly uniquely, and the predicted power is of same order of magnitude as classical
radiation power for both mechanisms. The radiation from Hulse-Taylor binary would be associated
with n = 3 — 1 transition.

The description of gravitational radiation provides a stringent test for the idea about dark matter
hierarchy with arbitrary large values of Planck constants. In accordance with quantum classical
correspondence, one can take the consistency with classical formulas as a constraint allowing to deduce
information about how dark gravitons interact with ordinary matter. The standard facts about
gravitational radiation are discussed first and then TGD based view about the situation is sketched.

What are the counterparts of Einstein’s equations in TGD?

The original motivation of this work was related to Platonic solids. The playing with Einstein’s
equations and the attempts to interpret them physically forced the return to an old interpretational
problem of TGD. TGD allows enormous vacuum degeneracy for Kéhler action but the vacuum ex-
tremals are not gravitational vacua. Could this mean that TGD forces to modify Einstein’s equations?
Could space-time surfaces carrying energy and momentum in GRT framework be vacua in TGD con-
text? Of course, also in GRT context cosmological constant means just this and an experimental fact,
is that cosmological constant is non-vanishing albeit extremely small.

Trying to understand what is involved led to the realization that the hypothesis that preferred
extremals correspond to the solutions of Einstein-Maxwell equations with cosmological constant is too
restricted in the case of vacuum extremals and also in the case of standard cosmologies imbedded as
vacuum extremals. What one must achieve is the vanishing of the divergence of energy momentum
tensor of Kéhler action expressing the local conservation of energy momentum currents. The most
general analog of Einstein’s equations and Equivalence Principle would be just this condition giving
in GRT framework rise to the Einstein-Maxwell equations with cosmological constant.

One can however wonder whether it could be possible to find some general ansétze allowing to
satisfy this condition. This kind of ansétze can be indeed found and can be written as kG+> A, P, =T,
where A; are cosmological ”constants” and P; are mutually orthogonal projectors such that each
projector contribution has a vanishing divergence. One can interpret the projector contribution in
terms of topologically condensed matter, whose energy momentum tensor the projectors code in the
representation kG = — > A;P; + T. Therefore Einstein’s equations with cosmological constant are
generalized. This generalization is not possible in General Relativity, where Einstein’s equations
follow from a variational principle. This kind of ansétze can be indeed found and involve the analogs
of cosmological constant, which are however not genuine constants anymore. Therefore Einstein’s
equations with cosmological constant are generalized. This generalization is not possible in General
Relativity, where Einstein’s equations follow from a variational principle.

The suggested quaternionic preferred extremals and preferred extremals involving Hamilton-Jacobi
structure could be identified as different families characterized by the little group of particles involved
and assignable to time-like/light-like local direction. One should prove that this ansatz works also for
all vacuum extremals. This progress - if it really is progress - provides a more refined view about how
TGD Universe differs from the Universe according to General Relativity and leads also to a model for
how the cosmic honeycomb structure with basic unit cells having size scale 10® ly could be modelled
in TGD framework.

1.4.3 PART III: Topological field quantization
Hydrodynamics and CP, geometry

The chapter begins with a brief summary of the basic notions related to many-sheeted space-time. A
generalization of hydrodynamics to a p-adic hierarchy of hydrodynamics is performed and a mechanism
of energy transfer between condensate levels is identified. Mary Selvam has found a fascinating
connection between the distribution of primes and the distribution of vortex radii in turbulent flow in
atmosphere. These observations provide new insights into p-adic length scale hypothesis and suggest
that TGD based generalization of Hawking-Bekenstein law holds even in macroscopic length scales
and that hydrodynamical vortices behave in some aspects like elementary particles. TGD leads to



36 Chapter 1. Introduction

a formulation of a general theory of phase transitions: the new element is the presence of several
condensate levels.

A topological model for the generation of the hydrodynamical turbulence is proposed. The basic
idea is that hydrodynamical turbulence can be regarded as a spontaneous Kahler magnetization leading
to the increase the value of Kahler function and therefore of the probability of the configuration.
Kahler magnetization is achieved through the formation of a vortex cascade via the decay of the
mother vortex by the emission of smaller daughter vortices. Vortices with various values of the fractal
quantum number and with sizes related by a discrete scaling transformation appear in the cascade.
The decay of the vortices takes place via the so called phase slippage process.

An encouraging result is the prediction for the size distribution of the vortices: the prediction is
practically identical with that obtained from the model of Heisenberg but on rather different physical
grounds. The model is rather insensitive to the p-adic scaling of vortices in the transition as long as it
is smaller than A = 27°. The model is also consistent with the assumption that the decay of a vortex
to smaller vortices corresponds to a phase transition from a given level of dark matter hierarchy to
a lower level so that the value of A is reduced by a factor A\ = vo/n ~ 271 /n, n = 1,2,... so that
Compton length scales as well as sizes of vortices are reduced by this factor.

Macroscopic quantum phenomena and C' P, geometry

Topological field quantization is applied to a unified description of three macroscopic quantum phases:
super conductors, super fluids and quantum Hall phase. The basic observation is that the formation
of the join along boundaries bonds makes possible the formation of macroscopic quantum system from
topological field quanta having size of the order of the coherence length £ for ordinary phase. The
presence of the bridges (join along boundaries bonds) makes possible supra flow and the presence of two
levels of the topological condensate explains the two-fluid picture of super fluids. In standard physics,
the order parameter is constant in the ground state. In TGD context, the non-simply connected
topology of the 3-surface makes possible ground states with a covariantly constant order parameter
characterized by the integers telling the change of the order parameter along closed homotopically
nontrivial loops.

The role of the ordinary magnetic field in super conductivity is taken by the Z° magnetic field
in super fluidity and the mathematical descriptions of super conductors and super fluids become
practically identical. The generalization of the quantization condition for the magnetic flux to a
condition involving also a velocity circulation, plays a central role in the description of both phases
and suggests a new description of the rotating super fluid and some new effects. A classical explanation
for the fractional Quantum Hall effect in terms of the topological field quanta is proposed. Quantum
Hall phase is very similar to the supra phases: an essential role is played by the generalized quantization
condition and the hydrodynamic description of the Hall electrons.

The results obtained support the view that in condensed matter systems topological field quanta
with size of the order of & ~ 1078 — 10~7 meters are of special importance. This new length scale
is expected to have also applications to less exotic phenomena of the condensed matter physics (the
description of the conductors and di-electrics and ferromagnetism) and in hydrodynamics (the failure
of the hydrodynamic approximation takes place at this length scale). These field quanta of course,
correspond to only one condensate level and many length scales are expected to be present.
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Chapter 2

Basic Extremals of the Kahler
Action

2.1 Introduction

In this chapter the classical field equations associated with the Kahler action are studied. The study of
the extremals of the Kahler action has turned out to be extremely useful for the development of TGD.
Towards the end of year 2003 quite dramatic progress occurred in the understanding of field equations
and it seems that field equations might be in well-defined sense exactly solvable. The progress made
during next five years led to a detailed understanding of quantum TGD at the fundamental parton
level and this provides considerable additional insights concerning the interpretation of field equations.

2.1.1 General considerations

The vanishing of Lorentz 4-force for the induced Kahler field means that the vacuum 4-currents are
in a mechanical equilibrium. Lorentz 4-force vanishes for all known solutions of field equations which
inspires the hypothesis that preferred extremals satisfy the condition. The vanishing of the Lorentz 4-
force in turn implies a local conservation of the ordinary energy momentum tensor. The corresponding
condition is implied by Einstein’s equations in General Relativity. The hypothesis would mean that
the solutions of field equations are what might be called generalized Beltrami fields. If Kahler action
is defined by C'P, Kahler form alone, the condition implies that vacuum currents can be non-vanishing
only provided the dimension Dcp, of the C'Py projection of the space-time surface is less than four
so that in the regions with Dcp, = 4, Maxwell’s vacuum equations are satisfied.

The hypothesis that Kéhler current is proportional to a product of an arbitrary function ¢ of C' P
coordinates and of the instanton current generalizes Beltrami condition and reduces to it when electric
field vanishes. Instanton current has vanishing divergence for Do p, < 4, and Lorentz 4-force indeed
vanishes. The remaining task would be the explicit construction of the imbeddings of these fields and
the demonstration that field equations can be satisfied.

Under additional conditions magnetic field reduces to what is known as Beltrami field. Beltrami
fields are known to be extremely complex but highly organized structures. The natural conjecture
is that topologically quantized many-sheeted magnetic and Z° magnetic Beltrami fields and their
generalizations serve as templates for the helical molecules populating living matter, and explain both
chirality selection, the complex linking and knotting of DNA and protein molecules, and even the
extremely complex and self-organized dynamics of biological systems at the molecular level.

Field equations can be reduced to algebraic conditions stating that energy momentum tensor and
second fundamental form have no common components (this occurs also for minimal surfaces in string
models) and only the conditions stating that Kéahler current vanishes, is light-like, or proportional
to instanton current, remain and define the remaining field equations. The conditions guaranteing
topologization to instanton current can be solved explicitly. Solutions can be found also in the more
general case when Kéhler current is not proportional to instanton current. On basis of these findings
there are strong reasons to believe that classical TGD is exactly solvable.

An important outcome is the notion of Hamilton-Jacobi structure meaning dual slicings of M*
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projection of preferred extremals to string world sheets and partonic 2-surfaces. The necessity of this
slicing was discovered years later from number theoretic compactification and is now a key element of
quantum TGD allowing to deduce Equivalence Principle in its stringy form from quantum TGD and
formulate and understand quantum TGD in terms of modified Dirac action assignable to Kahler action.
The conservation of Noether charges associated with modified Dirac action requires the vanishing of
the second second variation of Kéhler action for preferred extremals - at least for the deformations
generating dynamical symmetries. Preferred extremals would thus define space-time representation
for quantum criticality. Infinite-dimensional variant for the hierarchy of criticalities analogous to the
hierarchy assigned to the extrema of potential function with levels labeled by the rank of the matrix
defined by the second derivatives of the potential function in catastrophe theory would suggest itself.

2.1.2 In what sense field equations mimic dissipative dynamics?

By quantum classical correspondence the non-deterministic space-time dynamics should mimic the
dissipative dynamics of the quantum jump sequence. The nontrivial question is what this means in
TGD framework.

1. Beltrami fields appear in physical applications as asymptotic self organization patterns for which
Lorentz force and dissipation vanish. This suggests that preferred extremals of Kéhler action
correspond to space-time sheets which at least asymptotically satisfy generalized Beltrami condi-
tions so that one can indeed assign to the final (rather than initial!) 3-surface a unique 4-surface
apart from effects related to non-determinism. Preferred extremal property of Kahler action ab-
stracted to purely algebraic generalized Beltrami conditions would make sense also in the p-adic
context. The general solution ansatz discussed in the last section of the chapter assumes that
all conserved isometry currents are proportional to instanton current so that various charges are
conserved separately for all flow lines: this means esssentially the integrability of the theory.
This ansatz is forced by the hypothesis that TGD reduces to almost topological QFT and this
idea. The basic consequence is that dissipation is impossible classically.

2. A more radical view inspired by zero energy ontology is that the light-like 3-surfaces and cor-
responding space-time regions with Euclidian signature defining generalized Feynman diagrams
provide a space-time representation of dissipative dynamics just as they provide this represen-
tation in quantum field theory. Minkowskian regions would represent empty space so that the
vanishing of Lorentz 4-force and absence of dissipation would be natural. This would mean
very precise particle field duality and the topological pattern associated with the generalized
Feynman diagram would represent dissipation. One could also interprete dissipation as transfer
of energy between sheets of the many-sheeted space time and thus as an essentially topological
phenomenon. This option seems to be the only viable one.

2.1.3 The dimension of C'P, projection as classifier for the fundamental
phases of matter

The dimension Dcp, of C P, projection of the space-time sheet encountered already in p-adic mass
calculations classifies the fundamental phases of matter. For Deop, = 4 empty space Maxwell equa-
tions hold true. The natural guess would be that this phase is chaotic and analogous to de-magnetized
phase. Dcp, = 2 phase is analogous to ferromagnetic phase: highly ordered and relatively simple. It
seems however that preferred extremals can correspond only to small perturbations of these extremals
resulting by topological condensation of C'Ps type vacuum extremals and through topological conden-
sation to larger space-time sheets. Dcp, = 3 is the analog of spin glass and liquid crystal phases,
extremely complex but highly organized by the properties of the generalized Beltrami fields. This
phase could be seen as the boundary between chaos and order and corresponds to life emerging in
the interaction of magnetic bodies with bio-matter. It is possible only in a finite temperature interval
(note however the p-adic hierarchy of critical temperatures) and characterized by chirality just like
life.

The original proposal was that D(CP,) = 4 phase is completely chaotic. This is not true if the
reduction to almost topological QFT takes place. This phase must correspond to Maxwellian phase
with a vanishing Kahler current as concluded already earlier. Various isometry currents are however
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proportional to the instanton current and conserved along the flow lines of the instanton current whose
flow parameter extends to a global coordinate. Hence a completely chaotic phase is not in question
even in this case.

2.1.4 Specific extremals of Kahler action

The study of extremals of Kahler action represents more than decade old layer in the development of
TGD.

1. The huge vacuum degeneracy is the most characteristic feature of Kéhler action (any 4-surface
having C'P, projection which is Legendre sub-manifold is vacuum extremal, Legendre sub-
manifolds of C'P, are in general 2-dimensional). This vacuum degeneracy is behind the spin
glass analogy and leads to the p-adic TGD. As found in the second part of the book, various
particle like vacuum extremals also play an important role in the understanding of the quantum
TGD.

2. The so called C'P, type vacuum extremals have finite, negative action and are therefore an
excellent candidate for real particles whereas vacuum extremals with vanishing K&ahler action
are candidates for the virtual particles. These extremals have one dimensional M* projection,
which is light like curve but not necessarily geodesic and locally the metric of the extremal is that
of C'Py: the quantization of this motion leads to Virasoro algebra. Space-times with topology
CP,#CPy#...CP, are identified as the generalized Feynmann diagrams with lines thickened
to 4-manifolds of ”thickness” of the order of C'P, radius. The quantization of the random
motion with light velocity associated with the C'P;, type extremals in fact led to the discovery of
Super Virasoro invariance, which through the construction of the configuration space geometry,
becomes a basic symmetry of quantum TGD.

3. There are also various non-vacuum extremals.

(a) String like objects, with string tension of same order of magnitude as possessed by the cos-
mic strings of GUTs, have a crucial role in TGD inspired model for the galaxy formation
and in the TGD based cosmology.

(b) The so called massless extremals describe non-linear plane waves propagating with the
velocity of light such that the polarization is fixed in given point of the space-time surface.
The purely TGD:eish feature is the light like K&hler current: in the ordinary Maxwell
theory vacuum gauge currents are not possible. This current serves as a source of coherent
photons, which might play an important role in the quantum model of bio-system as a
macroscopic quantum system.

(¢) In the so called Maxwell’s phase, ordinary Maxwell equations for the induced Kéhler field
are satisfied in an excellent approximation. A special case is provided by a radially symmet-
ric extremal having an interpretation as the space-time exterior to a topologically condensed
particle. The sign of the gravitational mass correlates with that of the Kéahler charge and
one can understand the generation of the matter antimatter asymmetry from the basic
properties of this extremal. The possibility to understand the generation of the matter
antimatter asymmetry directly from the basic equations of the theory gives strong support
in favor of TGD in comparison to the ordinary EYM theories, where the generation of the
matter antimatter asymmetry is still poorly understood.

2.1.5 The weak form of electric-magnetic duality and modification of Kahler
action

The newest results discussed in the last section about the weak form of electric-magnetic duality
suggest strongly that Beltrami property is general and together with the weak form of electric-magnetic
duality allows a reduction of quantum TGD to almost topological field theory with Kéahler function
allowing expression as a Chern-Simons term.

Generalized Beltrami property leads to a rather explicit construction of the general solution of
field equations based on the hydrodynamic picture implying that single particle quantum numbers are



42 Chapter 2. Basic Extremals of the Kédhler Action

conserved along flow lines defined by the instanton current. The construction generalizes also to the
fermionic sector and there are reasons to hope that TGD is completely integrable theory.

2.2 General considerations

The solution families of field equations studied in this chapter were found already during eighties.
The physical interpretation turned out to be the the really tough problem. What is the principle
selecting preferred extremals of Kihler action as analogs of Bohr orbits assigning to 3-surface X2 a
unique space-time surface X*(X3)? Does Equivalence Principle hold true and if so, in what sense?
These have been the key questions. The realization that light-like 3-surfaces X f’ associated with the
light-like wormhole throats at which the signature of the induced metric changes from Minkowskian
to Euclidian led to the formulation of quantum TGD in terms of second quantized induced spinor
fields at these surfaces. Together with the notion of number theoretical compactification this approach
allowed to identify the conditions characterizing the preferred extremals. What is remarkable that
these conditions are consistent with what is known about extremals. Also a connection with string
models and understanding of the space-time realization of Equivalence Principle emerged. In this
section the theoretical background behind field equations is briefly summarized. I will not repeat the
discussion of previous two chapters [K35| [K36] summarizing the general vision about many-sheeted
space-time, and consideration will be restricted to those aspects of vision leading to direct predictions
about the properties of preferred extremals of Kéhler action.

2.2.1 Number theoretical compactification and M® — H duality

The notion of hyper-quaternionic and octonionic manifold makes sense but it not plausible that
H = M* x CP;, could be endowed with a hyper-octonionic manifold structure. Situation changes
if H is replaced with hyper-octonionic M®. Suppose that X* C M3 consists of hyper-quaternionic
and co-hyper-quaternionic regions. The basic observation is that the hyper-quaternionic sub-spaces
of M8 with a fixed hyper-complex structure (containing in their tangent space a fixed hyper-complex
subspace M? or at least one of the light-like lines of M?) are labeled by points of C'P,. Hence each
hyper-quaternionic and co-hyper-quaternionic four-surface of M?® defines a 4-surface of M* x CP;.
One can loosely say that the number-theoretic analog of spontaneous compactification occurs: this of
course has nothing to do with dynamics.

This picture was still too naive and it became clear that not all known extremals of Kahler action
contain fixed M2 C M* or light-like line of M? in their tangent space.

1. The first option represents the minimal form of number theoretical compactification. M?® is
interpreted as the tangent space of H. Only the 4-D tangent spaces of light-like 3-surfaces X}
(wormhole throats or boundaries) are assumed to be hyper-quaternionic or co-hyper-quaternionic
and contain fixed M? or its light-like line in their tangent space. Hyper-quaternionic regions
would naturally correspond to space-time regions with Minkowskian signature of the induced
metric and their co-counterparts to the regions for which the signature is Euclidian. What is
of special importance is that this assumption solves the problem of identifying the boundary
conditions fixing the preferred extremals of Kéhler action since in the generic case the intersection
of M? with the 3-D tangent space of X} is 1-dimensional. The surfaces X*(X?) ¢ M® would
be hyper-quaternionic or co-hyper-quaternionic but would not allow a local mapping between
the 4-surfaces of M?® and H.

2. One can also consider a more local map of X*(X?) C H to X*(X}}) C M®. The idea is to
allow M? C M* C M® to vary from point to point so that S? = SO(3)/SO(2) characterizes the
local choice of M? in the interior of X*. This leads to a quite nice view about strong geometric
form of M® — H duality in which M? is interpreted as tangent space of H and X*(X}) ¢ M®
has interpretation as tangent for a curve defined by light-like 3-surfaces at X 13 and represented
by X*4(X}}) C H. Space-time surfaces X*(X}) C M?® consisting of hyper-quaternionic and co-
hyper-quaternionic regions would naturally represent a preferred extremal of E* Kihler action.
The value of the action would be same as CP, Kihler action. M® — H duality would apply
also at the induced spinor field and at the level of configuration space. The possibility to assign
M?(xz) C M* to each point of M* projection Ppra(X*(X})) is consistent with what is known
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about extremals of Kéhler action with only one exception: C P, type vacuum extremals. In this
case M? can be assigned to the normal space.

3. Strong form of M®— H duality satisfies all the needed constraints if it represents Kihler isometry
between X*(X7?) ¢ M® and X*(X}?) C H. This implies that light-like 3-surface is mapped to
light-like 3-surface and induced metrics and Kéhler forms are identical so that also Kéhler action
and field equations are identical. The only differences appear at the level of induced spinor fields
at the light-like boundaries since due to the fact that gauge potentials are not identical.

4. The map of X f CH—-X l?’ C M?® would be crucial for the realization of the number theoretical
universality. M® = M* x E* allows linear coordinates as those preferred coordinates in which
the points of imbedding space are rational/algebraic. Thus the point of X% C H is algebraic
if it is mapped to algebraic point of M?® in number theoretic compactification. This of course
restricts the symmetry groups to their rational /algebraic variants but this does not have practical
meaning. Number theoretical compactication could thus be motivated by the number theoretical
universality.

5. The possibility to use either M® or H picture might be extremely useful for calculational pur-
poses. In particular, M® picture based on SO(4) gluons rather than SU(3) gluons could per-
turbative description of low energy hadron physics. The strong SO(4) symmetry of low energy
hadron physics can be indeed seen direct experimental support for the M8 — H duality.

Number theoretical compactification has quite deep implications for quantum TGD and is actually
responsible for most of the progress in the understanding of the mathematical structure of quantum
TGD. A very powerful prediction is that preferred extremals should allow slicings to either stringy
world sheets or dual partonic 2-surfaces as well as slicing by light-like 3-surfaces. Both predictions are
consistent with what is known about extremals.

1. If the distribution of planes M?(z) is integrable, it is possible to slice X*4(X?) to a union of 2-
dimensional surfaces having interpretation as string world sheets and dual 2-dimensional copies
of partonic surfaces X2. This decomposition defining 242 Kaluza-Klein type structure realizes
quantum gravitational holography and allows to understand Equivalence Principle at space-time
level in the sense that dimensional reduction defined by the integral of Kéahler action over the
2-dimensional space labeling stringy world sheets gives rise to the analog of stringy action and
one obtains string model like description of quantum TGD as dual for a description based on
light-like partonic 3-surfaces. String tension is not however equal to the inverse of gravitational
constant as one might naively expect but the connection is more delicate.

2. Second implication is the slicing of X*(X}) to light-like 3-surfaces Y;? "parallel” to X. Also this
slicing realizes quantum gravitational holography if one requires General Coordinate Invariance
in the sense that the Dirac determinant defined by the generalized eigenvalues of the transverse
part Dy (X?) of D is differs for two 3-surfaces Y;? in the slicing only by an exponent of a real
part of a holomorphic function of configuration space complex coordinates giving no contribution
to the Kahler metric. The requirement that the zero modes of the 4-D modified Dirac operators
Dy reduce to the analogs of 3-D shock waves for all 3-surfaces Y13 in the slicing requires that
Noether currents are parallel to Y;*. Clearly, 3+1 type Kaluza-Klein structure is in question.
This slicing allows to realize RG flow at space-time level using the light-like coordinate associated
with the slicing as RG parameter [K36] . The prediction is RG invariance of couplings for a
causal diamond (C'D) in given p-adic length scale meaning a justification of the hypothesis that
coupling constant evolution reduces to a discrete p-adic coupling constant evolution with p-adic
length scales coming as half octaves. This prediction follows if the known properties of extremals
of Kahler action hold true quite generally.

3. The assumption that K&hler current and other gauge currents flow along the slices Y13 of the
slicing of X*(X 13) is enough for the renormalization group invariance of gauge couplings inside
CD guaranteing p-adic coupling constant evolution [K36] . The current could thus have also
a component parallel to the transverse cross section in which case the current would be space-
like. Space-likeness brings in mind the Euclidian signature of the effective metric defined by the
modified gamma matrices e = (0L /ORhE)y* necessary for the Higgs mechanism. Dissipation
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would be absent but Lorentz force would be non-vanishing. The general solution ansatz for the
field equations allows besides light-like Kéhler currents also space-like gauge currents, which can
be regarded as topological currents. The gluing of C' P, type vacuum extremals to the known
extremals with light-like gauge currents could generate the transversal part of the currents and
increase the dimension D¢ p, of the C P, projection to at least Dop, = 3.

2.2.2 The exponent of Kahler function as Dirac determinant for the mod-
ified Dirac action

Although quantum criticality in principle predicts the possible values of Kéhler coupling strength, one
might hope that there exists even more fundamental approach involving no coupling constants and
predicting even quantum criticality and realizing quantum gravitational holography.

The identification of the light-like partonic 3-surfaces as carriers of elementary particle quantum
numbers inspired by the TGD based quantum measurement theory suggests the identification of
the modified Dirac action as that associated with the Chern-Simons action for the induced Kahler
gauge potential. It however turned out that it is 4-D modified Dirac action associated with K&ahler
action, which is the correct choice. The point is that only the solutions of Dg which are effectively 3-
dimensional by generalized super-conformal gauge invariance are physical. The effective metric defined
by the modified gamma matrices is non-singular even for light-like 3-surfaces Yf’ , and this allows to
develop a well-defined theory involving also metric degrees of freedom. In this framework C'— S action
emerges as a phase factor of quantum states for phases with non-standard value of Planck constant
and is related to anyons and charge fractionization.

Absolutely essential role is played by number theoretical compactification predicted that space-
time sheets have dual slicings to string world sheets and partonic 2-surfaces. This prediction is
supported by the properties of known extremals of Kéahler action. This allows the decompositions
Dy = Dg(Y?) + Dg(X?) generalized eigenvalues can be associated associated with Dy (X?) for zero
modes of D.

1. The Dirac determinant defined by the product of Dirac determinants associated with the light-
like partonic 3-surfaces X f associated with a given space-time sheet X* is the simplest candidate
for vacuum functional identifiable as the exponent of the K&hler function. One can of course
worry about the finiteness of the Dirac determinant. p-Adicization requires that the eigenvalues
belong to a given algebraic extension of rationals. This restriction would imply a hierarchy of
physics corresponding to different extensions and could automatically imply the finiteness and
algebraic number property of the Dirac determinants if only finite number of eigenvalues would
contribute. The regularization would be performed by physics itself if this were the case.

3. The basic problem has been how to feed in the information about the preferred extremal of
Kihler action to the eigenvalue spectrum Dy (X?) at light-like 3-surface X 13 The identification
of the preferred extremal came possible via boundary conditions at Xf’ dictated by number
theoretical compactification. The basic observation is that the Dirac equation associated with
the 4-D Dirac operator Dk defined by Kahler action can be seen as a conservation law for a
super current. By restricting the super current to flow along X} by requiring that its normal
component vanishes, one obtains a singular solution of 4-D modified Dirac equation restricted
to X l?’ The "energy” spectrum to the spectrum of eigenvalues for Dy (X?) and the product of
the eigenvalues defines the Dirac determinant in standard manner. Since the eigenmodes are
restricted to those localized to regions of non-vanishing induced Kéahler form, the number of
eigen modes is finite and therefore also Dirac determinant is finite. The eigenvalues can be also
algebraic numbers.

4. It remains to be proven that the product of eigenvalues gives rise to the exponent of K&hler
action for the preferred extremal of Kéhler action. At this moment the only justification for the
conjecture is that this the only thing that one can imagine.

5. An additional bonus is precise definition of quantum criticality. The Noether currents associated
with the modified Dirac action are conserved if its variation with respect to H-coordinates
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vanishes. This means that the second variation of Ké&hler action varies. One can consider
also a weaker form of quantum criticality in which case only the variations with respect to
deformations defining the conserved currents are vanishing. This would give to a hierarchy of
criticalities defined by the second variations of Kahler action. The vacuum degeneracy of Kahler
action would be essential for the realization of quantum criticality and could correspond to a
hierarchy of dynamical gauge symmetries characterizing finite measurement resolution suggested
by the hierarchy of Jones inclusions [K30] .

6. A long-standing conjecture has been that the zeros of Riemann Zeta are somehow relevant for
quantum TGD. Rieman zeta is however naturally replaced Dirac zeta defined by the eigenvalues
of D (X?) and closely related to Riemann Zeta since the spectrum consists essentially for the
cyclotron energy spectra for localized solutions region of non-vanishing induced Kéahler magnetic
field and hence is in good approximation integer valued up to some cutoff integer. In zero
energy ontology the Dirac zeta function associated with these eigenvalues defines ”square root”
of thermodynamics assuming that the energy levels of the system in question are expressible
as logarithms of the eigenvalues of the modified Dirac operator defining kind of fundamental
constants. Critical points correspond to approximate zeros of Dirac zeta and if Kéhler function
vanishes at criticality as it ineed should, the thermal energies at critical points are in first order
approximation proportional to zeros themselves so that a connection between quantum criticality
and approximate zeros of Dirac zeta emerges.

7. The discretization induced by the number theoretic braids reduces the world of classical worlds
to effectively finite-dimensional space and configuration space Clifford algebra reduces to a finite-
dimensional algebra. The interpretation is in terms of finite measurement resolution represented
in terms of Jones inclusion M C N of HFFs with M taking the role of complex numbers.
The finite-D quantum Clifford algebra spanned by fermionic oscillator operators is identified
as a representation for the coset space N'/M describing physical states modulo measurement
resolution. In the sectors of generalized imbedding space corresponding to non-standard values
of Planck constant quantum version of Clifford algebra is in question.

Concerning the understanding of preferred extremals, the basic prediction (assuming that Kahler
gauge potential has no gauge part in M%) is that the CP, projection of the light-like 3-surfaces is
3-dimensional for non-vacuum partons. One implication is that a very general family of cosmic string
type solutions with 2-D C'P, projection cannot correspond to preferred extremals. If ideal cosmic
strings were preferred extremals, the most general realization for the hierarchy of Planck constants
in terms of a book like structure of the imbedding space would not be possible [K30] . Also massless
extremals have 2-D C'P, projection and are excluded as preferred extremals. The interpretation is that
the preferred extremals must be deformations of these extremals containing topologically condensed
CP, type vacuum extremals representing elementary particles and that these extremals provide only
smoothed out representation of the actual physics. The general principle would be that matter is
present only if light-like 3-surfaces at which the signature of the induced metric changes (light-like
boundary components cannot be excluded but in this case gauge charges would vanish). That the
interaction with a larger Minkowskian space-time sheet creates matter could be seen as a variant of
Mach Principle.

2.2.3 Preferred extremal property as classical correlate for quantum crit-
icality, holography, and quantum classical correspondence

The Noether currents assignable to the modified Dirac equation are conserved only if the first variation
of the modified Dirac operator Dy defined by Kéahler action vanishes. This is equivalent with the van-
ishing of the second variation of Kéhler action -at least for the variations corresponding to dynamical
symmetries having interpretation as dynamical degrees of freedom which are below measurement res-
olution and therefore effectively gauge symmetries. The weaker condition would mean that the inner
product defined by the integral of D,dLg /OhESh* over the space-time surface vanishes for the defor-
mations defining dynamical symmetries but the field equations are not satisfied completely generally.
The weaker condition would mean that the inner product defined by the integral of D,dLx /Ohksh*
over the space-time surface vanishes for the deformations defining dynamical symmetries but the field
equations are not satisfied completely generally.
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The vanishing of the second variation in interior of X*(X l3) is what corresponds exactly to quantum
criticality so that the basic vision about quantum dynamics of quantum TGD would lead directly to a
precise identification of the preferred extremals. Something which I should have noticed for more than
decade ago! The question whether these extremals correspond to absolute minima remains however
open.

The vanishing of second variations of preferred extremals -at least for deformations representing
dynamical symmetries, suggests a generalization of catastrophe theory of Thom, where the rank of
the matrix defined by the second derivatives of potential function defines a hierarchy of criticalities
with the tip of bifurcation set of the catastrophe representing the complete vanishing of this matrix.
In the recent case this theory would be generalized to infinite-dimensional context. There are three
kind of variables now but quantum classical correspondence (holography) allows to reduce the types
of variables to two.

1. The variations of X*(X}) vanishing at the intersections of X*(X?) with the light-like boundaries
of causal diamonds C'D would represent behavior variables. At least the vacuum extremals of
Kéhler action would represent extremals for which the second variation vanishes identically (the
"tip” of the multi-furcation set).

2. The zero modes of Kéahler function would define the control variables interpreted as classical
degrees of freedom necessary in quantum measurement theory. By effective 2-dimensionality (or
holography or quantum classical correspondence) meaning that the configuration space metric
is determined by the data coming from partonic 2-surfaces X? at intersections of X; with
boundaries of CD, the interiors of 3-surfaces X® at the boundaries of C'Ds in rough sense
correspond to zero modes so that there is indeed huge number of them. Also the variables
characterizing 2-surface, which cannot be complexified and thus cannot contribute to the Kéhler
metric of configuration space represent zero modes. Fixing the interior of the 3-surface would
mean fixing of control variables. Extremum property would fix the 4-surface and behavior
variables if boundary conditions are fixed to sufficient degree.

3. The complex variables characterizing X2 would represent third kind of variables identified as
quantum fluctuating degrees of freedom contributing to the configuration space metric. Quantum
classical correspondence requires 1-1 correspondence between zero modes and these variables.
This would be essentially holography stating that the 2-D ”causal boundary” X2 of X3(X?)
codes for the interior. Preferred extremal property identified as criticality condition would
realize the holography by fixing the values of zero modes once X? is known and give rise to
the holographic correspondence X2 — X3(X?). The values of behavior variables determined by
extremization would fix then the space-time surface X*(X?) as a preferred extremal.

4. Clearly, the presence of zero modes would be absolutely essential element of the picture. Quan-
tum criticality, quantum classical correspondence, holography, and preferred extremal property
would all represent more or less the same thing. One must of course be very cautious since the
boundary conditions at X} involve normal derivative and might bring in delicacies forcing to
modify the simplest heuristic picture.

The basic question is whether number theoretic view about preferred extremals imply absolute
minimization or something analogous to it.

1. The number theoretic conditions defining preferred extremals are purely algebraic and make
sense also p-adically and this is enough since p-adic variants of field equations make sense al-
though the notion of Kéhler action does not make sense as integral. Despite this the identification
of the vacuum functional as exponent of Kéahler function as Dirac determinant allows to define
the exponent of Kéhler function as a p-adic number [K19] .

2. The general objection against all extremization principles is that they do not make sense p-
adically since p-adic numbers are not well-ordered.

3. These observations do not encourage the idea about equivalence of the two approaches. On the
other hand, real and p-adic sectors are related by algebraic continuation and it could be quite
enough if the equivalence were true in real context alone.
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The finite-dimensional analogy allows to compare absolute minimization and criticality with each
other.

1. Absolute minimization would select the branch of Thom’s catastrophe surface with the smallest
value of potential function for given values of control variables. In general this value would not
correspond to criticality since absolute minimization says nothing about the values of control
variables (zero modes).

2. Criticality forces the space-time surface to belong to the bifurcation set and thus fixes the values
of control variables, that is the interior of 3-surface assignable to the partonic 2-surface, and
realized holography. If the catastrophe has more than N = 3 sheets, several preferred extremals
are possible for given values of control variables fixing X3(X?) unless one assumes that absolute
minimization or some other criterion is applied in the bifurcation set. In this sense absolute
minimization might make sense in the real context and if the selection is between finite number
of alternatives is in question, it should be possible carry out the selection in number theoretically
universal manner.

2.2.4 Can one determine experimentally the shape of the space-time sur-
face?

The question ’Can one determine experimentally the shape of the space-time surface?’ does not relate
directly to the topic of this chapter in technical sense, and the only excuse for its inclusion is the title
of this section plus the fact that the general conceptual framework behind quantum TGD assumes
an affirmative answer to this question. If physics were purely classical physics, operationalism in
the strong sense of the word would require that one can experimentally determine the shape of the
space-time as a surface of the imbedding space with arbitrary accuracy by measuring suitable classical
observables. In quantum physics situation is considerably more complex and quantum effects are both
a blessing and a curse.

Measuring classically the shape of the space-time surface
Consider first the purely classical situation to see what is involved.

1. All classical gauge fields are expressible in terms of C'P, coordinates and their space-time gradi-
ents so that the measurement of four field quantities with some finite resolution in some space-
time volume could in principle give enough information to deduce the remaining field quantities.
The requirement that space-time surface corresponds to an extremal of Kéahler action gives a
further strong consistency constraint and one can in principle test whether this constraint is
satisfied. A highly over-determined system is in question.

2. The freedom to choose the space-time coordinates freely causes complications and it seems that
one must be able to determine also the distances between the points at which the field quantities
are determined. At purely classical Riemannian level this boils down to the measurement of the
induced metric defining classical gravitational field. In macroscopic length scales one could base
the approach to iterative procedure in which one starts from the assumption that the coordinates
used are Minkowski coordinates and gravitational corrections are very weak.

3. The measurement of induced Kahler form in some space-time volume determines space-time
surface only modulo canonical transformations of C'P, and isometries of the imbedding space.
If one measures classical electromagnetic field, which is not canonical invariant in general case,
with some precision, one can determine to what kind of surface space-time region corresponds
apart from the action of the isometries of H.

Quantum measurement of the shape of the space-time surface

In practice the measurement of the shape of the space-time surface is necessarily a bootstrap procedure
based on the model for space-time region and on the requirement of internal consistency. Many-sheeted
space-time and quantum phenomena produce considerable complications but also provide universal
measurement standards.

Consider first how quantum effects could help to measure classical fields and distances.
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1.

The measurement of distances by measuring first induced metric at each point of space-time
sheet is rather unpractical procedure. Many-sheeted space-time however comes in rescue here.
p-Adic length scale hypothesis provides a hierarchy of natural length scales and one can use p-
adic length and time scales as natural units of length and time: space-time sheets serve as meter
sticks. For instance, length measurement reduces in principle to a finite number of operations
using various space-time sheets with standardized lengths given by p-adic length scales. Also
various transition frequencies and corresponding wavelengths provide universal time and length
units. Atomic clock provides a standard example of this kind of time unit. A highly nontrivial
implication is the possibility to deduce the composition of distant star from its spectral lines.
Without p-adic length scale hypothesis the scales for the mass spectra of the elementary particles
would be variable and atomic spectra would vary from point to point in TGD universe.

Do the p-adic length scales correspond to the length units of the induced metric or of Mi metric?
If the topological condensation a meter stick space-time sheet at a larger space-time sheet does
not stretch the meter stick but only bends it, the length topologically condensed meter stick in
the induced metric equals to its original length measured using M_‘i metric.

. If superconducting order parameters are expressible in terms of the C'P, coordinates (there

is evidence for this, see the chapter ”Macroscopic quantum phenomena and CP, geometry”),
one might determine directly the C'P» coordinates as functions of Minkowski coordinates and
this would allow to estimate all classical fields directly and thus to deduce strong consistency
constraints.

At quantum level only the fluxes of the classical fields through surface areas with some min-
imum size determined by the length scale resolution can be measured. In case of magnetic
fields the quantization of the magnetic flux simplifies the situation dramatically. Topological
field quantization quite generally modifies the measurement of continuous field variables to the
measurement of fluxes. Interestingly, the construction of the configuration space geometry uses
as configuration space coordinates various electric and magnetic fluxes over 2-dimensional cross
sections of 3-surface.

Quantum effects introduce also difficulties and restrictions.

1.

Canonical transformations localized with respect to the boundary of the light cone or more
general light like surfaces act as isometries of the configuration space and one can determine
the space-time surface only modulo these isometries. Even more, only the values of the non-
quantum fluctuating zero modes characterizing the shape and size of the space-time surface
are measurable with arbitrary precision in quantum theory. At the level of conscious experience
quantum fluctuating degrees of freedom correspond to sensory qualia like color having no classical
geometric content.

. Space-time surface is replaced by a new one in each quantum jump (or rather the superposition

of perceptively equivalent space-time surfaces). Only in the approximation that the change of
the space-time region in single quantum jump is negligible, the measurement of the shape of
space-time surface makes sense. The physical criterion for this is that dissipation is negligible.
The change of the space-time region in single quantum jump can indeed be negligible if the
measurement is performed with a finite resolution.

Conscious experience of self is an average over quantum jumps defining moments of conscious-
ness. In particular, only the average increment of the zero modes is experienced and this means
that one cannot fix the space-time surface apart from canonical transformation affecting the
zero modes. Again the notion of measurement resolution comes in rescue.

The possibility of coherent states of photons and gravitons brings in a further quantum com-
plication since the effective classical em and gravitational fields are superpositions of classical
field and the order parameter describing the coherent state. In principle the extremely strong
constraints between the classical field quantities allow to measure both the order parameters of
the coherent phases and classical fields.
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Quantum holography and the shape of the space-time surface

If the Dirac determinant associated with the generalized eigenvalue spectrum of the modified Dirac
operator Dy (X?) indeed codes for Kihler action of a preferred extremal, it is fair to say that a
lot of information about the shape of the space-time surface is coded to physical observables, which
eigenvalues indeed represent. Quantum gravitational holography due to the Bohr orbit like character
of space-time surface reduces the amount of information needed. Only a finite number of eigenvalues is
involved and the eigen modes are associated with the 3-D light-like wormhole throats rather than with
the space-time surface itself. If the eigenvalues were known or could be measured with infinite accuracy,
one could in principle fix the boundary conditions at X l3 and solve field equations determining the
preferred extremal of Kéhler action.

What is of course needed is the complete knowledge of the light-like 3-surfaces X;. Needless to
say, in practice a complete knowledge of X} is impossible since measurement resolution is finite. The
notion number theoretic braid provides a precise realization for the finite measurement accuracy at
space-time level. At the level of configuration space spinors fields (world of classical worlds) just
the fact that the number of eigenvalues is finite is correlate for the finite measurement accuracy.
Furthermore, quantum states are actually quantum superpositions of 3-surfaces, which means that
one can only speak about quantum average space-time surface for which the phase factors coding for
the quantum numbers of elementary particles assigned to the strands of number theoretic braids are
stationary so that correlation of classical gauge charges with quantum gauge charges is obtained.

2.3 General view about field equations

In this section field equations are deduced and discussed in general level. The fact that the divergence
of the energy momentum tensor, Lorentz 4-force, does not vanish in general, in principle makes possible
the mimicry of even dissipation and of the second law. For asymptotic self organization patterns for
which dissipation is absent the Lorentz 4-force must vanish. This condition is guaranteed if Kahler
current is proportional to the instanton current in the case that C'P, projection of the space-time
sheet is smaller than four and vanishes otherwise. An attractive identification for the vanishing of
Lorentz 4-force is as a condition equivalent with the selection of preferred extremal of Kéahler action.
If preferred extremals correspond to absolute minima this principle would be essentially equivalent
with the second law of thermodynamics.

2.3.1 Field equations

The requirement that Ké&hler action is stationary leads to the following field equations in the interior
of the four-surface

Dp(T*PREY — joJk0,ht =0 |
1
T = J”ajf—igaﬁJWJ,w . (2.3.1)

Here 7% denotes the traceless canonical energy momentum tensor associated with the Kihler action.
An equivalent form for the first equation is

T*PHE; —  j(JS R+ JhoanY) =0 .
HEs = Dgo.h" . (2.3.2)
H 2 5 denotes the components of the second fundamental form and j* = DgJ @B is the gauge current

associated with the Kéhler field.
On the boundaries of X4 and at wormhole throats the field equations are given by the expression

0Lk
Op hF

= T"Poght — J(J Poght + J%)0.,h%) =0 . (2.3.3)
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At wormhole throats problems are caused by the vanishing of metric determinant implying that
contravariant metric is singular.
For M* coordinates boundary conditions are satisfied if one assumes

™ = 0 (2.3.4)

stating that there is no flow of four-momentum through the boundary component or wormhole throat.
This means that there is no energy exchange between Euclidian and Minkowskian regions so that
Fuclidian regions provide representations for particles as autonomous units. This is in accordance
with the general picture [K36] . Note that momentum transfer with external world necessarily involves
generalized Feynman diagrams also at classical level.

For C'P, coordinates the boundary conditions are more delicate. The construction of configuration
space spinor structure [K19)] led to the conditions

J™ = 0 does not and should not follow from this condition since contravariant metric is singular. It
seems that limiting procedure is necessary in order to see what comes out.

The condition that Kéahler electric charge defined as a gauge flux is non-vanishing would require
that the quantity J"",/g is finite (here r refers to the light-like coordinate of X}). Also g"",/gs which
is analogous to gravitational flux if n is interpreted as time coordinate could be non-vanishing. These
conditions are consistent with the above condition if one has

Jni =0, gni =0, Jir =0, gir =0,
(2.3.6)
IR0 kT, gR=0 kAT, JUVGEAO, gUVGEAO .

The interpretation of this conditions is rather transparent.

1. The first two conditions state that covariant form of the induced Kahler electric field is in direc-
tion normal to X f and metric separate into direct sum of normal and tangential contributions.
Fifth and sixth condition state the same in contravariant form for k # n.

2. Third and fourth condition state that the induced Ké&hler field at X l3 is purely magnetic and
that the metric of x? reduces to a block diagonal form. The reduction to purely magnetic field is
of obvious importance as far as the understanding of the generalized eigen modes of the modified
Dirac operator is considered [K19] .

3. The last two conditions must be understood as a limit and # means only the possibility of
non-vanishing Kéhler gauge flux or analog of gravitational flux through X7.

4. The vision inspired by number theoretical compactification allows to identify » and n in terms
of the light-like coordinates assignable to an integrable distribution of planes M?(z) assumed
to be assignable to M?* projection of X 4(Xz3)' Later it will be found that Hamilton-Jacobi
structure assignable to the extremals indeed means the existence of this kind of distribution
meaning slicing of X*(X;}) both by string world sheets and dual partonic 2-surfaces as well as
by light-like 3-surfaces ;.

5. The physical analogy for the situation is the surface of an ideal conductor. It would not be
surprising that these conditions are satisfied by all induced gauge fields.

2.3.2 Topologization and light-likeness of the Kahler current as alternative
manners to guarantee vanishing of Lorentz 4-force

The general solution of 4-dimensional Einstein-Yang Mills equations in Euclidian 4-metric relies on
self-duality of the gauge field, which topologizes gauge charge. This topologization can be achieved by
a weaker condition, which can be regarded as a dynamical generalization of the Beltrami condition. An
alternative manner to achieve vanishing of the Lorentz 4-force is light-likeness of the Kéhler 4-current.
This does not require topologization.



2.3. General view about field equations 51

Topologization of the Kahler current for Dcp, = 3: covariant formulation

The condition states that Kéhler 4-current is proportional to the instanton current whose divergence is
instanton density and vanishes when the dimension of C' P, projection is smaller than four: Dep, < 4.
For Dcp, = 2 the instanton 4-current vanishes identically and topologization is equivalent with the
vanishing of the Kéahler current.

If the simplest vision about light-like 3-surfaces as basic dynamical objects is accepted Dep, = 2,
corresponds to a non-physical situation and only the deformations of these surfaces - most naturally
resulting by gluing of C' P, type vacuum extremals on them - can represent preferred extremals of
Kéhler action. One can however speak about Do p, = 2 phase if 4-surfaces are obtained are obtained
in this manner.

JE=DgJ = P x =1 x P s A5 (2.3.7)

Here the function v is an arbitrary function t(s*) of C'P, coordinates s* regarded as functions of
space-time coordinates. It is essential that 1 depends on the space-time coordinates through the
C P, coordinates only. Hence the representation as an imbedded gauge field is crucial element of the
solution ansatz.

The field equations state the vanishing of the divergence of the 4-current. This is trivially true for
instanton current for Dop, < 4. Also the contraction of V4 (depending on space-time coordinates
through C'P, coordinates only) with the instanton current is proportional to the winding number
density and therefore vanishes for Do p, < 4.

The topologization of the Ké&hler current guarantees the vanishing of the Lorentz 4-force. Indeed,
using the self-duality condition for the current, the expression for the Lorentz 4-force reduces to a
term proportional to the instanton density:

JJap = Y xjiJap
= x0T AsTap (2.3.8)

Since all vector quantities appearing in the contraction with the four-dimensional permutation tensor
are proportional to the gradients of C'P, coordinates, the expression is proportional to the instanton
density, and thus winding number density, and vanishes for Deop, < 4.

Remarkably, the topologization of the Kahler current guarantees also the vanishing of the term
j*J*9,s" in the field equations for C' P, coordinates. This means that field equations reduce in both
Mj‘; and C' P, degrees of freedom to

T*PHE; = 0. (2.3.9)

These equations differ from the equations of minimal surface only by the replacement of the metric
tensor with energy momentum tensor. The earlier proposal that quaternion conformal invariance in a
suitable sense might provide a general solution of the field equations could be seen as a generalization
of the ordinary conformal invariance of string models. If the topologization of the Kahler current
implying effective dimensional reduction in C'P, degrees of freedom is consistent with quaternion
conformal invariance, the quaternion conformal structures must differ for the different dimensions of
C P, projection.

Topologization of the Ké&hler current for Dcp, = 3: non-covariant formulation

In order to gain a concrete understanding about what is involved it is useful to repeat these arguments
using the 3-dimensional notation. The components of the instanton 4-current read in three-dimensional
notation as

ji=ExA+¢B , pr=B-A . (2.3.10)

The self duality conditions for the current can be written explicitly using 3-dimensional notation and
read



52 Chapter 2. Basic Extremals of the Kahler Action

Vx?—@tﬁ = 5
V-E = p

Vir =9 (¢B+ExA) ,
bpr (2.3.11)

For a vanishing electric field the self-duality condition for Kéhler current reduces to the Beltrami
condition

VxB=aB , a=¢g¢ . (2.3.12)

The vanishing of the divergence of the magnetic field implies that « is constant along the field lines
of the flow. When ¢ is constant and A is time independent, the condition reduces to the Beltrami
condition with oo = ¢ = constant, which allows an explicit solution [B49] .

One can check also the vanishing of the Lorentz 4-force by using 3-dimensional notation. Lorentz
3-force can be written as

piE+jxB=9yB-AE+ ¢ (ExA+¢B)xB=0 . (2.3.13)

The fourth component of the Lorentz force reads as

j-E=yB-E4+¢(ExA+¢B)-E=0 . (2.3.14)

The remaining conditions come from the induction law of Faraday and could be guaranteed by ex-
pressing F and B in terms of scalar and vector potentials.

The density of the Kéahler electric charge of the vacuum is proportional to the the helicity density
of the so called helicity charge p = v¥p; = ¥ B - A. This charge is topological charge in the sense that
it does not depend on the induced metric at all. Note the presence of arbitrary function ¢ of C'P;
coordinates.

Further conditions on the functions appearing in the solution ansatz come from the 3 independent
field equations for C' P, coordinates. What is remarkable that the generalized self-duality condition for
the Kahler current allows to understand the general features of the solution ansatz to very high degree
without any detailed knowledge about the detailed solution. The question whether field equations
allow solutions consistent with the self duality conditions of the current will be dealt later. The
optimistic guess is that the field equations and topologization of the K&ahler current relate to each
other very intimately.

Vanishing or light likeness of the Ké&hler current guarantees vanishing of the Lorentz
4-force for Dcp, =2

For Deop, = 2 one can always take two C P coordinates as space-time coordinates and from this
it is clear that instanton current vanishes so that topologization gives a vanishing Kahler current.
In particular, the Beltrami condition V x B = aB is not consistent with the topologization of the
instanton current for Do p, = 2.

Decp, = 2 case can be treated in a coordinate invariant manner by using the two coordinates of
C P, projection as space-time coordinates so that only a magnetic or electric field is present depending
on whether the gauge current is time-like or space-like. Light-likeness of the gauge current provides
a second manner to achieve the vanishing of the Lorentz force and is realized in case of massless
extremals having Dop, = 2: this current is in the direction of propagation whereas magnetic and
electric fields are orthogonal to it so that Beltrami conditions is certainly not satisfied.

Under what conditions topologization of Kédhler current yields Beltrami conditions?

Topologization of the Kahler 4-current gives rise to magnetic Beltrami fields if either of the following
conditions is satisfied.
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1. The Ex A term contributing besides ¢B term to the topological current vanishes. This requires
that E and A are parallel to each other

E = VO®-0,A=03A (2.3.15)

This condition is analogous to the Beltrami condition. Now only the 3-space has as its coordi-
nates time coordinate and two spatial coordinates and and B is replaced with A. Since £ and
B are orthogonal, this condition implies B - A = 0 so that K&hler charge density is vanishing.

2. The vector E x A is parallel to B.

ExA = BB (2.3.16)

The condition is consistent with the orthogonality of E and B but implies the orthogonality of
A and B so that electric charge density vanishes

In both cases vector potential fails to define a contact structure since B- A vanishes (contact structures
are discussed briefly below), and there exists a global coordinate along the field lines of A and the full
contact structure is lost again. Note however that the Beltrami condition for magnetic field means
that magnetic field defines a contact structure irrespective of whether B - A vanishes or not. The
transition from the general case to Beltrami field would thus involve the replacement

(A,B) v« (B,j)

induced by the rotor.

One must of course take these considerations somewhat cautiously since the inner product depends
on the induced 4-metric and it might be that induced metric could allow small vacuum charge density
and make possible genuine contact structure.

Hydrodynamic analogy

The field equations of TGD are basically hydrodynamic equations stating the local conservation of the
currents associated with the isometries of the imbedding space. Therefore it is intriguing that Beltrami
fields appear also as solutions of ideal magnetohydrodynamics equations and as steady solutions of
non-viscous incompressible flow described by Euler equations [B21] .

In hydrodynamics the role of the magnetic field is taken by the velocity field. This raises the
idea that the incompressible flow could occur along the field lines of some natural vector field. The
considerations of the last section show that the instanton current defines a universal candidate as
far as the general solution of the field equations is considered. All conserved currents defined by the
isometry charges would be parallel to the instanton current: one can say each flow line of instanton
current is a carrier of conserved quantum numbers. Perhaps even the flow lines of an incompressible
hydrodynamic flow could in reasonable approximation correspond to those of instanton current.

The conservation laws are satisfied for each flow line separately and therefore it seems that one
cannot have the analog of viscous hydrodynamic flow in this framework. One the other hand, quan-
tum classical correspondence requires that also dissipative effects have space-time correlates. Does
something go badly wrong?

One must however take this argument with a grain of salt. Dissipation, that is the transfer
of conserved quantities to degrees of freedom corresponding to shorter scales, could correspond to
a transfer of these quantities between different space-time sheets of the many-sheeted space-time.
Here the opponent could however argue that larger space-time sheets mimic the dissipative dynamics
in shorter scales and that classical currents represent ”symbolically” averaged currents in shorter
length scales, and that the local non-conservation of energy momentum tensor consistent with local
conservation of isometry currents provides a unique manner to mimic the dissipative dynamics.

An argument allowing to circumvent the objection in a more convincing manner emerged more
than decade after the emergence of the interpretation in terms of asymptotic self-organization patterns
K19, [K31] .
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1. The construction of quantum TGD through second quantization of the modified Dirac equation
led through several twists to the realization that the addition of a 3-dimensional measurement
interaction term to the modified Dirac action is necessary in order to have quantum classical
correspondence in the sense that the preferred extremals depend on the quantum numbers la-
beling states of super-conformal representations. Among many other things this also guarantees
that the fermionic propagator has stringy character.

2. This term characterizes measurement interaction inducing state function reductions and hence
also dissipation. It induces to a Kahler function a term which is real part of a holomorphic
function of complex coordinates of the configuration space ("world of classical worlds”) and a
priori arbitrary function of zero modes and does not therefore contribute to the K&hler metric of
configuration space. Kahler action is however affected by a term describing at space-time level
the measurement interaction so that extremals do not remain the same.

3. Dissipation is absent in space-time regions where the measurement interaction term vanishes and
there are good reasons to expect that also Kahler action reduces to Kéahler action. Therefore
preferred extremals can be interpreted as space-time correlates for asymptotic self-organization
patterns.

The stability of generalized Beltrami fields

The stability of generalized Beltrami fields is of high interest since unstable points of space-time sheets
are those around which macroscopic changes induced by quantum jumps are expected to be localized.

1. Contact forms and contact structures

The stability of Beltrami flows has been studied using the theory of contact forms in three-
dimensional Riemann manifolds [B33] . Contact form is a one-form A (that is covariant vector field
A,) with the property A A dA # 0. In the recent case the induced Kéhler gauge potential A, and
corresponding induced Kahler form J,s for any 3-sub-manifold of space-time surface define a contact
form so that the vector field A = g®#Aj is not orthogonal with the magnetic field B* = eo‘ﬁ‘sJBW.
This requires that magnetic field has a helical structure. Induced metric in turn defines the Riemann
structure.

If the vector potential defines a contact form, the charge density associated with the topologized
Kahler current must be non-vanishing. This can be seen as follows.

1. The requirement that the flow lines of a one-form X, defined by the vector field X* as its
dual allows to define a global coordinate x varying along the flow lines implies that there is an
integrating factor ¢ such that ¢X = dx and therefore d(¢X) = 0. This implies dlog(¢p) AN X =
—dX. From this the necessary condition for the existence of the coordinate z is X A dX = 0.
In the three-dimensional case this gives X - (V x X) = 0.

2. This condition is by definition not satisfied by the vector potential defining a contact form so
that one cannot identify a global coordinate varying along the flow lines of the vector potential.
The condition B - A # 0 states that the charge density for the topologized Kahler current is
non-vanishing. The condition that the field lines of the magnetic field allow a global coordinate
requires B -V x B = 0. The condition is not satisfied by Beltrami fields with a # 0. Note that
in this case magnetic field defines a contact structure.

Contact structure requires the existence of a vector £ satisfying the condition A(¢) = 0. The vector
field £ defines a plane field, which is orthogonal to the vector field A¢. Reeb field in turn is a vector
field for which A(X) =1 and dA(X;) = 0 hold true. The latter condition states the vanishing of the
cross product X x B so that X is parallel to the K&hler magnetic field B® and has unit projection
in the direction of the vector field A®. Any Beltrami field defines a Reeb field irrespective of the
Riemannian structure.

2. Stability of the Beltrami flow and contact structures

Contact structures are used in the study of the topology and stability of the hydrodynamical
flows [B33] , and one might expect that the notion of contact structure and its proper generalization
to the four-dimensional context could be useful in TGD framework also. An example giving some
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idea about the complexity of the flows defined by Beltrami fields is the Beltrami field in R? possessing
closed orbits with all possible knot and link types simultaneously [B33] !

Beltrami flows associated with Euler equations are known to be unstable [B33] . Since the flow is
volume preserving, the stationary points of the Beltrami flow are saddle points at which also vorticity
vanishes and linear instabilities of Navier-Stokes equations can develop. From the point of view of
biology it is interesting that the flow is stabilized by vorticity which implies also helical structures.
The stationary points of the Beltrami flow correspond in TGD framework to points at which the
induced Kéhler magnetic field vanishes. They can be unstable by the vacuum degeneracy of Kéhler
action implying classical non-determinism. For generalized Beltrami fields velocity and vorticity (both
divergence free) are replaced by Kéhler current and instanton current.

More generally, the points at which the Kéhler 4-current vanishes are expected to represent poten-
tial instabilities. The instanton current is linear in Kéahler field and can vanish in a gauge invariant
manner only if the induced Kahler field vanishes so that the instability would be due to the vacuum
degeneracy also now. Note that the vanishing of the Kéahler current allows also the generation of
region with Do p, = 4. The instability of the points at which induce Kéhler field vanish is manifested
in quantum jumps replacing the generalized Beltrami field with a new one such that something new
is generated around unstable points. Thus the regions in which induced Kéhler field becomes weak
are the most interesting ones. For example, unwinding of DNA could be initiated by an instability of
this kind.

2.3.3 How to satisfy field equations?

The topologization of the Kihler current guarantees also the vanishing of the term j®J* d,s"* in the
field equations for C'P, coordinates. This means that field equations reduce in both M_jl_ and C'Py
degrees of freedom to

T*PHE, = 0. (2.3.17)

These equations differ from the equations of minimal surface only by the replacement of the metric
tensor with energy momentum tensor. The following approach utilizes the properties of Hamilton
Jacobi structures of M fi introduced in the study of massless extremals and contact structures of C P,
emerging naturally in the case of generalized Beltrami fields.

String model as a starting point

String model serves as a starting point.

1. In the case of Minkowskian minimal surfaces representing string orbit the field equations reduce
to purely algebraic conditions in light cone coordinates (u,v) since the induced metric has only
the component g,,, whereas the second fundamental form has only diagonal components HF,
and HE, .

2. For Euclidian minimal surfaces (u,v) is replaced by complex coordinates (w,w) and field equa-
tions are satisfied because the metric has only the component g** and second fundamental form
has only components of type HE ~and HE_. The mechanism should generalize to the recent
case.

The general form of energy momentum tensor as a guideline for the choice of coordinates

Any 3-dimensional Riemann manifold allows always a orthogonal coordinate system for which the
metric is diagonal. Any 4-dimensional Riemann manifold in turn allows a coordinate system for
which 3-metric is diagonal and the only non-diagonal components of the metric are of form g*’. This
kind of coordinates might be natural also now. When E and B are orthogonal, energy momentum
tensor has the form
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BB 0 EB
0 E’+B? 0 0

r=| . 02 iewm (2.3.18)
EB 0 0 ? E?-B?

2

in the tangent space basis defined by time direction and longitudinal direction E x B, and transversal
directions E and B. Note that T is traceless.

The optimistic guess would be that the directions defined by these vectors integrate to three
orthogonal coordinates of X4 and together with time coordinate define a coordinate system containing
only g% as non-diagonal components of the metric. This however requires that the fields in question
allow an integrating factor and, as already found, this requires V x X - X = 0 and this is not the case
in general.

Physical intuition suggests however that X* coordinates allow a decomposition into longitudinal
and transversal degrees freedom. This would mean the existence of a time coordinate ¢ and longitudinal
coordinate z the plane defined by time coordinate and vector E x B such that the coordinates u = t—z
and v = t 4 z are light like coordinates so that the induced metric would have only the component
g"? whereas ¢g"? and ¢g“* would vanish in these coordinates. In the transversal space-time directions
complex space-time coordinate coordinate w could be introduced. Metric could have also non-diagonal
components besides the components g*® and g“’.

Hamilton Jacobi structures in M}

Hamilton Jacobi structure in Mi can understood as a generalized complex structure combing transver-
sal complex structure and longitudinal hyper-complex structure so that notion of holomorphy and
Kahler structure generalize.

1. Denote by m® the linear Minkowski coordinates of M*. Let (S*,S~, E!, E?) denote local co-
ordinates of Mi defining a local decomposition of the tangent space M?* of Mi into a di-
rect, not necessarily orthogonal, sum M* = M? @ E? of spaces M? and E?. This decom-
position has an interpretation in terms of the longitudinal and transversal degrees of free-
dom defined by local light-like four-velocities v+ = VS4+ and polarization vectors ¢; = VE?
assignable to light ray. Assume that E? allows complex coordinates w = E' + iE? and
w = E' — iE?. The simplest decomposition of this kind corresponds to the decomposition
(St=u=t+z2S =v=t—z,w=z+iy,w =1z —1y).

2. In accordance with this physical picture, ST and S~ define light-like curves which are normals
to light-like surfaces and thus satisfy the equation:

(VS:)?=0

The gradients of Sy are obviously analogous to local light like velocity vectors v = (1,7) and
© = (1,—7). These equations are also obtained in geometric optics from Hamilton Jacobi
equation by replacing photon’s four-velocity with the gradient V.S: this is consistent with the
interpretation of massless extremals as Bohr orbits of em field. S+ = constant surfaces can be
interpreted as expanding light fronts. The interpretation of S+ as Hamilton Jacobi functions
justifies the term Hamilton Jacobi structure.

The simplest surfaces of this kind correspond to ¢t = z and t = —z light fronts which are planes.
They are dual to each other by hyper complex conjugation u =t — 2z — v =t + z. One should
somehow generalize this conjugation operation. The simplest candidate for the conjugation
St — S~ is as a conjugation induced by the conjugation for the arguments: S*(t — 2t +
z2,x,y) = ST(t—z,t+z,2,y) = ST(t + 2,t — 2,2, —y) so that a dual pair is mapped to a dual
pair. In transversal degrees of freedom complex conjugation would be involved.

3. The coordinates (S4,w,w) define local light cone coordinates with the line element having the
form
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ds® g4_dSTdS™ + guwdwdw
+ g+wdS+dw + g+md5'+d@
+

J—dS™dw + g_z5dS™ dw . (2.3.19)

Conformal transformations of Mi leave the general form of this decomposition invariant. Also
the transformations which reduces to analytic transformations w — f(w) in transversal de-
grees of freedom and hyper-analytic transformations S* — f(ST), 5~ — f(S7) in longitudinal
degrees of freedom preserve this structure.

4. The basic idea is that of generalized Kéhler structure meaning that the notion of Kéhler function
generalizes so that the non-vanishing components of metric are expressible as

Guw = 6u16wK ) g+—- = 85*&5’*[( ’
(2.3.20)
Guwt = 005+ K | gwr = Og0s=K .

for the components of the metric. The expression in terms of Kéhler function is coordinate
invariant for the same reason as in case of ordinary K&hler metric. In the standard lightcone
coordinates the Kahler function is given by

K=wywp+uv , wo=x+1iy , u=t—2z , v==t+z . (2.3.21)

The Christoffel symbols satisfy the conditions

{wwr=0., {f}=0. (2.3.22)

w w

If energy momentum tensor has only the components T%% and T, field equations are satisfied
in M_‘f_ degrees of freedom.

5. The Hamilton Jacobi structures related by these transformations can be regarded as being equiv-
alent. Since light-like 3- surface is, as the dynamical evolution defined by the light front, fixed
by the 2-surface serving as the light source, these structures should be in one-one correspon-
dence with 2-dimensional surfaces with two surfaces regarded as equivalent if they correspond
to different time=constant snapshots of the same light front, or are related by a conformal
transformation of Mff_. Obviously there should be quite large number of them. Note that the
generating two-dimensional surfaces relate also naturally to quaternion conformal invariance and
corresponding Kac Moody invariance for which deformations defined by the M* coordinates as
functions of the light-cone coordinates of the light front evolution define Kac Moody algebra,
which thus seems to appear naturally also at the level of solutions of field equations.

The task is to find all possible local light cone coordinates defining one-parameter families 2-surfaces
defined by the condition S; = constant, i = + or = —, dual to each other and expanding with
light velocity. The basic open questions are whether the generalized Kéhler function indeed makes
sense and whether the physical intuition about 2-surfaces as light sources parameterizing the set of
all possible Hamilton Jacobi structures makes sense.

Hamilton Jacobi structure means the existence of foliations of the M* projection of X* by 2-D
surfaces analogous to string word sheets labeled by w and the dual of this foliation defined by partonic
2-surfaces labeled by the values of S;. Also the foliation by light-like 3-surfaces Y;* labeled by Sy with
S+ serving as light-like coordinate for ¥;? is implied. This is what number theoretic compactification
and M® — H duality predict when space-time surface corresponds to hyper-quaternionic surface of
M?® [K36] [K81] .
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Contact structure and generalized Kéhler structure of CP, projection

In the case of 3-dimensional C'P, projection it is assumed that one can introduce complex coordi-
nates (£,€) and the third coordinate s. These coordinates would correspond to a contact structure in
3-dimensional C'P, projection defining transversal symplectic and Kéahler structures. In these coordi-
nates the transversal parts of the induced C P, Kéhler form and metric would contain only components
of type guw and J,w. The transversal Kahler field J,7 would induce the Kéhler magnetic field and
the components Jg,, and Jsz the Kahler electric field.

It must be emphasized that the non-integrability of the contact structure implies that J cannot be
parallel to the tangent planes of s = constant surfaces, s cannot be parallel to neither A nor the dual
of J, and £ cannot vary in the tangent plane defined by J. A further important conclusion is that
for the solutions with 3-dimensional C'P» projection topologized Kéhler charge density is necessarily
non-vanishing by A A J # 0 whereas for the solutions with Dep, = 2 topologized Kéhler current
vanishes.

Also the C'P, projection is assumed to possess a generalized Kéhler structure in the sense that all
components of the metric except sss are derivable from a Kéahler function by formulas similar to M_‘i
case.

Sww = OwOTK |, Sws = 0w0sK | sgs = 00K . (2.3.23)

Generalized Kéhler property guarantees that the vanishing of the Christoffel symbols of C'P, (rather
than those of 3-dimensional projection), which are of type { gkg}'

{(s} = 0. (2.3.24)

Here the coordinates of C'P, have been chosen in such a manner that three of them correspond to the
coordinates of the projection and fourth coordinate is constant at the projection. The upper index
k refers also to the C' P, coordinate, which is constant for the C' P, projection. If energy momentum
tensor has only components of type 77~ and T%%, field equations are satisfied even when if non-
diagonal Christoffel symbols of C'P, are present. The challenge is to discover solution ansatz, which
guarantees this property of the energy momentum tensor.

A stronger variant of Kéhler property would be that also sgs vanishes so that the coordinate
lines defined by s would define light like curves in C'P». The topologization of the Kéahler current
however implies that C' P, projection is a projection of a 3-surface with strong Kéhler property. Using
(s,&,€,87) as coordinates for the space-time surface defined by the ansatz (w = w(&, s), St = S*(s))
one finds that gss must be vanishing so that stronger variant of the Kéhler property holds true for
S~ = constant 3-surfaces.

The topologization condition for the Kéhler current can be solved completely generally in terms
of the induced metric using (&, €, s) and some coordinate of Mi, call it 2, as space-time coordinates.
Topologization boils down to the conditions

Is(J*P\/g) = Ofor ac{€€ s},
g #0 . (2.3.25)

Thus 3-dimensional empty space Maxwell equations and the non-orthogonality of X* coordinate lines
and the 3-surfaces defined by the lift of the C'P; projection.

A solution ansatz yielding light-like current in Dop, = 3 case

The basic idea is that of generalized Kahler structure and solutions of field equations as maps or
deformations of canonically imbedded Mj‘_ respecting this structure and guaranteing that the only non-
vanishing components of the energy momentum tensor are 7 and T~ in the coordinates (£, &, s, S7).

1. The coordinates (w, ST) are assumed to holomorphic functions of the C' P, coordinates (s, &)
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St=8%(s) , w=w(,s) . (2.3.26)

Obviously ST could be replaced with S~. The ansatz is completely symmetric with respect to
the exchange of the roles of (s,w) and (ST, €) since it maps longitudinal degrees of freedom to
longitudinal ones and transverse degrees of freedom to transverse ones.

2. Field equations are satisfied if the only non-vanishing components of the energy momentum
tensor are of type T%¢ and T°~. The reason is that the C'P, Christoffel symbols for projection
and projections of Mi Christoffel symbols are vanishing for these lower index pairs.

3. By a straightforward calculation one can verify that the only manner to achieve the required
structure of energy momentum tensor is to assume that the induced metric in the coordinates
(£,€,8,57) has as non-vanishing components only Ieg and gs_

9ss =0, ges=0, gz =0 . (2.3.27)

Obviously the space-time surface must factorize into an orthogonal product of longitudinal and
transversal spaces.

4. The condition guaranteing the product structure of the metric is

Sss = MiyOsw(&, 8)0sST(8) + myg0sw(E, s)0sST(s)
ss¢ = MywOew(§)055T (s) (2.3.28)

Ssg = m+wa§71](§)6ss+(5) .

Thus the function of dynamics is to diagonalize the metric and provide it with strong Kahler
property. Obviously the C' P, projection corresponds to a light-like surface for all values of S~ so
that space-time surface is foliated by light-like surfaces and the notion of generalized conformal
invariance makes sense for the entire space-time surface rather than only for its boundary or
elementary particle horizons.

5. The requirement that the Kahler current is proportional to the instanton current means that
only the j~ component of the current is non-vanishing. This gives the following conditions

36VG=0s(JF ) =0, & /g=03(J% /) =0,

(2.3.29)

JTVG=0s(J*0/9) =0 .

Since J+# vanishes, the condition
Vait=0s(JPg) = 0 (2.3.30)

is identically satisfied. Therefore the number of field equations reduces to three.

The physical interpretation of the solution ansatz deserves some comments.
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. The light-like character of the Kéhler current brings in mind C'P, extremals for which C'P,

projection is light like. This suggests that the topological condensation of C' P, type extremal
occurs on D¢ p, = 3 helical space-time sheet representing zitterbewegung. In the case of many-
body system light-likeness of the current does not require that particles are massless if particles
of opposite charges can be present. Field tensor has the form (J¢¢,.J¢~,J¢7). Both helical
magnetic field and electric field present as is clear when one replaces the coordinates (S*,S57)
with time-like and space-like coordinate. Magnetic field dominates but the presence of electric
field means that genuine Beltrami field is not in question.

. Since the induced metric is product metric, 3-surface is metrically product of 2-dimensional

surface X2 and line or circle and obeys product topology. If absolute minima correspond to
asymptotic self-organization patterns, the appearance of the product topology and even metric
is not so surprising. Thus the solutions can be classified by the genus of X2. An interesting
question is how closely the explanation of family replication phenomenon in terms of the topology
of the boundary component of elementary particle like 3-surface relates to this. The heaviness
and instability of particles which correspond to genera g > 2 (sphere with more than two handles)
might have simple explanation as absence of (stable) Dep, = 3 solutions of field equations with
genus g > 2.

. The solution ansatz need not be the most general. Kahler current is light-like and already this

is enough to reduce the field equations to the form involving only energy momentum tensor.
One might hope of finding also solution ansétze for which Kéhler current is time-like or space-
like. Space-likeness of the Kihler current might be achieved if the complex coordinates (¢,¢)
and hyper-complex coordinates (ST, 57) change the role. For this solution ansatz electric field
would dominate. Note that the possibility that Kéhler current is always light-like cannot be
excluded.

. Suppose that C'P; projection quite generally defines a foliation of the space-time surface by

light-like 3-surfaces, as is suggested by the conformal invariance. If the induced metric has
Minkowskian signature, the fourth coordinate #* and thus also Kihler current must be time-like
or light-like so that magnetic field dominates. Already the requirement that the metric is non-
degenerate implies gs4 # 0 so that the metric for the £ = constant 2-surfaces has a Minkowskian
signature. Thus space-like Kahler current does not allow the lift of the C'Py projection to be
light-like.

Are solutions with time-like or space-like K&hler current possible in Dcop, = 3 case?

As noticed in the section about number theoretical compactification, the flow of gauge currents along
slices Y;? of X*(X}}) "parallel” to X} requires only that gauge currents are parallel to Y;* and can thus
space-like. The following ansatz gives good hopes for obtaining solutions with space-like and perhaps
also time-like Kahler currents.

1. Assign to light-like coordinates coordinates (T, Z) by the formulaT = ST+S~ and Z = ST—S~.

Space-time coordinates are taken to be (&,€, s) and coordinate Z. The solution ansatz with time-
like Kéahler current results when the roles of T and Z are changed. It will however found that
same solution ansatz can give rise to both space-like and time-like Kéhler current.

. The solution ansatz giving rise to a space-like Kahler current is defined by the equations

T=T(Zs), w=w(,s) . (2.3.31)

If T depends strongly on Z, the gzz component of the induced metric becomes positive and
Kahler current time-like.

3. The components of the induced metric are
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9zz =mzz +mrr0zTOT , gzs=mrrdzToT
gss = 8ss + mprdsTOST Juww = Sww + MuwlewIFW (2.3.32)
gsg = Ss¢ s 9sg = Sst -
Topologized Kahler current has only Z-component and 3-dimensional empty space Maxwell’s
equations guarantee the topologization.

In C'P; degrees of freedom the contractions of the energy momentum tensor with Christoffel sym-
bols vanish if 7%, T¢* and T%¢ vanish as required by internal consistency. This is guaranteed if the
condition

J¥ = 0 (2.3.33)

holds true. Note however that J&% is non-vanishing. Therefore only the components T¢€ and T%¢ ,
T#¢ of energy momentum tensor are non-vanishing, and field equations reduce to the conditions

O(J€Vg) +02(J7/g) = 0,
0:(JE\/g) + 02(J%\Jg) = O . (2.3.34)

In the special case that the induced metric does not depend on z-coordinate equations reduce to
holomorphicity conditions. This is achieve if T" depends linearly on Z: T = aZ.

The contractions with Mi Christoffel symbols come from the non-vanishing of T4¢ and vanish if
the Hamilton Jacobi structure satisfies the conditions

Tkw}:O7 Ilcm}zov

(2.3.35)
Zk w} =0 ’ Zk E} =0
hold true. The conditions are equivalent with the conditions
{Lur=0, {fgr=0. (2.3.36)

These conditions possess solutions (standard light cone coordinates are the simplest example). Also
the second derivatives of T'(s, Z) contribute to the second fundamental form but they do not give rise
to non-vanishing contractions with the energy momentum tensor. The cautious conclusion is that also
solutions with time-like or space-like Kéahler current are possible.

Dcp, =4 case

The preceding discussion was for Dop, = 3 and one should generalize the discussion to Deop, = 4
case.

1. Hamilton Jacobi structure for M fi is expected to be crucial also now.

2. Omne might hope that for Dop, = 4 the Kahler structure of C'P, defines a foliation of C'P, by
3-dimensional contact structures. This requires that there is a coordinate varying along the
field lines of the normal vector field X defined as the dual of the three-form A AdA = AN J.
By the previous considerations the condition for this reads as dX = d(log¢) A X and implies
X AdX = 0. Using the self duality of the Kihler form one can express X as X* = J* A;. By
a brief calculation one finds that X A dX o X holds true so that (somewhat disappointingly) a
foliation of C'P; by contact structures does not exist.
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For Dcp, = 4 case Kéhler current vanishes and this case corresponds to what I have called earlier
Maxwellian phase since empty space Maxwell’s equations are indeed satisfied.

1. Solution ansatz with a 3-dimensional Mff_ projection

The basic idea is that the complex structure of C'P, is preserved so that one can use complex
coordinates (£1,£2) for CPy in which CP, Christoffel symbols and energy momentum tensor have
automatically the desired properties. This is achieved the second light like coordinate, say v, is non-
dynamical so that the induced metric does not receive any contribution from the longitudinal degrees
of freedom. In this case one has

St =5%(L€2) | w=w(¢¢?) , ST =constant . (2.3.37)

The induced metric does possesses only components of type 95 if the conditions

Jtw =0, gw=0. (2.3.38)

This guarantees that energy momentum tensor has only components of type T% in coordinates
(€1,€2) and their contractions with the Christoffel symbols of C' P, vanish identically. In Mi degrees
of freedom one must pose the conditions

{u{ch}:O ) {kar}:O ) {+k+}:0 . (2.3.39)

on Christoffel symbols. These conditions are satisfied if the the Mff_ metric does not depend on S+:

8+mkl = 0. (2.3.40)

This means that m_,, and m_z can be non-vanishing but like m, _ they cannot depend on S*.
The second derivatives of ST appearing in the second fundamental form are also a source of trouble
unless they vanish. Hence ST must be a linear function of the coordinates &*:

ST = af +amE . (2.3.41)

Field equations are the counterparts of empty space Maxwell equations j* = 0 but with Mi
coordinates (u,w) appearing as dynamical variables and entering only through the induced metric.
By holomorphy the field equations can be written as

0;(J7/g) =0, (J7'\/g) =0, (2.3.42)

and can be interpreted as conditions stating the holomorphy of the contravariant Kahler form.

What is remarkable is that the Mi projection of the solution is 3-dimensional light like surface
and that the induced metric has Euclidian signature. Light front would become a concrete geometric
object with one compactified dimension rather than being a mere conceptualization. One could see
this as topological quantization for the notion of light front or of electromagnetic shock wave, or
perhaps even as the realization of the particle aspect of gauge fields at classical level.

If the latter interpretation is correct, quantum classical correspondence would be realized very
concretely. Wave and particle aspects would both be present. One could understand the interactions
of charged particles with electromagnetic fields both in terms of absorption and emission of topological
field quanta and in terms of the interaction with a classical field as particle topologically condenses
at the photonic light front.

For C'P, type extremals for which Mi projection is a light like curve correspond to a special case
of this solution ansatz: transversal Mj‘r coordinates are constant and S is now arbitrary function of
C P, coordinates. This is possible since Mi projection is 1-dimensional.

2. Are solutions with a 4-dimensional Mjl_ projection possible?
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The most natural solution ansatz is the one for which C' P, complex structure is preserved so that
energy momentum tensor has desired properties. For four-dimensional Mi projection this ansatz does
not seem to make promising since the contribution of the longitudinal degrees of freedom implies that
the induced metric is not anymore of desired form since the components g;; = my_ (9 ST S~ +
my_0¢iS™9¢; ST) are non-vanishing.

1. The natural dynamical variables are still Minkowski coordinates (w,w, ST, S7) for some Hamil-
ton Jacobi structure. Since the complex structure of C'P, must be given up, C'P, coordinates
can be written as (&, s,r) to stress the fact that only "one half” of the Kéhler structure of C'P,
is respected by the solution ansatz.

2. The solution ansatz has the same general form as in Dop, = 3 case and must be symmetric
with respect to the exchange of M_?_ and C'P, coordinates. Transverse coordinates are mapped
to transverse ones and longitudinal coordinates to longitudinal ones:

(S+757):(SjL(sar)vSi(svr)) ) w:w(f) . (2343)

This ansatz would describe ordinary Maxwell field in M_‘i since the roles of M_?_ coordinates and
C P, coordinates are interchangeable.

It is however far from obvious whether there are any solutions with a 4-dimensional Mfﬁ projection.
That empty space Maxwell’s equations would allow only the topologically quantized light fronts as its
solutions would realize quantum classical correspondence very concretely.

Dcp, =2 case

Hamilton Jacobi structure for M? is assumed also for Dop, = 2, whereas the contact structure for
CP; is in Dop, = 2 case replaced by the induced Kéhler structure. Topologization yields vanishing
Kahler current. Light-likeness provides a second manner to achieve vanishing Lorentz force but one
cannot exclude the possibility of time- and space-like Kahler current.

1. Solutions with vanishing Kdahler current

1. String like objects, which are products X? x Y? C M{ x C'P, of minimal surfaces Y2 of M with
geodesic spheres S? of C'P, and carry vanishing gauge current. String like objects allow consid-
erable generalization from simple Cartesian products of X2 x Y2 C M* x S2. Let (w,w, S, S7)
define the Hamilton Jacobi structure for Mj‘r. w = constant surfaces define minimal surfaces
X2 of Mj‘_. Let & denote complex coordinate for a sub-manifold of C'P, such that the imbed-
ding to C'P, is holomorphic: (£%,&€2) = (f1(€), f2(€)). The resulting surface Y? C CP; is a
minimal surface and field equations reduce to the requirement that the Kahler current vanishes:
Oz(J ¢,/g2) = 0. One-dimensional strings are deformed to 3-dimensional cylinders representing
magnetic flux tubes. The oscillations of string correspond to waves moving along string with
light velocity, and for more general solutions they become TGD counterparts of Alfwen waves
associated with magnetic flux tubes regarded as oscillations of magnetic flux lines behaving ef-
fectively like strings. It must be emphasized that Alfwen waves are a phenomenological notion
not really justified by the properties of Maxwell’s equations.

2. Also electret type solutions with the role of the magnetic field taken by the electric field are
possible. (&,&,u,v) would provide the natural coordinates and the solution ansatz would be of
the form

(s,r) = (s(u,v),r(u,v)) , &=constant , (2.3.44)

and corresponds to a vanishing Kahler current.
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3. Both magnetic and electric fields are necessarily present only for the solutions carrying non-
vanishing electric charge density (proportional to B - A). Thus one can ask whether more
general solutions carrying both magnetic and electric field are possible. As a matter fact, one
must first answer the question what one really means with the magnetic field. By choosing the
coordinates of 2-dimensional C'P, projection as space-time coordinates one can define what one
means with magnetic and electric field in a coordinate invariant manner. Since the C'P, Kéhler
form for the C'P» projection with Deop, = 2 can be regarded as a pure Kahler magnetic field,
the induced Kéhler field is either magnetic field or electric field.

The form of the ansatz would be

(s,7) = (s,7) (u,v,w, W) , &= constant . (2.3.45)
As a matter fact, C P, coordinates depend on two properly chosen M* coordinates only.

1. Solutions with light-like Kdhler current

There are large classes of solutions of field equations with a light-like K&hler current and 2-
dimensional C'P, projection.

1. Massless extremals for which C'P, coordinates are arbitrary functions of one transversal coor-
dinate e = f(w,w) defining local polarization direction and light like coordinate u of M$ and
carrying in the general case a light like current. In this case the holomorphy does not play any
role.

2. The string like solutions thickened to magnetic flux tubes carrying TGD counterparts of Alfwen
waves generalize to solutions allowing also light-like Kéhler current. Also now Kéhler metric is
allowed to develop a component between longitudinal and transversal degrees of freedom so that
Kahler current develops a light-like component. The ansatz is of the form

=7, w=wl§), S"=s5, ST=s"+f(0 .
Only the components gy¢ and g +E of the induced metric receive contributions from the modi-

fication of the solution ansatz. The contravariant metric receives contributions to ¢~¢ and g—¢
whereas g7¢ and ¢g7¢ remain zero. Since the partial derivatives d¢0h* and 8%8+hk and corre-
sponding projections of Christoffel symbols vanish, field equations are satisfied. Kahler current
develops a non-vanishing component j~. Apart from the presence of the electric field, these
solutions are highly analogous to Beltrami fields.

Could D¢ p, =2 — 3 transition occur in rotating magnetic systems?

I have studied the imbeddings of simple cylindrical and helical magnetic fields in various applications
of TGD to condensed matter systems, in particular in attempts to understand the strange findings
about rotating magnetic systems [K83] .

Let S? be the homologically non-trivial geodesic sphere of C'P, with standard spherical coordinates
(U = cos(0), @) and let (¢, p, ¢, z) denote cylindrical coordinates for a cylindrical space-time sheet. The
simplest possible space-time surfaces X* C M} x 5? carrying helical Kéhler magnetic field depending
on the radial cylindrical coordinate p, are given by:

U=Ulp) , ¢ =ng+kz,

JP¢ = ’n’aPU ) Jpz kapU . (2346)

This helical field is not Beltrami field as one can easily find. A more general ansatz corresponding
defined by
S =wt+kz+ngo

would in cylindrical coordinates give rise to both helical magnetic field and radial electric field de-
pending on p only. This field can be obtained by simply replacing the vector potential with its rotated
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version and provides the natural first approximation for the fields associated with rotating magnetic
systems.

A non-vanishing vacuum charge density is however generated when a constant magnetic field is put
into rotation and is implied by the condition E = 7 x B stating vanishing of the Lorentz force. This
condition does not follow from the induction law of Faraday although Faraday observed this effect
first. This is also clear from the fact that the sign of the charge density depends on the direction of
rotation.

The non-vanishing charge density is not consistent with the vanishing of the Kéahler 4-current
and requires a 3-dimensional C'P, projection and topologization of the Kéhler current. Beltrami
condition cannot hold true exactly for the rotating system. The conclusion is that rotation induces
a phase transition Dop, = 2 — 3. This could help to understand various strange effects related to
the rotating magnetic systems [K83|] . For instance, the increase of the dimension of C' P, projection
could generate join along boundaries contacts and wormhole contacts leading to the transfer of charge
between different space-time sheets. The possibly resulting flow of gravitational flux to larger space-
time sheets might help to explain the claimed antigravity effects.

2.3.4 Dcp, = 3 phase allows infinite number of topological charges charac-
terizing the linking of magnetic field lines

When space-time sheet possesses a D = 3-dimensional C'P, projection, one can assign to it a non-
vanishing and conserved topological charge characterizing the linking of the magnetic field lines defined
by Chern-Simons action density A A dA/4w for induced Kéhler form. This charge can be seen as
classical topological invariant of the linked structure formed by magnetic field lines.

The topological charge can also vanish for Dcp, = 3 space-time sheets. In Darboux coordinates
for which Kihler gauge potential reads as A = P,dQF, the surfaces of this kind result if one has
Q? = f(Q") implying A = fdQ' , f = P1 + P,0g,Q? , which implies the condition A A dA = 0.
For these space-time sheets one can introduce @' as a global coordinate along field lines of A and
define the phase factor exp(i f A, dz") as a wave function defined for the entire space-time sheet. This
function could be interpreted as a phase of an order order parameter of super-conductor like state and
there is a high temptation to assume that quantum coherence in this sense is lost for more general
D¢ p, = 3 solutions.

Chern-Simons action is known as helicity in electrodynamics [B51] . Helicity indeed describes
the linking of magnetic flux lines as is easy to see by interpreting magnetic field as incompressible
fluid flow having A as vector potential: B = V x A. One can write A using the inverse of VX as
A = (1/Vx)B. The inverse is non-local operator expressible as

L B = /dv'L —) By

V x |r — /|3

as a little calculation shows. This allows to write f A-B as

/dVA~B = /dVdV’B(r)~ (M X B(r’)> ;

|r — 7|3

which is completely analogous to the Gauss formula for linking number when linked curves are replaced
by a distribution of linked curves and an average is taken.

For D¢ p, = 3 field equations imply that Kahler current is proportional to the helicity current by a
factor which depends on C' P, coordinates, which implies that the current is automatically divergence
free and defines a conserved charge for D = 3-dimensional C'P, projection for which the instanton
density vanishes identically. Kéhler charge is not equal to the helicity defined by the inner product of
magnetic field and vector potential but to a more general topological charge.

The number of conserved topological charges is infinite since the product of any function of C'P;
coordinates with the helicity current has vanishing divergence and defines a topological charge. A very
natural function basis is provided by the scalar spherical harmonics of SU(3) defining Hamiltonians of
CP, canonical transformations and possessing well defined color quantum numbers. These functions
define and infinite number of conserved charges which are also classical knot invariants in the sense
that they are not affected at all when the 3-surface interpreted as a map from C P, projection to Mff_
is deformed in M_?_ degrees of freedom. Also canonical transformations induced by Hamiltonians in
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irreducible representations of color group affect these invariants via Poisson bracket action when the
U(1) gauge transformation induced by the canonical transformation corresponds to a single valued
scalar function. These link invariants are additive in union whereas the quantum invariants defined
by topological quantum field theories are multiplicative.

Also non-Abelian topological charges are well-defined. One can generalize the topological current
associated with the Kéhler form to a corresponding current associated with the induced electro-weak
gauge fields whereas for classical color gauge fields the Chern-Simons form vanishes identically. Also in
this case one can multiply the current by C' P, color harmonics to obtain an infinite number of invariants
in Dep, = 3 case. The only difference is that A A dA is replaced by Tr(A A (dA+2A N A/3)).

There is a strong temptation to assume that these conserved charges characterize colored quantum
states of the conformally invariant quantum theory as a functional of the light-like 3-surface defining
boundary of space-time sheet or elementary particle horizon surrounding wormhole contacts. They
would be TGD analogs of the states of the topological quantum field theory defined by Chern-Simons
action as highest weight states associated with corresponding Wess-Zumino-Witten theory. These
charges could be interpreted as topological counterparts of the isometry charges of configuration
space of 3-surfaces defined by the algebra of canonical transformations of C'P;.

The interpretation of these charges as contributions of light-like boundaries to configuration space
Hamiltonians would be natural. The dynamics of the induced second quantized spinor fields relates
to that of Kahler action by a super-symmetry, so that it should define super-symmetric counterparts
of these knot invariants. The anti-commutators of these super charges cannot however contribute to
configuration space Ké&hler metric so that topological zero modes are in question. These Hamiltonians
and their super-charge counterparts would be responsible for the topological sector of quantum TGD.

2.3.5 Preferred extremal property and the topologization/light-likeness of
Kahler current?

The basic question is under what conditions the Kéhler current is either topologized or light-like so
that the Lorentz force vanishes. Does this hold for all preferred extremals of Ké&hler action? Or
only asymptotically as suggested by the fact that generalized Beltrami fields can be interpreted as
asymptotic self-organization patterns, when dissipation has become insignificant. Or does topologiza-
tion take place in regions of space-time surface having Minkowskian signature of the induced metric?
And what asymptotia actually means? Do absolute minima of Kéhler action correspond to preferred
extremals?

One can challenge the interpretation in terms of asymptotic self organization patterns assigned to
the Minkowskian regions of space-time surface.

1. Zero energy ontology challenges the notion of approach to asymptotia in Minkowskian sense
since the dynamics of light-like 3-surfaces is restricted inside finite volume CD C M* since the
partonic 2-surfaces representing their ends are at the light-like boundaries of causal diamond in
a given p-adic time scale.

2. One can argue that generic non-asymptotic field configurations have Deop, = 4, and would thus
carry a vanishing Kahler four-current if Beltrami conditions were satisfied universally rather than
only asymptotically. 7 = 0 would obviously hold true also for the asymptotic configurations,
in particular those with Deop, < 4 so that empty space Maxwell’s field equations would be
universally satisfied for asymptotic field configurations with Deop, < 4. The weak point of this
argument is that it is 3-D light-like 3-surfaces rather than space-time surfaces which are the
basic dynamical objects so that the generic and only possible case corresponds to Deop, = 3 for
X l3 It is quite possible that preferred extremal property implies that Dop, = 3 holds true in
the Minkowskian regions since these regions indeed represent empty space. Geometrically this
would mean that the CP, projection does not change as the light-like coordinate labeling Y;?
varies. This conforms nicely with the notion of quantum gravitational holography.

3. The failure of the generalized Beltrami conditions would mean that Kahler field is completely
analogous to a dissipative Maxwell field for which also Lorentz force vanishes since j - E is
non-vanishing (note that isometry currents are conserved although energy momentum tensor
is not). Quantum classical correspondence states that classical space-time dynamics is by its
classical non-determinism able to mimic the non-deterministic sequence of quantum jumps at
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space-time level, in particular dissipation in various length scales defined by the hierarchy of
space-time sheets. Classical fields would represent ”symbolically” the average dynamics, in
particular dissipation, in shorter length scales. For instance, vacuum 4-current would be a
symbolic representation for the average of the currents consisting of elementary particles. This
would seem to support the view that Do p, = 4 Minkowskian regions are present. The weak point
of this argument is that there is fractal hierarchy of length scales represented by the hierarchy of
causal diamonds (C'Ds) and that the resulting hierarchy of generalized Feynman graphs might
be enough to represent dissipation classically.

4. One objection to the idea is that second law realized as an asymptotic vanishing of Lorentz-
Kahler force implies that all space-like 3-surfaces approaching same asymptotic state have the
same value of Kahler function assuming that the Kéahler function assignable to space-like 3-
surface is same for all space-like sections of X*4(X}) (assuming that one can realize general
coordinate invariance also in this sense). This need not be the case. In any case, this need not be
a problem since it would mean an additional symmetry extending general coordinate invariance.
The exponent of Kéhler function would be highly analogous to a partition function defined as
an exponent of Hamiltonian with Kéhler coupling strength playing the role of temperature.

It seems that asymptotic self-organization pattern need not be correct interpretation for non-
dissipating regions, and the identification of light-like 3-surfaces as generalized Feynman diagrams
encourages an alternative interpretation.

1. M® — H duality states that also the H counterparts of co-hyper-hyperquaternionic surfaces of
M? are preferred extremals of Kihler action. C'P, type vacuum extremals represent the basic
example of these and a plausible conjecture is that the regions of space-time with Euclidian
signature of the induced metric represent this kind of regions. If this conjecture is correct,
dissipation could be assigned with regions having Fuclidian signature of the induced metric.
This makes sense since dissipation has quantum description in terms of Feynman graphs and
regions of Euclidian signature indeed correspond to generalized Feynman graphs. This argument
would suggest that generalized Beltrami conditions or light-likeness hold true inside Minkowskian
regions rather than only asymptotically.

2. One could of course play language games and argue that asymptotia is with respect to the
Euclidian time coordinate inside generalized Feynman graps and is achieved exactly when the
signature of the induced metric becomes Minkowskian. This is somewhat artificial attempt
to save the notion of asymptotic self-organization pattern since the regions outside Feynman
diagrams represent empty space providing a holographic representations for the matter at X 13
so that the vanishing of j*F,z is very natural.

3. What is then the correct identification of asymptotic self-organization pattern. Could correspond
to the negative energy part of the zero energy state at the upper light-like boundary §M?* of
CD? Or in the case of phase conjugate state to the positive energy part of the state at (5Mff_?
An identification consistent with the fractal structure of zero energy ontology and TGD inspired
theory of consciousness is that the entire zero energy state reached by a sequence of quantum
jumps represents asymptotic self-organization pattern represented by the asymptotic generalized
Feynman diagram or their superposition. Biological systems represent basic examples about self-
organization, and one cannot avoid the questions relating to the relationship between experience
and geometric time. A detailed discussion of these points can be found in [K6] .

Absolute minimization of Kéhler action was the first guess for the criterion selecting preferred
extremals. Absolute minimization in a strict sense of the word does not make sense in the p-adic
context since p-adic numbers are not well-ordered, and one cannot even define the action integral
as a p-adic number. The generalized Beltrami conditions and the boundary conditions defining the
preferred extremals are however local and purely algebraic and make sense also p-adically. If absolute
minimization reduces to these algebraic conditions, it would make sense.

2.3.6 Generalized Beltrami fields and biological systems

The following arguments support the view that generalized Beltrami fields play a key role in living
systems, and that Do p, = 2 corresponds to ordered phase, Do p, = 3 to spin glass phase and Deop, = 4
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to chaos, with Do p, = 3 defining life as a phenomenon at the boundary between order and chaos. If
the criteria suggested by the number theoretic compactification are accepted, it is not clear whether
D¢ p, extremals can define preferred extremals of Kéhler action. For instance, cosmic strings are not
preferred extremals and the Y;? associated with MEs allow only covariantly constant right handed
neutrino eigenmode of Dy (X?). The topological condensation of C'P, type vacuum extremals around
Decp, = 2 type extremals is however expected to give preferred extremals and if the density of the
condensate is low enough one can still speak about Dcop, = 2 phase. A natural guess is also that
the deformation of Deop, = 2 extremals transforms light-like gauge currents to space-like topological
currents allowed by D¢ p, = 3 phase.

Why generalized Beltrami fields are important for living systems?

Chirality, complexity, and high level of organization make Dcp, = 3 generalized Beltrami fields
excellent candidates for the magnetic bodies of living systems.

1. Chirality selection is one of the basic signatures of living systems. Beltrami field is character-
ized by a chirality defined by the relative sign of the current and magnetic field, which means
parity breaking. Chirality reduces to the sign of the function ¢ appearing in the topologization
condition and makes sense also for the generalized Beltrami fields.

2. Although Beltrami fields can be extremely complex, they are also extremely organized. The
reason is that the function « is constant along flux lines so that flux lines must in the case
of compact Riemann 3-manifold belong to 2-dimensional o = constant closed surfaces, in fact
two-dimensional invariant tori [B21] .

For generalized Beltrami fields the function v is constant along the flow lines of the Kéhler current.
Space-time sheets with 3-dimensional C'P, projection serve as an illustrative example. One can use
the coordinates for the C'P, projection as space-time coordinates so that one space-time coordinate
disappears totally from consideration. Hence the situation reduces to a flow in a 3-dimensional sub-
manifold of CP,. One can distinguish between three types of flow lines corresponding to space-like,
light-like and time-like topological current. The 2-dimensional 1) = constant invariant manifolds are
sub-manifolds of CP,. Ordinary Beltrami fields are a special case of space-like flow with flow lines
belonging to the 2-dimensional invariant tori of C'P,. Time-like and light-like situations are more
complex since the flow lines need not be closed so that the 2-dimensional ¥ = constant surfaces can
have boundaries.

For periodic self-organization patterns flow lines are closed and ¥ = constant surfaces of CP»
must be invariant tori. The dynamics of the periodic flow is obtained from that of a steady flow
by replacing one spatial coordinate with effectively periodic time coordinate. Therefore topological
notions like helix structure, linking, and knotting have a dynamical meaning at the level of C'P;
projection. The periodic generalized Beltrami fields are highly organized also in the temporal domain
despite the potentiality for extreme topological complexity.

For these reasons topologically quantized generalized Beltrami fields provide an excellent candidate
for a generic model for the dynamics of biological self-organization patterns. A natural guess is that
many-sheeted magnetic and Z° magnetic fields and their generalizations serve as templates for the
helical molecules populating living matter, and explain both chiral selection, the complex linking and
knotting of DNA and protein molecules, and even the extremely complex and self-organized dynamics
of biological systems at the molecular level.

The intricate topological structures of DNA, RNA, and protein molecules are known to have a deep
significance besides their chemical structure, and they could even define something analogous to the
genetic code. Usually the topology and geometry of bio-molecules is believed to reduce to chemistry.
TGD suggests that space-like generalized Beltrami fields serve as templates for the formation of bio-
molecules and bio-structures in general. The dynamics of bio-systems would in turn utilize the time-
like Beltrami fields as templates. There could even exist a mapping from the topology of magnetic flux
tube structures serving as templates for bio-molecules to the templates of self-organized dynamics. The
helical structures, knotting, and linking of bio-molecules would thus define a symbolic representation,
and even coding for the dynamics of the bio-system analogous to written language.
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Dcp, = 3 systems as boundary between D¢cp, = 2 order and D¢p, = 4 chaos

The dimension of C' P, projection is basic classifier for the asymptotic self-organization patterns.
1. Dcp, = 4 phase, dead matter, and chaos

Dcp, = 4 corresponds to the ordinary Maxwellian phase in which Kéahler current and charge
density vanish and there is no topologization of Kéhler current. By its maximal dimension this phase
would naturally correspond to disordered phase, ordinary ”dead matter”. If one assumes that Kahler
charge corresponds to either em charge or Z° charge then the signature of this state of matter would
be em neutrality or Z° neutrality.

2. Dcp, = 2 phase as ordered phase

By the low dimension of C'P, projection Dcp, = 2 phase is the least stable phase possible only
at cold space-time sheets. Kéhler current is either vanishing or light-like, and Beltrami fields are not
possible. This phase is highly ordered and much like a topological quantized version of ferro-magnet.
In particular, it is possible to have a global coordinate varying along the field lines of the vector
potential also now. The magnetic and Z° magnetic body of any system is a candidate for this kind of
system. Z° field is indeed always present for vacuum extremals having Dcp, = 2 and the vanishing
of em field requires that that sin?(0w) (6w is Weinberg angle) vanishes.

3. Dcp, = 3 corresponds to living matter

Dcp, = 3 corresponds to highly organized phase characterized in the case of space-like Kahler
current by complex helical structures necessarily accompanied by topologized Kéahler charge density
x A-B # 0 and Kahler current E x A + ¢B. For time like Kahler currents the helical structures are
replaced by periodic oscillation patterns for the state of the system. By the non-maximal dimension
of C'P, projection this phase must be unstable against too strong external perturbations and cannot
survive at too high temperatures. Living matter is thus excellent candidate for this phase and it might
be that the interaction of the magnetic body with living matter makes possible the transition from
D¢ p, = 2 phase to the self-organizing Deop, = 3 phase.

Living matter which is indeed populated by helical structures providing examples of space-like
Kéhler current. Strongly charged lipid layers of cell membrane might provide example of time-like
Kahler current. Cell membrane, micro-tubuli, DNA, and proteins are known to be electrically charged
and Z° charge plays key role in TGD based model of catalysis discussed in [K33] . For instance, de-
naturing of DNA destroying its helical structure could be interpreted as a transition leading from
Dcp, = 3 phase to Dop, = 4 phase. The prediction is that the denatured phase should be electro-
magnetically (or Z°) neutral.

Beltrami fields result when Kéhler charge density vanishes. For these configurations magnetic
field and current density take the role of the vector potential and magnetic field as far as the contact
structure is considered. For Beltrami fields there exist a global coordinate along the field lines of the
vector potential but not along those of the magnetic field. As a consequence, the covariant consistency
condition (9s — geAs)¥ = 0 frequently appearing in the physics of super conducting systems would
make sense along the flow lines of the vector potential for the order parameter of Bose-Einstein
condensate. If Beltrami phase is super-conducting, then the state of the system must change in the
transition to a more general phase. It is impossible to assign slicing of 4-surface by 3-D surfaces labeled
by a coordinate t varying along the flow lines. This means that one cannot speak about a continuous
evolution of Schrodinger amplitude with ¢ playing the role of time coordinate. One could perhaps
say that the entire space-time sheet represents single quantum event which cannot be decomposed
to evolution. This would conform with the assignment of macroscopic and macro-temporal quantum
coherence with living matter.

The existence of these three phases brings in mind systems allowing chaotic de-magnetized phase
above critical temperature T, spin glass phase at the critical point, and ferromagnetic phase below
T.. Similar analogy is provided by liquid phase, liquid crystal phase possible in the vicinity of the
critical point for liquid to solid transition, and solid phase. Perhaps one could regard Dcp, = 3 phase
and life as a boundary region between Dcp, = 2 order and Dcp, = 4 chaos. This would naturally
explain why life as it is known is possible in relatively narrow temperature interval.
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Can one assign a continuous Schrodinger time evolution to light-like 3-surfaces?

Alain Connes wrote [A42] about factors of various types using as an example Schrodinger equation for
various kinds of foliations of space-time to time=constant slices. If this kind of foliation does not exist,
one cannot speak about time evolution of Schrodinger equation at all. Depending on the character of
the foliation one can have factor of type I, II, or III. For instance, torus with slicing dx = ady in flat
coordinates, gives a factor of type I for rational values of a and factor of type II for irrational values
of a.

1. 3-D foliations and type III factors

Connes mentioned 3-D foliations V' which give rise to type III factors. Foliation property requires
a slicing of V' by a one-form v to which slices are orthogonal (this requires metric).

1. The foliation property requires that v multiplied by suitable scalar is gradient. This gives the
integrability conditions dv = w A v, w = —dy /v = —dlog(y)). Something proportional to log(1))
can be taken as a third coordinate varying along flow lines of v: the flow defines a continuous
sequence of maps of 2-dimensional slice to itself.

2. If the so called Godbillon-Vey invariant defined as the integral of dw Aw over V' is non-vanishing,
factor of type III is obtained using Schrodinger amplitudes for which the flow lines of foliation
define the time evolution. The operators of the algebra in question are transversal operators
acting on Schrodinger amplitudes at each slice. Essentially Schrodinger equation in 3-D space-
time would be in question with factor of type III resulting from the exotic choice of the time
coordinate defining the slicing.

2. What happens in case of light-like 3-surfaces?

In TGD light-like 3-surfaces are natural candidates for V' and it is interesting to look what happens
in this case. Light-likeness is of course a disturbing complication since orthogonality condition and
thus contravariant metric is involved with the definition of the slicing. Light-likeness is not however
involved with the basic conditions.

1. The one-form v defined by the induced Kéhler gauge potential A defining also a braiding is a
unique identification for v. If foliation exists, the braiding flow defines a continuous sequence of
maps of partonic 2-surface to itself.

2. Physically this means the possibility of a super-conducting phase with order parameter satisfying
covariant constancy equation D = (d/dt — ieA)ip = 0. This would describe a supra current
flowing along flow lines of A.

3. If the integrability fails to be true, one cannot assign Schrédinger time evolution with the flow
lines of v. One might perhaps say that 3-surface behaves like single quantum event not allowing
slicing into a continuous Schrodinger time evolution.

4. In TGD Schrédinger amplitudes are replaced by second quantized induced spinor fields. Hence
one does not face the problem whether it makes sense to speak about Schréodinger time evolution
of complex order parameter along the flow lines of a foliation or not. Also the fact that the ”time
evolution” for the modified Dirac operator corresponds to single position dependent generalized
eigenvalue identified as Higgs expectation same for all transversal modes (essentially z™ labeled
by conformal weight) is crucial since it saves from the problems caused by the possible non-
existence of Schrodinger evolution.

4. Extremals of Kdhler action

Some comments relating to the interpretation of the classification of the extremals of Kéhler action
by the dimension of their C'P, projection are in order. It has been already found that the extremals
can be classified according to the dimension D of the C'P, projection of space-time sheet in the case
that A, = 0 holds true.
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1. For D¢ p, = 2 integrability conditions for the vector potential can be satisfied for A, = 0 so that
one has generalized Beltrami flow and one can speak about Schrédinger time evolution associated
with the flow lines of vector potential defined by covariant constancy condition D = 0 makes
sense. Kahler current is vanishing or light-like. This phase is analogous to a super-conductor or
a ferromagnetic phase. For non-vanishing A, the Beltrami flow property is lost but the analogy
with ferromagnetism makes sense still.

2. For Dcp, = 3 foliations are lost. The phase is dominated by helical structures. This phase
is analogous to spin glass phase around phase transition point from ferromagnetic to non-
magnetized phase and expected to be important in living matter systems.

3. Dcp, = 4 is analogous to a chaotic phase with vanishing Kahler current and to a phase without
magnetization. The interpretation in terms of non-quantum coherent ”dead” matter is sugges-
tive.

An interesting question is whether the ordinary 8-D imbedding space which defines one sector of
the generalized imbedding space could correspond to A, = 0 phase. If so, then all states for this
sector would be vacua with respect to M* quantum numbers. M?*-trivial zero energy states in this
sector could be transformed to non-trivial zero energy states by a leakage to other sectors.

2.3.7 About small perturbations of field equations

The study of small perturbations of the known solutions of field equations is a standard manner to
get information about the properties of the solutions, their stability in particular. Fourier expansion
is the standard manner to do the perturbation theory. In the recent case an appropriate modification
of this ansatz might make sense if the solution in question is representable as a map Mi — C' Py, and
the perturbations are rapidly varying when compared to the components of the induced metric and
Kahler form so that one can make adiabatic approximation and approximate them as being effectively
constant. Presumably also restrictions on directions of wave 4-vectors k, = (w,k)) are necessary so
that the direction of wave vector adapts to the slowly varying background as in ray optics. Also
Hamilton Jacobi structure is expected to modify the most straightforward approach. The four C'P;
coordinates are the dynamical variables so that the situation is relatively simple.

A completely different approach is inspired by the physical picture. In this approach one glues
CP, type vacuum extremal to a known extremal and tries to deduce the behavior of the deformed
extremal in the vicinity of wormhole throat by posing the general conditions on the slicing by light-like
3-surfaces Y;?. This approach is not followed now.

Generalized plane waves

Individual plane waves are geometrically very special since they represent a deformation of the space-
time surface depending on single coordinate only. Despite this one might hope that plane waves or
their appropriate modifications allowing to algebraize the treatment of small perturbations could give
useful information also now.

1. Lorentz invariance plus the translational invariance due to the assumption that the induced
metric and Kéhler form are approximately constant encourage to think that the coordinates
reduce Minkowski coordinates locally with the orientation of the local Minkowski frame depend-
ing slowly on space-time position. Hamilton Jacobi (S*,S™,w,w) are a good candidate for this
kind of coordinates. The properties of the Hamilton Jacobi structure and of the solution ansatz
suggest that excitations are generalized plane waves in longitudinal degrees of freedom only so
that four-momentum would be replaced by the longitudinal momentum. In transverse degrees
of freedom one might expect that holomorphic plane-waves exp(ikrw), where kp is transverse
momentum, make algebraization possible.

For time-like longitudinal momenta one can choose the local A4 coordinates in such a manner
that longitudinal momentum reduces to (wo,0), where wy plays the role of rest mass and is
analogous to the plasma frequency serving as an infrared cutoff for plasma waves. In these
coordinates the simplest candidates for excitations with time-like momentum would be of form
Ask = eaFexp(iwgu), where s* are some real coordinates for CP,, a* are Fourier coefficients,
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and time-like coordinate is defined as u = ST + S~. The excitations moving with light velocity
correspond to wy = 0, and one must treat this case separately using plane wave exp(iwS™),
where w has continuum of values.

2. It is possible that only some preferred C' P, coordinates are excited in longitudinal degrees of
freedom. For Dgcp, = 3 ansatz the simplest option is that the complex C'P» coordinate &
depends analytically on w and the longitudinal C'P, coordinate s obeys the plane wave ansatz.
E(w) = a x exp(ikrw), where kr is transverse momentum allows the algebraization of the
solution ansatz also in the transversal degrees of freedom so that a dispersion relation results.
For imaginary values of kr and w the equations are real.

2. General form for the second variation of the field equations

For time-like four-momentum the second variation of field equations contains three kinds of terms.
There are terms quadratic in wy and coming from the second derivatives of the deformation, terms
proportional to iwy coming from the variation with respect to the derivatives of C' P, coordinates,
and terms which do not depend on wy and come from the variations of metric and Kéahler form with
respect to the C'P, coordinates.

In standard perturbation theory the terms proportional to iwy would have interpretation as analogs
of dissipative terms. This forces to assume that wy is complex: note that in purely imaginary wy the
equations are real. The basic assumption is that Kéhler action is able to mimic dissipation despite
the fact that energy and momentum are conserved quantities. The vanishing of the Lorentz force
has an interpretation as the vanishing of the dissipative effects. This would suggest that the terms
proportional to iwgy vanish for the perturbations of the solution preserving the non-dissipative character
of the asymptotic solutions. This might quite well result from the vanishing of the contractions with
the deformation of the energy momentum tensor with the second fundamental form and of energy
momentum tensor with the deformation of the second fundamental form coming from first derivatives.

Physical intuition would suggest that dissipation-less propagation is possible only along special
directions. Thus the vanishing of the linear terms should occur only for special directions of the
longitudinal momentum vector, say for light-like four-momenta in the direction of coordinate lines of
St or S~. Quite generally, the sub-space of allowed four-momenta is expected to depend on position
since the components of metric and Kéhler form are slowly varying. This dependence is completely
analogous with that appearing in the Hamilton Jacobi (ray-optics) approach to the approximate
treatment of wave equations and makes sense if the phase of the plane wave varies rapidly as compared
to the variation of C' P, coordinates for the unperturbed solution.

Complex values of wqg are also possible, and would allow to deduce important information about the
rate at which small deviations from asymptotia vanish as well as about instabilities of the asymptotic
solutions. In particular, for imaginary values of wg one obtains completely well-defined solution ansatz
representing exponentially decaying or increasing perturbation.

High energy limit

One can gain valuable information by studying the perturbations at the limit of very large four-
momentum. At this limit the terms which are quadratic in the components of momentum dominate
and come from the second derivatives of the C'P, coordinates appearing in the second fundamental
form. The resulting equations reduce for all C'P, coordinates to the same condition

Tkoks =0 .

This condition is generalization of masslessness condition with metric replaced by the energy mo-
mentum tensor, which means that light velocity is replaced by an effective light velocity. In fact,
energy momentum tensor effectively replaces metric also in the modified Dirac equation whose form is
dictated by super symmetry. Light-like four momentum is a rather general solution to the condition
and corresponds to wg = 0 case.

Reduction of the dispersion relation to the graph of swallowtail catastrophe

Also the general structure of the equations for small perturbations allows to deduce highly non-trivial
conclusions about the character of perturbations.
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1. The equations for four C' P, coordinates are simultaneously satisfied if the determinant associated
with the equations vanishes. This condition defines a 3-dimensional surface in the 4-dimensional
space defined by wy and coordinates of 3-space playing the role of slowly varying control pa-
rameters. 4 X 4 determinant results and corresponds to a polynomial which is of order d = 8
in wq. If the determinant is real, the polynomial can depend on w3 only so that a fourth order

polynomial in w = w? results.

2. Only complex roots are possible in the case that the terms linear in iwy are non-vanishing.
One might hope that the linear term vanishes for certain choices of the direction of slowly
varying four-momentum vector k*(z) at least. For purely imaginary values of wy the equations
determinant are real always. Hence catastrophe theoretic description applies in this case at
least, and the so called swallow tail [AGS] with three control parameters applies to the situation.

3. The general form of the vanishing determinant is

D(w,a,b,¢c) =w* — ew® — cw® —bw —a .
The transition from the oscillatory to purely dissipative case changes only the sign of w. By the
shift w = & + e/4 the determinant reduces to the canonical form

D(,a,b,c) = 0" — civ® — bib — a

of the swallowtail catastrophe. This catastrophe has three control variables, which basically
correspond to the spatial 3-coordinates on which the induced metric and Kéahler form depend.
The variation of these coeflicients at the space-time sheet of course covers only a finite region
of the parameter space of the swallowtail catastrophe. The number of real roots for w = w? is
four, two, or none since complex roots appear in complex conjugate pairs for a real polynomial.
The general shape of the region of 3-space is that for a portion of swallow tail catastrophe.

Figure 2.1: The projection of the bifurcation set of the swallowtail catastrophe to the 3-dimensional
space of control variables. The potential function has four extrema in the interior of the swallowtail
bounded by the triangles, no extrema in the valley above the swallowtail, and 2 extrema elsewhere.

4. The dispersion relation for the ”rest mass” wq (decay rate for the imaginary value of wp) has at
most four real branches, which conforms with the fact that there are four dynamical variables.
In real case wy is analogous to plasma frequency acting as an infrared cutoff for the frequencies
of plasma excitations. To get some grasp on the situation notice that for a = 0 the swallowtail
reduces to w = 0 and

3

W —cw—-b=0,
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which represents the cusp catastrophe easy to illustrate in 3-dimensional space. Cusp in turn
reduces for b = 0 to w = 0 and fold catastrophe 1 = ++/c. Thus the catastrophe surface becomes
4-sheeted for ¢ > 0 for sufficiently small values of the parameters a and b. The possibility of
negative values of 1 in principle allows w? = + e/4 < 0 solutions identifiable as exponentially
decaying or amplified perturbations. At the high frequency limit the 4 branches degenerate to a
single branch T“ﬁkakg = 0, which as a special case gives light-like four-momenta corresponding
to wp = 0 and the origin of the swallowtail catastrophe.

Figure 2.2: Cusp catastrophe. Vertical direction corresponds to the behavior variable and orthogonal
directions to control variables.

5. It is quite possible that the imaginary terms proportional to iwy cannot be neglected in the time-
like case. The interpretation would be as dissipative effects. If these effects are not too large,
an approximate description in terms of butterfly catastrophe makes still sense. Note however
that the second variation contains besides gravitational terms potentially large dissipative terms
coming from the variation of the induced Kéhler form and from the variation of C' P, Christoffel
symbols.

6. Additional complications are encountered at the points, where the induced Kéhler field vanishes
since the second variation vanishes identically at these points. By the arguments represented
earlier, these points quite generally represent instabilities.

2.4 Vacuum extremals

Vacuum extremals come as two basic types: CP, type vacuum extremals for which the induced
Kahler field and Ké&hler action are non-vanishing and the extremals for which the induced Kéhler field
vanishes. The deformations of both extremals are expected to be of fundamental importance in TGD
universe. Vacuum extremals are not gravitational vacua and they are indeed fundamental in TGD
inspired cosmology.

2.4.1 (P, type extremals
CP;, type vacuum extremals

These extremals correspond to various isometric imbeddings of C P, to M fi x CP,. One can also drill
holes to CP,. Using the coordinates of CP, as coordinates for X* the imbedding is given by the
formula

mt = m"(u)
mpmfm!t = 0, (2.4.1)

where u(s*) is an arbitrary function of C P, coordinates. The latter condition tells that the curve
representing the projection of X4 to M* is light like curve. One can choose the functions m?,i = 1,2,3
freely and solve m® from the condition expressing light likeness so that the number of this kind of
extremals is very large.

The induced metric and Kahler field are just those of CP, and energy momentum tensor 77
vanishes identically by the self duality of the Kéhler form of CP,. Also the canonical current j¢ =
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DgJO‘B associated with the Kéhler form vanishes identically. Therefore the field equations in the
interior of X* are satisfied. The field equations are also satisfied on the boundary components of CP,
type extremal because the non-vanishing boundary term is, besides the normal component of Kéahler
electric field, also proportional to the projection operator to the normal space and vanishes identically
since the induced metric and Kéahler form are identical with the metric and Kéahler form of CPs.

As a special case one obtains solutions for which M* projection is light like geodesic. The projection
of mY = constant surfaces to C'P, is u = constant 3-submanifold of CP,. Geometrically these solutions
correspond to a propagation of a massless particle. In a more general case the interpretation as an
orbit of a massless particle is not the only possibility. For example, one can imagine a situation, where
the center of mass of the particle is at rest and motion occurs along a circle at say (m', m?) plane.
The interpretation as a massive particle is natural. Amusingly, there is nice analogy with the classical
theory of Dirac electron: massive Dirac fermion moves also with the velocity of light (zitterbewegung).
The quantization of this random motion with light velocity leads to Virasoro conditions and this led
to a breakthrough in the understanding of the p-adic QFT limit of TGD. Furthermore, it has turned
out that Super Virasoro invariance is a general symmetry of the configuration space geometry and
quantum TGD and appears both at the level of imbedding space and space-time surfaces.

The action for all extremals is same and given by the Kéhler action for the imbedding of CPs.
The value of the action is given by

s
S = —— . 2.4.2
8&[{ ( )

To derive this expression we have used the result that the value of Lagrangian is constant: L =
4/R*, the volume of CPy is V(CP;) = 7>R*/2 and the definition of the Kihler coupling strength
k1 = 1/16mak (by definition, 7R is the length of C'P, geodesics). Four-momentum vanishes for these
extremals so that they can be regarded as vacuum extremals. The value of the action is negative
so that these vacuum extremals are indeed favored by the minimization of the Kéahler action. The
absolute minimization of Kéhler action suggests that ordinary vacuums with vanishing Kéhler action
density are unstable against the generation of C'P, type extremals. There are even reasons to expect
that C P, type extremals are for TGD what black holes are for GRT. Indeed, the nice generalization
of the area law for the entropy of black hole [K34] supports this view.

In accordance with the basic ideas of TGD topologically condensed vacuum extremals should
somehow correspond to massive particles. The properties of the C'P, type vacuum extremals are in
accordance with this interpretation. Although these objects move with a velocity of light, the motion
can be transformed to a mere zitterbewegung so that the center of mass motion is trivial. Even the
generation of the rest mass could might be understood classically as a consequence of the minimization
of action. Long range Kéahler fields generate negative action for the topologically condensed vacuum
extremal (momentum zero massless particle) and Kéhler field energy in turn is identifiable as the rest
mass of the topologically condensed particle.

An interesting feature of these objects is that they can be regarded as gravitational instantons [A50]

A further interesting feature of C'P, type extremals is that they carry nontrivial classical color

charges. The possible relationship of this feature to color confinement raises interesting questions.

Could one model classically the formation of the color singlets to take place through the emission of

”colorons”: states with zero momentum but non-vanishing color? Could these peculiar states reflect
the infrared properties of the color interactions?

Are C'P, type non-vacuum extremals possible?

The isometric imbeddings of CP, are all vacuum extremals so that these extremals as such cannot
correspond to physical particles. One obtains however nonvacuum extremals as deformations of these
solutions. There are several types of deformations leading to nonvacuum solutions. In order to
describe some of them, recall the expressions of metric and Kéhler form of C'P; in the coordinates
(r,0,V, ®) [A62] are given by
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The scaling of the line element is defined so that wR is the length of the C'P; geodesic line. Note that
® and ¥ appear as ”cyclic” coordinates in metric and Kéhler form: this feature plays important role
in the solution ansatze to be described.

Let M* = M? x E? denote the decomposition of M* to a product of 2-dimensional Minkowski space
and 2-dimensional Euclidian plane. This decomposition corresponds physically to the decomposition
of momentum degrees of freedom for massless particle: E? corresponds to polarization degrees of
freedom.

There are several types of nonvacuum extremals.

1. ”Virtual particle” extremals: the mass spectrum is continuous (also Euclidian momenta are
allowed) but these extremals reduce to vacuum extremals in the massless limit.

2. Massless extremals.

Consider first an example of virtual particle extremal. The simplest extremal of this type is
obtained in the following form

mF = "V 40k . (2.4.4)

Here a* and b* are some constant quantities. Field equations are equivalent to the conditions express-
ing four-momentum conservation and are identically satisfied the reason being that induced metric
and Kahler form do not depend on the coordinates ¥ and .

Extremal describes 3-surface, which moves with constant velocity in M*. Four-momentum of the
solution can be both space and time like. In the massless limit solution however reduces to a vacuum
extremal. Therefore the interpretation as an off mass shell massless particle seems appropriate.

Massless extremals are obtained from the following solution ansatz.

m’ = md=al+0bd ,
(ml,m2) = (m'(r, @),mZ(r,G)) . (2.4.5)

Only E? degrees of freedom contribute to the induced metric and the line element is obtained from

ds® = dsgp, — (dm')? — (dm?)* . (2.4.6)

Field equations reduce to conservation condition for the componenents of four-momentum in FE?
plane. By their cyclicity the coordinates ¥ and & disappear from field equations and one obtains
essentially current conservation condition for two-dimensional field theory defined in space spanned
by the coordinates r and ©.

(Ja)i = 0,
Jo = TYf%g . (2.4.7)
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z'=x'+1y

Figure 2.3: Topological sum of C'P,:s as Feynman graph with lines thickened to four-manifolds

Here the index i and a refer to r and © and to E? coordinates m! and m? respectively. T% denotes the
canonical energy momentum tensor associated with Kéhler action. One can express the components
of T in terms of induced metric and C'P, metric in the following form

T = (—g*g" + g7 g" 2)sp . (2.4.8)

This expression holds true for all components of the energy momentum tensor.
Since field equations are essentially two-dimensional conservation conditions they imply that com-
ponents of momentum currents can be regarded as vector fields of some canonical transformations

T ij I7Q
J, = e“"HS

)

(2.4.9)

where €9 denotes two-dimensional constant symplectic form. An open problem is whether one could
solve field equations exactly and whether there exists some nonlinear superposition principle for the
solutions of these equations. Solutions are massless since transversal momentum densities vanish
identically.

Consider as a special case the solution obtained by assuming that one E? coordinate is constant
and second coordinate is function f(r) of the variable r only. Field equations reduce to the following
form

k
feo = *a3 rz)l/s’\/T2 — R4 r2)Y3 (2.4.10)

The solution is well defined only for sufficiently small values of the parameter k appearing as integration
constant and becomes ill defined at two singular values of the variable r. Boundary conditions are
identically satisfied at the singular values of r since the radial component of induced metric diverges at
these values of . The result leads to suspect that the generation of boundary components dynamically
is a general phenomenon so that all nonvacuum solutions have boundary components in accordance
with basic ideas of TGD.

CP#CPy#..#CPy:s as generalized Feynman graphs

There are reasons to believe that point like particles might be identified as C'P, type extremals in
TGD approach. Also the geometric counterparts of the massless on mass shell particles and virtual
particles have been identified. It is natural to extend this idea to the level of particle interactions: the
lines of Feynman diagrams of quantum field theory are thickened to four-manifolds, which are in a
good approximation C'Ps type vacuum extremals. This would mean that generalized Feynman graphs
are essentially connected sums of CPs:s (see Fig. : X4 = OPR#CP,... #CP).
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Unfortunately, this picture seems to be oversimplified. First, it is questionable whether the cross
sections for the scattering of C' P, type extremals have anything to do with the cross sections associated
with the standard gauge interactions. A naive geometric argument suggests that the cross section
should reflect the geometric size of the scattered objects and therefore be of the order of C'P;, radius
for topologically non-condensed C'P, type extremals. The observed cross sections would result at
the first level of condensation, where particles are effectively replaced by surfaces with size of order
Compton length. Secondly, the h,,. = —D rule, considered in the previous chapter, suggests that only
real particles correspond to the C'P, type extremals whereas virtual particles in general correspond
to the vacuum extremals with a vanishing Kéhler action. The reason is that the negative exponent of
the Kahler action reduces the contribution of the C'P; type extremals to the functional integral very
effectively. Therefore the exchanges of C'P; type extremals are suppressed by the negative exponent
of the Kahler action very effectively so that geometric scattering cross section is obtained.

2.4.2 Vacuum extremals with vanishing Kahler field

Vacuum extremals correspond to 4-surfaces with vanishing Kéahler field and therefore to gauge field
zero configurations of gauge field theory. These surfaces have C'P, projection, which is Legendre
manifold. The condition expressing Legendre manifold property is obtained in the following manner.
Kéhler potential of C'P, can be expressed in terms of the canonical coordinates (P;, Q;) for CP; as

A = ) PdQb . (2.4.11)
k

The conditions

Py = 9gef(Q) (2.4.12)

where f(Q?) is arbitrary function of its arguments, guarantee that Kihler potential is pure gauge.
It is clear that canonical transformations, which act as local U(1) gauge transformations, transform
different vacuum configurations to each other so that vacuum degeneracy is enormous. Also Mi
diffeomorphisms act as the dynamical symmetries of the vacuum extremals. Some sub-group of these
symmetries extends to the isometry group of the configuration space in the proposed construction of
the configuration space metric. The vacuum degeneracy is still enhanced by the fact that the topology
of the four-surface is practically free.

Vacuum extremals are certainly not absolute minima of the action. For the induced metric having
Minkowski signature the generation of Kahler electric fields lowers the action. For Euclidian signature
both electric and magnetic fields tend to reduce the action. Therefore the generation of Euclidian
regions of space-time is expected to occur. CPs type extremals, identifiable as real (as contrast to
virtual) elementary particles, can be indeed regarded as these Euclidian regions.

Particle like vacuum extremals can be classified roughly by the number of the compactified di-
mensions D having size given by C'P» length. Thus one has Dop, = 3 for CP, type extremals,
Dcp, = 2 for string like objects, Dop, = 1 for membranes and Dgp, = 0 for pieces of M%. As already
mentioned, the rule h,,. = —D relating the vacuum weight of the Super Virasoro representation to
the number of compactified dimensions of the vacuum extremal is very suggestive. D < 3 vacuum
extremals would correspond in this picture to virtual particles, whose contribution to the generalized
Feynman diagram is not suppressed by the exponential of Kahler action unlike that associated with
the virtual C'P, type lines.

M* type vacuum extremals (representable as maps Mfﬁ — C'P, by definition) are also expected to
be natural idealizations of the space-time at long length scales obtained by smoothing out small scale
topological inhomogenities (particles) and therefore they should correspond to space-time of GRT in
a reasonable approximation.

The reason would be ”Yin-Yang principle”.

1. Consider first the option for which Kahler function corresponds to an absolute minimum of
Kahler action. Vacuum functional as an exponent of Kéahler function is expected to concen-
trate on those 3-surfaces for which the Kéhler action is non-negative. On the other hand, the



2.5. Non-vacuum extremals 79

requirement that Kéhler action is absolute minimum for the space-time associated with a given
3-surface, tends to make the action negative. Therefore the vacuum functional is expected to
differ considerably from zero only for 3-surfaces with a vanishing Ké&hler action per volume. It
could also occur that the degeneracy of 3-surfaces with same large negative action compensates
the exponent of Kéhler function.

2. If preferred extrema correspond to Kéahler calibrations or their duals [K81] , Yin-Yang principle
is modified to a more local principle. For Kahler calibrations (their duals) the absolute value of
action in given region is minimized (maximized). A given region with positive (negative sign) of
action density favors Kéhler electric (magnetic) fields. In long length scales the average density
of Kéhler action per four-volume tends to vanish so that Kéahler function of the entire universe
is expected to be very nearly zero. This regularizes the theory automatically and implies that
average Kahler action per volume vanishes. Positive and finite values of Kéhler function are of
course favored.

In both cases the vanishing of Kéahler action per volume in long length scales makes vacuum ex-
tremals excellent idealizations for the smoothed out space-time surface. Robertson-Walker cosmologies
provide a good example in this respect. As a matter fact the smoothed out space-time is not a mere
fictive concept since larger space-time sheets realize it as a essential part of the Universe.

Several absolute minima could be possible and the non-determinism of the vacuum extremals is not
expected to be reduced completely. The remaining degeneracy could be even infinite. A good example
is provided by the vacuum extremals representable as maps Mﬁ — D', where D' is one-dimensional
curve of C'P,. This degeneracy could be interpreted as a space-time correlate for the non-determinism
of quantum jumps with maximal deterministic regions representing quantum states in a sequence of
quantum jumps.

2.5 Non-vacuum extremals

2.5.1 Cosmic strings

Cosmic strings are extremals of type X2 x S2, where X? is minimal surface in M_‘f_ (analogous to
the orbit of a bosonic string) and S? is the homologically non-trivial geodesic sphere of CP,. The
action of these extremals is positive and thus absolute minima are certainly not in question. One can
however consider the possibility that these extremals are building blocks of the absolute minimum
space-time surfaces since the absolute minimization of the Kéhler action is global rather than a local
principle. Cosmic strings can contain also Kahler charged matter in the form of small holes containing
elementary particle quantum numbers on their boundaries and the negative Kéahler electric action for
a topologically condensed cosmic string could cancel the Kahler magnetic action.
The string tension of the cosmic strings is given by
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T = SanlE = .2210 G

where ag =~ e, has been used to get the numerical estimate. The string tension is of the same

order of magnitude as the string tension of the cosmic strings of GUTs and this leads to the model

of the galaxy formation providing a solution to the dark matter puzzle as well as to a model for large

voids as caused by the presence of a strongly Kéahler charged cosmic string. Cosmic strings play also
fundamental role in the TGD inspired very early cosmology.

(2.5.1)

2.5.2 Massless extremals

Massless extremals (or topological light rays) are characterized by massless wave vector p and polar-
ization vector ¢ orthogonal to this wave vector. Using the coordinates of M* as coordinates for X*
the solution is given as

k:fku7v)7
=p-m , v=¢&-m ,
e=0, p2=0 .

ST~V
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C P, coordinates are arbitrary functions of p-m and e -m. Clearly these solutions correspond to plane
wave solutions of gauge field theories. It is important to notice however that linear super position
doesn’t hold as it holds in Maxwell phase. Gauge current is proportional to wave vector and its
divergence vanishes as a consequence. Also cylindrically symmetric solutions for which the transverse
coordinate is replaced with the radial coordinate p = /m? + m3 are possible. In fact, v can be any
function of the coordinates m', m? transversal to the light like vector p.

Boundary conditions on the boundaries of the massless extremal are satisfied provided the normal
component of the energy momentum tensor vanishes. Since energy momentum tensor is of the form
T o p*p” the conditions T = 0 are satisfied if the M* projection of the boundary is given by the
equations of form

H(p-m,e-mye;-m) =0, (2.5.2)
e-p=0, e1-p=0, €-61=0.

where H is arbitrary function of its arguments. Recall that for M* type extremals the boundary
conditions are also satisfied if Kahler field vanishes identically on the boundary.

The following argument suggests that there are not very many manners to satisfy boundary con-
ditions in case of M* type extremals. The boundary conditions, when applied to M* coordinates
imply the vanishing of the normal component of energy momentum tensor. Using coordinates, where
energy momentum tensor is diagonal, the requirement boils down to the condition that at least one
of the eigen values of T“# vanishes so that the determinant det(7?) must vanish on the boundary:
this condition defines 3-dimensional surface in X*. In addition, the normal of this surface must have
same direction as the eigen vector associated with the vanishing eigen value: this means that three
additional conditions must be satisfied and this is in general true in single point only. The boundary
conditions in C'P, coordinates are satisfied provided that the conditions

JBJk9gst =0

are satisfied. The identical vanishing of the normal components of Kéhler electric and magnetic fields
on the boundary of massless extremal property provides a manner to satisfy all boundary conditions
but it is not clear whether there are any other manners to satisfy them.

The characteristic feature of the massless extremals is that in general the Kahler gauge current
is non-vanishing. In ordinary Maxwell electrodynamecis this is not possible. This means that these
extremals are accompanied by vacuum current, which contains in general case both weak and electro-
magnetic terms as well as color part.

A possible interpretation of the solution is as the exterior space-time to a topologically condensed
particle with vanishing mass described by massless C'P, type extremal, say photon or neutrino. In
general the surfaces in question have boundaries since the coordinates s* are are boundedthis is in
accordance with the general ideas about topological condensation. The fact that massless plane wave
is associated with C' P, type extremal combines neatly the wave and particle aspects at geometrical
level.

The fractal hierarchy of space-time sheets implies that massless extremals should interesting also in
long length scales. The presence of a light like electromagnetic vacuum current implies the generation
of coherent photons and also coherent gravitons are generated since the Einstein tensor is also non-
vanishing and light like (proportional to k). Massless extremals play an important role in the TGD
based model of bio-system as a macroscopic quantum system. The possibility of vacuum currents is
what makes possible the generation of the highly desired coherent photon states.

2.5.3 Generalization of the solution ansatz defining massless extremals
(MEs)

The solution ansatz for MEs has developed gradually to an increasingly general form and the following
formulation is the most general one achieved hitherto. Rather remarkably, it rather closely resembles
the solution ansatz for the C'P, type extremals and has direct interpretation in terms of geometric
optics. Equally remarkable is that the latest generalization based on the introduction of the local light
cone coordinates was inspired by quantum holography principle.
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The solution ansatz for MEs has developed gradually to an increasingly general form and the
following formulation is the most general one achieved hitherto. Rather remarkably, it rather closely
resembles the solution ansatz for the C P, type extremals and has direct interpretation in terms of
geometric optics. Equally remarkable is that the latest generalization based on the introduction of
the local light cone coordinates was inspired by quantum holography principle.

Local light cone coordinates

The solution involves a decomposition of Mj‘; tangent space localizing the decomposition of Minkowski
space to an orthogonal direct sum M? @ E? defined by light-like wave vector and polarization vector
orthogonal to it. This decomposition defines what might be called local light cone coordinates.

1. Denote by m® the linear Minkowski coordinates of M*%. Let (S*,S~, E', E?) denote local co-
ordinates of Mi defining a local decomposition of the tangent space M* of Mi into a direct
orthogonal sum M?* = M? @ E? of spaces M? and E?. This decomposition has interpreta-
tion in terms of the longitudinal and transversal degrees of freedom defined by local light-like
four-velocities v+ = VS4 and polarization vectors ¢; = VE? assignable to light ray.

2. With these assumptions the coordinates (Si, E%) define local light cone coordinates with the
metric element having the form

ds* = 2g._dSTdS™ + gi1(dE")? + ga(dE*)? . (2.5.3)

If complex coordinates are used in transversal degrees of freedom one has g11 = goo.

3. This family of light cone coordinates is not the most general family since longitudinal and
transversal spaces are orthogonal. One can also consider light-cone coordinates for which one
non-diagonal component, say mi4, is non-vanishing if the solution ansatz is such that longitu-
dinal and transversal spaces are orthogonal for the induced metric.

A conformally invariant family of local light cone coordinates

The simplest solutions to the equations defining local light cone coordinates are of form Sy =k -m
giving as a special case S+ = m® £ m3. For more general solutions of from

Sy =m" & f(m',m?* m?) |, (Vsf)>=1,

where f is an otherwise arbitrary function, this relationship reads as

St4+5 =2m0 .

This condition defines a natural rest frame. One can integrate f from its initial data at some two-
dimensional f = constant surface and solution describes curvilinear light rays emanating from this
surface and orthogonal to it. The flow velocity field v = V f is irrotational so that closed flow lines
are not possible in a connected region of space and the condition 7% = 1 excludes also closed flow line
configuration with singularity at origin such as v = 1/p rotational flow around axis.

One can identify E? as a local tangent space spanned by polarization vectors and orthogonal to
the flow lines of the velocity field ¥ = V f(m!, m?,m3). Since the metric tensor of any 3-dimensional
space allows always diagonalization in suitable coordinates, one can always find coordinates (E*!, E?)
such that (f, E', E?) form orthogonal coordinates for m" = constant hyperplane. Obviously one can
select the coordinates E' and E? in infinitely many manners.

Closer inspection of the conditions defining local light cone coordinates

Whether the conformal transforms of the local light cone coordinates {Sy = m® + f(m!, m? m3), E'}
define the only possible compositions M? @ E? with the required properties, remains an open question.
The best that one might hope is that any function ST defining a family of light-like curves defines a
local decomposition M* = M? @ E? with required properties.
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. Suppose that ST and S~ define light-like vector fields which are not orthogonal (proportional to

each other). Suppose that the polarization vector fields ¢; = VE* tangential to local E? satisfy
the conditions ¢; - VST = 0. One can formally integrate the functions E* from these condition
since the initial values of E° are given at m® = constant slice.

. The solution to the condition VS, - ¢; = 0 is determined only modulo the replacement

Gzﬁéz:€z+kv5‘+ s

where k is any function. With the choice

po VE!- VS~
- VSt.VS-
one can satisfy also the condition ¢; - VS~ = 0.

. The requirement that also €; is gradient is satisfied if the integrability condition

k= k(ST

is satisfiedin this case €; is obtained by a gauge transformation from e¢;. The integrability
condition can be regarded as an additional, and obviously very strong, condition for S~ once
St and E* are known.

. The problem boils down to that of finding local momentum and polarization directions defined

by the functions S*, S~ and E! and E? satisfying the orthogonality and integrability conditions
(VST)2=(VS™)2=0, VST - VS~ #0,

i VE' VS~
VS+VEZ:0 y ﬁ:kl(shk) .
The number of integrability conditions is 343 (all derivatives of k; except the one with respect
to ST vanish): thus it seems that there are not much hopes of finding a solution unless some
discrete symmetry relating ST and S~ eliminates the integrability conditions altogether.

A generalization of the spatial reflection f — —f working for the separable Hamilton Jacobi

function S+ = m" £ f ansatz could relate St and S~ to each other and trivialize the integrability
conditions. The symmetry transformation of Mjl_ must perform the permutation ST <+ S~, preserve
the light-likeness property, map E? to E2, and multiply the inner products between M? and E?
vectors by a mere conformal factor. This encourages the conjecture that all solutions are obtained by
conformal transformations from the solutions S+ = m° + f.

General solution ansatz for MEs for given choice of local light cone coordinates

Consider now the general solution ansatz assuming that a local wave-vector-polarization decomposition
of Mi tangent space has been found.

1. Let E(ST,E', E?) be an arbitrary function of its arguments: the gradient VE defines at each

point of EZ an S*-dependent (and thus time dependent) polarization direction orthogonal to
the direction of local wave vector defined by V.S*. Polarization vector depends on E? position
only.

. Quite a general family of MEs corresponds to the solution family of the field equations having

the general form

sh = fHSTE)

where s* denotes C'P, coordinates and f* is an arbitrary function of ST and E. The solution
represents a wave propagating with light velocity and having definite S dependent polarization
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in the direction of VE. By replacing ST with S~ one obtains a dual solution. Field equations
are satisfied because energy momentum tensor and Kéahler current are light-like so that all tensor
contractions involved with the field equations vanish: the orthogonality of M? and E? is essential
for the light-likeness of energy momentum tensor and Kéahler current.

3. The simplest solutions of the form Sy = m°® £m3, (E1, E?) = (m!',m?) and correspond to a
cylindrical MEs representing waves propagating in the direction of the cylinder axis with light
velocity and having polarization which depends on point (E!, E?) and ST (and thus time). For
these solutions four-momentum is light-like: for more general solutions this cannot be the case.
Polarization is in general case time dependent so that both linearly and circularly polarized
waves are possible. If m? varies in a finite range of length L, then ’free’ solution represents
geometrically a cylinder of length L moving with a light velocity. Of course, ends could be also
anchored to the emitting or absorbing space-time surfaces.

4. For the general solution the cylinder is replaced by a three-dimensional family of light like
curves and in this case the rectilinear motion of the ends of the cylinder is replaced with a
curvilinear motion with light velocity unless the ends are anchored to emitting/absorbing space-
time surfaces. The non-rotational character of the velocity flow suggests that the freely moving
particle like 3-surface defined by ME cannot remain in a infinite spatial volume. The most
general ansatz for MEs should be useful in the intermediate and nearby regions of a radiating
object whereas in the far away region radiation solution is excepted to decompose to cylindrical
ray like MEs for which the function f(m!, m? m?) is a linear function of m?.

5. One can try to generalize the solution ansatz further by allowing the metric of Mj‘; to have
components of type g;4 or g;_ in the light cone coordinates used. The vanishing of T, T+!,
and T~ is achieved if g;+ = 0 holds true for the induced metric. For s¥ = s#(S*, E') ansatz
neither go4 nor g;_ is affected by the imbedding so that these components of the metric must
vanish for the Hamilton Jacobi structure:

ds* = 2g,_dSTdS™ +2g1,dE'dST + g11(dEY)? + gaa(dE?)? . (2.5.4)

g1+ = 0 can be achieved by an additional condition

miy = skl815k8+sk. (2.5.5)

The diagonalization of the metric seems to be a general aspect of absolute minima. The absence
of metric correlations between space-time degrees of freedom for asymptotic self-organization
patterns is somewhat analogous to the minimization of non-bound entanglement in the final
state of the quantum jump.

Are the boundaries of space-time sheets quite generally light like surfaces with Hamilton
Jacobi structure?

Quantum holography principle naturally generalizes to an approximate principle expected to hold true
also in non-cosmological length and time scales.

1. The most general ansatz for topological light rays or massless extremals (MEs) inspired by
the quantum holographic thinking relies on the introduction of the notion of local light cone
coordinates S;,S_, E1, F5. The gradients V.S, and VS_ define two light like directions just
like Hamilton Jacobi functions define the direction of propagation of wave in geometric optics.
The two polarization vector fields VFE; and V Es are orthogonal to the direction of propagation
defined by either S} or S_. Since also E; and E5 can be chosen to be orthogonal, the metric
of M_‘f_ can be written locally as ds? = g, _dS, dS_ + g11dE? + g22dFE3. In the earlier ansatz
S, and S_ where restricted to the variables k - m and k - m, where k and k correspond to
light like momentum and its mirror image and m denotes linear M* coordinates: these MEs
describe cylindrical structures with constant direction of wave propagation expected to be most
important in regions faraway from the source of radiation.
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2. Boundary conditions are satisfied if the 3-dimensional boundaries of MEs have one light like
direction (S; or S_ is constant). This means that the boundary of ME has metric dimension
d = 2 and is characterized by an infinite-dimensional super-symplectic and super-conformal
symmetries just like the boundary of the imbedding space M. fi x CPy: The boundaries are like
moments for mini big bangs (in TGD based fractal cosmology big bang is replaced with a silent
whisper amplified to not necessarily so big bang).

3. These observations inspire the conjecture that boundary conditions for M* like space-time sheets
fixed by the absolute minimization of K&ahler action quite generally require that space-time
boundaries correspond to light like 3-surfaces with metric dimension equal to d = 2. This does
not yet imply that light like surfaces of imbedding space would take the role of the light cone
boundary: these light like surface could be seen only as a special case of causal determinants
analogous to event horizons.

2.5.4 Maxwell phase

”Maxwell phase” corresponds to small deformations of the M* type vacuum extremals. Since energy
momentum tensor is quadratic in Kéhler field the term proportional to the contraction of the energy
momentum tensor with second fundamental form drops from field equations and one obtains in lowest
order the following field equations

ja‘]klsfa - 0 . (256)

These equations are satisfied if Maxwell’s equations

i =0 (2.5.7)

hold true. Massless extremals and Maxwell phase clearly exclude each other and it seems that they
must corresponds to different space-time sheets.

The explicit construction of these extremals reduces to the task of finding an imbedding for an
arbitrary free Maxwell field to H. One can also allow source terms corresponding to the presence
of the point like charges: these should correspond to the regions of the space-time, where the flat
space-time approximation of the space-time fails. The regions where the approximation defining the
Maxwell phase fails might correspond to a topologically condensed C'P; type extremals, for example.
As a consequence, Kéhler field is superposition of radiation type Kéhler field and of Coulombic term.
A second possibility is the generation of "hole” with similar Coulombic Kéhler field.

An important property of the Maxwell phase (also of massless extremals) is its approximate canon-
ical invariance. Canonical transformations do not spoil the extremal property of the four-surface in
the approximation used, since it corresponds to a mere U(1) gauge transformation. This implies the
counter part of the vacuum degeneracy, that is, the existence of an enormous number of four-surfaces
with very nearly the same action. Also there is an approximate Dif f(M}) invariance.

The canonical degeneracy has some very interesting consequences concerning the understanding
of the electro-weak symmetry breaking and color confinement. Kéhler field is canonical invariant and
satisfies Maxwells equations. This is in accordance with the identification of Kéhler field as U(1) part
of the electro-weak gauge field. Electromagnetic gauge field is a superposition of Kahler field and Z°
fieldy = 3.J — sin?(0y) Z°/2 so that also electromagnetic gauge field is long ranged assuming that Z°
and W7 fields are short ranged. These fields are not canonical invariants and their behavior seems to
be essentially random, which implies short range correlations and the consequent massivation.

There is an objection against this argument. For the known D < 4 solutions of field equations weak
fields are not random at all. These situations could represent asymptotic configurations assignable
to space-time sheets. This conforms with the interpretation that weak gauge fields are essentially
massless within the asymptotic space-time sheets representing weak bosons. Gauge fields are however
transferred between space-time sheets through # contacts modelable as pieces of C'P; type extremals
having Dcp, = 4. In contrast to Kéhler and color gauge fluxes, weak gauge fluxes are not conserved in
the Euclidian time evolution between the 3-D causal horizons separating the Euclidian # contact from
space-time sheets with Minkowskian signature. This non-conservation implying the loss of coherence
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in the transfer of fields between space-time sheets is a plausible mechanism for the loss of correlations
and massivation of the weak gauge fields.

Classical gluon fields are proportional to Kéahler field and to the Hamiltonians associated with the
color isometry generators.

9ls = kH%as . (2.5.8)

This implies that the direction of gluon fields in color algebra is random. One can always perform a
canonical transformation, which reduces to a global color rotation in some arbitrary small region of
space-time and reduces to identity outside this region. The proportionality of a gluon field to Kéahler
form implies that there is a classical long range correlation in X* degrees of freedom: in this sense
classical gluon fields differ from massive electro-weak fields in Maxwell phase.

2.5.5 Stationary, spherically symmetric extremals

The stationary, spherically symmetric extremals of the Kéhler action imbeddable in M* x S2, where
52 is geodesic sphere, are the simplest extremals, which one can study as models for the space-time
surrounding a topologically condensed particle, say C'P» type vacuum extremal. In the region near the
particle the spherical symmetry is an unrealistic assumption since it excludes the presence of magnetic
fields needed to cancel the total Kahler action. The stationarity is also unrealistic assumption since
zitterbewegung seems to provide a necessary mechanism for generating Kéhler magnetic field and for
satisfying boundary conditions. Also the imbeddability to M* x S? implies unrealistic relationship
between Z° and photon charges.

According to the general wisdom, the generation of a Kéhler electric field must take place in order
to minimize the action and it indeed turns out that the extremal is characterized by essentially 1/72
Kahler electric field. The necessary presence of a hole or of a topologically condensed object is also
demonstratedit is impossible to find extremals well defined in the region surrounding the origin. It is
impossible to satisfy boundary conditions at a hole: this is in accordance with the idea that Euclidian
region corresponding to a C'P, type extremal performing zitterbewegung is generated. In case of C'P;
extremal radius is of the order of the Compton length of the particle and in case of a "hole” of the
order of Planck length. The value of the vacuum frequency w is of order of particle mass whereas for
macroscopic vacuum extremals it must be of the order of 1/R. This does not lead to a contradiction
if the concept of a many-sheeted space-time is accepted.

The Poincare energy of the exterior region is considerably smaller than the gravitational mass;
this conforms with the interpretation that gravitational mass is sum of absolute values of positive and
negative inertial masses associated with matter and negative energy antimatter. It is quite possible
that classical considerations cannot provide much understanding concerning the inertial masses of
topologically condensed particles. Electro-weak gauge forces are considerably weaker than the gravi-
tational force at large distances, when the value of the frequency parameter w is of order 1/R . Both
these desirable properties fail to be true if C'P; radius is of order Planck length as believed earlier.

In light of the general ideas about topological condensation it is clear that in planetary length scales
these kind of extremals cannot provide a realistic description of space-time. Indeed, spherically sym-
metric extremals predict a wrong rate for the precession of the perihelion of Mercury. Scwhartschild
and Reissner-Nordstréom metric do this and indeed allow imbedding as vacuum extremals for which
the inertial masses of positive energy matter and negative energy antimatter sum up to zero.

This does not yet resolve the interpretational challenge due to the unavoidable long range color and
weak gauge fields. A dark matter hierarchy giving rise to a hierarchy of color and electro-weak physics
characterized by increasing values of weak and confinement scales explains these fields. # contacts
involve a pair of causal horizons at which the Euclidian metric signature of # contact transforms
to Minkowskian one. These causal horizons have interpretation as partons so that # contact can be
regarded as a bound state of partons bound together by a gravitational instanton (C Ps type extremal).
# contacts provide basic example of dark matter creating long ranged weak fields.

An important result is the correlation between the sign of the vacuum frequency w and that
of the Kahler charge, which is of opposite sign for fermions and anti-fermions. This suggests an
explanation for matter-antimatter asymmetry. Matter and antimatter condense stably on disjoint
regions of the space-time surface at different space-time sheets. Stable antimatter could correspond
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to negative time orientation and negative energy. This leads to a model for the primordial generation
of matter as spontaneous generation of zero energy # contacts between space-time sheets of opposite
time orientations. If C'P conjugation is not exact symmetry, # contacts and their CP conjugates are
created with slightly different rates and this gives rise to CP asymmetry at each of the two space-
time sheets involved. After the splitting of # contacts and subsequent annihilation of particles and
antiparticles at each space-time sheet, the two space-time sheets contain only positive energy matter
and negative energy antimatter.

General solution ansatz

The general form of the solution ansatz is obtained by assuming that the space-time surface in question
is a sub-manifold of M* x S?, where S? is the homologically non-trivial geodesic sphere of CPy. S?
is most conveniently realized as r = oo surface of C'P,, for which all values of the coordinate W
correspond to same point of C' P so that one can use © and ® as the coordinates of S2.

The solution ansatz is given by the expression

cos(®) = u(r) ,

= wt,
m’ = M,
v o= 1, Ou=0, ou=9 . (2.5.9)

The induced metric is given by the expression

R? R?
ds* = [\ — Zw2(1 —u?)| dt* — (1+ Iei)dﬁ —r2d0? .
(2.5.10)
The value of the parameter A is fixed by the condition g4 (00) = 1:
R2
A Iw2(1 —u(0)?) = 1. (2.5.11)

From the condition €® A €3 = 0 the non-vanishing components of the induced Kéhler field are given
by the expression

Jow = —u, . (2.5.12)

Geodesic sphere property implies that Z° and photon fields are proportional to Kihler field:

z° = J. (2.5.13)

From this formula one obtains the expressions

3—p/2 1
Qem = MQK 3 QZ = Q )
AT em 4oy
2
g = Jwdm” (2.5.14)

vV —GrrJtt

for the electromagnetic and Z° charges of the solution using e and gz as unit.

Field equations can be written as conditions for energy momentum conservation (two equations is
in principle all what is needed in the case of geodesic sphere). Energy conservation holds identically
true and conservation of momentum, say, in z-direction gives the equation
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(T z0) 0+ (T%20)9 = 0. (2.5.15)

Using the explicit expressions for the components of the energy momentum tensor

T’I‘T — gT’r‘L/2 ,
ng — _geﬁL/Q ,
L = ¢"¢"(Jn)*V5/2 (2.5.16)

and the following notations

A = gtthTTQ\/*thtgrr )
X = (Ju)?, (2.5.17)

the field equations reduce to the following form

2AX
(97AX), == = 0. (2.5.18)

In the approximation ¢"" = 1 this equation can be readily integrated to give AX = C/r?. Integrating
Eq. (4.6.7)), one obtains integral equation for X

1

B = g Pou) eap( [ ar®) (2519)

where ¢ is integration constant, which is related to the charge parameter of the long range Kahler
electric field associated with the solution. 7. denotes the critical radius at which the solution ceases
to be well defined.

The inspection of this formula shows that J;,. behaves essentially as 1/r? Coulomb field. This be-
havior doesn’t depend on the detailed properties of the solution ansatz (for example the imbeddability
to M* x S?): stationarity and spherical symmetry is what matters only. The compactness of CP,
means that stationary, spherically symmetric solution is not possible in the region containing origin.
This is in concordance with the idea that either a hole surrounds the origin or there is a topolog-
ically condensed C'P, extremal performing zitterbewegung near the origin and making the solution
non-stationary and breaking spherical symmetry.

Second integration gives the following integral equation for C' Py coordinate u = cos(©)

4 " ]‘ " rr
u(r) = uOJr;q/ (*gfrgtt)l/‘*;exp(/ dTQT) : (2.5.20)

c c

Here uy denotes the value of the coordinate u at r = rg.
The form of the field equation suggests a natural iterative procedure for the numerical construction
of the solution for large values of 7.

up(r) = Th_1 , (2.5.21)

where T,,_1 is evaluated using the induced metric associated with u,,_;. The physical content of the
approximation procedure is clear: estimate the gravitational effects using lower order solution since
these are expected to be small.

A more convenient manner to solve u is based on Taylor expansion around the point V = 1/r = 0.
The coefficients appearing in the power series expansion v = ) u, A"V" : A = q/w can be solved
by calculating successive derivatives of the integral equation for wu.

The lowest order solution is simply
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Uy = Uso , (2.5.22)

and the corresponding metric is flat metric. In the first order one obtains for u(r) the expression

U = Uy — g , (2.5.23)
wr
which expresses the fact that Kihler field behaves essentially as 1/72 Coulomb field. The behavior
of u as a function of r is identical with that obtained for the imbedding of the Reissner-Nordstrom
solution.
To study the properties of the solution we fix the signs of the parameters in the following manner:

U <0, g<0, w>0 (2.5.24)

(reasons become clear later).

Concerning the behavior of the solution one can consider two different cases.

1) The condition g > 0 hold true for all values of ©. In this case u decreases and the rate of
decrease gets faster for small values of . This means that in the lowest order the solution becomes
certainly ill defined at a critical radius » = r. given by the the condition u = 1: the reason is that u
cannot get values large than one. The expression of the critical radius is given by

4q

> - - @

" (Juse] + 1w

_ daGem ! . (2.5.25)

(3 =p/2) (Juce| + 1w

The presence of the critical radius for the actual solution is also a necessity as the inspection of the
expression for J;,. shows: 0.0 grows near the origin without bound and u = 1 is reached at some finite
value of r. Boundary conditions require that the quantity X = T"",/g vanishes at critical radius (no
momentum flows through the boundary). Substituting the expression of Jy, from the field equation to
T the expression for X reduces to a form, from which it is clear that X cannot vanish. The cautious
conclusion is that boundary conditions cannot be satisfied and the underlying reason is probably the
stationarity and spherical symmetry of the solution. Physical intuition suggests that that C' P, type
extremal performing zitterbewegung is needed to satisfy the boundary conditions.

2) g4 vanishes for some value of ©. In this case the radial derivative of u together with g; can
become zero for some value of r = r.. Boundary conditions can be satisfied only provided r, = 0.
Thus it seems that for the values of w satisfying the condition w? = st+;(@o) it might be possible
to find a globally defined solution. The study of differential equation for u however shows that the
ansatz doesn’t work. The conclusion is that although the boundary is generated it is not possible to
satisfy boundary conditions.

A direct calculation of the coefficients u,, from power series expansion gives the following third
order polynomial approximation for u (V = 1/r)

Tc

T ZunA”V",

U = U(<0), u=1,

us = Klus| , uz=K(1+4K|us|) ,
4 2

A = A , KEwQR— .
w 4

(2.5.26)

The coefficients us and ug are indeed positive which means that the value of the critical radius gets
larger at least in these orders.
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Solution contains three parameters: Kéhler electric flux Q = 4mq, parameter wR and parameter
Uso- The latter parameters can be regarded as parameters describing the properties of a flat vacuum
extremal (lowest order solution) to which particle like solution is glued and are analogous to the
parameters describing symmetry broken vacuum in gauge theories.

Solution is not a realistic model for topological condensation

The solution does not provide realistic model for topological condensation although it gives indirect
support for some essential assumptions of TGD based description of Higgs mechanism.

1. When the value of w is of the order of C'P, mass the solution could be interpreted as the ”exterior
metric” of a "hole”.
i) The radius of the hole is of the order of C'P, length and its mass is of the order of C'P, mass.
ii) Kahler electric field is generated and charge renormalization takes place classically at CPy
length scales as is clear from the expression of Q(r): Q(r) o< ( %)1/ 4 and charge increases at
short distances.
iii) The existence of the critical radius is unavoidable but boundary conditions cannot be satisfied.
The failure to satisfy boundary conditions might be related to stationarity or to the absence of
magnetic field. The motion of the boundary component with velocity of light might be the only
manner to satisfy boundary conditions. Second possibility is the breaking of spherical symmetry
by the generation of a static magnetic field.
iv) The absence of the Kahler magnetic field implies that the K&hler action has an infinite
magnitude and the probability of the configuration is zero. A more realistic solution ansatz
would break spherical symmetry containing dipole type magnetic field in the nearby region of
the hole. The motion of the boundary with a velocity of light could serves as an alternative
mechanism for the generation of magnetic field. The third possibility, supported by physical
intuition, is that one must give up “hole” type extremal totally.

2. For sufficiently large values of r and for small values of w (of the order of elementary particle
mass scale), the solution might provide an approximate description for the region surrounding
elementary particle. Although it is not possible to satisfy boundary conditions the order of
magnitude estimate for the size of critical radius (r. ~ a/w) should hold true for more realistic
solutions, too. The order of magnitude for the critical radius is smaller than Compton length or
larger if the vacuum parameter w is larger than the mass of the particle. In macroscopic length
scales the value of w is of order 1/R. This does not lead to a contradiction if the many-sheeted
space-time concept is accepted so that w < m corresponds to elementary particle space-time
sheet. An unrealistic feature of the solution is that the relationship between Z° and em charges
is not correct: Z° charge should be very small in these length scales.

Exterior solution cannot be identified as a counter part of Schwartshild solution

The first thing, which comes into mind is to ask whether one might identify exterior solution as the
TGD counterpart of the Schwartshild solution. The identification of gravitational mass as absolute
value of inertial mass which is negative for antimatter implies that vacuum extremals are vacua only
with respect to the inertial four-momentum and have a non-vanishing gravitational four-momentum.
Hence, in the approximation that the net density of inertial mass vanishes, vacuum extremals provide
the proper manner to model matter, and the identification of spherically symmetric extremal as the
counterpart of Scwhartschild metric is certainly not possible. It is however useful to show explicitly
that the identification is indeed unrealistic. The solution is consistent with Equivalence Principle but
the electro-weak gauge forces are considerably weaker than gravitational forces. A wrong perihelion
shift is also predicted so that the identification as an exterior metric of macroscopic objects is out of
question.

1. Is Equivalence Principle respected?

TGD predicts the possibility of negative classical energy for space-time sheets with negative time
orientation, and the only manner to second quantize induced spinor fields without diverging vacuum
energy is by assuming that fermions have positive energies and anti-fermions negative energies (vice
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versa for phase conjugate fermions). This modifies the original form of Equivalence Principle: gravi-
tational mass can be interpreted as absolute value of inertial mass so that the density of gravitational
mass becomes the difference of densities of inertial mass for matter and antimatter (or vice versa).
This interpretation leads to an elegant solution of the basic interpretational difficulties created by the
conservation of inertial four-momentum and non-conservation of gravitational four-momentum.

The gravitational mass of the solution is determined from the asymptotic behavior of g;; and is
given by

R2
My, = —wque , (2.5.27)
G
and is proportional to the Kéahler charge g of the solution.

One can estimate the gravitational mass density also by applying Newtonian approximation to
the time component of the metric gy = 1 — 2®,4,. One obtains ®,4, corresponds in the lowest order
approximation to a solution of Einstein’s equations with the source consisting of a mass point at origin
and the energy density of the Kahler electric field. The effective value of gravitational constant is
however Gy = 8R%ay. Thus the only sensible interpretation is that the density of Kihler (inertial)
energy is only a fraction G/Geq = € ~ .22 x 1075 of the density of gravitational mass. Hence
the densities of positive energy matter and negative energy antimatter cancel each other in a good
approximation.

The work with cosmic strings lead to a possible interpretation of the solution as a space-time sheet
containing topologically condensed magnetic flux tube idealizable as a point. The negative Kahler
electric action must cancel the positive Kahler magnetic action. The resulting structure in turn can
condense to a vacuum extremal and Schwartshild metric is a good approximation for the metric.

One can estimate the contribution of the exterior region (r > r.) to the inertial mass of the
system and Equivalence principle requires this to be a fraction of order € about the gravitational mass
unless the region r < r. contains negative inertial mass density, which is of course quite possible.
Approximating the metric with a flat metric and using first order approximation for u(r) the energy
reduces just to the standard Coulomb energy of charged sphere with radius r,

Mj(ext) = 327:041{ /T>TC E? Jgdx
T 2akTe
R2
A = \/1 + el (> 1) (2.5.28)

Approximating the metric with flat metric the contribution of the region r > r. to the energy of the
solution is given by

1
Mi(ext) = —Aqw(l+ |us]) - (2.5.29)
804[(
The contribution is proportional to K&ahler charge as expected. The ratio of external inertial and
gravitational masses is given by the expression

My(ext) G .
Mg 4R?ax
1 o0
p o= GtlueD oy (2.5.30)
|Uoo|

In the approximation used the the ratio of external inertial and gravitational masses is of order 1076
for R ~ 10*v/G implied by the p-adic length scale hypothesis and for z ~ 1. The result conforms with
the above discussed interpretation.

2. ZY and electromagnetic forces are much weaker than gravitational force
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The extremal in question carries Kéhler charge and therefore also Z° and electromagnetic charge.
This implies long range gauge interactions, which ought to be weaker than gravitational interaction
in the astrophysical scales. This is indeed the case as the following argument shows.

Expressing the Kahler charge using Planck mass as unit and using the relationships between gauge
fields one obtains a direct measure for the strength of the Z° force as compared with the strength of
gravitational force.

QZ = €ZMQT\/5 .
(2.5.31)

The value of the parameter €z should be smaller than one. A transparent form for this condition is
obtained, when one writes ® = wt = Qm? : Q = \w:

[(672¢ 1 G
= ——— /= . 2.5.32
2 = o ri+ uORV R (2532)

The order of magnitude is determined by the values of the parameters 1/% ~107* and QR. Global

Minkowskian signature of the induced metric implies the condition QR < 2 for the allowed values of
the parameter QR. In macroscopic length scales one has QR ~ 1 so that Z° force is by a factor of
order 10~% weaker than gravitational force. In elementary particle length scales with w ~ m situation
is completely different as expected.

8. The shift of the perihelion is predicted incorrectly

The g, component of Reissner-Nordstrom and TGD metrics are given by the expressions

9rr = T 50~ (2533)

and

2
—
\
€

Grr (2.5.34)

respectively. For reasonable values of ¢, w and us the this terms is extremely small as compared with
1/r term so that these expressions differ by 1/r term.

The absence of the 1/r term from g,.-component of the metric predicts that the shift of the
perihelion for elliptic plane orbits is about 2/3 times that predicted by GRT so that the identification as
a metric associated with objects of a planetary scale leads to an experimental contradiction. Reissner-
Nordstrém solutions are obtained as vacuum extremals so that standard predictions of GRT are
obtained for the planetary motion.

One might hope that the generalization of the form of the spherically symmetric ansatz by intro-
ducing the same modification as needed for the imbedding of Reissner-Nordstrin metric might help.
The modification would read as

cos(®) = u(r) ,

= wt+ f(r) ,
m® = X +h(r) ,
v = 1, Ou=0, ou=9 . (2.5.35)

The vanishing of the g component of the metric gives the condition

2

A@rh—%sinQ(G)w&«f = 0. (2.5.36)
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The expression for the radial component of the metric transforms to

R? R?

T(are))2 - Tsin2(@)8rf2 , (2.5.37)
Essentially the same perihelion shift as for Schwartschild metric is obtained if g, approaches asymp-
totically to its expression for Schwartschild metric. This is guaranteed if the following conditions hold

true:

Grr ~ Oph?—1-—

2,2
Rw 5in?(Ou) < 2?;];/[

In the second equation (r) corresponds to the average radius of the planetary orbit.

The field equations for this ansatz can be written as conditions for energy momentum and color
charge conservation. Two equations are enough to determine the functions ©(r) and f(r). The
equation for momentum conservation is same as before. Second field equation corresponds to the
conserved isometry current associated with the color isometry ® — ® + € and gives equation for f.

f(P)rseo —wr , A2—1=

(2.5.38)

[Trrfm&pq)\/g]yr = 0. (2539)

The conservation laws associated with other infinitesimal SU(2) rotations of S? should be satisfied
identically. This equation can be readily integrated to give

C
TTTf,r5<I><I>\/ gitGrr = 3 (2540)

r

Unfortunately, the result is inconsistent with the 1/7* behavior of T"" and f — wr implies by correct
red shift.

It seems that the only possible way out of the difficulty is to replace spherical symmetry with
a symmetry with respect to the rotations around z-axis. The simplest modification of the solution
ansatz is as follows:

m® =Xt +h(p) , ®=wt+kp

Thanks to the linear dependence of ® on p, the conservation laws for momentum and color isospin
reduce to the same condition. The ansatz induces a small breaking of spherical symmetry by adding
to gpp the term

2
(9,h)* — RISZ'TLQ(G)I@‘2 .

One might hope that in the plane § = 7/2, where r = p holds true, the ansatz could behave like
Schwartschild metric if the conditions discussed above are posed (including the condition k¥ = w). The
breaking of the spherical symmetry in the planetary system would be coded already to the gravitational
field of Sun.

Also the study of the imbeddings of Reissner-Nordstrom metric as vacuum extremals and the inves-
tigation of spherically symmetric (inertial) vacuum extremals for which gravitational four-momentum
is conserved [K85] leads to the conclusion that the loss of spherical symmetry due to rotation is
inevitable characteristic of realistic solutions.

2.5.6 Maxwell hydrodynamics as a toy model for TGD

The field equations of TGD are extremely non-linear and all known solutions have been discovered by
symmetry arguments. Chern-Simons term plays essential role also in the construction of solutions of
field equations and at partonic level defines braiding for light-like partonic 3-surfaces expected to play
key role in the construction of S-matrix. The inspiration for this section came from Terence Tao’s
blog posting 2006 ICM: Etienne Ghys, Knots and dynamics [A63] giving an elegant summary about
amazing mathematical results related to knots, links, braids and hydrodynamical flows in dimension
D = 3. Posting tells about really amazing mathematical results related to knots.
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Chern-Simons term as helicity invariant

Tao mentions helicity as an invariant of fluid flow. Chern-Simons action defined by the induced Kéhler
gauge potential for light-like 3-surfaces has interpretation as helicity when Kéahler gauge potential is
identified as fluid velocity. This flow can be continued to the interior of space-time sheet. Also the dual
of the induced Kéhler form defines a flow at the light-like partonic surfaces but not in the interior
of space-time sheet. The lines of this flow can be interpreted as magnetic field lines. This flow is
incompressible and represents a conserved charge (Kéhler magnetic flux).

The question is which of these flows should define number theoretical braids. Perhaps both of
them can appear in the definition of S-matrix and correspond to different kinds of partonic matter
(electric/magnetic charges, quarks/leptons?,...). Second kind of matter could not flow in the interior
of space-time sheet. Or could interpretation in terms of electric magnetic duality make sense?

Helicity is not gauge invariant and this is as it must be in TGD framework since C'P, symplectic
transformations induce U(1) gauge transformation, which deforms space-time surface an modifies
induced metric as well as classical electroweak fields defined by induced spinor connection. Gauge
degeneracy is transformed to spin glass degeneracy.

Maxwell hydrodynamics

In TGD Maxwell’s equations are replaced with field equations which express conservation laws and
are thus hydrodynamical in character. With this background the idea that the analogy between gauge
theory and hydrodynamics might be applied also in the reverse direction is natural. Hence one might
ask what kind of relativistic hydrodynamics results if assumes that the action principle is Maxwell
action for the four-velocity u® with the constraint term saying that light velocity is maximal signal
velocity.

1. For massive particles the length of four-velocity equals to 1: u®u, = 1. In massless case one has
u®uq = 0. Geometrically this means that one has sigma model with target space which is 3-D
Lobatschevski space or at light-cone boundary. This condition means the addition of constraint
term

AMu®ug — €) (2.5.41)

to the Maxwell action. € = 1/0 holds for massive/massless flow. In the following the notation
of electrodynamics is used to make easier the comparison with electrodynamics.

2. The constraint term destroys gauge invariance by allowing to express A° in terms of A but
in general the constraint is not equivalent to a choice of gauge in electrodynamics since the
solutions to the field equations with constraint term are not solutions of field equations without
it. One obtains field equations for an effectively massive em field with Lagrange multiplier A
having interpretation as photon mass depending on space-time point:

J* = 0sF* =A™,
A = u® , FP=09PA" —92AP . (2.5.42)

3. In electrodynamic context the natural interpretation would be in terms of spontaneous massi-
vation of photon and seems to occur for both values of €. The analog of em current given by
AA® is in general non-vanishing and conserved. This conservation law is quite strong additional
constraint on the hydrodynamics. What is interesting is that breaking of gauge invariance does
not lead to a loss of charge conservation.

4. One can solve \ by contracting the equations with A, to obtain

A= %A,
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for e = 1. For € = 0 one obtains

%A0 =0

stating that the field does not dissipate energy: A can be however non-vanishing unless field
equations imply j¢ = 0. One can say that for ¢ = 0 spontaneous massivation can occur. For
€ = 1 massivation is present from the beginning and dissipation rate determines photon mass:
a natural interpretation for ¢ = 1 would be in terms of thermal massivation of photon. Non-
tachyonicity fixes the sign of the dissipation term so that the thermodynamical arrow of time is
fixed by causality.

. For € = 0 massless plane wave solutions are possible and one has

Da05 AP = \A,, .

A = 0 is obtained in Lorentz gauge which is consistent with the condition ¢ = 0. Also superpo-
sitions of plane waves with same polarization and direction of propagation are solutions of field
equations: these solutions represent dispersionless precisely targeted pulses. For superpositions
of plane waves A with 4-momenta, which are not all parallel X is non-vanishing so that non-linear
self interactions due to the constraint can be said to induce massivation. In asymptotic states
for which gauge symmetry is not broken one expects a decomposition of solutions to regions of
space-time carrying this kind of pulses, which brings in mind final states of particle reactions
containing free photons with fixed polarizations.

. Gradient flows satisfying the conditions

Ay = 0.0, AA, =¢ (2.5.43)

give rise to identically vanishing hydrodynamical gauge fields and A = 0 holds true. These
solutions are vacua since energy momentum tensor vanishes identically. There is huge number
of this kind of solutions and spin glass degeneracy suggests itself. Small deformations of these
vacuum flows are expected to give rise to non-vacuum flows.

. The counterparts of charged solutions are of special interest. For e = 0 the solution (u°,u") =

(Q/r)(1,1) is a solution of field equations outside origin and corresponds to electric field of a
point charge Q. In fact, for € = 0 any ansatz (u°,u") = f(r)(1,1) satisfies field equations for
a suitable choice of \(r) since the ratio of equations associate with j° and j” gives an equation
which is trivially satisfied. For € = 1 the ansatz (u°,u") = (cosh(u), sinh(u)) expressing solution
in terms of hyperbolic angle linearizes the field equation obtained by dividing the equations for
49 and 5" to eliminate A. The resulting equation is

O*u + =0

20,u
r
for ordinary Coulomb potential and one obtains (u", u") = (cosh(ug+k/r), sinh(ug+k/r)). The
charge of the solution at the limit » — oo approaches to the value @ = sinh(ug)k and diverges
at the limit » — 0. The charge increases exponentially as a function of 1/r near origin rather
than logarithmically as in QED and the interpretation in terms of thermal screening suggests
itself. Hyperbolic ansatz might simplify considerably the field equations also in the general case.

Similarities with TGD

There are strong similarities with TGD which suggests that the proposed model might provide a toy
model for the dynamics defined by Kéhler action.
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1. Also in TGD field equations are essentially hydrodynamical equations stating the conservation
of various isometry charges. Gauge invariance is broken for the induced Kahler field although
Kahler charge is conserved. There is huge vacuum degeneracy corresponding to vanishing of
induced Kéhler field and the interpretation is in terms of spin glass degeneracy.

2. Also in TGD dissipation rate vanishes for the known solutions of field equations and a possible
interpretation is as space-time correlates for asympotic non-dissipating self organization patterns.

3. In TGD framework massless extremals represent the analogs for superpositions of plane waves
with fixed polarization and propagation direction and representing targeted and dispersionless
propagation of signal. Gauge currents are light-like and non-vanishing for these solutions. The
decomposition of space-time surface to space-time sheets representing particles is much more
general counterpart for the asymptotic solutions of Maxwell hydrodynamics with vanishing .

4. In TGD framework one can consider the possibility that the four-velocity assignable to a macro-
scopic quantum phase is proportional to the induced Kéahler gauge potential. In this kind of
situation one could speak of a quantal variant of Maxwell hydrodynamics, at least for light-like
partonic 3-surfaces. For instance, the condition

D°DaU =0, DoV = (9a — iqrAa)¥

for the order parameter of the quantum phase corresponds at classical level to the condition
Y = qrQ“ +1%, where gk is Kéhler charge of fermion and [¢ is a light-like vector field naturally
assignable to the partonic boundary component. This gives u® = (qx Q% + 1%)/m, m? = p®p,,
which is somewhat more general condition. The expressibility of u® in terms of the vector fields
provided by the induced geometry is very natural.

The value € depends on space-time region and it would seem that also e = —1 is possible meaning
tachyonicity and breaking of causality. Kahler gauge potential could however have a time-like
pure gauge component in M* possibly saving the situation. The construction of quantum TGD
at parton level indeed forces to assume that Kihler gauge potential has Lorentz invariant M*
component A, = constant in the direction of the light-cone proper time coordinate axis a. Note
that the decomposition of configuration space to sectors consisting of space-time sheets inside
future or past light-cone of M* is an essential element of the construction of configuration space
geometry and does not imply breaking of Poincare invariance. Without this component u,u®
could certainly be negative. The contribution of M* component could prevent this for preferred
extremals.

If TGD is taken seriously, these similarities force to ask whether Maxwell hydrodynamics might be
interpreted as a nonlinear variant of electrodynamics. Probably not: in TGD em field is proportional
to the induced Kahler form only in special cases and is in general non-vanishing also for vacuum
extremals.

2.6 Weak form electric-magnetic duality and its implications

The notion of electric-magnetic duality [B11] was proposed first by Olive and Montonen and is central
in N' = 4 supersymmetric gauge theories. It states that magnetic monopoles and ordinary particles
are two different phases of theory and that the description in terms of monopoles can be applied
at the limit when the running gauge coupling constant becomes very large and perturbation theory
fails to converge. The notion of electric-magnetic self-duality is more natural since for C' P, geometry
Kahler form is self-dual and Kéhler magnetic monopoles are also Kahler electric monopoles and
Kahler coupling strength is by quantum criticality renormalization group invariant rather than running
coupling constant. The notion of electric-magnetic (self-)duality emerged already two decades ago
in the attempts to formulate the Kéahler geometric of world of classical worlds. Quite recently a
considerable step of progress took place in the understanding of this notion [K20] . What seems to be
essential is that one adopts a weaker form of the self-duality applying at partonic 2-surfaces. What
this means will be discussed in the sequel.
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Every new idea must be of course taken with a grain of salt but the good sign is that this concept
leads to precise predictions. The point is that elementary particles do not generate monopole fields in
macroscopic length scales: at least when one considers visible matter. The first question is whether
elementary particles could have vanishing magnetic charges: this turns out to be impossible. The next
question is how the screening of the magnetic charges could take place and leads to an identification
of the physical particles as string like objects identified as pairs magnetic charged wormhole throats
connected by magnetic flux tubes.

1. The first implication is a new view about electro-weak massivation reducing it to weak confine-
ment in TGD framework. The second end of the string contains particle having electroweak
isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak
scale would be in question. Hence the screening of electro-weak force takes place via weak
confinement realized in terms of magnetic confinement.

2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of
magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be
connected by flux tubes of length of order hadron size such that magnetic charges sum up to
zero. For instance, for baryonic valence quarks these charges could be (2,—1, —1) and could be
proportional to color hyper charge.

3. The highly non-trivial prediction making more precise the earlier stringy vision is that elementary
particles are string like objects in electro-weak scale: this should become manifest at LHC
energies.

4. The weak form electric-magnetic duality together with Beltrami flow property of Kéhler leads to
the reduction of Kahler action to Chern-Simons action so that TGD reduces to almost topological
QFT and that Kéahler function is explicitly calculable. This has enormous impact concerning
practical calculability of the theory.

5. One ends up also to a general solution ansatz for field equations from the condition that the
theory reduces to almost topological QFT. The solution ansatz is inspired by the idea that all
isometry currents are proportional to Kahler current which is integrable in the sense that the flow
parameter associated with its flow lines defines a global coordinate. The proposed solution ansatz
would describe a hydrodynamical flow with the property that isometry charges are conserved
along the flow lines (Beltrami flow). A general ansatz satisfying the integrability conditions
is found. The solution ansatz applies also to the extremals of Chern-Simons action and and
to the conserved currents associated with the modified Dirac equation defined as contractions
of the modified gamma matrices between the solutions of the modified Dirac equation. The
strongest form of the solution ansatz states that various classical and quantum currents flow
along flow lines of the Beltrami flow defined by Kéhler current (Kéhler magnetic field associated
with Chern-Simons action). Intuitively this picture is attractive. A more general ansatz would
allow several Beltrami flows meaning multi-hydrodynamics. The integrability conditions boil
down to two scalar functions: the first one satisfies massless d’Alembert equation in the induced
metric and the the gradients of the scalar functions are orthogonal. The interpretation in terms
of momentum and polarization directions is natural.

6. The general solution ansatz works for induced Kéhler Dirac equation and Chern-Simons Dirac
equation and reduces them to ordinary differential equations along flow lines. The induced spinor
fields are simply constant along flow lines of indued spinor field for Dirac equation in suitable
gauge. Also the generalized eigen modes of the modified Chern-Simons Dirac operator can be
deduced explicitly if the throats and the ends of space-time surface at the boundaries of CD are
extremals of Chern-Simons action. Chern-Simons Dirac equation reduces to ordinary differential
equations along flow lines and one can deduce the general form of the spectrum and the explicit
representation of the Dirac determinant in terms of geometric quantities characterizing the 3-
surface (eigenvalues are inversely proportional to the lengths of strands of the flow lines in the
effective metric defined by the modified gamma matrices).
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2.6.1 Could a weak form of electric-magnetic duality hold true?

Holography means that the initial data at the partonic 2-surfaces should fix the configuration space
metric. A weak form of this condition allows only the partonic 2-surfaces defined by the wormhole
throats at which the signature of the induced metric changes. A stronger condition allows all partonic
2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and string world sheets. Number
theoretical vision suggests that hyper-quaternionicity resp. co-hyperquaternionicity constraint could
be enough to fix the initial values of time derivatives of the imbedding space coordinates in the space-
time regions with Minkowskian resp. Fuclidian signature of the induced metric. This is a condition
on modified gamma matrices and hyper-quaternionicity states that they span a hyper-quaternionic
sub-space.

Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The argument
goes as follows.

1. The expression of the matrix elements of the metric and Kahler form of WCW in terms of
the Kihler fluxes weighted by Hamiltonians of M} at the partonic 2-surface X? looks very
attractive. These expressions however carry no information about the 4-D tangent space of the
partonic 2-surfaces so that the theory would reduce to a genuinely 2-dimensional theory, which
cannot hold true. One would like to code to the WCW metric also information about the electric
part of the induced Kéhler form assignable to the complement of the tangent space of X2 C X*.

2. Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial manner
to get electric magnetic duality at the level of the full theory would be via the identification of
the flux Hamiltonians as sums of of the magnetic and electric fluxes. The presence of the induced
metric is however troublesome since the presence of the induced metric means that the simple
transformation properties of flux Hamiltonians under symplectic transformations -in particular
color rotations- are lost.

3. A less trivial formulation of electric-magnetic duality would be as an initial condition which
eliminates the induced metric from the electric flux. In the Euclidian version of 4-D YM theory
this duality allows to solve field equations exactly in terms of instantons. This approach involves
also quaternions. These arguments suggest that the duality in some form might work. The full
electric magnetic duality is certainly too strong and implies that space-time surface at the
partonic 2-surface corresponds to piece of C' P, type vacuum extremal and can hold only in the
deep interior of the region with Euclidian signature. In the region surrounding wormhole throat
at both sides the condition must be replaced with a weaker condition.

4. To formulate a weaker form of the condition let us introduce coordinates (2,23, 2!, 2?) such
(x',2?) define coordinates for the partonic 2-surface and (z°,23) define coordinates labeling
partonic 2-surfaces in the slicing of the space-time surface by partonic 2-surfaces and string
world sheets making sense in the regions of space-time sheet with Minkowskian signature. The
assumption about the slicing allows to preserve general coordinate invariance. The weakest
condition is that the generalized Kéhler electric fluxes are apart from constant proportional to
Kahler magnetic fluxes. This requires the condition

J% g = Kl . (2.6.1)

A more general form of this duality is suggested by the considerations of [K40] reducing the
hierarchy of Planck constants to basic quantum TGD and also reducing Kéahler function for
preferred extremals to Chern-Simons terms [B5] at the boundaries of CD and at light-like
wormbhole throats. This form is following

JPg = Kex ™) 5.0 . (2.6.2)
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Here the index n refers to a normal coordinate for the space-like 3-surface at either boundary of
CD or for light-like wormhole throat. € is a sign factor which is opposite for the two ends of C'D.
It could be also opposite of opposite at the opposite sides of the wormhole throat. Note that the
dependence on induced metric disappears at the right hand side and this condition eliminates
the potentials singularity due to the reduction of the rank of the induced metric at wormhole
throat.

. Information about the tangent space of the space-time surface can be coded to the configuration

space metric with loosing the nice transformation properties of the magnetic flux Hamiltonians
if Kéhler electric fluxes or sum of magnetic flux and electric flux satisfying this condition are
used and K is symplectic invariant. Using the sum

Jo+JIm = (1 -I-K)le s (263)

where J denotes the Kéhler magnetic flux, , makes it possible to have a non-trivial configuration
space metric even for K = 0, which could correspond to the ends of a cosmic string like solution
carrying only Kahler magnetic fields. This condition suggests that it can depend only on Kéahler
magnetic flux and other symplectic invariants. Whether local symplectic coordinate invariants
are possible at all is far from obvious, If the slicing itself is symplectic invariant then K could be
a non-constant function of X2 depending on string world sheet coordinates. The light-like radial
coordinate of the light-cone boundary indeed defines a symplectically invariant slicing and this
slicing could be shifted along the time axis defined by the tips of C'D.

Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints are obtained
if one assumes that the quantization of electro-weak charges reduces to this condition at classical

level?

1. The first thing to notice is that the flux of J over the partonic 2-surface is analogous to magnetic

flux

szngdszn.

n is non-vanishing only if the surface is homologically non-trivial and gives the homology charge
of the partonic 2-surface.

. The expressions of classical electromagnetic and Z° fields in terms of Kihler form [LI] , [LI]

read as
F,
Y = 6% =3J — SinQ(ew)Rog s
F
70 = gZhZ — 2R3 . (2.6.4)

Here Ry3 is one of the components of the curvature tensor in vielbein representation and F.,,
and Fz correspond to the standard field tensors. From this expression one can deduce

€ . 9z
= —F 2 2Ry, . 2.6.
J o, Fem + sin®(Ow) antz (2.6.5)
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3. The weak duality condition when integrated over X? implies

62 2
%QSM%QZV - K%J:Kn ,
I3
Qzyv = 7‘/ — Qem , p=sin*(Bw) . (2.6.6)

Here the vectorial part of the Z° charge rather than as full Z° charge Qz = I3 + sin?(0w)Qem
appears. The reason is that only the vectorial isospin is same for left and right handed compo-
nents of fermion which are in general mixed for the massive states.

The coefficients are dimensionless and expressible in terms of the gauge coupling strengths and
using h = rhg one can write

(64 3
aeerm + p7Q27V = E x rnK ,

2 2
e 97 Qem

Gem dnho 7T dnhe  p(1—p)

(2.6.7)

4. There is a great temptation to assume that the values of Q.,, and @z correspond to their
quantized values and therefore depend on the quantum state assigned to the partonic 2-surface.
The linear coupling of the modified Dirac operator to conserved charges implies correlation
between the geometry of space-time sheet and quantum numbers assigned to the partonic 2-
surface. The assumption of standard quantized values for Q.,, and Qz would be also seen as
the identification of the fine structure constants ., and az. This however requires weak isospin
invariance.

The value of K from classical quantization of Kihler electric charge

The value of K can be deduced by requiring classical quantization of Kéahler electric charge.

1. The condition that the flux of F9 = (h/gx)J° defining the counterpart of Kéhler electric field
equals to the Kihler charge gr would give the condition K = g% /h, where gy is Kéhler cou-
pling constant which should invariant under coupling constant evolution by quantum criticality.
Within experimental uncertainties one has ax = gi /4Thy = Qem =~ 1/137, where oy, is finite
structure constant in electron length scale and A is the standard value of Planck constant.

2. The quantization of Planck constants makes the condition highly non-trivial. The most general
quantization of r is as rationals but there are good arguments favoring the quantization as
integers corresponding to the allowance of only singular coverings of CD andn C'P,. The point
is that in this case a given value of Planck constant corresponds to a finite number pages of
the ”Big Book”. The quantization of the Planck constant implies a further quantization of K
and would suggest that K scales as 1/r unless the spectrum of values of Q. and Q7 allowed
by the quantization condition scales as r. This is quite possible and the interpretation would
be that each of the r sheets of the covering carries (possibly same) elementary charge. Kind
of discrete variant of a full Fermi sphere would be in question. The interpretation in terms of
anyonic phases [K63] supports this interpretation.

3. The identification of J as a counterpart of eB/h means that Kahler action and thus also Kéahler
function is proportional to 1/ak and therefore to . This implies that for large values of &
Kihler coupling strength g% /41 becomes very small and large fluctuations are suppressed in
the functional integral. The basic motivation for introducing the hierarchy of Planck constants
was indeed that the scaling & — a/r allows to achieve the convergence of perturbation theory:
Nature itself would solve the problems of the theoretician. This of course does not mean that
the physical states would remain as such and the replacement of single particles with anyonic
states in order to satisfy the condition for K would realize this concretely.
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4. The condition K = g2 /h implies that the Kéhler magnetic charge is always accompanied by
Kéhler electric charge. A more general condition would read as

2
K = nxg?K,nEZ. (2.6.8)

This would apply in the case of cosmic strings and would allow vanishing Ké&hler charge possible
when the partonic 2-surface has opposite fermion and antifermion numbers (for both leptons and
quarks) so that Kéahler electric charge should vanish. For instance, for neutrinos the vanishing
of electric charge strongly suggests n = 0 besides the condition that abelian Z° flux contributing
to em charge vanishes.

It took a year to realize that this value of K is natural at the Minkowskian side of the wormhole
throat. At the Fuclidian side much more natural condition is

1

K = o (2.6.9)
In fact, the self-duality of C' P, Kéhler form favours this boundary condition at the Euclidian side of
the wormhole throat. Also the fact that one cannot distinguish between electric and magnetic charges
in Euclidian region since all charges are magnetic can be used to argue in favor of this form. The
same constraint arises from the condition that the action for C' P, type vacuum extremal has the value
required by the argument leading to a prediction for gravitational constant in terms of the square of
CP; radius and af the effective replacement g% — 1 would spoil the argument.

The boundary condition Jg = Jp for the electric and magnetic parts of Kéhlwer form at the
Euclidian side of the wormhole throat inspires the question whether all Euclidian regions could be
self-dual so that the density of Kahler action would be just the instanton density. Self-duality follows if
the deformation of the metric induced by the deformation of the canonically imbedded C P is such that
in C'P, coordinates for the Euclidian region the tensor (¢*°g"” — g* g*?)/,/g remains invariant. This
is certainly the case for C'P; type vacuum extremals since by the light-likeness of M* projection the
metric remains invariant. Also conformal scalings of the induced metric would satisfy this condition.
Conformal scaling is not consistent with the degeneracy of the 4-metric at the wormhole

Reduction of the quantization of Kahler electric charge to that of electromagnetic charge

The best manner to learn more is to challenge the form of the weak electric-magnetic duality based
on the induced Kahler form.

1. Physically it would seem more sensible to pose the duality on electromagnetic charge rather
than Ké&hler charge. This would replace induced Kéhler form with electromagnetic field, which
is a linear combination of induced K”ahler field and classical Z° field

v = 3J—sin*6wRos ,
Z° = 2Ry . (2.6.10)

Here Zy = 2R3 is the appropriate component of C' P, curvature form [L1]. For a vanishing
Weinberg angle the condition reduces to that for Kéhler form.

2. For the Euclidian space-time regions having interpretation as lines of generalized Feynman dia-
grams Weinberg angle should be non-vanishing. In Minkowskian regions Weinberg angle could
however vanish. If so, the condition guaranteing that electromagnetic charge of the partonic
2-surfaces equals to the above condition stating that the em charge assignable to the fermion
content of the partonic 2-surfaces reduces to the classical Kahler electric flux at the Minkowskian
side of the wormhole throat. One can argue that Weinberg angle must increase smoothly from a
vanishing value at both sides of wormhole throat to its value in the deep interior of the Euclidian
region.



2.6. Weak form electric-magnetic duality and its implications 101

3. The vanishing of the Weinberg angle in Minkowskian regions conforms with the physical intu-
ition. Above elementary particle length scales one sees only the classical electric field reducing
to the induced Kéhler form and classical Z" fields and color gauge fields are effectively ab-
sent. Only in phases with a large value of Planck constant classical Z° field and other classical
weak fields and color gauge field could make themselves visible. Cell membrane could be one
such system [K66]. This conforms with the general picture about color confinement and weak
massivation.

The GRT limit of TGD suggests a further reason for why Weinberg angle should vanish in
Minkowskian regions.

1. The value of the Kahler coupling strength mut be very near to the value of the fine structure
constant in electron length scale and these constants can be assumed to be equal.

2. GRT limit of TGD with space-time surfaces replaced with abstract 4-geometries would naturally
correspond to Einstein-Maxwell theory with cosmological constant which is non-vanishing only
in Euclidian regions of space-time so that both Reissner-Nordstrom metric and C'P» are allowed
as simplest possible solutions of field equations [K85]. The extremely small value of the observed
cosmological constant needed in GRT type cosmology could be equal to the large cosmological
constant associated with C' P, metric multiplied with the 3-volume fraction of Euclidian regions.

3. Also at GRT limit quantum theory would reduce to almost topological QFT since Einstein-
Maxwell action reduces to 3-D term by field equations implying the vanishing of the Maxwell
current and of the curvature scalar in Minkowskian regions and curvature scalar 4+ cosmological
constant term in Euclidian regions. The weak form of electric-magnetic duality would guarantee
also now the preferred extremal property and prevent the reduction to a mere topological QFT.

4. GRT limit would make sense only for a vanishing Weinberg angle in Minkowskian regions. A
non-vanishing Weinberg angle would make sense in the deep interior of the Euclidian regions
where the approximation as a small deformation of C' P, makes sense.

The weak form of electric-magnetic duality has surprisingly strong implications for the basic view
about quantum TGD as following considerations show.

2.6.2 Magnetic confinement, the short range of weak forces, and color
confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one combines it with
some very general empirical facts such as the non-existence of magnetic monopole fields in macroscopic
length scales.

How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length scale and one
should have a mechanism neutralizing the monopole charge. How electroweak interactions become
short ranged in TGD framework is still a poorly understood problem. What suggests itself is the
neutralization of the weak isospin above the intermediate gauge boson Compton length by neutral
Higgs bosons. Could the two neutralization mechanisms be combined to single one?

1. In the case of fermions and their super partners the opposite magnetic monopole would be a
wormhole throat. If the magnetically charged wormhole contact is electromagnetically neutral
but has vectorial weak isospin neutralizing the weak vectorial isospin of the fermion only the
electromagnetic charge of the fermion is visible on longer length scales. The distance of this
wormhole throat from the fermionic one should be of the order weak boson Compton length.
An interpretation as a bound state of fermion and a wormhole throat state with the quantum
numbers of a neutral Higgs boson would therefore make sense. The neutralizing throat would
have quantum numbers of X_;/,5 = v Vg or Xi/3 = Vpvr. v Vg would not be neutral Higgs
boson (which should correspond to a wormhole contact) but a super-partner of left-handed
neutrino obtained by adding a right handed neutrino. This mechanism would apply separately
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to the fermionic and anti-fermionic throats of the gauge bosons and corresponding space-time
sheets and leave only electromagnetic interaction as a long ranged interaction.

2. One can of course wonder what is the situation situation for the bosonic wormhole throats feeding
gauge fluxes between space-time sheets. It would seem that these wormhole throats must always
appear as pairs such that for the second member of the pair monopole charges and I3 cancel
each other at both space-time sheets involved so that one obtains at both space-time sheets
magnetic dipoles of size of weak boson Compton length. The proposed magnetic character of
fundamental particles should become visible at TeV energies so that LHC might have surprises
in store!

Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider also the
situation in which the magnetic charges of quarks (more generally, of color excited leptons and quarks)
do not vanish and they form color and magnetic singles in the hadronic length scale. This would mean
that magnetic charges of the state g1/ — X+1/2 representing the physical quark would not vanish and
magnetic confinement would accompany also color confinement. This would explain why free quarks
are not observed. To how degree then quark confinement corresponds to magnetic confinement is an
interesting question.

For quark and antiquark of meson the magnetic charges of quark and antiquark would be opposite
and meson would correspond to a Kahler magnetic flux so that a stringy view about meson emerges.
For valence quarks of baryon the vanishing of the net magnetic charge takes place provided that the
magnetic net charges are (+2,F1,F1). This brings in mind the spectrum of color hyper charges
coming as (+2,F1,F1)/3 and one can indeed ask whether color hyper-charge correlates with the
Kahler magnetic charge. The geometric picture would be three strings connected to single vertex.
Amusingly, the idea that color hypercharge could be proportional to color hyper charge popped up
during the first year of TGD when I had not yet discovered CP, and believed on M* x S2.

p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark
variants of particles suggest the existence of scaled up copies of QCD type physics and weak physics.
For p-adically scaled up variants the mass scales would be scaled by a power of v/2 in the most general
case. The dark variants of the particle would have the same mass as the original one. In particular,
Mersenne primes M), = 2F — 1 and Gaussian Mersennes Mcr =01+ i)¥ — 1 has been proposed to
define zoomed copies of these physics. At the level of magnetic confinement this would mean hierarchy
of length scales for the magnetic confinement.

One particular proposal is that the Mersenne prime Mgg should define a scaled up variant of the
ordinary hadron physics with mass scaled up roughly by a factor 2(107-89/2 — 512, The size scale
of color confinement for this physics would be same as the weal length scale. It would look more
natural that the weak confinement for the quarks of Mgy physics takes place in some shorter scale
and Mg, is the first Mersenne prime to be considered. The mass scale of Mg, weak bosons would
be by a factor 2(89-61)/2 = 9 higher and about 1.6 x 10* TeV. Mgy quarks would have virtually no
weak interactions but would possess color interactions with weak confinement length scale reflecting
themselves as new kind of jets at collisions above TeV energies.

In the biologically especially important length scale range 10 nm -2500 nm there are as many as
four Gaussian Mersennes corresponding to Mg x, k = 151,157,163, 167. This would suggest that the
existence of scaled up scales of magnetic-, weak- and color confinement. An especially interesting
possibly testable prediction is the existence of magnetic monopole pairs with the size scale in this
range. There are recent claims about experimental evidence for magnetic monopole pairs [D§] .

Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one recalls
that electric-magnetic duality in super-symmetric quantum field theories means that the descriptions
in terms of particles and monopoles are in some sense dual descriptions. Fermions would be replaced
by string like objects defined by the magnetic flux tubes and bosons as pairs of wormhole contacts
would correspond to pairs of the flux tubes. Therefore the sharp distinction between gravitons and
physical particles would disappear.
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The reason why gravitons are necessarily stringy objects formed by a pair of wormhole contacts
is that one cannot construct spin two objects using only single fermion states at wormhole throats.
Of course, also super partners of these states with higher spin obtained by adding fermions and anti-
fermions at the wormhole throat but these do not give rise to graviton like states [K32] . The upper
and lower wormhole throat pairs would be quantum superpositions of fermion anti-fermion pairs with
sum over all fermions. The reason is that otherwise one cannot realize graviton emission in terms of
joining of the ends of light-like 3-surfaces together. Also now magnetic monopole charges are necessary
but now there is no need to assign the entities X1 with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below this
length scale the charges of the fermions become visible. Mersenne hypothesis suggests that some
Mersenne prime is in question. One proposal is that gravitonic size scale is given by electronic
Mersenne prime Mio7. It is however difficult to test whether graviton has a structure visible below
this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at all
clear how closely they relate to ordinary Feynman diagrams. All depends on what one is ready to
assume about what happens in the vertices. One could of course hope that zero energy ontology could
allow some very simple description allowing perhaps to get rid of the problematic aspects of Feynman
diagrams.

1. Consider first the recent view about generalized Feynman diagrams which relies zero energy
ontology. A highly attractive assumption is that the particles appearing at wormhole throats
are on mass shell particles. For incoming and outgoing elementary bosons and their super
partners they would be positive it resp. negative energy states with parallel on mass shell
momenta. For virtual bosons they the wormhole throats would have opposite sign of energy
and the sum of on mass shell states would give virtual net momenta. This would make possible
twistor description of virtual particles allowing only massless particles (in 4-D sense usually and
in 8-D sense in TGD framework). The notion of virtual fermion makes sense only if one assumes
in the interaction region a topological condensation creating another wormhole throat having
no fermionic quantum numbers.

2. The addition of the particles X* replaces generalized Feynman diagrams with the analogs of
stringy diagrams with lines replaced by pairs of lines corresponding to fermion and X,/5. The
members of these pairs would correspond to 3-D light-like surfaces glued together at the vertices
of generalized Feynman diagrams. The analog of 3-vertex would not be splitting of the string to
form shorter strings but the replication of the entire string to form two strings with same length
or fusion of two strings to single string along all their points rather than along ends to form a
longer string. It is not clear whether the duality symmetry of stringy diagrams can hold true
for the TGD variants of stringy diagrams.

3. How should one describe the bound state formed by the fermion and X*? Should one describe
the state as superposition of non-parallel on mass shell states so that the composite state would
be automatically massive? The description as superposition of on mass shell states does not
conform with the idea that bound state formation requires binding energy. In TGD framework
the notion of negentropic entanglement has been suggested to make possible the analogs of
bound states consisting of on mass shell states so that the binding energy is zero [K51] . If this
kind of states are in question the description of virtual states in terms of on mass shell states is
not lost. Of course, one cannot exclude the possibility that there is infinite number of this kind
of states serving as analogs for the excitations of string like object.

4. What happens to the states formed by fermions and X,/ in the internal lines of the Feynman
diagram? Twistor philosophy suggests that only the higher on mass shell excitations are possible.
If this picture is correct, the situation would not change in an essential manner from the earlier
one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles should
have stringy character in electro-weak length scales and could behaving to become manifest at LHC
energies. This adds one further item to the list of non-trivial predictions of TGD about physics at
LHC energies [K52] .
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2.6.3 Could Quantum TGD reduce to almost topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD reduces to
almost topological quantum theory in the sense that the counterpart of Chern-Simons action assigned
with the wormhole throats somehow dictates the dynamics. This proposal can be formulated also
for the modified Dirac action action. I gave up this proposal but the following argument shows that
Kahler action with weak form of electric-magnetic duality effectively reduces to Chern-Simons action
plus Coulomb term.

1. Kébhler action density can be written as a 4-dimensional integral of the Coulomb term j# A, plus
and integral of the boundary term J"? Ag,/gs over the wormhole throats and of the quantity
J% Ag./g1 over the ends of the 3-surface.

2. If the self-duality conditions generalize to J"™ = dmaxe™J,s at throats and to J% =
47TO[K€0675J75 at the ends, the Ké&hler function reduces to the counterpart of Chern-Simons
action evaluated at the ends and throats. It would have same value for each branch and the
replacement hy — rhy would effectively describe this. Boundary conditions would however give
1/r factor so that h would disappear from the Kéhler function! The original attempt to real-
ize quantum T'GD as an almost topological QFT was in terms of Chern-Simons action but was
given up. It is somewhat surprising that Kahler action gives Chern-Simons action in the vacuum
sector defined as sector for which Kahler current is light-like or vanishes.

Holography encourages to ask whether also the Coulomb interaction terms could vanish. This
kind of dimensional reduction would mean an enormous simplification since TGD would reduce to an
almost topological QFT. The attribute ”almost” would come from the fact that one has non-vanishing
classical Noether charges defined by Kahler action and non-trivial quantum dynamics in M* degrees
of freedom. One could also assign to space-time surfaces conserved four-momenta which is not possible
in topological QFTs. For this reason the conditions guaranteeing the vanishing of Coulomb interaction
term deserve a detailed analysis.

1. For the known extremals j% either vanishes or is light-like ("massless extremals” for which
weak self-duality condition does not make sense [K11] ) so that the Coulombic term vanishes
identically in the gauge used. The addition of a gradient to A induces terms located at the ends
and wormhole throats of the space-time surface but this term must be cancelled by the other
boundary terms by gauge invariance of Kihler action. This implies that the M* part of WCW
metric vanishes in this case. Therefore massless extremals as such are not physically realistic:
wormhole throats representing particles are needed.

2. The original naive conclusion was that since Chern-Simons action depends on C'P, coordinates
only, its variation with respect to Minkowski coordinates must vanish so that the WCW met-
ric would be trivial in M* degrees of freedom. This conclusion is in conflict with quantum
classical correspondence and was indeed too hasty. The point is that the allowed variations of
Kaéhler function must respect the weak electro-magnetic duality which relates Kéahler electric
field depending on the induced 4-metric at 3-surface to the Kéahler magnetic field. Therefore the
dependence on M* coordinates creeps via a Lagrange multiplier term

/AQ(JW — K" ] ) gadPx (2.6.11)

The (1,1) part of second variation contributing to M* metric comes from this term.

3. This erratic conclusion about the vanishing of M* part WCW metric raised the question about
how to achieve a non-trivial metric in M* degrees of freedom. The proposal was a modification of
the weak form of electric-magnetic duality. Besides C'P, Kéhler form there would be the Kéhler
form assignable to the light-cone boundary reducing to that for r5; = constant sphere - call it
J1. The generalization of the weak form of self-duality would be J" = P K(J,5 + EJ}{ 5)-

This form implies that the boundary term gives a non-trivial contribution to the M* part of
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the WCW metric even without the constraint from electric-magnetic duality. Kéahler charge is
not affected unless the partonic 2-surface contains the tip of C'D in its interior. In this case the
value of Kahler charge is shifted by a topological contribution. Whether this term can survive
depends on whether the resulting vacuum extremals are consistent with the basic facts about
classical gravitation.

4. The Coulombic interaction term is not invariant under gauge transformations. The good news
is that this might allow to find a gauge in which the Coulomb term vanishes. The vanishing
condition fixing the gauge transformation ¢ is

800 = —j%Aqg . (2.6.12)

This differential equation can be reduced to an ordinary differential equation along the flow
lines jx by using dz®/dt = j%. Global solution is obtained only if one can combine the flow
parameter ¢ with three other coordinates- say those at the either end of C'D to form space-
time coordinates. The condition is that the parameter defining the coordinate differential is
proportional to the covariant form of Kéahler current: dt = ¢jx. This condition in turn implies
d*t = d(¢jr) = d(djx) = dd A jx + ¢djx = 0 implying jx A djx = 0 or more concretely,

P05 = 0. (2.6.13)

ji is a four-dimensional counterpart of Beltrami field [B49] and could be called generalized
Beltrami field.

The integrability conditions follow also from the construction of the extremals of Kéhler action
IK1I] . The conjecture was that for the extremals the 4-dimensional Lorentz force vanishes (no
dissipation): this requires jx A J = 0. One manner to guarantee this is the topologization of
the Kahler current meaning that it is proportional to the instanton current: jx = ¢j;, where
jr = *(J A A) is the instanton current, which is not conserved for 4-D CP, projection. The
conservation of jx implies the condition j§*0,¢ = 0,5 ¢ and from this ¢ can be integrated if the
integrability condition j; Adj; = 0 holds true implying the same condition for jx. By introducing
at least 3 or C'P, coordinates as space-time coordinates, one finds that the contravariant form of
41 is purely topological so that the integrability condition fixes the dependence on M* coordinates
and this selection is coded into the scalar function ¢. These functions define families of conserved
currents j%¢ and j$¢ and could be also interpreted as conserved currents associated with the
critical deformations of the space-time surface.

5. There are gauge transformations respecting the vanishing of the Coulomb term. The vanishing
condition for the Coulomb term is gauge invariant only under the gauge transformations A —
A+ V¢ for which the scalar function the integral [ j%0,¢ reduces to a total divergence a giving
an integral over various 3-surfaces at the ends of C'D and at throats vanishes. This is satisfied
if the allowed gauge transformations define conserved currents

Do(j*¢) = 0 . (2.6.14)

As a consequence Coulomb term reduces to a difference of the conserved charges Qf, = [ Ogb\/gjd?’m
at the ends of the CD vanishing identically. The change of the imons type term is trivial if the
total weighted Kéhler magnetic flux Q7' = Y [ J¢pdA over wormhole throats is conserved. The
existence of an infinite number of conserved weighted magnetic fluxes is in accordance with the
electric-magnetic duality. How these fluxes relate to the flux Hamiltonians central for WCW
geometry is not quite clear.
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6. The gauge transformations respecting the reduction to almost topological QFT should have some
special physical meaning. The measurement interaction term in the modified Dirac interaction
corresponds to a critical deformation of the space-time sheet and is realized as an addition
of a gauge part to the Kahler gauge potential of CP,. It would be natural to identify this
gauge transformation giving rise to a conserved charge so that the conserved charges would
provide a representation for the charges associated with the infinitesimal critical deformations
not affecting Kéahler action. The gauge transformed Kéahler potential couples to the modified
Dirac equation and its effect could be visible in the value of Kéhler function and therefore also
in the properties of the preferred extremal. The effect on WCW metric would however vanish
since K would transform only by an addition of a real part of a holomorphic function. Kahler
function is identified as a Dirac determinant for Chern-Simons Dirac action and the spectrum
of this operator should not be invariant under these gauge transformations if this picture is
correct. This is is achieved if the gauge transformation is carried only in the Dirac action
corresponding to the Chern-Simons term: this assumption is motivated by the breaking of time
reversal invariance induced by quantum measurements. The modification of Kéhler action can
be guessed to correspond just to the Chern-Simons contribution from the instanton term.

7. A reasonable looking guess for the explicit realization of the quantum classical correspondence
between quantum numbers and space-time geometry is that the deformation of the preferred
extremal due to the addition of the measurement interaction term is induced by a U(1) gauge
transformation induced by a transformation of 6C'D x C' P, generating the gauge transformation
represented by ¢. This interpretation makes sense if the fluxes defined by Q7" and corresponding
Hamiltonians affect only zero modes rather than quantum fluctuating degrees of freedom.

To sum up, one could understand the basic properties of WCW metric in this framework. Effec-
tive 2-dimensionality would result from the existence of an infinite number of conserved charges in
two different time directions (genuine conservation laws plus gauge fixing). The infinite-dimensional
symmetric space for given values of zero modes corresponds to the Cartesian product of the WCWs
associated with the partonic 2-surfaces at both ends of C'D and the generalized Chern-Simons term
decomposes into a sum of terms from the ends giving single particle Kahler functions and to the terms
from light-like wormhole throats giving interaction term between positive and negative energy parts of
the state. Hence Kahler function could be calculated without any knowledge about the interior of the
space-time sheets and TGD would reduce to almost topological QFT as speculated earlier. Needless
to say this would have immense boost to the program of constructing WCW Kéhler geometry.

2.6.4 Kahler action for Euclidian regions as Kahler function and Kahler
action for Minkowskian regions as Morse function?

One of the nasty questions about the interpretation of Kahler action relates to the square root of
the metric determinant. If one proceeds completely straightforwardly, the only reason conclusion is
that the square root is imaginary in Minkowskian space-time regions so that Kéhler action would be
complex. The Euclidian contribution would have a natural interpretation as positive definite Kahler
function but how should one interpret the imaginary Minkowskian contribution? Certainly the path
integral approach to quantum field theories supports its presence. For some mysterious reason I
was able to forget this nasty question and serious consideration of the obvious answer to it. Only
when I worked betweeen possibile connections between TGD and Floer homology [K93] I realized
that the Minkowskian contribution is an excellent candidate for Morse function whose critical points
give information about WCW homology. This would fit nicely with the vision about TGD as almost
topological QFT.

Euclidian regions would guarantee the convergence of the functional integral and one would have
a mathematically well-defined theory. Minkowskian contribution would give the quantal interference
effects and stationary phase approximation. The analog of Floer homology would represent quantum
superpositions of critical points identifiable as ground states defined by the extrema of Kéhler action
for Minkowskian regions. Perturbative approach to quantum TGD would rely on functional integrals
around the extrema of Kéhler function. One would have maxima also for the Kéhler function but
only in the zero modes not contributing to the WCW metric.
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There is a further question related to almost topological QFT character of TGD. Should one assume
that the reduction to Chern-Simons terms occurs for the preferred extremals in both Minkowskian and
Euclidian regions or only in Minkowskian regions?

1. All arguments for this have been represented for Minkowskian regions [K31] involve local light-
like momentum direction which does not make sense in the Euclidian regions. This does not
however kill the argument: one can have non-trivial solutions of Laplacian equation in the
region of C'P, bounded by wormhole throats: for C'P, itself only covariantly constant right-
handed neutrino represents this kind of solution and at the same time supersymmetry. In the
general case solutions of Laplacian represent broken super-symmetries and should be in one-one
correspondences with the solutions of the modified Dirac equation. The interpretation for the
counterparts of momentum and polarization would be in terms of classical representation of
color quantum numbers.

2. If the reduction occurs in Euclidian regions, it gives in the case of C'P» two 3-D terms corre-
sponding to two 3-D gluing regions for three coordinate patches needed to define coordinates
and spinor connection for C'P; so that one would have two Chern-Simons terms. I have ear-
lier claimed that without any other contributions the first term would be identical with that
from Minkowskian region apart from imaginary unit and different coefficient. This statement is
wrong since the space-like parts of the corresponding 3-surfaces are discjoint for Euclidian and
Minkowskian regions.

3. There is also another very delicate issue involved. Quantum classical correspondence requires
that the quantum numbers of partonic states must be coded to the space-time geometry, and
this is achieved by adding to the action a measurement interaction term which reduces to what
is almost a gauge term present only in Chern-Simons-Dirac equation but not at space-time
interior [K31]. This term would represent a coupling to Poincare quantum numbers at the
Minkowskian side and to color and electro-weak quantum numbers at C'P, side. Therefore the
net Chern-Simons contributions would be different.

4. There is also a very beautiful argument stating that Dirac determinant for Chern-Simons-Dirac
action equals to Ké&hler function, which would be lost if Euclidian regions would not obey
holography. The argument obviously generalizes and applies to both Morse and Kéahler function
which are definitely not proportional to each other.

The Minkowskian contribution of Kahler action is imaginary due to the negative of the metric
determinant and gives a phase factor to vacuum functional reducing to Chern-Simons terms at worm-
hole throats. Ground state degeneracy due to the possibility of having both signs for Minkowskian
contribution to the exponent of vacuum functional provides a general view about the description of
CP breaking in TGD framework.

1. In TGD framework path integral is replaced by inner product involving integral over WCV. The
vacuum functional and its conjugate are associated with the states in the inner product so that
the phases of vacuum functionals cancel if only one sign for the phase is allowed. Minkowskian
contribution would have no physical significance. This of course cannot be the case. The ground
state is actually degenerate corresponding to the phase factor and its complex conjugate since
/9 can have two signs in Minkowskian regions. Therefore the inner products between states
associated with the two ground states define 2 x 2 matrix and non-diagonal elements contain
interference terms due to the presence of the phase factor. At the limit of full C'P; type vacuum
extremal the two ground states would reduce to each other and the determinant of the matrix
would vanish.

2. A small mixing of the two ground states would give rise to CP breaking and the first principle
description of CP breaking in systems like K — K and of CKM matrix should reduce to this
mixing. K° mesons would be CP even and odd states in the first approximation and correspond
to the sum and difference of the ground states. Small mixing would be present having exponential
sensitivity to the actions of C'Ps type extremals representing wormhole throats. This might allow
to understand qualitatively why the mixing is about 50 times larger than expected for B® mesons.
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3. There is a strong temptation to assign the two ground states with two possible arrows of geo-
metric time. At the level of M-matrix the two arrows would correspond to state preparation at
either upper or lower boundary of CD. Do long- and shortlived neutral K mesons correspond
to almost fifty-fifty orthogonal superpositions for the two arrow of geometric time or almost
completely to a fixed arrow of time induced by environment? Is the dominant part of the arrow
same for both or is it opposite for long and short-lived neutral measons? Different lifetimes
would suggest that the arrow must be the same and apart from small leakage that induced by
environment. CP breaking would be induced by the fact that CP is performed only K° but not
for the environment in the construction of states. One can probably imagine also alternative
interpretations.

2.6.5 A general solution ansatz based on almost topological QFT property

The basic vision behind the ansatz is the reduction of quantum TGD to almost topological field
theory. This requires that the flow parameters associated with the flow lines of isometry currents
and Kahler current extend to global coordinates. This leads to integrability conditions implying
generalized Beltrami flow and Ké&hler action for the preferred extremals reduces to Chern-Simons
action when weak electro-weak duality is applied as boundary conditions. The strongest form of the
hydrodynamical interpretation requires that all conserved currents are parallel to Kahler current. In
the more general case one would have several hydrodynamic flows. Also the braidings (several of them
for the most general ansatz) assigned with the light-like 3-surfaces are naturally defined by the flow
lines of conserved currents. The independent behavior of particles at different flow lines can be seen
as a realization of the complete integrability of the theory. In free quantum field theories on mass
shell Fourier components are in a similar role but the geometric interpretation in terms of flow is of
course lacking. This picture should generalize also to the solution of the modified Dirac equation.

Basic field equations

Consider first the equations at general level.

1. The breaking of the Poincare symmetry due to the presence of monopole field occurs and leads
to the isometry group T'x SO(3) x SU(3) corresponding to time translations, rotations, and color
group. The Cartan algebra is four-dimensional and field equations reduce to the conservation
laws of energy FE, angular momentum J, color isospin I3, and color hypercharge Y.

2. Quite generally, one can write the field equations as conservation laws for I, J, I3, and Y.

D, [Dg(J*PHy) — j H* + TP 4 hyyosh'] = 0 . (2.6.15)

The first term gives a contraction of the symmetric Ricci tensor with antisymmetric Kahler form
and vanishes so that one has

D, [jaH* — TPk hiydsh!] = 0 . (2.6.16)
For energy one has H4 = 1 and energy current associated with the flow lines is proportional to
the Kéhler current. Its divergence vanishes identically.

3. One can express the divergence of the term involving energy momentum tensor as as sum of
terms involving j%J.g and contraction of second fundamental form with energy momentum
tensor so that one obtains

JeDoHY = jed,Pif + TP HE 5t (2.6.17)
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Hydrodynamical solution ansatz

The characteristic feature of the solution ansatz would be the reduction of the dynamics to hydrody-
namics analogous to that for a continuous distribution of particles initially at the end of X3 of the
light-like 3-surface moving along flow lines defined by currents j, satisfying the integrability condi-
tion ja Adja = 0. Field theory would reduce effectively to particle mechanics along flow lines with
conserved charges defined by various isometry currents. The strongest condition is that all isometry
currents j4 and also K&hler current jx are proportional to the same current j. The more general
option corresponds to multi-hydrodynamics.

Conserved currents are analogous to hydrodynamical currents in the sense that the flow parameter
along flow lines extends to a global space-time coordinate. The conserved current is proportional to
the gradient V® of the coordinate varying along the flow lines: J = UV ® and by a proper choice of
¥ one can allow to have conservation. The initial values of ¥ and ® can be selected freely along the
flow lines beginning from either the end of the space-time surface or from wormhole throats.

If one requires hydrodynamics also for Chern-Simons action (effective 2-dimensionality is required
for preferred extremals), the initial values of scalar functions can be chosen freely only at the partonic
2-surfaces. The freedom to chose the initial values of the charges conserved along flow lines at the
partonic 2-surfaces means the existence of an infinite number of conserved charges so that the theory
would be integrable and even in two different coordinate directions. The basic difference as compared
to ordinary conservation laws is that the conserved currents are parallel and their flow parameter
extends to a global coordinate.

1. The most general assumption is that the conserved isometry currents

JG = jeHA — TPk h,05n! (2.6.18)
and Kahler current are integrable in the sense that J4 AJ4 = 0 and jx A jx = 0 hold true. One
could imagine the possibility that the currents are not parallel.

2. The integrability condition dJ4 A J4 = 0 is satisfied if one one has

Ja = Uaddy . (2.6.19)

The conservation of J4 gives

dx (Taddy) = 0 . (2.6.20)

This would mean separate hydrodynamics for each of the currents involved. In principle there is
not need to assume any further conditions and one can imagine infinite basis of scalar function
pairs (U 4, ® 4) since criticality implies infinite number deformations implying conserved Noether
currents.

3. The conservation condition reduces to d’Alembert equation in the induced metric if one assumes
that VW 4 is orthogonal with every d® 4.

d*d(bA = O, d\I’A'd(I)AZO. (2.6.21)

Taking z = ® 4 as a coordinate the orthogonality condition states g%7 0;V¥ 4 = 0 and in the gen-
eral case one cannot solve the condition by simply assuming that ¥ 4 depends on the coordinates
transversal to ® 4 only. These conditions bring in mind p-p = 0 and p - e condition for massless
modes of Maxwell field having fixed momentum and polarization. d® 4 would correspond to p
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and d¥ 4 to polarization. The condition that each isometry current corresponds its own pair
(U 4,®P4) would mean that each isometry current corresponds to independent light-like momen-
tum and polarization. Ordinary free quantum field theory would support this view whereas
hydrodynamics and QFT limit of TGD would support single flow.

These are the most general hydrodynamical conditions that one can assume. One can consider
also more restricted scenarios.

1. The strongest ansatz is inspired by the hydrodynamical picture in which all conserved isometry
charges flow along same flow lines so that one would have

Jo = Uadd . (2.6.22)

In this case same ® would satisfy simultaneously the d’Alembert type equations.

dxd® = 0, dV,-dd=0. (2.6.23)

This would mean that the massless modes associated with isometry currents move in parallel
manner but can have different polarizations. The spinor modes associated with light-light like
3-surfaces carry parallel four-momenta, which suggest that this option is correct. This allows a
very general family of solutions and one can have a complete 3-dimensional basis of functions
U 4 with gradient orthogonal to d®.

2. Isometry invariance under T' x SO(3) x SU(3) allows to consider the possibility that one has

Ja = /CA\I’ACZ(I)G(A) , dx(dDPg(A) =0, d¥4-dPs(A4)) =0 . (2.6.24)

where G(A) is T for energy current, SO(3) for angular momentum currents and SU(3) for color
currents. Energy would thus flow along its own flux lines, angular momentum along its own flow
lines, and color quantum numbers along their own flow lines. For instance, color currents would
differ from each other only by a numerical constant. The replacement of W4 with Wg(4) would
be too strong a condition since Killing vector fields are not related by a constant factor.

To sum up, the most general option is that each conserved current J4 defines its own integrable
flow lines defined by the scalar function pair (¥4, ®4). A complete basis of scalar functions satisfying
the d’Alembert type equation guaranteeing current conservation could be imagined with restrictions
coming from the effective 2-dimensionality reducing the scalar function basis effectively to the partonic
2-surface. The diametrically opposite option corresponds to the basis obtained by assuming that only
single ® is involved.

The proposed solution ansatz can be compared to the earlier ansatz [K40] stating that Kéhler
current is topologized in the sense that for D(CP,) = 3 it is proportional to the identically conserved
instanton current (so that 4-D Lorentz force vanishes) and vanishes for D(C'P,) = 4 (Maxwell phase).
This hypothesis requires that instanton current is Beltrami field for D(CP,;) = 3. In the recent
case the assumption that also instanton current satisfies the Beltrami hypothesis in strong sense
(single function ®) generalizes the topologization hypothesis for D(CP;) = 3. As a matter fact, the
topologization hypothesis applies to isometry currents also for D(C'P,) = 4 although instanton current
is not conserved anymore.
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Can one require the extremal property in the case of Chern-Simons action?

Effective 2-dimensionality is achieved if the ends and wormhole throats are extremals of Chern-Simons
action. The strongest condition would be that space-time surfaces allow orthogonal slicings by 3-
surfaces which are extremals of Chern-Simons action.

Also in this case one can require that the flow parameter associated with the flow lines of the
isometry currents extends to a global coordinate. Kéahler magnetic field B = *J defines a conserved
current so that all conserved currents would flow along the field lines of B and one would have 3-D
Beltrami flow. Note that in magnetohydrodynamics the standard assumption is that currents flow
along the field lines of the magnetic field.

For wormhole throats light-likeness causes some complications since the induced metric is degener-
ate and the contravariant metric must be restricted to the complement of the light-like direction. This
means that d’Alembert equation reduces to 2-dimensional Laplace equation. For space-like 3-surfaces
one obtains the counterpart of Laplace equation with partonic 2-surfaces serving as sources. The
interpretation in terms of analogs of Coulomb potentials created by 2-D charge distributions would
be natural.

2.6.6 Hydrodynamic picture in fermionic sector

Super-symmetry inspires the conjecture that the hydrodynamical picture applies also to the solutions
of the modified Dirac equation.

4-dimensional modified Dirac equation and hydrodynamical picture

Consider first the solutions of of the induced spinor field in the interior of space-time surface.

1. The local inner products of the modes of the induced spinor fields define conserved currents

DaJ,?m = 0,
Jon = ﬂmf‘o‘un ,
. oLy
I = ———T1 . 2.6.25
(OuhF) " ( )

The conjecture is that the flow parameters of also these currents extend to a global coordinate
so that one would have in the completely general case the condition

I = ‘I)mnd\l/mn ;

d % (d® ) 0, VW P =0 . (2.6.26)

The condition ®,,, = ® would mean that the massless modes propagate in parallel manner and
along the flow lines of K&hler current. The conservation condition along the flow line implies
tht the current component J,,, is constant along it. Everything would reduce to initial values
at the ends of the space-time sheet boundaries of C'D and 3-D modified Dirac equation would
reduce everything to initial values at partonic 2-surfaces.

2. One might hope that the conservation of these super currents for all modes is equivalent with
the modified Dirac equation. The modes u, appearing in ¥ in quantized theory would be kind
of ”square roots” of the basis ®,,, and the challenge would be to deduce the modes from the
conservation laws.

3. The quantization of the induced spinor field in 4-D sense would be fixed by those at 3-D space-
like ends by the fact that the oscillator operators are carried along the flow lines as such so
that the anti-commutator of the induced spinor field at the opposite ends of the flow lines at
the light-like boundaries of C'D is in principle fixed by the anti-commutations at the either end.
The anti-commutations at 3-D surfaces cannot be fixed freely since one has 3-D Chern-Simons
flow reducing the anti-commutations to those at partonic 2-surfaces.
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The following argument suggests that induced spinor fields are in a suitable gauge simply constant
along the flow lines of the Kéhler current just as massless spinor modes are constant along the geodesic
in the direction of momentum.

1. The modified gamma matrices are of form TPT*, T = L /9(0oh"). The H-vectors T can
be expressed as linear combinations of a subset of Killing vector fields j% spanning the tangent
space of H. For C'P, the natural choice are the 4 Lie-algebra generators in the complement
of U(2) sub-algebra. For C'D one can used generator time translation and three generators of
rotation group SO(3). The completeness of the basis defined by the subset of Killing vector
fields gives completeness relation hf = j4¥j,;. This implies 7% = T*jAjk = 7245k One
can defined gamma matrices I'4 as T'yj% to get ToTF = ToAT 4.

2. This together with the condition that all isometry currents are proportional to the Kahler
current (or if this vanishes to same conserved current- say energy current) satisfying Beltrami
flow property implies that one can reduce the modified Dirac equation to an ordinary differential
equation along flow lines. The quantities 74 are constant along the flow lines and one obtains

TA5.DY = 0 . (2.6.27)

By choosing the gauge suitably the spinors are just constant along flow lines so that the spinor
basis reduces by effective 2-dimensionality to a complete spinor basis at partonic 2-surfaces.

Generalized eigen modes for the modified Chern-Simons Dirac equation and hydrody-
namical picture

Hydrodynamical picture helps to understand also the construction of generalized eigen modes of 3-D
Chern-Simons Dirac equation.

The general form of generalized eigenvalue equation for Chern-Simons Dirac action

Consider first the the general form and interpretation of the generalized eigenvalue equation as-
signed with the modified Dirac equation for Chern-Simons action [K19] . This is of course only an
approximation since an additional contribution to the modified gamma matrices from the Lagrangian
multiplier term guaranteing the weak form of electric-magnetic duality must be included.

1. The modified Dirac equation for W is consistent with that for its conjugate if the coefficient of
the instanton term is real and one uses the Dirac action ¥(D~ — D)V giving modified Dirac
equation as

1 ~
Do-s¥+ 5(Dale ) = 0. (2.6.28)

As noticed, the divergence Daf%7 g does not contain second derivatives in the case of Chern-
Simons action. In the case of Kéhler action they occur unless field equations equivalent with the
vanishing of the divergence term are satisfied. The extremals of Chern-Simons action provide a
natural manner to define effective 2-dimensionality.

Also the fermionic current is conserved in this case, which conforms with the idea that fermions
flow along the light-like 3-surfaces. If one uses the action WD~ W, ¥ does not satisfy the Dirac
equation following from the variational principle and fermion current is not conserved.

2. The generalized eigen modes of Do_g should be such that one obtains the counterpart of Dirac
propagator which is purely algebraic and does not therefore depend on the coordinates of the
throat. This is satisfied if the generalized eigenvalues are expressible in terms of covariantly
constant combinations of gamma matrices and here only M* gamma matrices are possible.
Therefore the eigenvalue equation would read as
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1 . .
DY = Ny¥ D=Dc-s+5Dal'¢ s , Do-s =T¢_gDa .
(2.6.29)

Here the covariant derivatives D, contain the measurement interaction term as an apparent
gauge term. For extremals one has

D = Dc_s . (2.6.30)

Covariant constancy allows to take the square of this equation and one has

(D? + [D, Ny )T = Ao\ 0 . (2.6.31)

The commutator term is analogous to magnetic moment interaction.

3. The generalized eigenvalues correspond to A = y/A*)\; and Dirac determinant is defined as a
product of the eigenvalues and conjecture to give the exponent of Kéhler action reducing to
Chern-Simons term. A is completely analogous to mass. A cannot be however interpreted as
ordinary four-momentum: for instance, number theoretic arguments suggest that Ay must be
restricted to the preferred plane M? C M* interpreted as a commuting hyper-complex plane
of complexified quaternions. For incoming lines this mass would vanish so that all incoming
particles irrespective their actual quantum numbers would be massless in this sense and the
propagator is indeed that for a massless particle. Note that the eigen-modes define the boundary
values for the solutions of D W = 0 so that the values of A indeed define the counterpart of the
momentum space.

This transmutation of massive particles to effectively massless ones might make possible the
application of the twistor formalism as such in TGD framework [K89] . N = 4 SUSY is one
of the very few gauge theory which might be UV finite but it is definitely unphysical due to
the masslessness of the basic quanta. Could the resolution of the interpretational problems
be that the four-momenta appearing in this theory do not directly correspond to the observed
four-momenta?

2. Inclusion of the constraint term

As already noticed one must include also the constraint term due to the weak form of electric-
magnetic duality and this changes somewhat the above simple picture.

1. At the 3-dimensional ends of the space-time sheet and at wormhole throats the 3-dimensionality
allows to introduce a coordinate varying along the flow lines of Kéhler magnetic field B = *J.
In this case the integrability conditions state that the flow is Beltrami flow. Note that the
value of B* along the flow line defining magnetic flux appearing in anti-commutation relations
is constant. This suggests that the generalized eigenvalue equation for the Chern-Simons ac-
tion reduces to a collection of ordinary apparently independent differential equations associated
with the flow lines beginning from the partonic 2-surface. This indeed happens when the C'P;
projection is 2-dimensional. In this case it however seems that the basis u, is not of much help.

2. The conclusion is wrong: the variations of Chern-Simons action are subject to the constraint
that electric-magnetic duality holds true expressible in terms of Lagrange multiplier term

/ Ao (J™ — K™ Jg. )\ Jaad’x . (2.6.32)
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This gives a constraint force to the field equations and also a dependence on the induced 4-
metric so that one has only almost topological QFT. This term also guarantees the M* part
of WCW Kaéhler metric is non-trivial. The condition that the ends of space-time sheet and
wormhole throats are extrema of Chern-Simons action subject to the electric-magnetic duality
constraint is strongly suggested by the effective 2-dimensionality. Without the constraint term
Chern-Simons action would vanish for its extremals so that Kéhler function would be identically
Zero.

This term implies also an additional contribution to the modified gamma matrices besides the
contribution coming from Chern-Simons action so tht the first guess for the modified Dirac
operator would not be quite correct. This contribution is of exactly of the same general form
as the contribution for any general general coordinate invariant action. The dependence of the
induced metric on M* degrees of freedom guarantees that also M* gamma matrices are present.
In the following this term will not be considered.

3. When the contribution of the constraint term to the modifield gamma matrices is neglected,
the explicit expression of the modified Dirac operator Do_g associated with the Chern-Simons
term is given by

. 3
D = T*D,+ §DMI‘“ ,
) aLC*S papB l k
r = (9uhk I'n=c¢ [2Jk18ah Aﬁ + JagAk] T D'u s
D‘ufu = B?((Jka + 8aAk) )
BY = PJs . Jra = JuOas' , P =PV Jg5 . (2.6.33)

For the extremals of Chern-Simons action one has D,I'® = 0. Analogous condition holds true
when the constraing contriabution to the modified gamma matrices is added.

3. Generalized eigenvalue equation for Chern-Simons Dirac action

Consider now the Chern-Simons Dirac equation in more detail assuming that the inclusion of the
constraint contribution to the modified gamma matrices does not induce any complications. Assume
also extremal property for Chern-Simons action with constraint term and Beltrami flow property.

1. For the extremals the Chern-Simons Dirac operator (constraint term not included) reduces to a
one-dimensional Dirac operator

Do_s = &€P2JhaAp + JupAr)TED, . (2.6.34)

Constraint term implies only a modification of the modified gamma matrices but the form of
the operator remains otherwise same when extrema are in question so that one has D,I'® = 0.

2. For the extremals of Chern-Simons action the general solution of the modified Chern-Simons
Dirac equation (\*¥ = 0) is covariantly constant with respect to the coordinate r:

DY = 0. (2.6.35)

The solution to this condition can be written immediately in terms of a non-integrable phase
factor Pexp(i [ A,dr), where mtegratlon is along curve with constant transversal coordinates. If
I is light-like vector field also I‘”\IIO defines a solution of Do _g. This solution corresponds to a
zero mode for De_g and does not contribute to the Dirac determinant (suggested to give rise to
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the exponent of Kahler function identified as Kéhler action). Note that the dependence of these
solutions on transversal coordinates of X} is arbitrary which conforms with the hydrodynamic
picture. The solutions of Chern-Simons-Dirac are obtained by similar integration procedure also
when extremals are not in question.

The formal solution associated with a general eigenvalue A can be constructed by integrating the
eigenvalue equation separately along all coordinate curves. This makes sense if r indeed assigned to
possibly light-like flow lines of B* or more general Beltrami field possible induced by the constraint
term. There are very strong consistency conditions coming from the conditions that ¥ in the interior
is constant along the flow lines of Ké&hler current and continuous at the ends and throats (call them
collectively boundaries), where ¥ has a non-trivial variation along the flow lines of B<.

1. This makes sense only if the flow lines of the Kahler current are transversal to the boundaries
so that the spinor modes at boundaries dictate the modes of the spinor field in the interior.
Effective 2-dimensionality means that the spinor modes in the interior can be calculated either
by starting from the throats or from the ends so that the data at either upper of lower partonic
2-surfaces dictates everything in accordance with zero energy ontology.

2. This gives an infinite number of commuting diagrams stating that the flow-line time evolution
along flow lines along wormhole throats from lower partonic 2-surface to the upper one is equiv-
alent with the flow-line time evolution along the lower end of space-time surface to interior, then
along interior to the upper end of the space-time surface and then back to the upper partonic
2-surface. If the space-time surface allows a slicing by partonic 2-surfaces these conditions can
be assumed for any pair of partonic 2-surfaces connected by Chern-Simons flow evolution.

3. Since the time evolution along interior keeps the spinor field as constant in the proper gauge
and since the flow evolutions at the lower and upper ends are in a reverse direction, there is a
strong atemptation to assume that the spinor field at the ends of the of the flow lines of Ké&hler
magnetic field are identical apart from a gauge transformation. This leads to a particle-in-box
quantizaton of the values of the pseudo-mass (periodic boundary conditions). These conditions
will be assumed in the sequel.

These assumptions lead to the following picture about the generalized eigen modes.

1. By choosing the gauge so that covariant derivative reduces to ordinary derivative and using the
constancy of I'", the solution of the generalized eigenvalue equation can be written as

U = exp(iL(r)ITAFT,) T,
|
L(r) = / —dr . (2.6.36)
0 g'f"f‘

L(r) can be regarded as the along flux line as defined by the effective metric defined by modified
gamma matrices. If \j is linear combination of I'® and I'"™ it anti-commutes with I'" which
contains only C'P, gamma matrices so that the pseudo-momentum is a priori arbitrary.

2. When the constraint term taking care of the electric-magnetric duality is included, also M*
gamma matrices are present. If they are in the orthogonal complement of a preferred plane
M? c M*, anti-commutativity is achieved. This assumption cannot be fully justified yet but
conforms with the general physical vision. There is an obvious analogy with the condition that
polarizations are in a plane orthogonal to M?2. The condition indeed states that only transversal
deformations define quantum fluctuating WCW degrees of freedom contributing to the WCW
Kahler metric. In M8 — H duality the preferred plane M? is interpreted as a hyper-complex plane
belonging to the tangent space of the space-time surface and defines the plane of non-physical
polarizations. Also a generalization of this plane to an integrable distribution of planes M?(x)
has been proposed and one must consider also now the possibility of a varying plane M?(x) for
the pseudo-momenta. The scalar function ® appearing in the general solution ansatz for the
field equations satisfies massless d’Alembert equation and its gradient defines a local light-like
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direction at space-time-level and hence a 2-D plane of the tangent space. Maybe the projection
of this plane to M* could define the preferred M?2. The minimum condition is that these planes
are defined only at the ends of space-time surface and at wormhole throats.

3. If one accepts this hypothesis, one can write

v o= [cos(L(r))\)+isin()\(r))fr)\kl“k) v, |

W (2.6.37)

4. Boundary conditions should fix the spectrum of masses. If the the flow lines of K&hler current
coincide with the flow lines of Kahler magnetic field or more general Beltrami current at worm-
hole throats one ends up with difficulties since the induced spinor fields must be constant along
flow lines and only trivial eigenvalues are possible. Hence it seems that the two Beltrami fields
must be transversal. This requires that at the partonic 2-surfaces the value of the induced spinor
mode in the interior coincides with its value at the throat. Since the induced spinor fields in
interior are constant along flow lines, one must have

exp(iAL(maz)) = 1 . (2.6.38)

This implies that one has essentially particle in a box with size defined by the effective metric

n2m
Ay = ——m . 2.6.39
L(Tmax) ( )

5. This condition cannot however hold true simultaneously for all points of the partonic 2-surfaces
since L(rmqz) depends on the point of the surface. In the most general case one can consider
only a subset consisting of the points for which the values of L(7,4.) are rational multiples of the
value of L(7q.) at one of the points -call it Lg. This implies the notion of number theoretical
braid. Induced spinor fields are localized to the points of the braid defined by the flow lines of
the Kéhler magnetic field (or equivalently, any conserved current- this resolves the longstanding
issue about the identification of number theoretical braids). The number of the included points
depends on measurement resolution characterized somehow by the number rationals which are
allowed. Only finite number of harmonics and sub-harmonics of Ly are possible so that for
integer multiples the number of points is finite. If 1,0, Lo and Lo/npmin are the largest and
smallest lengths involved, one can argue that the rationals n,,q. /1, 1 = 1, ..., Nmae and n/Npin,
n =1, ...,Nmn are the natural ones.

6. One can consider also algebraic extensions for which Lg is scaled from its reference value by an
algebraic number so that the mass scale m must be scaled up in similar manner. The spectrum
comes also now in integer multiples. p-Adic mass calculations predicts mass scales to the inverses
of square roots of prime and this raises the expectation that y/n harmonics and sub-harmonics
of Ly might be necessary. Notice however that pseudo-momentum spectrum is in question so
that this argument is on shaky grounds.

There is also the question about the allowed values of (Mg, A3) for a given value of A. This issue will
be discussed in the next section devoted to the attempt to calculate the Dirac determinant assignable
to this spectrum: suffice it to say that integer valued spectrum is the first guess implying that the
pseudo-momenta satisfy ng — n% = n? and therefore correspond to Pythagorean triangles. What is
remarkable that the notion of number theoretic braid pops up automatically from the Beltrami flow

hypothesis.
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2.6.7 Possible role of Beltrami flows and symplectic invariance in the de-
scription of gauge and gravitational interactions

One of the most recent observations made by people working with twistors is the finding of Monteiro
and O’Connell described in the preprint The Kinematic Algebra From the Self-Dual Sector| [B58]. The
claim is that one can obtain supergravity amplitudes by replacing the color factors with kinematic
factors which obey formally 2-D symplectic algebra defined by the plane defined by light-like momen-
tum direction and complexified variable in the plane defined by polarizations. One could say that
momentum and polarization dependent kinematic factors are in exactly the same role as the factors
coming from Yang-Mills couplings. Unfortunately, the symplectic algebra looks rather formal object
since the first coordinate is light-like coordinate and second coordinate complex transverse coordinate.
It could make sense only in the complexification of Minkowski space.

In any case, this would suggest that the gravitational gauge group (to be distinguished from
diffeomorphisms) is symplectic group of some kind having enormous representative power as we know
from the fact that the symmetries of practically any physical system are realized in terms of symplectic
transformations. According to the authors of [B58] one can identify the Lie algebra of symplectic group
of sphere with that of SU(N) at large N limit in suitable basis. What makes this interesting is that
at large N limit non-planar diagrams which are the problem of twistor Grassmann approach vanish:
this is old result of t’Hooft, which initiated the developments leading to AdS/CFT correspondence.

The symplectic group of §M?t x CP, is the isometry algebra of WCW and I have proposed that
the effective replacement of gauge group with this group implies the vanishing of non-planar diagrams
[K92]. The extension of SYM to a theory of also gravitation in TGD framework could make Yangian
symmetry exact, resolve the infrared divergences, and the problems caused by non-planar diagrams.
It would also imply stringy picture in finite measurement resolution. Also the the construction of
the non-commutative homology and cohomology in TGD framework led to the lifting of Galois group
algebras to their braided variants realized as symplectic flows [K93] and to the conjecture that in
finite measurement resolution the cohomology obtained in this manner represents WCW (”world of
classical worlds”) spinor fields (or at least something very essential about them).

It is however difficult to understand how one could generalize the symplectic structure so that also
symplectic transformations involving light-like coordinate and complex coordinate of the partonic 2-
surface would make sense in some sense. In fact, a more natural interpretation for the kinematic
algebra would in terms of volume preserving flows which are also Beltrami flows [B49 B52]. This
gives a connection with quantum TGD since Beltrami flows define a basic dynamical symmetry for
the preferred extremals of Kahler action which might be called Maxwellian phase.

1. Classical TGD is defined by Kéhler action which is the analog of Maxwell action with Maxwell
field expressed as the projection of C'P, Kahler form. The field equations are extremely non-
linear and only the second topological half of Maxwell equations is satisfied. The remaining
equations state conservation laws for various isometry currents. Actually much more general
conservation laws are obtained.

2. As a special case one obtains solutions analogous to those for Maxwell equations but there are
also other objects such as C' P, type vacuum extremals providing correlates for elementary par-
ticles and string like objects: for these solutions it does not make sense to speak about QFT
in Minkowski space-time. For the Maxwell like solutions linear superposition is lost but a su-
perposition holds true for solutions with the same local direction of polarization and massless
four-momentum. This is a very quantal outcome (in accordance with quantum classical corre-
spondence) since also in quantum measurement one obtains final state with fixed polarization
and momentum. So called massless extremals (topological light rays) analogous to wave guides
containing laser beam and its phase conjugate are solutions of this kind. The solutions are very
interesting since no dispersion occurs so that wave packet preserves its form and the radiation
is precisely targeted.

3. Maxwellian preferred extremals decompose in Minkowskian space-time regions to regions that
can be regarded as classical space-time correlates for massless particles. Massless particles are
characterized by polarization direction and light-like momentum direction. Now these directions
can depend on position and are characterized by gradients of two scalar functions ® and W. &
defines light-like momentum direction and the square of the gradient of ® in Minkowski metric
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must vanish. ¥ defines polarization direction and its gradient is orthogonal to the gradient of
® since polarization is orthogonal to momentum.

4. The flow has the additional property that the coordinate associated with the flow lines integrates
to a global coordinate. Beltrami flow is the term used by mathematicians. Beltrami property
means that the condition j A dj =0 is satisfied. In other words, tjhe current is in the plane
defined by its exterior derivative. The above representation obviously guarantees this. Beltrami
property allows to assign order parameter to the flow depending only the parameter varying
along flow line.

This is essential for the hydrodynamical interpretation of the preferred extremals which relies
on the idea that varies conservation laws hold along flow lines. For instance, super-conducting
phase requires this kind of flow and velocity along flow line is gradient of the order parameter.
The breakdown of super-conductivity would mean topologically the loss of the Beltrami flow
property. One might say that the space-time sheets in TGD Universe represent analogs of supra
flow and this property is spoiled only by the finite size of the sheets. This strongly suggests that
the space-time sheets correspond to perfect fluid flows with very low viscosity to entropy ratio
and one application is to the observed perfect flow behavior of quark gluon plasma.

5. The current J = ®VV¥ has vanishing divergence if besides the orthogonality of the gradients
the functions ¥ and ® satisfy massless d’Alembert equation. This is natural for massless field
modes and when these functions represent constant wave vector and polarization also d’Alembert
equations are satisfied. One can actually add to VU a gradient of an arbitrary function of ®
this corresponds to U(1) gauge invariance and the addition to the polarization vector a vector
parallel to light-like four-momentum. One can replace ® by any function of ® so that one has
Abelian Lie algebra analogous to U(1) gauge algebra restricted to functions depending on ®
only.

The general Beltrami flow gives as a special case the kinetic flow associated by Monteiro and
O’Connell with plane waves. For ordinary plane wave with constant direction of momentum vector
and polarization vector one could take ® = cos(¢), ¢ = k- m and ¥ = € - m. This would give a real
flow. The kinematical factor in SYM diagrams corresponds to a complexified flow ® = exp(i¢) and
¥ = ¢+ w, where w is complex coordinate for polarization plane or more naturally, complexificaton of
the coordinate in polarization direction. The flow is not unique since gauge invariance allows to modify
¢ term. The complexified flow is volume preserving only in the formal algebraic sense and satisfies the
analog of Beltrami condition only in Dolbeault cohomology where d is identified as complex exterior
derivative (df = df/dz dz for holomorphic functions). In ordinary cohomology it fails. This formal
complex flow of course does not define a real diffeomorphism at space-time level: one should replace
Minkowski space with its complexification to get a genuine flow.

The finding of Monteiro and O’Connel encourages to think that the proposed more general Abelian
algebra pops up also in non-Abelian YM theories. Discretization by braids would actually select single
polarization and momentum direction. If the volume preserving Beltrami flows characterize the basic
building bricks of radiation solutions of both general relativity and YM theories, it would not be
surprising if the kinematic Lie algebra generators would appear in the vertices of YM theory and
replace color factors in the transition from YM theory to general relativity. In TGD framework the
construction of vertices at partonic two-surfaces would define local kinematic factors as effectively
constant ones.

2.7 How to define Dirac determinant?

The basic challenge is to define Dirac determinant hoped to give rise to the exponent of Kahler action
associated with the preferred extremal. The reduction to almost topological QFT gives this kind
of expression in terms of Chern-Simons action and one might hope of obtaining even more concrete
expression from the Chern-Simons Dirac determinant. The calculation of the previous section allowed
to calculate the most general spectrum of the modified Dirac operator. If the number of the eigenvalues
is infinite as the naive expectation is then Dirac determinant diverges if calculated as the product of the
eigenvalues and one must calculate it by using some kind of regularization procedure. Zeta function
regularization is the natural manner to do this.
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The following arguments however lead to a concrete vision how the regularization could be avoided
and a connection with infinite primes. In fact, the manifestly finite option and the option involving zeta
function regularization give K&hler functions differing only by a scaling factor and only the manifestly
finite option satisfies number theoretical constraints coming from p-adicization. An explicit expression
for the Dirac determinant in terms of geometric data of the orbit of the partonic 2-surface emerges.

Arithmetic quantum field theory defined by infinite emerges naturally. The lines of the generalized
Feynman graphs are characterized by infinite primes and the selection rules correlating the geometries
of the lines of the generalized Feynman graphs corresponds to the conservation of the sum of number
theoretic momenta log(p;) assignable to sub-braids corresponding to different primes p; assignable to
the orbit of parton. This conforms with the vision that infinite primes indeed characterize the geometry
of light-like 3-surfaces and therefore also of space-time sheets. The eigenvalues of the modified Dirac
operator are proportional 1/,/p; where p; are the primes appearing in the definition of the p-adic prime
and the interpretation as analogs of Higgs vacuum expectation values makes sense and is consistent
with p-adic length scale hypothesis and p-adic mass calculations. It must be emphasized that all this is
essentially due to single basic hypothesis, namely the reduction of quantum TGD to almost topological
QFT guaranteed by the Beltrami ansatz for field equations and by the weak form of electric-magnetic
duality.

2.7.1 Dirac determinant when the number of eigenvalues is infinite

At first sight the general spectrum looks the only reasonable possibility but if the eigenvalues cor-
relate with the geometry of the partonic surface as quantum classical correspondence suggests, this
conclusion might be wrong. The original hope was the number of eigenvalues would be finite so that
also determinant would be finite automatically. There were some justifications for this hope in the
definition of Dirac determinant based on the dimensional reduction of Dy as Dg = Dg 3 + Dy and
the identification of the generalized eigenvalues as those assigned to Dg 3 as analogs of energy eigen-
values assignable to the light-like 3-surface. It will be found that number theoretic input could allow
to achieve a manifest finiteness in the case of Do_g and that this option is the only possible one if
number theoretic universality is required.

If there are no constraints on the eigenvalue spectrum of De_g for a given partonic orbit, the naive
definition of the determinant gives an infinite result and one must define Dirac determinant using ¢
function regularization implying that K&hler function reduces to the derivative of the zeta function
¢p(s) -call it Dirac Zeta- associated with the eigenvalue spectrum.

Consider now the situation when the number of eigenvalues is infinite.

1. In this kind of situation zeta function regularization is the standard manner to define the Dirac
determinant. What one does is to assign zeta function to the spectrum- let us call it Dirac zeta
function and denote by (p(s)- as

(o(s) = D A" (2.7.1)
k

If the eigenvalue Ay has degeneracy g it appears g; times in the sum. In the case of harmonic
oscillator one obtains Riemann zeta for which sum representation converges only for Re(s) > 1.
Riemann zeta can be however analytically continued to the entire complex plane and the idea
is that this can be done also in the more general case.

2. By the basic conjecture Kéahler function corresponds to the logarithm of the Dirac determinant
and equals to the sum of the logarithms of the eigenvalues

d
K = log(H)\k):—%lszo . (2.7.2)

The expression on the left hand side diverges if taken as such but the expression on the right
had side based on the analytical continuation of the zeta function is completely well-defined and
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finite quantity. Note that the replacement of eigenvalues A, by their powers A} -or equivalently
the increase of the degeneracy by a factor n - brings in only a factor n to K: K — nKk.

3. Dirac determinant involves in the minimal situation only the integer multiples of pseudo-mass
scale A = 27/ L. One can consider also rational and even algebraic multiples ¢Lyin < Lmaz,
q > 1, of L, so that one would have several integer spectra simultaneously corresponding to
different braids. Here L,,;, and L4, are the extrema of the braid strand length determined
in terms of the effective metric as L = [ (g“’)*l/ 2dr. The question what multiples are involved
will be needed later.

4. Each rational or algebraic multiple of L,,;, gives to the zeta function a contribution which is of
same form so that one has

Lmin Lmaw
¢p Eq ((log(gz)s) , = R sq< oo (2.7.3)

Kaéhler function can be expressed as

K = Zlog()\n) = _dCC/:l)is(S) =— Zlog(qx) dil(;) oo’ x = % . (2.7.4)
n q

What is remarkable that the number theoretical details of (p determine only the overall scaling
factor of Kéhler function and thus the value of Kahler coupling strength, which would be purely
number theoretically determined if the hypothesis about the role of infinite primes is correct.
Also the value of R is irrelevant since it does not affect the Kéhler metric.

5. The dependence of Kédhler function on WCW degrees of freedom would be coded completely by
the dependence of the length scales qL,,;, on the complex coordinates of WCW: note that this
dependence is different for each scale. This is reminiscent of the coding of the shape of the drum
(or more generally - manifold) by the spectrum of its eigen frequencies. Now Kéhler geometry
would code for the dependence of the spectrum on the shape of the drum defined by the partonic
2-surface and the 4-D tangent space distribution associated with it.

What happens at the limit of vacuum extremals serves as a test for the identification of Kéahler
function as Dirac determinant. The weak form of electric magnetic duality implies that all com-
ponents of the induced Ké&hler field vanish simultaneously if Kéhler magnetic field cancels. In the
modified Chern-Simons Dirac equation one obtains L = [ (¢g"")~1/2dr. The modified gamma matrix

rr approaches a finite limit when K&hler magnetic field vanishes

" = V(20 Ay + Jay Ap)TF — 297 Jg TF (2.7.5)

ATT

The relevant component of the effective metric is ¢"" and is given by

g = ()2 = 4€TBVGTWJ/31€JHI€A7AV ) (2.7.6)

The limit is non-vanishing in general and therefore the eigenvalues remain finite also at this limit
as also the parameter Ly, = [ (Q”)*l/ 2dr defining the minimum of the length of the braid strand
defined by Kéhler magnetic flux line in the effective metric unless §"" goes to zero everywhere inside
the partonic surface. Chern-Simons action and Ké&hler action vanish for vacuum extremals so that in
this case one could require that Dirac determinant approaches to unity in a properly chosen gauge.
Dirac determinant should approach to unit for vacuum extremals indeed approaches to unity since
there are no finite eigenvalues at the limit §™" = 0.
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2.7.2 Hyper-octonionic primes

Before detailed discussion of the hyper-octonionic option it is good to consider the basic properties of
hyper-octonionic primes.

1. Hyper-octonionic primes are of form
I, = (no,n3,ni,ne,...,n7) , Hz = n% — an =p or p* . (2.7.7)
i

2. Hyper-octonionic primes have a standard representation as hyper-complex primes. The Minkowski
norm squared factorizes into a product as

na —ni = (no +n3)(ng —n3) . (2.7.8)

If one has ng # 0, the prime property implies ng — n3 = 1 so that one obtains ng = ng + 1 and
2ns + 1 = p giving

(nosn3) = ((p+1)/2,(p—1)/2) .
(2.7.9)

Note that one has (p +1)/2 odd for p mod 4 = 1) and (p + 1)/2 even for p mod 4 = 3). The
difference ng — n3 = 1 characterizes prime property.

If ng vanishes the prime prime property implies equivalence with ordinary prime and one has
n% = p?. These hyper-octonionic primes represent particles at rest.

3. The action of a discrete subgroup G(p) of the octonionic automorphism group Gs generates form
hyper-complex primes with nz # 0 further hyper-octonionic primes I(p, k) corresponding to the
same value of ng and p and for these the integer valued projection to M? satisfies n3—n% = n > p.
It is also possible to have a state representing the system at rest with (ng,n3) = ((p+1)/2,0)
so that the pseudo-mass varies in the range [\/p, (p 4+ 1)/2]. The subgroup G(ng,n3) C SU(3)
leaving invariant the projection (ng,ns3) generates the hyper-octonionic primes corresponding
to the same value of mass for hyper-octonionic primes with same Minkowskian length p and
pseudo-mass A =n > /p.

4. One obtains two kinds of primes corresponding to the lengths of pseudo-momenta equal to p or
\/D- The first kind of particles are always at rest whereas the second kind of particles can be
brought at rest only if one interprets the pseudo-momentum as M? projection. This brings in
mind the secondary p-adic length scales assigned to causal diamonds (CDs) and the primary
p-adic lengths scales assigned to particles.

If the M? projections of hyper-octonionic primes with length /P characterize the allowed basic
momenta, (p is sum of zeta functions associated with various projections which must be in the limits
dictated by the geometry of the orbit of the partonic surface giving upper and lower bounds L4, and
Lypin on the length L. Ly, is scaled up to \/ng — n3 Ly, for a given projection (ng,n3). In general
a given M? projection (ng,n3) corresponds to several hyper-octonionic primes since SU(3) rotations
give a new hyper-octonionic prime with the same M? projection. This leads to an inconsistency unless
one has a good explanation for why some basic momentum can appear several times. One might argue
that the spinor mode is degenerate due to the possibility to perform discrete color rotations of the
state. For hyper complex representatives there is no such problem and it seems favored. In any case,
one can look how the degeneracy factors for given projection can be calculated.



122 Chapter 2. Basic Extremals of the Kédhler Action

1. To calculate the degeneracy factor D(n associated with given pseudo-mass value A = n one must
find all hyper-octonionic primes II, which can have projection in M? with length n and sum up
the degeneracy factors D(n, p) associated with them:

D(n) = Y D(np) ,
P
D(nap) = Z D(p7n07n3) )
n2—n3=p
nd—-n3 = n, Hg(nomg):ng—ng—Zn?:n—Zn?:p . (2.7.10)

2. The condition n3 — n3 = n allows only Pythagorean triangles and one must find the discrete
subgroup G(ng,n3) C SU(3) producing hyper-octonions with integer valued components with
length p and components (ng,n3). The points at the orbit satisfy the condition

dni = p-n. (2.7.11)

The degeneracy factor D(p, ng, n3) associated with given mass value n is the number of elements
of in the coset space G(ng,ns,p)/H (no,ns,p), where H(ng, ns,p) is the isotropy group of given
hyper-octonionic prime obtained in this manner. For n3 —n% = p? D(ng,n3,p) obviously equals

to unity.

2.7.3 Three basic options for the pseudo-momentum spectrum

The calculation of the scaling factor of the Kéhler function requires the knowledge of the degeneracies
of the mass squared eigen values. There are three options to consider.

First option: all pseudo-momenta are allowed

If the degeneracy for pseudo-momenta in M? is same for all mass values- and formally characterizable
by a number N telling how many 2-D pseudo-momenta reside on mass shell n2 —n2 = m?2. In this case
zeta function would be proportional to a sum of Riemann Zetas with scaled arguments corresponding
to scalings of the basic mass m to m/q.

L. .
(p(s) = qujc(zog(qx)s) , z=2 (2.7.12)
This option provides no idea about the possible values of 1 < ¢ < Lyaz/Lmin. The number N
is given by the integral of relativistic density of states [ dk/2vk? +m? over the hyperbola and is
logarithmically divergent so that the normalization factor N of the Kéhler function would be infinite.

Second option: All integer valued pseudomomenta are allowed

Second option is inspired by number theoretic vision and assumes integer valued components for the
momenta using Muqe = 27/ Lmin as mass unit. p-Adicization motivates also the assumption that
momentum components using m.,q, as mass scale are integers. This would restrict the choice of the
number theoretical braids.

Integer valuedness together with masses coming as integer multiples of my,q, implies (Mg, A3) =
(no,n3) with on mass shell condition n3 —n3 = n?. Note that the condition is invariant under scaling.
These integers correspond to Pythagorean triangles plus the degenerate situation with ng = 0. There
exists a finite number of pairs (ng,ns) satisfying this condition as one finds by expressing ng as
no = n3 + k giving 2n3k + k% = p? giving n3 < n?/2,n9 < n?/2 + 1. This would be enough to have a
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finite degeneracy D(n) > 1 for a given value of mass squared and (p would be well defined. {p would
be a modification of Riemann zeta given by

Lmin

Cp ijcl(wg@z)s) S =T

Ci(s) g, gn>1 . (2.7.13)
For generalized Feynman diagrams this option allows conservation of pseudo-momentum and for loops
no divergences are possible since the integral over two-dimensional virtual momenta is replaced with
a sum over discrete mass shells containing only a finite number of points. This option looks thus
attractive but requires a regularization. On the other hand, the appearance of a zeta function having
a strong resemblance with Riemann zeta could explain the finding that Riemann zeta is closely related
to the description of critical systems. This point will be discussed later.

Third option: Infinite primes code for the allowed mass scales

According to the proposal of [K79] , [L4] the hyper-complex parts of hyper-octonionic primes appearing
in their infinite counterparts correspond to the M? projections of real four-momenta. This hypothesis
suggests a very detailed map between infinite primes and standard model quantum numbers and
predicts a universal mass spectrum [K79] . Since pseudo-momenta are automatically restricted to
the plane M?2, one cannot avoid the question whether they could actually correspond to the hyper-
octonionic primes defining the infinite prime. These interpretations need not of course exclude each
other. This option allows several variants and at this stage it is not possible to exclude any of these
options.

1. One must choose between two alternatives for which pseudo-momentum corresponds to hyper-
complex prime serving as a canonical representative of a hyper-octonionic prime or a projection
of hyper-octonionic prime to M?2.

2. One must decide whether one allows a) only the momenta corresponding to hyper-complex
primes, b) also their powers (p-adic fractality), or c¢) all their integer multiples (”Riemann
option”).

One must also decide what hyper-octonionic primes are allowed.

1. The first guess is that all hyper-complex/hyper-octonionic primes defining length scale /pLyin <
Loz O DLimin < Lpmas are allowed. p-Adic fractality suggests that also the higher p-adic length
scales p"/2Lypin < Limaz and p"Linin < Lmaz, n > 1, are possible.

It can however happen that no primes are allowed by this criterion. This would mean vanishing
Kéhler function which is of course also possible since Kéhler action can vanish (for instance, for
massless extremals). It seems therefore safer to allow also the scale corresponding to the trivial
prime (ng,n3) = (1,0) (1 is formally prime because it is not divisible by any prime different
from 1) so that at least Ly, is possible. This option also allows only rather small primes unless
the partonic 2-surface contains vacuum regions in which case Lj,q. is infinite: in this case all
primes would be allowed and the exponent of Kéhler function would vanish.

2. The hypothesis that only the hyper-complex or hyper-octonionic primes appearing in the infinite
hyper-octonionic prime are possible looks more reasonable since large values of p would be
possible and could be identified in terms of the p-adic length scale hypothesis. All hyper-
octonionic primes appearing in infinite prime would be possible and the geometry of the orbit of
the partonic 2-surface would define an infinite prime. This would also give a concrete physical
interpretation for the earlier hypothesis that hyper-octonionic primes appearing in the infinite
prime characterize partonic 2-surfaces geometrically. One can also identify the fermionic and
purely bosonic primes appearing in the infinite prime as braid strands carrying fermion number
and purely bosonic quantum numbers. This option will be assumed in the following.
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2.7.4 Expression for the Dirac determinant for various options

The expressions for the Dirac determinant for various options can be deduced in a straightforward
manner. Numerically Riemann option and manifestly finite option do not differ much but their number
theoretic properties are totally different.

Riemann option

All integer multiples of these basic pseudo-momenta would be allowed for Riemann option so that (p
would be sum of Riemann zetas with arguments scaled by the basic pseudo-masses coming as inverses
of the basic length scales for braid strands. For the option involving only hyper-complex primes the
formula for (p reads as

(p = ((log(Tmins)) + Zi,n C(log(wi,ns)) + Zi,n C(log(yins)) »
p?/zxmin < Tmaz y Pi >3 y Yinm = p?xmin < Tmaz - Di >2 5
(2.7.14)

Ly 7€Sp. Lipip is the maximal resp. minimal length L = f =124 for the braid strand defined
by the flux line of the Kéahler magnetic field in the effective metrlc The contributions correspond to
the effective hyper-complex prime p; = (1,0) and hyper-complex primes with Minkowski lengths ,/p
(p > 3) and p, p > 2. If also higher p-adic length scales L,, = p"/szm < Lipaz and Ly = p" Lpin <
Loz, n > 1, are allowed there is no further restriction on the summation. For the restricted option
only L,, n=0,2 is allowed.

The expressions for the Kéahler function and its exponent reads as

K = k(log(xmin) Zlog x;) Zlog(yi) ,

exp(K) = xH . xH

Imln

dC(S)

ds |s=0

1
Z; < Tmax > Yi S Tmaz k=— = 5109(27‘(’) ~ 9184 .

(2.7.15)

From the point of view of p-adicization program the appearance of strongly transcendental numbers
in the normalization factor of (p is not a well-come property.

If the scaling of the WCW K&hler metric by 1/k is a legitimate procedure it would allow to get
rid of the transcendental scaling factor k and this scaling would cancel also the transcendental from
the exponent of Kéahler function. The scaling is not however consistent with the view that K&ahler
coupling strength determines the normalization of the WCW metric.

This formula generalizes in a rather obvious manner to the cases when one allows M? projections
of hyper-octonionic primes.

Manifestly finite options

The options for which one does not allow summation over all integer multiples of the basic momenta
characterized by the canonical representatives of hyper-complex primes or their projections to M?
are manifestly finite. They differ from the Riemann option only in that the normalization factor
k =~ .9184 defined by the derivative Riemann Zeta at origin is replaced with k£ = 1. This would mean
manifest finiteness of (. Kéhler function and its exponent are given by

K = k(log(xmzn) + ZZOQ(QTZ) + Zlog(yz) y Lg < Trag y Yi < Zmaz ;
i i
1 1 1
exp(K) = . xH;x o

(2.7.16)
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Numerically the Kéhler functions do not differ much since their ratio is .9184. Number theoretically
these functions are however completely different. The resulting dependence involves only square roots
of primes and is an algebraic function of the lengths p; and rational function of x,;,. p-Adicization
program would require rational values of the lengths z,,;, in the intersection of the real and p-adic
worlds if one allows algebraic extension containing the square roots of the primes involved. Note that
in p-adic context this algebraic extension involves two additional square roots for p > 2 if one does
not want square root of p. Whether one should allow for R, also extension based on /p is not quite
clear. This would give 8-D extension.

For the more general option allowing all projections of hyper-complex primes to M? the general
form of Kahler function is same. Instead of pseudo-masses coming as primes and their square roots
one has pseudomasses coming as square roots of some integers n < p or n < p? for each p. In this
case the conservation laws are not so strong.

Note that in the case of vacuum extremals x,,;,, = oo holds true so that there are no primes
satisfying the condition and Ké&hler function vanishes as it indeed should.

More concrete picture about the option based on infinite primes

The identification of pseudo-momenta in terms of infinite primes suggests a rather concrete connection
between number theory and physics.

1. One could assign the finite hyper-octonionic primes II; making the infinite prime to the sub-
braids identified as Kéahler magnetic flux lines with the same length L in the effective metric.
The primes assigned to the finite part of the infinite prime correspond to single fermion and
some number of bosons. The primes assigned to the infinite part correspond to purely bosonic
states assignable to the purely bosonic braid strands. Purely bosonic state would correspond to
the action of a WCW Hamiltonian to the state.

This correspondence can be expanded to include all quantum numbers by using the pair of
infinite primes corresponding to the ”vacuum primes” X £ 1, where X is the product of all finite
primes [K79] . The only difference with respect to the earlier proposal is that physical momenta
would be replaced by pseudo-momenta.

2. Different primes p; appearing in the infinite prime would correspond to their own sub-braids.
For each sub-braid there is a N-fold degeneracy of the generalized eigen modes corresponding
to the number N of braid strands so that many particle states are possible as required by the
braid picture.

3. The correspondence of infinite primes with the hierarchy of Planck constants could allow to
understand the fermion-many boson states and many boson states assigned with a given finite
prime in terms of many-particle states assigned to n, and nj-sheeted singular covering spaces of
CD and CP, assignable to the two infinite primes. This interpretation requires that only single
p-adic prime p; is realized as quantum state meaning that quantum measurement always selects
a particular p-adic prime p; (and corresponding sub-braid) characterizing the p-adicity of the
quantum state. This selection of number field behind p-adic physics responsible for cognition
looks very plausible.

4. The correspondence between pairs of infinite primes and quantum states [K79] allows to interpret
color quantum numbers in terms of the states associated with the representations of a finite
subgroup of SU(3) transforming hyper-octonionic primes to each other and preserving the M?
pseudo-momentum. Same applies to SO(3). The most natural interpretation is in terms of wave
functions in the space of discrete SU(3) and SO(3) transforms of the partonic 2-surface. The
dependence of the pseudo-masses on these quantum numbers is natural so that the projection
hypothesis finds support from this interpretation.

5. The infinite prime characterizing the orbit of the partonic 2-surface would thus code which
multiples of the basic mass 27/ L, are possible. Either the M? projections of hyper-octonionic
primes or their hyper-complex canonical representatives would fix the basic M? pseudo-momenta
for the corresponding number theoretic braid associated. In the reverse direction the knowledge
of the light-like 3-surface, the CD and C P, coverings, and the number of the allowed discrete
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SU(3) and SU(2) rotations of the partonic 2-surface would dictate the infinite prime assignable
to the orbit of the partonic 2-surface.

One would also like to understand whether there is some kind of conservation laws associated
with the pseudo-momenta at vertices. The arithmetic QFT assignable to infinite primes would indeed
predict this kind of conservation laws.

1. For the manifestly finite option the ordinary conservation of pseudo-momentum conservation
at vertices is not possible since the addition of pseudo-momenta does not respect the condition
ng—ng = 1. In fact, this difference in the sum of hyper-complex prime momenta tells how many
momenta are present. If one applies the conservation law to the sum of the pseudo-momenta
corresponding to different primes and corresponding braids, one can have reactions in which the
number of primes involved is conserved. This would give the selection rule Ziv Di = Zf’ Df-
These reactions have interpretation in terms of the geometry of the 3-surface representing the
line of the generalized Feynman diagram.

2. Infinite primes define an arithmetic quantum field theory in which the total momentum defined
as > n;log(p;) is a conserved quantity. As matter fact, each prime p; would define a separately
conserved momentum so that there would be an infinite number of conservation laws. If the sum
>;log(p;) is conserved in the vertex , the primes p; associated with the incoming particle are
shared with the outgoing particles so that also the total momentum is conserved. This looks the
most plausible option and would give very powerful number theoretical selection rules at vertices
since the collection of primes associated with incoming line would be union of the collections
associated with the outgoing lines and also total pseudo-momentum would be conserved.

3. For the both Riemann zeta option and manifestly finite options the arithmetic QFT associated
with infinite primes would be realized at the level of pseudo-momenta meaning very strong
selection rules at vertices coding for how the geometries of the partonic lines entering the vertex
correlate. WCW integration would reduce for the lines of Feynman diagram to a sum over light-
like 3-surfaces characterized by (Zmin, Tmas) With a suitable weighting factor and the exponent
of Kéahler function would give an exponential damping as a function of x,x,.

Which option to choose?

One should be able to make two choices. One must select between hyper-complex representations
and the projections of hyper-octonionic primes and between the manifestly finite options and the one
producing Riemann zeta?

Hyper-complex option seems to be slightly favored over the projection option.

1. The appearance of the scales |/p;Tmin and possibly also their p" multiples brings in mind p-
adic length scales coming as \/ﬁ" multiples of C'P, length scale. The scales p; T, associated
with hyper-complex primes reducing to ordinary primes in turn bring in mind the size scales
assignable to C'Ds. The hierarchy of Planck constants implies also h/hy = \/n,np multiples of
these length scales but mass scales would not depend on n, and n, [K80] . For large values
of p the pseudo-momenta are almost light-like for hyper-complex option whereas the projection
option allows also states at rest.

2. Hyper-complex option predicts that only the p-adic pseudo-mass scales appear in the partition
function and is thus favored by the p-adic length scale hypothesis. Projection option predicts
also the possibility of the mass scales (not all of them) coming as 1/y/n. These mass scales are
however not predicted by the hierarchy of Planck constants.

3. The same pseudo-mass scale can appear several times for the projection option. This degeneracy
corresponds to the orbit of the hyper-complex prime under the subgroup of SU(3) respecting
integer property. Similar statement holds true in the case of SO(3): these groups are assigned
to the two infinite primes characterizing parton. The natural assignment of this degeneracy is to
the discrete color rotational and rotational degrees associated with the partonic 2-surface itself
rather than spinor modes at fixed partonic 2-surface. That the pseudo-mass would depend on
color and angular momentum quantum numbers would make sense.
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Consider next the arguments in favor of the manifestly finite option.

1. The manifestly finite option is admittedly more elegant than the one based on Riemann zeta
and also guarantees that no additional loop summations over pseudo-momenta are present. The
strongest support for the manifestly finite option comes from number theoretical universality.

2. One could however argue that the restriction of the pseudo-momenta to a finite number is not
consistent with the modified Dirac-Chern-Simons equation. Quantum classical correspondence
however implies correlation between the geometry of the partonic orbits and the pseudo-momenta
and the summation over all prime valued pseudo-momenta is present but with a weighting factor
coming from Kéhler function implying exponential suppression.

The Riemann zeta option could be also defended.

1. The numerical difference of the normalization factors of the Kéhler function is however only
about 8 per cent and quantum field theorists might interpret the replacement the length scales
z; and y; with z¢ and y¢, d ~ .9184, in terms of an anomalous dimension of these length scales.
Could one say that radiative corrections mean the scaling of the original preferred coordinates
so that one could still have consistency with number theoretic universality?

2. Riemann zeta with a non-vanishing argument could have also other applications in quantum
TGD. Riemann zeta has interpretation as a partition function and the zeros of partition func-
tions have interpretation in terms of phase transitions. The quantum criticality of TGD indeed
corresponds to a phase transition point. There is also experimental evidence that the distribu-
tion of zeros of zeta corresponds to the distribution of energies of quantum critical systems in
the sense that the energies correspond to the imaginary parts of the zeros of zeta [A33] .

The first explanation would be in terms of the analogs of the harmonic oscillator coherent
states with integer multiple of the basic momentum taking the role of occupation number of
harmonic oscillator and the zeros s = 1/2 + iy of ¢ defining the values of the complex coherence
parameters. TGD inspired strategy for the proof of Riemann hypothesis indeed leads to the
identification of the zeros as coherence parameters rather than energies as in the case of Hilbert-
Polya hypothesis [K71] and the vanishing of the zeta at zero has interpretation as orthogonality
of the state with respect to the state defined by a vanishing coherence parameter interpreted as
a tachyon. One should demonstrate that the energies of quantum states can correspond to the
imaginary parts of the coherence parameters.

Second interpretation could be in terms of quantum critical zero energy states for which the
”complex square root of density matrix” defines time-like entanglement coefficients of M-matrix.
The complex square roots of the probabilities defined by the coefficient of harmonic oscillator
states (perhaps identifiable in terms of the multiples of pseudo-momentum) in the coherent state
defined by the zero of ¢ would define the M-matrix in this situation. Energy would correspond
also now to the imaginary part of the coherence parameter. The norm of the state would be
completely well-defined.

Representation of configuration Kahler metric in terms of eigenvalues of Do_g

A surprisingly concrete connection of the configuration space metric in terms of generalized eigenvalue
spectrum of D¢ _g results. From the general expression of Kéhler metric in terms of Kéhler function

OxOrexp(K)  Opexp(K) dreap(K)
exp(K) exp(K) exp(K)

Gy = OhOK = (2.7.17)

and from the expression of exp(K) = []; A; as the product of of finite number of eigenvalues of D¢ _g
, the expression

OO ;O
Gy = Y _ NGy (2.7.18)

! Ai Ai A

i
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for the configuration space metric follows. Here complex coordinates refer to the complex coordinates
of configuration space. Hence the knowledge of the eigenvalue spectrum of D¢ _5(X?) as function of
some complex coordinates of configuration space allows to deduce the metric to arbitrary accuracy.
If the above arguments are correct the calculation reduces to the calculation of the derivatives of
log(\/PLmin/R), where L,y is the length of the Kéhler magnetic flux line between partonic 2-surfaces
with respect to the effective metric defined by the anti-commutators of the modified gamma matrices.
Note that these length scales have different dependence on WCW coordinates so that one cannot
reduce everything to L,,;,. Therefore one would have explicit representation of the basic building
brick of WCW Kahler metric in terms of the geometric data associated with the orbit of the partonic
2-surface.

The formula for the Kihler action of CP, type vacuum extremals is consistent with the
Dirac determinant formula

The first killer test for the formula of Kéhler function in terms of the Dirac determinant based on
infinite prime hypothesis is provided by the action of C'P; type vacuum extremals. One of the first
attempts to make quantitative predictions in TGD framework was the prediction for the gravitational
constant. The argument went as follows.

1. For dimensional reasons gravitational constant must be proportional to p-adic length scale
squared, where p characterizes the space-time sheet of the graviton. It must be also proportional
to the square of the vacuum function for the graviton representing a line of generalized Feynman
diagram and thus to the exponent exp(—2K) of Kéhler action for topologically condensed C Py
type vacuum extremals with very long projection. If topological condensation does not reduce
much of the volume of C'P, type vacuum extremal, the action is just K&hler action for C'P;
itself. This gives

hoG = Llexp(2Lk(CP;) = pR’exp(2Lk (CP,) . (2.7.19)

2. Using as input the constraint ax ~ aep, ~ 1/137 for Kéhler coupling strengths coming from the
comparison of the TGD prediction for the rotation velocity of distant galaxies around galactic
nucleus and the p-adic mass calculation for the electron mass, one obtained the result

1
erpLg(CPy) = —— . (2.7.20)
p X Hpi§23pi

The product contains the product of all primes smaller than 24 (p; € {2,3,5,7,11,13,17,19, 23}).
The expression for the Kéahler function would be just of the form predicted by the Dirac deter-
minant formula with L,,;, replaced with C' P, length scale. As a matter fact, this was the first
indication that particles are characterized by several p-adic primes but that only one of them is
7active”. As explained, the number theoretical state function reduction explains this.

3. The same formula for the gravitational constant would result for any prime p but the value
of Kéahler coupling strength would depend on prime p logarithmically for this option. I indeed
proposed that this formula fixes the discrete evolution of the Kahler coupling strength as function
of p-adic prime from the condition that gravitational constant is renormalization group invariant
quantity but gave up this hypothesis later. It is wisest to keep an agnostic attitude to this issue.

4. T also made numerous brave attempts to deduce an explicit formula for Kéhler coupling strength.
The general form of the formula is

1
— = klog(K?), K*=px2x3x5.x23 . (2.7.21)
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The problem is the exact value of k£ cannot be known precisely and the guesses for is value depend
on what one means with number theoretical universality. Should Kahler action be a rational
number? Or is it Kéhler function which is rational number (it is for the Dirac determinant
option in this particular case). Is Kéhler coupling strength g% /47 or g% a rational number?
Some of the guesses were k = 7/4 and k = 137/107. The facts that the value of Kéhler action
for the line of a generalized diagram is not exactly C'P, action and the value of ak is not known
precisely makes these kind of attempts hopeless in absence of additional ideas.

Also other elementary particles -in particular exchanged bosons- should involve the exponent of
Kahler action for CP, type vacuum extremal. Since the values of gauge couplings are gigantic as
compared to the expression of the gravitational constant the value of Kéahler action must be rather
small form them. CP, type vacuum extremals must be short in the sense that L,,;, in the effective
metric is very short. Note however that the p-adic prime characterizing the particle according to
p-adic mass calculations would be large also now. One can of course ask whether this p-adic prime
characterizes the gravitational space-time sheets associated with the particle and not the particle
itself. The assignment of p-adic mass calculations with thermodynamics at gravitational space-time
sheets of the particle would be indeed natural. The value of ax would depend on p in logarithmic
manner for this option. The topological condensation of could also eat a lot of C'P, volume for them.

Eigenvalues of Ds_g as vacuum expectations of Higgs field?

Infinite prime hypothesis implies the analog of p-adic length scale hypothesis but since pseudo-
momenta are in question, this need not correspond to the p-adic length scale hypothesis for the
actual masses justified by p-adic thermodynamics. Note also that L,,;, does not correspond to C'P;
length scale. This is actually not a problem since the effective metric is not M* metric and one can
quite well consider the possibility that L,,;, corresponds to C' P, length scale in the the induced metric.
The reason is that light-like 3- surface is in question the distance along the Kéhler magnetic flux line
reduces essentially to a distance along the partonic 2-surface having size scale of order C' P, length for
the partonic 2-surfaces identified as wormhole throats. Therefore infinite prime can code for genuine
p-adic length scales associated with the light-like 3-surface and quantum states would correspond by
number theoretical state function reduction hypothesis to single ordinary prime.

Support for this identification comes also from the expression of gravitational constant deduced
from p-adic length scale hypothesis. The result is that gravitational constant is assumed to be pro-
portional to have the expression G = Lf,escp(—QS k(CPy)), where p characterizes graviton or the
space-time sheet mediating gravitational interaction and exponent gives Kéahler action for C P type
vacuum extremal representing graviton. The argument allows to identify the p-adic prime p = Moy
associated with electron (largest Mersenne prime which does not correspond to super-astronomical
length scale) as the p-adic prime characterizing also graviton. The exponent of Kéhler action is pro-
portional to 1/p which conforms with the general expression for Kahler function. I have considered
several identifications of the numerical factor and one of them has been as product of primes 2 < p < 23
assuming that somehow the primes {2, ...,23, p} characterize graviton. This guess is indeed consistent
with the prediction of the infinite-prime hypothesis.

The first guess inspired by the p-adic mass calculations is that the squares A\? of the eigenvalues
of Dc_g could correspond to the conformal weights of ground states. Another natural physical
interpretation of A is as an analog of the Higgs vacuum expectation. The instability of the Higgs=0
phase would corresponds to the fact that A = 0 mode is not localized to any region in which ew
magnetic field or induced Kahler field is non-vanishing. By the previous argument one would have

order of magnitude estimate hg = 1/27/Lnin.-

1. The vacuum expectation value of Higgs is only proportional to the scale of A\. Indeed, Higgs
and gauge bosons as elementary particles correspond to wormhole contacts carrying fermion
and anti-fermion at the two wormhole throats and must be distinguished from the space-time
correlate of its vacuum expectation as something proportional to A. For free fermions the vacuum
expectation value of Higgs does not seem to be even possible since free fermions do not correspond
to wormhole contacts between two space-time sheets but possess only single wormhole throat
(p-adic mass calculations are consistent with this). If fermion suffers topological condensation as
indeed assumed to do in interaction region, a wormhole contact is generated and makes possible
the generation of Higgs vacuum expectation value.
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2. Physical considerations suggest that the vacuum expectation of Higgs field corresponds to a
particular eigenvalue \; of modified Chern-Simons Dirac operator so that the eigenvalues \;
would define TGD counterparts for the minima of Higgs potential. For the minimal option
one has only a finite number of pseudo-mass eigenvalues inversely proportional ,/p so that the
identification as a Higgs vacuum expectation is consistent with the p-adic length scale hypothesis.
Since the vacuum expectation of Higgs corresponds to a condensate of wormhole contacts giving
rise to a coherent state, the vacuum expectation cannot be present for topologically condensed
C P, type vacuum extremals representing fermions since only single wormhole throat is involved.
This raises a hen-egg question about whether Higgs contributes to the mass or whether Higgs is
only a correlate for massivation having description using more profound concepts. From TGD
point of view the most elegant option is that Higgs does not give rise to mass but Higgs vacuum
expectation value accompanies bosonic states and is naturally proportional to A;. With this
interpretation \; could give a contribution to both fermionic and bosonic masses.

3. If the coset construction for super-symplectic and super Kac-Moody algebra implying Equiva-
lence Principle is accepted, one encounters what looks like a problem. p-Adic mass calculations
require negative ground state conformal weight compensated by Super Virasoro generators in
order to obtain massless states. The tachyonicity of the ground states would mean a close anal-
ogy with both string models and Higgs mechanism. \? is very natural candidate for the ground
state conformal weights identified but would have wrong sign. Therefore it seems that A? can
define only a deviation of the ground state conformal weight from negative value and is positive.

4. In accordance with this A\? would give constant contribution to the ground state conformal
weight. What contributes to the thermal mass squared is the deviation of the ground state
conformal weight from half-odd integer since the negative integer part of the total conformal
weight can be compensated by applying Virasoro generators to the ground state. The first
guess motivated by cyclotron energy analogy is that the lowest conformal weights are of form
he = —n/2+ A? where the negative contribution comes from Super Virasoro representation. The
negative integer part of the net conformal weight can be canceled using Super Virasoro generators
but Ah. would give to mass squared a contribution analogous to Higgs contribution. The
mapping of the real ground state conformal weight to a p-adic number by canonical identification
involves some delicacies.

5. p-Adic mass calculations are consistent with the assumption that Higgs type contribution is
vanishing (that is small) for fermions and dominates for gauge bosons. This requires that the
deviation of A? with smallest magnitude from half-odd integer value in the case of fermions is
considerably smaller than in the case of gauge bosons in the scale defined by p-adic mass scale
1/L(k) in question. Somehow this difference could relate to the fact that bosons correspond to
pairs of wormhole throats.

Is there a connection between p-adic thermodynamics, hierarchy of Planck constants,
and infinite primes

The following observations suggest that there might be an intrinsic connection between p-adic ther-
modynamics, hierarchy of Planck constants, and infinite primes.

1. p-Adic thermodynamics [K48] is based on string mass formula in which mass squared is pro-
portional to conformal weight having values which are integers apart from the contribution of
the conformal weight of vacuum which can be non-integer valued. The thermal expectation
in p-adic thermodynamics is obtained by replacing the Boltzman weight exp(—E/T) of ordi-
nary thermodynamics with p-adic conformal weight p/T», where n is the value of conformal
weight and 1/T,, = m is integer values inverse p-adic temperature. Apart from the ground state
contribution and scale factor p-adic mass squared is essentially the expectation value

(n) = Lnglnnp (2.7.22)

>, g(n)pTe
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g(n) denotes the degeneracy of a state with given conformal weight and depends only on the
number of tensor factors in the representations of Virasoro or Super-Virasoro algebra. p-Adic

mass squared is mapped to its real counterpart by canonical identification Y x,p" — > x,p~ ™.

The real counterpart of p-adic thermodynamics is obtained by the replacement p 7» and gives
under certain additional assumptions in an excellent accuracy the same results as the p-adic
thermodynamics.

2. An intriguing observation is that one could interpret p-adic and real thermodynamics for mass
squared also in terms of number theoretic thermodynamics for the number theoretic momentum
log(p™) = nlog(p). The expectation value for this differs from the expression for (n) only by the
factor log(p).

3. In the proposed characterization of the partonic orbits in terms of infinite primes the primes
appearing in infinite prime are identified as p-adic primes. For minimal option the p-adic prime
characterizes ,/p- or p- multiple of the minimum length L, of braid strand in the effective
metric defined by modified Chern-Simons gamma matrice. One can consider also (,/p)" and
p" (p-adic fractality)- and even integer multiples of L., if they are below L,,q.. If light-like
3-surface contains vacuum regions arbitrary large p:s are possible since for these one has L;,;, —
oo. Number theoretic state function reduction implies that only single p can be realized -one
might say ”is active”- for a given quantum state. The powers p]* appearing in the infinite prime
have interpretation as many particle states with total number theoretic momentum n;log(p);.
For the finite part of infinite prime one has one fermion and n; —1 bosons and for the bosonic part
n; bosons. The arithmetic QFT associated with infinite primes - in particular the conservation
of the number theoretic momentum »_ n;log(p;) - would naturally describe the correlations
between the geometries of light-like 3-surfaces representing the incoming lines of the vertex of
generalized Feynman diagram. As a matter fact, the momenta associated with different primes
are separately conserved so that one has infinite number of conservation laws.

4. One must assign two infinite primes to given partonic two surface so that one has for a given
prime p two integers ny and n_. Also the hierarchy of Planck constants assigns to a given page
of the Big Book two integers and one has i = ngnyhg. If one has n, = ny and n, = n_ then
the reactions in which given initial number theoretic momenta ny ;log(p;) is shared between
final states would have concrete interpretation in terms of the integers n,, n, characterizing the
coverings of incoming and outgoing lines.

Note that one can also consider the possibility that the hierarchy of Planck constants emerges
from the basic quantum TGD. Basically due to the vacuum degeneracy of Kéhler action the
canonical momentum densities correspond to several values of the time derivatives of the imbed-
ding space oordinates so that for a given partonic 2-surface there are several space-time sheets
with same conserved quantities defined by isometry currents and Kéahler current. This forces the
introduction of N-fold covering of C'D x C'P, in order to describe the situation. The splitting
of the partonic 2-surface into N pieces implies a charge fractionization during its travel to the
upper end of C'D. One can also develop an argument suggesting that the coverings factorize to
coverings of C'D and CP, so that the number of the sheets of the covering is N = n,n; [K40] .

These observations make one wonder whether there could be a connection between p-adic thermo-
dynamics, hierarchy of Planck constants, and infinite primes.

1. Suppose that one accepts the identification n, = n4 and n, = n_. Could one perform a
further identification of these integers as non-negative conformal weights characterizing physical
states so that conservation of the number theoretic momentum for a given p-adic prime would
correspond to the conservation of conformal weight. In p-adic thermodynamics this conformal
weight is sum of conformal weights of 5 tensor factors of Super-Virasoro algebra. The number
must be indeed five and one could assign them to the factors of the symmetry group. One factor
for color symmetries and two factors of electro-weak SU(2)r, x U(1) are certainly present. The
remaining two factors could correspond to transversal degrees of freedom assignable to string
like objects but one can imagine also other identifications [K4§] .

2. If this interpretation is correct, a given conformal weight n = n, = ny (say) would correspond
to all possible distributions of five conformal weights n;, ¢ = 1,...,5 between the n, sheets of
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covering of C'D satisfying 2?21 n; = ng = ny. Single sheet of covering would carry only unit
conformal weight so that one would have the analog of fractionization also now and a possible
interpretation would be in terms of the instability of states with conformal weight n > 1.
Conformal thermodynamics would also mean thermodynamics in the space of states determined
by infinite primes and in the space of coverings.

3. The conformal weight assignable to the C'D would naturally correspond to mass squared but
there is also the conformal weight assignable to C'P, and one can wonder what its interpretation
might be. Could it correspond to the expectation of pseudo mass squared characterizing the
generalized eigenstates of the modified Dirac operator? Note that one should allow in the
spectrum also the powers of hyper-complex primes up to some maximum power p"me=/2 <
Linaz/ Limin so that Dirac determinant would be non-vanishing and Kéhler function finite. From
the point of conformal invariance this is indeed natural.

2.8 An attempt to understand preferred extremals of Kahler
action

There are pressing motivations for understanding the preferred extremals of K&ahler action. For in-
stance, the conformal invariance of string models naturally generalizes to 4-D invariance defined by
quantum Yangian of quantum affine algebra (Kac-Moody type algebra) characterized by two complex
coordinates and therefore explaining naturally the effective 2-dimensionality [K92]. The problem is
however how to assign a complex coordinate with the string world sheet having Minkowskian signature
of metric. One can hope that the understanding of preferred extremals could allow to identify two
preferred complex coordinates whose existence is also suggested by number theoretical vision giving
preferred role for the rational points of partonic 2-surfaces in preferred coordinates. The best one
could hope is a general solution of field equations in accordance with the hints that TGD is integrable
quantum theory.

A lot is is known about properties of preferred extremals and just by trying to integrate all this
understanding, one might gain new visions. The problem is that all these arguments are heuristic
and rely heavily on physical intuition. The following considerations relate to the space-time regions
having Minkowskian signature of the induced metric. The attempt to generalize the construction also
to Euclidian regions could be very rewarding. Only a humble attempt to combine various ideas to a
more coherent picture is in question.

The core observations and visions are following.

1. Hamilton-Jacobi coordinates for M* (discussed in this chapter) define natural preferred coordi-
nates for Minkowskian space-time sheet and might allow to identify string world sheets for X4
as those for M*. Hamilton-Jacobi coordinates consist of light-like coordinate m and its dual
defining local 2-plane M? C M* and complex transversal complex coordinates (w,w) for a plane
E2 orthogonal to M2 at each point of M*. Clearly, hyper-complex analyticity and complex
analyticity are in question.

2. Space-time sheets allow a slicing by string world sheets (partonic 2-surfaces) labelled by partonic
2-surfaces (string world sheets).

3. The quaternionic planes of octonion space containing preferred hyper-complex plane are labelled
by CP,, which might be called CPy"°? [K81]. The identification CP, = CP3"°? motivates the
notion of M8 — —M* x CP, duality [K23]. It also inspires a concrete solution ansatz assuming
the equivalence of two different identifications of the quaternionic tangent space of the space-
time sheet and implying that string world sheets can be regarded as strings in the 6-D coset
space G2/SU(3). The group Ga of octonion automorphisms has already earlier appeared in
TGD framework.

4. The duality between partonic 2-surfaces and string world sheets in turn suggests that the C P, =
C Py ? conditions reduce to string model for partonic 2-surfaces in C Py = SU(3)/U(2). String
model in both cases could mean just hypercomplex/complex analyticity for the coordinates of
the coset space as functions of hyper-complex/complex coordinate of string world sheet/partonic
2-surface.
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The considerations of this section lead to a revival of an old very ambitious and very romantic
number theoretic idea.

1. To begin with express octonions in the form o = ¢; + I¢o, where ¢; is quaternion and I is an
octonionic imaginary unit in the complement of fixed a quaternionic sub-space of octonions. Map
preferred coordinates of H = M* x C'P, to octonionic coordinate, form an arbitrary octonion
analytic function having expansion with real Taylor or Laurent coefficients to avoid problems
due to non-commutativity and non-associativity. Map the outcome to a point of H to get a
map H — H. This procedure is nothing but a generalization of Wick rotation to get an 8-D
generalization of analytic map.

2. Identify the preferred extremals of K&hler action as surfaces obtained by requiring the vanishing
of the imaginary part of an octonion analytic function. Partonic 2-surfaces and string world
sheets would correspond to commutative sub-manifolds of the space-time surface and of imbed-
ding space and would emerge naturally. The ends of braid strands at partonic 2-surface would
naturally correspond to the poles of the octonion analytic functions. This would mean a huge
generalization of conformal invariance of string models to octonionic conformal invariance and
an exact solution of the field equations of TGD and presumably of quantum TGD itself.

2.8.1 Basic ideas about preferred extremals
The slicing of the space-time sheet by partonic 2-surfaces and string world sheets

The basic vision is that space-time sheets are sliced by partonic 2-surfaces and string world sheets.
The challenge is to formulate this more precisely at the level of the preferred extremals of Kéhler
action.

1. Almost topological QFT property means that the Kahler action reduces to Chern-Simons terms
assignable to 3-surfaces. This is guaranteed by the vanishing of the Coulomb term in the action
density implied automatically if conserved Kahler current is proportional to the instanton current
with proportionality coefficient some scalar function.

2. The field equations reduce to the conservation of isometry currents. An attractive ansatz is that
the flow lines of these currents define global coordinates. This means that these currents are
Beltrami flows [B49] so that corresponding 1-forms J satisfy the condition J A dJ = 0. These
conditions are satisfied if

J=oVU

hold true for conserved currents. From this one obtains that ¥ defines global coordinate varying
along flow lines of J.

3. A possible interpretation is in terms of local polarization and momentum directions defined by
the scalar functions involved and natural additional conditions are that the gradients of ¥ and
® are orthogonal:

Vo .VU =0 ,
and that the W satisfies massless d’Alembert equation
VU =0
as a consequence of current conservation. If U defines a light-like vector field - in other words

VU VU =0 ,

the light-like dual of ® -call it ®.- defines a light-like like coordinate and ¢ and ®. defines a
light-like plane at each point of space-time sheet.
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If also ® satisfies d’Alembert equation

Vo =0 ,

also the current

K=UV®

is conserved and its flow lines define a global coordinate in the polarization plane orthogonal to
time-lik plane defined by local light-like momentum direction.

If @ allows a contination to an analytic function of the transversal complex coordinate, one
obtains a coordinatization of spacetime surface by ¥ and its dual (defining hyper-complex co-
ordinate) and w,w. Complex analyticity and its hyper-complex variant would allow to provide
space-time surface with four coordinates very much analogous with Hamilton-Jacobi coordinates
of M*.

This would mean a decomposition of the tangent space of space-time surface to orthogonal
planes defined by light-like momentum and plane orthogonal to it. If the flow lines of J defined
Beltrami flow it seems that the distribution of momentum planes is integrable.

4. General arguments suggest that the space-time sheets allow a slicing by string world sheets
parametrized by partonic 2-surfaces or vice versa. This would mean a intimate connection with
the mathematics of string models. The two complex coordinates assignable to the Yangian of
affine algebra would naturally relate to string world sheets and partonic 2-surfaces and the highly
non-trivial challenge is to identify them appropriately.

Hamilton-Jacobi coordinates for M*

The earlier attempts to construct preferred extremals [K11I] led to the realization that so called
Hamilton-Jacobi coordinates (m,w) for M* define its slicing by string world sheets parametrized by
partonic 2-surfaces. m would be pair of light-like conjugate coordinates associated with an integrable
distribution of planes M? and w would define a complex coordinate for the integrable distribution of
2-planes E? orthogonal to M?2. There is a great temptation to assume that these coordinates define
prefered coorinates for M?.

1. The slicing is very much analogous to that for space-time sheets and the natural question is how
these slicings relate. What is of special interest is that the momentum plane M? can be defined
by massless momentum. The scaling of this vector does not matter so that these planes are
labelled by points z of sphere S? telling the direction of the line M2 N E3, when one assigns rest
frame and therefore S? with the preferred time coordinate defined by the line connecting the tips
of C'D. This direction vector can be mapped to a twistor consisting of a spinor and its conjugate.
The complex scalings of the twistor (u, @) — Au,u/\) define the same plane. Projective twistor
like entities defining C'P; having only one complex component instead of three are in question.
This complex number defines with certain prerequisites a local coordinate for space-time sheet
and together with the complex coordinate of E? could serve as a pair of complex coordinates
(z,w) for space-time sheet. This brings strongly in mind the two complex coordinates appearing
in the expansion of the generators of quantum Yangian of quantum affine algebra [K92].

2. The coordinate ¥ appearing in Beltrami flow defines the light-like vector field defining M?
distribution. Its hyper-complex conjugate would define ¥, and conjugate light-like direction.
An attractive possibility is that ® allows analytic continuation to a holomorphic function of w.
In this manner one would have four coordinates for M* also for space-time sheet.

3. The general vision is that at each point of space-time surface one can decompose the tangent
space to M?(x) C M* = M2 x E? representing momentum plane and polarization plane E? C
E? x T(CP,). The moduli space of planes E? C E° is 8-dimensional and parametrized by
SO(6)/50(2) x SO(4) for a given E2. How can one achieve this selection and what conditions
it must satisfy? Certainly the choice must be integrable but this is not the only condition.
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Space-time surfaces as quaternionic surfaces

The idea that number theory determines classical dynamics in terms of associativity condition means
that space-time surfaces are in some sense quaternionic surfaces of an octonionic space-time. It took
several trials before the recent form of this hypothesis was achieved.

1.

Octonionic structure is defined in terms of the octonionic representaton of gamma matrices
of the imbedding space existing only in dimension D = 8 since octonion units are in one-one
correspondence with tangent vectors of the tangent space. Octonionic real unit corresponds to
a preferred time axes (and rest frame) identified naturally as that connecting the tips of C'D.
What modified gamma matrices mean depends on variational principle for space-time surface.
For volume action one would obtain induced gamma matrices. For Kahler action one obtains
something different. In particular, the modified gamma matrices do not define vector basis
identical with tangent vector basis of space-time surface.

Quaternionicity means that the modified gamma matrices defined as contractions of gamma
matrices of H with canonical momentum densities for Kahler action span quaternionic sub-
space of the octonionic tangent space [K31]. A further condition is that each quaternionic space
defined in this manner contains a preferred hyper-complex subspace of octonions.

The sub-space defined by the modified gamma matrices does not co-incide with the tangent
space of space-time surface in general so that the interpretation of this condition is far from
obvious. The canonical momentum densities need not define four independent vectors at given
point. For instance, for massless extremals these densities are proportional to light-like vector
so that the situation is degenerate and the space in question reduces to 2-D hyper-complex
sub-space since light-like vector defines plane M2.

The obvious questions are following.

1.

Does the analog of tangent space defined by the octonionic modified gammas contain the local
tangent space M2 C M* for preferred extremals? For massless extremals [KI1] this condition
would be true. The orthogonal decomposition T'(X*) = M2 @ E? can be defined at each point
if this is true. For massless extremals also the functions ¥ and ® can be identified.

. One should answer also the following delicate question. Can M? really depend on point z of

space-time? CP, as a moduli space of quaternionic planes emerges naturally if M? is same
everywhere. It however seems that one should allow an integrable distribution of M2 such that
M? is same for all points of a given partonic 2-surface.

How could one speak about fixed C'P, (the imbedding space) at the entire space-time sheet even
when M2 varies?

(a) Note first that |G defines the Lie group of octonionic automorphisms and G action is
needed to change the preferred hyper-octonionic sub-space. Various SU(3) subgroups of
G2 are related by G2 automorphism. Clearly, one must assign to each point of a string
world sheet in the slicing parameterizing the partonic 2-surfaces an element of G3. One
would have Minkowskian string model with G5 as a target space. As a matter fact, this
string model is defined in the target space G2/SU(3) having dimension D = 6 since SU(3)
automorphisms leave given SU(3) invariant.

(b) This would allow to identify at each point of the string world sheet standard quaternionic
basis - say in terms of complexified basis vectors consisting of two hyper-complex units and
octonionic unit g; with ”color isospin” Is = 1/2 and ”color hypercharge” ¥ = —1/3 and
its conjugate g; with opposite color isospin and hypercharge.

(¢) The C'P, point assigned with the quaternionic basis would correspond to the SU(3) rotation
needed to rotate the standard basis to this basis and would actually correspond to the first
row of SU(3) rotation matrix. Hyper-complex analyticity is the basic property of the
solutions of the field equations representing Minkowskian string world sheets. Also now the
same assumption is highly natural. In the case of string models in Minkowski space, the
reduction of the induced metric to standard form implies Virasoro conditions and similar
conditions are expected also now. There is no need to introduce action principle -just the
hyper-complex analycitity is enough-since Kéahler action already defines it.
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3. The WZW model inspired approach to the situation would be following. The parametrization
corresponds to a map g : X2 — G for which g defines a flat G4 connection at string world sheet.
WZW type action would give rise to this kind of situation. The transition G2 — G2/SU(3)
would require that one gauges SU(3) degrees of freedom by bringing in SU(3) connection.
Similar procedure for CP, = SU(3)/U(2) would bring in SU(3) valued chiral field and U(2)
gauge field. Instead of introducing these connections one can simply introduce G2/SU(3) and
SU(3)/U(2) valued chiral fields. What this observation suggests that this ansatz indeed predicts
gluons and electroweak gauge bosons assignable to string like objects so that the mathematical
picture would be consistent with physical intuition.

The two interpretations of C'P,

An old observation very relevant for what I have called M® — H duality [K23] is that the moduli space
of quaternionic sub-spaces of octonionic space (identifiable as M®) containing preferred hyper-complex
plane is CP,. Or equivalently, the space of two planes whose addition extends hyper-complex plane to
some quaternionic subspace can be parametrized by C P,. This C' P, can be called it C Py*°? to avoid
confusion. In the recent case this would mean that the space E?(x) C E2 x T(C Py) is represented by
a point of CP"°?. On the other hand, the imbedding of space-time surface to H defines a point of
"real” C'P,. This gives two different C Pss.

1. The highly suggestive idea is that the identification CP}*°? = CP, (apart from isometry) is
crucial for the construction of preferred extremals. Indeed, the projection of the space-time
point to C'P, would fix the local polarization plane completely. This condition for E?(z) would
be purely local and depend on the values of C' P, coordinates only. Second condition for E?(x)
would involve the gradients of imbedding space coordinates including those of C'P, coordinates.

2. The conditions that the planes M2 form an integrable distribution at space-like level and that
M? is determined by the modified gamma matrices. The integrability of this distribution for
M* could imply the integrability for X2. X* would differ from M* only by a deformation in
degrees of freedom transversal to the string world sheets defined by the distribution of M2s.

Does this mean that one can begin from vacuum extremal with constant values of C' P, coordi-
nates and makes them non-constant but allows to depend only on transversal degrees of freedom?
This condition is too strong even for simplest massless extremals for which C'P; coordinates de-
pend on transversal coorinates defined by € -m and € - k. One could however allow dependence
of C'Py coordinates on light-like M* coordinate since the modification of the induced metric is
light-like so that light-like coordinate remains light-like coordinate in this modification of the
metric.

Therefore, if one generalizes directly what is known about massless extremals, the most general
dependence of C'P, points on the light-like coordinates assignable to the distribution of M2
would be dependence on either of the light-like coordinates of Hamilton-Jacobi coordinates but
not both.

2.8.2 What could be the construction recipe for the preferred extremals
assuming CP, = CPy? identification?

The crucial condition is that the planes E?(x) determined by the point of C P, = C Py*°? identification
and by the tangent space of E2 x C'P, are same. The challenge is to transform this condition to an
explicit form. C Py = C'P3"°? identification should be general coordinate invariant. This requires that
also the representation of E? as (e?,e3) plane is general coordinate invariant suggesting that the use
of preferred C'P, coordinates -presumably complex Eguchi-Hanson coordinates- could make life easy.
Preferred coordinates are also suggested by number theoretical vision. A careful consideration of the
situation would be required.

The modified gamma matrices define a quaternionic sub-space analogous to tangent space of X*
but not in general identical with the tangent space: this would be the case only if the action were
4-volume. I will use the notation 7™ (X*) about the modified tangent space and call the vectors of
T (X*) modified tangent vectors. I hope that this would not cause confusion.
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CP, = CPZm"d condition

Quaternionic property of the counterpart of 7™ (X*) allows an explicit formulation using the tangent
vectors of T (X?).

1. The unit vector pair (es,e3) should correspond to a unique tangent vector of H defined by
the coordinate differentials dh* in some natural coordinates used. Complex Eguchi-Hanson
coordinates [L1] are a natural candidate for C'P, and require complexified octonionic imaginary
units. If octonionic units correspond to the tangent vector basis of H uniquely, this is possible.

2. The pair (eg, e3) as also its complexification (¢1 = ez + ies, g, = e2 — ie3) is expressible as a
linear combination of octonionic units I, ...I;y should be mapped to a point of CPy*% = CP,
in canonical manner. This mapping is what should be expressed explicitly. One should express
given (es,e3) in terms of SU(3) rotation applied to a standard vector. After that one should
define the corresponding C' P, point by the bundle projection SU(3) — CPx.

3. The tangent vector pair

(Dwht, Oh")

defines second representation of the tangent space of E?(x). This pair should be equivalent with
the pair (¢1,q,). Here one must be however very cautious with the choice of coordinates. If the
choice of w is unique apart from constant the gradients should be unique. One can use also real
coordinates (x,y) instead of (w = x + iy, w = = — iy) and the pair (e, e3). One can project the
tangent vector pair to the standard vielbein basis which must correspond to the octonioni basis

(&Ehk,@yhk) — (8Ihke‘,feA,8yhke,?)eA) < (ea,e3)

where the e4 denote the octonion units in 1-1 correspondence with vielbein vectors. This
expression can be compared to the expression of (es,e3) derived from the knowledge of CPy
projection.

Formulation of quaternionicity condition in terms of octonionic structure constants

One can consider also a formulation of the quaternionic tangent planes in terms of (es, e3) expressed
in terms of octonionic units deducible from the condition that unit vectors obey quaternionic algebra.
The expressions for octonionic resp. |quaternionic structure constants can be found at [A21] resp. [A25].

1. The ansatz is

{Ek:} = {17117E27E3} )
7 7
E2 = Egkek = ZEgkek 5 E3 = Egkek = ZEgkek 5
k=2 k=2
|By] = 1, |Es|=1. (2.8.1)

2. The multiplication table for octonionic units expressible in terms of octonionic triangle [A21]
gives

f¥ By, = By, Y™ By = —Fy , fM"FopFs =67 . (2.8.2)

Here the indices are raised by unit metric so that there is no difference between lower and upper
indices. Summation convention is assumed. Also the contribution of the real unit is present in
the structure constants of third equation but this contribution must vanish.
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3.

Explicit expression for the CP, = CP;

The conditions are linear and quadratic in the coefficients Fop and Fs3p and are expected to
allow an explicit solution. The first two conditions define homogenous equations which must
allow solution. The coefficient matrix acting on (Es, Es3) is of the form

(%)
-1 f ’

where 1 denotes unit matrix. The vanishing of the determinant of this matrix should be due to
the highly symmetric properties of the structure constants. In fact the equations can be written
as eigen conditions

f]_ o (E2 + ZE3) = $’L(E2 + ’LEg) s

and one can say that the structure constants are eigenstates of the hermitian operator defined
by I analogous to color hyper charge. Both values of color hyper charged are obtained.

mod conditions

The symmetry under SU(3) allows to construct the solutions of the above equations directly.

1.

One can introduce complexified basis of octonion units transforming like (1,1, 3, 3) under SU(3).
Note the analogy of triplet with color triplet of quarks. One can write complexified basis as
(1,e1,(q1,92,93), (G41G2,73)). The expressions for complexified basis elements are

1 . . .
(q1,92,q3) = \ﬁ(ez +ies, eq + ies, e + ie7) .

These options can be seen to be possible by studying loctonionic triangle in which all lines
containing 3 units defined associative triple: any pair of octonion units at this kind o fline can
be used to form pair of complexified unit and its conjugate. In the tangent space of M* x C P,
the basis vectors g, and go are mixtures of E2 and C'P, tangent vectors. gz involves only C' Py
tangent vectors and there is a temptation to interpret it as the analog of the quark having no
color isospin.

The quaternionic basis is real and must transform like (1,1,¢1,G;), where ¢; is any quark in
the triplet and @, its conjugate in antitriplet. Having fixed some basis one can perform SU(3)
rotations to get a new basis. The action of the rotation is by 3 x 3 special unitary matrix. The
over all phases of its rows do not matter since they induce only a rotation in (es, e3) plane not
affecting the plane itself. The action of SU(3) on ¢ is simply the action of its first row on

(q1, 92, q3) triplet:

@ — (U@ =Unq + Ui2ga + Ui3qs = 2141 + 2292 + 23q3
= zi(ex +ies) + za(eq + tes) + z3(es + te7) . (2.8.3)

The triplets (21, 22, z3) defining a complex unit vector and point of S°. Since overall phase does
not matter a point of C'P; is in question. The new real octonion units are given by the formulas

e2 — Re(z1)ez + Re(z2)es + Re(zg)eg — Im(z1)es — Im(z2)es — Im(z3)er
es — Im(z1)ea + Im(za)eq + Im(zs3)es + Re(z1)es + Re(za)es + Re(zz)er .
(2.8.4)

For instance the C'P, coordinates corresponding to the coordinate patch (21, 22, 23) with 23 # 0
are obtained as (£1,&2) = (21/ 23, 22/23).
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Using these expressions the equations expressing the conjecture C P, = C'Py*°¢ equivalence can be
expressed explicitly as first order differential equations. The conditions state the equivalence

(ea,e3) > (OhPefea,d b eflea) (2.8.5)

where e4 denote octonion units. The comparison of two pairs of vectors requires normalization of the
tangent vectors on the right hand side to unit vectors so that one takes unit vector in the direction of
the tangent vector. After this the vectors can be equated. This allows to expresses the contractions
of the partial derivatives with vielbein vectors with the 6 components of e; and e3. Each condition
gives 6+6 first order partial differential equations which are non-linear by the presence of the overal
normalization factor for the right hand side. The equations are invariant under scalings of (z,y). The
very special form of these equations suggests that some symmetry is involved.

It must be emphasized that these equations make sense only in preferred coordinates: ordinary
Minkowski coordinates and Hamiltonin-Jacobi coordinates for M* and Eguchi-Hanson complex co-
ordinates in which SU(2) x U(1) is represented linearly for C'P;. These coordinates are preferred
because they carry deep physical meaning.

Does TGD boil down to two string models?

It is good to look what have we obtained. Besides Hamilton-Jacobi conditions, and CP, = CPy*o?
conditions one has what one might call string model with 6-dimensional G5/SU(3) as targent space.
The orbit of string in G2/SU(3) allows to deduce the G2 rotation identifiable as a point of Go/SU(3)
defining what one means with standard quaternionic plane at given point of string world sheet. The
hypothesis is that hyper-complex analyticity solves these equations.

The conjectured electric-magnetic duality implies duality between string world sheet and partonic
2-surfaces central for the proposed mathematical applications of TGD [K41l, [K42| [K79| [K93]. This
duality suggests that the solutions to the CPy = CP3"°? conditions could reduce to holomorphy
with respect to the coordinate w for partonic 2-surface plus the analogs of Virasoro conditions. The
dependence on light-like coordinate would appear as a parametric dependence.

If this were the case, TGD would reduce at least partially to what might be regaded as dual
string models in Go/SU(3) and SU(3)/U(2) and also to string model in M* and X*! In the previous
arguments one ends up to string models in moduli spaces of string world sheets and partonic 2-surfaces.
TGD seems to yield an inflation of string models! This not actually surprising since the slicing of
space-time sheets by string world sheets and partonic 2-surfaces implies automatically various kinds
of maps having interpretation in terms of string orbits.

2.8.3 Could octonion analyticity solve the field equations?

The interesting question is what happens in the space-time regions with Euclidian signature of induced
metric. In this case it is not possible to introduce light-like plane at each point of the space-time
sheet. Nothing however prevents from applying the above described procedure to construct conserved
currents whose flow lines define global coordinates. In both cases analytic continuation allows to
extend the coordinates to complex coordinates. Therefore one would have two complex functions
satisfying Laplace equation and having orthogonal gradients.

1. When C P, projection is 4-dimensional, there is strong temptation to assume that these functions
could be reduced to complex C P, coordinates analogous to the Hamilton-Jacobi coordinates for
M*. Complex Eguchi-Hanson coordinates transforming linearly under U(2) C SU(3) define the
simplest candidates in this respect. Laplace-equations are satisfied utomatically since holomor-
phic functions are in question. The gradients are also orthogonal automatically since the metric
is Kéhler metric. Note however that one could argue that in innner product the conjugate of
the function appears. Any holomorphic map defines new coordinates of this kind. Note that the
maps need not be globally holomorphic since C P, projection of space-time sheet need not cover
the entire CPs.

2. For string like objects X* = X2 x Y2 ¢ M* x C'P, with Minkowskian signature of the metric
the coordinate pair would be hyper-complex coordinate in M* and complex coordinate in C'Ps.
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If X? has Euclidian signature of induced metric the coordinate in question would be complex
coordinate. The proposal in the case of C'P, allows all holomorphic functions of the complex
coordinates.

There is an objection against this construction. There should be a symmetry between M?* and
CPs but this is not the case. Therefore this picture cannot be quite correct.

Could the construction of new preferred coordinates by holomorphic maps generalize as electic-
magnetic duality suggests? One can imagine several options, which bring in mind old ideas that what
I have christened as "romantic stuff” [K81].

1. Should one generalize the holomorphic map to a quaternion analytic map with real Taylor
coefficients so that non-commutativity would not produce problems. One would map first M*
coordinates to quaternions, map these coordinates to new ones by quaternion analytic map
defined by a Taylor or even Laurnte expansion with real coefficients, and then map the resulting
quaternion valued coordinate back to hyper-quaternion defining four coordinates as fuctions in
M*. This procedure would be very much analogous to Wick rotation used in quantum field
theories. Similar quaternion analytic map be applied also in C' P, degrees of freedom followed
by the map of the quaternion to two complex numbers. This would give additional constraints
on the map. This option could be seen as a quaternionic generalization of conformal invariance.

The problem is that one decouples M* and CP, degrees of freedom completely. These degrees
are however coupled in the proposed construction since the E?(z) corresponds to subspace of
E2 x T(CP,). Something goes still wrong.

2. This motivates to imagine even more ambitious and even more romantic option realizing the
original idea about octonionic generalization of conformal invariance. Assume linear M* x C' P,
coordinates (Eguchi-Hanson coordinates transforming linearly under U(2) in the case of CPy).
Map these to octonionic coordinate h. Map the octonionic coordinate to itself by an octo-
nionic analytic map defined by Taylor or even Laurent series with real coefficients so that non-
commutativity and non-associativity do not cause troubles. Map the resulting octonion valued
coordinates back to ordinary H-coordinates and expressible as functions of original coordinates.

It must be emphasized that this would be nothing but a generalization of Wick rotation and its
inverse used routinely in quantum field theories in order to define loop integrals.

Could octonion real-analyticity make sense?

Suppose that one -for a fleeting moment- takes octonionic analyticity seriously. For space-time surfaces
themselves one should have in some sense quaternionic variant of conformal invariance. What does
this mean?

1. Could one regard space-time surfaces analogous to the curves at which the imaginary part of
analytic function of complex argument vanishes so that complex analyticity reduces to real
analyticity. One can indeed divide octonion to quaternion and its imaginary part to give o =
q1 + Ig2: q1 and g2 are quaternionis and I is octonionic imaginary unit in the complement of
the quaternionic sub-space. This decomposition actually appears in the standard construction
of octonions. Therefore 4-dimensional surfaces at which the imaginary part of octonion valued
function vanishes make sense and defined in well-defined sense quaternionic 4-surfaces.

This kind of definition would be in nice accord with the vision about physics as algebraic geome-
try. Now the algebraic geometry would be extended from complex realm to the octonionic realm
since quaternionic surfaces/string world sheets could be regarded as associative/commutative
sub-algebras of the algebra of the octionic real-analytic functions.

2. Could these surfaces correspond to quaternionic 4-surfaces defined in terms of the modified
gamma matrices or induced gamma matrices? Contrary to the original expectations it will be
found that only induced gamma matrices is a plausible option. This would be an enormous
simplification and would mean that the theory is exactly solvable in the same sense as string
models are: complex analyticity would be replaced with octonion analyticity. I have considered
this option in several variants using the notion of real octonion analyticity [K81] but have not
managed to build any satisfactory scenario.
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3. Hyper-complex and complex conformal symmetries would result by a restriction to hyper-
complex resp. complex sub-manifods of the imbedding space defined by string world sheets resp.
partonic 2-surfaces. The principle forcing this restriction would be commutativity. Yangian of
an affine algebra would unify these views to single coherent view [K92].

4-D n-point functions of the theory should result from the restriction on partonic 2-surfaces or
string world sheets with arguments of n-point functions identified as the ends of braid strands
so that a kind of analytic continuation from 2-D to the 4-D case would be in question. The
octonionic conformal invariance would be induced by the ordinary conformal invariance in ac-
cordance with strong form of General Coordinate Invariance.

4. This algebraic continuation of the ordinary conformal invariance could help to construct also
the representations of Yangians of affine Kac-Moody type algebras. For the Yangian symmetry
of 1+1 D integrable QFTs the charges are multilocal involving multiple integrals over ordered
multiple points of 1-D space. 1

In the recent case multiple 1-D space is replaced with a space-like 3-surface at the light-like end
of C'D. The point of the 1-D space appearing in the multiple integral are replaced by a partonic
2-surface represented by a collection of punctures. There is a strong temptation to assume
that the intermediate points on the line correspond to genuine physical particles and therefore
to partonic 2-surfaces at which the signature of the induced metric changes. If so, the 1-D
space would correspond to a closed curve connecting punctures of different partonic 2-surfaces
representing physical particles and ordered along a loop. The integral over multiple points would
correspond to an integral over WCW rather than over fixed back-ground space-time.

1-D space would be replaced with a closed curve going through punctures of a subset of partonic
2-surfaces associated with a space-like 3-surface. If a given partonic surface or a given puncture
can contribute only once to the multiple integral the multi-locality is bounded from above and
only a finite number of Yangian generators are obtained in this manner unless one allows the
number of partonic 2-surfaces and of punctures for them to vary. This variation is physically
natural and would correspond to generation of particle pairs by vacuum polarization. Although
only punctures would contribute, the Yangian charges would be defined in WCW rather than
in fixed space-time. Integral over positions of punctures and possible numbers of them would
be actually an integral over WCW. 2-D modular invariance of Yangian charges for the partonic
2-surfaces is a natural constraint.

The question is whether some conformal fields at the punctures of the partonic 2-surfaces ap-
pearing in the multiple integral define the basic building bricks of the conserved quantum charges
representing the multilocal generators of the Yangian algebra? Note that Wick rotation would
be involved.

What Wick rotation could mean?

Second definition of quaternionicity is on more shaky basis and motivated by the solutions of 2-
D Laplace equation: quaternionic space-time surfaces would be obtained as zero loci of octonion
real-analytic functions. Unfortunately octonion real-analyticity does not make sense in Minkowskian
signature.

One could understand octonion real-analyticity in Minkowskian signature if one could understand
the deeper meaning of Wick rotation. Octonion real analyticity formulated as a condition for the
vanishing of the imaginary part of octonion real-analytic function makes sense for in octonionic co-
ordinates for E* x C'P, with Euclidian signature of metric. M* x C'P, is however only a subspace
of complexified octonions and not closed with respect to multiplication so that octonion real-analytic
functions do not make sense in M* x CP, . Wick rotation should transform the solution candidate
defined by an octonion real-analytic function to that defined in M?* x CP,. A natural additional
condition is that Wick rotation should reduce to that taking M? C M* to E? C E*.

The following trivial observation made in the construction of Hamilton-Jacobi structure in M*
with Minkowskian signature of the induced metric (see the appendix of [K94]) as a Wick rotation of
Hermitian structure in E* might help here.

1. The components of the metric of E? in complex coordinates (z,%) for E? are given by g,z = —1
whereas the metric of M? in light-like coordinates (u = x+t,v = x—t) is given by gy, = —1. The
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metric is same and M? and E? correspond only to different interpretations for the coordinates!
One could say that M* x CP, and E* x C'P, have same metric tensor, Kéhler structure, and
spinor structure. Since only these appear in field equations, one could hope that the solutions
of field equations in M* x CP, and E* x C' P, are obtained by Wick rotation. This for preferred
extremals at least and if the field equations reduce to purely algebraic ones.

2. If one accepts the proposed construction of preferred extremals of Kéhler action discussed in
[K94], the field equations indeed reduce to purely algebraic conditions satisfied if space-time
surface possesses Hermitian structure in the case of Euclidian signature of the induced metric
and Hamilton-Jacobi structure in the case of Minkowskian signature. Just as in the case of
minimal surfaces, energy momentum tensor and second fundamental form have no common
non-vanishing components. The algebraization requires as a consistency condition Einstein’s
equations with a cosmological term. Gravitational constant and cosmological constant follow as
predictions.

3. If Wick rotation in the replacement of E? coordinates (z,%z) with M? coordinates (u,v) makes
sense, one can hope that field equations for the preferred extremals hold true also for a Wick
rotated surfaces obtained by mapping M? C M* to E? C E*. Also Einstein’s equations should
be satisfied by the Wick rotated metric with Euclidian signature.

4. Wick rotation makes sense also for the surfaces defined by the vanishing of the imaginary part
(complementary to quaternionic part) of octonion real-analytic function. Therefore one can hope
that this ansatz could work. Wick rotation is non-trivial geometrically. For instance, light-like
lines v = 0 of hyper-complex plane M? are taken to Z = 0 defining a point of complex plane E?2.
Note that non-invertible hyper-complex numbers correspond to the two light-like lines u = 0
and v = 0 whereas non-invertible complex numbers correspond to the origin of E?2.

5. If the conjecture holds true, one can apply to both factors in E* = E? x E? and to get preferred
extremals in M?2?2 x C'P,. Minkowski space M??2 is essential in twistor approach and the possi-
bility to carry out Wick rotation for preferred extremals could justify Wick rotation in quantum
theory.

What the non-triviality of the moduli space of the octonionic structures means?

The moduli space G2 of the octonionic structures is essentially the Galois group defined as maps of
octonions to itself respecting octonionic sum and multiplication. This raises the question whether
octonion analyticity should be generalized in such a manner that the global choice of the octonionic
imaginary units - in particular that of preferred commuting complex sub-space- would become local.
Physically this would correspond to the choice of momentum plane M2 for a position dependent
light-iike momentum defining the plane of non-physical polarizations.

This question is inspired by the general solution ansatz based on the slicing of space-time sheets
which involves the dependence of the choice of the momentum plane M2 on the point of string world
sheet. This dependence is parameterized by a point of G5/SU(3) and assumed to be constant along
partonic 2-surfaces. These slicings would be naturally associated with the two complex parts ¢; of the
quaternionic coordinate g; = ¢; 4+ Ico of the space-time sheet.

This dependence is well-defined only for the quaternionic 4-surface defining the space-time surface
and can be seen as a local choice of a preferred complex imaginary unit along string world sheets.
C' P, would parametrize the remaining geometric degrees of freedom. Should/could one extend this
dependence to entire 8-D imbedding space? This is possible if the 8-D imbedding space allows a slicing
by the string world sheets. If the string world sheets correspond to the string world sheets appearing
in the slicing of M* defined by Hamiton-Jacobi coordinates [K11], this slicing indeed exists.

Zero energy ontology and octonion analyticity

How does this picture relate to zero energy ontology and how partonic 2-surfaces and string world
sheets could be identified in this framework?

1. The intersection of the quaternionic four-surfaces with the 7-D light-like boundaries of C'Ds is 3-
D space-like surface. String world sheets are obtained as 2-D complex surfaces by putting ¢ = 0,
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where ¢ is the imaginary part of the quaternion coordinate ¢ = ¢; + Ico. Their intersections
with C'D boundaries are generally 1-dimensional and represent space-like strings.

2. Partonic 2-surfaces could correspond to the intersections of Re(cy) = constant 3-surfaces with
the boundaries of CD. The variation of Re(ci) would give a family of (possibly light-like)
3-surfaces whose intersection with the boundaries of C'D would be 2-dimensional. The interpre-
tation Re(c1) = constant surfaces as (possibly light-like) orbits of partonic 2-surfaces would be
natural. Wormhole throats at which the signature of the induced metric changes (by definition)
would correspond to some special value of Re(cq), naturally Re(cq) = 0.

What comes first in mind is that partonic 2-surfaces assignable to wormhole throats correspond
to co-complex 2-surfaces obtained by putting ¢; = 0 (or ¢; = constant) in the decomposition
g = ¢1 + ice. This option is consistent with the above assumption if I'm(c;) = 0 holds true at
the boundaries of C'D. Note that also co-quaternionic surfaces make sense and would have Eu-
clidian signature of the induced metric: the interpretation as counterparts of lines of generalized
Feynman graphs might make sense.

3. One can of course wonder whether also the poles of ¢; might be relevant. The most natural idea
is that the value of Re(c;) varies between 0 and oo between the ends of the orbit of partonic
2-surface. This would mean that ¢; has a pole at the other end of CD (or light-like orbit of
partonic 2-surface). In light of this the earlier proposal [K79] that zero energy states might
correspond to rational functions assignable to infinite primes and that the zeros/poles of these
functions correspond to the positive/negative energy part of the state is interesting.

The intersections of string world sheets and partonic 2-surfaces identifiable as the common ends
of space-like and time like brand strands would correspond to the points ¢ = ¢; + Ico = 0
and ¢ = oo + Icy, where co means real infinity. In other words, to the zeros and real poles
of quaternion analytic function with real coefficients. In the number theoretic vision especially
interesting situations correspond to polynomials with rational number valued coefficients and
rational functions formed from these. In this kind of situations the number of zeros and therefore
of braid strands is always finite.

Do induced or modified gamma matrices define quaternionicity?

The are two options to be considered: either induced or modified gamma matrices define quaternion-
icity.

1. There are several arguments supporting this view that induced gamma matrices define quater-
nionicity and that quaternionic planes are therefore tangent planes for space-time sheet.

(a) H — M?® correspondence is based on the observation that quaternionic sub-spaces of octo-

nions containing preferred complex sub-space are labelled by points of C'P,. The integra-
bility of the distribution of quaternionic spaces could follow from the parametrization by
points of CPy (CPy = CPy,04 condition). Quaternionic planes would be necessarily tangent
planes of space-time surface. Induced gamma matrices correspond naturally to the tangent
space vectors of the space-time surface.
Here one should however understand the role of the M* coordinates. What is the func-
tional form of M?* coordinates as functions of space-time coordinates or does this matter
at all (general coordinate invariance): could one choose the space-time coordinates as M*
coordinates for surfaces representable as graphs for maps M4 — C'P,? What about other
cases such as cosmic strings [K24]?

(b) Could one do entirely without gamma matrices and speak only about induced octonion
structure in 8-D tangent space (raising also dimension D = 8 to preferred role) with reduces
to quaternionic structure for quaternionic 4-surfaces. The interpretation of quaternionic
plane as tangent space would be unavoidable also now. In this approach there would be no
question about whether one should identify octonionic gamma matrices as induced gamma
matrices or as modified octonionic gamma matrices.

(¢) If quaternion analyticity is defined in terms of modified gamma matrices defined by the
volume action why it would solve the field equations for K&hler action rather than for
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minimal surfaces? Is the reason that quaternionic and octonionic analyticities defined as
generalized differentiability are not possible. The real and imaginary parts of quaternionic
real-analytic function with quaternion interpreted as bi-complex number are not analytic
functions of two complex variables of either complex variable. In 4-D situation minimal
surface property would be too strong a condition whereas Kéahler action poses much weaker
conditions. Octonionic real-analyticity however poses strong symmetries and suggests ef-
fective 2-dimensionality.

2. The following argument suggest that modified gamma matrices cannot define the notion of
quaternionic plane.

(a) Modified gamma matrices can define sub-spaces of lower dimensionality so that they do
not defined a 4-plane. In this case they cannot define CP, point so that CP, = C Py o?
identity fails. Massless extremals represents the basic example about this. Hydrodynamic
solutions defined in terms of Beltrami flows could represent a more general phase of this
kind.

(b) Modified gamma matrices are not in general parallel to the space-time surface. The CP,
part of field equations coming from the variation of Kéahler form gives the non-tangential
contribution. If the distribution of the quaternionic planes is integrable it defines another
space-time surface and this looks rather strange.

(¢) Integrable quaternionicity can mean only tangent space quaternionicity. For modified
gamma matrices this cannot be the case. Omne cannot assign to the octonion analytic
map modified gamma matrices in any natural manner.

The conclusion seems to be that induced gamma matrices or induced octonion structure must
define quaternionicity and quaternionic planes are tangent planes of space-time surface and therefore
define an integrable distribution. An open question is whether C P, = C'P"°? condition implies the
integrability automatically.

Volume action or Kéahler action?

What seems clear is that quaternionicity must be defined by the induced gamma matrices obtained as
contractions of canonical momentum densities associated with volume action with imbedding space
gamma matrices. Probably equivalent definition is in terms of induced octonion structure. For the
believer in strings this would suggest that the volume action is the correct choice. There are however
strong objections against this choice.

1. In 2-dimensional case the minimal surfaces allow conformal invariance and one can speak of
complex structure in their tangent space. In particular, string world sheets can be regarded as
complex 2-surfaces of quaternionic space-time surfaces. In 4-dimensional case the situation is
different since quaternionic differentiability fails by non-commutativity. It is quite possible that
only very few minimal surfaces (volume action) are quaternionic.

2. The possibility of Beltrami flows is a rather plausible property of quite many preferred extremals
of Kéhler action. Beltrami flows are also possible for a 4-D minimal surface action. In particular,
M* translations would define Beltrami flows for which the 1-forms would be gradients of linear
M* coordinates. If M* coordinate can be used on obtains flows in directions of all coordinate
axes. Hydrodynamical picture in the strong form therefore fails whereas for Kahler action various
isometry currents could be parallel (as they are for massless extremals).

3. For volume action topological QFT property fails as also fails the decomposition of solutions to
massless quanta in Minkowskian regions. The same applies to criticality. The crucial vacuum
degeneracy responsible for most nice features of Kahler action is absent and also the effective
2-dimensionality and almost topological QFT property are lost since the action does not reduce
to 3-D term.

One can however keep Kahler action and define quaternionicity in terms of induced gamma matrices
or induced octonion structure. Preferred extremals could be identified as extremals of Kéahler action
which are also quaternionic 4-surfaces.
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1. Preferred extremal property for Kéhler action could be much weaker condition than minimal
surface property so that much larger set of quaternionic space-time surfaces would be extremals
of the Kahler action than of volume action. The reason would be that the rank of energy
momentum tensor for Maxwell action tends to be smaller than maximal. This expectation is
supported by the vacuum degeneracy, the properties of massless extremals and of C'P, type
vacuum extremals, and by the general hydrodynamical picture.

2. There is also a long list of beautiful properties supporting Kéahler action which should be also
familiar: effective 2-dimensionality and slicing of space-time surface by string world sheets and
partonic 2-surfaces, reduction to almost topological QFT and to abelian Chern-Simons term,
weak form of electric-magnetic duality, quantum criticality, spin glass degeneracy, etc...

Are quaternionicities defined in terms of induced gamma matrices resp. octonion real-
analytic maps equivalent?

Quaternionicity could be defined by induced gamma matrices or in terms of octonion real-analytic
maps. Are these two definitions equivalent and how could one test the equivalence?

1. The calculation technical problem is that space-time surfaces are not defined in terms of imbed-
ding map involving some coordinate choice but in terms of four vanishing conditions for the
imaginary part of the octonion real-analytic function expressible as biquaternion valued func-
tions.

2. Integrability to 4-D surface is achieved if there exists a 4-D closed Lie algebra defined by vector
fields identifiable as tangent vector fields. This Lie algebra can be generalized to a local 4-D
Lie algebra. One cannot however represent octonionic units in terms of 8-D vector fields since
the commutators of the latter do not form an associative algebra. Also the representation of 7
octonionic imaginary units as 8-D vector fields is impossible since the algebra in question is non-
assciative Malcev algebra [A17] which can be seen as a Lie algebra over non-associative number
field (one speaks of [7-dimensional cross product| [A30]). One must use instead of vector fields
either octonionic units as such or octonionic gamma ”matrices” to represent tangent vectors. The
use of octonionic units as such would mean the introduction of the notion of octonionic tangent
space structure. That the subalgebra generated by any two octonionic units is associative brings
strongly in mind effective 2-dimensionality.

3. The tangent vector fields of space-time surface in the representation using octonionic units can
be identified in the following manner. Map can be defined using 8-D octonionic coordinates
defined by standard M* coordinates or possibly Hamilton-Jacobi coordinates and C' P, complex
coordinates for which U(2) is represented linearly. Gamma ”matrices” for H using octonionic
representation are known in these coordinates. One can introduce the 8 components of the image
of a given point under the octonion real-analytic map as new imbedding space coordinates. One
can calculate the covariant gamma matrices of H in these coordinates.

What should check whether the octonionic gamma matrices associated with the four non-
vanishing coordinates define quaternionic (and thus associative) algebra in the octonionic basis
for the gamma matrices. Also the interpretation as a associative subspace of local Malcev alge-
bra elements is possible and one should check whether if the algebra reduces to a quaternionic
Lie-algebra. Local SO(2) x U(1) algebra should emerge in this manner.

4. Can one identify quaternionic imaginary units with vector fields generating SO(3) Lie algebra
or its local variant? The Lie algebra of rotation generators defines algebra equivalent with that
based on commutars of quaternionic units. Could the slicing of space-time sheet by time axis
define local SO(3) algebra? Light-like momentum direction and momentum direction and its
dual define as their sum space-like vector field and together with vector fields defining transversal
momentum directions they might generate a local SO(3) algebra.

Questions related to quaternion real-analyticity

There are many poorly understood issues and and the following questions represent only some of very
many such questions picked up rather randomly.
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1. The above considerations are restricted to Minkowskian regions of space-time sheets. What
happens in the Euclidian regions? Does the existence of light-like Beltrami field and its dual
generalize to the existence of complex vector field and its dual?

2. It would be nice to find a justification for the notion of C'D from basic principles. The condition
qq = 0 implies ¢ = 0 for quaternions. For hyper-quaternionic subspace of complexified quater-
nions obtained by Wick rotation it implies gg = 0 corresponds the entire light-cone boundary. If
n-point functions can be identified identified as products of quaternion valued n-point functions
and their quaternionic conjugates, the outcome could be proportional to 1/¢g having poles at
light-cone boundaries or C'D boundaries rather than at single point as in Euclidian realm.

3. This correspondence of points and light-cone boundaries would effectively identify the points
at future and past light-like boundaries of C'D along light rays. Could one think that only
the 2-sphere at which the upper and lower light-like boundaries of C'D meet remains after this
identification. The structure would be homologically very much like C' P, which is obtained by
compactifying E* by adding a 2-sphere at infinity. Could this CD — C' Py correspondence have
some deep physical meaning? Do the boundaries of C'D somehow correspond to zeros and/or
poles of quaternionic analytic functions in the Minkowskian realm? Could the light-like orbits of
partonic 2-surfaces at which the signature of the induced metric changes correspond to similar
counterparts of zeros or poles when the quaternion analytic variables is obtained as quaternion
real analytic function of H coordinates regarded as bi-quaternions?

4. Could braids correspond to zeros and poles of an octonion real-analytic function? Consider
the partonic 2-surfaces at which the signature of the induced metric changes. The intersections
of these surfaces with string world sheets at the ends of C'Ds. contain only complex and thus
commutative points meaning that the imaginary part of bi-complex number representing quater-
nionic value of octonion real-analytic function vanishes. Braid ends would thus correspond to
the origins of local complex coordinate patches. Finite measurement resolution would be forced
by commutativity condition and correlate directly with the complexity of the partonic 2-surface
measured by the minimal number of coordinate patches. Its realization would be as an upper
bound on the number of braid strands. A natural expectation would be that only the values of
n-point functions at these points contribute to scattering amplitudes. Number theoretic braids
would be realized but in a manner different from the original guess.

How complex analysis could generalize?

One can make several questions related to the possible generalization of complex analysis to the
quaternionic and octonionic situation.

1. Does the notion of analyticity in the sense that derivatives df /dq and df /do make sense hold true?
The answer is "No”: non-commutativity destroys all hopes about this kind of generalization.
Octonion and quaternion real-analyticity has however a well-defined meaning.

2. Could the generalization of residue calculus by keeping interaction contours as 1-D curves make
sense? Since residue formulas is the outcome of the fact that any analytic function g can be
written as g = df /dz locally, the answer is "No”.

3. Could one generalize of the residue calculus by replacing 1-dimensional curves with 4-D surfaces
-possibly quaternionic 4-surfaces? Could one reduce the 4-D integral of quaternion analytic
function to a double residue integral? This would be the case if the quaternion real-analytic
function of ¢ = ¢1 + Ice could be regarded as an analytic function of complex arguments ¢y
and cp. This is not the case. The product of two octonions decomposed to two quaternions as
0; = qi1 + Iqi2 , i = a,b reads as

040y = Ga1qb1 — Tao@v2 + 1(To1 T2 — Qa2qv1) - (2.8.6)

The conjugations result from the anticommutativity of imaginary parts and I. This formula
gives similar formula for quaternions by restriction. As a special cas o, = 0, = q1 + Ig> one has



2.9. In what sense TGD could be an integrable theory? 147

0° = ¢ — Qo2 + 1(@102 — G201)

From this it is clear that the real part of an octonion real-analytic function cannot be regarded as
quaternion-analytic function unless one assumes that the imaginary part ¢ vanishes. By similar
argument real part of quaternion real-analytic function ¢ = ¢; 4+ Ico fails to be analytic unless
one restricts the consideration to a surface at which one has ¢o = 0. These negative results are
obviously consistent with the effective 2-dimensionality.

4. One must however notice that physicists use often what might be called fanalytization trickl [Al]
working if the non-analytic function f(z,y) = f(z,%) is differentiable. The trick is to inter-
pret z and Z as independent variables. In the recent case this is rather natural. Wick rotation
could be used to transform the integral over the space-time sheet to integral in quaternionic
domain. For 4-dimensional integrals of quaternion real-analytic function with integration mea-
sure proportional to dcidé;dcadcs one could formally define the integral using multiple residue
integration with four complex variables. The constraint is that the poles associated with ¢; and
¢; are conjugates of each other. Quaternion real-analyticity should guarantee this. This would
of course be a definition of four-dimensional integral and might work for the 4-D generalization
of conformal field theory.

Mandelbrot and Julia sets are fascinating fractals and already now more or less a standard piece
of complex analysis. The fact that the iteration of octonion real-analytic map produces a sequence
of space-time surfaces and partonic 2-surfaces encourages to ask whether these notions -and more
generally, the dynamics based on iteration of analytic functions - might have a higher-dimensional
generalization in the proposed framework.

1. The canonical Mandelbrot set| corresponds to the set of the complex parameters c in f(z2) = 22 +c
for which iterates of z = 0 remain finite. In octonionic and quaternionic real-analytic case c
would be real so that one would obtain only the intersection of the Mandelbrot set with real
axes and the outcome would be rather uninteresting. This is true quite generally.

2. Julia set| corresponds to the boundary of the Fatou set in which the dynamics defined by the
iteration of f(z) by definition behaves in a regular manner. In Julia set the behavior is chaotic.
Julia set can be defined as a set of complex plane resulting by taking inverse images of a generic
point belonging to the Julia set. For polynomials Julia set is the boundary of the region in which
iterates remain finite. In Julia set the dynamics defined by the iteration is chaotic.

Julia set could be interesting also in the recent case since it could make sense for real analytic
functions of both quaternions and octonions, and one might hope that the dynamics determined
by the iterations of octonion real-analytic function could have a physical meaning as a space-
time correlate for quantal self-organization by quantum jump in TGD framework. Single step in
iteration would be indeed a very natural space-time correlate for quantum jump. The restriction
of octonion analytic functions to string world sheets should produce the counterparts of the
ordinary Julia sets since these surfaces are mapped to themselves under iteration and octonion
real-analytic functions reduces to ordinary complex real-analytic functions at them. Therefore
one might obtain the counterparts of Julia sets in 4-D sense as extensions of ordinary Julia sets.
These extensions would be 3-D sets obtained as piles of ordinary Julia sets labelled by partonic
2-surfaces.

2.9 In what sense TGD could be an integrable theory?

During years evidence supporting the idea that TGD could be an integrable theory in some sense has
accumulated. The challenge is to show that various ideas about what integrability means form pieces
of a bigger coherent picture. Of course, some of the ideas are doomed to be only partially correct or
simply wrong. Since it is not possible to know beforehand what ideas are wrong and what are right
the situation is very much like in experimental physics and it is easy to claim (and has been and will
be claimed) that all this argumentation is useless speculation. This is the price that must be paid for
real thinking.
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Integrable theories allow to solve nonlinear classical dynamics in terms of scattering data for a
linear system. In TGD framework this translates to quantum classical correspondence. The solutions
of modified Dirac equation define the scattering data. This data should define a real analytic function
whose octonionic extension defines the space-time surface as a surface for which its imaginary part
in the representation as bi-quaternion vanishes. There are excellent hopes about this thanks to the
reduction of the modified Dirac equation to geometric optics.

In the following I will first discuss briefly what integrability means in (quantum) field theories, list
some bits of evidence for integrability in TGD framework, discuss once again the question whether the
different pieces of evidence are consistent with other and what one really means with various notions.
An an outcome I represent what I regard as a more coherent view about integrability of TGD. The
notion of octonion analyticity developed in the previous section is essential for the for what follows.

2.9.1 What integrable theories are?

The following is an attempt to get some bird’s eye of view about the landscape of integrable theories.

Examples of integrable theories

Integrable theories are typically non-linear 14+1-dimensional (quantum) field theories. Solitons and
various other particle like structures are the characteristic phenomenon in these theories. Scattering
matrix is trivial in the sense that the particles go through each other in the scattering and suffer only a
phase change. In particular, momenta are conserved. Korteveg-de Vries equation [B9)was motivated
by the attempt to explain the experimentally discovered shallow water wave preserving its shape
and moving with a constant velocity. Sine-Gordon equation| [BI15] describes geometrically constant
curvature surfaces and defines a Lorentz invariant non-linear field theory in 1+1-dimensional space-
time, which can be applied to Josephson junctions (in TGD inspired quantum biology it is encountered
in the model of nerve pulse [K66]). Non-linear Schrodinger equation| [B12] having applications to optics
and water waves represents a further example. All these equations have various variants.

From TGD point of view conformal field theories represent an especially interesting example of
integrable theories. (Super-)conformal invariance is the basic underlying symmetry and by its infinite-
dimensional character implies infinite number of conserved quantities. The construction of the theory
reduces to the construction of the representations of (super-)conformal algebra. One can solve 2-
point functions exactly and characterize them in terms of (possibly anomalous) scaling dimensions of
conformal fields involved and the coefficients appearing in 3-point functions can be solved in terms
of fusion rules leading to an associative algebra for conformal fields. The basic applications are to
2-dimensional critical thermodynamical systems whose scaling invariance generalizes to conformal
invariance. String models represent second application in which a collection of super-conformal field
theories associated with various genera of 2-surface is needed to describe loop corrections to the
scattering amplitudes. Also moduli spaces of conformal equivalence classes become important.

Topological quantum field theories are also examples of integrable theories. Because of its inde-
pendence on the metric Chern-Simons action is in 3-D case the unique action defining a topological
quantum field theory. The calculations of knot invariants (for TGD approach see [K41]), topological
invariants of 3-manifolds and 4-manifolds, and topological quantum computation| (for a model of DNA
as topological quantum computer see [K29]) represent applications of this approach. TGD as almost
topological QFT means that the Kahler action for preferred extremals reduces to a surface term by
the vanishing of Coulomb term in action and by the weak form of electric-magnetic duality reduces
to Chern-Simons action. Both Euclidian and Minkowskian regions give this kind of contribution.

N =4 SYM is the a four-dimensional and very nearly realistic candidate for an integral quantum
field theory. The observation that twistor amplitudes allow also a dual of the 4-D conformal symmetry
motivates the extension of this symmetry to its infinite-dimensional Yangian variant [A39]. Also
the enormous progress in the construction of scattering amplitudes suggests integrability. In TGD
framework Yangian symmetry would emerge naturally by extending the symplectic variant of Kac-
Moody algebra from light-cone boundary to the interior of causal diamond and the Kac-Moody algebra
from light-like 3-surface representing wormhole throats at which the signature of the induced metric
changes to the space-time interior [K92].
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About mathematical methods

The mathematical methods used in integrable theories are rather refined and have contributed to the
development of the modern mathematical physics. Mention only quantum groups, conformal algebras,
and Yangian algebras.

The basic element of integrability is the possibility to transform the non-linear classical problem
for which the interaction is characterized by a potential function or its analog to a linear scattering
problem depending on time. For instance, for the ordinary Schrodinger function one can solve potential
once single solution of the equation is known. This does not work in practice. One can however gather
information about the asymptotic states in scattering to deduce the potential. One cannot do without
information about bound state energies too.

In TGD framework asymptotic states correspond to partonic 2-surfaces at the two light-like bound-
aries of CD (more precisely: the largest CD involved and defining the IR resolution for momenta).
From the scattering data coding information about scattering for various values of energy of the
incoming particle one deduced the potential function or its analog.

1. The basic tool is inverse scattering transform known as Gelfand-Marchenko-Levitan (GML)
transform| described in simple terms in [B19].

(a) In 141 dimensional case the S-matrix characterizing scattering is very simple since the
only thing that can take place in scattering is reflection or transmission. Therefore the S-
matrix elements describe either of these processes and by unitarity the sum of corresponding
probabilities equals to 1. The particle can arrive to the potential either from left or right
and is characterized by a momentum. The transmission coefficient can have a pole meaning
complex (imaginary in the simplest case) wave vector serving as a signal for the formation
of a bound state or resonance. The scattering data are represented by the reflection and
transmission coefficients as function of time.

(b) One can deduce an integral equation for a propagator like function K (¢, x) describing how
delta pulse moving with light velocity is scattered from the potential and is expressible in
terms of time integral over scattering data with contributions from both scattering states
and bound states. The derivation of GML transform [B19] uses time reversal and time
translational invariance and causality defined in terms of light velocity. After some tricks
one obtains the integral equation as well as an expression for the time independent potential
as V(z) = K(x,z). The argument can be generalized to more complex problems to deduce
the GML transform.

2. The so called Lax pair|is one manner to describe integrable systems [B10]. Lax pair consists of
two operators L and M. One studies what might be identified as ”energy” eigenstates satisfying
L(z,t)¥ = AU. X does not depend on time and one can say that the dynamics is associated
with x coordinate whereas as t is time coordinate parametrizing different variants of eigenvalue
problem with the same spectrum for L. The operator M (t) does not depend on z at all and the
independence of A on time implies the condition

L =[L,M] .

This equation is analogous to a quantum mechanical evolution equation for an operator induced
by time dependent ”Hamiltonian” M and gives the non-linear classical evolution equation when
the commutator on the right hand side is a multiplicative operator (so that it does not involve
differential operators acting on the coordinate x). Non-linear classical dynamics for the time
dependent potential emerges as an integrability condition.

One could say that M (t) introduces the time evolution of L(f,x) as an automorphism which
depends on time and therefore does not affect the spectrum. One has L(t,x) = U (¢)L(0, z)U~1(t)
with dU(t)/dt = M (¢t)U(t). The time evolution of the analog of the quantum state is given by
a similar equation.

3. A more refined view about Lax pair is based on the observation that the above equation can be
generalized so that M depends also on . The generalization of the basic equation for M (x,t)
reads as
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WL — ;M — [L,M] =0 .

The condition has interpretation as a vanishing of the curvature of a gauge potential having
components A, = L, Ay = M. This generalization allows a beautiful geometric formulation of
the integrability conditions and extends the applicability of the inverse scattering transform.
The monodromy of the flat connection becomes important in this approach. Flat connections
in moduli spaces are indeed important in topological quantum field theories and in conformal
field theories.

4. There is also a connection with the so called Riemann-Hilbert problem| [A27]. The monodromies
of the flat connection define monodromy group and Riemann-Hilbert problem concerns the
existence of linear differential equations having a given monodromy group. Monodromy group
emerges in the analytic continuation of an analytic function and the action of the element of the
monodromy group tells what happens for the resulting many-valued analytic function as one
turns around a singularity once ('mono-’). The linear equations obviously relate to the linear
scattering problem. The flat connection (M, L) in turn defines the monodromy group. What is
needed is that the functions involved are analytic functions of (¢, z) replaced with a complex or
hyper-complex variable. Again Wick rotation is involved. Similar approach generalizes also to
higher dimensional moduli spaces with complex structures.

In TGD framework the effective 2-dimensionality raises the hope that this kind of mathematical
apparatus could be used. An interesting possibility is that finite measurement resolution could
be realized in terms of a gauge group or Kac-Moody type group represented by trivial gauge
potential defining a monodromy group for n-point functions. Monodromy invariance would
hold for the full n-point functions constructed in terms of analytic n-point functions and their
conjugates. The ends of braid strands are natural candidates for the singularities around which
monodromies are defined.

2.9.2 Why TGD could be integrable theory in some sense?

There are many indications that TGD could be an integrable theory in some sense. The challenge is
to see which ideas are consistent with each other and to build a coherent picture where everything
finds its own place.

1. 2-dimensionality or at least effective 2-dimensionality seems to be a prerequisite for integrability.
Effective 2-dimensionality is suggested by the strong form of General Coordinate Invariance
implying also holography and generalized conformal invariance predicting infinite number of
conservation laws. The dual roles of partonic 2-surfaces and string world sheets supports a four-
dimensional generalization of conformal invariance. Twistor considerations [K89] indeed suggest
that Yangian invariance and Kac-Moody invariances combine to a 4-D analog of conformal
invariance induced by 2-dimensional one by algebraic continuation.

2. Octonionic representation of imbedding space Clifford algebra and the identification of the space-
time surfaces as quaternionic space-time surfaces would define a number theoretically natural
generalization of conformal invariance. The reason for using gamma matrix representation is
that vector field representation for octonionic units does not exist. The problem concerns the
precise meaning of the octonionic representation of gamma matrices.

Space-time surfaces could be quaternionic also in the sense that conformal invariance is ana-
lytically continued from string curve to 8-D space by octonion real-analyticity. The question is
whether the Clifford algebra based notion of tangent space quaternionicity is equivalent with
octonionic real-analyticity based notion of quaternionicity.

The notions of co-associativity and co-quaternionicity make also sense and one must consider se-
riously the possibility that associativity-co-associativity dichotomy corresponds to Minkowskian-
Euclidian dichotomy.

3. Field equations define hydrodynamic Beltrami flows satisfying integrability conditions of form
JAdJ =0.
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(a) One can assign local momentum and polarization directions to the preferred extremals and
this gives a decomposition of Minkowskian space-time regions to massless quanta analogous
to the 141-dimensional decomposition to solitons. The linear superposition of modes with
4-momenta with different directions possible for free Maxwell action does not look plausible
for the preferred extremals of Kéahler action. This rather quantal and solitonic character is
in accordance with the quantum classical correspondence giving very concrete connection
between quantal and classical particle pictures. For 4-D volume action one does not obtain
this kind of decomposition. In 2-D case volume action gives superposition of solutions with
different polarization directions so that the situation is nearer to that for free Maxwell
action and is not like soliton decomposition.

(b) Beltrami property in strong sense allows to identify 4 preferred coordinates for the space-
time surface in terms of corresponding Beltrami flows. This is possible also in Euclidian
regions using two complex coordinates instead of hyper-complex coordinate and complex
coordinate. The assumption that isometry currents are parallel to the same light-like
Beltrami flow implies hydrodynamic character of the field equations in the sense that one
can say that each flow line is analogous to particle carrying some quantum numbers. This
property is not true for all extremals (say cosmic strings).

(¢) The tangent bundle theoretic view about integrability is that one can find a Lie algebra of
vector fields in some manifold spanning the tangent space of a lower-dimensional manifolds
and is expressed in terms of [Frobenius theorem| [AT]). The gradients of scalar functions
defining Beltrami flows appearing in the ansatz for preferred exremals would define these
vector fields and the slicing. Partonic 2-surfaces would correpond to two complex conjugate
vector fields (local polarization direction) and string world sheets to light-like vector field
and its dual (light-like momentum directions). This slicing generalizes to the Euclidian
regions.

4. Infinite number of conservation laws is the signature of integrability. Classical field equations
follow from the condition that the vector field defined by modified gamma matrices has vanishing
divergence and can be identified an integrability condition for the modified Dirac equation
guaranteing also the conservation of super currents so that one obtains an infinite number of
conserved charges.

5. Quantum criticality is a further signal of integrability. 2-D conformal field theories describe
critical systems so that the natural guess is that quantum criticality in TGD framework relates
to the generalization of conformal invariance and to integrability. Quantum criticality implies
that Kéhler coupling strength is analogous to critical temperature. This condition does affects
classical field equations only via boundary conditions expressed as weak form of electric magnetic
duality at the wormhole throats at which the signature of the metric changes.

For finite-dimensional systems the vanishing of the determinant of the matrix defined by the
second derivatives of potential is similar signature and applies in catastrophe theory. Therefore
the existence of vanishing second variations of Kéahler action should characterize criticality and
define a property of preferred extremals. The vanishing of second variations indeed leads to an
infinite number of conserved currents [K31] [K11].

2.9.3 Questions

There are several questions which are not completely settled yet. Even the question what preferred
extremals are is still partially open. In the following I try to de-learn what I have possibly learned
during these years and start from scratch to see which assumptions might be un-necessarily strong or
even wrong.

2.9.4 Could TGD be an integrable theory?

Consider first the abstraction of integrability in TGD framework. Quantum classical correspondence
could be seen as a correspondence between linear quantum dynamics and non-linear classical dynamics.
Integrability would realize this correspondence. In integrable models such as Sine-Gordon equation
particle interactions are described by potential in 1+1 dimensions. This too primitive for the purposes
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of TGD. The vertices of generalized Feynman diagrams take care of this. At lines one has free particle
dynamics so that the situation could be much simpler than in integrable models if one restricts the
considerations to the lines or Minkowskian space-time regions surrounding them.

The non-linear dynamics for the space-time sheets representing incoming lines of generalized Feyn-
man diagram should be obtainable from the linear dynamics for the induced spinor fields defined by
modified Dirac operator. There are two options.

1. Strong form of the quantum classical correspondence states that each solution for the linear
dynamics of spinor fields corresponds to space-time sheet. This is analogous to solving the
potential function in terms of a single solution of Schrédinger equation. Coupling of space-time
geometry to quantum numbers via measurement interaction term is a proposal for realizing this
option. It is howwever the quantum numbers of positive/negative energy parts of zero energy
state which would be visible in the classical dynamics rather than those of induced spinor field
modes.

2. Only overall dynamics characterized by scattering data- the counterpart of S-matrix for the
modified Dirac operator- is mapped to the geometry of the space-time sheet. This is much more
abstract realization of quantum classical correspondence.

3. Can these two approaches be equivalent? This might be the case since quantum numbers of the
state are not those of the modes of induced spinor fields.

What the scattering data could be for the induced spinor field satisfying modified Dirac equation?

1. If the solution of field equation has hydrodynamic character, the solutions of the modified
Dirac equation can be localized to light-like Beltrami flow lines of hydrodynamic flow. These
correspond to basic solutions and the general solution is a superposition of these. There is no
dispersion and the dynamics is that of geometric optics at the basic level. This means geometric
optics like character of the spinor dynamics.

Solutions of the modified Dirac equation are completely analogous to the pulse solutions defining
the fundamental solution for the wave equation in the argument leading from wave equation
with external time independent potential to Marchenko-Gelfand-Levitan equation allowing to
identify potential in terms of scattering data. There is however no potential present now since
the interactions are described by the vertices of Feynman diagram where the particle lines meet.
Note that particle like regions are Euclidian and that this picture applies only to the Minkowskian
exteriors of particles.

2. Partonic 2-surfaces at the ends of the line of generalized Feynman diagram are connected by flow
lines. Partonic 2-surfaces at which the signature of the induced metric changes are in a special
position. Only the imaginary part of the bi-quaternionic value of the octonion valued map is
non-vanishing at these surfaces which can be said to be co-complex 2-surfaces. By geometric
optics behavior the scattering data correspond to a diffeomorphism mapping initial partonic
2-surface to the final one in some preferred complex coordinates common to both ends of the
line.

3. What could be these preferred coordinates? Complex coordinates for S? at light-cone bound-
ary define natural complex coordinates for the partonic 2-surface. With these coordinates the
diffeomorphism defining scattering data is diffeomorphism of S?. Suppose that this map is real
analytic so that maps "real axis” of S? to itself. This map would be same as the map defin-
ing the octonionic real analyticity as algebraic extension of the complex real analytic map. By
octonionic analyticity one can make large number of alternative choices for the coordinates of
partonic 2-surface.

4. There can be non-uniqueness due to the possibility of G2/SU(3) valued map characterizing
the local octonionic units. The proposal is that the choice of octonionic imaginary units can
depend on the point of string like orbit: this would give string model in G2/SU(3). Conformal
invariance for this string model would imply analyticity and helps considerably but would not
probably fix the situation completely since the element of the coset space would constant at the
partonic 2-surfaces at the ends of C'D. One can of course ask whether the Go/SU(3) element
could be constant for each propagator line and would change only at the 2-D vertices?
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This would be the inverse scattering problem formulated in the spirit of TGD. There could be
also dependence of space-time surface on quantum numbers of quantum states but not on indididual
solution for the induced spinor field since the scattering data of this solution would be purely geometric.

2.10 About deformations of known extremals of Kahler action

I have done a considerable amount of speculative guesswork to identify what I have used to call
preferred extremals of Kahler action. The problem is that the mathematical problem at hand is ex-
tremely non-linear and that there is no existing mathematical literature. One must proceed by trying
to guess the general constraints on the preferred extremals which look physically and mathematically
plausible. The hope is that this net of constraints could eventually chrystallize to Eureka! Certainly
the recent speculative picture involves also wrong guesses. The need to find explicit ansatz for the de-
formations of known extremals based on some common principles has become pressing. The following
considerations represent an attempt to combine the existing information to achieve this.

2.10.1 What might be the common features of the deformations of known
extremals

The dream is to discover the deformations of all known extremals by guessing what is common to all
of them. One might hope that the following list summarizes at least some common features.

Effective three-dimensionality at the level of action

1. Holography realized as effective 3-dimensionality also at the level of action requires that it
reduces to 3-dimensional effective boundary terms. This is achieved if the contraction j*A,
vanishes. This is true if j* vanishes or is light-like, or if it is proportional to instanton current
in which case current conservation requires that C'P, projection of the space-time surface is
3-dimensional. The first two options for j have a realization for known extremals. The status
of the third option - proportionality to instanton current - has remained unclear.

2. As I started to work again with the problem, I realized that instanton current could be replaced
with a more general current j = *xB A J or concretely: j¢ = eaﬁ““;BgJ.yg, where B is vector
field and C' Py projection is 3-dimensional, which it must be in any case. The contractions of j
appearing in field equations vanish automatically with this ansatz.

3. Almost topological QFT property in turn requires the reduction of effective boundary terms to
Chern-Simons terms: this is achieved by boundary conditions expressing weak form of electric
magnetic duality. If one generalizes the weak form of electric magnetic duality to J = ® x J one
has B = d® and j has a vanishing divergence for 3-D C'P, projection. This is clearly a more
general solution ansatz than the one based on proportionality of j with instanton current and
would reduce the field equations in concise notation to Tr(TH¥) = 0.

4. Any of the alternative properties of the Kahler current implies that the field equations reduce
to Tr(TH*) = 0, where T and H* are shorthands for Maxwellian energy momentum tensor and
second fundamental form and the product of tensors is obvious generalization of matrix product
involving index contraction.

Could Einstein’s equations emerge dynamically?

For j satisfying one of the three conditions, the field equations have the same form as the equations
for minimal surfaces except that the metric g is replaced with Maxwell energy momentum tensor 7.

1. This raises the question about dynamical generation of small cosmological constant A: T'= Ag
would reduce equations to those for minimal surfaces. For T = Ag modified gamma matrices
would reduce to induced gamma matrices and the modified Dirac operator would be proportional
to ordinary Dirac operator defined by the induced gamma matrices. One can also consider weak
form for T' = Ag obtained by restricting the consideration to sub-space of tangent space so that
space-time surface is only ”partially” minimal surface but this option is not so elegant although
necessary for other than C' P, type vacuum extremals.
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2. What is remarkable is that 7' = Ag implies that the divergence of T which in the general case
equals to j%.J 3 vanishes. This is guaranteed by one of the conditions for the K&hler current. Since
also Einstein tensor has a vanishing divergence, one can ask whether the condition to T = kG+Ag
could the general condition. This would give Einstein’s equations with cosmological term besides
the generalization of the minimal surface equations. GRT would emerge dynamically from the
non-linear Maxwell’s theory although in slightly different sense as conjectured [K85]! Note that
the expression for G involves also second derivatives of the imbedding space coordinates so that
actually a partial differential equation is in question. If field equations reduce to purely algebraic
ones, as the basic conjecture states, it is possible to have Tr(GH*) = 0 and Tr(gH*) = 0
separately so that also minimal surface equations would hold true.

What is amusing that the first guess for the action of TGD was curvature scalar. It gave
analogs of Einstein’s equations as a definition of conserved four-momentum currents. The recent
proposal would give the analog of ordinary Einstein equations as a dynamical constraint relating
Maxwellian energy momentum tensor to Einstein tensor and metric.

3. Minimal surface property is physically extremely nice since field equations can be interpreted
as a non-linear generalization of massless wave equation: something very natural for non-linear
variant of Maxwell action. The theory would be also very ”stringy” although the fundamental
action would not be space-time volume. This can however hold true only for Euclidian signature.
Note that for C'P, type vacuum extremals Einstein tensor is proportional to metric so that for
them the two options are equivalent. For their small deformations situation changes and it might
happen that the presence of G is necessary. The GRT limit of TGD discussed in [K85] [L8] indeed
suggests that C' P, type solutions satisfy Einstein’s equations with large cosmological constant
and that the small observed value of the cosmological constant is due to averaging and small
volume fraction of regions of Euclidian signature (lines of generalized Feynman diagrams).

4. For massless extremals and their deformations 7' = Ag cannot hold true. The reason is that for
massless extremals energy momentum tensor has component TV which actually quite essential
for field equations since one has H”, = 0. Hence for massless extremals and their deformations
T = Ag cannot hold true if the induced metric has Hamilton-Jacobi structure meaning that g“*
and g"? vanish. A more general relationship of form T' = kG + AG can however be consistent
with non-vanishing TV but require that deformation has at most 3-D CP» projection (CPy
coordinates do not depend on v).

5. The non-determinism of vacuum extremals suggest for their non-vacuum deformations a conflict
with the conservation laws. In, also massless extremals are characterized by a non-determinism
with respect to the light-like coordinate but like-likeness saves the situation. This suggests
that the transformation of a properly chosen time coordinate of vacuum extremal to a light-like
coordinate in the induced metric combined with Einstein’s equations in the induced metric of
the deformation could allow to handle the non-determinism.

Are complex structure of CP, and Hamilton-Jacobi structure of M* respected by the
deformations?

The complex structure of C'P, and Hamilton-Jacobi structure of M* could be central for the under-
standing of the preferred extremal property algebraically.

1. There are reasons to believe that the Hermitian structure of the induced metric ((1,1) structure
in complex coordinates) for the deformations of C'P, type vacuum extremals could be crucial
property of the preferred extremals. Also the presence of light-like direction is also an essential
elements and 3-dimensionality of M* projection could be essential. Hence a good guess is that
allowed deformations of C' P, type vacuum extremals are such that (2,0) and (0,2) components the
induced metric and/or of the energy momentum tensor vanish. This gives rise to the conditions
implying Virasoro conditions in string models in quantization:
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Holomorphisms of C' P, preserve the complex structure and Virasoro conditions are expected to
generalize to 4-dimensional conditions involving two complex coordinates. This means that the
generators have two integer valued indices but otherwise obey an algebra very similar to the
Virasoro algebra. Also the super-conformal variant of this algebra is expected to make sense.

These Virasoro conditions apply in the coordinate space for C' P, type vacuum extremals. One
expects similar conditions hold true also in field space, that is for M* coordinates.

2. The integrable decomposition M*(m) = M?(m)+E?(m) of M* tangent space to longitudinal and

transversal parts (non-physical and physical polarizations) - Hamilton-Jacobi structure- could
be a very general property of preferred extremals and very natural since non-linear Maxwellian
electrodynamics is in question. This decomposition led rather early to the introduction of the
analog of complex structure in terms of what I called Hamilton-Jacobi coordinates (u, v, w,w)
for M*. (u,v) defines a pair of light-like coordinates for the local longitudinal space M?(m) and
(w,w) complex coordinates for E%(m). The metric would not contain any cross terms between
M?(m) and E%(m): guw = Jow = Guw = Gow = 0.
A good guess is that the deformations of massless extremals respect this structure. This con-
dition gives rise to the analog of the constraints leading to Virasoro conditions stating the
vanishing of the non-allowed components of the induced metric. guy = Gov = Guww = Yoz =
Juw = Gow = Juw = Gvw = 0. Again the generators of the algebra would involve two integers
and the structure is that of Virasoro algebra and also generalization to super algebra is expected
to make sense. The moduli space of Hamilton-Jacobi structures would be part of the moduli
space of the preferred extremals and analogous to the space of all possible choices of complex
coordinates. The analogs of infinitesimal holomorphic transformations would preserve the mod-
ular parameters and give rise to a 4-dimensional Minkowskian analog of Virasoro algebra. The
conformal algebra acting on C'P, coordinates acts in field degrees of freedom for Minkowskian
signature.

Field equations as purely algebraic conditions

If the proposed picture is correct, field equations would reduce basically to purely algebraically con-
ditions stating that the Maxwellian energy momentum tensor has no common index pairs with the
second fundamental form. For the deformations of C'P, type vacuum extremals 7" is a complex tensor
of type (1,1) and second fundamental form H* a tensor of type (2,0) and (0,2) so that Tr(THF) =
is true. This requires that second light-like coordinate of M* is constant so that the M* projection
is 3-dimensional. For Minkowskian signature of the induced metric Hamilton-Jacobi structure re-
places conformal structure. Here the dependence of C'P; coordinates on second light-like coordinate
of M?(m) only plays a fundamental role. Note that now T°? is non-vanishing (and light-like). This
picture generalizes to the deformations of cosmic strings and even to the case of vacuum extremals.

2.10.2 What small deformations of C'P, type vacuum extremals could be?

I was led to these arguments when I tried find preferred extremals of Kéhler action, which would have
4-D CP, and M* projections - the Maxwell phase analogous to the solutions of Maxwell’s equations
that I conjectured long time ago. It however turned out that the dimensions of the projections
can be (Dya < 3,Dcep, = 4) or (Dpa = 4,Dep, < 3). What happens is essentially breakdown
of linear superposition so that locally one can have superposition of modes which have 4-D wave
vectors in the same direction. This is actually very much like quantization of radiation field to
photons now represented as separate space-time sheets and one can say that Maxwellian superposition
corresponds to union of separate photonic space-time sheets in TGD. In the following I shall restrict
the consideeration to the deformations of C'P, type vacuum extremals.

Solution ansatz

I proceed by the following arguments to the ansatz.

1. Effective 3-dimensionality for action (holography) requires that action decomposes to vanishing
jYA, term + total divergence giving 3-D "boundary” terms. The first term certainly vanishes
(giving effective 3-dimensionality) for
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DgJP =j*=0 .

Empty space Maxwell equations, something extremely natural. Also for the proposed GRT limit
these equations are true.

. How to obtain empty space Maxwell equations j* = 07 The answer is simple: assume self

duality or its slight modification:

J=xJ

holding for C' P, type vacuum extremals or a more general condition

J=kxJ |
In the simplest situation k is some constant not far from unity. * is Hodge dual involving 4-
D permutation symbol. k& = constant requires that the determinant of the induced metric is
apart from constant equal to that of C'P, metric. It does not require that the induced metric
is proportional to the C'P, metric, which is not possible since M* contribution to metric has
Minkowskian signature and cannot be therefore proportional to C' P, metric.

One can consider also a more general situation in which & is scalar function as a generalization
of the weak electric-magnetic duality. In this case the Kahler current is non-vanishing but
divergenceless. This also guarantees the reduction to Tr(TH¥) = 0. In this case however the
proportionality of the metric determinant to that for C'P, metric is not needed. This solution
ansatz becomes therefore more general.

Field equations reduce with these assumptions to equations differing from minimal surfaces equa-
tions only in that metric g is replaced by Maxwellian energy momentum tensor 7'. Schematically:

Tr(TH*) =0 ,

where T is the Maxwellian energy momentum tensor and H* is the second fundamental form -
asymmetric 2-tensor defined by covariant derivative of gradients of imbedding space coordinates.

How to satisfy the condition Tr(TH*) = 0?

It would be nice to have minimal surface equations since they are the non-linear generalization of
massless wave equations. It would be also nice to have the vanishing of the terms involving K&ahler
current in field equations as a consequence of this condition. Indeed, T' = kG 4+ Ag implies this. In
the case of C P, vacuum extremals one cannot distinguish between these options since C'P; itself is
constant curvature space with G « g. Furthermore, if G and g have similar tensor structure the
algebraic field equations for G and g are satisfied separately so that one obtains minimal surface
property also now. In the following minimal surface option is considered.

1.

The first opton is achieved if one has

T=Ag .

Maxwell energy momentum tensor would be proportional to the metric! One would have dynam-
ically generated cosmological constant! This begins to look really interesting since it appeared
also at the proposed |GRT limit of TGD) [L8]. Note that here also non-constant value of A can
be considered and would correspond to a situation in which k is scalar function: in this case the
the determinant condition can be dropped and one obtains just the minimal surface equations.
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2. Very schematically and forgetting indices and being sloppy with signs, the expression for T reads
as

T =JJ — g/ATr(JJ) .

Note that the product of tensors is obtained by generalizing matrix product. This should be
proportional to metric.

Self duality implies that Tr(JJ) is just the instanton density and does not depend on metric
and is constant.

For C' P, type vacuum extremals one obtains

T=—-9g4+g=0.
Cosmological constant would vanish in this case.

3. Could it happen that for deformations a small value of cosmological constant is generated?

The condition would reduce to

JJI=(A-1)g .

A must relate to the value of parameter k appearing in the generalized self-duality condition.
For the most general ansatz A would not be constant anymore.

This would generalize the defining condition for Kahler form

JJ = —g (i* = =1 geometrically)

stating that the square of K&hler form is the negative of metric. The only modification would
be that index raising is carried out by using the induced metric containing also M* contribution
rather than C' P metric.

4. Explicitly:

Jali‘]#ﬁ = (A - l)gaﬂ .

Cosmological constant would measure the breaking of Kahler structure. By writing ¢ = s+m and
defining index raising of tensors using C'P, metric and their product accordingly, this condition
can be also written as

Jm=(A—=1)mJ .

If the parameter k is constant, the determinant of the induced metric must be proportional to the
C P, metric. If k is scalar function, this condition can be dropped. Cosmological constant would not
be constant anymore but the dependence on k would drop out from the field equations and one would
hope of obtaining minimal surface equations also now. It however seems that the dimension of M*
projection cannot be four. For 4-D M* projection the contribution of the M? part of the M* metric
gives a non-holomorphic contribution to C' P, metric and this spoils the field equations.

For T = kG + Ag option the value of the cosmological constant is large - just as it is for the
proposed GRT limit of TGD [K85] [L8]. The interpretation in this case is that the average value of
cosmological constant is small since the portion of space-time volume containing generalized Feynman
diagrams is very small.
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More detailed ansatz for the deformations of C P, type vacuum extremals

One can develop the ansatz to a more detailed form. The most obvious guess is that the induced metric
is apart from constant conformal factor the metric of C'P,. This would guarantee self-duality apart
from constant factor and j* = 0. Metric would be in complex CP» coordinates tensor of type (1,1)
whereas C' P, Riemann connection would have only purely holomorphic or anti-holomorphic indices.
Therefore C'P, contributions in 7r(TH") would vanish identically. M* degrees of freedom however
bring in difficulty. The M* contribution to the induced metric should be proportional to C'P, metric
and this is impossible due to the different signatures. The M* contribution to the induced metric
breaks its Kéhler property but would preserve Hermitian structure.

A more realistic guess based on the attempt to construct deformations of C'P, type vacuum ex-
tremals is following.

1. Physical intuition suggests that M* coordinates can be chosen so that one has integrable de-
composition to longitudinal degrees of freedom parametrized by two light-like coordinates v and
v and to transversal polarization degrees of freedom parametrized by complex coordinate w and
its conjugate. M* metric would reduce in these coordinates to a direct sum of longitudinal and
transverse parts. I have called these coordinates Hamilton Jacobi coordinates.

2. w would be holomorphic function of C' P, coordinates and therefore satisfy massless wave equa-
tion. This would give hopes about rather general solution ansatz. v and v cannot be holomorphic
functions of C'P, coordinates. Unless wither u or v is constant, the induced metric would receive
contributions of type (2,0) and (0,2) coming from « and v which would break Kéahler structure
and complex structure. These contributions would give no-vanishing contribution to all minimal
surface equations. Therefore either w or v is constant: the coordinate line for non-constant
coordinate -say u- would be analogous to the M* projection of C P, type vacuum extremal.

3. With these assumptions the induced metric would remain (1,1) tensor and one might hope
that Tr(TH") contractions vanishes for all variables except u because the there are no com-
mon index pairs (this if non-vanishing Christoffel symbols for H involve only holomorphic or
anti-holomorphic indices in C'P; coordinates). For u one would obtain massless wave equation
expressing the minimal surface property.

4. If the value of k is constant the determinant of the induced metric must be proportional to the
determinant of C'P, metric. The induced metric would contain only the contribution from the
transversal degrees of freedom besides C'P; contribution. Minkowski contribution has however
rank 2 as C'P, tensor and cannot be proportional to C'P, metric. It is however enough that
its determinant is proportional to the determinant of C'P, metric with constant proportional-
ity coefficient. This condition gives an additional non-linear condition to the solution. One
would have wave equation for u (also w and its conjugate satisfy massless wave equation) and
determinant condition as an additional condition.

The determinant condition reduces by the linearity of determinant with respect to its rows to
sum of conditions involved 0,1,2 rows replaced by the transversal M* contribution to metric
given if M* metric decomposes to direct sum of longitudinal and transversal parts. Derivatives
with respect to derivative with respect to particular C' P, complex coordinate appear linearly in
this expression they can depend on u via the dependence of transversal metric components on
u. The challenge is to show that this equation has (or does not have) non-trivial solutions.

5. If the value of k is scalar function the situation changes and one has only the minimal surface
equations and Virasoro conditions.

What makes the ansatz attractive is that special solutions of Maxwell empty space equations are
in question, equations reduces to non-linear generalizations of Euclidian massless wave equations, and
possibly space-time dependent cosmological constant pops up dynamically. These properties are true
also for the |GRT limit of TGD| [LS].

2.10.3 Hamilton-Jacobi conditions in Minkowskian signature

The maximally optimistic guess is that the basic properties of the deformations of C' P type vacuum
extremals generalize to the deformations of other known extremals such as massless extremals, vacuum
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extremals with 2-D C'P, projection which is Lagrangian manifold, and cosmic strings characterized
by Minkowskian signature of the induced metric. These properties would be following.

1. The recomposition of M* tangent space to longitudinal and transversal parts giving Hamilton-
Jacobi structure. The longitudinal part has hypercomplex structure but the second light-like
coordinate is constant: this plays a crucial role in guaranteeing the vanishing of contractions
in Tr(THF). Tt is the algebraic properties of g and T which are crucial. T can however have
light-like component T%?. For the deformations of C'P, type vacuum extremals (1,1) structure
is enough and is guaranteed if second light-like coordinate of M?* is constant whereas w is
holomorphic function of C'P, coordinates.

2. What could happen in the case of massless extremals? Now one has 2-D C'P, projection in the
initial situation and C P, coordinates depend on light-like coordinate u and single real transversal
coordinate. The generalization would be obvious: dependence on single light-like coordinate
u and holomorphic dependence on w for complex C'P, coordinates. The constraint is T =
Ag cannot hold true since T% is non-vanishing (and light-like). This property restricted to
transversal degrees of freedom could reduce the field equations to minimal surface equations
in transversal degrees of freedom. The transversal part of energy momentum tensor would be
proportional to metric and hence covariantly constant. Gauge current would remain light-like
but would not be given by j = *d¢p A J. T = kG + Ag seems to define the attractive option.

It therefore seems that the essential ingredient could be the condition

T=rG+ Ag ,

which has structure (1,1) in both M?(m) and E?(m) degrees of freedom apart from the presence of
T component with deformations having no dependence on v. If the second fundamental form has
(2,0)+(0,2) structure, the minimal surface equations are satisfied provided Kéhler current satisfies on
of the proposed three conditions and if G and g have similar tensor structure.

One can actually pose the conditions of metric as complete analogs of stringy constraints leading
to Virasoro conditions in quantization to give

Guu=0, gow=0, guww=0, gozwz=0 . (2.10.2)

This brings in mind the generalization of Virasoro algebra to four-dimensional algebra for which an
identification in terms of non-local Yangian symmetry has been proposed [K92]. The number of
conditions is four and the same as the number of independent field equations. One can consider
similar conditions also for the energy momentum tensor 1" but allowing non-vanishing component
T if deformations has no v-dependence. This would solve the field equations if the gauge current
vanishes or is light-like. On this case the number of equations is 8. First order differential equations
are in question and they can be also interpreted as conditions fixing the coordinates used since there
is infinite number of manners to choose the Hamilton-Jacobi coordinates.

One can can try to apply the physical intuition about general solutions of field equations in the
linear case by writing the solution as a superposition of left and right propagating solutions:

ek = fi(u,w) + fj’f(uw) . (2.10.3)

This could guarantee that second fundamental form is of form (2,0)+(0,2) in both M? and E? part
of the tangent space and these terms if Tr(TH¥) vanish identically. The remaining terms involve
contractions of T%%, T“% and T'%, T"% with second fundamental form. Also these terms should sum
up to zero or vanish separately. Second fundamental form has components coming from f f and fk

Second fundamental form H* has as basic building bricks terms H* given by

ok, = 0.0sh% + (%) 0uh'ogh™ . (2.10.4)
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For the proposed ansatz the first terms give vanishing contribution to HF,. The terms containing
Christoffel symbols however give a non-vanishing contribution and one can allow only f J]ﬁ or fF asin
the case of massless extremals. This reduces the dimension of C'P, projection to D = 3.

What about the condition for Kéhler current? Kahler form has components of type J,z whose
contravariant counterpart gives rise to space-like current component. J,,, and J, give rise to light-
like currents components. The condition would state that the J“¥ is covariantly constant. Solutions
would be characterized by a constant K&hler magnetic field. Also electric field is represent. The
interpretation both radiation and magnetic flux tube makes sense.

2.10.4 Deformations of cosmic strings

In the physical applications it has been assumed that the thickening of cosmic strings to Kahler
magnetic flux tubes takes place. One indeed expects that the proposed construction generalizes also
to the case of cosmic strings having the decomposition X* = X? x Y2 ¢ M* x CP,, where X? is
minimal surface and Y2 a complex homologically non-trivial sub-manifold of CP,. Now the starting
point structure is Hamilton-Jacobi structure for M2, x Y2 defining the coordinate space.

1. The deformation should increase the dimension of either C'P, or M* projection or both. How this
thickening could take place? What comes in mind that the string orbits X2 can be interpreted
as a distribution of longitudinal spaces M?(x) so that for the deformation w coordinate becomes
a holomorphic function of the natural Y2 complex coordinate so that M? projection becomes
4-D but CP, projection remains 2-D. The new contribution to the X2 part of the induced metric
is vanishing and the contribution to the Y2 part is of type (1, 1) and the the ansatz T = kG + Ag
might be needed as a generalization of the minimal surface equations The ratio of x and G would
be determined from the form of the Maxwellian energy momentum tensor and be fixed at the
limit of undeformed cosmic strong to T = (ag(Y?) —bg(Y?). The value of cosmological constant
is now large, and overall consistency suggests that T = kG + Ag is the correct option also for
the C P, type vacuum extremals.

2. One could also imagine that remaining C'P, coordinates could depend on the complex coordinate
of Y2 so that also C'P, projection would become 4-dimensional. The induced metric would receive
holomorphic contributions in Y2 part. As a matter fact, this option is already implied by the
assumption that Y2 is a complex surface of CP;.

2.10.5 Deformations of vacuum extremals?

What about the deformations of vacuum extremals representable as maps from M* to CP,?

1. The basic challenge is the non-determinism of the vacuum extremals. One should perform the
deformation so that conservation laws are satisfied. For massless extremals there is also non-
determinism but it is associated with the light-like coordinate so that there are no problems with
the conservation laws. This would suggest that a properly chosen time coordinate consistent
with Hamilton-Jacobi decomposition becomes light-like coordinate in the induced metric. This
poses a conditions on the induced metric.

2. Physical intuition suggests that one cannot require 7" = Ag since this would mean that the rank
of T is maximal whereas the original situation corresponds to the vanishing of 7. For small
deformations rank two for T" looks more natural and one could think that T is proportional to a
projection of metric to a 2-D subspace. The vision about the long length scale limit of TGD is
that Einstein’s equations are satisfied and this would suggest T' = kG or T' = kG+ Ag. The rank
of T could be smaller than four for this ansatz and this conditions binds together the values of
k and G.

3. These extremals have C' P, projection which in the generic case is 2-D Lagrangian sub-manifold
Y2, Again one could assume Hamilton-Jacobi coordinates for X*. For C' P, one could assume
Darboux coordinates (P;,Q;), i = 1,2, in which one has A = P,dQ?, and that Y? C CP,
corresponds to Q; = constant. In principle P; would depend on arbitrary manner on M*
coordinates. It might be more convenient to use as coordinates (u,v) for M? and (P, P) for
Y?2. This covers also the situation when M* projection is not 4-D. By its 2-dimensionality Y?2
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allows always a complex structure defined by its induced metric: this complex structure is not
consistent with the complex structure of CP, (Y? is not complex sub-manifold).

Using Hamilton-Jacobi coordinates the pre-image of a given point of Y2 is a 2-dimensional sub-
manifold X2 of X* and defines also 2-D sub-manifold of M*. The following picture suggests itself.
The projection of X2 to M* can be seen for a suitable choice of Hamilton-Jacobi coordinates
as an analog of Lagrangian sub-manifold in M* that is as surface for which v and I'm(w) vary
and u and Re(w) are constant. X2 would be obtained by allowing u and Re(w) to vary: as a
matter fact, (P, P») and (u, Re(w)) would be related to each other. The induced metric should
be consistent with this picture. This would requires g, re(w) = 0.

For the deformations 1 and @2 would become non-constant and they should depend on the
second light-like coordinate v only so that only gy, and gy., and guw g . and gww receive
contributions which vanish. This would give rise to the analogs of Virasoro conditions guaran-
teeing that 7' is a tensor of form (1,1) in both M? and E? indices and that there are no cross
components in the induced metric. A more general formulation states that energy momentum
tensor satisfies these conditions. The conditions on T might be equivalent with the conditions
for g and G separately.

4. Einstein’s equations provide an attractive manner to achieve the vanishing of effective 3-dimensionality
of the action. Einstein equations would be second order differential equations and the idea that
a deformation of vacuum extremal is in question suggests that the dynamics associated with
them is in directions transversal to Y2 so that only the deformation is dictated partially by
Einstein’s equations.

5. Lagrangian manifolds do not involve complex structure in any obvious manner. One could
however ask whether the deformations could involve complex structure in a natural manner in
C P, degrees of freedom so that the vanishing of ¢, would be guaranteed by holomorphy of
CP, complex coordinate as function of w.

One should get the complex structure in some natural manner: in other words, the complex
structure should relate to the geometry of C'P, somehow. The complex coordinate defined by
say z = P} +iQ" for the deformation suggests itself. This would suggest that at the limit when
one puts @1 = 0 one obtains P; = Pj(Re(w)) for the vacuum extremals and the deformation
could be seen as an analytic continuation of real function to region of complex plane. This is
in spirit with the algebraic approach. The vanishing of Kahler current requires that the Kéhler
magnetic field is covariantly constant: D,J** = 0 and DzJ** =0 .

6. One could consider the possibility that the resulting 3-D sub-manifold of C'P; can be regarded
as contact manifold with induced Kéhler form non-vanishing in 2-D section with natural com-
plex coordinates. The third coordinate variable- call it s- of the contact manifold and second
coordinate of its transversal section would depend on time space-time coordinates for vacuum
extremals. The coordinate associated with the transversal section would be continued to a
complex coordinate which is holomorphic function of w and u.

7. The resulting thickened magnetic flux tubes could be seen as another representation of Kéhler
magnetic flux tubes: at this time as deformations of vacuum flux tubes rather than cosmic
strings. For this ansatz it is however difficult to imagine deformations carrying Kahler electric
field.

2.10.6 About the interpretation of the generalized conformal algebras

The long-standing challenge has been finding of the direct connection between the super-conformal
symmetries assumed in the construction of the geometry of the "world of classical worlds” (WCW)
and possible conformal symmetries of field equations. 4-dimensionality and Minkowskian signature
have been the basic problems. The recent construction provides new insights to this problem.

1. In the case of string models the quantization of the Fourier coeflicients of coordinate variables
of the target space gives rise to Kac-Moody type algebra and Virasoro algebra generators are
quadratic in these. Also now Kac-Moody type algebra is expected. If one were to perform a
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quantization of the coefficients in Laurents series for complex C'P, coordinates, one would ob-
tain interpretation in terms of su(3) = u(2) +t decomposition, where ¢ corresponds to C' Ps: the
oscillator operators would correspond to generators in ¢ and their commutator would give gen-
erators in u(2). SU(3)/SU(2) coset representation for Kac-Moody algebra would be in question.
Kac-Moody algebra would be associated with the generators in both M* and CP, degrees of
freedom. This kind of Kac-Moody algebra appears in quantum TGD.

2. The constraints on induced metric imply a very close resemblance with string models and a
generalization of Virasoro algebra emerges. An interesting question is how the two algebras
acting on coordinate and field degrees of freedom relate to the super-conformal algebras defined
by the symplectic group of 5Mfi x C' Py acting on space-like 3-surfaces at boundaries of C'D and
to the Kac-Moody algebras acting on light-like 3-surfaces. It has been conjectured that these
algebras allow a continuation to the interior of space-time surface made possible by its slicing
by 2-surfaces parametrized by 2-surfaces. The proposed construction indeed provides this kind
of slicings in both M* and CP; factor.

3. In the recent case, the algebras defined by the Fourier coefficients of field variables would be
Kac-Moody algebras. Virasoro algebra acting on preferred coordinates would be expressed in
terms of the Kac-Moody algebra in the standard Sugawara construction applied in string models.
The algebra acting on field space would be analogous to the conformal algebra assignable to the
symplectic algebra so that also symplectic algebra is present. Stringy pragmatist could imagine
quantization of symplectic algebra by replacing C'P; coordinates in the expressions of Hamilto-
nians with oscillator operators. This description would be counterpart for the construction of
spinor harmonics in WCW and might provide some useful insights.

4. For given type of space-time surface either CP, or M* corresponds to Kac-Moody algebra but
not both. From the point of view of quantum TGD it looks as that something were missing.
An analogous problem was encountered at GRT limit of TGD [L8]. When Euclidian space-time
regions are allowed Einstein-Maxwell action is able to mimic standard model with a surprising
accuracy but there is a problem: one obtains either color charges or M* charges but not both.
Perhaps it is not enough to consider either C' P, type vacuum extremal or its exterior but both to
describe particle: this would give the direct product of the Minkowskian and Euclidian algebras
acting on tensor product. This does not however seem to be consistent with the idea that the
two descriptions are duality related (the analog of T-duality).

2.11 Do geometric invariants of preferred extremals define
topological invariants of space-time surface and code for
quantum physics?

The recent progress in the understanding of preferred extremals [K11] led to a reduction of the
field equations to conditions stating for Euclidian signature the existence of Kéhler metric. The
resulting conditions are a direct generalization of corresponding conditions emerging for the string
world sheet and stating that the 2-metric has only non-diagonal components in complex/hypercomplex
coordinates. Also energy momentum of Kéhler action and has this characteristic (1,1) tensor structure.
In Minkowskian signature one obtains the analog of 4-D complex structure combining hyper-complex
structure and 2-D complex structure.

The construction lead also to the understanding of how Einstein’s equations with cosmological
term follow as a consistency condition guaranteeing that the covariant divergence of the Maxwell’s
energy momentum tensor assignable to K&hler action vanishes. This gives T' = kG + Ag. By taking
trace a further condition follows from the vanishing trace of T":

R = 2 (2.11.1)

That any preferred extremal should have a constant Ricci scalar proportional to cosmological constant
is very strong prediction. Note that the accelerating expansion of the Universe would support positive
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value of A. Note however that both A and k o 1/G are both parameters characterizing one particular
preferred extremal. One could of course argue that the dynamics allowing only constant curvature
space-times is too simple. The point is however that particle can topologically condense on several
space-time sheets meaning effective superposition of various classical fields defined by induced metric
and spinor connection.

The following considerations demonstrate that preferred extremals can be seen as canonical rep-
resentatives for the constant curvature manifolds playing central role in Thurston’s geometrization
theorem| [A34] known also as hyperbolization theorem implying that geometric invariants of space-
time surfaces transform to topological invariants. The generalization of the notion of Ricci flow to
Maxwell flow in the space of metrics and further to Kéhler flow for preferred extremals in turn gives
a rather detailed vision about how preferred extremals organize to one-parameter orbits. It is quite
possible that Kahler flow is actually discrete. The natural interpretation is in terms of dissipation and
self organization.

Quantum classical correspondence suggests that this line of thought could be continued even
further: could the geometric invariants of the preferred extremals could code not only for space-time
topology but also for quantum physics? How to calculate the correlation functions and coupling
constant evolution has remained a basic unresolved challenge of quantum TGD. Could the correlation
functions be reduced to statistical geometric invariants of preferred extemals? The latest (means
the end of 2012) and perhaps the most powerful idea hitherto about coupling constant evolution
is quantum classical correspondence in statistical sense stating that the statistical properties of a
preferred extremal in quantum superposition of them are same as those of the zero energy state in
question. This principle would be quantum generalization of ergodic theorem stating that the time
evolution of a single member of ensemble represents the ensemble statistically. This principle would
allow to deduce correlation functions and S-matrix from the statistical properties of single preferred
extremal alone using classical intuition. Also coupling constant evolution would be coded by the
statistical properties of the representative preferred extremal.

2.11.1 Preferred extremals of Kahler action as manifolds with constant
Ricci scalar whose geometric invariants are topological invariants

An old conjecture inspired by the preferred extremal property is that the geometric invariants of space-
time surface serve as topological invariants. The reduction of [Kahler action to 3-D Chern-Simons
terms| [K11] gives support for this conjecture as a classical counterpart for the view about TGD as
almost topological QFT. The following arguments give a more precise content to this conjecture in
terms of existing mathematics.

1. Tt is not possible to represent the scaling of the induced metric as a deformation of the space-time
surface preserving the preferred extremal property since the scale of C' P, breaks scale invariance.
Therefore the curvature scalar cannot be chosen to be equal to one numerically. Therefore also
the parameter R = 4A/k and also A and k separately characterize the equivalence class of
preferred extremals as is also physically clear.

Also the volume of the space-time sheet closed inside causal diamond C'D remains constant
along the orbits of the flow and thus characterizes the space-time surface. A and even k < 1/G
can indeed depend on space-time sheet and p-adic length scale hypothesis suggests a discrete
spectrum for A/k expressible in terms of p-adic length scales: A/k o< 1/ Lf) with p ~ 2¥ favored
by p-adic length scale hypothesis. During cosmic evolution the p-adic length scale would increase
gradually. This would resolve the problem posed by cosmological constant in GRT based theories.

2. One could also see the preferred extremals as 4-D counterparts of constant curvature 3-manifolds
in the topology of 3-manifolds. An interesting possibility raised by the observed negative value
of A is that most 4-surfaces are constant negative curvature 4-manifolds. By a general theorem
coset spaces] H*/T', where H* = SO(1,4)/SO(4) is hyperboloid of M® and T' a torsion free
discrete subgroup of SO(1,4) [AT1]. It is not clear to me, whether the constant value of Ricci
scalar implies constant sectional curvatures and therefore hyperbolic space property. It could
happen that the space of spaces with constant Ricci curvature contain a hyperbolic manifold
as an especially symmetric representative. In any case, the geometric invariants of hyperbolic
metric are topological invariants.
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By Mostow rigidity theorem [A20] finite-volume hyperbolic manifold is unique for D > 2 and
determined by the fundamental group of the manifold. Since the orbits under the Kéhler flow
preserve the curvature scalar the manifolds at the orbit must represent different imbeddings of
one and hyperbolic 4-manifold. In 2-D case the moduli space for hyperbolic metric for a given
genus g > 0 is defined by Teichmueller parameters and has dimension 6(g — 1). Obviously the
exceptional character of D = 2 case relates to conformal invariance. Note that the moduli space
in question plays a key role in p-adic mass calculations [K21].

In the recent case Mostow rigidity theorem could hold true for the Euclidian regions and maybe
generalize also to Minkowskian regions. If so then both ”topological” and ” geometro” in ” Topo-
logical GeometroDynamics” would be fully justified. The fact that geometric invariants become
topological invariants also conforms with ”TGD as almost topological QFT” and allows the
notion of scale to find its place in topology. Also the dream about exact solvability of the theory
would be realized in rather convincing manner.

These conjectures are the main result independent of whether the generalization of the Ricci flow
discussed in the sequel exists as a continuous flow or possibly discrete sequence of iterates in the
space of preferred extremals of Kéhler action. My sincere hope is that the reader could grasp how far
reaching these result really are.

2.11.2 Is there a connection between preferred extremals and AdS,/CFT
correspondence?

The preferred extremals satisfy Einstein Maxwell equations with a cosmological constant and have
negative scalar curvature for negative value of A. 4-D space-times with hyperbolic metric provide
canonical representation for a large class of four-manifolds and an interesting question is whether
these spaces are obtained as preferred extremals and/or vacuum extremals.

4-D hyperbolic space with Minkowski signature is locally isometric with AdS,;. This suggests at
connection with AdS,/CFT correspondence of M-theory. The boundary of AdS would be now replaced
with 3-D light-like orbit of partonic 2-surface at which the signature of the induced metric changes.
The metric 2-dimensionality of the light-like surface makes possible generalization of 2-D conformal
invariance with the light-like coordinate taking the role of complex coordinate at light-like boundary.
AdS could represent a special case of a more general family of space-time surfaces with constant Ricci
scalar satistying Einstein-Maxwell equations and generalizing the AdS;/CFT correspondence. There
is however a strong objection from cosmology: the accelerated expansion of the Universe requires
positive value of A and favors De Sitter Space dSy instead of AdS,.

These observations provide motivations for finding whether AdS, and/or dS; allows an imbedding
as a vacuum extremal to M* x S?2 C M* x CP,, where S? is a homologically trivial geodesic sphere
of CP;. Tt is easy to guess the general form of the imbedding by writing the line elements of, M4, S2,
and AdSy.

1. The line element of M* in spherical Minkowski coordinates (m,rar, 6, ¢) reads as

ds* = dm?—dri;, —r3,dQ* . (2.11.2)

2. Also the line element of S? is familiar:

ds* = —R*(dO?+ sin?(0)dd?) . (2.11.3)

3. By wvisiting in Wikipedia one learns that in spherical coordinate the line element of AdS4/dSy
is given by
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ds* = A(r)dt* — ! dr® — r2d9?
A(r) ’
Ar) = T+e? , y=—,
To
e = 1 for AdS, , e= —1 for dS; . (2.11.4)

4. From these formulas it is easy to see that the ansatz is of the same general form as for the
imbedding of Schwartschild-Nordstom metric:

©=s(y) , d=w(t+ f(y) (2.11.5)
The non-trivial conditions on the components of the induced metric are given by
g = A?—2%sin?(@) = A(r)
Gtr = % [AZZ —x%mQ(a)% =0,
r = Rw. (2.11.6)

By some simple algebraic manipulations one can derive expressions for sin(©), df /dr and dh/dr.

1. For ©(r) the equation for g;; gives the expression

P1/2
+ ;
xT

P = AN°—A=A—-1-¢?. (2.11.7)

sin(©)

The condition 0 < sin?(©) < 1 gives the conditions

(AQ — 2 1)1/2

< (A% —1)1/? for e =1 (AdSy) ,
(*AZ + 1)1/2 <

<
< (2241 A2 fore=—1(dS,) . (2.11.8)

Only a spherical shell is possible in both cases. The model for the final state of star considered
in [K85] predicted similar layer layer like structure and inspired the proposal that stars quite
generally have an onionlike structure with radii of various shells characterize by p-adic length
scale hypothesis and thus coming in some powers of v/2. This brings in mind also Titius-Bode
law.

2. From the vanishing of ¢, one obtains

dh _ Pdf
dy — Ady
(2.11.9)
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3. The condition for g, gives

do

Ty = -

2

2.11.10
GF = 45 (211.10)
Clearly, the right-hand side is positive if P > 0 holds true and RdO/dy is small. One can express
d®/dy using chain rule as

G .
() =roe - (2.11.11)

One obtains

daf o _ 21‘/2 1 9, Rio 1
(dy) - Aoyp 1492 x(ro P(P —z?)

(2.11.12)

The right hand side of this equation is non-negative for certain range of parameters and variable
y. Note that for g > R the second term on the right hand side can be neglected. In this case
it is easy to integrate f(y).

The conclusion is that both AdS, and dS* allow a local imbedding as a vacuum extremal. Whether
also an imbedding as a non-vacuum preferred extremal to M* x S2?, S? a homologically non-trivial
geodesic sphere is possible, is an interesting question.

2.11.3 Generalizing Ricci flow to Maxwell flow for 4-geometries and Kéahler
flow for space-time surfaces

The notion of Ricci flow has played a key part in the geometrization of topological invariants of
Riemann manifolds. I certainly did not have this in mind when I choose to call my unification attempt
”Topological Geometrodynamics” but this title strongly suggests that a suitable generalization of Ricci
flow could play a key role in the understanding of also TGD.

Ricci flow and Maxwell flow for 4-geometries

The observation about constancy of 4-D curvature scalar for preferred extremals inspires a general-
ization of the well-known volume preserving Ricci flow [A26] introduced by Richard Hamilton. Ricci
flow is defined in the space of Riemann metrics as

dgaﬁ
dt

= —2Ru5+ QRgg Jos - (2.11.13)
Here R4, 4 denotes the average of the scalar curvature, and D is the dimension of the Riemann manifold.
The flow is volume preserving in average sense as one easily checks ((g*°dgas/dt) = 0). The volume
preserving property of this flow allows to intuitively understand that the volume of a 3-manifold in the
asymptotic metric defined by the Ricci flow is topological invariant. The fixed points of the flow serve
as canonical representatives for the topological equivalence classes of 3-manifolds. These 3-manifolds
(for instance hyperbolic 3-manifolds with constant sectional curvatures) are highly symmetric. This
is easy to understand since the flow is dissipative and destroys all details from the metric.

What happens in the recent case? The first thing to do is to consider what might be called Maxwell
flow in the space of all 4-D Riemann manifolds allowing Maxwell field.
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1. First of all, the vanishing of the trace of Maxwell’s energy momentum tensor codes for the
volume preserving character of the flow defined as

dgaﬂ
dt

Top - (2.11.14)

Taking covariant divergence on both sides and assuming that d/dt and D,, commute, one obtains
that T°7 is divergenceless.

This is true if one assumes Einstein’s equations with cosmological term. This gives

dgaﬁ

kR
il kGap + Agap = kRap + (——— + N)gap - (2.11.15)

2

The trace of this equation gives that the curvature scalar is constant. Note that the value of
the Kéhler coupling strength plays a highly non-trivial role in these equations and it is quite
possible that solutions exist only for some critical values of ax. Quantum criticality should fix
the allow value triplets (G, A, ax) apart from overall scaling

(G, A,ak) = (G, Az, xak .

Fixing the value of G fixes the values remaining parameters at critical points. The rescaling of
the parameter ¢ induces a scaling by z.

2. By taking trace one obtains the already mentioned condition fixing the curvature to be constant,
and one can write

d
f;g  FRup— Agas . (2.11.16)

Note that in the recent case Rq,q = R holds true since curvature scalar is constant. The fixed
points of the flow would be Einstein manifolds [A4l [A40] satisfying

A
Raﬁ = Ega,fj’ (21117)

3. It is by no means obvious that continuous flow is possible. The condition that Einstein-Maxwell
equations are satisfied might pick up from a completely general Maxwell flow a discrete subset
as solutions of Einstein-Maxwell equations with a cosmological term. If so, one could assign to
this subset a sequence of values t,, of the flow parameter ¢.

4. T do not know whether 3-dimensionality is somehow absolutely essential for getting the topolog-
ical classification of closed 3-manifolds using Ricci flow. This ignorance allows me to pose some
innocent questions. Could one have a canonical representation of 4-geometries as spaces with
constant Ricci scalar? Could one select one particular Einstein space in the class four-metrics
and could the ratio A/k represent topological invariant if one normalizes metric or curvature
scalar suitably. In the 3-dimensional case curvature scalar is normalized to unity. In the recent
case this normalization would give k = 4A in turn giving Rag = gap/4. Does this mean that
there is only single fixed point in local sense, analogous to black hole toward which all geometries
are driven by the Maxwell flow? Does this imply that only the 4-volume of the original space
would serve as a topological invariant?
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Maxwell flow for space-time surfaces

One can consider Maxwell flow for space-time surfaces too. In this case Kahler low would be the
appropriate term and provides families of preferred extremals. Since space-time surfaces inside CD
are the basic physical objects are in TGD framework, a possible interpretation of these families would
be as flows describing physical dissipation as a four-dimensional phenomenon polishing details from
the space-time surface interpreted as an analog of Bohr orbit.

1. The flow is now induced by a vector field j*(x,t) of the space-time surface having values in
the tangent bundle of imbedding space M* x C'P,. In the most general case one has Kihler
flow without the Einstein equations. This flow would be defined in the space of all space-time
surfaces or possibly in the space of all extremals. The flow equations reduce to

, 1
hiaDoj"®(x,t)Dsh! = 3Tos - (2.11.18)

The left hand side is the projection of the covariant gradient D, j*(x,t) of the flow vector field
j¥(x,t) to the tangent space of the space-time surface. Dgiphe is covariant derivative taking
into account that j* is imbedding space vector field. For a fixed point space-time surface
this projection must vanish assuming that this space-time surface reachable. A good guess for
the asymptotia is that the divergence of Maxwell energy momentum tensor vanishes and that
FEinstein’s equations with cosmological constant are well-defined.

Asymptotes corresponds to vacuum extremals. In Euclidian regions C' P, type vacuum extremals
and in Minkowskian regions to any space-time surface in any 6-D sub-manifold M* x Y2, where
Y? is Lagrangian sub-manifold of C'P, having therefore vanishing induced Kihler form. Sym-
plectic transformations of C'P, combined with diffeomorphisms of M* give new Lagrangian
manifolds. One would expect that vacuum extremals are approached but never reached at
second extreme for the flow.

If one assumes Einstein’s equations with a cosmological term, allowed vacuum extremals must
be Einstein manifolds. For C' P, type vacuum extremals this is the case. It is quite possible that
these fixed points do not actually exist in Minkowskian sector, and could be replaced with more
complex asymptotic behavior such as limit, chaos, or strange attractor.

2. The flow could be also restricted to the space of preferred extremals. Assuming that Einstein
Maxwell equations indeed hold true, the flow equations reduce to

1
hiaDoj" (x,t)0gh! = 5 (kRap = Agap) - (2.11.19)

Preferred extremals would correspond to a fixed sub-manifold of the general flow in the space
of all 4-surfaces.

3. One can also consider a situation in which j*(z,t) is replaced with j*(h,t) defining a flow in the
entire imbedding space. This assumption is probably too restrictive. In this case the equations
reduce to

(Dyji(2,t) + Dijr)0ah"0sh! = kRag — Agap - (2.11.20)

Here D, denotes covariant derivative. Asymptotia is achieved if the tensor Dyj; + Dy j; becomes
orthogonal to the space-time surface. Note for that Killing vector fields of H the left hand side
vanishes identically. Killing vector fields are indeed symmetries of also asymptotic states.
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It must be made clear that the existence of a continuous flow in the space of preferred extremals
might be too strong a condition. Already the restriction of the general Maxwell flow in the space of
metrics to solutions of Einstein-Maxwell equations with cosmological term might lead to discretization,
and the assumption about reprentability as 4-surface in M* x C'P, would give a further condition
reducing the number of solutions. On the other hand, one might consiser a possibility of a continuous
flow in the space of constant Ricci scalar metrics with a fixed 4-volume and having hyperbolic spaces
as the most symmetric representative.

Dissipation, self organization, transition to chaos, and coupling constant evolution

A beautiful connection with concepts like dissipation, self-organization, transition to chaos, and cou-
pling constant evolution suggests itself.

1. Tt is not at all clear whether the vacuum extremal limits of the preferred extremals can correspond
to Einstein spaces except in special cases such as C'P, type vacuum extremals isometric with
CP,. The imbeddability condition however defines a constraint force which might well force
asymptotically more complex situations such as limit cycles and strange attractors. In ordinary
dissipative dynamics an external energy feed is essential prerequisite for this kind of non-trivial
self-organization patterns.

In the recent case the external energy feed could be replaced by the constraint forces due to
the imbeddability condition. It is not too difficult to imagine that the flow (if it exists!) could
define something analogous to a transition to chaos taking place in a stepwise manner for critical
values of the parameter ¢. Alternatively, these discrete values could correspond to those values
of ¢ for which the preferred extremal property holds true for a general Maxwell flow in the space
of 4-metrics. Therefore the preferred extremals of Kahler action could emerge as one-parameter
(possibly discrete) families describing dissipation and self-organization at the level of space-time
dynamics.

2. For instance, one can consider the possibility that in some situations Einstein’s equations split
into two mutually consistent equations of which only the first one is independent

xJ%, J"» = R |
L = aJ%,J" =4A |
1
r = . (2.11.21)
l6mrak

Note that the first equation indeed gives the second one by tracing. This happens for C'P; type
vacuum extremals.

Kaéhler action density would reduce to cosmological constant which should have a continuous
spectrum if this happens always. A more plausible alternative is that this holds true only
asymptotically. In this case the flow equation could not lead arbitrary near to vacuum extremal,
and one can think of situation in which Ly = 4A defines an analog of limiting cycle or perhaps
even strange attractor. In any case, the assumption would allow to deduce the asymptotic value
of the action density which is of utmost importance from calculational point of view: action
would be simply S = 4AV, and one could also say that one has minimal surface with A taking
the role of string tension.

3. One of the key ideas of TGD is quantum criticality implying that Kahler coupling strength is
analogous to critical temperature. Second key idea is that p-adic coupling constant evolution
represents discretized version of continuous coupling constant evolution so that each p-adic
prime would correspond a fixed point of ordinary coupling constant evolution in the sense that
the 4-volume characterized by the p-adic length scale remains constant. The invariance of the
geometric and thus geometric parameters of hyperbolic 4-manifold under the Kéahler flow would
conform with the interpretation as a flow preserving scale assignable to a given p-adic prime.
The continuous evolution in question (if possible at all!) might correspond to a fixed p-adic
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prime. Also the hierarchy of Planck constants relates to this picture naturally. Planck constant
heff = nh corresponds to a multi-furcation generating n-sheeted structure and certainly affecting
the fundamental group.

4. One can of course question the assumption that a continuous flow exists. The property of being a
solution of Einstein-Maxwell equations, imbeddability property, and preferred extremal property
might allow allow only discrete sequences of space-time surfaces perhaps interpretable as orbit
of an iterated map leading gradually to a fractal limit. This kind of discrete sequence might
be also be selected as preferred extremals from the orbit of Maxwell flow without assuming
Einstein-Maxwell equations. Perhaps the discrete p-adic coupling constant evolution could be
seen in this manner and be regarded as an iteration so that the connection with fractality would
become obvious too.

Does a 4-D counterpart of thermodynamics make sense?

The interpretation of the Ké&hler flow in terms of dissipation, the constancy of R, and almost constancy
of Lk suggest an interpretation in terms of 4-D variant of thermodynamics natural in zero energy
ontology (ZEQO), where physical states are analogs for pairs of initial and final states of quantum event
are quantum superpositions of classical time evolutions. Quantum theory becomes a ”square root” of
thermodynamics so that 4-D analog of thermodynamics might even replace ordinary thermodynamics
as a fundamental description. If so this 4-D thermodynamics should be qualitatively consistent with
the ordinary 3-D thermodynamics.

1. The first naive guess would be the interpretation of the action density Ly as an analog of energy
density e = E/V3 and that of R as the analog to entropy density s = S/V3. The asymptotic
states would be analogs of thermodynamical equilibria having constant values of L and R.

2. Apart from an overall sign factor € to be discussed, the analog of the first law de = T'ds — pdV/V
would be

v

dLig = kd A
K R+ i

One would have the correspondences S — eRVy, ¢ — eLg and k - T, p — —A. k «x 1/G
indeed appears formally in the role of temperature in Einstein’s action defining a formal partition
function via its exponent. The analog of second law would state the increase of the magnitude
of eRVy during the Kéahler flow.

3. One must be very careful with the signs and discuss Euclidian and Minkowskian regions sepa-
rately. Concerning purely thermodynamic aspects at the level of vacuum functional Euclidian
regions are those which matter.

(a) For CP, type vacuum extremals Lx < E? + B?2 | R = A/k, and A are positive. In
thermodynamical analogy for € = 1 this would mean that pressure is negative.

(b) In Minkowskian regions the value of R = A/k is negative for A < 0 suggested by the large
abundance of 4-manifolds allowing hyperbolic metric and also by cosmological considera-
tions. The asymptotic formula L = 4A considered above suggests that also Kéhler action
is negative in Minkowskian regions for magnetic flux tubes dominating in TGD inspired
cosmology: the reason is that the magnetic contribution to the action density Lx o« E?—B?
dominates.

Consider now in more detail the 4-D thermodynamics interpretation in Euclidian and Minkowskian
regions assuming that the the evolution by quantum jumps has Kahler flow as a space-time correlate.

1. In Euclidian regions the choice ¢ = 1 seems to be more reasonable one. In Euclidian regions —A
as the analog of pressure would be negative, and asymptotically (that is for C P, type vacuum
extremals) its value would be proportional to A o< 1/GR?, where R denotes C'P» radius defined
by the length of its geodesic circle.
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A possible interpretation for negative pressure is in terms of string tension effectively inducing
negative pressure (note that the solutions of the modified Dirac equation indeed assign a string
to the wormhole contact). The analog of the second law would require the increase of RV} in
quantum jumps. The magnitudes of Ly, R, V4 and A would be reduced and approach their
asymptotic values. In particular, V; would approach asymptotically the volume of C'Ps.

2. In Minkowskian regions Kahler action contributes to the vacuum functional a phase factor anal-
ogous to an imaginary exponent of action serving in the role of Morse function so that thermo-
dynamics interpretation can be questioned. Despite this one can check whether thermodynamic
interpretation can be considered. The choice ¢ = —1 seems to be the correct choice now. —A
would be analogous to a negative pressure whose gradually decreases. In 3-D thermodynamics it
is natural to assign negative pressure to the magnetic flux tube like structures as their effective
string tension defined by the density of magnetic energy per unit length. —R > 0 would entropy
and —Lg > 0 would be the analog of energy density.

R = A/k and the reduction of A during cosmic evolution by quantum jumps suggests that the
larger the volume of CD and thus of (at least) Minkowskian space-time sheet the smaller the
negative value of A.

Assume the recent view about state function reduction explaining how the arrow of geometric
time is induced by the quantum jump sequence defining experienced time [K6]. According to
this view zero energy states are quantum superpositions over C'Ds of various size scales but
with common tip, which can correspond to either the upper or lower light-like boundary of
CD. The sequence of quantum jumps the gradual increase of the average size of C'D in the
quantum superposition and therefore that of average value of V;. On the other hand, a gradual
decrease of both —Lj and —R looks physically very natural. If Kahler flow describes the effect
of dissipation by quantum jumps in ZEO then the space-time surfaces would gradually approach
nearly vacuum extremals with constant value of entropy density —R but gradually increasing
4-volume so that the analog of second law stating the increase of —RV, would hold true.

3. The interpretation of —R > 0 as negentropy density assignable to entanglement is also possible
and is consistent with the interpretation in terms of second law. This interpretation would only
change the sign factor € in the proposed formula. Otherwise the above arguments would remain
as such.

2.11.4 Could correlation functions, S-matrix, and coupling constant evo-
lution be coded the statistical properties of preferred extremals?

Quantum classical correspondence states that all aspects of quantum states should have correlates in
the geometry of preferred extremals. In particular, various elementary particle propagators should
have a representation as properties of preferred extremals. This would allow to realize the old dream
about being able to say something interesting about coupling constant evolution although it is not
yet possible to calculate the M-matrices and U-matrix. Hitherto everything that has been said about
coupling constant evolution has been rather speculative arguments except for the general vision that
it reduces to a discrete evolution defined by p-adic length scales. General first principle definitions
are however much more valuable than ad hoc guesses even if the latter give rise to explicit formulas.

In quantum TGD and also at its QFT limit various correlation functions in given quantum state
should code for its properties. By quantum classical correspondence these correlation functions should
have counterparts in the geometry of preferred extremals. Even more: these classical counterparts
for a given preferred extremal ought to be identical with the quantum correlation functions for the
superposition of preferred extremals. This correspondence could be called quantum ergodicity by
its analogy with ordinary ergodicity stating that the member of ensemble becomes representative of
ensemble.

1. The marvelous implication of quantum ergodicity would be that one could calculate everything
solely classically using the classical intuition - the only intuition that we have. Quantum ergodic-
ity would also solve the paradox raised by the quantum classical correspondence for momentum
eigenstates. Any preferred extremal in their superposition defining momentum eigenstate should
code for the momentum characterizing the superposition itself. This is indeed possible if every
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extremal in the superposition codes the momentum to the properties of classical correlation
functions which are identical for all of them.

. The only manner to possibly achieve quantum ergodicity is in terms of the statistical properties

of the preferred extremals. It should be possible to generalize the ergodic theorem stating
that the properties of statistical ensemble are represented by single space-time evolution in the
ensemble of time evolutions. Quantum superposition of classical worlds would effectively reduce
to single classical world as far as classical correlation functions are considered. The notion of
finite measurement resolution suggests that one must state this more precisely by adding that
classical correlation functions are calculated in a given UV and IR resolutions meaning UV cutoff
defined by the smallest CD and IR cutoff defined by the largest CD present.

The skeptic inside me immediately argues that TGD Universe is 4-D spin glass so that this
quantum ergodic theorem must be broken. In the case of the ordinary spin classes one has
not only statistical average for a fixed Hamiltonian but a statistical average over Hamiltonians.
There is a probability distribution over the coupling parameters appearing in the Hamiltonian.
Maybe the quantum counterpart of this is needed to predict the physically measurable correlation
functions.

Could this average be an ordinary classical statistical average over quantum states with different
classical correlation functions? This kind of average is indeed taken in density matrix formalism.
Or could it be that the square root of thermodynamics defined by ZEO actually gives automati-
cally rise to this average? The eigenvalues of the ”hermitian square root ” of the density matrix
would code for components of the state characterized by different classical correlation functions.
One could assign these contributions to different ”phases”.

Quantum classical correspondence in statistical sense would be very much like holography (now
individual classical state represents the entire quantum state). Quantum ergodicity would pose
a rather strong constraint on quantum states. This symmetry principle could actually fix the
spectrum of zero energy states to a high degree and fix therefore the M-matrices given by the
product of hermitian square root of density matrix and unitary S-matrix and unitary U-matrix
having M-matrices as its orthonormal rows.

. In TGD inspired theory of consciousness the counterpart of quantum ergodicity is the postulate

that the space-time geometry provides a symbolic representation for the quantum states and
also for the contents of consciousness assignable to quantum jumps between quantum states.
Quantum ergodicity would realize this strongly self-referential looking condition. The positive
and negative energy parts of zero energy state would be analogous to the initial and final
states of quantum jump and the classical correlation functions would code for the contents of
consciousness like written formulas code for the thoughts of mathematician and provide a sensory
feedback.

How classical correlation functions should be defined?

1.

General Coordinate Invariance and Lorentz invariance are the basic constraints on the definition.
These are achieved for the space-time regions with Minkowskian signature and 4-D M* projection
if linear Minkowski coordinates are used. This is equivalent with the contraction of the indices of
tensor fields with the space-time projections of M* Killing vector fields representing translations.
Accepting ths generalization, there is no need to restrict oneself to 4-D M* projection and one
can also consider also Euclidian regions identifiable as lines of generalized Feynman diagrams.

Quantum ergodicity very probably however forces to restrict the consideration to Minkowskian
and FEuclidian space-time regions and various phases associated with them. Also C'P; Killing
vector fields can be projected to space-time surface and give a representation for classical gluon
fields. These in turn can be contracted with M* Killing vectors giving rise to gluon fields as
analogs of graviton fields but with second polarization index replaced with color index.

. The standard definition for the correlation functions associated with classical time evolution is

the appropriate starting point. The correlation function Gxy (7) for two dynamical variables
X(t) and Y (t) is defined as the average Gxy (1) = [, X (t)Y (t+7)dt/T over an interval of length
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T, and one can also consider the limit 7' — oco. In the recent case one would replace 7 with the
difference m; —ma = m of M* coordinates of two points at the preferred extremal and integrate
over the points of the extremal to get the average. The finite time interval T is replaced with
the volume of causal diamond in a given length scale. Zero energy state with given quantum
numbers for positive and negative energy parts of the state defines the initial and final states
between which the fields appearing in the correlation functions are defined.

3. What correlation functions should be considered? Certainly one could calculate correlation func-
tions for the induced spinor connection given electro-weak propagators and correlation functions
for C' P, Killing vector fields giving correlation functions for gluon fields using the description in
terms of Killing vector fields. If one can uniquely separate from the Fourier transform uniquely
a term of form Z/(p?> — m?) by its momentum dependence, the coefficient Z can be identified
as coupling constant squared for the corresponding gauge potential component and one can in
principle deduce coupling constant evolution purely classically. One can imagine of calculating
spinorial propagators for string world sheets in the same manner. Note that also the depen-
dence on color quantum numbers would be present so that in principle all that is needed could
be calculated for a single preferred extremal without the need to construct QFT limit and to
introduce color quantum numbers of fermions as spin like quantum numbers (color quantum
numbers corresponds to C' P, partial wave for the tip of the CD assigned with the particle).

4. What about Higgs field? TGD in principle allows scalar and pseudo-scalars which could be called
Higgs like states. These states are however not necessary for particle massivation although they
can represent particle massivation and must do so if one assumes that QFT limit exist. p-Adic
thermodynamics however describes particle massivation microscopically.

The problem is that Higgs like field does not seem to have any obvious space-time correlate.
The trace of the second fundamental form is the obvious candidate but vanishes for preferred
extremals which are both minimal surfaces and solutions of Einstein Maxwell equations with
cosmological constant. If the string world sheets at which all spinor components except right
handed neutrino are localized for the general solution ansatz of the modified Dirac equation, the
corresponding second fundamental form at the level of imbedding space defines a candidate for
classical Higgs field. A natural expectation is that string world sheets are minimal surfaces of
space-time surface. In general they are however not minimal surfaces of the imbedding space so
that one might achieve a microscopic definition of classical Higgs field and its vacuum expectation
value as an average of one point correlation function over the string world sheet.

Many detailed speculations about coupling constant evolution to be discussed in the sections
below must be taken as innovative guesses doomed to have the eventual fate of guesses. The notion of
quantum ergodicity could however be one of the really deep ideas about coupling constant evolution
comparable to the notion of p-adic coupling constant evolution. Quantum Ergodicity (briefly QE)
would also state something extremely non-trivial also about the construction of correlation functions
and S-matrix. Because this principle is so new, the rest of the chapter does not yet contain any
applications of QE. This should not lead the reader to under-estimate the potential power of QE.

2.12 Does thermodynamics have a representation at the level
of space-time geometry?

R. Kiehn has proposed what he calls Topological Thermodynamics (TTD) [B47] as a new formulation
of thermodynamics. The basic vision is that thermodynamical equations could be translated to
differential geometric statements using the notions of differential forms and Pfaffian system| [A23].
That TTD differs from TGD by a single letter is not enough to ask whether some relationship between
them might exist. Quantum TGD can however in a well-defined sense be regarded as a square root
of thermodynamics in zero energy ontology (ZEO) and this leads leads to ask seriously whether TTD
might help to understand TGD at deeper level. The thermodynamical interpretation of space-time
dynamics would obviously generalize black hole thermodynamics to TGD framework and already
earlier some concrete proposals have been made in this direction.

One can raise several questions. Could the preferred extremals of Kahler action code for the square
root of thermodynamics? Could induced Kéhler gauge potential and Kéhler form (essentially Maxwell
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field) have formal thermodynamic interpretation? The vacuum degeneracy of Kahler action implies
4-D spin glass degeneracy and strongly suggests the failure of strict determinism for the dynamics
of Kéhler action for non-vacuum extremals too. Could thermodynamical irreversibility and preferred
arrow of time allow to characterize the notion of preferred extremal more sharply?

It indeed turns out that one can translate Kiehn’s notions to TGD framework rather straightfor-
wardly.

1. Kiehn’s work 1- form corresponds to induced Kahler gauge potential implying that the vanishing
of instanton density for Kéahler form becomes a criterion of reversibility and irreversibility is
localized on the (4-D) "lines” of generalized Feyman diagrams, which correspond to space-like
signature of the induced metric. The localization of heat production to generalized Feynman
diagrams conforms nicely with the kinetic equations of thermodynamics based on reaction rates
deduced from quantum mechanics. It also conforms with Kiehn’s vision that dissipation involves
topology change.

2. Heat produced in a given generalized Feynman diagram is just the integral of instanton density
and the condition that the arrow of geometric time has definite sign classically fixes the sign of
produced heat to be positive. In this picture the preferred extremals of K&hler action would allow
a trinity of interpretations as non-linear Maxwellian dynamics, thermodynamics, and integrable
hydrodynamics.

3. The 4-D spin glass degeneracy of TGD breaking of ergodicity suggests that the notion of global
thermal equilibrium is too naive. The hierarchies of Planck constants and of p-adic length scales
suggests a hierarchical structure based on C'Ds withing C'Ds at imbedding space level and space-
time sheets topologically condensed at larger space-time sheets at space-time level. The arrow
of geometric time for quantum states could vary for sub-C' Ds and would have thermodynamical
space-time correlates realized in terms of distributions of arrows of geometric time for sub-C Ds,
sub-sub-CDs, etc...

The hydrodynamical character of classical field equations of TGD means that field equations reduce
to local conservation laws for isometry currents and Kéahler gauge current. This requires the extension
of Kiehn’s formalism to include besides forms and exterior derivative also induced metric, index raising
operation transforming 1-forms to vector fields, duality operation transforming k- forms to n-k forms,
and divergence which vanishes for conserved currents.

2.12.1 DMotivations and background

It is good to begin by discussing the motivations for the geometrization of thermodynamics and by in-
troducing the existing mathematical framework identifying space-time surfaces as preferred extremals
of Kéahler action.

ZEO and the need forthe space-time correlates for square root of thermodynamics

Quantum classical correspondence is basic guiding principle of quantum TGD. In ZEO TGD can
be regarded as a complex square root of thermodynamics so that the thermodynamics should have
correlates at the level of the geometry of space-time.

1. Zero energy states consist of pairs of positive and negative energy states assignable to opposite
boundaries of a causal diamond (CD). There is entire hierarchy of C'Ds characterized by their
scale coming as an integer multiple of a basic scale (also their Poincare transforms are allowed).

2. In ZEO zero energy states are automatically time-irreversible in the sense that either end of the
causal diamond (CD) corresponds to a state consisting of single particle states with well-defined
quantum numbers. In other words, this end of C'D carries a prepared state. The other end
corresponds to a superposition of states which can have even different particle numbers: this is
the case in particle physics experiment typically. State function reduction reduces the second
end of C'D to a prepared state. This process repeats itself. This suggests that the arrow of time
or rather, its geometric counterpart which we experience, alternates. This need not however be
the case if quantum classical correspondence holds true.
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3. To illustrate what I have in mind consider a path towel, which has been been folded forth
and back. Assume that the direction in which folding is carried is time direction. Suppose
that the inhabitant of bath towel Universe is like the habitant of the famous Flatland and
therefore not able to detect the folding of the towel. If the classical dynamics of towel is time
irreversible (time corresponds to the direction in which the folding takes place), the inhabitant
sees ever lasting irreversible time evolution with single arrow of geometric time identified as time
coordinate for the towel: no changes in the arrow of geometric time. If the inhabitant is able to
make measurements about 3-D space the situation he or she might be able to see that his time
evolution takes place forth and back with respect to the time coordinate of higher-dimensional
imbedding space.

4. One might understand the arrow of time - albeit differently as in normal view about the situation
- if classical time evolution for the preferred extremals of Kéahler action defines a geometric
correlate for quantum irreversibility of zero energy states. There are of course other space-time
sheets and other C'Ds present an it might be possible to detect the alternation of the arrow
of geometric time at imbedding space level by making measurements giving information about
their geometric arrows of time [KG].

By quantum classical correspondence one expects that the geometric arrow of time - irreversibility
- for zero energy states should have classical counterparts at the level of the dynamics of preferred
extremals of Kéhler action. What could be this counterpart? Thermodynamical evolution by quantum
jumps does not obey ordinary variational principle that would make it deterministic: Negentropy
Maximization Principle (NMP) [K51] for state function reductions of system is analogous to Second
Law for an ensemble of copies of system and actually implies it. Could one mimic irreversibility
by single classical evolution defined by a preferred extremal? Note that the dynamics of preferred
extremals is not actually strictly deterministic in the ordinary sense of the word: the reason is the
enormous vacuum degeneracy implying 4-D spin glass degeneracy. This makes it possible to mimic
not only quantum states but also sequences of quantum jumps by piece-wise deterministic evolution.

Preferred extremals of Kahler action

In Quantum TGD the basic arena of quantum dynamics is ”world of classical worlds” (WCW)) [KGS].
Purely classical spinor fields in this infinite-dimensional space define quantum states of the Universe.
General Coordinate Invariance (GCI) implies that classical worlds can be regarded as either 3-surfaces
or 4-D space-time surfaces analogous to Bohr orbits. Strong form of GCI implies in ZEO strong form
of holography in the sense that the points of WCW effectively correspond to collections of partonic
2-surfaces belonging to both ends of causal diamonds (CDs) plus their 4-D tangent space-time data.

Kéhler geometry reduces to the notion of Kahler function [K40] and by quantum classical corre-
spondence a good guess is that Kahler function corresponds to so called Kahler action for Euclidian
space-time regions. Minkowskian space-time regions give a purely imaginary to Kahler action (square
root of metric determinant is imaginary) and this contribution plays the role of Morse function for
WCW. Stationary phase approximation imples that in first the approximation the extremals of the
Kéhler function (to be distinguished from preferred extremals of Kéhler action!) select one partic-
ular 3-surface and corresponding classical space-time surface (Bohr orbit) as that defining ”classical
physics”.

GCI implies holography and holography suggests that action reduces to 3-D terms. This is true if
one has j# A, = 0 in the interior of space-time. If one assumes so called weak form of electric-magnetic
duality [K31] at the real and effective boundaries of space-time surface (3-D surfaces at the ends of
C'Ds and the light-like 3-surfaces at which the signature of induced 4-metric changes so that 4-metric
is degenerate), one obtains a reduction of Kéhler action to Chern-Simons terms at the boundaries.
TGD reduces to almost topological QFT. ” Almost” means that the induced metric does not disappear
completely from the theory since it appears in the conditions expressing weak form of electric magnetic
duality and in the condition j#A, = 0.

The strong form of holography implies effective 2-dimensionality and this suggests the reduction of
Chern-Simons terms to 2-dimensional areas of string world sheets and possible of partonic 2-surfaces.
This would mean almost reduction to string theory like theory with string tension becoming a dynamic
quantity.
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Under additional rather general conditions the contributions from Minkowskian and Euclidian
regions of space-time surface are apart from the value of coefficient identical at light-like 3-surfaces.
At space-like 3-surfaces at the ends of space-time surface they need not be identical.

Quantum classical correspondence suggests that space-time surfaces provide a representation for
the square root of thermodynamics and therefore also for thermodynamics. In general relativity black
hole thermodynamics suggests the same. This idea is not new in TGD framework. For instance,
Hawking-Bekenstein formulal for blackbody entropy [B3] allows a |p-adic generalization| in terms of
area of partonic 2-surfaces [K58]. The challenge is to deduce precise form of this correspondence and
here Kiehn’s topological thermodynamics might help in this task.

2.12.2 Kiehn’s topological thermodynamics (TTD)

The basic in the work of Kiehn is that thermodynamics allows a topological formulation in terms of
differential geometry.

1. Kiehn introduces also the notions of hrefhttp://www22.pair.com/csdc/pdf/irevtors.pdfPfaff sys-
tem and Pfaff dimension as the number of non-vanishing forms in the sequence for given 1-form
such as Wor Q: W, dW, W AdW, dW ANdW . Pfaff dimension D < 4 tells that one can describe
W as sum W = Y Wydz® of gradients of D variables. D = 4 corresponds to open system,
D = 3 to a closed system and W A dW # 0 defines what can be regarded as a chirality. For
D = 2 chirality vanishes no spontaneous parity breaking.

2. Kiehn’s king idea that Pfaffian systems provide a universal description of thermodynamical
reversisibility. Kiehn introduces heat 1- form Q. System is thermodynamically reversible if Q is
integrable. In other words, the condition Q AdQ = 0 holds true which implies that one can write
Q =TdS: @ allows an integrable factor T" and is expressible in terms of the gradient of entropy.
@ = TdS condition implies that ) correspond to a global flow defined by the coordinate lines
of S. This in turn implies that it is possible define phase factors depending on .S along the flow
line: this relates to macroscopic quantum coherence for macroscopic quantum phases.

3. The first law expressing the work 1-form W as W = Q —dU = T'dS —dU for reversible processes.
This gives dW A dW = 0. The condition dW A dW # 0 therefore characterizes irreversible
processes.

4. Symplectic transformations are natural in Kiehn’s framework but not absolutely essential.

Reader is encouraged to get familiar with Kiehn’s examples [B47] about the description of various
simple thermodynamical systems in this conceptual framework. Kiehn has also worked with the
differential topology of electrodynamics and discussed concepts like integrable flows known as Beltrami
flows. These flows generalized to TGD framework and are in key role in the construction of proposals
for preferred extremals of Kéhler action: the basic idea would be that various conserved isometry
currents define Beltrami flows so that theit flow lines can be associated with coordinate lines.

2.12.3 Attempt to identify TTD in TGD framework

Let us now try to identify TTD or its complex square root in TGD framework.

The role of symplectic transformations

Symplectic transformations are important in Kiehn’s approach although they are not a necessary
ingredient of it and actually impossible to realize in Minkowski space-time.

1. Symplectic symmetries of WCW induced by synmplectic symmetries of C'P, and light-like
boundary of C'D are important also in TGD framework |[K20] and define the isometries of WCW.
As a matter fact, symplectic group parameterizes the quantum fluctuating degrees of freedom
and zero modes defining classical variables are symplectic invariants. One cannot assign to entire
space-time surfaces symplectic structure although this is possible for partonic 2-surfaces.
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2. The symplectic transformations of C'P; act on the Kéhler gauge potential as U(1) gauge trans-
formations formally but modify the shape of the space-time surface. These symplectic trans-
formations are symmetries of Kéhler action only in the vacuum sector which as such does not
belong to WCW whereas small deformations of vacua belong. Therefore genuine gauge symme-
tries are not in question. One can of course formally assign to Kahler gauge potential a separate
U(1) gauge invariance.

3. Vacuum extremals with at most 2-D C' P, projection (Lagrangian sub-manifold) form an infinite-
dimensional space. Both M* diffeomorphisms and symplectic transformations of C'P, produce
new vacuum extremals, whose small deformations are expected to correspond preferred ex-
tremals. This gives rise to 4-D spin glass degeneracy [K58] to be distinguished from 4-D gauge
degeneracy.

Identification of basic 1-forms of TTD in TGD framework

Consider nex the identification of the basic variables which are forms of various degrees in TTD.

1. Kahler gauge potential is analogous to work 1-form W. In classical electrodynamics vector
potential indeed has this interpretation. dW A dW is replaced with J A J defining instanton
density (Ex- By in physicist’s notation) for Kahler form and its non-vanishing - or equivalently 4-
dimensionality of C' P, projection of space-time surface - would be the signature of irreversibility.
dJ = 0 holds true only locally and one can have magnetic monoples since C' P, has non-trivial
homology. Therefore the non-trivial topology of C' P, implying that the counterpart of W is not
globablly defined, brings in non-trivial new element to Kiehn’s theory.

2. Chirality C' —S = A A J is essentially Chern-Simons 3-form and in ordinary QFT non-vanishing
of C'— S- if present in action - means parity breaking in ordinary quantum field theories. Now
one must be very cautious since parity is a symmetry of the imbedding space rather than that
of space-time sheet.

3. Pfaff dimension equals to the dimension of C'P, projection and has been used to classify exist-
ing preferred extremals. I have called the extremals with 4-D C'P, projection chaotic and so
called C' P, vacuum extremals with 4-D C' P, projection correspond to such extremals. Massless
extremals or topological light rays correspond to D = 2 as do also cosmic strings. In Euclidian
regions preferred extremals with D = 4 are are possible but not in Minkowskian regions if one
accepts effective 3-dimensionality. Here one must keep mind open.

Irreversibility identified as a non-vanishing of the instanton density J A J has a purely geometrical
and topological description in TGD Universe if one accepts effective 3-dimensionality.

1. The effective 3-dimensionality for space-time sheets (holography implied by general coordinate
invariance) implies that Kahler action reduces to Chern-Simons terms so that the Pfaff di-
mension is at most D = 3 for Minkowskian regions of space-time surface so that they are are
thermodynamically reversible.

2. For Euclidian regions (say deformations of C'P, type vacuum extremals) representing orbits of
elementary particles and lines of generalized Feynman diagrams D = 4 is possible. Therefore
Euclidian space-like regions of space-time would be solely responsible for the irreversibility. This
is quite strong conclusion but conforms with the standard quantum view about thermodynamics
according to which various particle reaction rates deduced from quantum theory appear in kinetic
equations giving rise to irreversible dynamics at the level of ensembles. The presence of Morse
function coming from Minkowskian regions is natural since square root of thermodynamics is
in question. Morse function is analogous to the action in QFTs whereas Kahler function is
analogous to Hamiltonian in thermodynamics. Also this conforms with the square root of TTD
interpretation.
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Instanton current, instanton density, and irreversibility

Classical TGD has the structure of hydrodynamics in the sense that field equations are conservation
laws for isometry currents and Kéhler current. These are vector fields although induced metric allows
to transform them to forms. This aspect should be visible also in thermodynamic interpretation
and forces to add to the Kiehn’s formulation involving only forms and exterior derivative also induced
metric transforming 1-forms to vector fields, the duality mapping 4-k forms and k-forms to each other,
and divergence operation.

It was already found that irreversibility and dissipation corresponds locally to a non-vanishing
instanton density J A J. This form can be regarded as exterior derivative of Chern-Simons 3-form or
equivalently as divergence of instanton current.

1. The dual of C-S 3-form given by *(A A J) defines what I have called instanton current. This
current is not conserved in general and the interpretation as a heat current would be natural.
The exterior derivative of C-S gives instanton density J A J. Equivalently, the divergence of
instanton currengives the dual of J A J and the integral of instanton density gives the analog
of instanton number analogous to the heat generated in a given space-time volume. Note that
in Minkowskian regions one can multiply instanton current with a function of C' P, coordinates
without losing closedness property so that infinite number similar conserved currents is possible.

The heat 3-form is expressible in terms of Chern-Simons 3-form and for preferred extremals it
would be proportional to the weight sum of Kéhler actions from Minkowskian and Euclidian
regions (coeffecients are purely imaginary and real in these two regions). Instead of single
real quantity one would have complex quantity characterizing irreversibility. Complexity would
conform with the idea that quantum TGD is complex square root of thermodynamics.

2. The integral of heat 3-form over effective boundaries associated with a given space-time region
define the net heat flow from that region. Only the regions defining the lines of generalized Feyn-
man diagrams give rise to non-vanishing heat fluxes. Second law states that one has AQ > 0.
Generalized second law means at the level of quantum classical correspondence would mean
that depending on the arrow of geometric time for zero energy state AQ is defined as difference
between upper and lower or lower and upper boundaries of C'D. This condition applied to CD
and sub-CD:s would generalize the conditions familiar from hydrodynamics (stating for instance
that for shock waves the branch of bifurcation for which the entropy increases is selected). Note
that the field equations of TGD are hydrodynamical in the sense that they express conservation
of various isometry currents. The naive picture about irreversibility is that classical dynamics
generates C'Ps type vacuum extremals so that the number of outgoing lines of generalized Feyn-
man diagram is higher than that of incoming ones. Therefore that the number of space-like
3-surfaces giving rise to Chern-Simons contribution is larger at the end of C'D corresponding to
the final (negative energy) state.

3. A more precise characterization of the irreversible states involves several non-trivial questions.

(a) By the failure of strict classical determinism the condition that for a given C'D the number

outgoing lines is not smaller than incoming lines need not provide a unique manner to fix
the preferred extremal when partonic 2-surfaces at the ends are fixed. Could the arrow
of geometric time depend on sub-C'D as the model for living matter suggests (recall also
phase conjugate light rays)?
In ordinary quantum mechanical approach to kinetic equations also the reactions, which
decrease entropy are allowed but their weight is smaller in thermal equilibrium. Could
this fact be described as a probability distribution for the arrow of time associated for the
sub-C'Ds, sub-sub-C Ds, etc... 7 Space-time correlates for quantal thermodynamics would
be probability distributions for space-time sheets and hierarchy of sub-C'Ds.

(b) 4-D spin glass degeneracy suggests breaking of ergodic hypothesis: could this mean that
one does not have thermodynamical equilibrium but very large number of spin glass states
caused by the frustation for which induced Kahler form provides a representation? Could
these states correspond to a varying arrow of geometric time for sub-C'Ds? Or could
different deformed vacuum extremals correspond to different space-time sheets in thermal
equilibrium with different thermal parameters.



2.12. Does thermodynamics have a representation at the level of space-time geometdy7d

Also Kahler current and isometry currents are needed

The conservation Kéahler current and of isometry currents imply the hydrodynamical character of
TGD.

1. The conserved Kéhler current jx is defined as 3-form jx = *(d % J), where d x J is closed
3-form and defines the counterpart of d*dW. Field equations for preferred extremals require
xjx AN A = 0 satsfied if one Kéahler current is proportional to instanton current: *jr oc A A J.
As a consequence Kéhler action reduces to 3-dimensional Chern-Simons terms (classical holog-
raphy) and Minkowskian space-time regions have at most 3-D CP» projection (Pfaff dimension
D < 3) so that one has J A J = 0 and reversibility. This condition holds true for preferred
extremals representing macroscopically the propagation of massless quanta but not Euclidian
regions representing quanta themselves and identifiable as basic building bricks of wormhole
contacts between Minkowskian space-time sheets.

2. A more general proposal is that all conserved currents transformed to 1-forms using the induced
metric (classical gravitation comes into play!) are integrable: in other words, on has j A dj =0
for both isometry currents and Ké&hler current. This would mean that they are analogous to
heat 1-forms in the reversible case and therefore have arepresentation analogous to @ = T'dS,
W = PdV, pudN and the coordinate along flowline defines the analog of S, V, or N (note
however that dS,dV, dN would more naturally correspond to 3-forms than 1-forms, see below)
A stronger form corresponds to the analog of hydrodynamics for one particle species: all one-
forms are proportional (by scalar function) to single 1-form which is AA J (all quantum number
flows are parallel to each other).

Questions

There are several questions to be answered.

1. In Darboux coordinates in which one has A = P;dQ' + P>dQ,. The identification of A as
counterpart for W = PdV — pudN comes first in mind. For thermodynamical equilibria one
would have T'dS = dU + W translating to T'dS = dU + A so that @ for reversible processes
would be apart from U(1) gauge transformation equal to the Kéhler gauge potential. Symplectic
transformations of C'P, generate U(1) gauge transformations and dU might have interpretation
in terms of energy flow induced by this kind of transformation. Recall however that symplectic
transformations are not symmetries of space-time surfaces but only of the WCW metric and act
on partonic 2-surfaces and their tangent space data as such.

2. Does the conserved Kahler current jx have any thermodynamical interpretation? Clearly the
countepars of conserved (and also non-conserved quantities) in Kiehn’s formulation would be
3-forms with vanishing curl d(xjx) = 0 in conserved case. Therefore it seems impossible to
reduce them to 1-forms unless one introduces divergence besides exterior derivative as a basic
differential operation.

The hypothesis that the flow lines of these 1-forms associated with jx vector field are integrable
implies that they are gradients apart from the presence of integrating factor. Reduction to
a gradient (j = dU) means that U satisfies massless d’Alembert equation d *x dU = 0. Note
that local polarization and light-like momentum are gradients of scalar functions which satisfy
masslesd d’Alembert equation for the Mikowskian space-time regions representing propagating
of massless quanta.

3. In genuinely 3-dimensional context S,V, N are integrals of 3-forms over 3-surfaces for some
current defining 3-form. This is in conflict with Kiehn’s description where they are O-forms.
One can imagine three cures and first two ones look

(a) The integrability of the flows allows to see them as superposition of independent 1-dimensional
flows. This picture would make it natural to regard the TGD counterparts of S, V, N as
0-forms rather than 2-forms. This would also allow to deduce J A J = 0 as a reversibility
condition using Kiehn’s argument.
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(b) Unless one requires integrable flows, one must consider the replacement of Q = T'dS resp.
W = PdV resp. pdN @Q = TdS resp. W = PdV resp. udN where W, Q, dS,dV, anddN
with 3-forms. So that S, V, N would be 2-forms and the 3-integrals of dS,dV,dN over
3-surfaces would reduce to integrals over partonic 2-surfaces, which is of course highly non-
trivial but physically natural implication of the effective 2-dimensionality. First law should
now read as *xW = T'xdS —*dU and would give dxW = dT'A*dS+Td+dS+dxdU. If S and
U as 2-forms satisfy massless d’Alembert equation, one obtains d * W = dT A *dS giving
d*xW ANd+W =0 as the reversibility condition. If one replaces W <> A correspondence
with xW <> A correspondence, one obtains the vanishing of instanton density as a condition
for reversibility. For the preferred extremals having interpretation as massless modes the
massless d’Alembert equations are satisfied and it might that this option makes sense and
be equivalent with the first option.

(¢) In accordance with the idea that finite measurement resolution is realized at the level of
modified Dirac equation, its solutions at lightlike 3-surfaces reduces to solutions restricted
to lines connecting partonic 2-surfaces. Could one regard W, @, dS, dV, and dN as singular
one-forms restricted to these lines? The vanishing of instanton density would be obtained
as a condition for reversibility only at the braid strands, and one could keep the original
view of Kiehn. Note however that the instanton density could be non-vanishing elsewhere
unless one develops a separate argument for its vanishing. For instance, the condition
that isometries of imbedding space say translations produce braid ends points for which
instanton density also vanishes for the reversible situation might be enough.

To sum up, it seems that TTD allows to develop considerable insights about how classical space-
time surfaces could code for classical thermodynamics. An essential ingredient seems to be the re-
duction of the hydrodynamical flows for isometry currents to what might be called perfect flows
decomposing to 1-dimensional flows with conservation laws holding true for individual flow lines.
An interesting challenge is to find expressions for total heat in terms of temperature and entropy.
Blackhole-elementary particle analogy suggest the reduction as well as effective 2-dimensionality sug-
gest the reduction of the integrals of Chern-Simons terms defining total heat flux to two 2-D volume
integrals over string world sheets and /or partonic 2-surfaces and this would be quite near to Hawking-
Bekenstein formula.

2.13 Robert Kiehn’s ideas about Falaco solitons and genera-
tion of turbulent wake from TGD perspective

I have been reading two highly interesting articles by Robert Kiehn. The first article has the title
”Hydrodynamics wakes and minimal surfaces with fractal boundaries”| [B45]. Second article is titled
" Instability patterns, wakes and topological limit sets”| [B46]. There are very many contacts on TGD
inspired vision and its open interpretational problems.

The notion of Falaco soliton has surprisingly close resemblance with Kéhler magnetic flux tubes
defining fundamental structures in TGD Universe. Fermionic strings are also fundamental structures
of TGD accompanying magnetic flux tubes and this supports the vision that these string like objects
could allow reduction of various condensed matter phenomena such as sound waves -usually regarded
as emergent phenomena allowing only highly phenomenological description - to the fundamental mi-
croscopic level in TGD framework. This can be seen as the basic outcome of this article.

Kiehn proposed a new description for the generation of various instability patterns of hydrody-
namics flows (Kelvin-Helmholtz and Rayleigh-Taylor instabilities) in terms of hyperbolic dynamics
so that a connection with wave phenomena like interference and diffraction would emerge. The role
of characteristic surfaces as surfaces of tangential and also normal discontinuities is central for the
approach. In TGD framework the characteristic surfaces have as analogs light-like wormhole throats
at which the signature of the induced 4-metric changes and these surfaces indeed define boundaries
of two phases and of material objects in general. This inspires a more detailed comparison of Kiehn’s
approach with TGD.
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2.13.1 Falaco solitons and TGD

In the first article [B45] Kiehn tells about his basic motivations. The first motivating observations
were related to so called Falaco solitons. Second observation was related to the so called mushroom
pattern associated with RayleighTaylor instability or fingering instability [B13|, which appears in very
many contexts, the most familiar being perhaps the mushroom shaped cloud created by a nuclear
explosion. The idea was that both structures whose stability is not easy to understand in standard
hydrodynamics, could have topological description.

Falaco solitons are very fascinating objects. Kiehn describes in detail the formation and properties
in [B45): anyone possessing swimming pool can repeat these elegant and simple experiments. The
vortex string connecting the end singularities - dimpled indentations at the surface of water - is the
basic notion. Kiehn asks whether there migh be a deeper connection with a model of mesons in which
strings connecting quark and antiquark appear. The formation of spiral structures around the end
gaps in the initial formative states of Falaco soliton is emphasized and compared to the structure of
spiral galaxies. The suggestion is that galaxies could appear as pairs connected by strings.

Kéhler magnetic tubes carrying monopole flux are central in TGD and have several interesting
resemblances with Falaco solutions.

1. In TGD framework so called |cosmic strings fundamental primordial objects. They have 2-D
Minkowski space projection and 2-D C' P, projection so that one can say that there is no space-
time in ordinary sense present during the primordial phase. During cosmic evolution their
time= constant M* projection gradually thickens from ideal string to a magnetic flux tube.
Among other things this explains the presence of magnetic fields in all cosmic scale not easy
to understand in standard view. The decay of cosmic strings generates visible and dark matter
much in the same manner as the decay of inflaton field does in inflationary scenario. One however
avoids the many problems of inflationary scenario.

Cosmic strings would contain ordinary matter and dark matter around them like necklace con-
tains pearls along it. Cosmic strings carry K&ahler magnetic monopole flux which stabilizes
them. The magnetic field energy explains dark energy. Magnetic tension explains the negative
"pressure” explaining accelerated expansion. The linear distribution of field energy along cos-
mic strings gives rise to logarithmic gravitational potential, which explains the constant velocity
spectrum of distant stars around galaxy and therefore galactic dark matter.

2. Magnetic flux tubes form a fractal structure and the notion of Falaco soliton has also an analogy
in TGD based description of elementary particles. In TGD framework the ends caps of vortices
correspond to pairs of wormhole throats connected by short wormhole contact and there is a
magnetic flux tube carrying monopole flux at both space-time sheets.

So called modified Dirac equation assigns with this flux tube 1-D closed string and to it string
world sheets, which might be 2-D minimal surface of space-time surface [K94]. Rather surpris-
ingly, string model in 4-D space-time emerges naturally in TGD framework and has also very
special properties due to the knotting of strings as 1-knots and knotting of string world sheets as
2-knots. Braiding and linking of strings is also involved and make dimension D=4 for space-time
completely unique.

Both elementary particles and hadron like state are describable in terms of these string like
objects. Wormhole throats are the basic building brick of particles which are in the simplest
situation two-sheeted structure with wormhole contact structures connecting the sheets and
giving rise to one or more closed flux tubes accompanied by closed strings.

2.13.2 Stringy description of condensed matter physics and chemistry?

What is important that magnetic flux tubes and associated string world sheets can also connect
wormhole throats associated with different elementary particles in the sense that their boundaries
are along light-like wormhole throats assignable to different elementary particles. These string worlds
sheets therefore mediate interactions between elementary particles.

1. What these interactions are? Could string world sheets could provide a microscopic first principle
description of condensed matter phenomena - in particular of sound waves and various waves
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analogs of sound waves usually regarded as emergent phenomena requiring phenomenological
models of condensed matter?

The hypothesis that this is the case would allow to test basic assumptions of quantum TGD at
the level of condensed matter physics. String model in 4-D space-time could describe concrete
experimental everyday reality rather than esoteric Planck length scale physics! The phenomena
of condensed matter physics often thought to be high level emergent phenomena would have
first principle microscopic description at the level of space-time geometry.

2. The idea about stringy reductionism extends also to chemistry. One of the poorly understanding
basic notions of molecular chemistry is the formation of valence bond as pairing of two valence
electrons belonging to different atoms. Could this pairing correspond to a formation of a closed
Kahler magnetic flux tube with two wormhole contacts carrying quantum numbers of electron?
Could also Cooper pairs be regarded as this kind of structure with long connecting pair of flux
tubes between electron carrying wormhole contacts as has been suggested already earlier?

3. The proposal indeed is that TGD inspired biochemistry and neuroscience indeed has magnetic
flux tubes and flux sheets as a key element. For instance, the notion of magnetic body plays a
key role in TGD inspired view about EEG and magnetic flux tubes represent braid strands in
the model for DNA-cell membrane system as topological quantum computer [K29].

One can argue that this is not a totally new idea: basically one particular variant of holographyﬂ
is in question and follows in TGD framework from general coordinate invariance alone: the geometry
of world of classical worlds must assign to a given 3-surface a unique space-time surface.

1. The fashionable manner to realize holography is by replacing 4-D space-time with 10-D one.
String world sheets in 10-D space-time AdS5 — S5 connecting the points of 44+5-D boundary of
AdSs — Sy are hoped to provide a dual description of even condensed matter phenomena in the
case that the system is described by a theory enjoying conformal invariance in 4-D sense.

2. In TGD framework holography is much more concrete: 3-D light-like 3-surfaces (giving rise to
generalized conformal invariance by their metric 2-dimensionality) are enough. One has actually
a strong form of holography stating that 2-D partonic 2-surfaces plus their 4-D tangent space
data are enough. Partonic 2-surfaces define the ends of light-like 3-surfaces at the ends of space-
time surface at the light-like 7-D boundaries of causal diamonds. 10-D space is replaced with
the familiar 4-D space-time and 4+4-5-D boundary with end 2-D ends of 3-D light-like wormhole
orbits (plus 4-D tangent space data). These partonic 2-surfaces are highly analogous to the 2-D
sections of your characteristic surfaces.

Consider now how sound waves as and various oscillations of this kind could be understood in terms
of string word sheets. String world sheets have both geometric and fermionic degrees of freedom.

1. A good first guess is that string world sheet is minimal surface in space-time - this does not mean
minimal surface property in imbedding space and the non-vanishing second fundamental form-
in particular its C' P, part should have physical meaning - maybe the parameter that would be
called Higgs vacuum expectation in QFT limit of TGD could relate to it.

2. Another possibility that I have proposed is that a minimal surface of imbedding space (not the
minimal surface is geometric analog for a solution of massless wave equation) but in the effective
metric defined by the anti-commutators of modified gamma matrices defined by the canonical
momentum densities of Kahler action is in question: in this case one might even dream about
the possibility that the analog of light-velocity defined by the effective metric has interpretation
as sound velocity.

For string world sheets as minimal surfaces of X% (the first option) oscillations would propagate
with light-velocity but as one adds massive particle momenta at wormhole throats defining their ends
the situation changes due to the additional inertia making impossible propagation with light-velocity.

1The equivalent of holography emerged from the construction of the Kihler geometry of ”world of classical worlds”
as an implication of general coordinate invariance around 1990, about five years before it was introduced by t’Hooft
and Susskind.
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Consideration of the situation for ordinary non-relativistic condensed matter string with masses at
ends as a simple example, the velocity of propagation is in the first naive estimate just square root of
the ratio of the magnetic energy of string portion to its total energy which also concludes the mass at
its ends. Kéhler magnetic energy is given by string tension which has a spectrum determined by p-adic
length scale hypothesis so that one ends up with a rough quantitative picture and coil understand the
dependence of the sound velocity on temperature.

In TGD framework massless quanta moving in different directions correspond to different space-
time sheets: linear superposition for fields is replaced with a set theoretic union and effects superpose
instead of fields. This would hold true also for sound waves which would always be restricted at stringy
world sheets: superposition can make sense only for wave moving in exactly the same direction. This
of course conforms with the properties of phonons so that Bohr orbitology would be realized for sound
waves and ordinary description of sound waves would be only an approximation. The fundamental
difference between light and sound defining fundamental qualia would be the dimension of the quanta
as geometric structures.

2.13.3 New manner to understand the generation of turbulent wake

Kiehn proposes a new manner to understand the |generation of turbulent wake [B46]. The dynamics
generating it would be that of hyperbolic wave equation rather than diffusive parabolic or elliptic dy-
namics. The decay of the turbulence would however obey the diffusive parabolic dynamics. Therefore
sound velocity and supersonic velocities would be involved with the generation of the turbulence.

Kiehn considers Landau’s nonlinear model for a scalar potential of velocity in the case of 2-D
compressible isentropic fluid as an example. The wave equation is given by

(2 = @) Ppy + (¢* — 07) Dy — 20,8, P,y = O . (2.13.1)

Here ¢ denotes sound velocity and velocity is given by v = V®. 3-D generalization is obvious. This
partial differential equation for the velocity potential is quasi-linear equation of the form

A(I)nn + QB(I)UE + C(I)gg = 0. (2.13.2)

The characteristic surfaces contain imbedded curves which are given by solutions to ordinary differentia
equations

d B+ (B%AC)'/?
cTZ = % . (2.13.3)

Real solutions are possible when the argument of the square root is positive. This is true when the
local velocity exceeds the local characteristic speed c. These characteristic lines combine to form
characteristic surfaces.

Velocity field would be compressible (V-v # 0) but irrotational (V xv = 0) in this approach whereas
in standard approach velocity field would be incompressible (V - v = 0) but irrotational (V X v # 0).
There would be two phases in which these two different options would be realized and at the boundary
the dynamics would be both in-compressible and irrotational and these boundaries would correspond
to characteristic surfaces which are minimal surfaces which evolve with time somehow. The presence
of scalar function satisfying Laplace equation (V2® = 0) would serve as a signature of this.

The emergence of this hyperbolic dynamics would explain the sharpness and long-lived character
of the singular structures. Kiehn also proposes that the formation of wake could have analogies
with diffraction and interference - basic aspects of wave motion. This picture does not conform
with standard view which assumes diffusive parabolic or elliptic dynamics as the origin of the wake
turbulence.
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Characteristic surfaces and light-like wormhole throat orbits

Characteristic surface is key notion in Kiehn’s approach and he suggests that the creation of wakes
relies on hyperbolic dynamics|in restricted regions [B46]. If T have understood correctly, the boundaries
of vortices created in the process could be seen as this kind of characteristic surfaces: some physical
quantities would have tangential discontinuities at them since a boundary between different phases
(fluid and air) would be in question.

Another situation corresponds to a shock wave in which case there is a flow of matter through
the characteristic surface. Also boundary patterns associated with Kelvin-Helmholtz instability] (for-
mation of waves due to wind and their breaking) and Rayleigh-Taylor instability (the formation of
mushroom like fingers of heavier substance resting above lighter one).

The proposal of Kiehn is that the characteristic minimal surfaces have the following general form:

u= gt =Alp) xsin(Q(s)) . v=F=-Ap) x cos(Q(s)) .
w = %(u,v) = Q(u/v = s) per, Q(s)d: arctan(s) . (2.13.4)

If F(u,v) satisfies the equation

(1+F)Fy, + (1 + F)F,, —2F,F,Fyy = 0 . (2.13.5)

This expresses the vanishing of the trace of the second fundamental form, actually the component
corresponding to the coordinate w. The minimal surface in question is known as right helicoid.

In TGD framework light-like 3-surfaces defined by wormhole throats are the counterparts of char-
acteristic surfaces.

1. By their light-likeness the light-like wormhole throats are analogous to characteristic surfaces
(In TGD context light-velocity of course replace local sound velocity). Since the signature of
the metric changes at wormhole throats, the 4-D tangent space reduces to 3-D in metric sense
at them so that they indeed are singular in a unique sense. Gravitational effects imply that they
need not look expanding in Minkowski coordinates. The light-velocity in the induced metric is
in general smaller than maximal signal velocity in Minkowski space and can be arbitrarily small.

2. In TGD framework light-like 3-surfaces would be naturally associated with phase boundaries
defining boundaries of physical objects. They would be light-like metrically degenerate 3-surfaces
in space-time along which the space-time sheet assignable to fluid flow meets the space-time sheet
assignable to say air. The generation of wake turbulence would in TGD framework mean the
decay of a large 3-surface representing a laminar flow to sheet of separate cylindrical 3-surfaces
representing vortex sheet. Also the amalgamation of vortices can be considered as a reverse
process.

3. Interesting question related to the time evolution of these 2-D boundaries. In TGD framework it
should give rise to 3-D light-like surface. The simulations for the evolution of Kelvin-Helmholtz
insability and Rayleigh-Taylor mushroom pattern in Wikipedia and its seems that at the initial
stages there is period of growth bringing in mind expanding light-front: the velocity of expansion
is not its value in Minkowski space but corresponds to that assignable to the induced metric and
can be much smaller. Recall also that in TGD framework gravitational effects are large near the
singularity so that growth is not with the light-velocity in vacuum.

The proposal of Kiehn that very special minimal surfaces (right helicoids) are in question would
in TGD framework correspond to a light-like 3-surfaces representing light-like orbits of these minimal
surfaces presumably expanding at least in the beginning of the time evolution.

Minkowskian hydrodynamics/Maxwellian dynamics as hyperbolic dynamics and Euclid-
ian hydrodynamics as elliptic dynamics

In Kiehn’s proposal both the hyperbolic wave dynamics (about which Maxwell’s equations provide a
simple linear example) and diffusive elliptic or parabolic dynamics are present. In TGD framework
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both aspects are present at the level of field equations and correspond to the hyperbolic dynamics in
Minkowskian space-time regions and elliptic dynamics in Euclidian space-time regions.

The dynamics of preferred extremals can be seen in two manners. Either as hydrodynamics or as
Maxwellian dynamics with Bohr rules expressing the decomposition of the field to quanta- magnetic
flux quanta or massless radiation quanta.

1. Maxwellian hydrodynamics involves a considerable restriction: superposition of modes moving
in different directions is not allowed: one has just left-movers or right-movers in given direction,
not both. Preferred extremals are ”Bohr orbit like” and resemble outcomes of state function
reduction measuring polarization and wave vector. The linear superposition of fields is replaced
with the superposition of effects. The test particle topologically condenses to several space-time
sheets simultaneously and experiences the sum of the forces of classical fields associated with
the space-time sheets. Therefore one avoids the worst objection against TGD that I have been
able to invent. Only four primary field like variables would replace the multitude of primary
fields encountered in a typical unification. Besides this one has second quantized induced spinor
fields.

2. Field equations are hydrodynamical in the sense that the field equations state classical conser-
vation laws of four-momentum and color charges. In fermionic sector conservation of electro-
magnetic charge (in quantum sense so that different charge states for spinor mode do not mix)
requires the localization of solutions to 2-D string world sheets for all states except right-handed
neutrino. This leads to 2-D conformal invariance. A possible identification of string world sheet
is as 2-D minimal surface of space-time (rather than that of imbedding space).

What is remarkable that in Minkowskian space-time regions most preferred extremals (magnetic
flux tube structures define an exception to this) are locally analogous to the modes of massless
field with polarization direction and light-like momentum direction which in the general case
can depend on position so that one has curvilinear light-like curve as analog of light-ray. The
curvilinear light-like orbits results when two parallel preferred extremals with constant light-
like direction form bound states via the formation of magnetically charged wormhole contact
structures identifiable as elementary particles. Total momentum is conserved and is time-like
for this kind of states, and the hypothesis is that the values of mass squared are given by p-adic
thermodynamics. The conservation of Kéhler current holds true as also its integrability in the
sense of Frobenius giving j = WV®. Besides this massless wave equations hold true for both
W and ®. This looks like 4-D generalization of your equations at the characteristic defined by
phase boundary.

3. In Euclidian regions one has naturally elliptic ”hydrodynamics”. Euclidian regions correspond
for 4-D CP, projection to the 4-D "lines” of generalized Feynman diagrams. Their M* pro-
jections can be arbitrary large and the proposal is that the space-time sheet characterizing the
macroscopic objects is actually Euclidian. In AdSs — S®correspondence the corresponding idea
is that macroscopic object is described as a blackhole in 10-D space. Now blackhole interiors
have Euclidian signature as lines of generalized Feynman diagrams and blackhole interior does
not differ from the interior of any system in any dramatical manner. Whether the Euclidian
and Minkowskian dynamics are dual of each other or whether both are necessary is an open
question.






Chapter 3

General View About Physics in
Many-Sheeted Space-Time: Part
I

3.1 Introduction

The concept of topological condensation unifies two disparate approaches to TGD, namely TGD
as a Poincare invariant theory of gravitation and TGD as a generalization of the string model.
The idea is that classical 3- space with matter can be regarded as a 3-surface obtained by
7gluing” particle like 3-surfaces to the background 3-surface with possibly macroscopic size:
resulting topological in-homogenities correspond to matter. The ”gluing” of two n-manifolds
together by topological sum means the following operation: drill spherical holes to both n-
manifolds and connect the resulting boundary components S™~! with a tube D! x S™~! (see
Fig. . Of course, several # contacts, which are tiny 'wormholes’ connecting two parallel
space-time sheets, are expected to be present in the general case.

3.1.1 Various types of topological condensation
One can in fact distinguish between three kinds of topological condensation.

(a) 3-dimensional topological condensation, which is expected to give rise to the formation of
bound states (not necessary all possible bound states).

(b) 4-dimensional topological condensation, which results from the properties of the Kéhler
action: the minimizing four surface associated with a given set of 3-surfaces is in gen-
eral connected so that long range interactions are generated between the 3-surfaces. This
mechanism is in principle all what is needed to generate the so called classical space-time.
Although the physical state can consist of arbitrarily many disjoint 3-surfaces, the space-
time associated with these surfaces is connected and resembles the ”classical” space-time,
when topological inhomogenities are smoothed out. It should be noticed that 4-dimensional
topological condensation corresponds to unstable 3-dimensional topological condensation.
For the visualization purposes, one can consider a simplified example: instead of 3-surfaces
consider strings so that space-time is replaced with a two-surface having strings as its
boundaries.

(¢) 2-dimensional topological condensation: boundaries of the 3- surfaces are joined together
by a tube D' x D2. This process will be referred as a formation of join along boundaries
bonds.

There are also reasons to suspect that the actual macroscopic 3-space is not connected but
corresponds to a large macroscopic 3-surface, classical 3-space, plus a gas of small particle like
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B-BO-BO

Figure 3.1: Topological sum of two manifolds

3-surfaces, ”Baby Universes”. It is to be expected that the effects related to the vapor phase
particles are very small. An idealization is obviously needed in order to obtain something
resembling the topologically trivial 3-space of the standard theories: topological inhomogenities
of size smaller than a given length scale L are smoothed out and their presence is described using
various currents, such as energy momentum tensor, gauge currents and particle number currents.
To be precise, this works only provided one takes the limit L — co since TGD space-time could
well be many sheeted in arbitrarily long length scales.

3.1.2 Implications of the topological non-triviality of macroscopic space-
time

If one accepts that 3-space is topologically nontrivial, one must sooner or later end up asking
following questions. What does 3-space actually look like in various scales? What are the general
physical consequences of the new space time concept? Are they seen at elementary particle level
only or perhaps at atomic, molecular, etc. levels? What is the 3-topology of the solid/liquid/gas
state? What about macroscopic bodies: what do they correspond topologically?

In the following the general ideas about the topological condensation are discussed. These
ideas have developed gradually in parallel with the development of the configuration space
geometry and Quantum TGD, through the study of the extremals of Kahler action and through
the attempts to apply TGD inspired ideas to many not so well understood phenomena like
Higgs mechanism or more generally, particle massivation, color confinement, super fluidity, super
conductivity, hydrodynamic turbulence, etc.. The ideas to be represented may look rather wild,
when encountered outside the context defined by twenty years of personal work with many trials
and errors and moments of discovery. It is the internal consistency rather than quantitative
details, as well as the radically new approach provided to the problems of even macroscopic
physics, which makes the scenario so exciting.

3.1.3 Topics of the chapter

The topics to be discussed in the sequel will be following:

(a) The question what 3-space looks like in various scales and end up to a purely topological
description for the generation of structures. Topological arguments imply a finite size for
non-vacuum 3-surfaces and the conservation of the gauge and gravitational fluxes requires
that 3-surface feeds these fluxes to a larger 3-surface via # contacts situated near the
boundaries of the 3-surface. Renormalization group invariance (RGI) hypothesis suggests
that 3-surfaces with all sizes are important in the functional integral and this leads to the
idea of the many-sheeted space-time with hierarchical, fractal like structure such that each
level of the hierarchy corresponds to a characteristic length scale.

(b) The general space-time picture suggested by RGI hypothesis can be justified mathemati-
cally. Due to the compactness of C' P, a general space-time surface representable as a map
M* — CP, decomposes into regions, ”topological field quanta”, characterized by certain
vacuum quantum numbers and 3-surface is in general unstable against the decay to disjoint
components along the boundaries of the field quanta. Topological field quanta have finite
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size depending on the values of the vacuum quantum numbers: the size increases as the
values of the vacuum quantum numbers increase. Topological field quantum is therefore a
good candidate for a quantum coherent system provided some Bose Einstein condensate or
quantum coherent state is available. The BE condensate or coherent state of the light #
contacts near the boundaries of the topological field quantum is a good candidate in this
respect.

The requirement of the gauge charge conservation in turn implies the hierarchical structure
of the topological condensate: gauge fluxes must go somewhere from the outer boundaries
of the topological field quantum with finite size and this 'somewhere’ must be a larger
topological field quantum, which in turn feeds its gauge fluxes to a larger topological field
quantum,.... Of course, the nonlinearity of the theory could allow vacuum charge densities
which can cancel the net charge near boundaries.

Most importantly, topological field quanta allow discrete scalings as a dynamical symme-
try. p-Adic length scale hypothesis states that the allowed scaling factors correspond to
powers of /p, where the prime p satisfies p ~ 2%k integer with prime values favored.
p-Adic fractality (actually multi-p-fractality) can be justified more rigorously by a precise
formulation for the fusion of real and various p-adic physics based on the generalization of
the notion of number [K80] .

The physical consequences of the new space-time picture are nontrivial at all length scales.

i. A natural interpretation for the hierarchical structure is in terms of bound state for-
mation. Quarks condense to form hadrons, nucleons condense to form atomic nuclei,
nuclei and electrons condense to form atoms, how atoms condense to form molecules,
and so on. One ends up with a general picture for the topology of 3-space associ-
ated with, say, solid state and with the idea that even the macroscopic bodies of the
everyday world correspond to topologically condensed 3-surfaces.

ii. The join of 3-surfaces along their boundaries defines a new kind of interaction, which
in fact has been used in phenomenological modelling of and usually believed to result
from Schrodinger equation. At the macroscopic level this interaction is rather familiar
to us since it means that two macroscopic bodies just touch each other!

iii. The possibility to understand general qualitative features of the charge renormalization
topologically in the proposed scenario for space-time, is considered. This rough vision
represents one of the oldest strata in the evolution of TGD: in [K5] the recent view
about space-time correlates of gauge charges is developed.

iv. In TGD context there are purely topological necessary conditions for quantum coher-
ence and a topological description for dissipative phenomena. The formation of the
join along boundaries bonds plays a decisive role in the description and this process
provides a universal manner to generate macroscopic quantum systems.

v. There is also a topological description for the formation of the supra phases and the
phase of the order parameter of the supra phase ground state contains information
about the homotopy of the join along boundaries condensate.

The proper understanding of the concepts of gauge charges and fluxes and their gravita-
tional counterparts in TGD space-time has taken a lot of efforts. At the fundamental
level gauge charges assignable to light-like 3-D elementary particle horizons surrounding
a topologically condensed C' P, type extremals can be identified as the quantum numbers
assignable to fermionic oscillator operators generating the state associated with horizon
identifiable as a parton. Quantum classical correspondence requires that commuting clas-
sical gauge charges are quantized and this is expected to be true by the generalized Bohr
orbit property of the space-time surface.

The most dramatic prediction obvious from the beginning but mis-interpreted for about
26 years is the presence of long ranged classical electro-weak and color gauge fields in the
length scale of the space-time sheet. The only interpretation consistent with quantum
classical correspondence is in terms of a hierarchy of scaled up copies of standard model
physics corresponding to p-adic length scale hierarchy and dark matter hierarchy labelled
by arbitrarily large values of dynamical quantized Planck constant. Chirality selection in
the bio-systems provides direct experimental evidences for this fractal hierarchy of standard
model physics.
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(c) There are some non-trivial questions. Do vacuum charge densities give rise to renormal-
ization effects or imply non-conservation so that weak charges would be screened above
intermediate boson length scale? Could one assign the non-conservation of gauge fluxes
to the wormhole (#) contacts, which are identifiable as pieces of C'Py extremals and for
which electro-weak gauge currents are not conserved so that weak gauge fluxes would be
non-vanishing but more or less random so that long range correlations would be lost? After
almost two decades after posing these questions it has become clear that vacuum currents
are light-like for preferred extremals of Kahler action and do not give rise to renormalization
effects in given p-adic length scale so that coupling constant evolution reduces to discrete
p-adic coupling constant evolution also at classical level.

(d) # (or wormhole-) contacts feeding gauge fluxes from a given sheet of the 3-space to a larger
one are a necessary concomitant of the many-sheeted space-time concept. Their physical
interpretation remained unclear for a long time.

i. # contacts can be regarded as particles carrying classical charges defined by the gauge
fluxes but behaving as extremely tiny dipoles quantum mechanically in the case that
gauge charge is conserved. # contacts must be light, which suggests that they can
form Bose-Einstein condensates and coherent states. The real surprise (after 27 years
of TGD) was that Higgs boson can be identified as a wormhole contact so that the
generation of vacuum expectation value of Higgs field would correspond to a formation
of coherent state of wormhole contacts with quantum numbers of Higgs particle.

ii. It took some time to realize that all gauge bosons could be regarded as wormhole
contacts and that fermions correspond naturally to wormhole throats of topologically
condensed CP, type extremals. Graviton in turn would correspond to a pair of worm-
hole contacts connected by flux tubes so that stringlike object is in question. This
picture follows unavoidably from the assumption that fermions are free at partonic
level and leads to a detailed understanding of particle massivation at the level of first
principles.

I have not discussed in this chapter the most recent developments in quantum TGD in detail
except by references to the next chapter, where these developments are summarized.

3.2 What do space-like 3-surfaces look like?

This section provides a general picture of space-like 3-surfaces starting renormalization group
invariance from spin glass analogy, the selection of preferred extremals of the Kahler action as
generalized Bohr orbits, and from the special properties of the induced gauge fields implied by
the compactness of C'Ps.

This summary does not consider light-like 3-surfaces associated with wormhole throats and light-
like boundaries of space-time sheets are much more suitable for the formulation of quantum
TGD. In principle the two notions are dual to each other. Light-like 3-surfaces can be seen as
a generalization of Feynman diagrams with lines represented by light-like 3-manifolds meeting
along their 2-D ends representing vertices.

3.2.1 Renormalization group invariance, quantum criticality and topol-
ogy of 3-space

Renormalization group invariance, quantum criticality, and spin glass analogy are basic notions
of quantum TGD but it is far from clear what these notions really mean at the level of space-time
physics.

What quantum criticality means?

RGI (Renormalization group invariance) hypothesis states essentially that TGD Universe is
quantum critical meaning that quantum theory is mathematically equivalent with a statisti-
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cal system at critical point. S-matrix elements are analogous to thermal averages of observ-
ables, ak corresponds to critical temperature and the vacuum functional exp(K) corresponds
to exp(—H/T). The physical interpretation of the Kéhler function suggests that ax (phys) might
correspond to a critical temperature at which spontaneous Kéhler magnetization and formation
Kaéhler electric fields compete.

The analogy with spin glass phase in four-dimensional sense is an additional characteristics
feature. This allows the critical value of the a i to depend on the zero modes of the configuration
space metric.

The naive idealized interpretation for the quantum criticality would be that 3-surfaces with all
possible sizes contribute to the functional integral. In realistic situations there is some upper
bound for the size and duration quantum fluctuations and the size of the largest space-time
sheet involved would define the scales in question.

Spin glass analogy leads to the idea that configuration space decomposes into regions D, char-
acterized by the p-adic prime p such that one can associate a hierarchy of p-adic length scales
Ly(n) = "', 1~ 10*V/G to each value of p [K58] . The critical value of ax can in principle
depend on p but the recent view is that ax and perhaps also gravitational constant are invari-
ant under p-adic coupling constant evolution. p-Adic length scales scales define natural upper
bounds for the scale of quantum fluctuations associated with the quantum critical space-time
sheet. Dark matter hierarchy in turn assigns to each p-adic length scale a hierarchy of further
length scales scaled up by the values of ii/hgy. The typical duration of quantum fluctuation would
correspond to the typical geometric duration of maximal deterministic region inside space-time
sheet.

What are the competing phases?

Quite generally, critical systems are characterized by long range correlations (correlation length
¢ diverges) for the competing phases present in the system. Physically this means the coexis-
tence of arbitrarily large volumes of the two phases. Both Ké&hler magnetized 3-surfaces and
3-surfaces containing predominantly Ké&hler electric fields contribute significantly to the func-
tional integral are present. At the infinite volume limit the K&hler action per volume must
vanish since otherwise the vacuum functional vanishes: TGD cosmology [K73] is in accordance
with this picture.

The problem of identifying the preferred extremals of Kahler action has been one of the most
longstanding challenges of TGD. The solution of the problem came via the formulation of con-
figuration space geometry from the notion of number theoretical compactification [K81] in terms
of second quantized induced spinor field at light-like 3-surfaces [K19] . The original hypothe-
sis was that preferred extremals correspond to absolute minima of Kéhler action. The recent
formulation in terms of boundary conditions at light-like surfaces is consistent with what is
known about extremals of Kahler action [K11] . This formulation does not exclude absolute
minimization or some variant of it. Note however that for the absolute minimization of K&hler
action Ké&hler electric fields dominate and it is not clear whether there are solutions for which
the Kéhler action of the entire Universe is finite.

How quantum fluctuations and thermal fluctuations relate to each other?

An experimental fact is that quantum critical systems such as high temperature superconductors
K15, [K16] exist in a rather narrow parameter range, and one can say that quantum criticality
becomes visible only when quantum fluctuations are not masked by thermal fluctuations. One
should express this fact using TGD based notions.

p-Adic and dark matter hierarchies correspond also to hierarchies for quantum jumps with time
scales given the average geometric duration for quantum jump. This hierarchy means quantum
parallel dissipation about which hadrons as quantum systems containing quarks as dissipating
subsystem at shorter p-adic length and time scale give a basic example.

At given space-time sheet short scale thermal fluctuations would have interpretation as quantum
parallel fluctuations at smaller space-time sheets topologically condensed to the space-time sheet
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in question whereas the quantum critical fluctuations would correspond to the quantum fluctu-
ations in the scale of the space-time sheet. The duration of maximal deterministic space-time
region would correspond to the duration of single quantum state in the sequence of quantum
jumps. The interpretation would be that only at quantum criticality the quantal fluctuations in
long time scales can mask the thermal fluctuations in shorter scales.

How quantum measurement theory relates to quantum criticality?

A further question is how quantum measurement theory relates to this picture. Configuration
space zero modes represent non-quantum fluctuating classical observables correlating with quan-
tum numbers and in quantum measurement a localization in zero modes occurs. Does this mean
that the localization in zero modes breaks quantum criticality above the time scale correspond-
ing to the typical geometric time duration of quantum jump by selecting precise values of zero
modes?

Formation of join along boundaries condensates and visible-to-dark phase transi-
tions as mechanisms giving rise to quantum critical systems

The phase transition from visible to dark matter, and more generally, the transitions increas-
ing the value of Planck constant define the first mechanism leading to the formation of larger
quantum critical system and long range quantum fluctuations can be assigned to dark matter.

The formation of a join along boundaries condensate means also a formation of a quantum
critical system. The 3-surfaces with a typical size of order L, combine together by join along
boundaries bonds to form larger surfaces. Above criticality there are no bonds, below criticality
all 3-surfaces combine to form larger condensates and at criticality there are join along boundaries
condensates with all possible sizes up to the cutoff length scale. Note that, at least for small
values of p, the surfaces with typical sizes /p"L,, n = ..0,1,2, ... correspond to the presence of
all surface sizes related by a fractal scaling for a given p. A more precise formulation for what
the fusion of p-adic and real [H3] [K8I] means supports the view that topological field quanta
allow a discrete scaling symmetry identifiable as scalings by powers of ,/p.

P
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time sheet 1s L, or L,(n)

Figure 3.2: Hierarchical, fractal like structure of topological condensate predicted by RGI hypothesis:
2-dim. visualization

3.2.2 3-surfaces can have outer boundaries

In length scales larger than hadronic length scale 3-surface with size L means roughly a con-
densate of smaller scale 3-surfaces on a piece of Minkowski space of size L. It is quite essential
that these surfaces have finite size and therefore have outer boundary. The finite size of the
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3-surfaces follows from the minimization of the Kéhler action and from the compactness of C'P5.
The argument goes as follows.

The matter inside a 3-surface creates gauge fields. In particular, the minimization of the absolute
value of Kahler action in a region with definite sign of action density implies that matter serves
as a source of either Kéhler magnetic or Kéahler electric fields. For instance, the Kahler electric
field created by a constant mass distribution increases without bound. The smooth imbeddings
of the gauge fields are however not possible globally and space-time decomposes into topological
field quanta and their boundaries correspond to edges of space time. The elimination of the
edges leads to a 3-space consisting of disjoint components. Simple examples are provided by
a cylindrically symmetric imbedding of a constant magnetic field and the Kéahler electric field
created by a constant mass distribution, which fail for certain critical radii.

One can understand at general level how the compactness of C'P, enters into the game. The
point is that the gauge potentials associated with the induced gauge fields are bounded functions
of CP, coordinates. For instance, for a geodesic sphere S? of C'P, gauge potentials are just
proportional to A = sin(0)d®. For a generic gauge field the gauge potential is not bounded (as
an example consider gauge potentials of the Coulomb field or Kahler electric field created by a
constant charge distribution or by a constant magnetic field). Therefore for certain values of C' Py
coordinates the representation of the gauge potential as an induced gauge potential fails. The
failure takes place at some 3-surface of X4. One can continue the embedding by changing the
values of vacuum quantum numbers but certain C'P, coordinates possess discontinuous or even
infinite derivatives on the boundary so that undesirable edges of space time result. The manner
to get rid of edges is to allow boundary for X3 so that a region, where the the representation of
the gauge potential as induced gauge potential works defines a natural unit of space-time, which
might be called topological field quantum. In the sequel this phenomenon will be considered in
more detail.

An obvious question is what happens to the gauge fluxes of long range gauge fields near the
boundaries of the topological field quantum. Same question applies also to the gravitational
flux associated with the Newtonian potential at the non-relativistic limit. One possibility is
the appearance of neutralizing vacuum gauge charges and negative gravitational masses near
the boundaries of the field quantum, perhaps related to vacuum polarization: this alternative
must be realized for the particles of vapor phase. Second possibility is topological condensation
on a larger topological field quantum so that gauge and gravitational fluxes flow to the larger
topological field quantum via # contacts. The larger field quantum in turn must feed its gauge
fluxes in a similar manner to larger field quantum so that the hierarchical structure of topological
condensate is implied by the compactness of C'P, and gauge flux conservation. Criticality
implies only that 3-surfaces of arbitrarily large size are possible and therefore the number of
the condensate levels and corresponding length scales L(n) is infinite. Without criticality there
would be some upper bound for 3-surfaces and only vapor phase would be possible.

The # contacts feeding the gauge fluxes from level p,, to level p, 1 are located near the bound-
aries of topological field quanta: otherwise long range gauge fields would not be possible inside
the topological field quanta. A more quantitative hypothesis is that # contacts are located in
the boundary layer having thickness of order L, . If topological field quantum at level n has
the minimum size of order L,, then the # contacts neutralize the physical gauge charges on the
average.

A natural identification for wormhole contacts is as slightly deformed pieces of C'P; type vacuum
extremals having Euclidian signature of induced metric. Wormhole throats are identified as 3-
surfaces at which the signature of induced metric changes and are therefore light-like 3-surfaces.
The realization that these surfaces are ideal for the formulation of quantum TGD meant break-
through in the construction of quantum TGD. The interpretation of the wormhole contacts as
elementary bosons was crucial for understanding boson massivation and Higgs mechanism [K48]
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3.2.3 Topological field quantization

Topological field quantization is a very general phenomenon differentiating between the TGD
based and Maxwellian field concepts and results from the compactness of C' P, only, being inde-
pendent of any dynamical assumptions.

Topological field quantization occurs for surfaces representable as maps from M* to CP, and
means that space time surface decomposes into regions characterized by certain vacuum quan-
tum numbers characterizing the dependence of the phase angles ¥ and ® associated with the
two complex coordinates &; and & of CP,;. There are two frequency type vacuum quantum
numbers wi and wy characterizing the time dependence, two wave vector like quantum numbers
k1, ko characterizing the z-dependence and two integer valued vacuum quantum numbers nq, no
characterizing the angle dependence of these phase angles. Topological field quantization fixes
unique M* and CP, coordinates inside the field quantum and is analogous to a choice of a
quantization axis.

Topological field quanta

Before considering the general form of the surfaces representable as maps M* — CP, some
comments about C'P, coordinates are needed:

(a) The so called Eguchi-Hanson coordinates for C'P, are given (r,u, ¥, ®) € [0, 00] x [—1, 1] x
[0,47] x [0, 27] (see Appendix [L1] , [L1] ). ¥ and and & are angle like coordinates closely
related to the phases of the two complex coordinates of C P, and are the interesting variables
in the sequel.

(b) There are following types of coordinate singularities.

i. For r = 0 all values of ¥ and ® correspond to same point of CPs.

ii. For r = oo all values of ¥ correspond to same point of CP,. For v = 1 and u = —1
also all values of ® correspond to same point of C'P;.

Consider now the space-time surface representable as a graph of a map M* — CP,. The general
form of the angle coordinates ¥ and @ as functions of M* cylindrical coordinates (t, z, p, @) is
given by the expression

(0] wit + k12 + n1¢ + Fourier expansion
U = wyt + koz + ng¢ + Fourier expansion . (3.2.1)

There always exists a rest frame, where k1 or ky vanishes. The Fourier expansion is single valued
in ¢ and finite in z and ¢t. The vacuum quantum numbers w; and wy are frequency type vacuum
quantum numbers to be referred as ”electric” quantum numbers. The quantum numbers (nq, ng)
are integer valued and will be referred to as ”magnetic” quantum numbers.

The values of the vacuum quantum numbers can change at the boundaries of the regions of
space-time determined by the conditions

i) r =0 and (r = oo, u = £1): here all vacuum quantum numbers can change

ii) r = oo: here only ws,ns and ks can change.

Also the choice of C' P, coordinates and M* coordinates can in principle change: different CP,
coordinates are related by color rotation and different M* coordinates by Lorentz transformation.

In general, the boundaries of the regions correspond to edges of space-time in the sense that C'P;
coordinates possess discontinuous or infinite derivatives at the boundaries of the field quanta. A
natural manner to get rid of the edges is to consider 3- surfaces consisting of a single region only
so that single region of this kind, topological field quantum, is a natural unit of 3-space. There
is however an important exception to this. The join along boundaries interaction very probably
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means the gluing of two topological field quanta together along their boundaries and provides a
manner to construct coherent quantum systems from smaller units.

The sizes of the topological field quanta are indeed finite so that the boundary of 3-space (quite
essential for the ideas described before) is an unavoidable consequence of the compactness of
CP; and the minimization of the Kéhler action. The dependence of the size of the 3-surface on
the vacuum quantum numbers is in accordance with the proposed interpretation: at the limit of
large vacuum quantum numbers the size of the topological field quantum becomes macroscopic
and at small vacuum quantum number limit the size of the surface becomes small.

Very complicated hierarchical structures predicted by the RGI are in principle possible since
topological field quanta can suffer topological condensation on larger field quanta. Field quanta
can become nested and both spatial and temporal structures (nesting in time like direction) are
possible.

The vacuum quantum numbers associated with vacuum extremals

Vacuum extremals define a reasonable starting point for TGD based model for gravitational
interactions. For vacuum extremals classical em and Z° fields are proportional to each other
(see the Appendix of the book):

o 0, 3_ T or B
Z° = 2 Ne —ﬁ(k—&—u)%du/\d@—(lﬂ—i—u)du/\d@,
X
T = ﬂ , X—D‘quu‘ 3
v = —gzo. (3.2.2)

For a vanishing value of Weinberg angle (p = sin?(6,,) = 0) em field vanishes and only Z° field
remains as a long range gauge field.

The study of the imbeddings of the Schwartshild metric as vacuum extremals (gravitational mass
is non-vanishing but inertial mass vanishes) shows that astrophysical length scales correspond
to large vacuum quantum number limit of TGD. Any mass vacuum extremal is necessarily
accompanied by long ranged electro-weak and color fields and from the requirement that the
corresponding force is weaker than the gravitational force one obtains that the value of the
parameter wy is of the order of 1/R ~ 10~4/G.

A simple example about the decomposition of space-time into topological field quanta is obtained
by considering the cylindrically symmetric imbedding of a constant magnetic field in the z-
direction as a vacuum extremal. Electromagnetic field can be written as FJ" = Bop and using
the general results from the Appendix of the book one can write

U= u(p) > =m0,
r=y/i2x , X=Dlk+u|,
B, 2
A" = 02p = —gnl(k’ +u)d,u . (3.2.3)

Assuming that (r,u) = (0,0) holds true at z-axis, the equation for em gauge potential A¢™ fixes
the relationship between p and u as

2Byp?
= k4 /k2-—. 3.2.4
u \/ Snip (32.4)
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The finite value range 0 < v < 1 implies that the imbedding fails for certain values of p. Also
the requirement that u is real implies an upper bound for p: the larger the value of n; the larger
the critical radius. Imbedding can fail also for X < 0 and X > 1 corresponding to critical values
of u equal up = —k and D|(k + uy)| = 1.

3.2.4 Comparison of Maxwellian and TGD views about classical gauge
fields

In TGD Universe gauge fields are replaced with topological field quanta. Examples are topolog-
ical light rays, magnetic flux tubes and sheets, and electric flux quanta carrying both magnetic
and electric fields. Flux quanta form a fractal hierarchy in the sense that there are flux quanta
inside flux quanta. It is natural to assume quantization of Kéhler magnetic flux. Braiding and
reconnection are basic topological operations for flux quanta.

One important example is the description of non-perturbative aspects of strong interactions in
terms of reconnection of color magnetic flux quanta carrying magnetic monopole fluxes [K38|
K52]. These objects are string like structures and one can indeed assign to them string world
sheets. The transitions in which the thickness of flux tube increases so that flux conservation
implies that part of magnetic energy is liberated unless the length of the flux quantum increases,
are central in TGD inspired cosmology and astrophysics. The magnetic energy of flux quantum
is interpreted as dark energy and magnetic tension as negative ”pressure” causing accelerated
expansion.

This picture is beautiful and extremely general but raises challenges. How to describe inter-
ference and linear superposition for classical gauge fields in terms of topologically quantized
classical fields? How the interference and superposition of Maxwellian magnetic fields is realized
in the situation when magnetic fields decompose to flux quanta? How to describe simple systems
such as solenoidal current generating constant magnetic field using the language of flux quanta?

Superposition of fields in terms of flux quanta

The basic question concerns the elegant description of superposition of classical fields in terms
of topological field quanta. What it means that magnetic fields superpose.

(a) In Maxwell’s linear theory the answer would be trivial but not now. Linear superposition
holds true only inside topological light rays for signals propagating in fixed direction with
light velocity and with same local polarization. The easy solution would be to say that
one considers small perturbations of background space-time sheet and linearizes the theory.
Linearization would apply also to induced gauge fields and metric and one would obtain
linear superposition approximately. This does not look elegant. Rather, quantum classical
correspondence requires the space-time counterpart for the expansion of quantum fields as
sum of modes in terms of topological field quanta. Topological field quanta should not lose
their identity in the superposition.

(b) In the spirit of topological field quantization it would be nice to have topological represen-
tation for the superposition and interference without any linearization. To make progress
one must return to the roots and ask how the fields are operationally defined. One has
test particle and it experiences a gauge force in the field. From the acceleration of the
test particle the value of field is deduced. What one observes is the superposition of gauge
forces, not of gauge fields.

i. Let us just assume that we have two space-time sheets representing field configurations
to be effectively superposed. Suppose that they are "on top” of each other with re-
spect to C'P, degrees of freedom so that their M* volumes overlap. The points of the
sheets representing the field values that would sum in Maxwell’s theory are typically at
distance of C'P, radius of about 10* Planck lengths. Wormbhole contacts representing
he interaction between the field configurations are formed. Hence the analog of linear
superposition does not hold true exactly. For instance, amplitude modulation becomes
possible. This is however not essential for the argment.
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ii. Test particle could be taken to be fermion which is simultaneously topologically con-
densed to both sheets. In other words, fermionic C' P, type almost vacuum extremal
touches both sheets and wormhole throats at which the signature of the induced met-
ric changes is formed. Fermion experiences the sum of gauge forces from the two
space-time sheets through its wormhole throats. From this one usually concludes that
superposition holds true for the induced gauge fields. This assumption is however not
true and is also un-necessary in the recent case. In case of topological light rays the
representation of modes in given direction in terms of massless extremals makes pos-
sible to realize the analogy for the representation of quantum field as sum of modes.
The representation does not depend on approximate linearity as in the case of quantum
field theories and therefore removes a lot of fuzziness related to the quantum theory.
In TGD framework the bosonic action is indeed extremely non-linear.

(c) This view about linear superposition has interesting implications. In effective superposition
the superposed field patterns do not lose their identity which means that the information
about the sources is not lost - this is true at least mathematically. This is nothing but
quantum classical correspondence: it is the decomposition of radiation into quanta which
allows to conclude that the radiation arrives from a particular astrophysical object. It is
also possible to have superposition of fields to zero field in Maxwellian sense but in the
sense of TGD both fields patterns still exist. Linear superposition in TGD sense might
allow testing using time dependent magnetic fields. In the critical situation in which the
magnetic field created by AC current passes through zero, flux quanta have macroscopic
size and the direction of the flux quantum changes to opposite.

The basic objection against TGD

The basic objection against TGD is that induced metrics for space-time surfaces in M* x CP,
form an extremely limited set in the space of all space-time metrics appearing in the path integral
formulation of General Relativity. Even special metrics like the metric of a rotating black hole fail
to be imbeddable as an induced metric. For instance, one can argue that TGD cannot reproduce
the post-Newtonian approximation to General Relativity since it involves linear superposition
of gravitational fields of massive objects. As a matter fact, Holger B. Nielsen- one of the very
few colleagues who has shown interest in my work - made this objection for at least two decades
ago in some conference and I remember vividly the discussion in which I tried to defend TGD
with my poor English.

The objection generalizes also to induced gauge fields expressible solely in terms of C'P, coor-
dinates and their gradients. This argument is not so strong as one might think first since in
standard model only classical electromagnetic field plays an important role.

(a) Any electromagnetic gauge potential has in principle a local imbedding in some region.
Preferred extremal property poses strong additional constraints and the linear superposition
of massless modes possible in Maxwell’s electrodynamics is not possible.

(b) There are also global constraints leading to topological quantization playing a central role
in the interpretation of TGD and leads to the notions of field body and magnetic body
having non-trivial application even in non-perturbative hadron physics. For a very large
class of preferred extremals space-time sheets decompose into regions having interpretation
as geometric counterparts for massless quanta characterized by local polarization and mo-
mentum directions. Therefore it seems that TGD space-time is very quantal. Is it possible
to obtain from TGD what we have used to call classical physics at all?

The imbeddability constraint has actually highly desirable implications in cosmology. The enor-
mously tight constraints from imbeddability imply that imbeddable Robertson-Walker cosmolo-
gies with infinite duration are sub-critical so that the most pressing problem of General Relativity
disappears. Critical and over-critical cosmologies are unique apart from a parameter character-
izing their duration and critical cosmology replaces both inflationary cosmology and cosmology
characterized by accelerating expansion. In inflationary theories the situation is just the op-
posite of this: one ends up with fine tuning of inflaton potential in order to obtain recent day
cosmology.
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Despite these and many other nice implications of the induced field concept and of sub-manifold
gravity the basic question remains. Is the imbeddability condition too strong physically? What
about linear superposition of fields which is exact for Maxwell’s electrodynamics in vacuum and
a good approximation central also in gauge theories. Can one obtain linear superposition in
some sense?

(a)

Linear superposition for small deformations of gauge fields makes sense also in TGD but for
space-time sheets the field variables would be the deformations of C'P, coordinates which
are scalar fields. One could use preferred complex coordinates determined about SU(3)
rotation to do perturbation theory but the idea about perturbations of metric and gauge
fields would be lost. This does not look promising. Could linear superposition for fields be
replaced with something more general but physically equivalent?

This is indeed possible. The basic observation is utterly simple: what we know is that the
effects of gauge fields superpose. The assumption that fields superpose is un-necessary!
This is a highly non-trivial lesson in what operationalism means for theoreticians tending
to take these kind of considerations as mere ”philosphy”.

The hypothesis is that the superposition of effects of gauge fields occurs when the M*
projections of space-time sheets carrying gauge and gravitational fields intersect so that
the sheets are extremely near to each other and can touch each other ( C'P; size is the
relevant scale).

A more detailed formulation goes as follows.

(a)

One can introduce common M* coordinates for the space-time sheets. A test particle (or
real particle) is identifiable as a wormhole contact and is therefore pointlike in excellent
approximation. In the intersection region for M* projections of space-time sheets the parti-
cle forms topological sum contacts with all the space-time sheets for which M* projections
intersect.

The test particle experiences the sum of various gauge potentials of space-time sheets
involved. For Maxwellian gauge fields linear superposition is obtained. For non-Abelian
gauge fields gauge fields contain interaction terms between gauge potentials associated with
different space-time sheets. Also the quantum generalization is obvious. The sum of the
fields induces quantum transitions for states of individual space time sheets in some sense
stationary in their internal gauge potentials.

The linear superposition applies also in the case of gravitation. The induced metric for
each space-time sheet can be expressed as a sum of Minkowski metric and C' P, part hav-
ing interpretation as gravitational field. The natural hypothesis that in the above kind of
situation the effective metric is sum of Minkowski metric with the sum of the C'P, contri-
butions from various sheets. The effective metric for the system is well-defined and one
can calculate a curvature tensor for it among other things and it contains naturally the
interaction terms between different space-time sheets. At the Newtonian limit one obtains
linear superposition of gravitational potentials. One can also postulate that test particles
moving along geodesics in the effective metric. These geodesics are not geodesics in the
metrics of the space-time sheets.

This picture makes it possible to interpret classical physics as the physics based on effective
gauge and gravitational fields and applying in the regions where there are many space-time
sheets which M* intersections are non-empty. The loss of quantum coherence would be
due to the effective superposition of very many modes having random phases.

The effective superposition of the C'P, parts of the induced metrics gives rise to an effective
metric which is not in general imbeddable to M* x CP,. Therefore many-sheeted space-time
makes possible a rather wide repertoire of 4-metrics realized as effective metrics as one might
have expected and the basic objection can be circumvented In asymptotic regions where one
can expect single sheetedness, only a rather narrow repertoire of ”archetypal” field patterns of
gauge fields and gravitational fields defined by topological field quanta is possible.
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The skeptic can argue that this still need not make possible the imbedding of a rotating black
hole metric as induced metric in any physically natural manner. This might be the case but
need of course not be a catastrophe. We do not really know whether rotating blackhole metric
is realized in Nature. I have indeed proposed that TGD predicts new physics new physics in
rotating systems. Unfortunately, gravity probe B could not check whether this new physics is
there since it was located at equator where the new effects vanish.

Time varying magnetic fields described in terms of flux quanta

An interesting challenge to describe time dependent fields in terms of topological field quanta
which are in many respects static structures (for instance, flux is constant). The magnetic fields
created by time dependent currents serves as a good example from which one can generalize. In
the simplest situation the magnetic field strength experiences time dependent scaling. How to
describe this scaling?

Consider first the scaling of the magnetic field strength in flux tube quantization.

(a) Intuitively it seems clear that the field decomposes into flux quanta, whose M* projections
can partially overlap. To get a connection to Maxwell’s theory one can assume that the
average field intensity is defined in terms of the flux of the magnetic field over a surface with
area S. For simplicity consider constant magnetic field so tht one has BgyeS = ® = n®y,
where @ is the quantized flux for a flux tube assumed to have minimum value ®(. Integer
n is proportional to the average magnetic field Byye. Bgaye must be reasonably near to
the typical local value of the magnetic field which manifest itself quantum mechanically as
cyclotron frequency.

(b) What happens in the scaling B — B/x. If the transversal area of flux quantum is scaled
up by x the flux quantum is conserved. To get the total flux correctly, the number of flux
quanta must scale down: n — n/x. One indeed has (n/x) x S = nS. This implies that
the total area associated with flux quanta within total area S is preserved in the scaling.

(¢) The condition that the flux is exact integer multiple of ®q would pose additional conditions
leading to the quantization of magnetic flux if the total area can be regarded as fixed. This
need not to be true.

Consider as the first example slowly varying magnetic field created by an alternating running in
current in cylindrical solenoid. There are flux tubes inside the cylindrical solenoid and return
flux tubes outside it flowing in opposite direction. Flux tubes get thicker as magnetic field
weakens and shift from the interior of solenoid outside. For some value z of the time dependent
scaling B — B/x the elementary flux quantum @ reaches the radius of the solenoid. Quantum
effects must become important and make possible the change of the sign of the elementary flux
quantum. Perhaps quantum jump turning the flux quantum around takes place. After this the
size of the flux quantum begins to decrease as the magnitude of the magnetic field increases. At
the maximum value the size of the flux quantum is minimum.

This example generalizes to the magnetic field created by a linear alternating current. In this
case flux quanta are cylinderical flux sheets for which magnetic field strength and thickness
oscillators with time. Also in this case the maximum transversal area to the system defines a
critical situation in which there is just single flux sheet in the system carrying elementary flux.
This flux quantum changes its sign as the sign of the current changes.

The notion of conscious hologram

In TGD inspired theory of consciousness the idea about living system as a conscious hologram
IK13] is central. It is of course far from clear what this notion means. The notions of interference
and superposition of fields are crucial for the description of the ordinary hologram. Therefore
the proposed general description for the TGD counterpart for the superposition of fields is a
natural starting point for the more precise formulation of the notion of conscious hologram.


http://tgd.wippiespace.com/public_html/tgdclass/tgdclass.html#tgdgrt
http://tgd.wippiespace.com/public_html/tgdclass/tgdclass.html#tgdgrt
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One

Consider ordinary hologram first. Reference wave and reflected wave interfere and produce
an interference pattern to which the substrate of the hologram reacts so that its absorption
coefficient is affected. When the substrate is illuminated with the conjugate of the reference
wave, the original reflected wave is generated. The modification of the absorption coeffi-
cient is assumed to be proportional to the modulus squared fro the sum of the reflected
and reference waves. This implies that the wave reflected from the hologram is in good
approximation identical with the original reflected wave.

Conscious hologram would be dynamical rather than static. It would be also quantal: the
quantum transitions of particles in the fields defined by the hologram would be responsible
for the realization of the interference pattern as a conscious experience. The previous
considerations actually leave only this option since the interference of classical fields does
not happen. Reference wave and reflected wave correspond now to any field configurations.
The charged particles having wormhole contacts to the space-time sheets representing the
field configurations experience the sum of the fields involved, and this induces quantum
jumps between the quantum states associated with the situation in which only the reference
wave is present.

This would induce a conscious experience representing an interference pattern. The refer-
ence wave can also correspond to a flux tube of magnetic body carrying a static magnetic
field and defining cyclotron states as stationary state. External time dependent magnetic
field can replace reflected wave and induces cyclotron transitions. Also radiation fields
represented by MEs can represent the reference wave and reflected wave. If there is need
for the "reading” of the hologram it would correspond to the addition of a space-time sheet
carrying fields which in good approximation have opposite sign and same magnitude as
those in the sheet representing reference wave so that the effect on the charged particles
reduces to that of the "reflected wave”. This step might be un-necessary since already the
formation of hologram would give rise to a conscious experience. The conscious holograms
created when the hologram is created and when the conjugate of the reference wave is
added give rise to two different conscious representations. This might have something to
do with holistic and reductionistic views about the same situation.

One can imagine several realizations for the conscious hologram. It seems that the real-
ization at the macroscopic level is essentially four-dimensional. By quantum holography
it would reduce at microscopic level to a hologram realized at the 3-D light-like surfaces
defining the surfaces at which the signature of induce metric changes (generalized Feynman
diagrams having also macroscopic size - anyons [K63|) or space-like 3-surfaces at the ends
of space-time sheets at the two light-like boundaries of C'D. Strong form of holography
implied by the strong form of general coordinate invariance requires that holograms corre-
spond to collections of partonic 2-surfaces in given measurement resolution. This could be
understood in the sense that the charged particles defining the substrate can be described
mathematically in terms of the ends of the corresponding light-like 3-surfaces at the ends
of C'Ds. The cyclotron transitions could be thought of as occurring for particles represent
as partonic 2-surfaces topologically condensed at several space-time sheets.

can imagine several applications in TGD inspired quantum biology.

One can develop a model for how certain aspects of sensory experience could be understood
in terms of interference patterns for signals sent from the biological body to the magnetic
body. The information about the relative position of the magnetic body and biological body
would be coded by the interference patterns giving rise to conscious sensory percepts. This
information would represent geometric qualia [K37] giving information about distances
and angles basically. There would be a magnetic flux tube representing the analog of
the reference wave and magnetic flux tube carrying the analog of reflected wavel which
could represent the effect of neural activity. When the signal changes with time, cyclotron
transitions are induced and conscious percept is generated. In principle it there is no need
not compensate for the reference wave although also this is possible.

The natural first guess is that EEG rhythms (and those for its fractal generalization)
represent reference waves and that the frequencies in question are either harmonics of
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cyclotron frequencies or linear combinations of these and Josephson frequency assignable
to cell membrane (and possibly its harmonics). The modulation of membrane potential
would induce modulations of Josephson frequency and if large enough would generate nerve
pulses. These modulations would define the counterpart of the reflected wave. The flux
tubes representing unperturbed magnetic field would represent reference waves.

For instance, the motion of the biological body changes the signal at the space-time sheets
carrying the signal and this generates cyclotron transitions giving rise to a conscious ex-
perience. Perhaps the sensation of having a body is based in this mechanism. The signals
could emerge from directly from cells: it could be that this sensation corresponds to lower
level selves rather than us. Second option is that nerve pulses to brain induce the signals
sent to the our magnetic body.

The motion of biological body relative to biological body generates virtual sensory expe-
rience which could be responsible for the illusions like train illusion and the unpleasant
sensory experience about falling down from cliff by just imagining it. OBEs could be also
due to the virtual sensory experiences of the magnetic body. One interesting illusion results
when one swims long time in windy sea. When one returns to the shore one has rather
long lasting experience of being in sea. Magnetic body gradually learns to compensate the
motion of sea so that the perception of the wavy motion is reduced. At the shore this
compensation mechanism however continues to work. This mechanism represents an exam-
ple of adaptation and could be a very general mechanism. Since also magnetic body uses
metabolic energy, this mechanism could have justification in terms of metabolic economy.

Also thinking as internal, silent speech might be assigned with magnetic body and would
represent those aspects of the sensory experience of ordinary speech which involve quantum
jumps at magnetic body. This speech would be internal speech since there would be no
real sound signal or virtual sound signal from brain to cochlea.

Conscious hologram would make possible to represent phase information. This information
is especially important for hearing. The mere power spectrum is not enough since it is same
for speech and its time reversal. Cochlea performs an analysis of sounds to frequencies. It
it is not easy to imagine how this process could preserve the phase information associated
with the Fourier components. It is believed that both right and left cochlea are needed
to abstact the phase difference between the signals arriving to right and left ear allowing
to deduce the direction of the source neural mechanisms for this has been proposed but
these mechanism are not enough in case of speech. Could there exists a separate holistic
representation in which sound wave as a whole generates a single signal interfering with
the reference wave at the magnetic body and in this manner represents as a conscious
experience the phase?

Also the control and reference signals from the magnetic body to biological body could
create time dependent interference patterns giving rise to neural response initiating motor
actions and other responses. Basically the quantum interference should reduce the mag-
nitude of membrane resting potentials so that nerve pulses would be generated and give
rise to motor action. Similar mechanism would be at work at the level of sensory receptors
- at least retina. The generation of nerve pulses would mean kind of emergency situation
at the neuronal level. Frequency modulation of Josephson radiation would be the normal
situation.

Topology of fields and topological field quantization

3.3 Basic phenomenology of topological condensation

The notions of topological condensate and p-adic length scale hierarchy are in a central role in
TGD and for a long time it seemed that the physical interpretation of these notions is relatively
straightforward. The evolution of number theoretical ideas however forced to suspect that the
implications for physics might be much deeper and involve not only a solution to the mysteries
of dark matter but also force to bring basic notions of TGD inspired theory of consciousness.
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At this moment the proper interpretation of the mathematical structures involving typically
infinite hierarchies generalizing considerably the mathematical framework of standard physics is
far from established so that it is better to represent just questions with some plausible looking
answers.

3.3.1 Basic concepts

It is good to discuss the basic notions before discussing the definition of gauge charges and gauge
fluxes.

CP, type vacuum extremals

CP, type extremals behave like elementary particles (in particular, light-likeness of M* pro-
jection gives rise to Virasoro conditions). C'P, type vacuum extremals have however vanishing
four-momentum although they carry classical color charges. This raises the question how they
can gain elementary particle quantum numbers.

In topological condensation of C'P, type vacuum extremal a light-like causal horizon is created.
Number theoretical considerations strongly suggest that the horizon carries elementary particle
numbers and can be identified as a parton. The quantum numbers or parton would serve as
sources of the classical gauge fields created by the causal horizon.

In topological evaporation C'P, type vacuum extremal carrying only classical color charges is
created. This would suggest that the scattering of C P, type vacuum extremals defines a topo-
logical quantum field theory resulting as a limit of quantum gravitation (C'P, is gravitational
instanton) and that C'P; type extremals define the counterparts of vacuum lines appearing in
the formulation of generalized Feynman diagrams.

# contacts as parton pairs

The earlier view about # contacts as passive mediators of classical gauge and gravitational fluxes
is not quite correct. The basic modification is due to the fact that one can assign parton or
parton pair to the # contact so that it becomes a particle like entity. This means that an entire
p-adic hierarchy of new physics is predicted.

(a) Formally # contact can be constructed by drilling small spherical holes S? in the 3-surfaces

involved and connecting the spherical boundaries by a tube S x D'. For instance, C P, type
extremal can be glued to space-time sheet with Minkowskian signature or space-time sheets
with Minkowskian signature can be connected by # contact having Euclidian signature of
the induced metric. Also more general contacts are possible since S? can be replaced with
a 2-surface of arbitrary genus and family replication phenomenon can be interpreted in
terms of the genus.
The # contact connecting two space-time sheets with Minkowskian signature of metric
is accompanied by two "elementary particle horizons”, which are light-like 3-surfaces at
which the induced 4-metric becomes degenerate. Since these surfaces are causal horizons,
it is not clear whether # contacts can mediate classical gauge interactions. If there is an
electric gauge flux associated with elementary particle horizon it tends to be either infinite
by the degeneracy of the induced metric. It is not clear whether boundary conditions allow
to have finite gauge fluxes of electric type. A similar difficulty is encountered when one
tries to assign gravitational flux to the # contact: in this case even the existence of flux in
non-singular case is far from obvious. Hence the naive extrapolation of Newtonian picture
might not be quite correct.

(b) Number theoretical considerations suggests that the two light-like horizons associated with
# contacts connecting space-time sheets act as dynamical units analogous to shock waves
or light fronts carrying quantum numbers so that the identification as partons is natural.
Quantum holography would suggest itself in the sense that the quantum numbers associated
with causal horizons would determine the long range fields inside space-time sheets involved.
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(¢) # contacts can be modelled in terms of C'P, type extremals topologically condensed simul-
taneously to the two space-time sheets involved. The topological condensation of C' P, type
extremal creates only single parton and this encourages the interpretation as elementary
particle. The gauge currents for C' P, type vacuum extremals have a vanishing covariant di-
vergence so that there are no conserved charges besides Kéhler charge. Hence electro-weak
gauge charges are not conserved classically in the region between causal horizons whereas
color gauge charges are. This could explain the vacuum screening of electro-weak charges
at space-time level. This is required since for the known solutions of field equations other
than C'P, type extremals vacuum screening does not occur.

(d) In the special case space-time sheets have opposite time orientations and the causal horizons
carry opposite quantum numbers (with four-momentum included) the # contact would
serve the passive role of flux mediator and one could assign to the contact generalized
gauge fluxes as quantum numbers associated with the causal horizons. This is the case
if the contact is created from vacuum in topological condensation so that the quantum
numbers associated with the horizons define naturally generalized gauge fluxes. Kind of
generalized quantum dipoles living in two space-times simultaneously would be in question.
# contacts in the ground state for space-time sheets with opposite time orientation can be
also seen as zero energy parton-antiparton pairs bound together by a piece of C'Py type
extremal.

(e) When space-time sheets have same time orientation, the two-parton state associated with
the # contact has non-vanishing energy and it is not clear whether it can be stable.

#p contacts as bound parton pairs

Besides # contacts also join along boundaries bonds (JABs, # p contacts) are possible. They can
connect outer boundaries of space-time sheets or the boundaries of small holes associated with
the interiors of two space-time sheets which can have Minkowskian signature of metric and can
mediate classical gauge fluxes and are excellent candidates for mediators of gauge interactions
between space-time sheet glued to a larger space-time sheet by topological sum contacts and join
along boundaries contacts. The size scale of the causal horizons associated with parton pairs
can be arbitrary whereas the size scale of # contacts is given by C P, radius.

The existence of the holes for real space-time surfaces is a natural consequence of the induced
gauge field concept: for sufficiently strong gauge fields the imbeddability of gauge field as an
induced gauge field fails and hole in space-time appears as a consequence. The holes connected
by #p contacts obey field equations, and a good guess is that they are light-like 3-surfaces
and carry parton quantum numbers. This would mean that both # and #p contacts allow a
fundamental description in terms of pair of partons.

Magnetic flux tubes provide a representative example of # g contact. Instead of #p5 contact also
more descriptive terms such as join along boundaries bond (JAB), color bond, and magnetic flux
tube are used. #p contacts serve also as a space-time correlate for bound state formation and
one can even consider the possibility that entanglement might have braiding of bonds defined
by # contacts as a space-time correlate [K88] .

It seems difficult to exclude join along boundaries contacts between between holes associated
with the two space-time sheets at different levels of p-adic hierarchy. If these contacts are
possible, a transfer of conserved gauge fluxes would be possible between the two space-time
sheets and one could speak about interaction in conventional sense.

Topological condensation and evaporation

Topological condensation corresponds to a formation of # or #p contacts between space-time
sheets. Topological evaporation means the splitting of # or #p contacts. In the case of ele-
mentary particles the process changes almost nothing since the causal horizon carrying parton
quantum numbers does not disappear. The evaporated C' P, type vacuum extremal having in-
terpretation as a gravitational instanton can carry only color quantum numbers.
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As # contact splits partons are created at the two space-time sheets involved. This process
can obviously generate from vacuum space-time sheets carrying particles with opposite signs of
energies and other quantum numbers. Positive energy matter and negative energy anti-matter
could be thus created by the formation of # contacts with zero net quantum numbers which
then split to produce pair of positive and negative energy particles at different space-time sheets
having opposite time orientations. This mechanism would allow a creation of positive energy
matter and negative energy antimatter with an automatic separation of matter and antimatter
at space-time sheets having different time orientation. This might resolve elegantly the puzzle
posed by matter-antimatter asymmetry.

The creation of # contact leads to an appearance of radial gauge field in condensate and this
seems to be impossible at the limit of infinitely large space-time sheet since it involves a radical
instantaneous change in field line topology. The finite size of the space-time sheet can however
resolve the difficulty.

If all quantum numbers of elementary particle are expressible as gauge fluxes, the quantum
numbers of topologically evaporated particles should vanish. In the case of color quantum
numbers and Poincare quantum numbers there is no obvious reason why this should be the
case. Despite this the cancellation of the interior quantum numbers by those at boundaries or
light-like causal determinants could occur and would conform with the effective 2-dimensionality
stating that quantum states are characterized by partonic boundary states associated with causal
determinants. This could be also seen as a holographic duality of interior and boundary degrees
of freedom [K76] .

3.3.2 Gauge charges and gauge fluxes

The concepts of mass and gauge charge in TGD has been a source of a chronic headache. There
are several questions waiting for a definite answer. How to define gauge charge? What is the
microscopic physics behind the gauge charges necessarily accompanying long range gravitational
fields? Are these gauge charges quantized in elementary particle level? Can one associate to
elementary particles classical electro-weak gauge charges equal to its quantized value or are
all electro-weak charges screened at intermediate boson length scale? Is the generation of the
vacuum gauge charges, allowed in principle by the induced gauge field concept, possible in
macroscopic length scales? What happens to the gauge charges in topological evaporation?
Should Equivalence Principle be modified in order to understand the fact that Robertson-Walker
metrics are inertial but not gravitational vacua.

How to define the notion of gauge charge?

In TGD gauge fields are not primary dynamical variables but induced from the spinor connection
of C'P,. There are two manners to define gauge charges.

(a) In purely group theoretical approach one can associate non-vanishing gauge charge to a
3-surface of finite size and quantization of the gauge charge follows automatically. This
definition should work at Planck length scales, when particles are described as 3-surfaces
of C'P, size and classical space-time mediating long range interactions make no sense.
Gauge interactions are mediated by gauge boson exchange, which in TGD has topological
description in terms of C'P, type vacuum extremals [K11] .

(b) Second definition of gauge charge is as a gauge flux over a closed surface. In this case
quantization is not obvious nor perhaps even possible at classical level except perhaps for
Abelian charges. For a closed 3-surface gauge charge vanishes and one might well argue that
this is the case for finite 3-surface with boundary since the boundary conditions might well
generate gauge charge near the boundary cancelling the gauge charge created by particles
condensed on 3-surface. This would mean that at low energies (photon wavelength large
than size of the 3-surfaces) the 3-surfaces in vapor phase look like neutral particles. Only
at high energies the evaporated particles would behave as ordinary elementary particles.
Furthermore, particle leaves in topological evaporation its gauge charge in the condensate.
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The alternative possibility that the long range %2 gauge field associated with particle disappears
in the evaporation, looks topologically impossible at the limit when larger space-time sheet has
infinite size: only the simultaneous evaporation of opposite gauge charges might be possible
in this manner at this limit. Topological evaporation provides a possible mechanism for the
generation of vacuum gauge charges, which is one basic difference between TGD and standard
gauge theories.

There is a strong temptation to draw a definite conclusion but it is better to be satisfied with a
simplifying working hypothesis that gauge charges are in long length scales definable as gauge
fluxes and vanish for macroscopic 3-surfaces of finite size in vapor phase. This would mean that
the topological evaporation of say electron as an electromagnetically charged particle would
not be possible except at C'P, length scale: in the evaporation from secondary condensation
level electron would leave its gauge charges in the condensate. Vapor phase particle still looks
electromagnetically charged in length scales smaller than the size of the particle surface if the
neutralizing charge density is near (or at) the boundary of the surface and gauge and gravita-
tional interactions are mediated by the exchange of C' P, type extremals.

In what sense could # contacts feed gauge fluxes?

One can associate with the # throats magnetic gauge charges +@Q; defined as gauge flux running
to or from the throat. The magnetic charges are of opposite sign and equal magnitude on the
two space-time sheets involved. For Kahler form the value of magnetic flux is quantized and
non-vanishing only if the the ¢ = constant section of causal horizon corresponds to a non-trivial
homology equivalence class in C'P» so that # contact can be regarded as a homological magnetic
monopole. In this case # contacts can be regarded as extremely small magnetic dipoles formed
by tightly bound # throats possessing opposite magnetic gauge charges. # contacts couple to
the difference of the classical gauge fields associated with the two space-time sheets and matter-#
contact and # contact-# contact interaction energies are in general non-vanishing.

Electric gauge fluxes through # throat evaluated at the light-like elementary particle horizon X 13
tend to be either zero or infinite. The reason is that without appropriate boundary conditions the
normal component of electric F*"/(g4)/g? either diverges or is infinite since g** diverges by the
effective three-dimensionality of the induced metric at X?. In the gravitational case an additional
difficulty is caused by the fact that it is not at all clear whether the notion of gravitational flux
is well defined. It is however possible to assign gravitational mass to a given space-time sheets
as will be found in the section about space-time description of charge renormalization.

The simplest conclusion would be that the notions of gauge and gravitational fluxes through #
contacts do not make sense and that # contacts mediate interactions in a more subtle manner.
For instance, for a space-time sheet topologically condensed at a larger space-time sheet the
larger space-time sheet would characterize the basic coupling constants appearing in the S-
matrix associated with the topologically condensed space-time sheets. In particular, the value
of h would characterize the relation between the two space-time sheets. A stronger hypothesis
would be that the value of A is coded partially by the Jones inclusion between the state spaces
involved. The larger space-time sheet would correspond to dark matter from the point of view
of smaller space-time sheet [K90} [K27] .

One can however try to find loopholes in the argument.

(a) It might be possible to pose the finiteness of F'™,/gs/g? as a boundary condition. The
variation principle determining space-time surfaces implies that space-time surfaces are
analogous to Bohr orbits so that there are also hopes that gauge fluxes are quantized.

(b) Another way out of this difficulty could be based on the basic idea behind renormalization
in TGD framework. Gauge coupling strengths are allowed to depend on space-time point
so that the gauge currents are conserved. Gauge coupling strengths g2 /47 could become
infinite at causal horizon. The infinite values of gauge couplings at causal horizons might be
a TGD counterpart for the infinite values of bare gauge couplings in quantum field theories.
There are however several objections against this idea. The values of coupling constants
should depend on space-time sheet only so that the situation is not improved by this trick
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in C'P, length scale. Dependence of g2 on space-time point means also that in the general
case the definition of gauge charge as gauge flux is lost so that gauge charges do not reduce
to fluxes.

It seems that the notion of a finite electric gauge flux through the causal horizon need not make
sense as such. Same applies to the notion of gravitational gauge flux. The notion of gauge flux
seems however to have a natural quantal generalization. The creation of a # contact between
two space-time sheets creates two causal horizons identifiable as partons and carrying conserved
charges assignable with the states created using the fermionic oscillator operators associated with
the second quantized induced spinor field. These charges must be of opposite sign so that electric
gauge fluxes through causal horizons are replaced by quantal gauge charges. For opposite time
orientations also four-momenta cancel each other. The particle states can of course transform
by interactions with matter at the two-space-time sheets so that the resulting contact is not a
zero energy state always.

This suggests that for gauge fluxes at the horizon are identifiable as opposite quantized gauge
charges of the partons involved. If the the net gauge charges of # contact do not vanish, it can
be said to possess net gauge charge and does not serve as a passive flux mediator anymore. The
possibly screened classical gauge fields in the region faraway from the contact define the classical
correlates for gauge fluxes. A similar treatment applies to gravitational flux in the case that the
time orientations are opposite and gravitational flux is identifiable as gravitational mass at the
causal horizon.

Internal consistency would mildly suggest that # contacts are possible only between space-time
sheets of opposite time orientation so that gauge fluxes between space-time sheets of same time
orientation would flow along #p bonds.

Are the gauge fluxes through # and #p contacts quantized?

There are good reasons (criticality of the Kéhler action plus maximization of the Kéhler function)
to expect that the gauge fluxes through # (if well-defined) and #p contacts are quantized. The
most natural guess would be that the unit of electric electromagnetic flux for #p contact is
1/3 since this makes it possible for the electromagnetic gauge flux of quarks to flow to larger
space-time sheets. Anyons could however mean more general quantization rules [K88] . The
quantization of electromagnetic gauge flux could serve as a unique experimental signature for #
and #p contacts and their currents. The contacts can carry also magnetic fluxes. In the case
of #p contacts the flux quantization would be dynamical and analogous to that appearing in
super conductors.

Hierarchy of gauge and gravitational interactions

The observed elementary particles are identified as C' P, type extremals topologically condensed
at space-time sheets with Minkowski signature of induced metric with elementary particle horizon
being responsible for the parton aspect. This suggests that at C' P, length scale gauge and
gravitational interactions correspond to the exchanges of C'P, type extremals with light-like
M* projection with branching of C'P; type extremal serving as the basic vertex as discussed
first in the earliest attempt to construct [K1] and years later in terms of generalized Feynman
diagrams. The gravitational and gauge interactions between the partons assignable to the two
causal horizons associated with # contact would be mediated by the # contact, which can
be regarded as a gravitational instanton and the interaction with other particles at space-time
sheets via classical gravitational fields.

Gauge fluxes flowing through the # g contacts would mediate higher level gauge and interactions
between space-time sheets rather than directly between C'P, type extremals. The hierarchy of
flux tubes defining string like objects strongly suggests a p-adic hierarchy of ”strong gravities”
with gravitational constant of order G ~ LIQ), and these strong gravities might correspond to
gravitational fluxes mediated by the flux tubes.
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3.3.3 Can one regard # resp. #p contacts as particles resp. string like
objects?

#-contacts have obvious particle like aspects identifiable as either partons or parton pairs. #p
contacts in turn behave like string like objects. Using the terminology of M-theory, # 5 contacts
connecting the boundaries of space-time sheets could be also seen as string like objects connecting
two branes. Again the ends holes at the ends of #p contacts carry well defined gauge charges.

# contacts as particles and #p contacts as string like objects?

The fact that # contacts correspond to parton pairs raises the hope that it is possible to apply
p-adic thermodynamics to calculate the masses of # contact and perhaps even the masses of the
partons. If this the case, one has an order of magnitude estimate for the first order contribution
to the mass of the parton as m ~ 1/L(p;), ¢ = 1,2. It can of course happen that the first order
contribution vanishes: in this case an additional factor 1/,/p; appears in the estimate and makes
the mass extremely small.

For # contacts connecting space-time sheets with opposite time orientations the vanishing of
the net four-momentum requires p; = ps. According to the number theoretic considerations
below it is possible to assign several p-adic primes to a given space-time sheet and the largest
among them, call it p,,4,, determines the p-adic mass scale. The milder condition is that p,qq.
is same for the two space-time sheets.

There are some motivations for the working hypothesis that # contacts and the ends of #p
contacts feeding the gauge fluxes to the lower condensate levels or vice versa tend to be located
near the boundaries of space-time sheets. For gauge charges which are not screened by vacuum
charges (em and color charges) the imbedding of the gauge fields created by the interior gauge
charges becomes impossible near the boundaries and the only possible manner to satisfy bound-
ary conditions is that gauge fluxes flow to the larger space-time sheet and space-time surface
becomes a vacuum extremal of the Kahler action near the boundary.

For gauge bosons the density of boundary #pg contacts should be very small in length scales,
where matter is essentially neutral. For gravitational # g contacts the situation is different. One
might well argue that there is some upper bound for the gravitational flux associated with single
# or #p contact (or equivalently the gravitational mass associated with causal horizon) given
by Planck mass or C'P, mass so that the number of gravitational contacts is proportional to the
mass of the system.

Could # and #p contacts form macroscopic quantum phases?

The description as # contact as a parton pair suggests that it is possible to assign to # contacts
inertial mass, say of order 1/L(p), they should be describable using d’Alembert type equation
for a scalar field. # contacts couple dynamically to the geometry of the space-time since the
induced metric defines the d’Alembertian. There is a mass gap and hence # contacts could
form a Bose-Einstein (BE) condensate to the ground state. If # contacts are located near the
boundary of the space-time surface, the d’Alembert equation would be 3-dimensional. One can
also ask whether # contacts define a particular form of dark matter having only gravitational
interactions with the ordinary matter.

Also coherent states of # contacts are possible and as will be found, Higgs mechanism could
be understood as a generation of coherent state of neutral Higgs particles identified as worm-
hole contacts having quantum numbers of left (right) handed fermion and right (left) handed
antifermion.

Also the probability amplitudes for the positions of the ends of # g contacts located at the bound-
ary of the space-time sheet could be described using an order parameter satisfying d’Alembert
equation with some mass parameter and whether the notion of Bose-Einstein condensate makes
sense also now. The model for atomic nucleus assigns to the ends of the #p contact realized
as a color magnetic flux tube having at its ends quark and anti-quark with mass scale given by
k =127 (MeV scale) [K77] .
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3.3.4 TGD based description of external fields

The description of a system in external field provides a nontrivial challenge for TGD since the
system corresponds now to a p-adic space-time sheet k; condensed on background 3-surface
ko > k1. The problem is to understand how external fields penetrate into the smaller space-time
sheet and also how the gauge fluxes inside the smaller space-time sheet flow to the external
space-time sheet. One should also understand how the penetrating magnetic or electric field
manages to preserve its value (if it does so). A good example is provided by the description
of system, such as atom or nucleus, in external magnetic or electric field. There are several
mechanisms of field penetration:

Induction mechanism

In the case of induction fields are mediated from level k; to levels ko # k1. The external field
at given level k; acts on # and #p throats (both accompanied by a pair of partons) connecting
levels ko and k1. The motion of # and #p contacts, induced by the gauge and gravitational
couplings of partons involved to classical gauge and gravitational fields, creates gauge currents
serving as sources of classical gauge field at the space-time sheets involved. This mechanism
involves ”dark” partons not predicted by standard model.

A good example is provided by the rotation of charged # throats induced by a constant magnetic
field, which in turn creates constant magnetic field inside a cylindrical condensate space-time
sheet. A second example is the polarization of the charge density associated with the # throats
in the external electric field, which in turn creates a constant electric field inside the smaller
space-time sheet.

One can in principle formulate general field equations governing the penetration of a classical
gauge field from a given condensate level to other levels. The simplified description is based on
the introduction of series of fields associated with various condensate levels as analogs of H and
B and D and F fields in the ordinary description of the external fields. The simplest assumption
is that the fields are linearly related. A general conclusion is that due to the delicacies of the
induced field concept, the fields on higher levels appear in the form of flux quanta and typically
the field strengths at the higher condensate levels are stronger so that the penetration of field
from lower levels to the higher ones means a decomposition into separate flux tubes.

The description of magnetization in terms of the effective field theory of Weiss introduces effective
field H, which is un-physically strong: a possible explanation as a field consisting of flux quanta
at higher condensate levels. A general order of magnitude estimate for field strength of magnetic
flux quantum at condensate level k is as 1/L?(k).

Penetration of magnetic fluxes via # contacts

At least magnetic gauge flux can flow from level p; to level po via # contacts. These surfaces
are of the form X? x D', where X? is a closed 2-surface. The simplest topology for X? is that
of sphere S2. This leads to the first nontrivial result. If a nontrivial magnetic flux flows through
the contact, it is quantized. The reason is that magnetic flux is necessarily over a closed surface.

The concept of induced gauge field implies that magnetic flux is nontrivial only if the surface
X? is homologically nontrivial: C'P, indeed allows homologically nontrivial sphere. Ordinary
magnetic field can be decomposed into co-homologically trivial term plus a term proportional to
Kahler form and the flux of ordinary magnetic field comes only from the part of the magnetic
field proportional to the Kéahler form and the magnetic flux is an integer multiple of some basic
flux.

The proposed mechanism predicts that magnetic flux can change only in multiples of basic flux
quantum. In super conductors this kind of behavior has been observed. Dipole magnetic fields
can be transported via several # contacts: the minimum is one for ingoing and one for return
flux so that magnetic dipoles are actual finite sized dipoles on the condensed surface. Also the
transfer of magnetic dipole field of, say neutron inside nucleus, to lower condensate level leads
to similar magnetic dipole structure on condensate level. For this mechanism the topological
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condensation of elementary particle, say charged lepton space-time sheet, would involve at least
two # contacts and the magnetic moment is proportional to the distance between these contacts.
The requirement that the magnetic dipole formed by the # contacts gives the magnetic moment
of the particle gives an estimate for the distance d between # throats: by flux quantization the
general order of magnitude is given by d ~ aﬁ;’;li%

Penetration of electric gauge fluxes via # contacts

For # contact for the opposite gauge charges of partons define the value of generalized gauge
electric flux between the two space-time sheets. In this case it is also possible to interpret
the partons as sources of the fields at the two space-time sheets. If the # contacts are near
the boundary of the smaller space-time sheet the interpretation as a flow of gauge flux to a
larger space-time sheet is perfectly sensible. The partons near the boundary can be also seen as
generators of a gauge field compensating the gauge fluxes from interior.

The distance between partons can be much larger than p-adic cutoff length L(k) and a proper
spatial distribution guarantees homogeneity of the magnetic or electric field in the interior. The
distances of the magnetic monopoles are however large in this kind of situation and it is an open
problem whether this kind of mechanism is consistent with experimental facts.

An estimate for the electric gauge flux Q.,, flowing through the # contact is obtained as n ~
QLL(,C): Q ~ EL?(k), which is of same order of magnitude as electric gauge flux over surface of are

L?(k). In magnetic case the estimate gives Qs ~ BL?(k): the quantization of @, is consistent
with homogeneity requirement only provided the condition B > L%&), where @ is elementary
flux quantum, holds true. This means that flux quantization effects cannot be avoided in weak
magnetic fields. The second consequence is that too weak magnetic field cannot penetrate at
all to the condensed surface: this is certainly the case if the total magnetic flux is smaller than
elementary flux quantum. A good example is provided by the penetration of magnetic field into
cylindrical super conductor through the end of the cylinder. Unless the field is strong enough
the penetrating magnetic field decomposes into vortex like flux tubes or does not penetrate at
all.

The penetration of flux via dipoles formed by # contacts from level to a second level in the
interior of condensed surface implies phenomena analogous to the generation of polarization
(magnetization) in dielectric (magnetic) materials. The conventional description in terms of
fields H, B, M and D, E, P has nice topological interpretation (which does not mean that the
mechanism is actually at work in condensed matter length scales). Magnetization M (polariza-
tion P) can be regarded as the density of fictitious magnetic (electric) dipoles in the conventional
theory: the proposed topological picture suggests that these quantities essentially as densities
for # contact pairs. The densities of M and P are of opposite sign on the condensed surface
and condensate. B = H — M corresponds to the magnetic field at condensing surface level
reduced by the density —M of # contact dipoles in the interior. H denotes the external field
at condensate level outside the condensing surface, M (—M) is the magnetic field created by
the # contact dipoles at condensate (condensed) level. Similar interpretation can be given for
D, E, P fields. The penetrating field is homogenous only above length scales larger than the
distance between # throats of dipoles: p-adic cutoff scale L(k) gives natural upper bound for
this distance: if this is the case and the density of the contacts is at least of order n ~ L%(k) the
penetrating field can be said to be constant also inside the condensed surface.

In condensed matter systems the generation of ordinary polarization and magnetization fields
might be related to the permanent # contacts of atomic surfaces with, say, k = 139 level. The
field created by the neutral atom contains only dipole and higher multipoles components and
therefore at least two # contacts per atom is necessary in gas phase, where join along boundaries
contacts between atoms are absent. In the absence of external field these dipoles tend to have
random directions. In external field # throats behave like opposite charges and their motion in
external field generates dipole field. The expression of the polarization field is proportional to
the density of these static dipole pairs in static limit. # contacts make possible the penetration
of external field to atom, where it generates atomic transitions and leads to the emission of dipole
type radiation field, which gives rise to the frequency dependent part of dielectric constant.
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Penetration via #p contacts

The field can also through #p contacts through the boundary of the condensed surface or
through the small holes in its interior. The quantization of electric charge quantization would
reduce to the quantization of electric gauge flux in # g contacts. If there are partons at the ends
of contact they affect the gauge gauge flux.

The penetration via #p contacts necessitates the existence of join along boundaries bonds
starting from the boundary of the condensed system and ending to the boundary component
of a hole in the background surface. The field flux flows simply along the 3-dimensional stripe
X? x D': since X2 has boundary no flux quantization is necessary. This mechanism guarantees
automatically the homogeneity of the penetrating field inside the condensed system.

An important application for the theory of external fields is provided by bio-systems in which
the penetration of classical electromagnetic fields between different space-time sheets should
play central role: what makes the situation so interesting is that the order parameter describing
the # and #p Bose-Einstein condensates carries also phase information besides the information
about the strength of the normal component of the penetrating field.

3.3.5 Number theoretical considerations

Number theoretical considerations allow to develop more quantitative vision about the how
p-adic length scale hypothesis relates to the ideas just described.

How to define the notion of elementary particle?

p-Adic length scale hierarchy forces to reconsider carefully also the notion of elementary particle.
p-Adic mass calculations led to the idea that particle can be characterized uniquely by single p-
adic prime characterizing its mass squared. It however turned out that the situation is probably
not so simple.

The work with modelling dark matter suggests that particle could be characterized by a collection
of p-adic primes to which one can assign weak, color, em, gravitational interactions, and possibly
also other interactions. It would also seem that only the space-time sheets containing common
primes in this collection can interact. This leads to the notions of relative and partial darkness.
An entire hierarchy of weak and color physics such that weak bosons and gluons of given physics
are characterized by a given p-adic prime p and also the fermions of this physics contain space-
time sheet characterized by same p-adic prime, say Mgg as in case of weak interactions. In this
picture the decay widths of weak bosons do not pose limitations on the number of light particles
if weak interactions for them are characterized by p-adic prime p # Mgg. Same applies to color
interactions.

The p-adic prime characterizing the mass of the particle would perhaps correspond to the largest
p-adic prime associated with the particle. Graviton which corresponds to infinitely long ranged
interactions, could correspond to the same p-adic prime or collection of them common to all
particles. This might apply also to photons. Infinite range might mean that the join along
boundaries bonds mediating these interactions can be arbitrarily long but their transversal sizes
are characterized by the p-adic length scale in question.

The natural question is what this collection of p-adic primes characterizing particle means? The
hint about the correct answer comes from the number theoretical vision, which suggests that at
fundamental level the branching of boundary components or more generally wormhole throats
to two or more components, completely analogous to the branching of line in Feynman diagram,
defines vertices [K22] [K18] .

(a) If space-time sheets correspond holographically to multi-p p-adic topology such that largest
p determines the mass scale, the description of particle reactions in terms of branchings
indeed makes sense. This picture allows also to understand the existence of different scaled
up copies of QCD and weak physics. Multi-p p-adicity could number theoretically corre-
spond to g-adic topology for ¢ = m/n a rational number consistent with p-adic topologies



3.3. Basic phenomenology of topological condensation 211

associated with prime factors of m and n (1/p-adic topology is homeomorphic with p-adic
topology).

(b) One could also imagine that different p-adic primes in the collection correspond to different
space-time sheets condensed at a larger space-time sheet or boundary components of a
given space-time sheet. If the boundary topologies for gauge bosons are completely mixed,
as the model of hadrons forces to conclude, this picture is consistent with the topological
explanation of the family replication phenomenon and the fact that only charged weak
currents involve mixing of quark families. The problem is how to understand the existence
of different copies of say QCD. The second difficult question is why the branching leads
always to an emission of gauge boson characterized by a particular p-adic prime, say Mg,
if this p-adic prime does not somehow characterize also the particle itself.

What effective p-adic topology really means?

The need to characterize elementary particle p-adically leads to the question what p-adic effective
topology really means. p-Adic mass calculations leave actually a lot of room concerning the
answer to this question.

(a) The naivest option is that each space-time sheet corresponds to single p-adic prime. A
more general possibility is that the boundary components of space-time sheet correspond to
different p-adic primes. This view is not favored by the view that each particle corresponds
to a collection of p-adic primes each characterizing one particular interaction that the
particle in question participates.

(b) A more abstract possibility is that a given space-time sheet or boundary component can
correspond to several p-adic primes. Indeed, a power series in powers of given integer n
gives rise to a well-defined power series with respect to all prime factors of n and effective
multi-p-adicity could emerge at the level of field equations in this manner.

One could say that space-time sheet or boundary component corresponds to several p-adic primes
through its effective p-adic topology in a hologram like manner. This option is the most flexible
one as far as physical interpretation is considered. It is also supported by the number theoretical
considerations predicting the value of gravitational coupling constant [K79] .

An attractive hypothesis is that only space-time sheets characterized by integers n; having
common prime factors can be connected by join along boundaries bonds and can interact by
particle exchanges and that each prime p in the decomposition corresponds to a particular
interaction mediated by an elementary boson characterized by this prime.

The physics of quarks and hadrons provides an immediate test for this interpretation. The
surprising and poorly understood conclusion from the p-adic mass calculations was that the
p-adic primes characterizing light quarks u,d,s satisfy k; < 107, where k = 107 characterizes
hadronic space-time sheet [K56] .

(a) The interpretation of k = 107 space-time sheet as a hadronic space-time sheet implies that
quarks topologically condense at this space-time sheet so that k = 107 cannot belong to
the collection of primes characterizing quark.

(b) Quark space-time sheets must satisfy k, < 107 unless 7 is large for the hadronic space-time
sheet so that one has ke = 107 + 22 = 129. This predicts two kinds of hadrons. Low
energy hadrons consists of u, d, and s quarks with k; < 107 so that hadronic space-time
sheet must correspond to keyy = 129 and large value of h. One can speak of confined
phase. This allows also k = 127 light variants of quarks appearing in the model of atomic
nucleus [K77] . The hadrons consisting of c,t,b and the p-adically scaled up variants of u,d,s
having k; > 107, h has its ordinary value in accordance with the idea about asymptotic
freedom and the view that the states in question correspond to short-lived resonances.
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3.4 The new space time picture and some of its conse-
quences

The previous considerations suggest that TGD space-time has a hierarchical, fractal like struc-
ture consisting of an infinite number of condensate levels n characterized by length scale L(n) <
L(n + 1) identifiable as a typical size for 3-surface at level n. Spin glass analogy suggests that
the label n corresponds to preferred primes characterizing p-adic length scales and to values of
Planck constant labelling levels of dark matter hierarchy. p-Adic fractality means that for each p
there is actually a length scale hierarchy coming in powers of /p. An infinite hierarchy of copies
of standard model physics is an unavoidable prediction if quantum classical correspondence is
taken seriously and can be identified as dark matter hierarchy.

3.4.1 Topological condensation and formation of bound states

It is tempting to identify the physical counterpart of the topological condensate in the length
scale L as a bound state with size L. If this assumption is accepted then one ends up to the
rather beautiful general scenario for the hierarchical structure of the 3-space. Quarks (3-surface
of size of C'P, length, so called C'P, type extremals to be discussed later) condense around the
hadronic 3-surfaces, hadrons condense around a piece of Minkowski space with size of order
10~'* — 10~ '® meters to form nuclei, nuclei and electrons condense to form atoms of size of the
order 10719 meters or larger, atoms condense to form molecules, etc.

Generalizing the previous ideas, one ends up to a rather exciting possibility for a topological de-
scription of the macroscopic states of matter. Consider solids as an example. Solids correspond
to a regular lattice of atomic or molecular 3-surfaces condensed to background 3-space. There
are two kinds of forces binding the structure together.

i) There are interactions mediated via the the fields of the background 3-space and these corre-
spond to the ordinary electric forces.

ii) There is interaction resulting from the ”contacts” between the boundaries of the neighboring
atoms (for a two-dimensional visualization see Fig. . Join along boundaries bond means
mathematically a tube D? x D! connecting the boundaries together or equivalently, topological
condensation for the boundaries. This interaction is completely new and has as its counterpart
the forces generated by the electron exchange between atoms believed to explain the binding
between the atoms of certain solids. It is however clear that something quite new is introduced
so that the conventional belief that Schrodinger equation in a flat 3-space alone explains these
interactions would not be correct in TGD context. That the approach based on Schrédinger
equation have not lead to contradictions can be understood also: what join along boundaries
bond makes is to select among possible solutions of Schrédinger equation those realized in Nature
by forcing the Schrédinger amplitude to the bridges connecting different structural units.

The topological description of the liquid state goes along similar lines. Now however the contacts
between neighboring atoms are not so rigid the reason being that thermal noise continually splits
these contacts. A completely new element is the emergence of the vacuum quantum numbers
and should lead to effects differentiating between TGD and more conventional approaches.

3.4.2 3-topology and chemistry

The practical models for chemical systems rely on the assumption that a chemical element
has a well defined geometric shape. If this assumption is made then Schrodinger equation in
electronic degrees of freedom combined with symmetry considerations gives satisfactory results.
The general belief is that the complete Scrodinger equation treating quantum mechanically also
the positions of the atoms predicts also the geometric structure of the chemical compounds.
Unfortunately, in practice it is not possible to check numerically the correctness of this belief.

The ”join along boundaries” interaction is a second standard phenomenological concept in the
chemistry. What happens that reactants join along a part of their boundaries together to form
a transition state (or a final state) and the reaction takes place in the new geometry. The
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Figure 3.3: How one could understand the solid state topologically in terms of the join along boundaries
interaction: 2-dim. visualization

chemistry of the biological systems relies heavily on this concept. For example, the catalytic
action of the enzymes is often understood on the basis of key and lock principle: enzyme acts on
the protein only provided the surfaces of the protein and enzyme fit together like lock and key.
Usually it is believed that the association of a geometric form to chemical compounds and the
”join along boundaries” mechanism provide an easy short hand description, which is in principle
derivable from the complete Schrodinger equations. TGD suggests that this is not be the case.

What is exciting that this kind of idea leads to a completely fresh approach to the understanding
of bio-systems: t