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Preface

This book belongs to a series of online books summarizing the recent state Topological Geometro-
dynamics (TGD) and its applications. TGD can be regarded as a unified theory of fundamental
interactions but is not the kind of unified theory as so called GUTs constructed by graduate stu-
dents at seventies and eighties using detailed recipes for how to reduce everything to group theory.
Nowadays this activity has been completely computerized and it probably takes only a few hours
to print out the predictions of this kind of unified theory as an article in the desired format. TGD
is something different and I am not ashamed to confess that I have devoted the last 37 years of
my life to this enterprise and am still unable to write The Rules.

If T remember correctly, I got the basic idea of Topological Geometrodynamics (TGD) during
autumn 1977, perhaps it was October. What I realized was that the representability of physical
space-times as 4-dimensional surfaces of some higher-dimensional space-time obtained by replacing
the points of Minkowski space with some very small compact internal space could resolve the con-
ceptual difficulties of general relativity related to the definition of the notion of energy. This belief
was too optimistic and only with the advent of what I call zero energy ontology the understanding
of the notion of Poincare invariance has become satisfactory. This required also the understanding
of the relationship to General Relativity.

It soon became clear that the approach leads to a generalization of the notion of space-time
with particles being represented by space-time surfaces with finite size so that TGD could be also
seen as a generalization of the string model. Much later it became clear that this generalization is
consistent with conformal invariance only if space-time is 4-dimensional and the Minkowski space
factor of imbedding space is 4-dimensional. During last year it became clear that 4-D Minkowski
space and 4-D complex projective space C'P, are completely unique in the sense that they allow
twistor space with Kéhler structure.

It took some time to discover that also the geometrization of also gauge interactions and
elementary particle quantum numbers could be possible in this framework: it took two years to
find the unique internal space (C'P;) providing this geometrization involving also the realization
that family replication phenomenon for fermions has a natural topological explanation in TGD
framework and that the symmetries of the standard model symmetries are much more profound
than pragmatic TOE builders have believed them to be. If TGD is correct, main stream particle
physics chose the wrong track leading to the recent deep crisis when people decided that quarks
and leptons belong to same multiplet of the gauge group implying instability of proton.

There have been also longstanding problems.

e Gravitational energy is well-defined in cosmological models but is not conserved. Hence
the conservation of the inertial energy does not seem to be consistent with the Equivalence
Principle. Furthermore, the imbeddings of Robertson-Walker cosmologies turned out to
be vacuum extremals with respect to the inertial energy. About 25 years was needed to
realize that the sign of the inertial energy can be also negative and in cosmological scales the
density of inertial energy vanishes: physically acceptable universes are creatable from vacuum.
Eventually this led to the notion of zero energy ontology (ZEO) which deviates dramatically
from the standard ontology being however consistent with the crossing symmetry of quantum
field theories. In this framework the quantum numbers are assigned with zero energy states
located at the boundaries of so called causal diamonds defined as intersections of future and
past directed light-cones. The notion of energy-momentum becomes length scale dependent
since one has a scale hierarchy for causal diamonds. This allows to understand the non-
conservation of energy as apparent.

Equivalence Principle as it is expressed by Einstein’s equations follows from Poincare invari-
ance once it is realized that GRT space-time is obtained from the many-sheeted space-time of
TGD by lumping together the space-time sheets to a regionof Minkowski space and endowing
it with an effective metric given as a sum of Minkowski metric and deviations of the metrices
of space-time sheets from Minkowski metric. Similar description relates classical gauge po-
tentials identified as components of induced spinor connection to Yang-Mills gauge potentials
in GRT space-time. Various topological inhomogenities below resolution scale identified as
particles are described using energy momentum tensor and gauge currents.
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e From the beginning it was clear that the theory predicts the presence of long ranged classical
electro-weak and color gauge fields and that these fields necessarily accompany classical
electromagnetic fields.

It took about 26 years to gain the maturity to admit the obvious: these fields are classical
correlates for long range color and weak interactions assignable to dark matter. The only
possible conclusion is that TGD physics is a fractal consisting of an entire hierarchy of fractal
copies of standard model physics. Also the understanding of electro-weak massivation and
screening of weak charges has been a long standing problem, and 32 years was needed to
discover that what I call weak form of electric-magnetic duality gives a satisfactory solution
of the problem and provides also surprisingly powerful insights to the mathematical structure
of quantum TGD.

The latest development was the realization that the well- definedness of electromagnetic
charge as quantum number for the modes of the induced spinors field requires that the C' Py
projection of the region in which they are non-vanishing carries vanishing W boson field and
is 2-D. This implies in the generic case their localization to 2-D surfaces: string world sheets
and possibly also partonic 2-surfaces. This localization applies to all modes except covariantly
constant right handed neutrino generating supersymmetry and mplies that string model in
4-D space-time is part of TGD. Localization is possible only for Kahler-Dirac assigned with
Kéhler action defining the dynamics of space-time surfaces. One must however leave open the
question whether W field might vanish for the space-time of GRT if related to many-sheeted
space-time in the proposed manner even when they do not vanish for space-time sheets.

I started the serious attempts to construct quantum TGD after my thesis around 1982. The
original optimistic hope was that path integral formalism or canonical quantization might be
enough to construct the quantum theory but the first discovery made already during first year of
TGD was that these formalisms might be useless due to the extreme non-linearity and enormous
vacuum degeneracy of the theory. This turned out to be the case.

e It took some years to discover that the only working approach is based on the generalization of
Einstein’s program. Quantum physics involves the geometrization of the infinite-dimensional
"world of classical worlds” (WCW) identified as 3-dimensional surfaces. Still few years had
to pass before I understood that general coordinate invariance leads to a more or less unique
solution of the problem and in positive energyontology implies that space-time surfaces are
analogous to Bohr orbits. This in positive energy ontology in which space-like 3-surface is
basic object. It is not clear whether Bohr orbitology is necessary also in ZEO in which space-
time surfaces connect space-like 3-surfaces at the light-like boundaries of causal diamond CD
obtained as intersection of future and past directed light-cones (with C'P, factor included).
The reason is that the pair of 3-surfaces replaces the boundary conditions at single 3-surface
involving also time derivatives. If one assumes Bohr orbitology then strong correlations
between the 3-surfaces at the ends of CD follow. Still a couple of years and I discovered that
quantum states of the Universe can be identified as classical spinor fields in WCW. Only
quantum jump remains the genuinely quantal aspect of quantum physics.

e During these years TGD led to a rather profound generalization of the space-time concept.
Quite general properties of the theory led to the notion of many-sheeted space-time with
sheets representing physical subsystems of various sizes. At the beginning of 90s I became
dimly aware of the importance of p-adic number fields and soon ended up with the idea that
p-adic thermodynamics for a conformally invariant system allows to understand elementary
particle massivation with amazingly few input assumptions. The attempts to understand p-
adicity from basic principles led gradually to the vision about physics as a generalized number
theory as an approach complementary to the physics as an infinite-dimensional spinor ge-
ometry of WCW approach. One of its elements was a generalization of the number concept
obtained by fusing real numbers and various p-adic numbers along common rationals. The
number theoretical trinity involves besides p-adic number fields also quaternions and octo-
nions and the notion of infinite prime.

e TGD inspired theory of consciousness entered the scheme after 1995 as I started to write
a book about consciousness. Gradually it became difficult to say where physics ends and



consciousness theory begins since consciousness theory could be seen as a generalization of
quantum measurement theory by identifying quantum jump as a moment of consciousness
and by replacing the observer with the notion of self identified as a system which is conscious
as long as it can avoid entanglement with environment. The somewhat cryptic statement
?Everything is conscious and consciousness can be only lost” summarizes the basic philosophy
neatly.

The idea about p-adic physics as physics of cognition and intentionality emerged also rather
naturally and implies perhaps the most dramatic generalization of the space-time concept in
which most points of p-adic space-time sheets are infinite in real sense and the projection
to the real imbedding space consists of discrete set of points. One of the most fascinating
outcomes was the observation that the entropy based on p-adic norm can be negative. This
observation led to the vision that life can be regarded as something in the intersection of real
and p-adic worlds. Negentropic entanglement has interpretation as a correlate for various
positively colored aspects of conscious experience and means also the possibility of strongly
correlated states stable under state function reduction and different from the conventional
bound states and perhaps playing key role in the energy metabolism of living matter.

If one requires consistency of Negentropy Mazimization Pronciple with standard measure-
ment theory, negentropic entanglement defined in terms of number theoretic negentropy is
necessarily associated with a density matrix proportional to unit matrix and is maximal and
is characterized by the dimension n of the unit matrix. Negentropy is positive and maximal
for a p-adic unique prime dividing n.

One of the latest threads in the evolution of ideas is not more than nine years old. Learning
about the paper of Laurent Nottale about the possibility to identify planetary orbits as Bohr
orbits with a gigantic value of gravitational Planck constant made once again possible to see
the obvious. Dynamical quantized Planck constant is strongly suggested by quantum classical
correspondence and the fact that space-time sheets identifiable as quantum coherence regions
can have arbitrarily large sizes. Second motivation for the hierarchy of Planck constants
comes from bio-electromagnetism suggesting that in living systems Planck constant could
have large values making macroscopic quantum coherence possible. The interpretation of
dark matter as a hierarchy of phases of ordinary matter characterized by the value of Planck
constant is very natural.

During summer 2010 several new insights about the mathematical structure and interpreta-
tion of TGD emerged. One of these insights was the realization that the postulated hierarchy
of Planck constants might follow from the basic structure of quantum TGD. The point is that
due to the extreme non-linearity of the classical action principle the correspondence between
canonical momentum densities and time derivatives of the imbedding space coordinates is
one-to-many and the natural description of the situation is in terms of local singular covering
spaces of the imbedding space. One could speak about effective value of Planck constant
heff = n X h coming as a multiple of minimal value of Planck constant. Quite recently it
became clear that the non-determinism of Kéahler action is indeed the fundamental justifi-
cation for the hierarchy: the integer n can be also interpreted as the integer characterizing
the dimension of unit matrix characterizing negentropic entanglement made possible by the
many-sheeted character of the space-time surface.

Due to conformal invariance acting as gauge symmetry the n degenerate space-time sheets
must be replaced with conformal equivalence classes of space-time sheets and conformal
transformations correspond to quantum critical deformations leaving the ends of space-time
surfaces invariant. Conformal invariance would be broken: only the sub-algebra for which
conformal weights are divisible by n act as gauge symmetries. Thus deep connections be-
tween conformal invariance related to quantum criticality, hierarchy of Planck constants,
negentropic entanglement, effective p-adic topology, and non-determinism of Kéahler action
perhaps reflecting p-adic non-determinism emerges.

The implications of the hierarchy of Planck constants are extremely far reaching so that the
significance of the reduction of this hierarchy to the basic mathematical structure distin-
guishing between TGD and competing theories cannot be under-estimated.



vi

From the point of view of particle physics the ultimate goal is of course a practical construction
recipe for the S-matrix of the theory. I have myself regarded this dream as quite too ambitious
taking into account how far reaching re-structuring and generalization of the basic mathematical
structure of quantum physics is required. It has indeed turned out that the dream about explicit
formula is unrealistic before one has understood what happens in quantum jump. Symmetries
and general physical principles have turned out to be the proper guide line here. To give some
impressions about what is required some highlights are in order.

e With the emergence of ZEO the notion of S-matrix was replaced with M-matrix defined
between positive and negative energy parts of zero energy states. M-matrix can be interpreted
as a complex square root of density matrix representable as a diagonal and positive square
root of density matrix and unitary S-matrix so that quantum theory in ZEO can be said to
define a square root of thermodynamics at least formally. M-matrices in turn bombine to
form the rows of unitary U-matrix defined between zero energy states.

e A decisive step was the strengthening of the General Coordinate Invariance to the requirement
that the formulations of the theory in terms of light-like 3-surfaces identified as 3-surfaces
at which the induced metric of space-time surfaces changes its signature and in terms of
space-like 3-surfaces are equivalent. This means effective 2-dimensionality in the sense that
partonic 2-surfaces defined as intersections of these two kinds of surfaces plus 4-D tangent
space data at partonic 2-surfaces code for the physics. Quantum classical correspondence
requires the coding of the quantum numbers characterizing quantum states assigned to the
partonic 2-surfaces to the geometry of space-time surface. This is achieved by adding to the
modified Dirac action a measurement interaction term assigned with light-like 3-surfaces.

e The replacement of strings with light-like 3-surfaces equivalent to space-like 3-surfaces means
enormous generalization of the super conformal symmetries of string models. A further gen-
eralization of these symmetries to non-local Yangian symmetries generalizing the recently
discovered Yangian symmetry of N’ = 4 supersymmetric Yang-Mills theories is highly sug-
gestive. Here the replacement of point like particles with partonic 2-surfaces means the
replacement of conformal symmetry of Minkowski space with infinite-dimensional super-
conformal algebras. Yangian symmetry provides also a further refinement to the notion of
conserved quantum numbers allowing to define them for bound states using non-local energy
conserved currents.

e A further attractive idea is that quantum TGD reduces to almost topological quantum field
theory. This is possible if the Kéhler action for the preferred extremals defining WCW
Kahler function reduces to a 3-D boundary term. This takes place if the conserved currents
are so called Beltrami fields with the defining property that the coordinates associated with
flow lines extend to single global coordinate variable. This ansatz together with the weak
form of electric-magnetic duality reduces the Kéhler action to Chern-Simons term with the
condition that the 3-surfaces are extremals of Chern-Simons action subject to the constraint
force defined by the weak form of electric magnetic duality. It is the latter constraint which
prevents the trivialization of the theory to a topological quantum field theory. Also the
identification of the Kéhler function of WCW as Dirac determinant finds support as well as
the description of the scattering amplitudes in terms of braids with interpretation in terms of
finite measurement resolution coded to the basic structure of the solutions of field equations.

e In standard QFT Feynman diagrams provide the description of scattering amplitudes. The
beauty of Feynman diagrams is that they realize unitarity automatically via the so called
Cutkosky rules. In contrast to Feynman’s original beliefs, Feynman diagrams and virtual
particles are taken only as a convenient mathematical tool in quantum field theories. QFT
approach is however plagued by UV and IR divergences and one must keep mind open for
the possibility that a genuine progress might mean opening of the black box of the virtual
particle.

In TGD framework this generalization of Feynman diagrams indeed emerges unavoidably.
Light-like 3-surfaces replace the lines of Feynman diagrams and vertices are replaced by 2-D
partonic 2-surfaces. Zero energy ontology and the interpretation of parton orbits as light-like
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”wormhole throats” suggests that virtual particle do not differ from on mass shell particles
only in that the four- and three- momenta of wormhole throats fail to be parallel. The two
throats of the wormhole contact defining virtual particle would contact carry on mass shell
quantum numbers but for virtual particles the four-momenta need not be parallel and can
also have opposite signs of energy.

The localization of the nodes of induced spinor fields to 2-D string world sheets (and possibly
also to partonic 2-surfaces) implies a stringy formulation of the theory analogous to stringy
variant of twistor formalism with string world sheets having interpretation as 2-braids. In
TGD framework fermionic variant of twistor Grassmann formalism leads to a stringy variant
of twistor diagrammatics in which basic fermions can be said to be on mass-shell but carry
non-physical helicities in the internal lines. This suggests the generalization of the Yangian
symmetry to infinite-dimensional super-conformal algebras.

What I have said above is strongly biased view about the recent situation in quantum TGD. This
vision is single man’s view and doomed to contain unrealistic elements as I know from experience.
My dream is that young critical readers could take this vision seriously enough to try to demonstrate
that some of its basic premises are wrong or to develop an alternative based on these or better
premises. I must be however honest and tell that 32 years of TGD is a really vast bundle of
thoughts and quite a challenge for anyone who is not able to cheat himself by taking the attitude
of a blind believer or a light-hearted debunker trusting on the power of easy rhetoric tricks.

Matti Pitkdnen

Hanko,
September 16, 2014
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Chapter 1

Introduction

1.1 Basic Ideas of Topological Geometrodynamics (TGD)

Standard model describes rather successfully both electroweak and strong interactions but sees
them as totally separate and contains a large number of parameters which it is not able to predict.
For about four decades ago unified theories known as Grand Unified Theories (GUTSs) trying to
understand electroweak interactions and strong interactions as aspects of the same fundamental
gauge interaction assignable to a larger symmetry group emerged. Later superstring models trying
to unify even gravitation and strong and weak interactions emerged. The shortcomings of both
GUTs and superstring models are now well-known. If TGD - whose basic idea emerged 37 years
ago - would emerge now it would be seen as an attempt trying to solve the difficulties of these
approaches to unification.

The basic physical picture behind TGD corresponds to a fusion of two rather disparate ap-
proaches: namely TGD as a Poincare invariant theory of gravitation and TGD as a generalization
of the old-fashioned string model. The CMAP files at my homepage provide an overview about
ideas and evolution of TGD and make easier to understand what TGD and its applications are
about (http://www.tgdtheory.fi/cmaphtml.html [L13]).

1.1.1 Basic vision very briefly

T(opological) G(eometro)D(ynamics) is one of the many attempts to find a unified description of
basic interactions. The development of the basic ideas of TGD to a relatively stable form took
time of about half decade [K1].

The basic vision and its relationship to existing theories is now rather well understood.

1. Space-times are representable as 4-surfaces in the 8-dimensional imbedding space H = M* x
CP,, where M* is 4-dimensional (4-D) Minkowski space and CP, is 4-D complex projective
space (see Appendix).

2. Induction procedure allows to geometrize various fields. Space-time metric characterizing
gravitational fields corresponds to the induced metric obtained by projecting the metric tensor
of H to the space-time surface. Electroweak gauge potentials are identified as projections
of the components of C'P, spinor connection to the space-time surface, and color gauge
potentials as projections ofC'P, Killing vector fields representing color symmetries. Also
spinor structure can be induced: induced spinor gamma matrices are projections of gamma
matrices of H and induced spinor fields just H spinor fields restricted to space-time surface.

3. Geometrization of quantum numbers is achieved. The isometry group of the geometry of
CP, codes for the color gauge symmetries of strong interactions. Vierbein group codes
for electroweak symmetries, and explains their breaking in terms of C'P, geometry so that
standard model gauge group results. There are also important deviations from standard
model: color quantum numbers are not spin-like but analogous to orbital angular momentum:
this difference is expected to be seen only in C'P; scale. In contrast to GUTSs, quark and
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lepton numbers are separately conserved and family replication has a topological explanation
in terms of topology of the partonic 2-surface carrying fermionic quantum numbers.

M* and CP, are unique choices for many other reasons. For instance, they are the unique 4-
D space-times allowing twistor space with Kéhler structure. M* light-cone boundary allows
a huge extension of 2-D conformal symmetries. Imbedding space H has a number theoretic
interpretation as 8-D space allowing octonionic tangent space structure. M* and CP, al-
low quaternionic structures. Therefore standard model symmetries have number theoretic
meaning.

4. Induced gauge potentials are expressible in terms of imbedding space coordinates and their
gradients and general coordinate invariance implies that there are only 4 field like variables
locally. Situation is thus extremely simple mathematically. The objection is that one loses
linear superposition of fields. The resolution of the problem comes from the generalization
of the concepts of particle and space-time.

Space-time surfaces can be also particle like having thus finite size. In particular, space-time
regions with Euclidian signature of the induced metric (temporal and spatial dimensions in
the same role) emerge and have interpretation as lines of generalized Feynman diagrams.
Particle in space-time can be identified as a topological inhomogenuity in background space-
time surface which looks like the space-time of general relativity in long length scales.

One ends up with a generalization of space-time surface to many-sheeted space-time with
space-time sheets having extremely small distance of about 10* Planck lengths (C'P, size).
As one adds a particle to this kind of structure, it touches various space-time sheets and
thus interacts with the associated classical fields. Their effects superpose linearly in good
approximation and linear superposition of fields is replaced with that for their effects.

This resolves the basic objection. It also leads to the understanding of how the space-time
of general relativity and quantum field theories emerges from TGD space-time as effective
space-time when the sheets of many-sheeted space-time are lumped together to form a re-
gion of Minkowski space with metric replaced with a metric identified as the sum of empty
Minkowski metric and deviations of the metrics of sheets from empty Minkowski metric.
Gauge potentials are identified as sums of the induced gauge potentials. TGD is therefore
a microscopic theory from which standard model and general relativity follow as a topolog-
ical simplification however forcing to increase dramatically the number of fundamental field
variables.

5. A further objection is that classical weak fields identified as induced gauge fields are long
ranged and should cause large parity breaking effects due to weak interactions. These effects
are indeed observed but only in living matter. The resolution of problem is implied by
the condition that the modes of the induced spinor fields have well-defined electromagnetic
charge. This forces their localization to 2-D string world sheets in the generic case having
vanishing weak gauge fields so that parity breaking effects emerge just as they do in standard
model. Also string model like picture emerges from TGD and one ends up with a rather
concrete view about generalized Feynman diagrammatics.

The great challenge is to construct a mathematical theory around these physically very attrac-
tive ideas and I have devoted the last thirty seven years for the realization of this dream and this
has resulted in eight online books about TGD and nine online books about TGD inspired theory
of consciousness and of quantum biology.

1.1.2 Two manners to see TGD and their fusion

As already mentioned, TGD can be interpreted both as a modification of general relativity and
generalization of string models.

TGD as a Poincare invariant theory of gravitation

The first approach was born as an attempt to construct a Poincare invariant theory of gravitation.
Space-time, rather than being an abstract manifold endowed with a pseudo-Riemannian structure,
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is regarded as a surface in the 8-dimensional space H = M3:CP,, where M* denotes Minkowski
space and CP, = SU(3)/U(2) is the complex projective space of two complex dimensions [A59,
A42; A54, A40].

The identification of the space-time as a sub-manifold [A36, A57] of M* x CP; leads to an
exact Poincare invariance and solves the conceptual difficulties related to the definition of the
energy-momentum in General Relativity.

It soon however turned out that sub-manifold geometry, being considerably richer in structure
than the abstract manifold geometry, leads to a geometrization of all basic interactions. First,
the geometrization of the elementary particle quantum numbers is achieved. The geometry of
C P explains electro-weak and color quantum numbers. The different H-chiralities of H-spinors
correspond to the conserved baryon and lepton numbers. Secondly, the geometrization of the field
concept results. The projections of the C'P spinor connection, Killing vector fields of C'P, and of
H-metric to four-surface define classical electro-weak, color gauge fields and metric in X4.

The choice of H is unique from the condition that TGD has standard model symmetries. Also
number theoretical vision selects H = M* x C' P, uniquely. M* and CP;, are also unique spaces
allowing twistor space with Kéhler structure.

TGD as a generalization of the hadronic string model

The second approach was based on the generalization of the mesonic string model describing mesons
as strings with quarks attached to the ends of the string. In the 3-dimensional generalization 3-
surfaces correspond to free particles and the boundaries of the 3- surface correspond to partons
in the sense that the quantum numbers of the elementary particles reside on the boundaries.
Various boundary topologies (number of handles) correspond to various fermion families so that
one obtains an explanation for the known elementary particle quantum numbers. This approach
leads also to a natural topological description of the particle reactions as topology changes: for
instance, two-particle decay corresponds to a decay of a 3-surface to two disjoint 3-surfaces.

This decay vertex does not however correspond to a direct generalization of trouser vertex of
string models. Indeed, the important difference between TGD and string models is that the analogs
of string world sheet diagrams do not describe particle decays but the propagation of particles via
different routes. Particle reactions are described by generalized Feynman diagrams for which 3-D
light-like surface describing particle propagating join along their ends at vertices. As 4-manifolds
the space-time surfaces are therefore singular like Feynman diagrams as 1-manifolds.

Fusion of the two approaches via a generalization of the space-time concept

The problem is that the two approaches to TGD seem to be mutually exclusive since the orbit of a
particle like 3-surface defines 4-dimensional surface, which differs drastically from the topologically
trivial macroscopic space-time of General Relativity. The unification of these approaches forces a
considerable generalization of the conventional space-time concept. First, the topologically trivial
3-space of General Relativity is replaced with a ”topological condensate” containing matter as
particle like 3-surfaces ”glued” to the topologically trivial background 3-space by connected sum
operation. Secondly, the assumption about connectedness of the 3-space is given up. Besides the
”topological condensate” there could be ”vapor phase” that is a "gas” of particle like 3-surfaces
and string like objects (counterpart of the ”baby universes” of GRT) and the non-conservation of
energy in GRT corresponds to the transfer of energy between different sheets of the space-time
and possibly existence vapour phase.

What one obtains is what I have christened as many-sheeted space-time (see fig. http://
www.tgdtheory.fi/appfigures/manysheeted. jpg or fig. 9 in the appendix of this book). One
particular aspect is topological field quantization meaning that various classical fields assignable to
a physical system correspond to space-time sheets representing the classical fields to that particular
system. One can speak of the field body of a particular physical system. Field body consists of
topological light rays, and electric and magnetic flux quanta. In Maxwell’s theory system does not
possess this kind of field identity. The notion of magnetic body is one of the key players in TGD
inspired theory of consciousness and quantum biology.

This picture became more detailed with the advent of zero energy ontology (ZEO). The basic
notion of ZEO is causal diamond (CD) identified as the Cartesian product of CP, and of the
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intersection of future and past directed light-cones and having scale coming as an integer multiple
of C'P; size is fundamental. CDs form a fractal hierarchy and zero energy states decompose to
products of positive and negative energy parts assignable to the opposite boundaries of CD defining
the ends of the space-time surface. The counterpart of zero energy state in positive energy ontology
is the pair of initial and final states of a physical event, say particle reaction.

At space-time level ZEO means that 3-surfaces are pairs of space-like 3-surfaces at the opposite
light-like boundaries of CD. Since the extremals of Ké&hler action connect these, one can say that
by holography the basic dynamical objects are the space-time surface connecting these 3-surfaces.
This changes totally the vision about notions like self-organization: self-organization by quantum
jumps does not take for a 3-D system but for the entire 4-D field pattern associated with it.

General Coordinate Invariance (GCI) allows to identify the basic dynamical objects as space-
like 3-surfaces at the ends of space-time surface at boundaries of CD: this means that space-
time surface is analogous to Bohr orbit. An alternative identification is as light-like 3-surfaces at
which the signature of the induced metric changes from Minkowskian to Euclidian and interpreted
as lines of generalized Feynman diagrams. Also the Euclidian 4-D regions would have similar
interpretation. The requirement that the two interpretations are equivalent, leads to a strong
form of General Coordinate Invariance. The outcome is effective 2-dimensionality stating that
the partonic 2-surfaces identified as intersections of the space-like ends of space-time surface and
light-like wormhole throats are the fundamental objects. That only effective 2-dimensionality is in
question is due to the effects caused by the failure of strict determinism of Kéhler action. In finite
length scale resolution these effects can be neglected below UV cutoff and above IR cutoff. One
can also speak about strong form of holography.

1.1.3 Basic objections

Objections are the most powerful tool in theory building. The strongest objection against TGD
is the observation that all classical gauge fields are expressible in terms of four imbedding space
coordinates only- essentially C' P, coordinates. The linear superposition of classical gauge fields
taking place independently for all gauge fields is lost. This would be a catastrophe without many-
sheeted space-time. Instead of gauge fields, only the effects such as gauge forces are superposed.
Particle topologically condenses to several space-time sheets simultaneously and experiences the
sum of gauge forces. This transforms the weakness to extreme economy: in a typical unified theory
the number of primary field variables is countered in hundreds if not thousands, now it is just four.

Second objection is that TGD space-time is quite too simple as compared to GRT space-
time due to the imbeddability to 8-D imbedding space. One can also argue that Poincare invariant
theory of gravitation cannot be consistent with General Relativity. The above interpretation allows
to understand the relationship to GRT space-time and how Equivalence Principle (EP) follows
from Poincare invariance of TGD. The interpretation of GRT space-time is as effective space-
time obtained by replacing many-sheeted space-time with Minkowski space with effective metric
determined as a sum of Minkowski metric and sum over the deviations of the induced metrices of
space-time sheets from Minkowski metric. Poincare invariance suggests strongly classical EP for
the GRT limit in long length scales at least. One can consider also other kinds of limits such as the
analog of GRT limit for Euclidian space-time regions assignable to elementary particles. In this case
deformations of C' P, metric define a natural starting point and C'P; indeed defines a gravitational
instanton with very large cosmological constant in Einstein-Maxwell theory. Also gauge potentials
of standard model correspond classically to superpositions of induced gauge potentials over space-
time sheets.

Topological field quantization

Topological field quantization distinguishes between TGD based and more standard - say Maxwellian
- notion of field. In Maxwell’s fields created by separate systems superpose and one cannot tell
which part of field comes from which system except theoretically. In TGD these fields correspond
to different space-time sheets and only their effects on test particle superpose. Hence physical
systems have well-defined field identifies - field bodies - in particular magnetic bodies.

The notion of magnetic body carrying dark matter with non-standard large value of Planck
constant has become central concept in TGD inspired theory of consciousness and living matter,
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and by starting from various anomalies of biology one ends up to a rather detailed view about the
role of magnetic body as intentional agent receiving sensory input from the biological body and
controlling it using EEG and its various scaled up variants as a communication tool. Among other
thins this leads to models for cell membrane, nerve pulse, and EEG.

1.1.4 p-Adic variants of space-time surfaces

There is a further generalization of the space-time concept inspired by p-adic physics forcing a
generalization of the number concept through the fusion of real numbers and various p-adic number
fields. Also the hierarchy of Planck constants forces a generalization of the notion of space-time
but this generalization can be understood in terms of the failure of strict determinism for Kéahler
action defining the fundamental variational principle behind the dynamics of space-time surfaces.

A very concise manner to express how TGD differs from Special and General Relativities
could be following. Relativity Principle (Poincare Invariance), General Coordinate Invariance, and
Equivalence Principle remain true. What is new is the notion of sub-manifold geometry: this allows
to realize Poincare Invariance and geometrize gravitation simultaneously. This notion also allows
a geometrization of known fundamental interactions and is an essential element of all applications
of TGD ranging from Planck length to cosmological scales. Sub-manifold geometry is also crucial
in the applications of TGD to biology and consciousness theory.

1.1.5 The threads in the development of quantum TGD

The development of TGD has involved several strongly interacting threads: physics as infinite-
dimensional geometry; TGD as a generalized number theory, the hierarchy of Planck constants
interpreted in terms of dark matter hierarchy, and TGD inspired theory of consciousness. In the
following these threads are briefly described.

The theoretical framework involves several threads.

1. Quantum T(opological) G(eometro)D(ynamics) as a classical spinor geometry for infinite-
dimensional WCW, p-adic numbers and quantum TGD, and TGD inspired theory of con-
sciousness and of quantum biology have been for last decade of the second millenium the
basic three strongly interacting threads in the tapestry of quantum TGD.

2. The discussions with Tony Smith initiated a fourth thread which deserves the name "TGD as
a generalized number theory’. The basic observation was that classical number fields might
allow a deeper formulation of quantum TGD. The work with Riemann hypothesis made time
ripe for realization that the notion of infinite primes could provide, not only a reformulation,
but a deep generalization of quantum TGD. This led to a thorough and extremely fruitful
revision of the basic views about what the final form and physical content of quantum TGD
might be. Together with the vision about the fusion of p-adic and real physics to a larger
coherent structure these sub-threads fused to the ”physics as generalized number theory”
thread.

3. A further thread emerged from the realization that by quantum classical correspondence TGD
predicts an infinite hierarchy of macroscopic quantum systems with increasing sizes, that it is
not at all clear whether standard quantum mechanics can accommodate this hierarchy, and
that a dynamical quantized Planck constant might be necessary and strongly suggested by
the failure of strict determinism for the fundamental variational principle. The identification
of hierarchy of Planck constants labelling phases of dark matter would be natural. This also
led to a solution of a long standing puzzle: what is the proper interpretation of the predicted
fractal hierarchy of long ranged classical electro-weak and color gauge fields. Quantum clas-
sical correspondences allows only single answer: there is infinite hierarchy of p-adically scaled
up variants of standard model physics and for each of them also dark hierarchy. Thus TGD
Universe would be fractal in very abstract and deep sense.

The chronology based identification of the threads is quite natural but not logical and it is
much more logical to see p-adic physics, the ideas related to classical number fields, and infinite
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primes as sub-threads of a thread which might be called ”physics as a generalized number theory”.
In the following I adopt this view. This reduces the number of threads to four.

TGD forces the generalization of physics to a quantum theory of consciousness, and represent
TGD as a generalized number theory vision leads naturally to the emergence of p-adic physics
as physics of cognitive representations. The eight online books [K58, K42, K34, K75, K49, K74,
K73, K48] about TGD and nine online books about TGD inspired theory of consciousness and of
quantum biology [K53, K7, K38, K6, K21, K25, K27, K47, K68] are warmly recommended to the
interested reader.

Quantum TGD as spinor geometry of World of Classical Worlds

A turning point in the attempts to formulate a mathematical theory was reached after seven years
from the birth of TGD. The great insight was ” Do not quantize”. The basic ingredients to the new
approach have served as the basic philosophy for the attempt to construct Quantum TGD since
then and have been the following ones:

1. Quantum theory for extended particles is free(!), classical(!) field theory for a generalized
Schrodinger amplitude in the configuration space CH ("world of classical worlds”,WCW)
consisting of all possible 3-surfaces in H. ” All possible” means that surfaces with arbitrary
many disjoint components and with arbitrary internal topology and also singular surfaces
topologically intermediate between two different manifold topologies are included. Particle
reactions are identified as topology changes [A51, A60, A61]. For instance, the decay of a
3-surface to two 3-surfaces corresponds to the decay A — B+ C. Classically this corresponds
to a path of WCW leading from 1-particle sector to 2-particle sector. At quantum level this
corresponds to the dispersion of the generalized Schrodinger amplitude localized to 1-particle
sector to two-particle sector. All coupling constants should result as predictions of the theory
since no nonlinearities are introduced.

2. During years this naive and very rough vision has of course developed a lot and is not
anymore quite equivalent with the original insight. In particular, the space-time correlates of
Feynman graphs have emerged from theory as Euclidian space-time regions and the strong
form of General Coordinate Invariance has led to a rather detailed and in many respects un-
expected visions. This picture forces to give up the idea about smooth space-time surfaces
and replace space-time surface with a generalization of Feynman diagram in which vertices
represent the failure of manifold property. I have also introduced the word ”world of classical
worlds” (WCW) instead of rather formal ”configuration space”. I hope that "WCW” does
not induce despair in the reader having tendency to think about the technicalities involved!

3. WCW is endowed with metric and spinor structure so that one can define various metric
related differential operators, say Dirac operator, appearing in the field equations of the
theory !. The most ambitious dream is that zero energy states correspond to a complete
solution basis for the Dirac operator of WCW so that this classical free field theory would
dictate M-matrices defined between positive and negative energy parts of zero energy states
which form orthonormal rows of what I call U-matrix as a matrix defined between zero energy
states. Given M-matrix in turn would decompose to a product of a hermitian density matrix
and unitary S-matrix.

M-matrix would define time-like entanglement coefficients between positive and negative
energy parts of zero energy states (all net quantum numbers vanish for them) and can be
regarded as a hermitian square root of density matrix multiplied by a unitary S-matrix.
Quantum theory would be in well-defined sense a square root of thermodynamics. The
orthogonality and hermiticity of the complex square roots of density matrices commuting
with S-matrix means that they span infinite-dimensional Lie algebra acting as symmetries of
the S-matrix. Therefore quantum TGD would reduce to group theory in well-defined sense:
its own symmetries would define the symmetries of the theory. In fact the Lie algebra of
Hermitian M-matrices extends to Kac-Moody type algebra obtained by multiplying hermitian

IThere are four kinds of Dirac operators in TGD. WCW Dirac operator appearing in Super-Virasoro conditions,
imbedding space Dirac operator whose modes define the ground states of Super-Virasoro representations, Kéhler-
Dirac operator at space-time surfaces, and the algebraic variant of M* Dirac operator appearing in propagators
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square roots of density matrices with powers of the S-matrix. Also the analog of Yangian
algebra involving only non-negative powers of S-matrix is possible.

4. By quantum classical correspondence the construction of WCW spinor structure reduces to
the second quantization of the induced spinor fields at space-time surface. The basic ac-
tion is so called modified Dirac action (or Kéhler-Dirac action) in which gamma matrices
are replaced with the modified (K&hler-Dirac) gamma matrices defined as contractions of
the canonical momentum currents with the imbedding space gamma matrices. In this man-
ner one achieves super-conformal symmetry and conservation of fermionic currents among
other things and consistent Dirac equation. The modified gamma matrices define as anti-
commutators effective metric, which might provide geometrization for some basic observables
of condensed matter physics. One might also talk about bosonic emergence in accordance
with the prediction that the gauge bosons and graviton are expressible in terms of bound
states of fermion and anti-fermion.

5. An important result relates to the notion of induced spinor connection. If one requires
that spinor modes have well-defined em charge, one must assume that the modes in the
generic situation are localized at 2-D surfaces - string world sheets or perhaps also partonic
2-surfaces - at which classical W boson fields vanish. Covariantly constant right handed
neutrino generating super-symmetries forms an exception. The vanishing of also Z° field is
possible for Kahler-Dirac action and should hold true at least above weak length scales. This
implies that string model in 4-D space-time becomes part of TGD. Without these conditions
classical weak fields can vanish above weak scale only for the GRT limit of TGD for which
gauge potentials are sums over those for space-time sheets.

The localization simplifies enormously the mathematics and one can solve exactly the Kéhler-
Dirac equation for the modes of the induced spinor field just like in super string models.

At the light-like 3-surfaces at which the signature of the induced metric changes from Eu-
clidian to Minkowskian so that /g4 vanishes one can pose the condition that the algebraic
analog of massless Dirac equation is satisfied by the nodes so that Kahler-Dirac action gives
massless Dirac propagator localizable at the boundaries of the string world sheets.

The evolution of these basic ideas has been rather slow but has gradually led to a rather
beautiful vision. One of the key problems has been the definition of K&hler function. Kéhler
function is Ké&hler action for a preferred extremal assignable to a given 3-surface but what this
preferred extremal is? The obvious first guess was as absolute minimum of Ké&hler action but
could not be proven to be right or wrong. One big step in the progress was boosted by the idea
that TGD should reduce to almost topological QFT in which braids would replace 3-surfaces in
finite measurement resolution, which could be inherent property of the theory itself and imply
discretization at partonic 2-surfaces with discrete points carrying fermion number.

1. TGD as almost topological QFT vision suggests that Kéhler action for preferred extremals
reduces to Chern-Simons term assigned with space-like 3-surfaces at the ends of space-time
(recall the notion of causal diamond (CD)) and with the light-like 3-surfaces at which the
signature of the induced metric changes from Minkowskian to Euclidian. Minkowskian and
Euclidian regions would give at wormhole throats the same contribution apart from coeffi-
cients and in Minkowskian regions the /g4 factorc coming from metric would be imaginary
so that one would obtain sum of real term identifiable as Kéhler function and imaginary
term identifiable as the ordinary Minkowskian action giving rise to interference effects and
stationary phase approximation central in both classical and quantum field theory.

Imaginary contribution - the presence of which I realized only after 33 years of TGD - could
also have topological interpretation as a Morse function. On physical side the emergence of
Euclidian space-time regions is something completely new and leads to a dramatic modifica-
tion of the ideas about black hole interior.

2. The manner to achieve the reduction to Chern-Simons terms is simple. The vanishing of
Coulomb contribution to Kahler action is required and is true for all known extremals if one
makes a general ansatz about the form of classical conserved currents. The so called weak
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form of electric-magnetic duality defines a boundary condition reducing the resulting 3-D
terms to Chern-Simons terms. In this manner almost topological QFT results. But only
“almost” since the Lagrange multiplier term forcing electric-magnetic duality implies that
Chern-Simons action for preferred extremals depends on metric.

TGD as a generalized number theory

Quantum T(opological)D(ynamics) as a classical spinor geometry for infinite-dimensional configu-
ration space ("world of classical worldss”, WCW), p-adic numbers and quantum TGD, and TGD
inspired theory of consciousness, have been for last ten years the basic three strongly interacting
threads in the tapestry of quantum TGD. The fourth thread deserves the name 'TGD as a gen-
eralized number theory’. It involves three separate threads: the fusion of real and various p-adic
physics to a single coherent whole by requiring number theoretic universality discussed already, the
formulation of quantum TGD in terms of hyper-counterparts of classical number fields identified
as sub-spaces of complexified classical number fields with Minkowskian signature of the metric
defined by the complexified inner product, and the notion of infinite prime.

1. p-Adic TGD and fusion of real and p-adic physics to single coherent whole

The p-adic thread emerged for roughly ten years ago as a dim hunch that p-adic numbers
might be important for TGD. Experimentation with p-adic numbers led to the notion of canonical
identification mapping reals to p-adics and vice versa. The breakthrough came with the successful
p-adic mass calculations using p-adic thermodynamics for Super-Virasoro representations with the
super-Kac-Moody algebra associated with a Lie-group containing standard model gauge group.
Although the details of the calculations have varied from year to year, it was clear that p-adic
physics reduces not only the ratio of proton and Planck mass, the great mystery number of physics,
but all elementary particle mass scales, to number theory if one assumes that primes near prime
powers of two are in a physically favored position. Why this is the case, became one of the key
puzzles and led to a number of arguments with a common gist: evolution is present already at
the elementary particle level and the primes allowed by the p-adic length scale hypothesis are the
fittest ones.

It became very soon clear that p-adic topology is not something emerging in Planck length
scale as often believed, but that there is an infinite hierarchy of p-adic physics characterized by
p-adic length scales varying to even cosmological length scales. The idea about the connection of
p-adics with cognition motivated already the first attempts to understand the role of the p-adics
and inspired "Universe as Computer’ vision but time was not ripe to develop this idea to anything
concrete (p-adic numbers are however in a central role in TGD inspired theory of consciousness). It
became however obvious that the p-adic length scale hierarchy somehow corresponds to a hierarchy
of intelligences and that p-adic prime serves as a kind of intelligence quotient. Ironically, the
almost obvious idea about p-adic regions as cognitive regions of space-time providing cognitive
representations for real regions had to wait for almost a decade for the access into my consciousness.

In string model context one tries to reduces the physics to Planck scale. The price is the
inability to say anything about physics in long length scales. In TGD p-adic physics takes care of
this shortcoming by predicting the physics also in long length scales.

There were many interpretational and technical questions crying for a definite answer.

1. What is the relationship of p-adic non-determinism to the classical non-determinism of the
basic field equations of TGD? Are the p-adic space-time region genuinely p-adic or does p-adic
topology only serve as an effective topology? If p-adic physics is direct image of real physics,
how the mapping relating them is constructed so that it respects various symmetries? Is the
basic physics p-adic or real (also real TGD seems to be free of divergences) or both? If it is
both, how should one glue the physics in different number field together to get the Physics?
Should one perform p-adicization also at the level of the WCW? Certainly the p-adicization
at the level of super-conformal representation is necessary for the p-adic mass calculations.

2. Perhaps the most basic and most irritating technical problem was how to precisely define p-
adic definite integral which is a crucial element of any variational principle based formulation
of the field equations. Here the frustration was not due to the lack of solution but due to
the too large number of solutions to the problem, a clear symptom for the sad fact that
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clever inventions rather than real discoveries might be in question. Quite recently I however
learned that the problem of making sense about p-adic integration has been for decades
central problem in the frontier of mathematics and a lot of profound work has been done
along same intuitive lines as I have proceeded in TGD framework. The basic idea is certainly
the notion of algebraic continuation from the world of rationals belonging to the intersection
of real world and various p-adic worlds.

The notion of p-adic manifold [K79] identified as p-adic space-time surface solving p-adic
analogs of field equations and having real space-time sheets as chart maps provides a possible
solution of the basic challenge. One can also speak of real space-time surfaces having p-
adic space-time surfaces as chart maps (cognitive maps, ”thought bubbles”). Discretization
required having interpretation in terms of finite measurement resolution is unavoidable in
this approach.

Despite various uncertainties, the number of the applications of the poorly defined p-adic physics
has grown steadily and the applications turned out to be relatively stable so that it was clear that
the solution to these problems must exist. It became only gradually clear that the solution of the
problems might require going down to a deeper level than that represented by reals and p-adics.

The key challenge is to fuse various p-adic physics and real physics to single larger structures.
This has inspired a proposal for a generalization of the notion of number field by fusing real numbers
and various p-adic number fields and their extensions along rationals and possible common algebraic
numbers. This leads to a generalization of the notions of imbedding space and space-time concept
and one can speak about real and p-adic space-time sheets. The quantum dynamics should be such
that it allows quantum transitions transforming space-time sheets belonging to different number
fields to each other. The space-time sheets in the intersection of real and p-adic worlds are of
special interest and the hypothesis is that living matter resides in this intersection. This leads to
surprisingly detailed predictions and far reaching conjectures. For instance, the number theoretic
generalization of entropy concept allows negentropic entanglement central for the applications to
living matter (see fig. http://www.tgdtheory.fi/appfigures/cat. jpg or fig. 21 in the appendix
of this book).

The basic principle is number theoretic universality stating roughly that the physics in various
number fields can be obtained as completion of rational number based physics to various number
fields. Rational number based physics would in turn describe physics in finite measurement resolu-
tion and cognitive resolution. The notion of finite measurement resolution has become one of the
basic principles of quantum TGD and leads to the notions of braids as representatives of 3-surfaces
and inclusions of hyper-finite factors as a representation for finite measurement resolution. The
braids actually co-emerge with string world sheets implied by the condition that em charge is
well-defined for spinor modes.

2. The role of classical number fields

The vision about the physical role of the classical number fields relies on certain speculative
questions inspired by the idea that space-time dynamics could be reduced to associativity or co-
associativity condition. Associativity means here associativity of tangent spaces of space-time
region and co-associativity associativity of normal spaces of space-time region.

1. Could space-time surfaces X* be regarded as associative or co-associative (”quaternionic”
is equivalent with ”associative”) surfaces of H endowed with octonionic structure in the
sense that tangent space of space-time surface would be associative (co-associative with
normal space associative) sub-space of octonions at each point of X* [K52]. This is certainly
possible and an interesting conjecture is that the preferred extremals of Kédhler action include
associative and co-associative space-time regions.

2. Could the notion of compactification generalize to that of number theoretic compactifica-
tion in the sense that one can map associative (co-associative) surfaces of M® regarded as
octonionic linear space to surfaces in M* x CP, [K52]? This conjecture - M® — H duality
- would give for M* x C'P, deep number theoretic meaning. C'P, would parametrize asso-
ciative planes of octonion space containing fixed complex plane M? C M® and CP, point
would thus characterize the tangent space of X* C M#8. The point of M* would be obtained


http://www.tgdtheory.fi/appfigures/cat.jpg

10 Chapter 1. Introduction

by projecting the point of X* C M?® to a point of M* identified as tangent space of X*.
This would guarantee that the dimension of space-time surface in H would be four. The
conjecture is that the preferred extremals of Kéahler action include these surfaces.

3. M®— H duality can be generalized to a duality H — H if the images of the associative surface
in M3 is associative surface in H. One can start from associative surface of H and assume
that it contains the preferred M? tangent plane in 8-D tangent space of H or integrable
distribution M?2(x) of them, and its points to H by mapping M* projection of H point to
itself and associative tangent space to C' P, point. This point need not be the original one! If
the resulting surface is also associative, one can iterate the process indefinitely. WCW would
be a category with one object.

4. (G2 defines the automorphism group of octonions, and one might hope that the maps of
octonions to octonions such that the action of Jacobian in the tangent space of associative
or co-associative surface reduces to that of G could produce new associative/co-associative
surfaces. The action of G5 would be analogous to that of gauge group.

5. One can also ask whether the notions of commutativity and co-commutativity could have
physical meaning. The well-definedness of em charge as quantum number for the modes of
the induced spinor field requires their localization to 2-D surfaces (right-handed neutrino is
an exception) - string world sheets and partonic 2-surfaces. This can be possible only for
Kahler action and could have commutativity and co-commutativity as a number theoretic
counterpart. The basic vision would be that the dynamics of Kéahler action realizes number
theoretical geometrical notions like associativity and commutativity and their co-notions.

The notion of number theoretic compactification stating that space-time surfaces can be re-
garded as surfaces of either M8 or M* x CP,. As surfaces of M?® identifiable as space of hyper-
octonions they are hyper-quaternionic or co-hyper-quaternionic- and thus maximally associative
or co-associative. This means that their tangent space is either hyper-quaternionic plane of M8
or an orthogonal complement of such a plane. These surface can be mapped in natural manner to
surfaces in M* x C' P, [K52] provided one can assign to each point of tangent space a hyper-complex
plane M?(x) € M* C M®. One can also speak about M® — H duality.

This vision has very strong predictive power. It predicts that the preferred extremals of Kahler
action correspond to either hyper-quaternionic or co-hyper-quaternionic surfaces such that one can
assign to tangent space at each point of space-time surface a hyper-complex plane M?(z) C M*.
As a consequence, the M* projection of space-time surface at each point contains M?(x) and its
orthogonal complement. These distributions are integrable implying that space-time surface allows
dual slicings defined by string world sheets Y2 and partonic 2-surfaces X2. The existence of this
kind of slicing was earlier deduced from the study of extremals of K&hler action and christened as
Hamilton-Jacobi structure. The physical interpretation of M?(x) is as the space of non-physical
polarizations and the plane of local 4-momentum.

Number theoretical compactification has inspired large number of conjectures. This includes
dual formulations of TGD as Minkowskian and Euclidian string model type theories, the precise
identification of preferred extremals of Kéhler action as extremals for which second variation van-
ishes (at least for deformations representing dynamical symmetries) and thus providing space-time
correlate for quantum criticality, the notion of number theoretic braid implied by the basic dynam-
ics of Kéhler action and crucial for precise construction of quantum TGD as almost-topological
QFT, the construction of WCW metric and spinor structure in terms of second quantized induced
spinor fields with modified Dirac action defined by Kahler action realizing the notion of finite
measurement resolution and a connection with inclusions of hyper-finite factors of type II; about
which Clifford algebra of WCW represents an example.

The two most important number theoretic conjectures relate to the preferred extremals of
Kahler action. The general idea is that classical dynamics for the preferred extremals of Kéahler
action should reduce to number theory: space-time surfaces should be either associative or co-
associative in some sense.

Associativity (co-associativity) would be that tangent (normal) spaces of space-time surfaces
associative (co-associative) in some sense and thus quaternionic (co-quaternionic). This can be
formulated in two manners.
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1. One can introduce octonionic tangent space basis by assigning to the ”free” gamma matri-
ces octonion basis or in terms of octonionic representation of the imbedding space gamma
matrices possible in dimension D = 8.

2. Associativity (quaternionicity) would state that the projections of octonionic basic vectors or
induced gamma matrices basis to the space-time surface generates associative (quaternionic)
sub-algebra at each space-time point. Co-associativity is defined in analogous manner and
can be expressed in terms of the components of second fundamental form.

3. For gamma matrix option induced rather than modified gamma matrices must be in question
since modified gamma matrices can span lower than 4-dimensional space and are not parallel
to the space-time surfaces as imbedding space vectors.

3. Infinite primes

The discovery of the hierarchy of infinite primes and their correspondence with a hierarchy
defined by a repeatedly second quantized arithmetic quantum field theory gave a further boost for
the speculations about TGD as a generalized number theory.

After the realization that infinite primes can be mapped to polynomials possibly representable
as surfaces geometrically, it was clear how TGD might be formulated as a generalized number theory
with infinite primes forming the bridge between classical and quantum such that real numbers,
p-adic numbers, and various generalizations of p-adics emerge dynamically from algebraic physics
as various completions of the algebraic extensions of rational (hyper-)quaternions and (hyper-
)Joctonions. Complete algebraic, topological and dimensional democracy would characterize the
theory.

What is especially interesting is that p-adic and real regions of the space-time surface might
aso emerge automatically as solutions of the field equations. In the space-time regions where
the solutions of field equations give rise to in-admissible complex values of the imbedding space
coordinates, p-adic solution can exist for some values of the p-adic prime. The characteristic non-
determinism of the p-adic differential equations suggests strongly that p-adic regions correspond to
‘mind stuff’, the regions of space-time where cognitive representations reside. This interpretation
implies that p-adic physics is physics of cognition. Since Nature is probably a brilliant simulator
of Nature, the natural idea is to study the p-adic physics of the cognitive representations to derive
information about the real physics. This view encouraged by TGD inspired theory of consciousness
clarifies difficult interpretational issues and provides a clear interpretation for the predictions of
p-adic physics.

1.1.6 Hierarchy of Planck constants and dark matter hierarchy

By quantum classical correspondence space-time sheets can be identified as quantum coherence
regions. Hence the fact that they have all possible size scales more or less unavoidably implies that
Planck constant must be quantized and have arbitrarily large values. If one accepts this then also
the idea about dark matter as a macroscopic quantum phase characterized by an arbitrarily large
value of Planck constant emerges naturally as does also the interpretation for the long ranged
classical electro-weak and color fields predicted by TGD. Rather seldom the evolution of ideas
follows simple linear logic, and this was the case also now. In any case, this vision represents the
fifth, relatively new thread in the evolution of TGD and the ideas involved are still evolving.

Dark matter as large h phases

D. Da Rocha and Laurent Nottale [E2] have proposed that Schrédinger equation with Planck
constant h replaced with what might be called gravitational Planck constant Ay, = G’ZZ)M (h=c=
1). wp is a velocity parameter having the value vy = 144.7 + .7 km/s giving vg/c = 4.6 x 107
This is rather near to the peak orbital velocity of stars in galactic halos. Also subharmonics and
harmonics of vy seem to appear. The support for the hypothesis coming from empirical data is
impressive.

Nottale and Da Rocha believe that their Schrodinger equation results from a fractal hydrody-
namics. Many-sheeted space-time however suggests that astrophysical systems are at some levels
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of the hierarchy of space-time sheets macroscopic quantum systems. The space-time sheets in
question would carry dark matter.

Nottale’s hypothesis would predict a gigantic value of hy.. Equivalence Principle and the
independence of gravitational Compton length on mass m implies however that one can restrict
the values of mass m to masses of microscopic objects so that hg, would be much smaller. Large
hgr could provide a solution of the black hole collapse (IR catastrophe) problem encountered at
the classical level. The resolution of the problem inspired by TGD inspired theory of living matter
is that it is the dark matter at larger space-time sheets which is quantum coherent in the required
time scale [K45] .

It is natural to assign the values of Planck constants postulated by Nottale to the space-time
sheets mediating gravitational interaction and identifiable as magnetic flux tubes (quanta) possibly
carrying monopole flux and identifiable as remnants of cosmic string phase of primordial cosmology.
The magnetic energy of these flux quanta would correspond to dark energy and magnetic tension
would give rise to negative ”pressure” forcing accelerate cosmological expansion. This leads to a
rather detailed vision about the evolution of stars and galaxies identified as bubbles of ordinary
and dark matter inside magnetic flux tubes identifiable as dark energy.

Hierarchy of Planck constants from the anomalies of neuroscience and biology

The quantal ELF effects of ELF em fields on vertebrate brain have been known since seventies.
ELF em fields at frequencies identifiable as cyclotron frequencies in magnetic field whose intensity
is about 2/5 times that of Earth for biologically important ions have physiological effects and
affect also behavior. What is intriguing that the effects are found only in vertebrates (to my best
knowledge). The energies for the photons of ELF em fields are extremely low - about 10719 times
lower than thermal energy at physiological temperatures- so that quantal effects are impossible
in the framework of standard quantum theory. The values of Planck constant would be in these
situations large but not gigantic.

This inspired the hypothesis that these photons correspond to so large a value of Planck constant
that the energy of photons is above the thermal energy. The proposed interpretation was as dark
photons and the general hypothesis was that dark matter corresponds to ordinary matter with non-
standard value of Planck constant. If only particles with the same value of Planck constant can
appear in the same vertex of Feynman diagram, the phases with different value of Planck constant
are dark relative to each other. The phase transitions changing Planck constant can however make
possible interactions between phases with different Planck constant but these interactions do not
manifest themselves in particle physics. Also the interactions mediated by classical fields should
be possible. Dark matter would not be so dark as we have used to believe.

The hypothesis hers = hgr - at least for microscopic particles - implies that cyclotron ener-
gies of charged particles do not depend on the mass of the particle and their spectrum is thus
universal although corresponding frequencies depend on mass. In bio-applications this spectrum
would correspond to the energy spectrum of bio-photons assumed to result from dark photons by
hets reducing phase transition and the energies of bio-photons would be in visible and UV range
associated with the excitations of bio-molecules.

Also the anomalies of biology (see for instance [K39, K40, K66]) support the view that dark
matter might be a key player in living matter.

Does the hierarchy of Planck constants reduce to the vacuum degeneracy of Kahler
action?

This starting point led gradually to the recent picture in which the hierarchy of Planck constants
is postulated to come as integer multiples of the standard value of Planck constant. Given integer
multiple i = nhg of the ordinary Planck constant fig is assigned with a multiple singular covering
of the imbedding space [K17]. One ends up to an identification of dark matter as phases with
non-standard value of Planck constant having geometric interpretation in terms of these coverings
providing generalized imbedding space with a book like structure with pages labelled by Planck
constants or integers characterizing Planck constant. The phase transitions changing the value of
Planck constant would correspond to leakage between different sectors of the extended imbedding
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space. The question is whether these coverings must be postulated separately or whether they are
only a convenient auxiliary tool.

The simplest option is that the hierarchy of coverings of imbedding space is only effective.
Many-sheeted coverings of the imbedding space indeed emerge naturally in TGD framework. The
huge vacuum degeneracy of Kéahler action implies that the relationship between gradients of the
imbedding space coordinates and canonical momentum currents is many-to-one: this was the very
fact forcing to give up all the standard quantization recipes and leading to the idea about physics
as geometry of the ”world of classical worlds”. If one allows space-time surfaces for which all sheets
corresponding to the same values of the canonical momentum currents are present, one obtains
effectively many-sheeted covering of the imbedding space and the contributions from sheets to the
Kahler action are identical. If all sheets are treated effectively as one and the same sheet, the value
of Planck constant is an integer multiple of the ordinary one. A natural boundary condition would
be that at the ends of space-time at future and past boundaries of causal diamond containing the
space-time surface, various branches co-incide. This would raise the ends of space-time surface in
special physical role.

A more precise formulation is in terms of presence of large number of space-time sheets con-
necting given space-like 3-surfaces at the opposite boundaries of causal diamond. Quantum criti-
cality presence of vanishing second variations of Kéahler action and identified in terms of conformal
invariance broken down to to sub-algebras of super-conformal algebras with conformal weights
divisible by integer n is highly suggestive notion and would imply that n sheets of the effective
covering are actually conformal equivalence classes of space-time sheets with same Kéahler action
and same values of conserved classical charges (see fig. http://www.tgdtheory.fi/appfigures/
planckhierarchy. jpg, which is also in the appendix of this book). n would naturally correspond
the value of h.yy and its factors negentropic entanglement with unit density matrix would be be-
tween the n sheets of two coverings of this kind. p-Adic prime would be largest prime power factor
of n.

Dark matter as a source of long ranged weak and color fields

Long ranged classical electro-weak and color gauge fields are unavoidable in TGD framework. The
smallness of the parity breaking effects in hadronic, nuclear, and atomic length scales does not
however seem to allow long ranged electro-weak gauge fields. The problem disappears if long
range classical electro-weak gauge fields are identified as space-time correlates for massless gauge
fields created by dark matter. Also scaled up variants of ordinary electro-weak particle spectra
are possible. The identification explains chiral selection in living matter and unbroken U(2)c,,
invariance and free color in bio length scales become characteristics of living matter and of bio-
chemistry and bio-nuclear physics.

The recent view about the solutions of Kéhler- Dirac action assumes that the modes have a
well-defined em charge and this implies that localization of the modes to 2-D surfaces (right-handed
neutrino is an exception). Classical W boson fields vanish at these surfaces and also classical Z°
field can vanish. The latter would guarantee the absence of large parity breaking effects above
intermediate boson scale scaling like heyy.

1.2 Bird’s eye of view about the topics of the book

The topics of this book are the purely geometric aspects of the vision about physics as an infinite-
dimensional Kéhler geometry of the ”world of classical worlds”, with ” classical world” identified
either as light-like 3-D surface of the unique Bohr orbit like 4-surface traversing through it. The
non-determinism of Kéhler action forces to generalize the notion of 3-surface so that unions of
space-like surfaces with time like separations must be allowed. Zero energy ontology allows to
formulate this picture elegantly in terms of causal diamonds defined as intersections of future and
past directed light-cones. Also a a geometric realization of coupling constant evolution and finite
measurement resolution emerges.
There are two separate tasks involved.

1. Provide configuration space of 3-surfaces with Ké&hler geometry which is consistent with 4-
dimensional general coordinate invariance so that the metric is Diff* degenerate. General
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coordinate invariance implies that the definition of metric must assign to a given light-like
3-surface X3 a 4-surface as a kind of Bohr orbit X*(X?3).

2. Provide the configuration space with a spinor structure. The great idea is to identify config-
uration space gamma matrices in terms of super algebra generators expressible using second
quantized fermionic oscillator operators for induced free spinor fields at the space-time sur-
face assignable to a given 3-surface. The isometry generators and contractions of Killing
vectors with gamma matrices would thus form a generalization of Super Kac-Moody algebra.

The condition of mathematical existence poses surprisingly strong conditions on configuration
space metric and spinor structure.

1. From the experience with loop spaces one can expect that there is no hope about existence of
well-defined Riemann connection unless this space is union of infinite-dimensional symmetric
spaces with constant curvature metric and simple considerations requires that vacuum Ein-
stein equations are satisfied by each component in the union. The coordinates labeling these
symmetric spaces are zero modes having interpretation as genuinely classical variables which
do not quantum fluctuate since they do not contribute to the line element of the configuration
space.

2. The construction of the Kédhler structure involves also the identification of complex structure.
Direct construction of Kahler function as action associated with a preferred Bohr orbit like ex-
tremal for some physically motivated action action leads to a unique result. Second approach
is group theoretical and is based on a direct guess of isometries of the infinite-dimensional
symmetric space formed by 3-surfaces with fixed values of zero modes. The group of isome-
tries is generalization of Kac-Moody group obtained by replacing finite-dimensional Lie group
with the group of symplectic transformations of (5Mj‘; x C' Py, where (5Mj‘; is the boundary of
4-dimensional future light-cone. A crucial role is played by the generalized conformal invari-
ance assignable to light-like 3-surfaces and to the boundaries of causal diamond. Contrary
to the original belief, the coset construction does not provide a realization of Equivalence
Principle at quantum level. The proper realization of EP at quantum level seems to be based
on the identification of classical Noether charges in Cartan algebra with the eigenvalues of
their quantum counterparts assignable to Kdhler-Dirac action. At classical level EP follows
at GRT limit obtained by lumping many-sheeted space-time to M* with effective metric
satisfying Einstein’s equations as a reflection of the underlying Poincare invariance.

3. Fermionic statistics and quantization of spinor fields can be realized in terms of configura-
tion space spinors structure. Quantum criticality and the idea about space-time surfaces as
analogs of Bohr orbits have served as basic guiding lines of Quantum TGD. These notions can
be formulated more precisely in terms of the modified Dirac equation for induced spinor fields
allowing also realization of super-conformal symmetries and quantum gravitational hologra-
phy. A rather detailed view about how configuration space Kahler function emerges as Dirac
determinant allowing a tentative identification of the preferred extremals of Kahler action
as surface for which second variation of Kahler action vanishes for some deformations of the
surface. The catastrophe theoretic analog for quantum critical space-time surfaces are the
points of space spanned by behavior and control variables at which the determinant defined
by the second derivatives of potential function with respect to behavior variables vanishes.
Number theoretic vision leads to rather detailed view about preferred extremals of Kéahler ac-
tion. In particular, preferred extremals should be what I have dubbed as hyper-quaternionic
surfaces. It it still an open question whether this characterization is equivalent with quantum
criticality or not.

1.3 Sources

The eight online books about TGD [K58, K42, K75, K49, K34, K74, K73, K48] and nine online
books about TGD inspired theory of consciousness and quantum biology [K53, K7, K38, K6, K21,
K25, K27, K47, K68] are warmly recommended for the reader willing to get overall view about
what is involved.
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My homepage (http://www.tgdtheory.com/curri.html) contains a lot of material about
TGD. In particular, there is summary about TGD and its applications using CMAP represen-
tation serving also as a TGD glossary [L13, L14] (see http://www.tgdtheory.fi/cmaphtml.html
and http://www.tgdtheory.fi/tgdglossary.pdf).

I have published articles about TGD and its applications to consciousness and living matter
in Journal of Non-Locality (http://journals.sfu.ca/jnonlocality/index.php/jnonlocality
founded by Lian Sidorov and in Prespacetime Journal (http://prespacetime.com), Journal of
Consciousness Research and FExploration (https://www.createspace.com/4185546), and DNA
Decipher Journal (http://dnadecipher.com), all of them founded by Huping Hu. One can find
the list about the articles published at http://www.tgdtheory.com/curri.html. I am grateful
for these far-sighted people for providing a communication channel, whose importance one cannot
overestimate.

1.4 The contents of the book

In the following abstracts of various chapters of the book are given in order to provide overall view.

1.4.1 Identification of the Configuration Space Kahler Function

There are two basic approaches to quantum TGD. The first approach, which is discussed in
this chapter, is a generalization of Einstein’s geometrization program of physics to an infinite-
dimensional context. Second approach is based on the identification of physics as a generalized
number theory. The first approach relies on the vision of quantum physics as infinite-dimensional
Kéhler geometry for the "world of classical worlds” (WCW) identified as the space of 3-surfaces
in in certain 8-dimensional space. There are three separate approaches to the challenge of con-
structing WCW Kahler geometry and spinor structure. The first approach relies on direct guess
of Kahler function. Second approach relies on the construction of Kéhler form and metric uti-
lizing the huge symmetries of the geometry needed to guarantee the mathematical existence of
Riemann connection. The third approach relies on the construction of spinor structure based on
the hypothesis that complexified WCW gamma matrices are representable as linear combinations
of fermionic oscillator operator for second quantized free spinor fields at space-time surface and on
the geometrization of super-conformal symmetries in terms of WCW spinor structure.

In this chapter the proposal for Kéhler function based on the requirement of 4-dimensional
General Coordinate Invariance implying that its definition must assign to a given 3-surface a unique
space-time surface. Quantum classical correspondence requires that this surface is a preferred
extremal of some some general coordinate invariant action, and so called Kahler action is a unique
candidate in this respect. The preferred extremal has intepretation as an analog of Bohr orbit
so that classical physics becomes and exact part of WCW geometry and therefore also quantum
physics.

The basic challenge is the explicit identification of WCW Kéhler function K. Two assumptions
lead to the identification of K as a sum of Chern-Simons type terms associated with the ends of
causal diamond and with the light-like wormhole throats at which the signature of the induced
metric changes. The first assumption is the weak form of electric magnetic duality. Second as-
sumption is that the Kéahler current for preferred extremals satisfies the condition jx A djg = 0
implying that the flow parameter of the flow lines of jx defines a global space-time coordinate.
This would mean that the vision about reduction to almost topological QFT would be realized.

Second challenge is the understanding of the space-time correlates of quantum criticality.
Electric-magnetic duality helps considerably here. The realization that the hierarchy of Planck
constant realized in terms of coverings of the imbedding space follows from basic quantum TGD
leads to a further understanding. The extreme non-linearity of canonical momentum densities as
functions of time derivatives of the imbedding space coordinates implies that the correspondence
between these two variables is not 1-1 so that it is natural to introduce coverings of CD x CP;.
This leads also to a precise geometric characterization of the criticality of the preferred extremals.
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1.4.2 Construction of Configuration Space Kahler Geometry from Sym-
metry Principles

There are three separate approaches to the challenge of constructing WCW Kéhler geometry and
spinor structure. The first one relies on a direct guess of Kéhler function. Second approach relies
on the construction of Kéahler form and metric utilizing the huge symmetries of the geometry
needed to guarantee the mathematical existence of Riemann connection. The third approach relies
on the construction of spinor structure assuming that complexified WCW gamma matrices are
representable as linear combinations of fermionic oscillator operator for the second quantized free
spinor fields at space-time surface and on the geometrization of super-conformal symmetries in
terms of spinor structure.

In this chapter the construction of Kéahler form and metric based on symmetries is discussed.
The basic vision is that WCW can be regarded as the space of generalized Feynman diagrams with
lines thickned to light-like 3-surfaces and vertices identified as partonic 2-surfaces. In zero energy
ontology the strong form of General Coordinate Invariance (GCI) implies effective 2-dimensionality
and the basic objects are taken to be pairs partonic 2-surfaces X? at opposite light-like boundaries
of causal diamonds (C'Ds). This has turned out to be too strong formulation for effective 2-
dimensionality.

The hypothesis is that WCW can be regarded as a union of infinite-dimensional symmetric
spaces G/ H labeled by zero modes having an interpretation as classical, non-quantum fluctuating
variables. A crucial role is played by the metric 2-dimensionality of the light-cone boundary 5Mfi
and of light-like 3-surfaces implying a generalization of conformal invariance. The group G acting as
isometries of WCW is tentatively identified as the symplectic group of (5Mi x C'P,. H corresponds
to sub-group acting as diffeomorphisms at preferred 3-surface, which can be taken to correspond
to maximum of Kéahler function.

An explicit construction for the Hamiltonians of WCW isometry algebra as so called flux
Hamiltonians using Haltonians of light-cone boundary is proposed and also the elements of Kéhler
form can be constructed in terms of these. Explicit expressions for WCW flux Hamiltonians as
functionals of complex coordinates of the Cartesian product of the infinite-dimensional symmetric
spaces having as points the partonic 2-surfaces defining the ends of the the light 3-surface (line of
generalized Feynman diagram) are proposed.

This construction suffers from some rather obvious defects. Effective 2-dimensionality is real-
ized in too strong sense, only covariantly constant right-handed neutrino is involved, and WCW
Hamiltonians do not directly reflect the dynamics of Kahler action. The construction however
generalizes in very straightforward manner to a construction free of these problems. This however
requires understanding of the dynamics of preferred extremals and modified Dirac action.

1.4.3 Configuration space spinor structure

There are three separate approaches to the challenge of constructing WCW Kahler geometry
and spinor structure. The first approach relies on a direct guess of Kéhler function. Second
approach relies on the construction of Kahler form and metric utilizing the huge symmetries of
the geometry needed to guarantee the mathematical existence of Riemann connection. The third
approach discussed in this chapter relies on the construction of spinor structure based on the
hypothesis that complexified WCW gamma matrices are representable as linear combinations of
fermionic oscillator operator for the second quantized free spinor fields at space-time surface and
on the geometrization of super-conformal symmetries in terms of spinor structure. This implies a
geometrization of fermionic statistics.

The basic philosophy is that at fundamental level the construction of WCW geometry reduces to
the second quantization of the induced spinor fields using Dirac action. This assumption is parallel
with the bosonic emergence stating that all gauge bosons are pairs of fermion and antifermion
at opposite throats of wormhole contact. An attractive conjecture is that vacuum functional
corresponds to Dirac determinant and that it reduces to the exponent of Kéhler function. In order
to achieve internal consistency the induced gamma matrices appearing in Dirac operator must be
replaced by the modified gamma matrices defined uniquely by Kéhler action and one must also
assume that extremals of Kahler action are in question so that the classical space-time dynamics
reduces to a consistency condition. This implies also super-symmetries and the fermionic oscillator
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algebra at partonic 2-surfaces has intepretation as N' = co generalization of space-time super-
symmetry algebra different however from standard SUSY algebra in that Majorana spinors are not
needed. This algebra serves as a building brick of various super-conformal algebras involved.

The requirement that there exist deformations giving rise to conserved Noether charges requires
that the preferred extremals are critical in the sense that the second variation of the Kéhler action
vanishes for these deformations. Thus Bohr orbit property could correspond to criticality or at
least involve it.

Quantum classical correspondence demands that quantum numbers are coded to the properties
of the preferred extremals given by the Dirac determinant and this requires a linear coupling to the
conserved quantum charges in Cartan algebra. Effective 2-dimensionality allows a measurement
interaction term only in 3-D Chern-Simons Dirac action assignable to the wormhole throats and
the ends of the space-time surfaces at the boundaries of C'D. This allows also to have physical
propagators reducing to Dirac propagator not possible without the measurement interaction term.
An essential point is that the measurement interaction corresponds formally to a gauge transfor-
mation for the induced Kahler gauge potential. If one accepts the weak form of electric-magnetic
duality Kahler function reduces to a generalized Chern-Simons term and the effect of measurement
interaction term to Kéhler function reduces effectively to the same gauge transformation.

The basic vision is that WCW gamma matrices are expressible as super-symplectic charges at
the boundaries of C'D. The basic building brick of WCW is the product of infinite-D symmetric
spaces assignable to the ends of the propagator line of the generalized Feynman diagram. WCW
Kahler metric has in this case "kinetic” parts associated with the ends and ”interaction” part
between the ends. General expressions for the super-counterparts of WCW flux Hamiltoniansand
for the matrix elements of WCW metric in terms of their anticommutators are proposed on basis
of this picture.

1.4.4 Does modified Dirac action define the fundamental action princi-
ple?

The construction of the spinor structure for the world of classical worlds (WCW) leads to the
vision that second quantized modified Dirac equation codes for the entire quantum TGD. Among
other things this would mean that Dirac determinant would define the vacuum functional of the
theory having interpretation as the exponent of Kéhler function of WCW and Kéhler function
would reduce to Kéahler action for a preferred extremal of Kéhler action. In this chapter the recent
view about the modified Dirac action are explained in more detail.

1. Identification of the modified Dirac action

The most general form of the modified Dirac action action involves several terms. The first
one is 4-dimensional assignable to Kéhler action. Second term is instanton term reducible to an
expression restricted to wormhole throats or any light-like 3-surfaces parallel to them in the slicing
of space-time surface by light-like 3-surfaces. The third term is assignable to Chern-Simons term
and has interpretation as a measurement interaction term linear in Cartan algebra of the isometry
group of the imbedding space in order to obtain stringy propagators and also to realize coupling
between the quantum numbers associated with super-conformal representations and space-time
geometry required by quantum classical correspondence.

This means that 3-D light-like wormhole throats carry induced spinor field which can be re-
garded as independent degrees of freedom having the spinor fields at partonic 2-surfaces as sources
and acting as 3-D sources for the 4-D induced spinor field. The most general measurement in-
teraction would involve the corresponding coupling also for Kahler action but is not physically
motivated. There are good arguments in favor of Chern-Simons Dirac action and corresponding
measurement interaction.

1. A correlation between 4-D geometry of space-time sheet and quantum numbers is achieved
by the identification of exponent of Kéhler function as Dirac determinant making possible the
entanglement of classical degrees of freedom in the interior of space-time sheet with quantum
numbers.

2. Cartan algebra plays a key role not only at quantum level but also at the level of space-time
geometry since quantum critical conserved currents vanish for Cartan algebra of isometries
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and the measurement interaction terms giving rise to conserved currents are possible only
for Cartan algebras. Furthermore, modified Dirac equation makes sense only for eigen states
of Cartan algebra generators. The hierarchy of Planck constants realized in terms of the
book like structure of the generalized imbedding space assigns to each C'D (causal diamond)
preferred Cartan algebra: in case of Poincare algebra there are two of them corresponding
to linear and cylindrical M* coordinates.

3. Quantum holography and dimensional reduction hierarchy in which partonic 2-surface defined
fermionic sources for 3-D fermionic fields at light-like 3-surfaces Y;? in turn defining fermionic
sources for 4-D spinors find an elegant realization. Effective 2-dimensionality is achieved
if the replacement of light-like wormhole throat X7 with light-like 3-surface Y;* ”parallel”
with it in the definition of Dirac determinant corresponds to the U(1) gauge transformation
K — K + f + f for Kihler function of WCW so that WCW Kihler metric is not affected.
Here f is holomorphic function of WCW (”world of classical worlds”) complex coordinates
and arbitrary function of zero mode coordinates.

4. An elegant description of the interaction between super-conformal representations realized at
partonic 2-surfaces and dynamics of space-time surfaces is achieved since the values of Cartan
charges are feeded to the 3-D Dirac equation which also receives mass term at the same time.
Almost topological QFT at wormhole throats results at the limit when four-momenta vanish:
this is in accordance with the original vision about TGD as almost topological QFT.

5. A detailed view about the physical role of quantum criticality results. Quantum criticality
fixes the values of Kéahler coupling strength as the analog of critical temperature. Quantum
criticality implies that second variation of Kéhler action vanishes for critical deformations
and the existence of conserved current except in the case of Cartan algebra of isometries.
Quantum criticality allows to fix the values of couplings appearing in the measurement in-
teraction by using the condition K — K + f + f. p-Adic coupling constant evolution can be
understood also and corresponds to scale hierarchy for the sizes of causal diamonds (CDs).

6. The inclusion of imaginary instanton term to the definition of the modified gamma matrices is
not consistent with the conjugation of the induced spinor fields. Measurement interaction can
be however assigned to both Kéhler action and its instanton term. CP breaking, irreversibility
and the space-time description of dissipation are closely related and the CP and T oddness of
the instanton part of the measurement interaction term could provide first level description
for dissipative effects. It must be however emphasized that the mere addition of instanton
term to Kéahler function could be enough.

7. A radically new view about matter antimatter asymmetry based on zero energy ontology
emerges and one could understand the experimental absence of antimatter as being due to
the fact antimatter corresponds to negative energy states. The identification of bosons as
wormhole contacts is the only possible option in this framework.

8. Almost stringy propagators and a consistency with the identification of wormhole throats as
lines of generalized Feynman diagrams is achieved. The notion of bosonic emergence leads
to a long sought general master formula for the M-matrix elements. The counterpart for
fermionic loop defining bosonic inverse propagator at QFT limit is wormhole contact with
fermion and cutoffs in mass squared and hyperbolic angle for loop momenta of fermion and
antifermion in the rest system of emitting boson have precise geometric counterpart.

2. The exponent of Kdhler function as Dirac determinant for the modified Dirac action

Although quantum criticality in principle predicts the possible values of Kéhler coupling strength,
one might hope that there exists even more fundamental approach involving no coupling constants
and predicting even quantum criticality and realizing quantum gravitational holography.

1. The Dirac determinant defined by the product of Dirac determinants associated with the
light-like partonic 3-surfaces X associated with a given space-time sheet X* is the simplest
candidate for vacuum functional identifiable as the exponent of the Kéahler function. Individ-
ual Dirac determinant is defined as the product of eigenvalues of the dimensionally reduced



1.4. The contents of the book 19

modified Dirac operator D 3 and there are good arguments suggesting that the number of
eigenvalues is finite. p-Adicization requires that the eigenvalues belong to a given algebraic
extension of rationals. This restriction would imply a hierarchy of physics corresponding
to different extensions and could automatically imply the finiteness and algebraic number
property of the Dirac determinants if only finite number of eigenvalues would contribute.
The regularization would be performed by physics itself if this were the case.

2. It remains to be proven that the product of eigenvalues gives rise to the exponent of Kahler
action for the preferred extremal of Kéhler action. At this moment the only justification for
the conjecture is that this the only thing that one can imagine.

3. A long-standing conjecture has been that the zeros of Riemann Zeta are somehow relevant for
quantum TGD. Rieman zeta is however naturally replaced Dirac zeta defined by the eigen-
values of D 3 and closely related to Riemann Zeta since the spectrum consists essentially for
the cyclotron energy spectra for localized solutions region of non-vanishing induced Kéahler
magnetic field and hence is in good approximation integer valued up to some cutoff integer.
In zero energy ontology the Dirac zeta function associated with these eigenvalues defines
”square root” of thermodynamics assuming that the energy levels of the system in question
are expressible as logarithms of the eigenvalues of the modified Dirac operator defining kind
of fundamental constants. Critical points correspond to approximate zeros of Dirac zeta and
if Kahler function vanishes at criticality as it indeed should, the thermal energies at critical
points are in first order approximation proportional to zeros themselves so that a connection
between quantum criticality and approximate zeros of Dirac zeta emerges.

4. The discretization induced by the number theoretic braids reduces the world of classical
worlds to effectively finite-dimensional space and configuration space Clifford algebra re-
duces to a finite-dimensional algebra. The interpretation is in terms of finite measurement
resolution represented in terms of Jones inclusion M C A of HFFs with M taking the role
of complex numbers. The finite-D quantum Clifford algebra spanned by fermionic oscillator
operators is identified as a representation for the coset space N'/M describing physical states
modulo measurement resolution. In the sectors of generalized imbedding space corresponding
to non-standard values of Planck constant quantum version of Clifford algebra is in question.

1.4.5 The recent vision about preferred extremals and solutions of the
modified Dirac equation

During years several approaches to what preferred extremals of K&hler action and solutions of the
modified Dirac equation could be have been proposed and the challenge is to see whether at least
some of these approaches are consistent with each other. It is good to list various approaches first.

1. For preferred extremals generalization of conformal invariance to 4-D situation is very at-
tractive approach and leads to concrete conditions formally similar to those encountered in
string model. The approach based on basic heuristics for massless equations, on effective 3-
dimensionality, and weak form of electric magnetic duality is also promising. An alternative
approach is inspired by number theoretical considerations and identifies space-time surfaces
as associative or co-associative sub-manifolds of octonionic imbedding space.

2. There are also several approaches for solving the modified Dirac equation. The most promis-
ing approach is assumes that other than right-handed neutrino modes are restricted on 2-D
stringy world sheets and/or partonic 2-surfaces. This strange looking view is a rather nat-
ural consequence of number theoretic vision. The conditions stating that electric charge is
conserved for preferred extremals is an alternative very promising approach.

In this chapter the question whether these various approaches are mutually consistent is dis-
cussed. It indeed turns out that the approach based on the conservation of electric charge leads
under rather general assumptions to the proposal that solutions of the modified Dirac equation are
localized on 2-dimensional string world sheets and/or partonic 2-surfaces. Einstein’s equations are
satisfied for the preferred extremals and this implies that the earlier proposal for the realization of
Equivalence Principle is not needed. This leads to a considerable progress in the understanding of
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super Virasoro representations for super-symplectic and super-Kac-Moody algebra. In particular,
the proposal is that super-Kac-Moody currents assignable to string world sheets define duals of
gauge potentials and their generalization for gravitons: in the approximation that gauge group is
Abelian - motivated by the notion of finite measurement resolution - the exponents for the sum
of KM charges would define non-integrable phase factors. One can also identify Yangian as the
algebra generated by these charges. The approach allows also to understand the special role of the
right handed neutrino in SUSY according to TGD.

1.4.6 Recent View about Kahler Geometry and Spin Structure of ” World
of Classical Worlds”

The construction of Kahler geometry of WCW ("world of classical worlds”) is fundamental to
TGD program. I ended up with the idea about physics as WCW geometry around 1985 and made
a breakthrough around 1990, when I realized that Kahler function for WCW could correspond
to Kahler action for its preferred extremals defining the analogs of Bohr orbits so that classical
theory with Bohr rules would become an exact part of quantum theory and path integral would be
replaced with genuine integral over WCW. The motivating construction was that for loop spaces
leading to a unique Kahler geometry. The geometry for the space of 3-D objects is even more
complex than that for loops and the vision still is that the geometry of WCW is unique from the
mere existence of Riemann connection.

This chapter represents the updated version of the construction providing a solution to the
problems of the previous construction. The basic formulas remain as such but the expressions for
WCW super-Hamiltonians defining WCW Hamiltonians (and matrix elements of WCW metric) as
their anticommutator are replaced with those following from the dynamics of the modified Dirac
action.

1.4.7 Unified Number Theoretical Vision

An updated view about M8 —H duality is discussed. M®— H duality allows to deduce M*x CP; via
number theoretical compactification. One important correction is that octonionic spinor structure
makes sense only for M?® whereas for M* x C'P, complefixied quaternions characterized the spinor
structure.

Octonions, quaternions, quaternionic space-time surfaces, octonionic spinors and twistors and
twistor spaces are highly relevant for quantum TGD. In the following some general observations
distilled during years are summarized.

There is a beautiful pattern present suggesting that H = M* x CP, is completely unique on
number theoretical grounds. Consider only the following facts. M* and C'P, are the unique 4-D
spaces allowing twistor space with Kahler structure. Octonionic projective space OP, appears
as octonionic twistor space (there are no higher-dimensional octonionic projective spaces). Oc-
totwistors generalise the twistorial construction from M?* to M® and octonionic gamma matrices
make sense also for H with quaternionicity condition reducing OP; to to 12-D G2/U(1) x U(1)
having same dimension as the the twistor space CP; x SU(3)/U(1) x U(1) of H assignable to
complexified quaternionic representation of gamma matrices.

A further fascinating structure related to octo-twistors is the non-associated analog of Lie group
defined by automorphisms by octonionic imaginary units: this group is topologically six-sphere.
Also the analogy of quaternionicity of preferred extremals in TGD with the Majorana condition
central in super string models is very thought provoking. All this suggests that associativity indeed
could define basic dynamical principle of TGD.

Number theoretical vision about quantum TGD involves both p-adic number fields and clas-
sical number fields and the challenge is to unify these approaches. The challenge is non-trivial
since the p-adic variants of quaternions and octonions are not number fields without additional
conditions. The key idea is that TGD reduces to the representations of Galois group of algebraic
numbers realized in the spaces of octonionic and quaternionic adeles generalizing the ordinary ade-
les as Cartesian products of all number fields: this picture relates closely to Langlands program.
Associativity would force sub-algebras of the octonionic adeles defining 4-D surfaces in the space
of octonionic adeles so that 4-D space-time would emerge naturally. M® — H correspondence in
turn would map the space-time surface in M® to M* x CP.



1.4. The contents of the book 21

1.4.8 Knots and TGD

Khovanov homology generalizes the Jones polynomial as knot invariant. The challenge is to find
a quantum physical construction of Khovanov homology analous to the topological QFT defined
by Chern-Simons action allowing to interpret Jones polynomial as vacuum expectation value of
Wilson loop in non-Abelian gauge theory.

Witten’s approach to Khovanov homology relies on fivebranes as is natural if one tries to define
2-knot invariants in terms of their cobordisms involving violent un-knottings. Despite the difference
in approaches it is very useful to try to find the counterparts of this approach in quantum TGD
since this would allow to gain new insights to quantum TGD itself as almost topological QFT
identified as symplectic theory for 2-knots, braids and braid cobordisms. This comparison turns
out to be extremely useful from TGD point of view.

1. A highly unique identification of string world sheets and therefore also of the braids whose
ends carry quantum numbers of many particle states at partonic 2-surfaces emerges if one
identifies the string word sheets as singular surfaces in the same manner as is done in Witten’s
approach. This identification need of course not be correct and later in the article a less ad
hoc identification is proposed. Even more, the conjectured slicings of preferred extremals by
3-D surfaces and string world sheets central for quantum TGD can be identified uniquely if
the identification is accepted. The slicing by 3-surfaces would be interpreted in gauge theory
in terms of Higgs= constant surfaces with radial coordinate of C'P; playing the role of Higgs.
The slicing by string world sheets would be induced by different choices of U(2) subgroup of
SU(3) leaving Higgs=constant surfaces invariant.

2. Also a physical interpretation of the operators Q, F, and P of Khovanov homology emerges.
P would correspond to instanton number and F to the fermion number assignable to right
handed neutrinos. The breaking of M* chiral invariance makes possible to realize Q physi-
cally. The finding that the generalizations of Wilson loops can be identified in terms of the
gerbe fluxes [ H4J supports the conjecture that TGD as almost topological QFT corresponds
essentially to a symplectic theory for braids and 2-knots.

The basic challenge of quantum TGD is to give a precise content to the notion of generalization
Feynman diagram and the reduction to braids of some kind is very attractive possibility inspired
by zero energy ontology. The point is that no n > 2-vertices at the level of braid strands are
needed if bosonic emergence holds true.

1. For this purpose the notion of algebraic knot is introduce and the possibility that it could
be applied to generalized Feynman diagrams is discussed. The algebraic structrures kei,
quandle, rack, and biquandle and their algebraic modifications as such are not enough. The
lines of Feynman graphs are replaced by braids and in vertices braid strands redistribute.
This poses several challenges: the crossing associated with braiding and crossing occurring
in non-planar Feynman diagrams should be integrated to a more general notion; braids are
replaced with sub-manifold braids; braids of braids ....of braids are possible; the redistribution
of braid strands in vertices should be algebraized. In the following I try to abstract the basic
operations which should be algebraized in the case of generalized Feynman diagrams.

2. One should be also able to concretely identify braids and 2-braids (string world sheets) as
well as partonic 2-surfaces and I have discussed several identifications during last years.
Legendrian braids turn out to be very natural candidates for braids and their duals for
the partonic 2-surfaces. String world sheets in turn could correspond to the analogs of
Lagrangian sub-manifolds or two minimal surfaces of space-time surface satisfying the weak
form of electric-magnetic duality. The latter opion turns out to be more plausible. This
identification - if correct - would solve quantum TGD explicitly at string world sheet level
which corresponds to finite measurement resolution.

3. Also a brief summary of generalized Feynman rules in zero energy ontology is proposed. This
requires the identification of vertices, propagators, and prescription for integrating over al
3-surfaces. It turns out that the basic building blocks of generalized Feynman diagrams are
well-defined.
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4. The notion of generalized Feynman diagram leads to a beautiful duality between the descrip-
tions of hadronic reactions in terms of hadrons and partons analogous to gauge-gravity duality
and AdS/CFT duality but requiring no additional assumptions. The model of quark gluon
plasma as s strongly interacting phase is proposed. Color magnetic flux tubes are responsible
for the long range correlations making the plasma phase more like a very large hadron rather
than a gas of partons. One also ends up with a simple estimate for the viscosity/entropy
ratio using black-hole analogy.

1.4.9 Ideas emerging fromTGD

I have gathered to this chapter those ideas related to quantum TGD which are not absolutely
central and whose status is not clear in the long run. I have represented earlier these ideas in
chapters and the outcome was a total chaos and reader did not have a slightest idea what is they
real message. I hope that this organization of material makes it easier for the reader to grasp the
topology of TGD correctly.



Chapter 2

Identification of the Configuration
Space Kahler Function

2.1 Introduction

The motivation or the construction of configuration space (”world of classical worlds” (WCW))geometry
is the postulate that physics reduces to the geometry of classical spinor fields in the the ”world

of the classical worlds” (WCW) identified as the infinite-dimensional WCW of 3-surfaces of some
subspace of M* x C'P,. The first candidates were Mi x CPy and M* x CP,, where M* and Mi
denote Minkowski space and its light cone respectively. The recent identification of WCW is as

the the union of sub-WCWs consisting of light-like 3-surface representing generalized Feynman
diagrams in CD x CP,, where CD is intersection of future and past directed light-cones of M*.
The details of this identification will be discussed later.

Hermitian conjugation is the basic operation in quantum theory and its geometrization requires
that WCW possesses Kahler geometry. One of the basic features of the Kéhler geometry is that it
is solely determined by the so called

Kahler function, which defines both the Kahler form J and the components of the Kahler metric
g in complex coordinates via the formulas [A59]

100K d2" A dZ'

ds? 20,0;KdzFdz" (2.1.1)

Kahler form is covariantly constant two-form and can be regarded as a representation of imaginary
unit in the tangent space of the WCW

T = —g (2.1.2)

As a consequence Kahler form defines also symplectic structure in WCW.

2.1.1 WCW Kahler metric from Kahler function

The task of finding Kéahler geometry for the WCW reduces to that of finding the Kéahler function.
The main constraints on the Kéahler function result from the requirement of General Coordinate
Invariance (GCI) -or more technically Diff* symmetry and Diff degeneracy. GCI requires that
the definition of the Kihler function assigns to a given 3-surface X? a unique space-time surface
X4(X3), the generalized Bohr orbit defining the classical physics associated with X 3. The natural
guess inspired by quantum classical correspondence is that Kéhler function is defined by what
might be called Kéahler action, which is essentially Maxwell action with Maxwell field expressible
in terms of C' P, coordinates and that the space-time surface corresponds to a preferred extremal
of Kéahler action.

23
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One can end up with the identification of the preferred extremal via several routes. Kéhler
action contains Kéhler coupling strength as a temperature like parameter and this leads to the
idea of quantum criticality fixing this parameter. One could go even even further, and require
that space-time surfaces are critical in the sense that there exist an infinite number of vanishing
second variations of Kéahler action defining conserved Noether charges. The approach based on
the modified Dirac action (or Kéhler-Dirac action) indeed leads naturally to this picture [K18] .
Kahler coupling strength should be however visible in the solutions of field equations somehow
before one can say that these two criticalities have something to do with each other. Since Kéahler
coupling strength does not appear in field equations it can make its way to field equations only
via boundary conditions. This is achieved if one accepts the weak form of self-duality discussed
in [K10] which roughly states that for the partonic 2-surfaces the induced Kéhler electric field is
proportional to the Kahler magnetic field strength. The proportionality constant turns out to be
essentially the Kéhler coupling strength. The simplest hypothesis is that Kahler coupling strength
has single universal value for given value of Planck constant and the weak form of self-duality fixes
it.

If Kihler action would define a strictly deterministic variational principle, Diff* degeneracy and
invariance would be achieved by restricting the consideration to 3-surfaces Y at the boundary of
M and by defining Kéhler function for 3-surfaces X? at X*(Y®) and diffeo-related to Y as
K(X3) = K(Y?3). This reduction might be called quantum gravitational holography. The classical
non-determinism of the Kahler action introduces complications which might be overcome in zero
energy ontology (ZEO). ZEO and strong from of GCI lead to the effective replacement of X3 with
partonic 2-surfaces at the ends of C'D plus the 4-D tangent space distribution associated with them
as basic geometric objects so that one can speak about effective 2-dimensionality and strong form
of gravitational holography. In given resolution the effects of non-determinism might be expressible
in terms dark matter hierarchy with levels characterized by hefs = n x h. The hierarchy would
correspond to a hierarchy of sub-algebras of conformal algebra with conformal weights coming as
multiples of n serving acting as gauge symmetries and defining what deformations at quantum
critacility are.

2.1.2 WCW metric from symmetries

A complementary approach to the problem of constructing configuration space geometry is based
on symmetries. The work of Dan [A37] [A37] has demonstrated that the K&hler geometry of
loop spaces is unique from the existence of Riemann connection and fixed completely by the
Kac Moody symmetries of the space. In 3-dimensional context one has even better reasons to
expect uniqueness. The guess is that WCW is a union symmetric spaces labeled by zero modes
not appearing in the line element as differentials and having interpretations as classical degrees
providing a rigorous formulation of quantum measurement theory. The generalized conformal
invariance of metrically 2-dimensional light like 3-surfaces acting as causal determinants is the
corner stone of the construction. The construction works only for 4-dimensional space-time and
imbedding space which is a product of four-dimensional Minkowski space or its future light cone
with CPs.

In the sequel I will first consider the basic properties of the WCW, propose an identification
of the Kéahler function and discuss various physical and mathematical motivations behind the
proposed definition. The key feature of the Kéahler action is the failure of classical determinism in
its standard form, and various implications of the failure are discussed.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
There are concept maps about topics related to the contents of the chapter prepared using CMAP
realized as html files. Links to all CMAP files can be found at http://www.tgdtheory.fi/
cmaphtml.html [L13]. Pdf representation of same files serving as a kind of glossary can be found
at http://www.tgdtheory.fi/tgdglossary.pdf [L14]. The topics relevant to this chapter are
given by the following list.

e General Coordinate Invariance [L19]
e Weak form of electric-magnetic duality [L43]
o Geometry of WCW [L20]
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e Structure of WCW [L33]
e Symmetries of WCW [L34]

e Vacuum functional in TGD [L40]

2.2 WCW

The view about configuration space (”world of classical worlds”, WCW) has developed considerably
during the last two decades. Here only the recent view is summarized in order to not load reader
with unessential details.

2.2.1 Basic notions

The notions of imbedding space, 3-surface (and 4-surface), and WCW or ”world of classical worlds”
(WCW), are central to quantum TGD. The original idea was that 3-surfaces are space-like 3-
surfaces of H = M* x CP, or H = M} x CP; (see figs. http://www.tgdtheory.fi/appfigures/

Hoo. jpg, http://www.tgdtheory.fi/appfigures/cp2. jpg, http://www.tgdtheory.fi/appfigures/
Hoo.futurepast,http://www.tgdtheory.fi/appfigures/penrose. jpg, which are also in the ap-
pendix of this book), and WCW consists of all possible 3-surfaces in H. The basic idea was that

the definition of Kéhler metric of WCW assigns to each X3 a unique space-time surface X*4(X3)
allowing in this manner to realize GCI. During years these notions have however evolved consider-

ably.

The notion of imbedding space

Two generalizations of the notion of imbedding space were forced by number theoretical vision
[K51, K52, K50] .

1. p-Adicization forced to generalize the notion of imbedding space by gluing real and p-adic
variants of imbedding space together along rationals and common algebraic numbers. The
generalized imbedding space has a book like structure with reals and various p-adic number
fields (including their algebraic extensions) representing the pages of the book. As matter
fact, this gluing idea generalizes to the level of WCW.

2. With the discovery of zero energy ontology [K9, K13] it became clear that the so called causal
diamonds (CDs) interpreted as intersections M} NM? of future and past directed light-cones
of M* x CP, define correlates for the quantum states. The position of the "lower” tip of CD
characterizes the position of CD in H. If the temporal distance between upper and lower tip
of CD is quantized power of 2 multiples of C'P; length, p-adic length scale hypothesis [K3]
follows as a consequence. The upper resp. lower light-like boundary (5Mj4r x C'Py resp.
dM?* x C'P, of CD can be regarded as the carrier of positive resp. negative energy part of the
state. All net quantum numbers of states vanish so that everything is creatable from vacuum.
Space-time surfaces assignable to zero energy states would would reside inside CD x C Pss
and have their 3-D ends at the light-like boundaries of C'D x C'P». Fractal structure is present
in the sense that CDs can contains CDs within CDs, and measurement resolution dictates
the length scale below which the sub-CDs are not visible.

3. The realization of the hierarchy of Planck constants [K17] led to a further generalization of
the notion of imbedding space. Generalized imbedding space is obtained by gluing together
Cartesian products of singular coverings and possibly also factor spaces of CD and CP; to
form a book like structure. There are good physical and mathematical arguments suggesting
that only the singular coverings should be allowed [K50] . The particles at different pages of
this book behave like dark matter relative to each other. This generalization also brings in
the geometric correlate for the selection of quantization axes in the sense that the geometry
of the sectors of the generalized imbedding space with non-standard value of Planck constant
involves symmetry breaking reducing the isometries to Cartan subalgebra. Roughly speaking,
each CD and CP; is replaced with a union of CDs and C Pss corresponding to different choices
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of quantization axes so that no breaking of Poincare and color symmetries occurs at the level
of entire WCW.

The notions of 3-surface and space-time surface

The question what one exactly means with 3-surface turned out to be non-trivial and the receont
view is an outcome of a long and tedious process involving many hastily done mis-interpretations.

1. The original identification of 3-surfaces was as arbitrary space-like 3-surfaces subject to equiv-
alence implied by GCI. There was a problem related to the realization of GCI since it was
not at all obvious why the preferred extremal X4(Y?) for Y2 at X*(X3) and Diff* related
X3 should satisfy X4(Y3) = X4(X3) .

2. Much later it became clear that light-like 3-surfaces have unique properties for serving as
basic dynamical objects, in particular for realizing the GCI in 4-D sense (obviously the identi-
fication resolves the above mentioned problem) and understanding the conformal symmetries
of the theory. Light-like 3-surfaces can be regarded as orbits of partonic 2-surfaces. Therefore
it seems that one must choose between light-like and space-like 3-surfaces or assume general-
ized GCI requiring that equivalently either space-like 3-surfaces or light-like 3-surfaces at the
ends of CDs can be identified as the fundamental geometric objects. General GCI requires
that the basic objects correspond to the partonic 2-surfaces identified as intersections of these
3-surfaces plus common 4-D tangent space distribution.

At the level of WCW metric this suggests that the components of the Kéhler form and metric
can be expressed in terms of data assignable to 2-D partonic surfaces. Since the information
about normal space of the 2-surface is needed one has only effective 2-dimensionality. Weak
form of self-duality [K10] however implies that the normal data (flux Hamiltonians associ-
ated with Kéahler electric field) reduces to magnetic flux Hamiltonians. This is essential for
conformal symmetries and also simplifies the construction enormously.

It however turned out that this picture is too simplistic. It turned out that the solutions
of the modified Dirac equation are localized at 2-D string world sheets, and this led to a
generalization of the formulation of WCW geometry: given point of partonic 2-surface is
effectively replaced with a string emanating from it and connecting it to another partonic
2-surface. Hence the formulation becomes 3-dimensional but thanks to super-conformal sym-
metries acting like gauge symmetries one obtains effective 2-dimensionality albeit in weaker
sense [K80].

3. At some stage came the realization that light-like 3-surfaces can have singular topology in the
sense that they are analogous to Feynman diagrams. This means that the light-like 3-surfaces
representing lines of Feynman diagram can be glued along their 2-D ends playing the role
of vertices to form what I call generalized Feynman diagrams. The ends of lines are located
at boundaries of sub-CDs. This brings in also a hierarchy of time scales: the increase of the
measurement resolution means introduction of sub-CDs containing sub-Feynman diagrams.
As the resolution is improved, new sub-Feynman diagrams emerge so that effective 2-D
character holds true in discretized sense and in given resolution scale only.

4. A further but inessential complication relates to the hierarchy of Planck constants forcing to
generalize the notion of imbedding space and also to the fact that for non-standard values
of Planck constant there is symmetry breaking due to preferred plane M? preferred homo-
logically trivial geodesic sphere of C' P, having interpretation as geometric correlate for the
selection of quantization axis. For given sector of C'H this means union over choices of this
kind.

The basic vision forced by the generalization of GCI has been that space-time surfaces cor-
respond to preferred extremals X*(X?3) of Kihler action and are thus analogous to Bohr orbits.
Kihler function K (X?3) defining the Kéhler geometry of the world of classical worlds would corre-
spond to the Kahler action for the preferred extremal. The precise identification of the preferred
extremals actually has however remained open.
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The study of the modified Dirac equation led to the realization that classical field equations
for Kahler action can be seen as consistency conditions for the modified Dirac action and led to
the identification of preferred extremals in terms of criticality. This identification which follows
naturally also from quantum criticality.

1. The condition that electromagnetic charge is well-defined for the modes of Ké&hler-Dirac
operator implies that in the generic case the modes are restricted to 2-D surfaces (string
world sheets or possibly also partonic 2-surfaces) with vanishing W fields [K69]. Above weak
scale at least one can also assume that Z° field vanishes. Also for space-time surfaces with
2-D CP, projection (cosmic strongs would be examples) the localization is expected to be
possible. This localization is possible only for K&hler action and the set of these 2-surfaces is
discrete except for the latter case. The stringy form of conformal invariance allows to solve
Kahler-Dirac equation just like in string models and the solutions are labelled by integer
valued conformal weights.

2. The next step of progress was the realization that the requirement that the conservation of
the Noether currents associated with the modified Dirac equation requires that the second
variation of the Kéhler action vanishes. In strongest form this condition would be satisfied
for all variations and in weak sense only for those defining dynamical symmetries. The
interpretation is as a space-time correlate for quantum criticality and the vacuum degeneracy
of Kéhler action makes the criticality plausible.

The natural expectation is that the number of critical deformations is infinite and corresponds
to conformal symmetries naturally assignable to criticality. The number n of conformal
equivalence classes of the deformations can be finite and n would naturally relate to the
hierarchy of Planck constants h.sy = n x h (see fig. 77 in the appendix of this book).

Weak form of electric-magnetic duality gives a precise formulation for how Kéhler coupling
strength is visible in the properties of preferred extremals. A generalization of the ideas of
the catastrophe theory to infinite-dimensional context results. These conditions make sense
also in p-adic context and have a number theoretical universal form.

The notion of number theoretical compactication led to important progress in the understanding
of the preferred extremals and the conjectures were consistent with what is known about the known
extremals.

1. The conclusion was that one can assign to the 4-D tangent space T'(X*(X}})) C M® a subspace
M?(x) C M* having interpretation as the plane of non-physical polarizations. This in the
case that the induced metric has Minkowskian signature. If not, and if co-hyper-quaternionic
surface is in question, similar assigned should be possible in normal space. This means a close
connection with super string models. Geometrically this would mean that the deformations
of 3-surface in the plane of non-physical polarizations would not contribute to the line element
of WCW. This is as it must be since complexification does not make sense in M? degrees of
freedom.

2. In number theoretical framework M?(z) has interpretation as a preferred hyper-complex sub-
space of hyper-octonions defined as 8-D subspace of complexified octonions with the property
that the metric defined by the octonionic inner product has signature of M®. The condition
M?(z) C T(X*(X}))) in principle fixes the tangent space at X, and one has good hopes
that the boundary value problem is well-defined and could fix X*4(X?) at least partially as
a preferred extremal of Kéahler action. This picture is rather convincing since the choice
M?(z) C M* plays also other important roles.

3. At the level of H the counterpart for the choice of M?(z) seems to be following. Suppose
that X*4(X l3) has Minkowskian signature. One can assign to each point of the M* projection
Py (X*(X})) a sub-space M?(z) C M* and its complement E?(x), and the distributions
of these planes are integrable and define what I have called Hamilton-Jacobi coordinates
which can be assigned to the known extremals of Kahler with Minkowskian signature. This
decomposition allows to slice space-time surfaces by string world sheets and their 2-D partonic
duals. Also a slicing to 1-D light-like surfaces and their 3-D light-like duals Yl3 parallel to
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X} follows under certain conditions on the induced metric of X*(X?). This decomposition
exists for known extremals and has played key role in the recent developments. Physically it
means that 4-surface (3-surface) reduces effectively to 3-D (2-D) surface and thus holography
at space-time level. A physically attractive realization of the slicings of space-time surface
by 3-surfaces and string world sheets is discussed in [K23] by starting from the observation
that TGD could define a natural realization of braids, braid cobordisms, and 2-knots.

4. The weakest form of number theoretic compactification [K52] states that light-like 3-surfaces
X3 C X*(X3) c M8, where X*(X?) hyper-quaternionic surface in hyper-octonionic M® can
be mapped to light-like 3-surfaces X3 € X*(X3) C M*xCP,, where X*(X?) is now preferred
extremum of Kihler action. The natural guess is that X*4(X?) ¢ M?® is a preferred extremal
of Kahler action associated with Kahler form of E* in the decomposition M® = M* x E4,
where M* corresponds to hyper-quaternions. The conjecture would be that the value of the
Kéhler action in M8 is same as in M* x CPy: in fact that 2-surface would have identical
induced metric and Kihler form so that this conjecture would follow trivial. M® — H duality
would in this sense be Kéahler isometry.

If one takes M~ H duality seriously, one must conclude that one can choose any partonic 2-
surface in the slicing of X* as a representative. This means gauge invariance reflect in the definition
of Kéhler function as U(1) gauge transformation K — K + f + f having no effect on Kihler metric
and Kahler form.

Although the details of this vision might change it can be defended by its ability to fuse together
all great visions about quantum TGD. In the sequel the considerations are restricted to 3-surfaces
in M} x CP,. The basic outcome is that Kihler metric is expressible using the data at partonic
2-surfaces X2 C (5Mjl_ x CPy. The generalization to the actual physical situation requires the
replacement of X? C (5Mi x C P, with unions of partonic 2-surfaces located at light-like boundaries
of CDs and sub-CDs.

The notions of space-time sheet and many-sheeted space-time are basic pieces of TGD inspired
phenomenology (see fig. ?? in the appendix of this book). Originally the space-time sheet was
understood to have a boundary as ”sheet” strongly suggests. It has however become clear that
genuine boundaries are not allowed. Rather, space-time sheet is typically double (at least) covering
of M*. The light-like 3-surfaces separating space-time regions with Euclidian and Minkowskian
signature are however very much like boundaries and define what I call generalized Feynman
diagrams. A fascinating possibility is that every material object is accompanied by an Euclidian
region representing the interior of the object and serving as TGD analog for blackhole like object.
Space-time sheets suffer topological condensation (gluing by wormhole contacts or topological sum
in more mathematical jargon) at larger space-time sheets. Space-time sheets form a length scale
hierarchy. Quantitative formulation is in terms of p-adic length scale hypothesis and hierarchy of
Planck constants proposed to explain dark matter as phases of ordinary matter.

The notion of WCW

From the beginning there was a problem related to the precise definition of WCW (”world of
classical worlds” (WCW)). Should one regard CH as the space of 3-surfaces of M* x CP, or
M x CP, or perhaps something more delicate.

1. For a long time I believed that the basis question is ” Mj‘r or M*?” and that this question
had been settled in favor of Mfi by the fact that Mi has interpretation as empty Roberson-
Walker cosmology. The huge conformal symmetries assignable to § M3 x C'P, were interpreted
as cosmological rather than laboratory symmetries. The work with the conceptual problems
related to the notions of energy and time, and with the symmetries of quantum TGD, however
led gradually to the realization that there are strong reasons for considering M* instead of
M.

2. With the discovery of zero energy ontology it became clear that the so called causal diamonds
(CDs) define excellent candidates for the fundamental building blocks of WCW or ”world of
classical worlds” (WCW). The spaces CD x C'P; regarded as subsets of H defined the sectors
of WCW.
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3. This framework allows to realize the huge symmetries of JM$ x CP; as isometries of WCW.
The gigantic symmetries associated with the §M{ x CPs are also laboratory symmetries.
Poincare invariance fits very elegantly with the two types of super-conformal symmetries of
TGD. The first conformal symmetry corresponds to the light-like surfaces §M$ x C Py of
the imbedding space representing the upper and lower boundaries of CD. Second conformal
symmetry corresponds to light-like 3-surface X 137 which can be boundaries of X* and light-like
surfaces separating space-time regions with different signatures of the induced metric. This
symmetry is identifiable as the counterpart of the Kac Moody symmetry of string models.

A rather plausible conclusion is that WCW (WCW) is a union of WCWs associated with the
spaces C'D x C'P,. CDs can contain CDs within CDs so that a fractal like hierarchy having inter-
pretation in terms of measurement resolution results. It must be however emphasized that Kéhler
function depends on partonic 2-surfaces at both ends of space-time surface so that WCW is topo-
logically Cartesian product of corresponding symmetric spaces. WCW metric must therefore have
parts corresponding to the partonic 2-surfaces (free part) and also an interaction term depending
on the partonic 2-surface at the opposite ends of the light-like 3-surface. The conclusion is that
geometrization reduces to that for single like of generalized Feynman diagram containing partonic
2-surfaces at its ends. Since the complications due to p-adic sectors and hierarchy of Planck con-
stants are not relevant for the basic construction, it reduces to a high degree to a study of a simple
special case corresponding to a line of generalized Feynman diagram. One can also deduce the free
part of the metric by restricting the consideration to partonic 2-surfaces at single end of generalized
Feynman diagram.

A further piece of understanding emerged from the following observations.

1. The induced K#hler form at the partonic 2-surface X2 - the basic dynamical object if holog-
raphy is accepted- can be seen as a fundamental symplectic invariant so that the values of
€*PJ,p at X? define local symplectic invariants not subject to quantum fluctuations in the
sense that they would contribute to the WCW metric. Hence only induced metric corre-
sponds to quantum fluctuating degrees of freedom at WCW level and TGD is a genuine
theory of gravitation at this level.

2. WCW can be divided into slices for which the induced Kéhler forms of CP, and M1 at the
partonic 2-surfaces X2 at the light-like boundaries of CDs are fixed. The symplectic group
of M4 x C'P, parameterizes quantum fluctuating degrees of freedom in given scale (recall
the presence of hierarchy of CDs).

3. This leads to the identification of the coset space structure of the sub-WCW associated with
given CD in terms of the generalized coset construction for super-symplectic and super Kac-
Moody type algebras (symmetries respecting light-likeness of light-like 3-surfaces). WCW in
quantum fluctuating degrees of freedom for given values of zero modes can be regarded as
being obtained by dividing symplectic group with Kac-Moody group. Equivalently, the local
coset space S? x C'P; is in question: this was one of the first ideas about WCW which I gave
up as too naive!

2.2.2 Constraints on WCW geometry

The constraints on the WCW result both from the infinite dimension of WCW and from physically
motivated symmetry requirements. There are three basic physical requirements on the WCW
geometry: namely four-dimensional GCI in strong form, K&ahler property and the decomposition of
WCW into a union U;G/ H; of symmetric spaces G/ H;, each coset space allowing G-invariant metric
such that G is subgroup of some ’universal group’ having natural action on 3-surfaces. Together
with the infinite dimensionality of WCW these requirements pose extremely strong constraints on
WCW geometry. In the following we shall consider these requirements in more detail.

Diff* invariance and Diff* degeneracy

Diff* plays fundamental role as the gauge group of General Relativity. In string models Dif f?
invariance (Dif f? acts on the orbit of the string) plays central role in making possible the elimina-
tion of the time like and longitudinal vibrational degrees of freedom of string. Also in the present
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case the elimination of the tachyons (time like oscillatory modes of 3-surface) is a physical necessity
and Diff* invariance provides an obvious manner to do the job.

In the standard path 1 integral formulation the realization of Diff* invariance is an easy task
at the formal level. The problem is however that path integral over four-surfaces is plagued by
divergences and doesn’t make sense. In the present case WCW consists of 3-surfaces and only
Diff3 emerges automatically as the group of re-parameterizations of 3-surface. Obviously one
should somehow define the action of Diff* in the space of 3-surfaces. Whatever the action of Diff*
is it must leave the WCW metric invariant. Furthermore, the elimination of tachyons is expected
to be possible only provided the time like deformations of the 3-surface correspond to zero norm
vector fields of WCW so that 3-surface and its Diff* image have zero distance. The conclusion is
that WCW metric should be both Diff* invariant and Diff* degenerate.

The problem is how to define the action of Diff* in C(H). Obviously the only manner to achieve
Diff* invariance is to require that the very definition of the WCW metric somehow associates a
unique space time surface to a given 3-surface for Diff* to act on. The obvious physical interpre-
tation of this space time surface is as ”classical space time” so that ”Classical Physics” would be
contained in WCW geometry. In fact, this space-time surface is analogous to Bohr orbit so that
semiclassical quantization rules become an exact part of the quantum theory. It is this requirement,
which has turned out to be decisive concerning the understanding of the WCW geometry.

Decomposition of WCW into a union of symmetric spaces G/H

The extremely beautiful theory of finite-dimensional symmetric spaces constructed by Elie Cartan
suggests that WCW should possess decomposition into a union of coset spaces CH = U;G/H;
such that the metric inside each coset space G/H; is left invariant under the infinite dimensional
isometry group G. The metric equivalence of surfaces inside each coset space G/H; does not mean
that 3-surfaces inside G/ H; are physically equivalent. The reason is that the vacuum functional is
exponent of Kahler action which is not isometry invariant so that the 3-surfaces, which correspond
to maxima of Kéhler function for a given orbit, are in a preferred position physically. For instance,
one can imagine of calculating functional integral around this maximum perturbatively. Symmet-
ric space property actually allows also much more powerful non-perturbative approach based on
harmonic analysis [K18] . The sum of over ¢ means actually integration over the zero modes of
the metric (zero modes correspond to coordinates not appearing as coordinate differentials in the
metric tensor).

The coset space G/H is a symmetric space only under very special Lie-algebraic conditions.
Denoting the decomposition of the Lie-algebra g of G to the direct sum of H Lie-algebra h and its
complement ¢ by g = h & ¢, one has

[h,h]Ch , [ht]Ct, [t,t]Ch .

This decomposition turn out to play crucial role in guaranteeing that G indeed acts as isometries
and that the metric is Ricci flat.

The four-dimensional Dsf f invariance indeed suggests to a beautiful solution of the problem of
identifying G. The point is that any 3-surface X2 is Dif f4 equivalent to the intersection of X*(X?3)
with the light cone boundary. This in turn implies that 3-surfaces in the space §H = 5Mi x C' Py
should be all what is needed to construct WCW geometry. The group G can be identified as
some subgroup of diffeomorphisms of §H and H; contains that subgroup of G, which acts as
diffeomorphisms of the 3-surface X3. Since G preserves topology, WCW must decompose into
union U;G/H;, where i labels 3-topologies and various zero modes of the metric. For instance, the
elements of the Lie-algebra of G invariant under WCW complexification correspond to zero modes.

The reduction to the light cone boundary, identifiable as the moment of big bang, looks perhaps
odd at first. In fact, it turns out that the classical non-determinism of Kéhler action does not allow
the complete reduction to the light cone boundary: physically this is a highly desirable implication
but means a considerable mathematical challenge.

Kahler property

Kahler property implies that the tangent space of the configuration space allows complexification
and that thereexists a covariantly constant two-form Ji;, which can be regarded as a representation
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of the imaginary unit in the tangent space of the WCW:

J I = =G (2.2.1)

There are several physical and mathematical reasons suggesting that WCW metric should possess
Kahler property in some generalized sense.

1. The deepest motivation comes from the need to geometrize hermitian conjugation which is
basic mathematical operation of quantum theory.

2. Kéhler property turns out to be a necessary prerequisite for defining divergence free WCW
integration. We will leave the demonstration of this fact later although the argument as such
is completely general.

3. Kihler property very probably implies an infinite-dimensional isometry loop groups Map(S?!, G)
[A37] shows that loop group allows only

Riemann connection and this metric allows local G as its isometries!

To see this consider the construction of Riemannian connection for Map(X?3, H). The defin-
ing formula for the connection is given by the expression

2AVxY,Z) = X(Y,2)+Y(Z,X)- Z(X,Y)
+ (X,Y],2)+ (2. X].Y) - ([Y, 2], X) (22.2)

X,Y, Z are smooth vector fields in Map(X3,G). This formula defines VxY uniquely pro-
vided the tangent space of Map is complete with respect to Riemann metric. In the finite-
dimensional case completeness means that the inverse of the covariant metric tensor exists
so that one can solve the components of connection from the conditions stating the covariant
constancy of the metric. In the case of the loop spaces with Kahler metric this is however
not the case.

Now the symmetry comes into the game: if XY, Z are left (local gauge) invariant vector
fields defined by the Lie-algebra of local G' then the first three terms drop away since the
scalar products of left invariant vector fields are constants. The expression for the covariant
derivative is given by

VxY = (AdxY — AdyY — Ady X)/2 (2.2.3)

where Ad% is the adjoint of Adx with respect to the metric of the loop space.

At this point it is important to realize that Freed’s argument does not force the isometry
group of WCW to be Map(X?3, M* x SU(3))! Any symmetry group, whose Lie algebra is
complete with respect to the WCW metric ( in the sense that any tangent space vector is
expressible as superposition of isometry generators modulo a zero norm tangent vector) is an
acceptable alternative.

The Kéahler property of the metric is quite essential in one-dimensional case in that it leads to
the requirement of left invariance as a mathematical consistency condition and we expect that
dimension three makes no exception in this respect. In 3-dimensional case the degeneracy of
the metric turns out to be even larger than in 1-dimensional case due to the four-dimensional
Diff degeneracy. So we expect that the metric ought to possess some infinite-dimensional
isometry group and that the above formula generalizes also to the 3-dimensional case and to
the case of local coset space. Note that in M* degrees of freedom Map(X?, M*) invariance
would imply the flatness of the metric in M* degrees of freedom.

The physical implications of the above purely mathematical conjecture should not be under-
estimated. For example, one natural looking manner to construct physical theory would be
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based on the idea that configuration space geometry is dynamical and this approach is fol-
lowed in the attempts to construct string theories [B9] . Various physical considerations (in
particular the need to obtain oscillator operator algebra) seem to imply that WCW geometry
is necessarily Kahler. The above result however states that WCW Kahler geometry cannot
be dynamical quantity and is dictated solely by the requirement of internal consistency. This
result is extremely nice since it has been already found that the definition of the WCW met-
ric must somehow associate a unique classical space time and ”classical physics” to a given
3-surface: uniqueness of the geometry implies the uniqueness of the ”classical physics”.

4. The choice of the imbedding space becomes highly unique. In fact, the requirement that
WCW is not only symmetric space but also (contact) Kéhler manifold inheriting its (degen-
erate) Kédhler structure from the imbedding space suggests that spaces, which are products
of four-dimensional Minkowski space with complex projective spaces C'P,,, are perhaps the
only possible candidates for H. The reason for the unique position of the four-dimensional
Minkowski space turns out to be that the boundary of the light cone of D-dimensional
Minkowski space is metrically a sphere SP~2 despite its topological dimension D — 1: for
D = 4 one obtains two-sphere allowing Kéhler structure and infinite parameter group of
conformal symmetries!

5. It seems possible to understand the basic mathematical structures appearing in string model
in terms of the Kahler geometry rather nicely.

(a) The projective representations of the infinite-dimensional isometry group (not neces-
sarily Map!) correspond to the ordinary representations of the corresponding centrally
extended group [A41]. The representations of Kac Moody group indeed play central
role in string models [B27, B20] and WCW approach would explain their occurrence,
not as a result of some quantization procedure, but as a consequence of symmetry of
the underlying geometric structure.

(b) The bosonic oscillator operators of string models would correspond to centrally extended
Lie-algebra generators of the isometry group acting on spinor fields of the WCW.

(¢) The "fermionic” fields ( Ramond fields, Schwartz,Green ) should correspond to gamma
matrices of the WCW. Fermionic oscillator operators would correspond simply to con-
tractions of isometry generators j% with complexified gamma matrices of WCW

4 = jhrf

rf = (CF+Jkrh/ V2 (2.2.4)

(J* is the Kihler form of WCW) and would create various spin excitations of WCW
spinor field. Ff are the complexified gamma matrices, complexification made possible
by the Kahler structure of the WCW.

This suggests that some generalization of the so called Super Kac Moody algebra of string
models [B27, B20] should be regarded as a spectrum generating algebra for the solutions of field
equations in configuration space.

Although the Ké&hler structure seems to be physically well motivated there is a rather heavy
counter argument against the whole idea. Kahler structure necessitates complex structure in the
tangent space of WCW. In C'P, degrees of freedom no obvious problems of principle are expected:
WCW should inherit in some sense the complex structure of C'Ps.

In Minkowski degrees of freedom the signature of the Minkowski metric seems to pose a serious
obstacle for complexification: somehow one should get rid of two degrees of freedom so that only
two Euclidian degrees of freedom remain. An analogous difficulty is encountered in quantum field
theories: only two of the four possible polarizations of gauge boson correspond to physical degrees
of freedom: mathematically the wrong polarizations correspond to zero norm states and transverse
states span a complex Hilbert space with Euclidian metric. Also in string model analogous situa-
tion occurs: in case of D-dimensional Minkowski space only D — 2 transversal degrees of freedom
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are physical. The solution to the problem seems therefore obvious: WCW metric must be de-
generate so that each vibrational mode spans effectively a 2-dimensional Euclidian plane allowing
complexification.

We shall find that the definition of Kéhler function to be proposed indeed provides a solution
to this problem and also to the problems listed before.

1. The definition of the metric doesn’t differentiate between 1- and N-particle sectors, avoids spin
statistics difficulty and has the physically appealing property that one can associate to each 3-
surface a unique classical space time: classical physics is described by the geometry of WCW
and d the geometry of WCW is determined uniquely by the requirement of mathematical
consistency.

2. Complexification is possible only provided the dimension of the Minkowski space equals to
four and is due to the effective 3-dimensionality of light-cone boundary.

3. It is possible to identify a unique candidate for the necessary infinite-dimensional isometry
group G. G is subgroup of the diffeomorphism group of 6Mi x CP,. Essential role is
played by the fact that the boundary of the four-dimensional light cone, which, despite being
topologically 3-dimensional, is metrically two-dimensional Euclidian sphere, and therefore
allows infinite-parameter groups of isometries as well as conformal and symplectic symmetries
and also Kéhler structure unlike the higher-dimensional light cone boundaries. Therefore
WCW metric is Kahler only in the case of four-dimensional Minkowski space and allows
symplectic U(1) central extension without conflict with the no-go theorems about higher
dimensional central extensions.

The study of the vacuum degeneracy of Kéhler function defined by Kéhler action forces to
conclude that the isometry group must consist of the symplectic transformations of 0H =
5Mjl_ X C'P,. The corresponding Lie algebra can be regarded as a loop algebra associated
with the symplectic group of S? x CP,, where S? is ry; = constant sphere of light cone
boundary. Thus the finite-dimensional group G defining loop group in case of string models
extends to an infinite-dimensional group in TGD context. This group has a monstrous size.
The radial Virasoro localized with respect to S? x C'P, defines naturally complexification for
both G and H. The general form of the Kahler metric deduced on basis of this symmetry
has same qualitative properties as that deduced from Ké&hler function identified as preferred
extremal of Kahler action. Also the zero modes, among them isometry invariants, can be
identified.

4. The construction of the WCW spinor structure is based on the identification of the WCW
gamma matrices as linear superpositions of the oscillator operators associated with the sec-
ond quantized induced spinor fields. The extension of the symplectic invariance to super
symplectic invariance fixes the anti-commutation relations of the induced spinor fields, and
WCW gamma matrices correspond directly to the super generators. Physics as number the-
ory vision suggests strongly that WCW geometry exists for 8-dimensional imbedding space
only and that the choice Mi x C'Py for the imbedding space is the only possible one.

2.3 Identification of the Kahler function

There are three approaches to the construction of the WCW geometry: a direct physics based
guess of the Kahler function, a group theoretic approach based on the hypothesis that CH can be
regarded as a union of symmetric spaces, and the approach based on the construction of WCW
spinor structure first by second quantization of induced spinor fields. Here the first approach is
discussed.

2.3.1 Definition of Kahler function
Kahler metric in terms of Kahler function

Quite generally, Kéhler function K defines Kéhler metric in complex coordinates via the following
formula
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Kahler function is defined only modulo a real part of holomorphic function so that one has the
gauge symmetry

K - K+f+f. (2.3.2)

Let X3 be a given 3-surface and let X* be any four-surface containing X2 as a sub-manifold:
X4 D X3, The 4-surface X* possesses in general boundary. If the 3-surface X3 has nonempty
boundary 6X? then the boundary of X2 belongs to the boundary of X4: 6X3 C 6X*.

Induced Kahler form and its physical interpretation

Induced Kéhler form defines a Maxwell field and it is important to characterize precisely its rela-
tionship to the gauge fields as they are defined in gauge theories. Kéhler form J is related to the
corresponding Maxwell field F' via the formula

J = aF , x:%{ . (2.3.3)
Similar relationship holds true also for the other induced gauge fields. The inverse proportionality
of J to h does not matter in the ordinary gauge theory context where one routinely choses units by
putting i = 1 but becomes very important when one considers a hierarchy of Planck constants [K17]

Unless one has J = (gx /o), where g corresponds to the ordinary value of Planck constant,
akx = g% /Anh together the large Planck constant means weaker interactions and convergence
of the functional integral defined by the exponent of Kéahler function and one can argue that
the convergence of the functional integral is what forces the hierarchy of Planck constants. This
is in accordance with the vision that Mother Nature likes theoreticians and takes care that the
perturbation theory works by making a phase transition increasing the value of the Planck constant
in the situation when perturbation theory fails. This leads to a replacement of the M* (or more
precisely, causal diamond CD) and CP, factors of the imbedding space (CD x CPy) with its
r = hi/hp-fold singular covering (one can consider also singular factor spaces). If the components
of the space-time surfaces at the sheets of the covering are identical, one can interpret r-fold value
of Kéahler action as a sum of r identical contributions from the sheets of the covering with ordinary
value of Planck constant and forget the presence of the covering. Physical states are however
different even in the case that one assumes that sheets carry identical quantum states and anyonic
phase could correspond to this kind of phase [K37] .

Kahler action

One can associate to Kéahler form Maxwell action and also Chern-Simons anomaly term propor-
tional to [y, J A J in well known manner. Chern Simons term is purely topological term and well
defined for orientable 4-manifolds, only. Since there is no deep reason for excluding non-orientable
space-time surfaces it seems reasonable to drop Chern Simons term from consideration. Therefore
Kihler action Sk (X?) can be defined as

Sk(XYH = Kk /X4.X3CX4JA(*J) . (2.3.4)

The sign of the square root of the metric determinant, appearing implicitly in the formula, is
defined in such a manner that the action density is negative for the Euclidian signature of the
induced metric and such that for a Minkowskian signature of the induced metric Kéhler electric
field gives a negative contribution to the action density.

The notational convention
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1

kl =
16mak

(2.3.5)

where a i will be referred as Kahler coupling strength will be used in the sequel. If the preferred
extremals minimize/maximize [K52] the absolute value of the action in each region where action
density has a definite sign, the value of ax can depend on space-time sheet.

Kahler function

One can define the Kahler function in the following manner. Consider first the case H = M_‘f_ xCPy
and neglect for a moment the non-determinism of Kihler action. Let X3 be a 3-surface at the
light-cone boundary §M${ x CP,. Define the value K(X?) of Kihler function K as the value
of the Kihler action for some preferred extremal in the set of four-surfaces containing X3 as a
sub-manifold:

K(X%) = K(Xpef) o Xprep C{XYX?C X'} . (2.3.6)

P pre

The most plausible identification of preferred extremals is in terms of quantum criticality in the
sense that the preferred extremals allow an infinite number of deformations for which the second
variation of Kéhler action vanishes. Combined with the weak form of electric-magnetic duality
forcing appearance of Kéhler coupling strength in the boundary conditions at partonic 2-surfaces
this condition might be enough to fix preferred extremals completely.

The precise formulation of Quantum TGD has developed rather slowly. Only quite recently-
33 years after the birth of TGD - I have been forced to reconsider the question whether the precise
identification of Kéhler function. Should Kahler function actually correspond to the Kahler action
for the space-time regions with Euclidian signature having interpretation as generalized Feynman
graphs? If so what would be the interpretation for the Minkowskian contribution?

1. If one accepts just the formal definition for the square root of the metric determinant,
Minkowskian regions would naturally give an imaginary contribution to the exponent defining
the vacuum functional. The presence of the phase factor would give a close connection with
the path integral approach of quantum field theories and the exponent of Kahler function
would make the functional integral well-defined.

2. The weak form of electric magnetic duality would reduce the contributions to Chern-Simons
terms from opposite sides of wormhole throats with degenerate four-metric with a constraint
term guaranteeing the duality.

The motivation for this reconsideration came from the applications of ideas of Floer homology
to TGD framework [K63]: the Minkowskian contribution to Kéhler action for preferred extremals
would define Morse function providing information about WCW homology. Both Kéhler and Morse
would find place in TGD based world order.

2.3.2 What are the values of the Kahler coupling strength?

Since the vacuum functional of the theory turns out to be essentially the exponent exp(K) of
the Kéhler function, the dynamics depends on the normalization of the Kéhler function. Since
the Theory of Everything should be unique it would be highly desirable to find arguments fixing
the normalization or equivalently the possible values of the Kéhler coupling strength aj. Also a
discrete spectrum of values is acceptable.

The quantization of Kéhler form could result in the following manner. It will be found that
Abelian extension of the isometry group results by coupling spinors of the WCW to a multiple of
Kahler potential. This means that Kéhler potential plays role of gauge connection so that Kéahler
form must be integer valued by Dirac quantization condition for magnetic charge. So, if Kéhler
form is co-homologically nontrivial it is quantized.

Unfortunately, the exact definition of renormalization group concept is not at all obvious. There
is however a much more general but more or less equivalent manner to formulate the condition
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fixing the value of ax. Vacuum functional exp(K) is analogous to the exponent exp(—H/T) ap-
pearing in the definition of the partition function of a statistical system and S-matrix elements and
other interesting physical quantities are integrals of type (O) = [ exp(K)O+v/GdV and therefore
analogous to the thermal averages of various observables. ak is completely analogous to tempera-
ture. The critical points of a statistical system correspond to critical temperatures T, for which the
partition function is non-analytic function of T'—T, and according RGE hypothesis critical systems
correspond to fixed points of renormalization group evolution. Therefore, a mathematically more
precise manner to fix the value of ak is to require that some integrals of type (O) (not necessary
S-matrix elements) become non-analytic at 1/ax — 1/a%.

This analogy suggests also a physical motivation for the unique value or value spectrum of
ag. Below the critical temperature critical systems suffer something analogous to spontaneous
magnetization. At the critical point critical systems are characterized by long range correlations
and arbitrarily large volumes of magnetized and non-magnetized phases are present. Spontaneous
magnetization might correspond to the generation of Kahler magnetic fields: the most probable
3-surfaces are Kahler magnetized for subcritical values of ai. At the critical values of ax the most
probable 3-surfaces contain regions dominated by either Kéhler electric and or Kahler magnetic
fields: by the compactness of C'P, these regions have in general outer boundaries.

This suggests that 3-space has hierarchical, fractal like structure: 3-surfaces with all sizes (and
with outer boundaries) are possible and they have suffered topological condensation on each other.
Therefore the critical value of ax allows the richest possible topological structure for the most
probable 3-space. In fact, this hierarchical structure is in accordance with the basic ideas about
renormalization group invariance. This hypothesis has highly nontrivial consequences even at the
level of ordinary condensed matter physics.

Renormalization group invariance is closely related with criticality. The self duality of the
Kahler form and Weyl tensor of C'P, indeed suggest RG invariance. The point is that in N = 4
super-symmetric field theories duality transformation relates the strong coupling limit for ordinary
particles with the weak coupling limit for magnetic monopoles and vice versa. If the theory is
self-dual these limits must be identical so that action and coupling strength must be RG invariant
quantities. This form of self-duality cannot hold true in TGD. The weak form of self-duality
discussed in [K10] roughly states that for the partonic 2-surface the induce Kahler electric field
is proportional to the Kéhler magnetic field strength. The proportionality constant is essentially
Kahler coupling strength. The simplest hypothesis is that Kahler coupling strength has single
universal value and the weak form of self-duality fixes it. The proportionality ax = g% /4mh and
the proposed quantization of Planck constant requiring a generalization of the imbedding space
imply that Kéhler coupling strength varies but is constant at a given page of the "Big Book”
defined by the generalized imbedding space [K17] .

2.3.3 What preferred extremal property means?

The requirement that the 4-surface having given 3-surface as its sub-manifold is absolute minimum
of the Kahler action is the most obvious guess for the principle selecting the preferred extremals
and has been taken as a working hypothesis for about one and half decades. Quantum criticality
of Quantum TGD should have however led to the idea that preferred extremals are critical in
the sense that space-time surface allows deformations for which second variation of Kéahler action
vanishes so that the corresponding Noether currents are conserved.

The natural expectation is that the number of critical deformations is infinite and corresponds
to conformal symmetries naturally assignable to criticality. The number n of conformal equivalence
classes of the deformations can be finite and n would naturally relate to the hierarchy of Planck
constants hesr =n X h (see fig. http://www.tgdtheory.fi/appfigures/planckhierarchy. jpg,
which is also in the appendix of this book).

Further insights emerged through the realization that Noether currents assignable to the mod-
ified Dirac equation are conserved only if the first variation of the modified Dirac operator Dy
defined by Ké&hler action vanishes. This is equivalent with the vanishing of the second variation
of Kéhler action -at least for the variations corresponding to dynamical symmetries having inter-
pretation as dynamical degrees of freedom which are below measurement resolution and therefore
effectively gauge symmetries.

The vanishing of the second variation in interior of X*(X f) is what corresponds exactly to
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quantum criticality so that the basic vision about quantum dynamics of quantum TGD would lead
directly to a precise identification of the preferred extremals.

The vanishing of second variations of preferred extremals -at least for deformations representing
dynamical symmetries, suggests a generalization of catastrophe theory of Thom, where the rank of
the matrix defined by the second derivatives of potential function defines a hierarchy of criticalities
with the tip of bifurcation set of the catastrophe representing the complete vanishing of this matrix.
In the recent case this theory would be generalized to infinite-dimensional context. There are three
kind of variables now but quantum classical correspondence (holography) allows to reduce the types
of variables to two.

1. The variations of X*(X}}) vanishing at the intersections of X*(X}*) with the light-like bound-
aries of causal diamonds CD would represent behavior variables. At least the vacuum ex-
tremals of Kéhler action would represent extremals for which the second variation vanishes
identically (the ”tip” of the multi-furcation set).

2. The zero modes of Kahler function would define the control variables interpreted as classical
degrees of freedom necessary in quantum measurement theory. By effective 2-dimensionality
(or holography or quantum classical correspondence) meaning that the configuration space
metric is determined by the data coming from partonic 2-surfaces X? at intersections of X}
with boundaries of CD, the interiors of 3-surfaces X3 at the boundaries of CDs in rough sense
correspond to zero modes so that there is indeed huge number of them. Also the variables
characterizing 2-surface, which cannot be complexified and thus cannot contribute to the
Kahler metric of WCW represent zero modes. Fixing the interior of the 3-surface would
mean fixing of control variables. Extremum property would fix the 4-surface and behavior
variables if boundary conditions are fixed to sufficient degree.

3. The complex variables characterizing X2 would represent third kind of variables identified as
quantum fluctuating degrees of freedom contributing to the WCW metric. Quantum classical
correspondence requires 1-1 correspondence between zero modes and these variables. This
would be essentially holography stating that the 2-D ”causal boundary” X? of X3(X?) codes
for the interior. Preferred extremal property identified as criticality condition would realize
the holography by fixing the values of zero modes once X?2 is known and give rise to the
holographic correspondence X2 — X3(X?). The values of behavior variables determined by
extremization would fix then the space-time surface X*(X?) as a preferred extremal.

4. Clearly, the presence of zero modes would be absolutely essential element of the picture.
Quantum criticality, quantum classical correspondence, holography, and preferred extremal
property would all represent more or less the same thing. One must of course be very cautious
since the boundary conditions at X} involve normal derivative and might bring in delicacies
forcing to modify the simplest heuristic picture.

One must be very cautious with what one means with the preferred extremal property and
criticality.

1. Does one assign criticality with the partonic 2-surfaces at the ends of CDs? Does one restrict
it with the throats for which light-like 3-surface has also degenerate induced 4-metric? Or
does one assume stronger form of holography requiring a slicing of space-time surface by
partonic 2-surfaces and string world sheets and assign criticality to all partonic 2-surfaces.
This kind of slicing is suggested by the study of the extremals [K5] , required by the number
theoretic vision (M® — H duality [K50] ), and also by the purely physical condition that a
stringy realization of GCI is possible.

2. What is the exact meaning of the preferred extremal property? The assumption that the
variations of Kéhler action leaving 3-surfaces at the ends of CDs invariant would not be
consistent with the effective 2-dimensionality. The assumption that the critical deformations
leave invariant only partonic 2-surfaces would imply genuine 2-dimensionality. Should one
assume that critical deformations leave invariant partonic 2-surface and 3-D tangent space
in the direction of space-like 3-surface or light-like 3-surface but not both. This would be
consistent with effective 3-dimensionality and would explain why Kac-Moody symmetries
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associated with the light-like 3-surfaces act as gauge symmetries. This is also essential for
the realization of Poincare invariance since the quantization of the light-cone proper time
distance between CDs implies that infinitesimal Poincare transformations lead out of CD
unless compensated by Kac-Moody type transformations acting like gauge transformations.
In the similar manner it would explain why symplectic transformations of §C' D act like gauge
transformations.

3. Could one pose the criticality condition for all partonic 2-surfaces in the slicing or only for the
throats of light-like 3-surfaces? This hypothesis looks natural but is not necessary. Light-like
throats are very singular objects criticality might apply only to their variations only in the
limiting sense and it might be necessary to assume criticality for all partonic 2-surfaces.

2.3.4 Why non-local Kahler function?

Kahler function is non-local functional of 3-surface. Non-locality of the K&hler function seems to be
at odds with basic assumptions of local quantum field theories. Why this rather radical departure
from the basic assumptions of local quantum field theory? The answer is shortly given: WCW
integration appears in the definition of the inner product for WCW spinor fields and this inner
product must be free from perturbative divergences. Consider now the argument more closely.

In the case of finite-dimensional symmetric space with Kéahler structure the representations
of the isometry group necessitate the modification of the integration measure defining the inner
product so that the integration measure becomes proportional to the exponent exp(K) of the Kéhler
function [B28]. The generalization to infinite-dimensional case is obvious. Also the requirement
of Kac-Moody symmetry leads to the presence of this kind of vacuum functional as will be found
later. The exponent is in fact uniquely fixed by finiteness requirement. WCW integral is of the
following form

/Slexp(K)Sl\/@iX . (2.3.7)

One can develop perturbation theory using local complex coordinates around a given 3-surface in
the following manner. The (1,1)-part of the second variation of the Kéhler function defines the
metric and therefore propagator as contravariant metric and the remaining (2,0)— and (0, 2)-parts
of the second variation are treated perturbatively. The most natural choice for the 3-surface are
obviously the 3-surfaces, which correspond to extrema of the Kéhler function.

When perturbation theory is developed around the 3-surface one obtains two ill-defined deter-
minants.

1. The Gaussian determinant coming from the exponent, which is just the inverse square root
for the matrix defined by the metric defining (1, 1)-part of the second variation of the Kéahler
function in local coordinates.

2. The metric determinant. The matrix representing covariant metric is however same as the
matrix appearing in Gaussian determinant by the defining property of the Kahler metric: in
local complex coordinates the matrix defined by second derivatives is of type (1,1). Therefore
these two ill defined determinants (recall the presence of Diff degeneracy) cancel each other
exactly for a unique choice of the vacuum functional!

Of course, the cancellation of the determinants is not enough. For an arbitrary local action one
encounters the standard perturbative divergences. Since most local actions (Chern-Simons term is
perhaps an exception [B17] ) for induced geometric quantities are extremely nonlinear there is no
hope of obtaining a finite theory. For non-local action the situation is however completely different.
There are no local interaction vertices and therefore no products of delta functions in perturbation
theory.

A further nice feature of the perturbation theory is that the propagator for small deformations
is nothing but the contravariant metric. Also the various vertices of the theory are closely related
to the metric of WCW since they are determined by the K&hler function so that perturbation
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theory would have a beautiful geometric interpretation. Furthermore, since four-dimensional Diff
degeneracy implies that the propagator doesn’t couple to un-physical modes.

It should be noticed that divergence cancellation arguments do not necessarily exclude Chern
Simons term from vacuum functional defined as imaginary exponent of exp(iks [ 1 JAJ). The term
is not well defined for non-orientable space-time surfaces and one must assume that ko vanishes for
these surfaces. The presence of this term might provide first principle explanation for CP breaking.
If ko is integer multiple of 1/(87) Chern Simons term gives trivial contribution for closed space-
time surfaces since instanton number is in question. By adding a suitable boundary term of form
exp(iks |, sx2J N A) it is possible to guarantee that the exponent is integer valued for 4-surfaces
with boundary, too.

There are two arguments suggesting that local Chern Simons term would not introduce di-
vergences. First, 3-dimensional Chern Simons term for ordinary Abelian gauge field is known to
define a divergence free field theory [B17] . The term doesn’t depend at all on the induced metric
and therefore contains no dimensional parameters (C' P radius) and its expansion in terms of C' P,
coordinate variables is of the form allowed by renormalizable field theory in the sense that only
quartic terms appear. This is seen by noticing that there always exist symplectic coordinates,
where the expression of the Kahler potential is of the form

A = ) PadQ" . (2.3.8)
k

The expression for Chern-Simons term in these coordinates is given by

kz/ > PdP. A dQY N dQ' (2.3.9)
X3
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and clearly quartic C' Py coordinates. A further nice property of the Chern Simons term is that
this term is invariant under symplectic transformations of C' P, which are realized as U(1) gauge
transformation for the Kéahler potential.

2.4 Some properties of Kahler action

In this section some properties of Kéahler action and Kahler function are discussed in light of
experienced gained during about 15 years after the introduction of the notion.

2.4.1 Vacuum degeneracy and some of its implications

The vacuum degeneracy is perhaps the most characteristic feature of the Kéahler action. Although
it is not associated with the preferred extremals of K&hler action, there are good reasons to expect
that it has deep consequences concerning the structure of the theory.

Vacuum degeneracy of the Kahler action

The basic reason for choosing Kéahler action is its enormous vacuum degeneracy, which makes long
range interactions possible (the well known problem of the membrane theories is the absence of
massless particles [B25] ). The Kéhler form of C P, defines symplectic structure and any 4-surface
for which C' P, projection is so called Lagrangian manifold (at most two dimensional manifold with
vanishing induced Kéhler form), is vacuum extremal due to the vanishing of the induced Kéahler
form. More explicitly, in the local coordinates, where the vector potential A associated with the
Kéhler form reads as A =), P.dQ". Lagrangian manifolds are expressible locally in the following
form

B, = %f(Q) . (24.1)
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where the function f is arbitrary. Notice that for the general Y M action surfaces with one-
dimensional C'P, projection are vacuum extremals but for Kéhler action one obtains additional
degeneracy.

There is also a second kind of vacuum degeneracy, which is relevant to the elementary particle
physics. The so called C'P, type vacuum extremals are warped imbeddings X4 of CP, to H such
that Minkowski coordinates are functions of a single C'P; coordinate, and the one-dimensional
projection of X? is random light like curve. These extremals have a non-vanishing action but
vanishing Poincare charges. Their small deformations are identified as space-time counterparts of
fermions and their super partners. Wormhole throats identified as pieces of these extremals are
identified as bosons and their super partners.

The conditions stating light likeness are equivalent with the Virasoro conditions of string models
and this actually led to the eventualo realization that conformal invariance is a basic symmetry of
TGD and that WCW can be regarded as a union of symmetric spaces with isometry groups having
identification as symplectic and Kac-Moody type groups assignable to the partonic 2-surfaces.

Approximate symplectic invariance

Vacuum extremals have diffeomorphisms of M_‘i and Mi local symplectic transformations as sym-
metries. For non-vacuum extremals these symmetries leave induced Kéhler form invariant and
only induced metric breaks these symmetries. Symplectic transformations of CP, act on the
Maxwell field defined by the induced Kéahler form in the same manner as ordinary U(1) gauge
symmetries. They are however not gauge symmetries since gauge invariance is still present. In
fact, the construction of WCW geometry relies on the assumption that symplectic transformations
of 5M_‘f_ x C Py which infinitesimally correspond to combinations of M_‘f_ local C'P, symplectic and
C Py-local M_jl_ symplectic transformations act as isometries of WCW. In zero energy ontology these
transformations act simultaneously on all partonic 2-surfaces characterizing the space-time sheet
representing a generalized Feynman diagram inside CD.

The fact that C'P, symplectic transformations do not act as genuine gauge transformations
means that U(1) gauge invariance is effectively broken. This has non-trivial implications. The field
equations allow purely geometric vacuum 4-currents not possible in Maxwell’s electrodynamics [K5]
. For the known extremals (massless extremals) they are light-like and a possible interpretation is
in terms of Bose-Einstein condensates of collinear massless bosons.

Spin glass degeneracy

Vacuum degeneracy means that all surfaces belonging to Mi xY?2,Y? any Lagrangian sub-manifold
of C'P, are vacua irrespective of the topology and that symplectic transformations of C'P, generate
new surfaces Y2. If preferred extremals are obtained as small deformations of vacuum extremals
(for which the criticality is maximal), one expects therefore enormous ground state degeneracy,
which could be seen as 4-dimensional counterpart of the spin glass degeneracy. This degeneracy
corresponds to the hypothesis that WCW is a union of symmetric spaces labeled by zero modes
which do not appear at the line-element of the WCW metric.

Zero modes define what might be called the counterpart of spin glass energy landscape and
the maxima Ké&hler function as a function of zero modes define a discrete set which might be
called reduced configuration space. Spin glass degeneracy turns out to be crucial element for
understanding how macro-temporal quantum coherence emerges in TGD framework. One of the
basic ideas about p-adicization is that the maxima of Kéahler function define the TGD counterpart
of spin glass energy landscape [K51, K20] . The hierarchy of discretizations of the symmetric
spaces corresponding to a hierarchy of measurement resolutions [K18] could allow an identification
in terms of a hierarchy spin glass energy landscapes so that the algebraic points of the WCW
would correspond to the maxima of Kéahler function. The hierarchical structure would be due
to the failure of strict non-determinism of Kéahler action allowing in zero energy ontology to add
endlessly details to the space-time sheets representing zero energy states in shorter scale.

Generalized quantum gravitational holography

The original naive belief was that the construction of the configuration space geometry reduces to
0H =6M j{ X C'Py. An analogous idea in string model context became later known as quantum grav-
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itational holography. The basic implication of the vacuum degeneracy is classical non-determinism,
which is expected to reflect itself as the properties of the Kéahler function and WCW geometry.
Obviously classical non-determinism challenges the notion of quantum gravitational holography.

The hope was that a generalization of the notion of 3-surface is enough to get rid of the
degeneracy and save quantum gravitational holography in its simplest form. This would mean
that one just replaces space-like 3-surfaces with ”association sequences” consisting of sequences of
space-like 3-surfaces with time like separations as causal determinants. This would mean that the
absolute minima of Kéhler function would become degenerate: same space-like 3-surface at 6 H
would correspond to several association sequences with the same value of Kéahler function.

The life turned out to be more complex than this. C'P; type extremals have Euclidian signature
of the induced metric and therefore C'P, type extremals glued to space-time sheet with Minkowskian
signature of the induced metric are surrounded by light like surfaces X l?’, which might be called
elementary particle horizons. The non-determinism of the C'P, type extremals suggests strongly
that also elementary particle horizons behave non-deterministically and must be regarded as causal
determinants having time like projection in Mi. Pieces of C'P; type extremals are good candidates
for the wormhole contacts connecting a space-time sheet to a larger space-time sheet and are also
surrounded by an elementary particle horizons and non-determinism is also now present. That this
non-determinism would allow the proposed simple description seems highly implausible.

Zero energy ontology realized in terms of a hierarchy of CDs seems to provide the most plausible
treatment of the non-determinism and has indeed led to a breakthrough in the construction and
understanding of quantum TGD. At the level of generalized Feynman diagrams sub-CDs containing
zero energy states represent a hierarchy of radiative corrections so that the classical determinism
is direct correlate for the quantum non-determinism. Determinism makes sense only when one
has specified the length scale of measurement resolution. One can always add a CD containing a
vacuum extremal to get a new zero energy state and a preferred extremal containing more details.

Classical non-determinism saves the notion of time

Although classical non-determinism represents a formidable mathematical challenge it is a must
for several reasons. Quantum classical correspondence, which has become a basic guide line in
the development of TGD, states that all quantum phenomena have classical space-time correlates.
This is not new as far as properties of quantum states are considered. What is new that also
quantum jumps and quantum jump sequences which define conscious existence in TGD Universe,
should have classical space-time correlates: somewhat like written language is correlate for the
contents of consciousness of the writer. Classical non-determinism indeed makes this possible.
Classical non-determinism makes also possible the realization of statistical ensembles as ensembles
formed by strictly deterministic pieces of the space-time sheet so that even thermodynamics has
space-time representations. Space-time surface can thus be seen as symbolic representations for
the quantum existence.

In canonically quantized general relativity the loss of time is fundamental problem. If quantum
gravitational holography would work in the most strict sense, time would be lost also in TGD since
all relevant information about quantum states would be determined by the moment of big bang.
More precisely, geometro-temporal localization for the contents of conscious experience would not
be possible. Classical non-determinism together with quantum-classical correspondence however
suggests that it is possible to have quantum jumps in which non-determinism is concentrated in
space-time region so that also conscious experience contains information about this region only.

2.4.2 Four-dimensional General Coordinate Invariance

The proposed definition of the Kahler function is consistent with GCI and implies also 4-dimensional
Diff degeneracy of the Kéhler metric. Zero energy ontology inspires strengthening of the GCI in
the sense that space-like 3-surfaces at the boundaries of CD are physically equivalent with the
light-like 3-surfaces connecting the ends. This implies that basic geometric objects are partonic
2-surfaces at the boundaries of CDs identified as the intersections of these two kinds of surfaces.
Besides this the distribution of 4-D tangent planes at partonic 2-surfaces would code for physics so
that one would have only effective 2-dimensionality. The failure of the non-determinism of Kéahler
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action in the standard sense of the word affects the situation also and one must allow a fractal
hierarchy of CDs inside CDs having interpretation in terms of radiative corrections.

Resolution of tachyon difficulty and absence of Diff anomalies

In TGD as in string models the tachyon difficulty is potentially present: unless the time like
vibrational excitations possess zero norm they contribute tachyonic term to the mass squared
operator of Super Kac Moody algebra. This difficulty is familiar already from string models
[B27, B20] .

The degeneracy of the metric with respect to the time like vibrational excitations guarantees
that time like excitations do not contribute to the mass squared operator so that mass spectrum
is tachyon free. It also implies the decoupling of the tachyons from physical states: the propagator
of the theory corresponds essentially to the inverse of the Kéhler metric and therefore decouples
from time like vibrational excitations. The experience with string model suggests that if metric is
degenerate with respect to diffeomorphisms of X4(X?) there are indeed good hopes that time like
excitations possess vanishing norm with respect to WCW metric.

The four-dimensional Diff invariance of the Ké&hler function implies that Diff invariance is
guaranteed in the strong sense since the scalar product of two Diff vector fields given by the matrix
associated with (1,1) part of the second variation of the Kéhler action vanishes identically. This
property gives hopes of obtaining theory, which is free from Diff anomalies: in fact loop space
metric is not Diff degenerate and this might be the underlying reason to the problems encountered
in string models [B27, B20] .

Complexification of WCW

Strong form of GCI plays a fundamental role in the complexification of WCW. GCI in strong form
reduces the basic building brick of WCW to the pairs of partonic 2-surfaces and their 4-D tangent
space data associated with ends of light-like 3-surface at light-like boundaries of CD. At boths
end the imbedding space is effectively reduces to (5Mf|1r x C'Py (forgetting the complications due
to non-determinism of Kéhler action). Light cone boundary in turn is metrically 2-dimensional
Euclidian sphere allowing infinite-dimensional group of conformal symmetries and Kéahler structure.
Therefore one can say that in certain sense configuration space metric inherits the Kahler structure
of S? x CP,. This mechanism works in case of four-dimensional Minkowski space only: higher-
dimensional spheres do not possess even Kéhler structure. In fact, it turns out that the quantum
fluctuating degrees of freedom can be regarded in well-defined sense as a local variant of S2 x
CP, and thus as an infinite-dimensional analog of symmetric space as the considerations of [K10]
demonstrate.

The details of the complexification were understood only after the construction of WCW ge-
ometry and spinor structure in terms of second quantized induced spinor fields [K9] . This also
allows to make detailed statements about complexification [K10] .

Contravariant metric and Diff* degeneracy

Diff degeneracy implies that the definition of the contravariant metric, which corresponds to the
propagator associated to small deformations of minimizing surface is not quite straightforward. We
believe that this problem is only technical. Certainly this problem is not new, being encountered
in both GRT and gauge theories [B10, B16] . In TGD a solution of the problem is provided by the
existence of infinite-dimensional isometry group. If the generators of this group form a complete
set in the sense that any vector of the tangent space is expressible as as sum of these generators
plus some zero norm vector fields then one can restrict the consideration to this subspace and in
this subspace the matrix g(X,Y’) defined by the components of the metric tensor indeed indeed
possesses well defined inverse ¢g=!(X,Y). This procedure is analogous to gauge fixing conditions
in gauge theories and coordinate fixing conditions in General Relativity.

It has turned that the representability of WCW as a union of symmetric spaces makes possible
an approach to WCW integration based on harmonic analysis replacing the perturbative approach
based on perturbative functional integral. This approach allows also a p-adic variant and leads
an effective discretization in terms of discrete variants of WCW for which the points of symmetric
space cousist of algebraic points. There is an infinite number of these discretizations [K51] and the
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interpretation is in terms of finite measurement resolution. This gives a connection with the p-
adicization program, infinite primes, inclusions of hyper-finite factors as representation of the finite
measurement resolution, and the hierarchy of Planck constants [K50] so that various approaches
to quantum TGD converge nicely.

General Coordinate Invariance and WCW spinor fields

GCI applies also at the level of quantum states. WCW spinor fields are Diff* invariant. This in
fact fixes not only classical but also quantum dynamics completely. The point is that the values
of the WCW spinor fields must be essentially same for all Diff* related 3-surfaces at the orbit X*
associated with a given 3-surface. This would mean that the time development of Diff* invariant
configuration spinor field is completely determined by its initial value at the moment of the big
bang!

This is of course a naive over statement. The non-determinism of Kahler action and zero
energy ontology force to take the causal diamond (CD) defined by the intersection of future and
past directed light-cones as the basic structural unit of WCW, and there is fractal hierarchy of CDs
within CDs so that the above statement makes sense only for giving CD in measurement resolution
neglecting the presence of smaller CDs. Strong form of GCI also implies factorization of WCW
spinor fields into a sum of products associated with various partonic 2-surfaces. In particular, one
obtains time-like entanglement between positive and negative energy parts of zero energy states
and entanglement coefficients define what can be identified as M-matrix expressible as a ”complex
square root” of density matrix and reducing to a product of positive definite diagonal square root
of density matrix and unitary S-matrix. The collection of orthonormal M-matrices in turn define
unitary U-matrix between zero energy states. M-matrix is the basic object measured in particle
physics laboratory.

2.4.3 WCW geometry, generalized catastrophe theory, and phase tran-
sitions

The definition of WCW geometry has nice catastrophe theoretic interpretation. To understand
the connection consider first the definition of the ordinary catastrophe theory [A65] .

1. In catastrophe theory one considers extrema of the potential function depending on dynamical
variables x as function of external parameters c¢. The basic space decomposes locally into
cartesian product £ = C' x X of control variables ¢, appearing as parameters in potential
function V (¢, ) and of state variables z appearing as dynamical variables. Equilibrium states
of the system correspond to the extrema of the potential V' (z, ¢) with respect to the variables
x and in the absence of symmetries they form a sub-manifold of M with dimension equal to
that of the parameter space C. In some regions of C' there are several extrema of potential
function and the extremum value of x as a function of ¢ is multi-valued. These regions of
C x X are referred to as catastrophes. The simplest example is cusp catastrophe (see Fig.
2.4.3) with two control parameters and one state variable.

2. In catastrophe regions the actual equilibrium state must be selected by some additional phys-
ical requirement. If system obeys flow dynamics defined by first order differential equations
the catastrophic jumps take place along the folds of the cusp catastrophe (delay rule). On
the other hand, the Maxwell rule obeyed by thermodynamic phase transitions states that
the equilibrium state corresponds to the absolute minimum of the potential function and
the state of system changes in discontinuous manner along the Maxwell line in the middle
between the folds of the cusp (see Fig. 2.4.3).

3. As far as discontinuous behavior is considered fold catastrophe is the basic catastrophe: all
catastrophes contain folds as there ’satellites’ and one aim of the catastrophe theory is to
derive all possible manners for the stable organization of folds into higher catastrophes. The
fundamental result of the catastrophe theory is that for dimensions d of C smaller than 5
there are only 7 basic catastrophes and polynomial potential functions provide a canonical
representation for the catastrophes: fold catastrophe corresponds to third order polynomial
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(in fold the two real roots become a pair of complex conjugate roots), cusp to fourth order
polynomial, etc.

Consider now the TGD counterpart of this. TGD allows allows two kinds of catastrophe
theories.

1. The first one is related to Kahler action as a local functional of 4-surface. The nature of this
catastrophe theory depends on what one means with the preferred extremals.

2. Second catastrophe theory corresponds to Kéahler function a non-local functional of 3-surface.
The maxima of the vacuum functional defined as the exponent of Kahler function define
what might called effective space-times, and discontinuous jumps changing the values of the
parameters characterizing the maxima are possible.

Consider first the option based on Kéhler action.

1. Potential function corresponds to Kahler action restricted to the solutions of Euler Lagrange
equations. Catastrophe surface corresponds to the four-surfaces found by extremizing Kahler
action with respect to to the variables of X (time derivatives of coordinates of C' specifying
X? in H,) keeping the variables of C specifying 3-surface X? fixed. Preferred extremal
property is analogous to the Bohr quantization since canonical momenta cannot be chosen
freely as in the ordinary initial value problems of the classical physics. Preferred extremals
are by definition at criticality. Behavior variables correspond to the deformations of the 4-
surface keeping partonic 2-surfaces and 3-D tangent space data fixed and preserving extremal
property. Control variables would correspond to these data.

2. At criticality the rank of the infinite-dimensional matrix defined by the second functional
derivatives of the Kéahler action is reduced. Catastrophes form a hierarchy characterized by
the reduction of the rank of this matrix and Thom’s catastrophe theory generalizes to infinite-
dimensional context. Criticality in this sense would be one aspect of quantum criticality
having also other aspects. No discrete jumps would occur and system would only move along
the critical surface becoming more or less critical.

3. There can exist however several critical extremals assignable to a given partonic 2-surface
but have nothing to do with the catastrophes as defined in Thom’s approach. In presence of
degeneracy one should be able to choose one of the critical extremals or replace this kind of
regions of WCW by their multiple coverings so that single partonic 2-surface is replaced with
its multiple copy. The degeneracy of the preferred extremals could be actually a deeper reason
for the hierarchy of Planck constants involving in its most plausible version n-fold singular
coverings of CD and C'P,. This interpretation is very satisfactory since the generalization of
the imbedding space and hierarchy of Planck constants would follow naturally from quantum
criticality rather than as separate hypothesis.

4. The existence of the catastrophes is implied by the vacuum degeneracy of the Kéahler action.
For example, for pieces of Minkowski space in M _‘i x C'Py the second variation of the Kahler
action vanishes identically and only the fourth variation is non-vanishing: these 4-surfaces
are analogous to the tip of the cusp catastrophe. There are also space-time surfaces for
which the second variation is non-vanishing but degenerate and a hierarchy of subsets in
the space of extremal 4-surfaces with decreasing degeneracy of the second variation defines
the boundaries of the projection of the catastrophe surface to the space of 3-surfaces. The
space-times for which second variation is degenerate contain as subset the critical and initial
value sensitive absolute minimum space-times.

The natural expectation is that the number of critical deformations is infinite and corresponds
to conformal symmetries naturally assignable to criticality. The number n of conformal equivalence
classes of the deformations can be finite and n would naturally relate to the hierarchy of Planck
constants h.fr =n X h (see fig. http://www.tgdtheory.fi/appfigures/planckhierarchy. jpg,
which is also in the appendix of this book).

Consider next the catastrophe theory defined by Kéhler function.
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1. In this case the most obvious identification for the behavior variables would be in terms of
the space of all 3-surfaces in CD x C'P» - and if one believes in holography and zero energy
ontology - the 2-surfaces assignable the boundaries of causal diamonds (CDs).

2. The natural control variables are zero modes whereas behavior variables would correspond
to quantum fluctuating degrees of freedom contributing to the WCW metric. The induced
Kaéhler form at partonic 2-surface would define infinitude of purely classical control variables.
There is also a correlation between zero modes identified as degrees of freedom assignable to
the interior of 3-surface and quantum fluctuating degrees of freedom assigned to the partonic
2-surfaces. This is nothing but holography and effective 2-dimensionality justifying the basic
assumption of quantum measurement theory about the correspondence between classical
and quantum variables. The absence of several maxima implies also the presence of saddle
surfaces at which the rank of the matrix defined by the second derivatives is reduced. This
could lead to a non-positive definite metric. It seems that it is possible to have maxima of
Kahler function without losing positive definiteness of the metric since metric is defined as
(1,1)-type derivatives with respect to complex coordinates. In case of C' P, however Kéhler
function has single degenerate maximum corresponding to the homologically trivial geodesic
sphere at r = oo. It might happen that also in the case of infinite-D symmetric space finite
maxima are impossible.

3. The criticality of Kéhler function would be analogous to thermodynamical criticality and to
the criticality in the sense of catastrophe theory. In this case Maxwell’s rule is possible and
even plausible since quantum jump replaces the dynamics defined by a continuous flow.

Cusp catastrophe provides a simple concretization of the situation for the criticality of Kéhler
action (as distinguished from that for Kéhler function).

1. The set M of the critical 4-surfaces corresponds to the V-shaped boundary of the 2-D cusp
catastrophe in 3-D space to plane. In general case it forms codimension one set in WCW.
In TGD Universe physical system would reside at this line or its generalization to higher
dimensional catastrophes. For the criticality associated with Kéahler action the transitions
would be smooth transitions between different criticalities characterized by the rank defined
above: in the case of cusp from the tip of cusp to the vertex of cusp or vice versa. Evolution
could mean a gradual increase of criticality in this sense. If preferred extremals are not
unique, cusp catastrophe does not provide any analogy. The strong form of criticality would
mean that the system would be always ”at the tip of cusp” in metaphoric sense. Vacuum
extremals are maximally critical in trivial sense, and the deformations of vacuum extremals
could define the hierarchy of criticalities.

2. For the criticality of Kéhler action Maxwell’s rule stating that discontinuous jumps occur
along the middle line of the cusp is in conflict with catastrophe theory predicting that jumps
occurs along at criticality. For the criticality of K&hler function -if allowed at all by symmetric
space property- Maxwell’s rule can hold true but cannot be regarded as a fundamental law.
It is of course known that phase transitions can occur in different manners (super heating
and super cooling).
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Figure 2.1: Cusp catastrophe

2.5 Weak form electric-magnetic duality and its implica-
tions

The notion of electric-magnetic duality [B2] was proposed first by Olive and Montonen and is
central in N' = 4 supersymmetric gauge theories. It states that magnetic monopoles and ordinary
particles are two different phases of theory and that the description in terms of monopoles can be
applied at the limit when the running gauge coupling constant becomes very large and perturbation
theory fails to converge. The notion of electric-magnetic self-duality is more natural since for
CP, geometry Kahler form is self-dual and Kahler magnetic monopoles are also Kahler electric
monopoles and Kéhler coupling strength is by quantum criticality renormalization group invariant
rather than running coupling constant. The notion of electric-magnetic (self-)duality emerged
already two decades ago in the attempts to formulate the Kéhler geometric of world of classical
worlds. Quite recently a considerable step of progress took place in the understanding of this
notion [K10] . What seems to be essential is that one adopts a weaker form of the self-duality
applying at partonic 2-surfaces. What this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that this con-
cept leads to precise predictions. The point is that elementary particles do not generate monopole
fields in macroscopic length scales: at least when one considers visible matter. The first question is
whether elementary particles could have vanishing magnetic charges: this turns out to be impossi-
ble. The next question is how the screening of the magnetic charges could take place and leads to
an identification of the physical particles as string like objects identified as pairs magnetic charged
wormbhole throats connected by magnetic flux tubes.

1. The first implication is a new view about electro-weak massivation reducing it to weak confine-
ment in TGD framework. The second end of the string contains particle having electroweak
isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak
scale would be in question. Hence the screening of electro-weak force takes place via weak
confinement realized in terms of magnetic confinement.

2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of
magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be
connected by flux tubes of length of order hadron size such that magnetic charges sum up to
zero. For instance, for baryonic valence quarks these charges could be (2,—1, —1) and could
be proportional to color hyper charge.

3. The highly non-trivial prediction making more precise the earlier stringy vision is that ele-
mentary particles are string like objects: this could become manifest at LHC energies.

4. The weak form electric-magnetic duality together with Beltrami flow property of Kahler leads
to the reduction of Kéhler action to Chern-Simons action so that TGD reduces to almost
topological QFT and that Kéahler function is explicitly calculable. This has enormous impact
concerning practical calculability of the theory.

5. One ends up also to a general solution ansatz for field equations from the condition that the
theory reduces to almost topological QFT. The solution ansatz is inspired by the idea that
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all isometry currents are proportional to Kéahler current which is integrable in the sense that
the flow parameter associated with its flow lines defines a global coordinate. The proposed
solution ansatz would describe a hydrodynamical flow with the property that isometry charges
are conserved along the flow lines (Beltrami flow). A general ansatz satisfying the integrability
conditions is found.

The strongest form of the solution ansatz states that various classical and quantum currents
flow along flow lines of the Beltrami flow defined by Kéhler current (Kéhler magnetic field
associated with Chern-Simons action). Intuitively this picture is attractive. A more general
ansatz would allow several Beltrami flows meaning multi-hydrodynamics. The integrability
conditions boil down to two scalar functions: the first one satisfies massless d’Alembert
equation in the induced metric and the the gradients of the scalar functions are orthogonal.
The interpretation in terms of momentum and polarization directions is natural. Also Chern-
Simons Dirac equation implies the localization of solutions to flow lines, and this is consistent
with the localization solutions of Kéahler-Dirac equation to string world sheets.

2.5.1 Could a weak form of electric-magnetic duality hold true?

Holography means that the initial data at the partonic 2-surfaces should fix the WCW metric. A
weak form of this condition allows only the partonic 2-surfaces defined by the wormhole throats
at which the signature of the induced metric changes. A stronger condition allows all partonic
2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and string world sheets. Num-
ber theoretical vision suggests that hyper-quaternionicity resp. co-hyperquaternionicity constraint
could be enough to fix the initial values of time derivatives of the imbedding space coordinates in
the space-time regions with Minkowskian resp. Euclidian signature of the induced metric. This
is a condition on modified gamma matrices and hyper-quaternionicity states that they span a
hyper-quaternionic sub-space.

Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The argument
goes as follows.

1. The expression of the matrix elements of the metric and Kéahler form of WCW in terms of
the Kihler fluxes weighted by Hamiltonians of §M4{ at the partonic 2-surface X2 looks very
attractive. These expressions however carry no information about the 4-D tangent space of
the partonic 2-surfaces so that the theory would reduce to a genuinely 2-dimensional theory,
which cannot hold true. One would like to code to the WCW metric also information about
the electric part of the induced Kéahler form assignable to the complement of the tangent
space of X2 C X*.

2. Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial
manner to get electric magnetic duality at the level of the full theory would be via the
identification of the flux Hamiltonians as sums of of the magnetic and electric fluxes. The
presence of the induced metric is however troublesome since the presence of the induced
metric means that the simple transformation properties of flux Hamiltonians under symplectic
transformations -in particular color rotations- are lost.

3. A less trivial formulation of electric-magnetic duality would be as an initial condition which
eliminates the induced metric from the electric flux. In the Euclidian version of 4-D YM
theory this duality allows to solve field equations exactly in terms of instantons. This ap-
proach involves also quaternions. These arguments suggest that the duality in some form
might work. The full electric magnetic duality is certainly too strong and implies that space-
time surface at the partonic 2-surface corresponds to piece of C P, type vacuum extremal
and can hold only in the deep interior of the region with Euclidian signature. In the region
surrounding wormhole throat at both sides the condition must be replaced with a weaker
condition.
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4. To formulate a weaker form of the condition let us introduce coordinates (2°, 3,1, 2?)

such (2!, 2?) define coordinates for the partonic 2-surface and (2, 23) define coordinates
labeling partonic 2-surfaces in the slicing of the space-time surface by partonic 2-surfaces
and string world sheets making sense in the regions of space-time sheet with Minkowskian
signature. The assumption about the slicing allows to preserve general coordinate invariance.
The weakest condition is that the generalized Kéahler electric fluxes are apart from constant
proportional to Kéhler magnetic fluxes. This requires the condition

J% g = KJia . (2.5.1)

A more general form of this duality is suggested by the considerations of [K22] reducing the
hierarchy of Planck constants to basic quantum TGD and also reducing K&hler function for
preferred extremals to Chern-Simons terms [B1] at the boundaries of CD and at light-like
wormhole throats. This form is following

JPfga = Kex P L5 /g1 . (2.5.2)

Here the index n refers to a normal coordinate for the space-like 3-surface at either boundary
of CD or for light-like wormhole throat. € is a sign factor which is opposite for the two ends of
CD. It could be also opposite of opposite at the opposite sides of the wormhole throat. Note
that the dependence on induced metric disappears at the right hand side and this condition
eliminates the potentials singularity due to the reduction of the rank of the induced metric
at wormhole throat.

5. Information about the tangent space of the space-time surface can be coded to the WCW
metric with loosing the nice transformation properties of the magnetic flux Hamiltonians if
Kahler electric fluxes or sum of magnetic flux and electric flux satisfying this condition are
used and K is symplectic invariant. Using the sum

Jo+Jym = (1+K)J12 , (253)

where J denotes the Kdhler magnetic flux, , makes it possible to have a non-trivial WCW
metric even for K = 0, which could correspond to the ends of a cosmic string like solution
carrying only Kéahler magnetic fields. This condition suggests that it can depend only on
Kahler magnetic flux and other symplectic invariants. Whether local symplectic coordinate
invariants are possible at all is far from obvious, If the slicing itself is symplectic invariant
then K could be a non-constant function of X? depending on string world sheet coordinates.
The light-like radial coordinate of the light-cone boundary indeed defines a symplectically
invariant slicing and this slicing could be shifted along the time axis defined by the tips of
CD.

Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints are ob-
tained if one assumes that the quantization of electro-weak charges reduces to this condition at
classical level?

1. The first thing to notice is that the flux of J over the partonic 2-surface is analogous to
magnetic flux

Qm:%j{BdS:n .

n is non-vanishing only if the surface is homologically non-trivial and gives the homology
charge of the partonic 2-surface.
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2. The expressions of classical electromagnetic and Z° fields in terms of Kihler form [L1] , [L1]

read as
Fem .
v o= & I = 3 — sin®(6w)Ros
F
70 = gzhz — 2Ry3 . (2.5.4)

Here Rys is one of the components of the curvature tensor in vielbein representation and F,,
and Fz correspond to the standard field tensors. From this expression one can deduce

€ . 9z
= —F 2 2Ry, . 2.5.
J o, Lem + sin*(Ow) ontz (2.5.5)

3. The weak duality condition when integrated over X? implies

o2 2
%Qem""%@Z,V = KjI{J:Kn ,
IS
Qzv = ?V*Qem , p=sin*(Ow) . (2.5.6)

Here the vectorial part of the Z° charge rather than as full Z° charge Q, = I%—l—sz'nz (Ow)Qem
appears. The reason is that only the vectorial isospin is same for left and right handed
components of fermion which are in general mixed for the massive states.

The coefficients are dimensionless and expressible in terms of the gauge coupling strengths
and using i = rhg one can write

(654 3
aeerm + p?QZ,V = — xrmK )

47
62 g% Qem
em — 5 = = — 2.5.7
@ dhy © % T dnhe  p(1—p) (2.5.7)

4. There is a great temptation to assume that the values of Q.,, and Qz correspond to their
quantized values and therefore depend on the quantum state assigned to the partonic 2-
surface. The linear coupling of the modified Dirac operator to conserved charges implies
correlation between the geometry of space-time sheet and quantum numbers assigned to the
partonic 2-surface. The assumption of standard quantized values for Q.,, and @z would
be also seen as the identification of the fine structure constants co.,, and «yz. This however
requires weak isospin invariance.

The value of K from classical quantization of Kahler electric charge

The value of K can be deduced by requiring classical quantization of Kéahler electric charge.

1. The condition that the flux of F9 = (h/gx)J? defining the counterpart of Kéhler electric
field equals to the Kéhler charge gx would give the condition K = g% /h, where gf is Kéhler
coupling constant which should invariant under coupling constant evolution by quantum
criticality. Within experimental uncertainties one has ax = g%( /Amhy = Qe =~ 1/137, where
Qem 18 finite structure constant in electron length scale and Ay is the standard value of Planck
constant.
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2. The quantization of Planck constants makes the condition highly non-trivial. The most gen-
eral quantization of r is as rationals but there are good arguments favoring the quantization
as integers corresponding to the allowance of only singular coverings of CD andn CP,. The
point is that in this case a given value of Planck constant corresponds to a finite number
pages of the ”Big Book”. The quantization of the Planck constant implies a further quan-
tization of K and would suggest that K scales as 1/r unless the spectrum of values of Q¢
and Qz allowed by the quantization condition scales as r. This is quite possible and the
interpretation would be that each of the r sheets of the covering carries (possibly same) el-
ementary charge. Kind of discrete variant of a full Fermi sphere would be in question. The
interpretation in terms of anyonic phases [K37] supports this interpretation.

3. The identification of J as a counterpart of eB/h means that Kéhler action and thus also
Kéhler function is proportional to 1/ak and therefore to A. This implies that for large
values of h Kihler coupling strength g% /47 becomes very small and large fluctuations are
suppressed in the functional integral. The basic motivation for introducing the hierarchy of
Planck constants was indeed that the scaling « — «/r allows to achieve the convergence
of perturbation theory: Nature itself would solve the problems of the theoretician. This of
course does not mean that the physical states would remain as such and the replacement of
single particles with anyonic states in order to satisfy the condition for K would realize this
concretely.

4. The condition K = g2 /h implies that the Kiihler magnetic charge is always accompanied by
Kahler electric charge. A more general condition would read as

K = nx%",nez. (2.5.8)

This would apply in the case of cosmic strings and would allow vanishing K&hler charge
possible when the partonic 2-surface has opposite fermion and anti-fermion numbers (for
both leptons and quarks) so that Kéhler electric charge should vanish. For instance, for
neutrinos the vanishing of electric charge strongly suggests n = 0 besides the condition that
abelian Z° flux contributing to em charge vanishes.

It took a year to realize that this value of K is natural at the Minkowskian side of the wormhole
throat. At the Euclidian side much more natural condition is

1
K = . 2.5.9
hbar ( )

In fact, the self-duality of C' P, Kéhler form favours this boundary condition at the Euclidian side
of the wormhole throat. Also the fact that one cannot distinguish between electric and magnetic
charges in Euclidian region since all charges are magnetic can be used to argue in favor of this
form. The same constraint arises from the condition that the action for C'P; type vacuum extremal
has the value required by the argument leading to a prediction for gravitational constant in terms
of the square of C'P; radius and aj the effective replacement g% — 1 would spoil the argument.

The boundary condition Jg = Jp for the electric and magnetic parts of Kahlwer form at the
FEuclidian side of the wormhole throat inspires the question whether all Euclidian regions could
be self-dual so that the density of Kahler action would be just the instanton density. Self-duality
follows if the deformation of the metric induced by the deformation of the canonically imbedded
CP; is such that in CP, coordinates for the Euclidian region the tensor (g*%g" — ga”g”ﬁ)/\/fy
remains invariant. This is certainly the case for C'P; type vacuum extremals since by the light-
likeness of M* projection the metric remains invariant. Also conformal scalings of the induced
metric would satisfy this condition. Conformal scaling is not consistent with the degeneracy of the
4-metric at the wormhole.
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Reduction of the quantization of Kahler electric charge to that of electromagnetic
charge

The best manner to learn more is to challenge the form of the weak electric-magnetic duality based
on the induced Kahler form.

1. Physically it would seem more sensible to pose the duality on electromagnetic charge rather
than Ké&hler charge. This would replace induced Kahler form with electromagnetic field,
which is a linear combination of induced Kahler field and classical Z° field

v = 3J—sin*0wRos ,
Z° = 2Rg; . (2.5.10)

Here Zy = 2Rp3 is the appropriate component of C' P, curvature form [L1]. For a vanishing
Weinberg angle the condition reduces to that for Kéhler form.

2. For the Euclidian space-time regions having interpretation as lines of generalized Feynman
diagrams Weinberg angle should be non-vanishing. In Minkowskian regions Weinberg angle
could however vanish. If so, the condition guaranteeing that electromagnetic charge of the
partonic 2-surfaces equals to the above condition stating that the em charge assignable to
the fermion content of the partonic 2-surfaces reduces to the classical Kéhler electric flux
at the Minkowskian side of the wormhole throat. One can argue that Weinberg angle must
increase smoothly from a vanishing value at both sides of wormhole throat to its value in the
deep interior of the Euclidian region.

3. The vanishing of the Weinberg angle in Minkowskian regions conforms with the physical
intuition. Above elementary particle length scales one sees only the classical electric field
reducing to the induced Kahler form and classical Z° fields and color gauge fields are effec-
tively absent. Only in phases with a large value of Planck constant classical Z° field and
other classical weak fields and color gauge field could make themselves visible. Cell mem-
brane could be one such system [K41]. This conforms with the general picture about color
confinement and weak massivation.

The GRT limit of TGD suggests a further reason for why Weinberg angle should vanish in
Minkowskian regions.

1. The value of the Kahler coupling strength mut be very near to the value of the fine structure
constant in electron length scale and these constants can be assumed to be equal.

2. GRT limit of TGD with space-time surfaces replaced with abstract 4-geometries would
naturally correspond to Einstein-Maxwell theory with cosmological constant which is non-
vanishing only in Euclidian regions of space-time so that both Reissner-Nordstrom metric and
CP, are allowed as simplest possible solutions of field equations [K56]. The extremely small
value of the observed cosmological constant needed in GRT type cosmology could be equal
to the large cosmological constant associated with C'P, metric multiplied with the 3-volume
fraction of Euclidian regions.

3. Also at GRT limit quantum theory would reduce to almost topological QFT since Einstein-
Maxwell action reduces to 3-D term by field equations implying the vanishing of the Maxwell
current and of the curvature scalar in Minkowskian regions and curvature scalar + cosmo-
logical constant term in Euclidian regions. The weak form of electric-magnetic duality would
guarantee also now the preferred extremal property and prevent the reduction to a mere
topological QFT.

4. GRT limit would make sense only for a vanishing Weinberg angle in Minkowskian regions. A
non-vanishing Weinberg angle would make sense in the deep interior of the Euclidian regions
where the approximation as a small deformation of C' P, makes sense.

The weak form of electric-magnetic duality has surprisingly strong implications for the basic
view about quantum TGD as following considerations show.
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2.5.2 Magnetic confinement, the short range of weak forces, and color
confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one combines it
with some very general empirical facts such as the non-existence of magnetic monopole fields in
macroscopic length scales.

How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length scale
and one should have a mechanism neutralizing the monopole charge. How electroweak interactions
become short ranged in TGD framework is still a poorly understood problem. What suggests itself
is the neutralization of the weak isospin above the intermediate gauge boson Compton length by
neutral Higgs bosons. Could the two neutralization mechanisms be combined to single one?

1. In the case of fermions and their super partners the opposite magnetic monopole would be
a wormhole throat. If the magnetically charged wormhole contact is electromagnetically
neutral but has vectorial weak isospin neutralizing the weak vectorial isospin of the fermion
only the electromagnetic charge of the fermion is visible on longer length scales. The distance
of this wormhole throat from the fermionic one should be of the order weak boson Compton
length. An interpretation as a bound state of fermion and a wormhole throat state with the
quantum numbers of a neutral Higgs boson would therefore make sense. The neutralizing
throat would have quantum numbers of X_;,5 = v Vg or Xy, = Vivg. viVgr would
not be neutral Higgs boson (which should correspond to a wormhole contact) but a super-
partner of left-handed neutrino obtained by adding a right handed neutrino. This mechanism
would apply separately to the fermionic and anti-fermionic throats of the gauge bosons and
corresponding space-time sheets and leave only electromagnetic interaction as a long ranged
interaction.

2. One can of course wonder what is the situation situation for the bosonic wormhole throats
feeding gauge fluxes between space-time sheets. It would seem that these wormhole throats
must always appear as pairs such that for the second member of the pair monopole charges
and I3 cancel each other at both space-time sheets involved so that one obtains at both
space-time sheets magnetic dipoles of size of weak boson Compton length. The proposed
magnetic character of fundamental particles should become visible at TeV energies so that
LHC might have surprises in store!

Well-definedness of electromagnetic charge implies stringiness

Well-definedness of electromagnetic charged at string world sheets carrying spinor modes is very
natural constraint and not trivially satisfied because classical W boson fields are present. As a
matter fact, all weak fields should be effectively absent above weak scale. How this is possible
classical weak fields identified as induced gauge fields are certainly present.

The condition that em charge is well defined for spinor modes implies that the space-time region
in which spinor mode is non-vanishing has 2-D CP, projection such that the induced W boson
fields are vanishing. The vanishing of classical Z° field can be poses as additional condition - at
least in scales above weak scale. In the generic case this requires that the spinor mode is restricted
to 2-D surface: string world sheet or possibly also partonic 2-surface. This implies that TGD
reduces to string model in fermionic sector. Even for preferred extremals with 2-D projecting
the modes are expected to allow restriction to 2-surfaces. This localization is possible only for
Kahler-Dirac action.

A word of warning is however in order. The GRT limit or rather limit of TGD as Einstein
Yang-Mills theory replaces the sheets of many-sheeted space-time with Minkowski space with
effective metric obtained by summing to Minkowski metric the deviations of the induced metrics
of space-time sheets from Minkowski metric. For gauge potentials a similar identification applies.
YM-Einstein equations coupled with matter and with non-vanishing cosmological constant are
expected on basis of Poincare invariance. One cannot exclude the possibility that the sums of
weak gauge potentials from different space-time sheet tend to vanish above weak scale and that
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well-definedness of em charge at classical level follows from the effective absence of classical weak
gauge fields.

Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider also the
situation in which the magnetic charges of quarks (more generally, of color excited leptons and
quarks) do not vanish and they form color and magnetic singles in the hadronic length scale. This
would mean that magnetic charges of the state qii/2 — X+1/2 representing the physical quark
would not vanish and magnetic confinement would accompany also color confinement. This would
explain why free quarks are not observed. To how degree then quark confinement corresponds to
magnetic confinement is an interesting question.

For quark and antiquark of meson the magnetic charges of quark and antiquark would be
opposite and meson would correspond to a Kéahler magnetic flux so that a stringy view about
meson emerges. For valence quarks of baryon the vanishing of the net magnetic charge takes
place provided that the magnetic net charges are (£2,F1,F1). This brings in mind the spectrum
of color hyper charges coming as (+£2,F1,F1)/3 and one can indeed ask whether color hyper-
charge correlates with the Kéhler magnetic charge. The geometric picture would be three strings
connected to single vertex. Amusingly, the idea that color hypercharge could be proportional to
color hyper charge popped up during the first year of TGD when I had not yet discovered C P
and believed on M* x S2.

p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark
variants of particles suggest the existence of scaled up copies of QCD type physics and weak physics.
For p-adically scaled up variants the mass scales would be scaled by a power of v/2 in the most
general case. The dark variants of the particle would have the same mass as the original one. In
particular, Mersenne primes My, = 2* — 1 and Gaussian Mersennes Mg ; = (1 +14)* — 1 has been
proposed to define zoomed copies of these physics. At the level of magnetic confinement this would
mean hierarchy of length scales for the magnetic confinement.

One particular proposal is that the Mersenne prime Mgg should define a scaled up variant of
the ordinary hadron physics with mass scaled up roughly by a factor 2(107-89/2 = 512, The size
scale of color confinement for this physics would be same as the weal length scale. It would look
more natural that the weak confinement for the quarks of Mgg physics takes place in some shorter
scale and Mg is the first Mersenne prime to be considered. The mass scale of Mg; weak bosons
would be by a factor 2(39-61/2 = 214 higher and about 1.6 x 10* TeV. Mgy quarks would have
virtually no weak interactions but would possess color interactions with weak confinement length
scale reflecting themselves as new kind of jets at collisions above TeV energies.

In the biologically especially important length scale range 10 nm -2500 nm there are as many
as four scaled up electron Compton lengths L. (k) = v/5L(k): they are associated with Gaussian
Mersennes Mq 1, k = 151,157,163,167. This would suggest that the existence of scaled up scales
of magnetic-, weak- and color confinement. An especially interesting possibly testable prediction is
the existence of magnetic monopole pairs with the size scale in this range. There are recent claims
about experimental evidence for magnetic monopole pairs [D3] .

Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one
recalls that electric-magnetic duality in super-symmetric quantum field theories means that the
descriptions in terms of particles and monopoles are in some sense dual descriptions. Fermions
would be replaced by string like objects defined by the magnetic flux tubes and bosons as pairs
of wormhole contacts would correspond to pairs of the flux tubes. Therefore the sharp distinction
between gravitons and physical particles would disappear.

The reason why gravitons are necessarily stringy objects formed by a pair of wormhole contacts
is that one cannot construct spin two objects using only single fermion states at wormhole throats.
Of course, also super partners of these states with higher spin obtained by adding fermions and
anti-fermions at the wormhole throat but these do not give rise to graviton like states [K19] . The
upper and lower wormhole throat pairs would be quantum superpositions of fermion anti-fermion
pairs with sum over all fermions. The reason is that otherwise one cannot realize graviton emission
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in terms of joining of the ends of light-like 3-surfaces together. Also now magnetic monopole
charges are necessary but now there is no need to assign the entities X1 with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below this
length scale the charges of the fermions become visible. Mersenne hypothesis suggests that some
Mersenne prime is in question. One proposal is that gravitonic size scale is given by electronic
Mersenne prime Mio7. It is however difficult to test whether graviton has a structure visible below
this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at all
clear how closely they relate to ordinary Feynman diagrams. All depends on what one is ready to
assume about what happens in the vertices. One could of course hope that zero energy ontology
could allow some very simple description allowing perhaps to get rid of the problematic aspects of
Feynman diagrams.

1. Consider first the recent view about generalized Feynman diagrams which relies zero energy
ontology. A highly attractive assumption is that the particles appearing at wormhole throats
are on mass shell particles. For incoming and outgoing elementary bosons and their super
partners they would be positive it resp. negative energy states with parallel on mass shell
momenta. For virtual bosons they the wormhole throats would have opposite sign of energy
and the sum of on mass shell states would give virtual net momenta. This would make
possible twistor description of virtual particles allowing only massless particles (in 4-D sense
usually and in 8-D sense in TGD framework). The notion of virtual fermion makes sense
only if one assumes in the interaction region a topological condensation creating another
wormhole throat having no fermionic quantum numbers.

2. The addition of the particles X* replaces generalized Feynman diagrams with the analogs of
stringy diagrams with lines replaced by pairs of lines corresponding to fermion and X, /s.
The members of these pairs would correspond to 3-D light-like surfaces glued together at the
vertices of generalized Feynman diagrams. The analog of 3-vertex would not be splitting of
the string to form shorter strings but the replication of the entire string to form two strings
with same length or fusion of two strings to single string along all their points rather than
along ends to form a longer string. It is not clear whether the duality symmetry of stringy
diagrams can hold true for the TGD variants of stringy diagrams.

3. How should one describe the bound state formed by the fermion and X*? Should one
describe the state as superposition of non-parallel on mass shell states so that the composite
state would be automatically massive? The description as superposition of on mass shell
states does not conform with the idea that bound state formation requires binding energy.
In TGD framework the notion of negentropic entanglement has been suggested to make
possible the analogs of bound states consisting of on mass shell states so that the binding
energy is zero [K28] . If this kind of states are in question the description of virtual states in
terms of on mass shell states is not lost. Of course, one cannot exclude the possibility that
there is infinite number of this kind of states serving as analogs for the excitations of string
like object.

4. What happens to the states formed by fermions and X.,,, in the internal lines of the
Feynman diagram? Twistor philosophy suggests that only the higher on mass shell excitations
are possible. If this picture is correct, the situation would not change in an essential manner
from the earlier one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles
should have stringy character in electro-weak length scales and could behaving to become manifest
at LHC energies. This adds one further item to the list of non-trivial predictions of TGD about
physics at LHC energies [K29] .

2.5.3 Could Quantum TGD reduce to almost topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD reduces
to almost topological quantum theory in the sense that the counterpart of Chern-Simons action as-
signed with the wormhole throats somehow dictates the dynamics. This proposal can be formulated
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also for the modified Dirac action action. I gave up this proposal but the following argument shows
that Kahler action with weak form of electric-magnetic duality effectively reduces to Chern-Simons
action plus Coulomb term.

1. Kéhler action density can be written as a 4-dimensional integral of the Coulomb term j% A,
plus and integral of the boundary term J”ﬁAg./g4 over the wormhole throats and of the
quantity J% Ag,/gs over the ends of the 3-surface.

2. If the self-duality conditions generalize to J"# = 47rozKe”5"’5J.y§ at throats and to JO% =
dra KGOBV‘Sng at the ends, the Kéhler function reduces to the counterpart of Chern-Simons
action evaluated at the ends and throats. It would have same value for each branch and the
replacement iy — rhy would effectively describe this. Boundary conditions would however
give 1/r factor so that i would disappear from the Kéhler function! The original attempt to
realize quantum TGD as an almost topological QFT was in terms of Chern-Simons action
but was given up. It is somewhat surprising that K&hler action gives Chern-Simons action
in the vacuum sector defined as sector for which Kéhler current is light-like or vanishes.

Holography encourages to ask whether also the Coulomb interaction terms could vanish. This
kind of dimensional reduction would mean an enormous simplification since TGD would reduce to
an almost topological QFT. The attribute ”almost” would come from the fact that one has non-
vanishing classical Noether charges defined by K&hler action and non-trivial quantum dynamics in
M* degrees of freedom. One could also assign to space-time surfaces conserved four-momenta which
is not possible in topological QFTs. For this reason the conditions guaranteeing the vanishing of
Coulomb interaction term deserve a detailed analysis.

1. For the known extremals j& either vanishes or is light-like ("massless extremals” for which
weak self-duality condition does not make sense [K5] ) so that the Coulomb term vanishes
identically in the gauge used. The addition of a gradient to A induces terms located at the
ends and wormhole throats of the space-time surface but this term must be cancelled by the
other boundary terms by gauge invariance of Kihler action. This implies that the M* part of
WCW metric vanishes in this case. Therefore massless extremals as such are not physically
realistic: wormhole throats representing particles are needed.

2. The original naive conclusion was that since Chern-Simons action depends on C'P, coor-
dinates only, its variation with respect to Minkowski coordinates must vanish so that the
WCW metric would be trivial in M* degrees of freedom. This conclusion is in conflict with
quantum classical correspondence and was indeed too hasty. The point is that the allowed
variations of Kahler function must respect the weak electro-magnetic duality which relates
Kahler electric field depending on the induced 4-metric at 3-surface to the Kahler magnetic
field. Therefore the dependence on M* coordinates creeps via a Lagrange multiplier term

/AQ(JW — K" Jg pamma)/gad’z . (2.5.11)

The (1,1) part of second variation contributing to M* metric comes from this term.

3. This erratic conclusion about the vanishing of M* part WCW metric raised the question
about how to achieve a non-trivial metric in M* degrees of freedom. The proposal was
a modification of the weak form of electric-magnetic duality. Besides C'P, Kéhler form
there would be the Kéhler form assignable to the light-cone boundary reducing to that for
ry = constant sphere - call it J'. The generalization of the weak form of self-duality
would be J"¥ = "MK (5 + eJ,ia). This form implies that the boundary term gives a
non-trivial contribution to the M* part of the WCW metric even without the constraint
from electric-magnetic duality. Kahler charge is not affected unless the partonic 2-surface
contains the tip of CD in its interior. In this case the value of Kéhler charge is shifted by a
topological contribution. Whether this term can survive depends on whether the resulting
vacuum extremals are consistent with the basic facts about classical gravitation.
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4. The Coulombic interaction term is not invariant under gauge transformations. The good

news is that this might allow to find a gauge in which the Coulomb term vanishes. The
vanishing condition fixing the gauge transformation ¢ is

Jx0ad = —j"Aa . (2.5.12)

This differential equation can be reduced to an ordinary differential equation along the flow
lines jx by using dz®/dt = j&. Global solution is obtained only if one can combine the flow
parameter ¢ with three other coordinates- say those at the either end of CD to form space-
time coordinates. The condition is that the parameter defining the coordinate differential
is proportional to the covariant form of Kahler current: dt = ¢ji. This condition in turn
implies d*t = d(¢jx) = d(¢jx) = dé A jx + ¢djx = 0 implying jx A djg = 0 or more
concretely,

P e = 0. (2.5.13)

ji is a four-dimensional counterpart of Beltrami field [B19] and could be called generalized
Beltrami field.

The integrability conditions follow also from the construction of the extremals of Kéahler
action [K5] . The conjecture was that for the extremals the 4-dimensional Lorentz force
vanishes (no dissipation): this requires jx A J = 0. One manner to guarantee this is the
topologization of the Kahler current meaning that it is proportional to the instanton current:
jx = ¢jr, where j; = *(J A A) is the instanton current, which is not conserved for 4-D CP,
projection. The conservation of jx implies the condition j§0,¢ = 0,j%¢ and from this ¢ can
be integrated if the integrability condition j; Adj; = 0 holds true implying the same condition
for ji. By introducing at least 3 or C'P, coordinates as space-time coordinates, one finds that
the contravariant form of j; is purely topological so that the integrability condition fixes the
dependence on M* coordinates and this selection is coded into the scalar function ¢. These
functions define families of conserved currents j% ¢ and j#¢ and could be also interpreted as
conserved currents associated with the critical deformations of the space-time surface.

. There are gauge transformations respecting the vanishing of the Coulomb term. The vanish-

ing condition for the Coulomb term is gauge invariant only under the gauge transformations
A — A+ V¢ for which the scalar function the integral [ j%d,¢ reduces to a total divergence
a giving an integral over various 3-surfaces at the ends of CD and at throats vanishes. This
is satisfied if the allowed gauge transformations define conserved currents

Do(j%¢) = 0 . (2.5.14)

As a consequence Coulomb term reduces to a difference of the conserved charges Qf =
J 3°¢\/gad*z at the ends of the CD vanishing identically. The change of the Chern-Simons
type term is trivial if the total weighted Kahler magnetic flux Q' = > f Jod A over wormhole
throats is conserved. The existence of an infinite number of conserved weighted magnetic
fluxes is in accordance with the electric-magnetic duality. How these fluxes relate to the flux
Hamiltonians central for WCW geometry is not quite clear.

. The gauge transformations respecting the reduction to almost topological QFT should have

some special physical meaning. The measurement interaction term in the modified Dirac
interaction corresponds to a critical deformation of the space-time sheet and is realized as
an addition of a gauge part to the Kéahler gauge potential of C'P». It would be natural to
identify this gauge transformation giving rise to a conserved charge so that the conserved
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charges would provide a representation for the charges associated with the infinitesimal criti-
cal deformations not affecting Kéhler action. The gauge transformed K&hler gauge potential
couples to the modified Dirac equation and its effect could be visible in the value of Kahler
function and therefore also in the properties of the preferred extremal. The effect on WCW
metric would however vanish since K would transform only by an addition of a real part of
a holomorphic function.

7. A first guess for the explicit realization of the quantum classical correspondence between
quantum numbers and space-time geometry is that the deformation of the preferred ex-
tremal due to the addition of the measurement interaction term is induced by a U(1) gauge
transformation induced by a transformation of 6C'D x C' P, generating the gauge transfor-
mation represented by ¢. This interpretation makes sense if the fluxes defined by Q7' and
corresponding Hamiltonians affect only zero modes rather than quantum fluctuating degrees
of freedom.

8. Later a simpler proposal assuming Kéahler action with Chern-Simons term at partonic orbits
and Ké&hler-Dirac action with Chern-Simons Dirac term at partonic orbits emerged. Mea-
surement interaction terms would correspond to Lagrange multiplier terms at the ends of
space-time surface fixing the values of classical conserved charges to their quantum values.
Super-symmetry requires the assignment of this kind of term also to modified Dirac action
as boundary term.

Kahler-Dirac equation gives rise to a boundary condition at space-like ends of the space-
time surface stating that the action of the Kéhler-Dirac gamma matrix in normal direction
annihilates the spinor modes. The normal vector would be light-like and the value of the
incoming on mass shell four-momentum would be coded to the geometry of the space-time
surface and string world sheet.

One can assign to partonic orbits Chern-Simons Dirac action and now the condition would
be that the action of C-S-D operator equals to that of massless M* Dirac operator. C-S-D
Dirac action would give rise to massless Dirac propagator. Twistor Grassmann approach
suggests that also the virtual fermions reduce effectively to massless on-shell states but have
non-physical helicity.

2.5.4 About the notion of measurement interaction

The notion of measurement has been central notion in quantum TGD but the precise definition of
this notion is far from clear. In the following two possibly equivalent formulations are considered.
The first formulation relies on the gauge transformations leaving Coulomb term of K&hler action
unchanged and the second one to the interpretation of TGD as a square root of thermodynamics
allowing to fix the values of conserved classical charges for zero energy energy state using Lagrange
multipliers analogous to chemical potentials.

1. There are gauge transformations respecting the vanishing of the Coulomb term. The vanish-
ing condition for the Coulomb term is gauge invariant only under the gauge transformations
A — A+ V¢ for which the scalar function the integral [ j%8,¢ reduces to a total divergence
a giving an integral over various 3-surfaces at the ends of CD and at throats vanishes. This
is satisfied if the allowed gauge transformations define conserved currents

Da(j%¢) = 0 . (2.5.15)

As a consequence Coulomb term reduces to a difference of the conserved charges QZ, =
J j0¢@d3x at the ends of the CD vanishing identically. The change of the Chern-Simons
type term is trivial if the total weighted Kahler magnetic flux Q' = >~ | Jpd A over wormhole
throats is conserved. The existence of an infinite number of conserved weighted magnetic
fluxes is in accordance with the electric-magnetic duality. How these fluxes relate to the flux
Hamiltonians central for WCW geometry is not quite clear.
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2. The gauge transformations respecting the reduction to almost topological QFT should have
some special physical meaning. The measurement interaction term in the modified Dirac
interaction corresponds to a critical deformation of the space-time sheet and is realized as
an addition of a gauge part to the Kahler gauge potential of CP,. It would be natural to
identify this gauge transformation giving rise to a conserved charge so that the conserved
charges would provide a representation for the charges associated with the infinitesimal crit-
ical deformations not affecting Kéhler action.

The gauge transformed Kéhler potential couples to the modified Dirac equation and its effect
could be visible in the value of Kdhler function and therefore also in the properties of the pre-
ferred extremal. The effect on WCW metric would however vanish since K would transform
only by an addition of a real part of a holomorphic function. Kéhler function is identified as
a Dirac determinant of Chern-Simons Dirac operator (after many turns and twists) and the
spectrum of this operator should not be invariant under these gauge transformations if this
picture is correct. This is is achieved if the gauge transformation is carried only in the Dirac
action corresponding to instanton term: this assumption is motivated by the breaking of time
reversal invariance induced by quantum measurements. The modification of Kéahler action
can be guessed to correspond just to the Chern-Simons contribution from the instanton term.

3. A reasonable looking guess for the explicit realization of the quantum classical correspon-
dence between quantum numbers and space-time geometry is that the deformation of the
preferred extremal due to the addition of the measurement interaction term is induced by a
U(1) gauge transformation induced by a transformation of 6C'D x C' P, generating the gauge
transformation represented by ¢. This interpretation makes sense if the fluxes defined by
ng and corresponding Hamiltonians affect only zero modes rather than quantum fluctuating
degrees of freedom.

In zero energy ontology (ZEO) TGD can be seen as square root of thermodynamics and this
suggests an alternative manner to define what measurement interaction term means.

1. The condition that the space-time sheets appearing in superposition of space-time surfaces
with given quantum numbers in Cartan algebra have same classical quantum numbers as-
sociated with Kéahler action can be realized in terms of Lagrange multipliers in standard
manner. These kind of terms would be analogous to various chemical potential terms in
the partition function. One could call them measurement interaction terms. Measurement
interaction terms would code the values of quantum charges to the space-time geometry.

Kéhler action contains also Chern-Simons term at partonic orbits compensating the Chern-
Simons terms coming from Kahler action when weak form of electric-magnetic duality is as-
sumed. This guarantees that Kahler action for preferred extremals reduces to Chern-Simons
terms at the space-like ends of the spacetime surface and one obtains almost topological
QFT.

2. If Kahler-Dirac action is constructed from Kahler action in super-symmetric manner by
defining the modified gamma matrices in terms of canonical momentum densities one obtains
also the fermionic counterparts of the Lagrange multiplier terms at partonic orbits and could
call also them measurement interaction terms. Besides this one has also the Chern-Simons
Dirac terms associated with the partonic orbits giving ordinary massless Dirac propagator.
In presence of measurement interaction terms at the space-like ends of the space-time surface
the boundary conditions I'"¥ = 0 at the ends would be modified by the addition of term
coming from the modified gamma matrix associated with the Lagrange multiplier terms. The
original generalized massless generalized eigenvalue spectrum p*~; of I'™ would be modified
to massive spectrum given by the condition

(I + > AL Da)¥ =0 |

where @); refers to i:th conserved charge.
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An interesting question is whether these two manners to introduce measurement interaction
terms are actually equivalent.

To sum up, one could understand the basic properties of WCW metric in this framework. Effec-
tive 2-dimensionality would result from the existence of an infinite number of conserved charges in
two different time directions (genuine conservation laws plus gauge fixing). The infinite-dimensional
symmetric space for given values of zero modes corresponds to the Cartesian product of the WCWs
associated with the partonic 2-surfaces at both ends of CD and the generalized Chern-Simons term
decomposes into a sum of terms from the ends giving single particle Kahler functions and to the
terms from light-like wormhole throats giving interaction term between positive and negative en-
ergy parts of the state. Hence Kéhler function could be calculated without any knowledge about
the interior of the space-time sheets and TGD would reduce to almost topological QFT as specu-
lated earlier. Needless to say this would have immense boost to the program of constructing WCW
Kahler geometry.

2.5.5 A general solution ansatz based on almost topological QFT prop-
erty

The basic vision behind the ansatz is the reduction of quantum TGD to almost topological field
theory. This requires that the flow parameters associated with the flow lines of isometry currents
and Kahler current extend to global coordinates. This leads to integrability conditions implying
generalized Beltrami flow and Kéhler action for the preferred extremals reduces to Chern-Simons
action when weak electro-weak duality is applied as boundary conditions. The strongest form of the
hydrodynamical interpretation requires that all conserved currents are parallel to Kéhler current.
In the more general case one would have several hydrodynamic flows. Also the braidings (several
of them for the most general ansatz) assigned with the light-like 3-surfaces are naturally defined
by the flow lines of conserved currents. The independent behavior of particles at different flow
lines can be seen as a realization of the complete integrability of the theory. In free quantum field
theories on mass shell Fourier components are in a similar role but the geometric interpretation
in terms of flow is of course lacking. This picture should generalize also to the solution of the
modified Dirac equation.

Basic field equations

Consider first the equations at general level.

1. The breaking of the Poincare symmetry due to the presence of monopole field occurs and
leads to the isometry group T x SO(3) x SU(3) corresponding to time translations, rotations,
and color group. The Cartan algebra is four-dimensional and field equations reduce to the
conservation laws of energy F, angular momentum J, color isospin I3, and color hypercharge
Y.

2. Quite generally, one can write the field equations as conservation laws for I, J, I3, and Y.

D, [Dg(J*PHa) — j H* + TP 54 hyyogh'] = 0 . (2.5.16)

The first term gives a contraction of the symmetric Ricci tensor with antisymmetric Kahler
form and vanishes so that one has

Dy [jgH* = T*Pjlihdsh!] = 0 . (2.5.17)

For energy one has H4 = 1 and energy current associated with the flow lines is proportional
to the Kahler current. Its divergence vanishes identically.
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3. One can express the divergence of the term involving energy momentum tensor as as sum of
terms involving j% Jos and contraction of second fundamental form with energy momentum
tensor so that one obtains

JEDoHA = jJ, i +T*PHE 50 . (2.5.18)

Hydrodynamical solution ansatz

The characteristic feature of the solution ansatz would be the reduction of the dynamics to hydro-
dynamics analogous to that for a continuous distribution of particles iniatially at the end of X3 of
the light-like 3-surface moving along flow lines defined by currents j4 satisfying the integrability
condition ja Adja = 0. Field theory would reduce effectively to particle mechanics along flow lines
with conserved charges defined by various isometry currents. The strongest condition is that all
isometry currents j4 and also Kéhler current jx are proportional to the same current j. The more
general option corresponds to multi-hydrodynamics.

1. Solution ansatz

Conserved currents are analogous to hydrodynamical currents in the sense that the flow pa-
rameter along flow lines extends to a global space-time coordinate. The conserved current is
proportional to the gradient V& of the coordinate varying along the flow lines: J = UV ® and by
a proper choice of ¥ one can allow to have conservation. The initial values of ¥ and ® can be
selected freely along the flow lines beginning from either the end of the space-time surface or from
wormbhole throats.

If one requires hydrodynamics also for Chern-Simons action (effective 2-dimensionality is re-
quired for preferred extremals), the initial values of scalar functions can be chosen freely only at
the partonic 2-surfaces. The freedom to chose the intial values of the charges conserved along flow
lines at the partonic 2-surfaces means the existence of an infinite number of conserved charges so
that the theory would be integrable and even in two different coordinate directions. The basic
difference as compared to ordinary conservation laws is that the conserved currents are parallel
and their flow parameter extends to a global coordinate.

1. The most general assumption is that the conserved isometry currents

JG = JgHY = TP jihudsh’ (2.5.19)

and Kahler current as well as instanto current are integrable in the sense that J4AJ4 = 0 and
ik N jx = 0 hold true. One could imagine the possibility that the currents are not parallel.
If instanton current and Kéhler current are proportional to each other, Coulomb interaction
term in the Kéhler action vanishes and almost topological QFT property is achieved.

2. The integrability condition dJ4 A J4 = 0 is satisfied if one one has
Jag = Uadd, . (2.5.20)
The ansatz allows a gauge transformation induced by a symplectic transformation of S2.® 4

is same for Kahler current and instanton current.

3. The conservation of J4 gives

dx (Uaddy) = 0. (2.5.21)
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This would mean separate hydrodynamics for each of the currents involved. In principle
there is not need to assume any further conditions and one can imagine infinite basis of
scalar function pairs (¥ 4, @ 4) since criticality implies infinite number deformations implying
conserved Noether currents.

4. The conservation condition reduces to d’Alembert equation in the induced metric if one
assumes that VWU 4 is orthogonal with every d® 4.

dvdPy = 0, dUy -dby=0 . (2.5.22)

Taking 2 = ®4 as a coordinate the orthogonality condition states g*J 0j¥4 = 0 and in
the general case one cannot solve the condition by simply assuming that ¥4 depends on
the coordinates transversal to ®4 only. These conditions bring in mind p-p =0 and p-e
condition for massless modes of Maxwell field having fixed momentum and polarization. d® 4
would correspond to p and dV¥ 4 to polarization. The condition that each isometry current
corresponds its own pair (¥4, ®,4) would mean that each isometry current corresponds to
independent light-like momentum and polarization. Ordinary free quantum field theory
would support this view whereas hydrodynamics and QFT limit of TGD would support
single flow.

These are the most general hydrodynamical conditions that one can assume. One can consider
also more restricted scenarios.

1. The strongest ansatz is inspired by the hydrodynamical picture in which all conserved isom-
etry charges flow along same flow lines so that one would have

Joa = Uadd . (2.5.23)

In this case same ® would satisfy simultaneously the d’Alembert type equations.

dxd® = 0, dV,-dd =0. (2.5.24)

This would mean that the massless modes associated with isometry currents move in parallel
manner but can have different polarizations. The spinor modes associated with light-light
like 3-surfaces carry parallel four-momenta, which suggest that this option is correct. This
allows a very general family of solutions and one can have a complete 3-dimensional basis of
functions ¥ 4 with gradient orthogonal to d®.

2. Isometry invariance under T' x SO(3) x SU(3) allows to consider the possibility that one has

Ja = kAWAdég(A) , d* (dPg(A) =0, dU,4-dPs(A)) =0 . (2.5.25)

where G(A) is T for energy current, SO(3) for angular momentum currents and SU(3) for
color currents. Energy would thus flow along its own flux lines, angular momentum along its
own flow lines, and color quantum numbers along their own flow lines. For instance, color
currents would differ from each other only by a numerical constant. The replacement of W 4
with W (4) would be too strong a condition since Killing vector fields are not related by a
constant factor.
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To sum up, the most general option is that each conserved current J,4 defines its own integrable
flow lines defined by the scalar function pair (¥4, ®P4). A complete basis of scalar functions
satisfying the d’Alembert type equation guaranteeing current conservation could be imagined with
restrictions coming from the effective 2-dimensionality reducing the scalar function basis effectively
to the partonic 2-surface. The diametrically opposite option corresponds to the basis obtained by
assuming that only single ® is involved.

The proposed solution ansatz can be compared to the earlier ansatz [K22] stating that Kéahler
current is topologized in the sense that for D(CP,) = 3 it is proportional to the identically
conserved instanton current (so that 4-D Lorentz force vanishes) and vanishes for D(CP,) = 4
(Maxwell phase). This hypothesis requires that instanton current is Beltrami field for D(CP,) = 3.
In the recent case the assumption that also instanton current satisfies the Beltrami hypothesis in
strong sense (single function ®) generalizes the topologization hypothesis for D(CP,) = 3 and
guarantees that Coulomb term in K&éhler action vanishes identically. A weaker form is obtained by
replacing Kahler potential by its gauge transform in which case one also obtains a boundary term.
As a matter fact, the topologization hypothesis applies to isometry currents also for D(C'P,) = 4
although instanton current is not conserved anymore. Omne can consider variants of instanton
current since both (A4;,J1) and (A, J) are available.

Can one require the extremal property in the case of Chern-Simons action?

Effective 2-dimensionality is achieved if the ends and wormhole throats are extremals of Chern-
Simons action. The strongest condition would be that space-time surfaces allow orthogonal slicings
by 3-surfaces which are extremals of Chern-Simons action.

Also in this case one can require that the flow parameter associated with the flow lines of the
isometry currents extends to a global coordinate. Kahler magnetic field B = x.J defines a conserved
current so that all conserved currents would flow along the field lines of B and one would have 3-D
Beltrami flow. Note that in magnetohydrodynamics the standard assumption is that currents flow
along the field lines of the magnetic field.

For wormhole throats light-likeness causes some complications since the induced metric is degen-
erate and the contravariant metric must be restricted to the complement of the light-like direction.
This means that d’Alembert equation reduces to 2-dimensional Laplace equation. For space-like
3-surfaces one obtains the counterpart of Laplace equation with partonic 2-surfaces serving as
sources. The interpretation in terms of analogs of Coulomb potentials created by 2-D charge
distributions would be natural.

If J+ J1 appears in Kéahler action the extremals need not have 2-dimensional C' P, projection as
they must have for J option, and one can hope of obtaining large enough solution family consistent
with effective 2-dimensionality. The field equations can be reduced to conservation conditions for
the isometry currents for SO(3) x SU(3) along flow lines.

2.5.6 Holomorphic factorization of Kihler function

One can guess the general form of the core part of the Kéhler function as function of complex
coordinates assignable to the partonic surfaces at positive and negative energy ends of CD. It its
convenient to restrict the consideration to the simplest possible non-trivial case which is represented
by single propagator line connecting the ends of CD.

1. The propagator line corresponds to a symmetric space defined as a coset space G/H of the
symplectic group and Kac-Moody group. This coset space is as a manifold Cartesian product
(G/H) x (G/H) of symmetric spaces G/H associated with ends of the line. Kéhler metric
contains also an interaction term between the factors of the Cartesian product so that Kahler
function can be said to reduce to a sum of ”kinetic” terms and interaction term.

2. The exponent of Kéhler function depends on both ends of the line and this means that the
geometries at the ends are correlated in the sense that that Kéhler form contains interaction
terms between the line ends. It is however not quite clear whether it contains separate
"kinetic” or self interaction terms assignable to the line ends. For Kahler function the kinetic
and interaction terms should have the following general expressions as functions of complex
WCW coordinates:
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Kiing = > fim(Zi)fin(Zi) + cc

Kint = Y g10(Z1)g2m(Z2) + cc ,i=1,2 . (2.5.26)

n

Here Kjip,; define "kinetic” terms and K, defines interaction term. One would have what
might be called holomorphic factorization suggesting a connection with conformal field the-
ories. Kp;, would correspond to the Chern-Simons term assignable to the ends of the line
and K, to the Chern-Simons terms assignable to the wormhole throats.

2.5.7 Could the dynamics of Kahler action predict the hierarchy of
Planck constants?

The original justification for the hierarchy of Planck constants came from the indications that
Planck constant could have large values in both astrophysical systems involving dark matter and
also in biology. The realization of the hierarchy in terms of the singular coverings and possibly
also factor spaces of CD and CP, emerged from consistency conditions. The formula for the
Planck constant involves heuristic guess work and physical plausibility arguments. There are good
arguments in favor of the hypothesis that only coverings are possible. Only a finite number of pages
of the Big Book correspond to a given value of Planck constant, biological evolution corresponds to a
gradual dispersion to the pages of the Big Book with larger Planck constant, and a connection with
the hierarchy of infinite primes and p-adicization program based on the mathematical realization
of finite measurement resolution emerges.

One can however ask whether this hierarchy could emerge directly from the basic quantum TGD
rather than as a separate hypothesis. The following arguments suggest that this might be possible.
One finds also a precise geometric interpretation of preferred extremal property interpreted as
criticality in zero energy ontology.

1-1 correspondence between canonical momentum densities and time derivatives fails
for Kéahler action

The basic motivation for the geometrization program was the observation that canonical quantiza-
tion for TGD fails. To see what is involved let us try to perform a canonical quantization in zero
energy ontology at the 3-D surfaces located at the light-like boundaries of CD x CP5.

1. In canonical quantization canonical momentum densities 79 = 7, = dLx /0(0oh*), where
doh* denotes the time derivative of imbedding space coordinate, are the physically natural
quantities in terms of which to fix the initial values: once their value distribution is fixed
also conserved charges are fixed. Also the weak form of electric-magnetic duality given by
J 03\/gj = 4drag J12 and a mild generalization of this condition to be discussed below can be
interpreted as a manner to fix the values of conserved gauge charges (not Noether charges) to
their quantized values since Kéhler magnetic flux equals to the integer giving the homology
class of the (wormhole) throat. This condition alone need not characterize criticality, which
requires an infinite number of deformations of X* for which the second variation of the Kihler
action vanishes and implies infinite number conserved charges. This in fact gives hopes of
replacing 7, with these conserved Noether charges.

2. Canonical quantization requires that dyh* in the energy is expressed in terms of m,. The
equation defining 7, in terms of dyh* is however highly non-linear although algebraic. By
taking squares the equations reduces to equations for rational functions of dgh*. dyh* appears
in contravariant and covariant metric at most quadratically and in the induced Kéahler electric
field linearly and by multiplying the equations by det(g4)® one can transform the equations
to a polynomial form so that in principle dyh* can obtained as a solution of polynomial
equations.
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3. One can always eliminate one half of the coordinates by choosing 4 imbedding space co-
ordinates as the coordinates of the space-time surface so that the initial value conditions
reduce to those for the canonical momentum densities associated with the remaining four
coordinates. For instance, for space-time surfaces representable as map M* — CP, M*
coordinates are natural and the time derivatives dys® of C' P, coordinates are multi-valued.
One would obtain four polynomial equations with dys* as unknowns. In regions where C'P,
projection is 4-dimensional -in particular for the deformations of C' P, vacuum extremals the
natural coordinates are C'P, coordinates and one can regard dym” as unknowns. For the
deformations of cosmic strings, which are of form X4 = X2 x Y2 ¢ M* x CP,, one can use
coordinates of M? x S?, where S? is geodesic sphere as natural coordinates and regard as
unknowns E? coordinates and remaining C'P, coordinates.

4. One can imagine solving one of the four polynomials equations for time derivaties in terms of
other obtaining IV roots. Then one would substitute these roots to the remaining 3 conditions
to obtain algebraic equations from which one solves then second variable. Obviously situation
is very complex without additional symmetries. The criticality of the preferred extremals
might however give additional conditions allowing simplifications. The reasons for giving
up the canonical quantization program was following. For the vacuum extremals of Kéahler
action 7j are however identically vanishing and this means that there is an infinite number of
value distributions for dph*. For small deformations of vacuum extremals one might however
hope a finite number of solutions to the conditions and thus finite number of space-time
surfaces carrying same conserved charges.

If one assumes that physics is characterized by the values of the conserved charges one must
treat the the many-valuedness of dph*. The most obvious guess is that one should replace the
space of space-like 4-surfaces corresponding to different roots dph* = F¥(m;) with four-surfaces in
the covering space of CD x C' P, corresponding to different branches of the many-valued function
doh* = F(m) co-inciding at the ends of CD.

Do the coverings forces by the many-valuedness of 9yh* correspond to the coverings
associated with the hierarchy of Planck constants?

The obvious question is whether this covering space actually corresponds to the covering spaces
associated with the hierarchy of Planck constants. This would conform with quantum classical cor-
respondence. The hierarchy of Planck constants and hierarchy of covering spaces was introduced to
cure the failure of the perturbation theory at quantum level. At classical level the multi-valuedness
of dph* means a failure of perturbative canonical quantization and forces the introduction of the
covering spaces. The interpretation would be that when the density of matter becomes critical the
space-time surface splits to several branches so that the density at each branches is sub-critical. It
is of course not at all obvious whether the proposed structure of the Big Book is really consistent
with this hypothesis and one also consider modifications of this structure if necessary. The manner
to proceed is by making questions.

1. The proposed picture would give only single integer characterizing the covering. Two integers
assignable to CD and C P, degrees of freedom are however needed. How these two coverings
could emerge?

(a) One should fix also the values of 7' = 0Ly /OhE, where n refers to space-like normal
coordinate at the wormhole throats. If one requires that charges do not flow between
regions with different signatures of the metric the natural condition is 7} = 0 and
allows also multi-valued solution. Since wormhole throats carry magnetic charge and
since weak form of electric-magnetic duality is assumed, one can assume that C'P»
projection is four-dimensional so that one can use C'P, coordinates and regard dymP”
as un-knows. The basic idea about topological condensation in turn suggests that M*
projection can be assumed to be 4-D inside space-like 3-surfaces so that here dys* are
the unknowns. At partonic 2-surfaces one would have conditions for both 79 and 77
One might hope that the numbers of solutions are finite for preferred extremals because
of their symmetries and given by n, for dym* and by ny, for 9ys*. The optimistic guess
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is that n, and n; corresponds to the numbers of sheets for singular coverings of CD
and C'P,. The covering could be visualized as replacement of space-time surfaces with
space-time surfaces which have n,n; branches. n; branches would degenerate to single
branch at the ends of diagrams of the generaled Feynman graph and n, branches would
degenerate to single one at wormhole throats.

(b) This picture is not quite correct yet. The fixing of 7Y and 7} should relate closely to
the effective 2-dimensionality as an additional condition perhaps crucial for criticality.
One could argue that both 7 and 7' must be fixed at X3 and X} in order to effectively
bring in dynamics in two directions so that X? could be interpreted as a an orbit of
partonic 2-surface in space-like direction and X} as its orbit in light-like direction. The
additional conditions could be seen as gauge conditions made possible by symplectic and
Kac-Moody type conformal symmetries. The conditions for 7% would give n;, branches
in C'P, degrees of freedom and the conditions for 7r;> would split each of these branches
to n, branches.

(¢) The existence of these two kinds of conserved charges (possibly vanishing for 7}) could
relate also very closely to the slicing of the space-time sheets by string world sheets and
partonic 2-surfaces.

2. Should one then treat these branches as separate space-time surfaces or as a single space-time
surface? The treatment as a single surface seems to be the correct thing to do. Classically
the conserved changes would be n,n; times larger than for single branch. Kéahler action need
not (but could!) be same for different branches but the total action is n,n, times the average
action and this effectively corresponds to the replacement of the ho/g% factor of the action
with /g%, 7 = h/ho = nany. Since the conserved quantum charges are proportional to & one
could argue that r = ny,ny tells only that the charge conserved charge is ngn, times larger
than without multi-valuedness. A would be only effectively n,n; fold. This is of course poor
man’s argument but might catch something essential about the situation.

3. How could one interpret the condition J%3 V912 = 4ma Ji2 and its generalization to be dis-
cussed below in this framework? The first observation is that the total K&hler electric charge
is by ax o« 1/(ngny) same always. The interpretation would be in terms of charge fraction-
ization meaning that each branch would carry Kahler electric charge Qx = ngx/nony. 1
have indeed suggested explanation of charge fractionization and quantum Hall effect based
on this picture.

4. The vision about the hierarchy of Planck constants involves also assumptions about imbed-
ding space metric. The assumption that the M?* covariant metric is proportional to #? follows
from the physical idea about A scaling of quantum lengths as what Compton length is. One
can always introduce scaled M* coordinates bringing M* metric into the standard form by
scaling up the M* size of CD. It is not clear whether the scaling up of CD size follows au-
tomatically from the proposed scenario. The basic question is why the M* size scale of the
critical extremals must scale like n,n;,? This should somehow relate to the weak self-duality
conditions implying that Kéhler field at each branch is reduced by a factor 1/r at each
branch. Field equations should posses a dynamical symmetry involving the scaling of CD by
integer k and Joﬁ\/gﬂ and J"'B\/gj by 1/k. The scaling of CD should be due to the scaling
up of the M* time interval during which the branched light-like 3-surface returns back to a
non-branched one.

5. The proposed view about hierarchy of Planck constants is that the singular coverings reduce
to single-sheeted coverings at M2 C M* for CD and to S? ¢ CP, for CP,. Here S? is any
homologically trivial geodesic sphere of C'P» and has vanishing Kahler form. Weak self-duality
condition is indeed consistent with any value of i and impies that the vacuum property for
the partonic 2-surface implies vacuum property for the entire space-time sheet as holography
indeed requires. This condition however generalizes. In weak self-duality conditions the value
of h is free for any 2-D Lagrangian sub-manifold of C'P;.

The branching along M? would mean that the branches of preferred extremals always collapse
to single branch when their M4 projection belongs to M?2. Magnetically charged light-light-
like throats cannot have M* projection in M? so that self-duality conditions for different
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values of A do not lead to inconsistencies. For space-like 3-surfaces at the boundaries of
CD the condition would mean that the M* projection becomes light-like geodesic. Straight
cosmic strings would have M? as M* projection. Also C P, type vacuum extremals for which
the random light-like projection in M* belongs to M? would represent this of situation. One
can ask whether the degeneration of branches actually takes place along any string like object
X?2xY?, where X? defines a minimal surface in M*. For these the weak self-duality condition
would imply i = oo at the ends of the string. It is very plausible that string like objects feed
their magnetic fluxes to larger space-times sheets through wormhole contacts so that these
conditions are not encountered.

Connection with the criticality of preferred extremals

Also a connection with quantum criticality and the criticality of the preferred extremals suggests
itself. Criticality for the preferred extremals must be a property of space-like 3-surfaces and
light-like 3-surfaces with degenerate 4-metric and the degeneration of the n,n, branches of the
space-time surface at the its ends and at wormhole throats is exactly what happens at criticality.
For instance, in catastrophe theory roots of the polynomial equation giving extrema of a potential
as function of control parameters co-incide at criticality. If this picture is correct the hierarchy
of Planck constants would be an outcome of criticality and of preferred extremal property and
preferred extremals would be just those multi-branched space-time surfaces for which branches
co-incide at the the boundaries of CD x C'P, and at the throats.

2.6 Does the exponent of Chern-Simons action reduce to
the exponent of the area of minimal surfaces?

As I scanned of hep-th I found an interesting article by Giordano, Peschanski, and Seki [B22] based
on AdS/CFT correspondence. What is studied is the high energy behavior of the gluon-gluon and
quark-quark scattering amplitudes of N' =4 SUSY.

1. The proposal made earlier by Aldaya and Maldacena [B5] is that gluon-gluon scattering
amplitudes are proportional to the imaginary exponent of the area of a minimal surface in
AdS5 whose boundary is identified as momentum space. The boundary of the minimal surface
would be polygon with light-like edges: this polygon and its dual are familiar from twistor
approach.

2. Giordano, Peschanski, and Seki claim that quark-quark scattering amplitude for heavy quarks
corresponds to the exponent of the area for a minimal surface in the Fuclidian version of
AdS5 which is hyperbolic space (space with a constant negative curvature): it is interpreted
as a counterpart of WCW rather than momentum space and amplitudes are obtained by
analytic continuation. For instance, a universal Regge behavior is obtained. For general
amplitudes the exponent of the area alone is not enough since it does not depend on gluon
quantum numbers and vertex operators at the edges of the boundary polygon are needed.

In the following my intention is to consider the formulation of this conjecture in quantum TGD
framework. I hasten to inform that I am not a specialist in AdS/CFT and can make only general
comments inspired by analogies with TGD.

2.6.1 Why Chern-Simons action should reduce to area for minimal sur-
faces?

The minimal surface conjectures are highly interesting from TGD point of view. The weak form
of electric magnetic duality implies the reduction of Kéahler action to 3-D Chern-Simons terms.
Effective 2-dimensionality implied by the strong form of General Coordinate Invariance suggests
a further reduction of Chern-Simons terms to 2-D terms and the areas of string world sheet and
of partonic 2-surface are the only non-topological options that one can imagine. Skeptic could
of course argue that the exponent of the minimal surface area results as a characterizer of the
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quantum state rather than vacuum functional. In the following I defend the minimal interpretation
as Chern-Simons terms.
Let us look this conjecture in more detail.

1.

In zero energy ontology twistor approach is very natural since all physical states are bound
states of massless particles. Also virtual particles are composites of massless states. The
possibility to have both signs of energy makes possible space-like momenta for wormhole
contacts. Mass shell conditions at internal lines imply extremely strong constraints on the
virtual momenta and both UV and IR finiteness are expected to hold true.

The weak form of electric magnetic duality [K18] implies that the exponent of Kahler action
reduces to the exponent of Chern-Simons term for 3-D space-like surfaces at the ends of
space-time surface inside CD and for light-like 3-surfaces. The coefficient of this term is
complex since the contribution of Minkowskian regions of the space-time surface is imaginary
(/94 is imaginary) and that of Euclidian regions (generalized Feynman diagrams) real. The
Chern-Simons term from Minkowskian regions is like Morse function and that from Euclidian
regions defines Kéhler function and stationary phase approximation makes sense. The two
contributions are different since the space-like 3-surfaces contributing to Kéhler function and
Morse function are different.

Electric magnetic duality [K18] leads also to the conclusion that wormhole throats carrying
elementary particle quantum numbers are Kahler magnetic monopoles. This forces to identify
elementary particles as string like objects with ends having opposite monopole charges. Also
more complex configurations are possible.

It is not quite clear what the scale of the stringyness is. The natural first guess inspired
by quantum classical correspondence is that it corresponds to the p-adic length scale of
the particle characterizing its Compton length. Second possibility is that it corresponds to
electroweak scale. For leptons stringyness in Compton length scale might not have any fatal
implications since the second end of string contains only neutrinos neutralizing the weak
isospin of the state. This kind of monopole pairs could appear even in condensed matter
scales: in particular if the proposed hierarchy of Planck constants [K17] is realized.

Strong form of General Coordinate Invariance requires effective 2-dimensionality. In given UV
and IR resolutions either partonic 2-surfaces or string world sheets form a finite hierarchy of
CDs inside CDs with given CD characterized by a discrete scale coming as an integer multiple
of a fundamental scale (essentially C'P, size). The string world sheets have boundaries
consisting of either light-like curves in induced metric at light-like wormhole throats and
space-like curves at the ends of CD whose M* projections are light-like. These braids intersect
partonic 2-surfaces at discrete points carrying fermionic quantum numbers.

This implies a rather concrete analogy with AdSs x S5 duality, which describes gluons as open
strings. In zero energy ontology (ZEO) string world sheets are indeed a fundamental notion
and the natural conjecture is that these surfaces are minimal surfaces whose area by quantum
classical correspondence depends on the quantum numbers of the external particles. String
tension in turn should depend on gauge couplings -perhaps only Kéhler coupling strength-
and geometric parameters like the size scale of CD and the p-adic length scale of the particle.

Are the minimal surfaces in question minimal surfaces of the imbedding space M* x CP, or of
the space-time surface X4? All possible 2-surfaces at the boundary of CD must be allowed so
that they cannot correspond to minimal surfaces in M* x C'P, unless one assumes that they
emerge in stationary phase approximation only. The boundary conditions at the ends of CD
could however be such that any partonic 2-surface correspond to a minimal surfaces in X*.
Same applies to string world sheets. One might even hope that these conditions combined
with the weak form of electric magnetic duality fixes completely the boundary conditions at
wormbhole throats and space-like ends of space-time surface.

The trace of the second fundamental form orthogonal to the string world sheet/partonic
2-surface as sub-manifold of space-time surface would vanish: this is nothing but a general-
ization of the geodesic motion obtained by replacing word line with a 2-D surface. It does not
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imply the vanishing of the trace of the second fundamental form in M* x CP, having inter-
pretation as a generalization of particle acceleration [K56]. Effective 2-dimensionality would
be realized if Chern-Simons terms reduce to a sum of the areas of these minimal surfaces.

These arguments suggest that scattering amplitudes are proportional to the product of expo-
nents of 2-dimensional actions which can be either imaginary or real. Imaginary exponent would be
proportional to the total area of string world sheets and the imaginary unit would come naturally
from ,/g2. Teal exponent proportional to the total area of partonic 2-surfaces. The coefficient of
these areas would not in general be same.

The equality of the Minkowskian and Euclidian Chern-Simons terms is suggestive but not
necessarily true since there could be also other Chern-Simons contributions than those assignable
to wormhole throats and the ends of space-time. The equality would imply that the total area
of string world sheets equals to the total area of partonic 2-surfaces suggesting strongly a duality
meaning that either Euclidian or Minkowskian regions carry the needed information.

2.6.2 IR cutoff and connection with p-adic physics

In twistor approach the IR cutoff is necessary to get rid of IR divergences. Also in the AdSs
approach the condition that the minimal surface area is finite requires an IR cutoff. The problem
is that there is no natural IR cutoff. In TGD framework zero energy ontology brings in a natural
IR cutoff via the finite and quantized size scale of CD guaranteeing that the minimal surfaces
involved have a finite area. This implies that also particles usually regarded as massless have a
small mass characterized by the size of CD. The size scale of CD would correspond to the scale
parameter R assigned with the metric of AdSs.

1. String tension relates in AdSs approach to the gauge coupling gy s and to the number N,
of colors by the formula

A = gEyNe=— . (2.6.1)

1/N.-expansion is in terms of 1/ V/A\. The formula has an alternative form as an expression
for the string tension

2
o = (2.6.2)

\/g%’MNC

The analog this formula in TGD framework suggests an connection with p-adic length scale
hypothesis.

1. As already noticed, the natural counterpart for the scale R could be the discrete value of
the size scale of CD. Since the symplectic group assignable to M} x C'P, (or the upper or
lower boundary of CD) is the natural generalization of the gauge group, it would seem that
N, = oo holds true in the absence of cutoff. At the limit N, = oo only planar diagrams
would contribute to YM scattering amplitudes. Finite measurement resolution must make
the effective value of N, finite so that also A would be finite. String tension would depend
on both the size of CD and the effective number of symplectic colors.

2. If o' is characterized by the square of the Compton length of the particle, A\ would be
essentially the square of the ratio of CD size scale given by secondary p-adic lengths and
of the primary p-adic length scale associated with the particle: A\ = g% wm/Ds where p is
the p-adic prime characterizing the particle. Favored values of the p-adic prime correspond
to primes near powers of two. The effective number of symplectic colors would be N, =
/P/ 9%y and the expansion would come in powers of g% ,,/,/p. For electron one would have
p = Moy = 212771 50 that the expansion would converge extremely fast. Together with
the amazing success of the p-adic mass calculations based on p-adic thermodynamics for the
scaling generator Lo [K31] this suggests a deep connection with p-adic physics and number
theoretic universality.
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2.6.3 Could Kahler action reduce to Kéahler magnetic flux over string
world sheets and partonic 2-surfaces?

Can one consider alternative identifications of Kéahler action for preferred extremals? The only
alternative identification of Kahler function that I can imagine is that Kéahler action proportional to
the Kéhler magnetic flux [, J or Kéhler electric flux [, *J for string world sheets and possibly
also partonic 2-surfaces. These fluxes are dimensionless numbers. If the weak form of electric-
magnetic duality holds true also at string world sheets, the two options are equivalent apart from
a proportionality constant.

1. For Kahler magnetic flux there would be no explicit dependence on the induced metric. This
is in accordance with the almost topological QFT property.

2. Unless the weak form of electric-magnetic duality holds true, the Kéhler electric flux has
an explicit dependence on the induced metric but in a scaling invariant manner. The most
obvious objection relates to the sign factor of the dual flux which depends on the orientation
of the string world sheet and thus changes sign when the orientation of space-time sheet is
changed by changing that of the string world sheet. This is in conflict with the independence
of Kéahler action on orientation. One can however argue that the orientation makes itself
actually physically visible via the weak form of electric-magnetic duality and that the change
of the orientation as a symmetry is dynamically broken. This breaking would be analogous
to parity breaking at the level of imbedding space.

3. In [K23] it is proposed that braids defined by the boundaries of string world sheets could
correspond to Legendrian sub-manifolds, whereas partonic 2-surfaces could the duals of Leg-
endrian manifolds, so that braiding would take place dynamically. The identification of the
Kahler action as Kéhler magnetic flux associated with string world sheets and possibly also
partonic 2-surfaces is consistent with the assumption that the extremal of Kéhler action in
question. Indeed, the Legendrian property says that the projection of the Kéhler gauge po-
tential on braid strand vanishes and this expresses the extremality of the Kéahler magnetic
flux.

The assumption that Kéhler action is proportional to Kéhler magnetic flux seems to be con-
sistent with the minimal surface property. The weak form of electric-magnetic duality gives a
constraint on the normal derivatives of imbedding space coordinates at the string world sheet and
minimal surface property strengthens these constraints. One could perhaps say that space-time
surface chooses its shape in such a manner that the string world sheet has a minimal area.

The open questions are following.

1. Does Kéhler action for the preferred extremals reduce to the area of the string world sheet or
to Kahler flux, or are the representations equivalent so that the induced Kéhler form would
effectively define area form? If the Kahler form form associated with the induced metric on
string world sheet is proportional to the induced Kéahler form the Kahler magnetic flux is
proportional to the area and Kéhler action reduces to genuine area. This condition looks like
a natural additional constraint on string world sheets besides minimal surface property.

2. The proportionality of the induced Kéahler form and Ké&hler form of the induced 2-metric
implies as such only the extremal property against the symplectic variations so that one can-
not have minimal surface property at imbedding space level. Minimality at space-time level
is however possible since space-time surface itself can arrange the situation so that general
variations deforming the string world sheet along space-time surface reduce to symplectic
variations at the level of the imbedding space.

3. Does the situation depend on whether the string world sheet is in Minkowskian or Euclidian
space-time region? The problem is that in Euclidian regions the value of Kéahler action is
positive definite and it is not obvious why the K&hler magnetic flux for Euclidian string world
sheets should have a fixed sign. Could weak form of electric-magnetic duality fix the sign?

Irrespective whether the Kéhler action is proportional to the total area or the Kahler electric
flux over string world sheets, the theory would be exactly solvable at string world sheet level (finite
measurement resolution).
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2.6.4 What is the interpretation of Yangian duality in TGD framework?

Minimal surfaces in both WCW and momentum space are used in the above mentioned two articles
[B5, B22]. The possibility of these two descriptions must reflect the Yangian symmetry unifying
the conformal symmetries of Minkowski space and momentum space in twistorial approach.

The minimal surfaces in X* C M* x CP, are natural in TGD framework. Could also the
minimal surfaces in momentum space have some interpretation in TGD framework? Ore more
generally, what could be the interpretation of the dual descriptions provided by twistor diagrams
with light-like edges and dual twistor diagrams with light-like vertices? One can imagine many
interpretations but zero energy ontology suggests an especially attractive and natural interpretation
of this duality as the exchange of the roles of wormhole throats carrying always on mass shell
massless momenta and wormhole contacts carrying in general off-mass shell momenta and massive
momenta in incoming lines.

1. For WCW twistor diagrams vertices correspond to incoming and outgoing light-like momenta.
The light-like momenta associated with the wormhole throats of the incoming and outgoing
lines of generalized Feynman diagram could correspond to the light-like momenta associated
with the vertices of the polygon. The internal lines defined by wormhole contacts carrying
virtual off mass shell momenta would naturally correspond to to edges of the twistor diagram.

2. What about dual twistor diagrams in which light-like momenta correspond to lines? Zero
energy ontology implies that virtual wormhole throats carry on mass shell massless momenta
whereas incoming wormhole contacts in general carry massive particles: this guarantees the
absence of IR divergences. Could one identify the momenta of internal wormhole throats
as light-like momenta associated with the lines dual twistor diagrams and the incoming net
momenta assignable to wormhole contacts as incoming and outgoing momenta.

Also the transition from Minkowskian to Euclidian signature by Wick rotation could have
interpretation in TGD framework. Space-time surfaces decompose into Minkowskian and Euclidian
regions. The latter ones represent generalized Feynman diagrams. This suggests a generalization
of Wick rotation. The string world sheets in Euclidian regions would define the analogs of the
minimal surfaces in Euclidian AdS5 and the string world sheets in Minkowskian regions the analogs
of Minkowskian AdSs5. The magnitudes of the areas would be identical so that they might be seen
as analytical continuations of each other in some sense. Note that partonic 2-surfaces would belong
to the intersection of Euclidian and Minkowskian space-time regions. This argument tells nothing
about possible momentum space analog of M* x CPs.



Chapter 3

Construction of Configuration
Space Kahler Geometry from
Symmetry Principles

3.1 Introduction

The most general expectation is that configuration space ("world of classical worlds” (WCW))
can be regarded as a union of coset spaces which are infinite-dimensional symmetric spaces with
Kahler structure: C'(H) = U;G/H(i). Index i labels 3-topology and zero modes. The group G,
which can depend on 3-surface, can be identified as a subgroup of diffeomorphisms of 5Mi X CPy
and H must contain as its subgroup a group, whose action reduces to Dif f(X?) so that these
transformations leave 3-surface invariant.

In zero energy ontology (ZEO) 3-surface corresponds to a pair of space-like 3-surfaces at the
opposide boundaries of causal diamond (CD) and thus to a more or less unique extremal of Kahler
action. The interpretation would be in terms of holography. One can also consider the inclusion
of the light-like 3-surfaces at which the signature of the induced metric changes to the 3-surface so
that it would become connected.

The task is to identify plausible candidate for G and H and to show that the tangent space
of the WCW allows Kéhler structure, in other words that the Lie-algebras of G and H (i) allow
complexification. One must also identify the zero modes and construct integration measure for the
functional integral in these degrees of freedom. Besides this one must deduce information about the
explicit form of WCW metric from symmetry considerations combined with the hypothesis that
Kahler function is Kahler action for a preferred extremal of Kahler action. One must of course
understand what ”preferred” means.

3.1.1 General Coordinate Invariance and generalized quantum gravita-
tional holography

The basic motivation for the construction of WCW geometry is the vision that physics reduces
to the geometry of classical spinor fields in the infinite-dimensional WCW of 3-surfaces of M_‘f_ X
CP, or of M* x CP,. Hermitian conjugation is the basic operation in quantum theory and its
geometrization requires that WCW possesses Kahler geometry. Kéahler geometry is coded into
Kahler function.

The original belief was that the four-dimensional general coordinate invariance of Kéhler func-
tion reduces the construction of the geometry to that for the boundary of configuration space
consisting of 3-surfaces on 5Mfﬁ x C'Py, the moment of big bang. The proposal was that Kéhler
function K(Y3) could be defined as a preferred extremal of so called Kéhler action for the unique
space-time surface X*(Y3) going through given 3-surface Y3 at §M$ x CP,. For Diff* transforms
of Y3 at X*4(Y?) Kihler function would have the same value so that Diff* invariance and degener-
acy would be the outcome. The proposal was that the preferred extremals are absolute minima of
Kahler action.
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This picture turned out to be too simple.

1. T have already described the recent view about light-like 3-surfaces as generalized Feynman
diagrams and space-time surfaces as preferred extremals of Kahler action and will not repeat
what has been said. Note that the inclusion of space-like ends at boundaries of CD gives
analog of Wilson loop.

2. It has also become obvious that the gigantic symmetries associated with M1 x CP, C
CD x CP, manifest themselves as the properties of propagators and vertices. Cosmological
considerations, Poincare invariance, and the new view about energy favor the decomposition
of the WCW to a union of configuration spaces assignable to causal diamonds C'Ds defined
as intersections of future and past directed light-cones. The minimum assumption is that
C Ds label the sectors of C'H: the nice feature of this option is that the considerations of
this chapter restricted to (5Mi X CP, generalize almost trivially. This option is beautiful
because the center of mass degrees of freedom associated with the different sectors of CH
would correspond to M* itself and its Cartesian powers.

The definition of the Kihler function requires that the many-to-one correspondence X3 —
X*4(X?) must be replaced by a bijective correspondence in the sense that X 13 as light-like 3-surface
is unique among all its Diff* translates. This also allows physically preferred ” gauge fixing” allowing
to get rid of the mathematical complications due to Diff4 degeneracy. The internal geometry of
the space-time sheet must define the preferred 3-surface X;.

The realization of this vision means a considerable mathematical challenge. The effective metric
2-dimensionality of 3-dimensional light-like surfaces X} of M? implies generalized conformal and
symplectic symmetries allowing to generalize quantum gravitational holography from light like
boundary so that the complexities due to the non-determinism can be taken into account properly.

3.1.2 Light like 3-D causal determinants and effective 2-dimensionality

The light like 3-surfaces X 13 of space-time surface appear as 3-D causal determinants. Basic ex-
amples are boundaries and elementary particle horizons (parton orbits) at which Minkowskian
signature of the induced metric transforms to Euclidian one. This brings in a second conformal
symmetry related to the metric 2-dimensionality of the 3-D light-like 3-surface. This symmetry
is analogous to TGD counterpart of the Kac Moody symmetry of string models and seems to
be associated with quantum criticality implying non-uniqueness of the space-time surface with
given space-like ends at boundaries of CD. Critical deformations would be Kac-Moody type trans-
formation preserving the light-likeness of the parton orbits. The challenge is to understand the
relationship of this symmetry to WCW geometry and the interaction between the two conformal
symmetries.

1. Field-particle duality is realized. Light-like 3-surfaces X} -generalized Feynman diagrams -
correspond to the particle aspect of field-particle duality whereas the physics in the interior
of space-time surface X*(X}) would correspond to the field aspect. Generalized Feynman
diagrams in 4-D sense could be identified as regions of space-time surface having Euclidian
signature.

2. One could also say that light-like 3-surfaces X 13 and the space-like 3-surfaces X? in the inter-
sections of X*(X?)NCD x CP, where the causal diamond CD is defined as the intersections
of future and past directed light-cones provide dual descriptions.

3. Generalized coset construction implies that the differences of super-symplectic and Super
Kac-Moody type Super Virasoro generators annihilated physical states. This construction in
turn led to the realization that WCW for fixed values of zero modes - in particular the values
of the induced Kihler form of §M${ x CP;, - allows identification as a coset space obtained
by dividing the symplectic group of §M{ x C'P, with Kac-Moody group, whose generators
vanish at X2 = X x M{ x CP,. One can say that quantum fluctuating degrees of freedom
in a very concrete sense correspond to the local variant of S? x CP.
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The analog of conformal invariance in the light-like direction of X 13 and in the light-like radial
direction of 6M} suggests that the data at either X3 or X 13 should be enough to determine WCW
geometry. This implies that the relevant data is contained to their intersection X? at least for
finite regions of X3. This is the case if the deformations of X} not affecting X2 and preserving
light likeness corresponding to zero modes or gauge degrees of freedom and induce deformations
of X3 also acting as zero modes. The outcome is effective 2-dimensionality. One must be however
cautious in order to not make over-statements. The reduction to 2-D theory in global sense would
trivialize the theory and the reduction to 2-D theory must takes places for finite region of X3 only
so one has in well defined sense three-dimensionality in discrete sense. A more precise formulation
of this vision is in terms of hierarchy of C'Ds containing C Ds containing.... The introduction of sub-
CD:s brings in improved measurement resolution and means also that effective 2-dimensionality is
realized in the scale of sub-C'D only.

Experience has however taught to be extremely cautious: it could also be that in ZEO the
unions of the space-like 3-surfaces at the ends of CD and of the light-like partonic orbits at which
the signature of the induced metric changes are the basic objects analogous to Wilson loops. In
this case the notion of effective 2-dimensionality is not so clear. Also in this case the Kac-Moody
type symmetry preserving the light-likeness of partonic orbits could reduce the additional degrees
of freedom to a finite number of conformal equivalence classes of partonic orbits for given pair of
3-surfaces.

One cannot over-emphasize the importance of the effective 2-dimensionality. It indeed simplifies
dramatically the earlier formulas for WCW metric involving 3-dimensional integrals over X3 C
Mj‘; x CPy reducing now to 2-dimensional integrals. Note that X3 is determined by preferred
extremal property of X*(X, 13) once X 13 is fixed and one can hope that this mapping is one-to-one.

3.1.3 Magic properties of light cone boundary and isometries of WCW

The special conformal, metric and symplectic properties of the light cone of four-dimensional
Minkowski space: (SM_‘f_7 the boundary of four-dimensional light cone is metrically 2-dimensional(!)
sphere allowing infinite-dimensional group of conformal transformations and isometries(!) as well
as Kahler structure. K&hler structure is not unique: possible Kéahler structures of light cone
boundary are parameterized by Lobatchevski space SO(3,1)/SO(3). The requirement that the
isotropy group SO(3) of S? corresponds to the isotropy group of the unique classical 3-momentum
assigned to X*(Y3) defined as a preferred extremum of Kihler action, fixes the choice of the
complex structure uniquely. Therefore group theoretical approach and the approach based on
Kahler action complement each other.

1. The allowance of an infinite-dimensional group of isometries isomorphic to the group of con-
formal transformations of 2-sphere is completely unique feature of the 4-dimensional light
cone boundary. Even more, in case of 5Mﬁ x C' Py the isometry group of 5Mi becomes local-
ized with respect to C'P,! Furthermore, the Kéhler structure of (5Mi defines also symplectic
structure.

Hence any function of 5Mi x C'Py would serve as a Hamiltonian transformation acting in
both C P, and § Mi degrees of freedom. These transformations obviously differ from ordinary
local gauge transformations. This group leaves the symplectic form of (5Mi X C Py, defined
as the sum of light cone and C'P; symplectic forms, invariant. The group of symplectic
transformations of 5M_‘f_ x CPy is a good candidate for the isometry group of the WCW.

2. The approximate symplectic invariance of Kahler action is broken only by gravitational effects
and is exact for vacuum extremals. If Kahler function were exactly invariant under the
symplectic transformations of C'P,, C' P, symplectic transformations wiykd correspond to
zero modes having zero norm in the Kéhler metric of WCW. This does not make sense since
symplectic transformations of §M* x CP, actually parameterize the quantum fluctuation
degrees of freedom.

3. The groups G and H, and thus WCW itself, should inherit the complex structure of the
light cone boundary. The diffeomorphims of M* act as dynamical symmetries of vacuum
extremals. The radial Virasoro localized with respect to S? x C'P, could in turn act in zero
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modes perhaps inducing conformal transformations: note that these transformations lead out
from the symmetric space associated with given values of zero modes.

3.1.4 Symplectic transformations of 6M{ x C'P, as isometries of WCW

The symplectic transformations of 5Mi x CP, are excellent candidates for inducing symplectic
transformations of the WCW acting as isometries. There are however deep differences with respect
to the Kac Moody algebras.

1. The conformal algebra of the WCW is gigantic when compared with the Virasoro + Kac
Moody algebras of string models as is clear from the fact that the Lie-algebra generator of a
symplectic transformation of 5Mfi x C'P, corresponding to a Hamiltonian which is product of
functions defined in § M_‘i and C P, is sum of generator of § M. _‘f_—local symplectic transformation
of C'Py and C Py-local symplectic transformations of 5Mfﬁ. This means also that the notion
of local gauge transformation generalizes.

2. The physical interpretation is also quite different: the relevant quantum numbers label the
unitary representations of Lorentz group and color group, and the four-momentum labeling
the states of Kac Moody representations is not present. Physical states carrying no energy
and momentum at quantum level are predicted. The appearance of a new kind of angular
momentum not assignable to elementary particles might shed some light to the longstanding
problem of baryonic spin (quarks are not responsible for the entire spin of proton). The
possibility of a new kind of color might have implications even in macroscopic length scales.

3. The central extension induced from the natural central extension associated with 5Mj‘_ x CPy
Poisson brackets is anti-symmetric with respect to the generators of the symplectic algebra
rather than symmetric as in the case of Kac Moody algebras associated with loop spaces. At
first this seems to mean a dramatic difference. For instance, in the case of C'P, symplectic
transformations localized with respect to c?M_‘fr the central extension would vanish for Cartan
algebra, which means a profound physical difference. For JMi x C Py symplectic algebra a
generalization of the Kac Moody type structure however emerges naturally.

The point is that (5Mi—local CP, symplectic transformations are accompanied by C' P local
dM?3 symplectic transformations. Therefore the Poisson bracket of two M7 local C'P,
Hamiltonians involves a term analogous to a central extension term symmetric with respect
to C'P, Hamiltonians, and resulting from the 5Mi bracket of functions multiplying the
Hamiltonians. This additional term could give the entire bracket of the WCW Hamiltonians
at the maximum of the Kéhler function where one expects that C'P, Hamiltonians vanish
and have a form essentially identical with Kac Moody central extension because it is indeed
symmetric with respect to indices of the symplectic group.

The most natural option is that symplectic and Kac-Moody algebras together generate the
isometry algebra and that the corresponding transformations leaving invariant the partonic 2-
surfaces and their 4-D tangent space data act as gauge transformations and affect only zero modes.

3.1.5 Does the symmetric space property reduce to coset construction
for Super Virasoro algebras?

The idea about symmetric space is extremely beautiful but it took a long time and several false
alarms before the time was ripe for identifying the precise form of the Cartan decomposition
g =t + h satisfying the defining conditions

g=t+h, [t,t]Ch, [ht]Ct . (3.1.1)

The ultimate solution of the puzzle turned out to be amazingly simple and came only after quantum
TGD was understood well enough.

WCW geometry allows two super-conformal symmetries assignable the coset space decomposi-
tion G/ H for a sector of WCW with fixed values of zero moes. One can assign to the tangent space
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algebras ¢ resp. h of G resp. H analogous to Kac-Moody algebras super Virasoro algebras and
construct super-conformal representation as a coset representation meaning that the differences
of super Virasoro generators annihilate the physical states. This obviously generalizes Goddard-
Olive-Kent construction [A58].

The identification of the two algeras is not a mechanical task and has involved a lot of trial
and erroring. The algebra g should be be spanned by the generators of super-symplectic algebra
of light-cone boundary and by the Kac-Moody algebra acting on light-like orbits of partonic 2-
surfaces. The sub-algebra h should be spanned by generators which vanish for a preferred point of
WCW analogous to origin of C'P, = SU(3)/U(2). Now this point would correspond to maximum
or minimum of K&hler function (no saddle points are allowed if the WCW metric has definite
signature). In hindsight it is obvious that the generators of both symplectic and Kac-Moody
algebras are needed to generate g and h: already the effective 2-dimensionality meaning that 4-D
tangent space data of partonic surface matters requires this.

The maxima of Kahler function could correspond to this kind of points (pairs formed by 3-
surfaces at different ends of CD in ZEO) and could play also an essential role in the integration
over WCW by generalizing the Gaussian integration of free quantum field theories. It took quite
a long time to realize that Kahler function must be identified as K&hler action for the Euclidian
region of preferred extremal. Kahler action for Minkowskian regions gives imaginary contribution
to the action exponential and has interpretation in terms of Morse function. This part of Kéahler
action can have and is expected to have saddle points and to define Hessian with signature which
is not positive definite.

3.1.6 What effective 2-dimensionality and holography really mean?

Concerning the interpretation of Kac-Moody algebra there are some poorly understood points,
which directly relate to what one means with holography.

1. Holography suggests that light-like 3-surfaces with fixed ends give rise to same WCW metric
and the deformations of these surfaces by Kac-Moody algebra correspond to zero modes
just like the interior degrees of freedom for space-like 3-surface do. The same would be
true for space-like 3-surfaces at the ends of space-time surface with respect to symplectic
transformations.

2. The non-trivial action of Kac-Moody algebra in the interior of X l?’ together with effective
2-dimensionality and holography would encourage the interpretation of Kac-Moody symme-
tries acting trivially at X2 as gauge symmetries. Light-like 3-surfaces having fixed partonic
2-surfaces at their ends would be equivalent physically and effective 2-dimensionality and
holography would be realized modulo gauge transformations. As a matter fact, the action
on WCW metric would be a change of zero modes so that one could identify it as analog
of conformal scaling. The action of symplectic transformations vanishing in the interior of
space-like 3-surface at the end of space-time surface affects only zero modes.

3.1.7 Attempts to identify WCW Hamiltonians

I have made several attempts to identify WCW Hamiltonians. The first two candidates referred
to as magnetic and electric Hamiltonians, emerged in a relatively early stage. The third candidate
is based on the formulation of quantum TGD using 3-D light-like surfaces identified as orbits of
partons. The proposal is out-of-date but the most recent proposal is obtained by a very straight-
forward generalization from the proposal for magnetic Hamiltonians discussed below.

Magnetic Hamiltonians

Assuming that the elements of the radial Virasoro algebra of (5Mi have zero norm, one ends
up with an explicit identification of the symplectic structures of WCW. There is almost unique
identification for the symplectic structure. WCW counterparts of §M* x C'P, Hamiltonians are
defined by the generalized signed and and unsigned Kéahler magnetic fluxes
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Qm(HA7X2) = foz I_IAJ\/g>2d2:17 ;
QL(Ha,rn) = Z [o HalJ|\/g2d?x

J = ea’BJaB .

H 4 is C P, Hamiltonian multiplied by a function of coordinates of light cone boundary belonging
to a unitary representation of the Lorentz group. Z is a conformal factor depending on symplectic
invariants. The symplectic structure is induced by the symplectic structure of CPs.

The most general flux is superposition of signed and unsigned fluxes @Q,, and Q..

QP (Ha, X?) = aQm(Ha, X?) + BQF (HA, X?) .

Thus it seems that symmetry arguments fix the form of the WCW metric apart from the presence
of a conformal factor Z multiplying the magnetic flux and the degeneracy related to the signed
and unsigned fluxes.

Generalization

The generalization for definition WCW super-Hamiltonians defining WCW gamma matrices is
discussed in detail in [K80] feeds in the wisdom gained about preferred extremals of Kéhler action
and solutions of the modified Dirac action: in particular, about their localization at string worlds
sheets (right handed neutrino could be an exception).

The basic formulas generalize as such: the only modification is that the super-Hamiltonian of
S§M$ x CP, at given point of partonic 2-surface is replaced with the Noether super charge associated
with the Hamiltonian obtained by integrating the 1-D super current over string emanating from
partonic 2-surface. Right handed neutrino spinor is replaced with any mode of the modified Dirac
operator localized at string world sheet in the case of Kac-Moody sub-algebra of super-symplectic
algebra corresponding to symplectic isometries at light-cone boundary and CP,. In the case of
right- handed neutrino one obtains entire super-symplectic algebra and the direct sum of these
algebras is used to construct physical states. This step is analogous to the replacement of point
like particle with string.

The resulting super Hamiltonians define WCW gamma matrices. They are labelled by two
conformal weights. The first one is the conformal weight associated with the light-like coordinate
of M4 x C'P,. Second conformal weight is associated with the spinor mode and the coordinate
along stringy curve. One cannot exclude the possibility that the two conformal weights have
same value. Effective 2-dimensionality and the fact that string coordinate cannot be always radial
light-like coordinate would suggest that they are independent.

The presence of two conformal weights is in accordance with the idea that a generalization of
conformal invariance to 4-D situation is in question. If Yangian extension of conformal symmetries
is possible and would bring an additional integer n telling the degree of multilocality of Yangian
generators defined as the number of partonic 2-surfaces at which the generator acts. For conformal
algebra degree of multilocality equals to n = 1.

3.1.8 For the reader

Few words about the representation of ideas are in order. For a long time the books about TGD
served as kind of lab note books - a bottom-up representation providing kind of a ladder making
clear the evolution of ideas. This led gradually to a rather chaotic situation in which it was difficult
for me to control the internal consistency and for the possible reader to distinguish between the big
ideas and ad hoc guesses, most of them related to the detailed realization of big visions. Therefore
I have made now and the the decision to clean up a lot of the ad hoc stuff. In this process I have
also changed the representation so that it is more top-down and tries to achieve over-all views.
There are several visions about what TGD is and I have worked hardly to achieve a fusion of
these visions. Hence simple linear representation in which reader climbs to a tree of wisdom is
impossible. I must summarize overall view from the beginning and refer to the results deduced in
chapters towards the end of the book and also to ideas discussed in other books. For instance, the
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construction of WCW (”world of classical worlds” (WCW)) spinor structure discussed in chapters
[K9, K18, K69] provides the understanding necessary to make the construction of configuration
space geometry more detailed. Also number theoretical vision discussed in another book [K49] is
necessary. Somehow it seems that a graphic representation emphasizing visually the big picture
should be needed to make the representation more comprehensible.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
There are concept maps about topics related to the contents of the chapter prepared using CMAP
realized as html files. Links to all CMAP files can be found at http://www.tgdtheory.fi/
cmaphtml.html [L13]. Pdf representation of same files serving as a kind of glossary can be found
at http://www.tgdtheory.fi/tgdglossary.pdf [L14]. The topics relevant to this chapter are
given by the following list.

e Geometry of WCW [L20]
e Zero Energy Ontology (ZEO) [L44]
e Symmetries of WCW [L34]

TGD as ATQFT [L36]

Vacuum functional in TGD [L40]

3.2 How to generalize the construction of WCW geometry
to take into account the classical non-determinism?

If the imbedding space were H, = M{ x CP, and if Kéhler action were deterministic, the con-
struction of WCW geometry reduces to 5Mfﬁ X CP,. Thus in this limit quantum holography
principle [B12, B23] would be satisfied also in TGD framework and actually reduce to the general
coordinate invariance. The classical non-determinism of Kéhler action however means that this
construction is not quite enough and the challenge is to generalize the construction.

3.2.1 Quantum holography in the sense of quantum gravity theories

In string theory context quantum holography is more or less synonymous with Maldacena con-
jecture Maldacena which (very roughly) states that string theory in Anti-de-Sitter space AdS is
equivalent with a conformal field theory at the boundary of AdS. In purely quantum gravitational
context [B12] , quantum holography principle states that quantum gravitational interactions at
high energy limit in AdS can be described using a topological field theory reducing to a conformal
(and non-gravitational) field theory defined at the time like boundary of the AdS. Thus the time
like boundary plays the role of a dynamical hologram containing all information about correlation
functions of d 4+ 1 dimensional theory. This reduction also conforms with the fact that black hole
entropy is proportional to the horizon area rather than the volume inside horizon.

Holography principle reduces to general coordinate invariance in TGD. If the action principle
assigning space-time surface to a given 3-surface X? at light cone boundary were completely de-
terministic, four-dimensional general coordinate invariance would reduce the construction of the
configuration geometry for the space of 3-surfaces in Mjl_ x C P, to the construction of the geometry
at the boundary of WCW consisting of 3-surfaces in § M j{ x C'Py (moment of big bang). Also the
quantum theory would reduce to the boundary of the future light cone.

The classical non-determinism of Kéahler action however implies that quantum holography in
this strong form fails. This is very desirable from the point of view of both physics and consciousness
theory. Classical determinism would also mean that time would be lost in TGD as it is lost in GRT.
Classical non-determinism is also absolutely essential for quantum consciousness and makes possible
conscious experiences with contents localized into finite time interval despite the fact that quantum
jumps occur between WCW spinor fields defining what I have used to call quantum histories.
Classical non-determinism makes it also possible to generalize quantum-classical correspondence
in the sense that classical non-determinism at the space-time level provides correlate for quantum
non-determinism. The failure of classical determinism is a difficult challenge for the construction
of WCW geometry. One might however hope that the notion of quantum holography generalizes.
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3.2.2 How the classical determinism fails in TGD?

One might hope that determinism in a generalized sense might be achieved by generalizing the
notion of 3-surface by allowing unions of space-like 3-surfaces with time like separations with
very strong but not complete correlations between the space-like 3-surfaces. In this case the non-
determinism would mean that the 3-surfaces Y3 at light cone boundary correspond to at most
enumerable number of preferred extremals X*4(Y?) of Kihler action so that one would get finite
or at most enumerably infinite number of replicas of a given WCW region and the construction
would still reduce to the light cone boundary.

1. This is probably quite too simplistic view. Any 4-surface which has C'P, projection which
belongs to so called Lagrange manifold of C'P, having by definition vanishing induced Kéahler
form is vacuum extremal. Thus there is an infinite variety of 6-dimensional sub-manifolds of
H for which all extremals of Kahler action are vacua.

2. CP, type vacuum extremals are different since they possess non-vanishing Kahler form and
Kahler action. They are identifiable as classical counterparts of elementary particles have Mfﬁ
projection which is a random light like curve (this in fact gives rise to conformal invariance
identifiable as counterpart of quaternion conformal invariance). Thus there are good reasons
to suspect that classical non-determinism might destroy the dream about complete reduction
to the light cone boundary.

3. The wormhole contacts connecting different space-time sheets together can be seen as pieces
of C'P, type extremals and one expects that the non-determinism is still there and that the
metrically 2-dimensional elementary particle horizons (light like 3-surfaces of H surrounding
wormhole contacts and having time-like Mi projection) might be a crucial element in the
understanding of quantum TGD. The non-determinism of C' P, type extremals is absolutely
crucial for the ordinary elementary particle physics. It seems that the conformal symmetries
responsible for the ordinary elementary particle quantum numbers acting in these degrees of
freedom do not contribute to the WCW metric line element.

4. The possibility of space-time sheets with a negative time orientation with ensuing negative
sign of classical energy is a further blow against M4 reductionism. Space-time sheets can
be created as pairs of positive and negative energy space-time sheet from vacuum and this
forces to modify radically the ontology of physics. Crossing symmetry allows to interpret
particle reactions as a creation of zero energy states from vacuum, and the identification of
the gravitational energy as the difference between positive and negative energies of matter
supports the view that the net inertial (conserved Poincare-) energy of the universe van-
ishes both in quantal and classical sense. This option resolves unpleasant questions about
net conserved quantum numbers of Universe, and provides an elegant interpretation of the
vacuum extremals as correlates for systems with vanishing Poincare energy. This option
is the only possible alternative from the point of view of TGD inspired cosmology where
Robertson-Walker metrics are vacuum extremals with respect to inertial energy. In particu-
lar, super-symplectic invariance transforms to a fundamental symmetry of elementary particle
physics besides the conformal symmetry associated with 3-D light like causal determinants
which means a dramatic departure from string models unless it is somehow equivalent with
the super-symplectic symmetry.

The treatment of the non-determinism in a framework in which the prediction of time evolution
is seen as initial value problem, seems to be difficult. Also the notion of WCW becomes a messy
concept. Zero energy ontology changes the situation completely. Light-like 3-surfaces become
representations of generalized Feynman diagrams and brings in the notion of finite time resolution.
One obtains a direct connection with the concepts of quantum field theory with path integral with
cutoff replaced with a sum over various preferred extremals with cutoff in time resolution.

3.2.3 The notions of imbedding space, 3-surface, and configuration space

The notions of imbedding space, 3-surface (and 4-surface), and configuration space ("world of
classical worlds”, WCW) are central to quantum TGD. The original idea was that 3-surfaces are



3.2. How to generalize the construction of WCW geometry to take into account the
classical non-determinism? 79

space-like 3-surfaces of H = M* x CPy or H = Mﬁ x CPy, and WCW consists of all possible
3-surfaces in H. The basic idea was that the definition of Kéhler metric of WCW assigns to
each X3 a unique space-time surface X4(X3) allowing in this manner to realize general coordinate
invariance. During years these notions have however evolved considerably. Therefore it seems
better to begin directly from the recent picture.

The notion of imbedding space

Two generalizations of the notion of imbedding space were forced by number theoretical vision
[K51, K52, K50] .

1. p-Adicization forced to generalize the notion of imbedding space by gluing real and p-adic
variants of imbedding space together along rationals and common algebraic numbers. The
generalized imbedding space has a book like structure with reals and various p-adic number
fields (including their algebraic extensions) representing the pages of the book.

2. With the discovery of zero energy ontology [K9, K13] it became clear that the so called causal
diamonds (CDs) interpreted as intersections M} NM? of future and past directed light-cones
of M* x CP, define correlates for the quantum states. The position of the *lower” tip of CD
characterizes the position of CD in H. If the temporal distance between upper and lower tip
of CD is quantized power of 2 multiples of C'P; length, p-adic length scale hypothesis [K33]
follows as a consequence. The upper resp. lower light-like boundary (5Mj4; x C'Py resp.
SM?* x C'P, of CD can be regarded as the carrier of positive resp. negative energy part of the
state. All net quantum numbers of states vanish so that everything is creatable from vacuum.
Space-time surfaces assignable to zero energy states would would reside inside CD x CPss
and have their 3-D ends at the light-like boundaries of C'D x C'P». Fractal structure is present
in the sense that CDs can contains CDs within CDs, and measurement resolution dictates
the length scale below which the sub-CDs are not visible.

3. The realization of the hierarchy of Planck constants [K17] led to a further generalization of
the notion of imbedding space. Generalized imbedding space is obtained by gluing together
Cartesian products of singular coverings and factor spaces of CD and CP; to form a book
like structure. The particles at different pages of this book behave like dark matter relative
to each other. This generalization also brings in the geometric correlate for the selection of
quantization axes in the sense that the geometry of the sectors of the generalized imbedding
space with non-standard value of Planck constant involves symmetry breaking reducing the
isometries to Cartan subalgebra. Roughly speaking, each CD and C'P; is replaced with a
union of CDs and CPss corresponding to different choices of quantization axes so that no
breaking of Poincare and color symmetries occurs at the level of entire WCW.

4. The construction of quantum theory at partonic level brings in very important delicacies
related to the Kéhler gauge potential of CP,. Kahler gauge potential must have what one
might call pure gauge parts in M* in order that the theory does not reduce to mere topological
quantum field theory. Hence the strict Cartesian product structure M* x C P, breaks down
in a delicate manner. These additional gauge components -present also in C P,- play key role
in the model of anyons, charge fractionization, and quantum Hall effect [K37] .

The notions of 3-surface and space-time surface

The question what one exactly means with 3-surface turned out to be non-trivial.

1. The original identification of 3-surfaces was as arbitrary space-like 3-surfaces subject to
Equivalence implied by General Coordinate Invariance. There was a problem related to the
realization of General Coordinate Invariance since it was not at all obvious why the preferred
extremal X4(Y?) for Y3 at X4(X?) and Diff* related X3 should satisfy X*(Y3) = X*(X?3) .

2. Much later it became clear that light-like 3-surfaces have unique properties for serving as
basic dynamical objects, in particular for realizing the General Coordinate Invariance in 4-D
sense (obviously the identification resolves the above mentioned problem) and understanding
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the conformal symmetries of the theory. On basis of these symmetries light-like 3-surfaces
can be regarded as orbits of partonic 2-surfaces so that the theory is locally 2-dimensional.
It is however important to emphasize that this indeed holds true only locally. At the level of
WCW metric this means that the components of the Kahler form and metric can be expressed
in terms of data assignable to 2-D partonic surfaces. It is however essential that information
about normal space of the 2-surface is needed.

3. At some stage came the realization that light-like 3-surfaces can have singular topology in the
sense that they are analogous to Feynman diagrams. This means that the light-like 3-surfaces
representing lines of Feynman diagram can be glued along their 2-D ends playing the role
of vertices to form what I call generalized Feynman diagrams. The ends of lines are located
at boundaries of sub-CDs. This brings in also a hierarchy of time scales: the increase of the
measurement resolution means introduction of sub-CDs containing sub-Feynman diagrams.
As the resolution is improved, new sub-Feynman diagrams emerge so that effective 2-D
character holds true in discretized sense and in given resolution scale only.

4. A further complication relates to the hierarchy of Planck constants forcing to generalize the
notion of imbedding space and also to the fact that for non-standard values of Planck constant
there is symmetry breaking due to preferred plane M? preferred homologically trivial geodesic
sphere of C' P, having interpretation as geometric correlate for the selection of quantization
axis. For given sector of C'H this means union over choices of this kind.

The basic vision forced by the generalization of General Coordinate Invariance has been that
space-time surfaces correspond to preferred extremals X*(X?) of Kihler action and are thus analo-
gous to Bohr orbits. Kihler function K (X?3) defining the Kihler geometry of the world of classical
worlds would correspond to the Kéhler action for the preferred extremal. The precise identification
of the preferred extremals actually has however remained open.

The obvious but rather ad hoc guess motivated by physical intuition was that preferred ex-
tremals correspond to the absolute minima of Kihler action for space-time surfaces containing X 3.
This choice has some nice implications. For instance, one can develop an argument for the existence
of an infinite number of conserved charges. If X? is light-like surface- either light-like boundary
of X* or light-like 3-surface assignable to a wormhole throat at which the induced metric of X*
changes its signature- this identification circumvents the obvious objections. This option however
failed to have a direct analog in the p-adic sectors of the world of classical worlds (WCW). The
reason is that minimization does not make sense for the p-adic valued counterpart of Kéahler action
since it is not even well-defined although the field equations make sense p-adically. Therefore, if
absolute minimization makes sense it must have expression as purely algebraic conditions.

For this reason it is better to talk just about preferred extremals of Kéahler action and accept
as the fact that there are several proposals for what this notion could mean. For instance, one can
consider the identification of space-time surface as quaternionic sub-manifold meaning that tangent
space of space-time surface can be regarded as quaternionic sub-manifold of complexified octonions
defining tangent space of imbedding space. One manner to define ”quaternionic sub-manifold” is
by introducing octonionic representation of imbedding space gamma matrices identified as tangent
space vectors. It must be also assumed that the tangent space contains a preferred complex
(commutative) sub-space at each point and defining an integrable distribution having identification
as string world sheet (also slicing of space-time sheet by string world sheets can be considered).
Associativity and commutativity would define the basic dynamical principle. A closely related
approach is based on so called Hamilton-Jacobi structure [K5] defining also this kind of slicing and
the approaches could be equivalent. A further approach is based on the identification of preferred
extremal property as quantum criticality [K5].

The notion of number theoretical compactification led to important progress in the understand-
ing of the preferred extremals and the conjectures were consistent with what is known about the
known extremals.

1. The conclusion was that one can assign to the 4-D tangent space T'(X*(X}})) C M® a subspace
M?(x) C M* having interpretation as the plane of non-physical polarizations. This in the
case that the induced metric has Minkowskian signature. If not, and if co-hyper-quaternionic
surface is in question, similar assigned should be possible in normal space. This means a close
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connection with super string models. Geometrically this would mean that the deformations
of 3-surface in the plane of non-physical polarizations would not contribute to the line element
of WCW. This is as it must be since complexification does not make sense in M? degrees of
freedom.

2. In number theoretical framework M?(z) has interpretation as a preferred hyper-complex sub-
space of hyper-octonions defined as 8-D subspace of complexified octonions with the property
that the metric defined by the octonionic inner product has signature of M®. The condition
M?(x) C T(X*(X}))) in principle fixes the tangent space at X, and one has good hopes
that the boundary value problem is well-defined and could fix X#(X?) at least partially as
a preferred extremal of Kéahler action. This picture is rather convincing since the choice
M?(x) C M* plays also other important roles.

3. At the level of H the counterpart for the choice of M?(z) seems to be following. Suppose
that X*(X f) has Minkowskian signature. One can assign to each point of the M* projection
Py (X*4(X})) a sub-space M?(z) C M* and its complement E?(x), and the distributions
of these planes are integrable and define what I have called Hamilton-Jacobi coordinates
which can be assigned to the known extremals of Kahler with Minkowskian signature. This
decomposition allows to slice space-time surfaces by string world sheets and their 2-D partonic
duals. Also a slicing to 1-D light-like surfaces and their 3-D light-like duals Y;* parallel to
X} follows under certain conditions on the induced metric of X4(X?). This decomposition
exists for known extremals and has played key role in the recent developments. Physically it
means that 4-surface (3-surface) reduces effectively to 3-D (2-D) surface and thus holography
at space-time level.

4. The weakest form of number theoretic compactification [K52] states that light-like 3-surfaces
X3 C X*(X3) c M8, where X*(X?) hyper-quaternionic surface in hyper-octonionic M® can
be mapped to light-like 3-surfaces X3 € X*(X3) C M*xC Py, where X*(X?) is now preferred
extremum of Kihler action. The natural guess is that X*4(X?) ¢ M?® is a preferred extremal
of Kihler action associated with Kahler form of E* in the decomposition M® = M?* x E4,
where M* corresponds to hyper-quaternions. The conjecture would be that the value of the
Kahler action in M?® is same as in M* x CP,: in fact that 2-surface would have identical
induced metric and Kihler form so that this conjecture would follow trivial. M® — H duality
would in this sense be Kéahler isometry.

The study of the modified Dirac equation meant further steps of progress and lead to a rather
detailed view about what preferred extremals are.

1. The detailed construction of the generalized eigen modes of the modified Dirac operator Dg
associated with Kéhler action [K9] relies on the vision that the generalized eigenvalues of this
operator code for information about preferred extremal of Kéhler action. The view about
TGD as almost topological QFT is realized if the eigenmodes correspond to the solutions
of Dk, which are effectively 3-dimensional. Otherwise almost topological QFT property
would require Chern-Simons action alone and this choice is definitely un-physical. The first
guess was that the eigenmodes are restricted to X 13 and therefore analogous to spinorial
shock waves. As I realized that number theoretical compactification requires the slicing of
X4(X?) by light-like 3-surfaces Y;® parallel to X}, it became clear that super-conformal
gauge invariance with respect to the coordinate labeling the slices is a more natural manner
to realized effective 3-dimensionality and guarantees that Yl‘3 is gauge equivalent with X f
(General Coordinate Invariance).

2. The eigen modes of the modified Dirac operator Dg have the defining property that they
are localized in regions of X}, where the induced Kihler gauge field is non-vanishing. This
guarantees that the number of generalized eigen modes is finite so that Dirac determinant is
also finite and algebraic number if eigenvalues are algebraic numbers, and therefore makes
sense also in p-adic context although Kéhler action itself does not make sense p-adically.

3. The construction of WCW geometry in terms of modified Dirac action strengthens also the
boundary conditions to the condition that there exists space-time coordinates in which the
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induced C'P, Kahler form and induced metric satisfy the conditions J,; = 0, g,; = 0 hold at
X7. One could say that at X} situation is static both metrically and for the Maxwell field
defined by the induced Kéhler form.

4. The final step in the rapid evolution of ideas that too place during three months - at least I
hope so since I do not want to continue this updating endlessly - was the realization that the
introduction of imaginary CP breaking instanton part to the Kéhler action is possible and also
necessary if one wants a stringy variant of Feynman rules. Imaginary part does not contribute
to the WCW metric. This enriches the spectrum of the modified Dirac operator with an
infinite number of conformal excitations breaking the effective 2-dimensionality of 3-surfaces
and exact holography. Conformal excitations make possible stringy Feynman diagrammatics
[K12] . A breaking of effective 3-dimensionality of space-time surface comes through the
non-determinism of Kéhler action which indeed is the mechanism breaking the effective 2-
dimensionality. Dirac determinant can be defined in terms of zeta function regularization
using Riemann Zeta. Finite measurement resolution realized in terms of braids defined on
basis of purely physical criteria however forces a cutoff in conformal weight and finiteness so
that number theoretical universality is not lost.

5. This picture relying crucially on the the slicing of X4(X?) did not yet fix the definition of
preferred extremals analytically at the level of field equations. The next step of progress was
the realization that the requirement that the conservation of the Noether currents associated
with the modified Dirac equation requires that the second variation of the Kahler action
vanishes. In strongest form this condition would be satisfied for all variations and in weak
sense only for those defining dynamical symmetries. The interpretation is as space-time
correlate for quantum criticality and the vacuum degeneracy of Kéhler action makes the
criticality plausible. A generalization of the ideas of the catastrophe theory to infinite-
dimensional context results [K22] . These conditions make sense also in p-adic context and
have a number theoretical universal form.

Although the details of this vision might change it can be defended by its ability to fuse together
all great visions about quantum TGD. In the sequel the considerations are restricted to 3-surfaces
in M_‘f_ X C'Ps. The basic outcome is that Kéahler metric is expressible using the data at partonic
2-surfaces X2 C (5Mjl_ X CP,. The generalization to the actual physical situation requires the
replacement of X2 C M4} x C'P, with unions of partonic 2-surfaces located at light-like boundaries
of CDs and sub-CDs.

The notion of WCW

From the beginning there was a problem related to the precise definition of WCW ("world of
classical worlds” (WCW)). Should one regard CH as the space of 3-surfaces of M* x CP, or
Mjl_ x C Py or perhaps something more delicate.

1. For a long time I believed that the question ” Mi or M*?” had been settled in favor of Mfﬁ
by the fact that Mi has interpretation as empty Roberson-Walker cosmology. The huge
conformal symmetries assignable to M x C'P, were interpreted as cosmological rather than
laboratory symmetries. The work with the conceptual problems related to the notions of
energy and time, and with the symmetries of quantum TGD, however led gradually to the
realization that there are strong reasons for considering M* instead of Mi.

2. With the discovery of zero energy ontology it became clear that the so called causal diamonds
(CDs) define excellent candidates for the fundamental building blocks of WCW or ”world of
classical worlds” (WCW). The spaces CD x C'P; regarded as subsets of H defined the sectors
of WCW.

3. This framework allows to realize the huge symmetries of IM$ x CP; as isometries of WCW.
The gigantic symmetries associated with the §M% x C'P, are also laboratory symmetries.
Poincare invariance fits very elegantly with the two types of super-conformal symmetries of
TGD. The first conformal symmetry corresponds to the light-like surfaces §M$ x CPy of
the imbedding space representing the upper and lower boundaries of CD. Second conformal
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symmetry corresponds to light-like 3-surface X f’, which can be boundaries of X* and light-like
surfaces separating space-time regions with different signatures of the induced metric. This
symmetry is identifiable as the counterpart of the Kac Moody symmetry of string models.

A rather plausible conclusion is that WCW (WCW) is a union of WCWs associated with
the spaces CD x CP,. CDs can contain CDs within CDs so that a fractal like hierarchy having
interpretation in terms of measurement resolution results. Since the complications due to p-adic
sectors and hierarchy of Planck constants are not relevant for the basic construction, it reduces to
a high degree to a study of a simple special case é M. fi X CPs.

A further piece of understanding emerged from the following observations.

1. The induced Kihler form at the partonic 2-surface X2 - the basic dynamical object if holog-
raphy is accepted- can be seen as a fundamental symplectic invariant so that the values of
B Jap at X? define local symplectic invariants not subject to quantum fluctuations in the
sense that they would contribute to the WCW metric. Hence only induced metric corre-
sponds to quantum fluctuating degrees of freedom at WCW level and TGD is a genuine
theory of gravitation at this level.

2. WCW can be divided into slices for which the induced Kahler forms of CP, and §M{ at the
partonic 2-surfaces X2 at the light-like boundaries of CDs are fixed. The symplectic group
of M4 x C'P, parameterizes quantum fluctuating degrees of freedom in given scale (recall
the presence of hierarchy of CDs).

3. This leads to the identification of the coset space structure of the sub-WCW associated with
given CD in terms of the generalized coset construction for super-symplectic and super Kac-
Moody type algebras (symmetries respecting light-likeness of light-like 3-surfaces). WCW in
quantum fluctuating degrees of freedom for given values of zero modes can be regarded as
being obtained by dividing symplectic group with Kac-Moody group. Equivalently, the local
coset space S2 x C'P, is in question: this was one of the first ideas about WCW which I gave
up as too naive!

4. Generalized coset construction and coset space structure have very deep physical meaning
since they realize Equivalence Principle at quantum level. Contrary to the original belief,
this construction does not provide a realization of Equivalence Principle at quantum level.
The proper realization of EP at quantum level seems to be based on the identification of clas-
sical Noether charges in Cartan algebra with the eigenvalues of their quantum counterparts
assignable to Kéhler-Dirac action. At classical level EP follows at GRT limit obtained by
lumping many-sheeted space-time to M* with effective metric satisfying Einstein’s equations
as a reflection of the underlying Poincare invariance.

3.2.4 The treatment of non-determinism of Kahler action in zero energy
ontology

The non-determinism of Kéhler action means that the reduction of the construction of WCW
geometry to the light cone boundary fails. Besides degeneracy of the preferred extrema of Kéahler
action, the non-determinism should manifest itself as a presence of causal determinants also other
than light cone boundary.

One can imagine two kinds of causal determinants.

1. Elementary particle horizons and light-like boundaries X C X* of 4-surfaces representing
wormhole throats act as causal determinants for the space-time dynamics defined by Kéahler
action. The boundary values of this dynamics have been already considered.

2. At imbedding space level causal determinants correspond to light like CD forming a fractal
hierarchy of CDs within CDs. These causal determinants determine the dynamics of zero
energy states having interpretation as pairs of initial and final states in standard quantum
theory.

The manner to treat the classical non-determinism would be roughly following.
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1. The replacement of space-like 3-surface X® with X;* transforms initial value problem for X to
a boundary value problem for X;. In principle one can also use the surfaces X3 C 6CDx CP,
if X7 fixes X4(X?) and thus X3 uniquely. For years an important question was whether both
X3 and X} contribute separately to WCW geometry or whether they provide descriptions,
which are in some sense dual. This lead to the notion of 7-3 duality and I even considered
the possibility that dM fi x C'P, could be replaced with a more general surface X; x CP,
allowing also generalized symplectic and conformal symmetries. 7-3 duality is not a good
term since the actual duality actually relates descriptions based on space-like 3-surfaces X?
and light-like 3-surfaces X. Hence it seems that the proper place for 7-3 duality is in paper
basked.

2. Only Super-Kac-Moody type conformal algebra makes sense in the interior of X;. In the
2-D intersections of X} with the boundary of causal diamond (CD) defined as intersection
of future and past directed light-cones super-symplectic algebra makes sense. This implies
effective two-dimensionality which is broken by the non-determinism represented using the
hierarchy of CDs meaning that the data from these 2-D surfaces and their normal spaces at
boundaries of CDs in various scales determine the WCW metric.

3. An important question has been whether Kac-Moody and super-symplectic algebras provide
descriptions which are dual in some sense. At the level of Super-Virasoro algebras duality
seems to be satisfied in the sense of generalized coset construction meaning that the dif-
ferences of Super Virasoro generators of super-symplectic and super Kac-Moody algebras
annihilate physical states. Among other things this means that four-momenta assignable to
the two Super Virasoro representations are identical. T he interpretation is in terms of a
generalization of Equivalence Principle [K9, K13] . This gives also a justification for p-adic
thermodynamics applying only to Super Kac-Moody algebra.

4. Light-like 3-surfaces can be regarded also as generalized Feynman diagrams. The finite
length resolution mean means also a cutoff in the number of generalized Feynman diagrams
and this number remains always finite if the light-like 3-surfaces identifiable as maxima of
Kahler function correspond to the diagrams. The finiteness of this number is also essential for
number theoretic universality since it guarantees that the elements of M-matrix are algebraic
numbers if momenta and other quantum numbers have this property. The introduction of
new sub-CDs means also introduction of zero energy states in corresponding time scale.

5. The notion of finite measurement resolution expressed in terms of hierarchy of CDs within
CDs is important for the treatment of classical non-determinism. In a given resolution
the non-determinism of Kahler action remains invisible below the time scale assigned to the
smallest CDs. One could also say that complete non-determinism characterized in terms path
integral with cutoff is replaced in TGD framework with the partial failure of classical non-
determinism leading to generalized Feynman diagrams. This gives rise to to discrete coupling
constant evolution and avoids the mathematical ill-definedness and infinities plaguing path
integral formalism since the functional integral over 3-surfaces is well defined.

6. Dirac determinant defining vacuum functional is assumed to correspond to exponent of Kahler
action for its preferred extremal. Dirac determinant is defined as a product of finite number
of eigenvalues of the transverse part Dy (X?) of the modified Dirac operator Dy assumed
to have decomposition D = Dx (X?) 4+ Dg (Y?) reflecting the dual slicings of X* to string
world sheets Y2 and partonic 2-surfaces X 2. The existence of the slicing is supported by the
properties of known extremals of Kéhler action and strongly suggested by number theoretical
compactification, and it implies among other things dimensional reduction to Minkowskian
string model like theory and its Euclidian equivalent allowing to understand how Equivalence
Principle is realized at space-time level. Finite number for the eigenvalues raises even hope
that in a given resolution the functional integral reduces to Gaussian integral over a finite-
dimensional space of logarithms of eigenvalues.

7. One can ask why Kahler action and playing with all these delicacies related to the failure
of complete determinism. After all, one could formally replace Kédhler action with 4-volume
as in brane models. Space-time surfaces would be minimal surfaces and Dirac operator
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would be standard Dirac operator for the induced metric. Dirac determinant would however
become infinite since the modes would not be anymore analogs of cyclotron states necessarily
localized to a finite region of X;. Recall that for Kéhler action X} indeed decomposes into
patches inside with induced Kahler form is non-vanishing and Dirac determinant defining the
exponent of Kéhler function is well-defined and finite without any regularization procedure.
Hence Kéhler action is completely unique.

3.2.5 Category theory and WCW geometry

Due the effects caused by the classical non-determinism even classical TGD universes are very
far from simple Cartesian clockworks, and the understanding of the general structure of WCW is
a formidable challenge. Category theory is a branch of mathematics which is basically a theory
about universal aspects of mathematical structures. Thus category theoretical thinking might help
in disentangling the complexities of WCW geometry and the basic ideas of category theory are
discussed in this spirit and as an innocent layman. It indeed turns out that the approach makes
highly non-trivial predictions.

In zero energy ontology the effects of non-determinism are taken into account in terms of
causal diamonds forming a hierarchical fractal structure. One must allow also the unions of CDs,
CDs within CDs, and probably also overlapping of CDs, and there are good reasons to expert
that CDs and corresponding algebraic structures could define categories. If one does not allow
overlapping CDs then set theoretic inclusion map defines a natural arrow. If one allows both
unions and intersections then CDs would form a structure analogous to the set of open sets used
in set theoretic topology. One could indeed see CDs (or rather their Cartesian products with C'P)
as analogs of open sets in Minkowskian signature.

So called ribbon categories seem to be tailor made for the formulation of quantum TGD and
allow to build bridge to topological and conformal field theories. This discussion based on standard
ontology. In [K8] rather detailed category theoretical constructions are discussed. Important role
is played by the notion of operad operad,operads : this structure can be assigned with both gener-
alized Feynman diagrams and with the hierarchy of symplectic fusion algebras realizing symplectic
analogs of the fusion rules of conformal field theories.

3.3 Identification of the symmetries and coset space struc-
ture of WCW

In this section the identification of the isometry group of the configuration ("world of classical
worlds” or briefly WCW) will be discussed at general level.

3.3.1 Reduction to the light cone boundary

The reduction to the light cone boundary would occur exactly if Kahler action were strictly de-
terministic. This is not the case but it is possible to generalize the construction at light cone
boundary to the general case if causal diamonds define the basic structural units of the WCW.

Old argument

The identification of WCW follows as a consequence of 4-dimensional Diff invariance. The right
question to ask is the following one. How could one coordinatize the physical(!) vibrational degrees
of freedom for 3-surfaces in Diff* invariant manner: coordinates should have same values for all
Diff* related 3-surfaces belonging to the orbit of X3? The answer is following:

1. Fix some 3-surface (call it Y3) on the orbit of X3 in Diff* invariant manner.

2. Use as WCW coordinates of X? and all its diffeomorphs the coordinates parameterizing small
deformations of Y3. This kind of replacement is physically acceptable since metrically the
WCW is equivalent with Map/Dif f*.

3. Require that the fixing procedure is Lorentz invariant, where Lorentz transformations in
question leave light Mff_ invariant and thus act as isometries.
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The simplest choice of Y2 is the intersection of the orbit of 3-surface (X*) with the set §M$ x CP,
, where M denotes the boundary of the light cone (moment of big bang):

Y? = X'néMixCPs (3.3.1)

Lorentz invariance allows also the choice X x C'P,, where X corresponds to the hyperboloid a =

(m%)2 — %, = constant but only the proposed choice (a = 0) leads to a natural complexification
in M* degrees of freedom. This choice is also cosmologically very natural and completely analogous
to the quantum gravitational holography of string theories.

WCW has a fiber space structure. Base space consists of 3-surfaces Y2 C 6M i x CPy and
fiber consists of 3-surfaces on the orbit of Y | which are Diff* equivalent with Y3. The distance
between the surfaces in the fiber is vanishing in WCW metric. An elegant manner to avoid
difficulties caused by Diff* degeneracy in WCW integration is to define integration measure as
integral over the reduced WCW consisting of 3-surfaces Y3 at the light cone boundary.

Situation is however quite not so simple. The vacuum degeneracy of Kéhler action suggests
strongly classical non-determinism so that there are several, possibly, infinite number of preferred
extremals X*(Y3) associated with given Y3 on light cone boundary. This implies additional de-
generacy.

One might hope that the reduced WCW could be replaced by its covering space so that given
Y3 corresponds to several points of the covering space and WCW has many-sheeted structure.
Obviously the copies of Y have identical geometric properties. WCW integral would decompose
into a sum of integrals over different sheets of the reduced WCW. Note that WCW spinor fields
are in general different on different sheets of the reduced WCW.

Even this is probably not enough: it is quite possible that all light like surfaces of M* possessing
Hamilton Jacobi structure (and thus interpretable as light fronts) are involved with the construction
of the WCW geometry. Because of their metric two-dimensionality the proposed construction
should generalize. This would mean that WCW geometry has also local laboratory scale aspects
and that the general ideas might allow testing.

New version of the argument

The above summary was the basic argument for two decades ago. A more elegant formulation
would in terms of light-like 3-surfaces connecting the boundaries of causal diamond taken as basic
geometric objects and identified as generalized Feynman diagrams so that they are singular as
manifolds at the vertices.

If both formulations are required to be correct, the only conclusion is that effective 2-dimensionality
must hold true in the scale of given CD. In other words, the intersection X? = X} N X3 at the
boundary of CD is effectively the basic dynamical unit. The failure of strict non-determinism how-
ever forces to introduce entire hierarchy of CDs responsible also for coupling constant evolution
defined in terms of the measurement resolution identified as the size of the smallest CD present.

3.3.2 WCW as a union of symmetric spaces

In finite-dimensional context globally symmetric spaces are of form G/H and connection and
curvature are independent of the metric, provided it is left invariant under G. The hope is that same
holds true in infinite-dimensional context. The most one can hope of obtaining is the decomposition
C(H) = U,G/H; over orbits of G. One could allow also symmetry breaking in the sense that G
and H depend on the orbit: C'(H) = U;G;/H; but it seems that G can be chosen to be same for all
orbits. What is essential is that these groups are infinite-dimensional. The basic properties of the
coset space decomposition give very strong constraints on the group H, which certainly contains
the subgroup of G, whose action reduces to diffeomorphisms of X3.

Consequences of the decomposition

If the decomposition to a union of coset spaces indeed occurs, the consequences for the calculability
of the theory are enormous since it suffices to find metric and curvature tensor for single repre-
sentative 3-surface on a given orbit (contravariant form of metric gives propagator in perturbative
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calculation of matrix elements as functional integrals over the WCW). The representative surface
can be chosen to correspond to the maximum of Kéahler function on a given orbit and one obtains
perturbation theory around this maximum (K&hler function is not isometry invariant).

The task is to identify the infinite-dimensional groups G and H and to understand the zero
mode structure of the WCW. Almost twenty (seven according to long held belief!) years after the
discovery of the candidate for the Kahler function defining the metric, it became finally clear that
these identifications follow quite nicely from Diff* invariance and Diff* degeneracy as well as
special properties of the Kéhler action.

The guess (not the first one!) would be following. G corresponds to the symplectic transforma-
tions of §M$} x C Py leaving the induced Kihler form invariant. If G acts as isometries the values
of Kéhler form at partonic 2-surfaces (remember effective 2-dimensionality realized in simplistic
manner) are zero modes and WCW allows slicing to symplectic orbits of the partonic 2-surface
with fixed induced Kéhler form. Quantum fluctuating degrees of freedom would correspond to
symplectic group and to the fluctuations of the induced metric. The group H dividing G would
act as diffeomorphisms at the preferred 3-surface X and leaving X? itself invariant. Therefore
the identification of g and h would be in terms of tangent space algebra of WCW sector realized
as coset space G/H.

Coset space structure of WCW and Equivalence Principle

The realization of WCW sectors with fixed values of zero modes as symmetric spaces G/H (anal-
ogous to CP, = SU(3)/U(2)) suggests that one can assign super-Virasoro algebras with G. What
the two algebras g and h are is however difficult question. The following vision is only one of the
many (the latest one).

1. Symplectic algebra g generates isometries and h is identified as algebra, whose generators
generate diffeormorphisms at preferred X3.

2. The original long-held belief was that the Super Kac-Moody symmetry corresponds to local
imbedding space isometries for light-like 3-surfaces X l?’, which might be boundaries of X*
(probably not: it seems that boundary conditions cannot be satisfied so that space-time
surfaces must consists of regions defining at least double coverings of M*) and light-like
surfaces separating space-time regions with different signatures of the induced metric. This
symmetry would be identifiable as the counterpart of the Kac Moody symmetry of string
models.

It has turned out that one can assume Kac-Moody algebra to be sub-algebra of symplectic
algebra consisting of the symplectic isometries of imbedding space. This Super Kac-Moody
algebra is generated by super-currents assignable to the modes of induced spinor fields other
than right-handed neutrino and localized at string world sheets. The entire symplectic algebra
would correspond to the modes of right-handed neutrino and the entire algebra one would
be direct sum of these two algebras so that the number of tensor factors would be indeed 5.
The beauty of this option is that localization would be for both algebras inherent and with
respect to the light-like coordinate of light-cone boundary rather than forced by hand.

3. p-Adic mass calculations require that symplectic and Kac-Moody algebras together generate
the entire algebra. In this situation strong form of holography implies that transformations
located to the interior of space-like 3-surface and light-like partonic orbit define zero modes
and act like gauge symmetries. The physically non-trivial transformations correspond to
transformations acting non-trivially at partonic 2-surfaces. ¢ corresponds to the algebra
generated by these transformations and for preferred 3-surface - identified as (say) maximum
of Kéhler function - h corresponds to the elements of this algebra generating diffeomorphisms
of X3. Super-conformal representation has five tensor factors corresponding to color algebra,
two factors from electroweak U (2), one factor from transversal M* translations and one factor
from symplectic algebra (note that also Hamiltonians which are products of 5Mfi and CP,
Hamiltonians are possible.

Equivalence Principle (EP) has been a longstanding problem for TGD although the recent
stringy view about graviton mediated scattering makes it can be argued to reduce to a tautology.
I have considered several explanations for EP and coset representation has been one of them.
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1. Coset representation associated with the super Virasoro algebra is defined by the condition
that the differences of super Virasoro generators for g and h annihilate the physical. The
original proposal for the realization of EP was that this condition implies that the four-
momenta associated with g and h are identical and identifiable as inertial and gravitational
four-momenta. Translations however lead out from CD boundary and cannot leave 3-surface
invariant. Hence the Virasoro generators for i should not carry four-momentum. Therefore
EP cannot be understood in terms of coset representations.

2. The equivalence of classical Noether momentum associated with K&hler action with eigen-
values of the corresponding quantal momentum for modified Dirac action certainly realizes
quantum classical correspondence (QCC) EP could correspond to QCC.

3. A further option is that EP reduces to the identification of the four momenta for Super Vi-
rasoro representations assignable to space-like and light-like 3-surfaces and therefore become
part of strong form of holography in turn implied by strong form of GCI! It seems that this
option is the most plausible one found hitherto.

WCW isometries as a subgroup of Dif f(6M} x CP)

The reduction to light cone boundary leads to the identification of the isometry group as some
subgroup of for the group G for the diffeomorphisms of 5Mi X C'Py. These diffeomorphisms indeed
act in a natural manner in 6C'H, the the space of 3-surfaces in § M. j‘_ x CP,. WCW is expected
to decompose to a union of the coset spaces G/H;, where H; corresponds to some subgroup of G
containing the transformations of G acting as diffeomorphisms for given X?3. Geometrically the
vector fields acting as diffeomorphisms of X3 are tangential to the 3-surface. H; could depend
on the topology of X3 and since G does not change the topology of 3-surface each 3-topology
defines separate orbit of G. Therefore, the union involves sum over all topologies of X3 plus
possibly other ’zero modes’. Different topologies are naturally glued together since singular 3-
surfaces intermediate between two 3-topologies correspond to points common to the two sectors
with different topologies.

3.3.3 Isometries of WCW geometry as symplectic transformations of
(5Mi X CPQ

During last decade I have considered several candidates for the group G of isometries of WCW as
the sub-algebra of the subalgebra of Diff(5Mj‘; x CPy). To begin with let us write the general
decomposition of dif f(6ME x CPs):

diffOME x CPy) = S(CPy) xdif f(OM})® S(6M}) x dif f(CPs) . (3.3.2)

Here S(X) denotes the scalar function basis of space X. This Lie-algebra is the direct sum of light
cone diffeomorphisms made local with respect to C P, and C P, diffeomorphisms made local with
respect to light cone boundary.

The idea that entire diffeomorphism group would act as isometries looks unrealistic since the
theory should be more or less equivalent with topological field theory in this case. Consider now
the various candidates for G.

1. The fact that symplectic transformations of C'P, and Mi diffeomorphisms are dynamical
symmetries of the vacuum extremals suggests the possibility that the diffeomorphisms of the
light cone boundary and symplectic transformations of C'P, could leave Kéahler function in-
variant and thus correspond to zero modes. The symplectic transformations of C'Py localized
with respect to light cone boundary acting as symplectic transformations of C'P, have inter-
pretation as local color transformations and are a good candidate for the isometries. The
fact that local color transformations are not even approximate symmetries of Kahler action
is not a problem: if they were exact symmetries, Kahler function would be invariant and zero
modes would be in question.
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2. C'P; local conformal transformations of the light cone boundary act as isometries of 5Mi.
Besides this there is a huge group of the symplectic symmetries of 6Mi x CPy if light
cone boundary is provided with the symplectic structure. Both groups must be considered as
candidates for groups of isometries. 6Mj‘; x C' P, option exploits fully the special properties of
5Mjl_ x C' Py, and one can develop simple argument demonstrating that §Mjl_ x C' Py symplectic
invariance is the correct option. Also the construction of WCW gamma matrices as super-
symplectic charges supports (5Mj4r x C P, option.

WCW as a union of symmetric spaces

The idea about symmetric space is extremely beautiful but it took a long time and several false
alarms before the time was ripe for identifying the precise form of the Cartan decomposition
g =t + h satisfying the defining conditions

g=t+h, [t,t]Ch, [ht]Ct. (3.3.3)

The ultimate solution of the puzzle turned out to be amazingly simple and came only after quantum
TGD was understood well enough. [t,t] C h condition is highly nontrivial and equivalent with the
existence of involution. Inversion in the light-like radial coordinate of §M* is a natural guess for
this involution and induces complex conjugation in super-conformal algebras mapping positive and
negative conformal weights to each other.

WCW geometry allows two super-conformal symmetries. The first one corresponds to super-
symplectic transformations acting at the level of imbedding space. The second one corresponds
to super Kac-Moody symmetry. The original identification of Kac-Moody was in terms of defor-
mations of light-like 3-surfaces respecting their light-likeness. This not wrong as such: also entire
symplectic algebra can be assigned with light-like surfaces and the theory can be constructed using
also these conformal algebras. This identification however makes it very difficult to see how Kac-
Moody could act as isometry: in particular, the localization with respect to internal coordinates
of 3-surface produces technical problems since symplectic algebra is localized with respect to the
light-like radial coordinate of light-cone boundary.

The more plausible identification is as the sub-algebra of symplectic algebra realized as isome-
tries of C'D so that localization is inherent and in terms of the radial light-like coordinate of
light-like boundary [K80]. This identification is made possible by the wisdom gained from the so-
lutions of the modified Dirac equations predicting the localization of its modes (except right-handed
neutrino) to string world sheets.

1. g would thus correspond to a direct sum of super-symplectic algebra and super Kac-Moody
algebra defined by its isometry sub-algebra but represented in different manner (this is ab-
solutely essential!). More concretely, neutrino modes defined super Hamiltonians associated
with the super symplectic algebra and other modes of induced spinor field the super Hamil-
tonians associated with the super Kac-Moody algebra. The maxima of Kéahler function could
be chosen as natural candidates for the preferred points and could play also an essential role
in WCW integration by generalizing the Gaussian integration of free quantum field theories.

2. These super-conformal algebra representations form a direct sum. p-Adic mass calculations
require five super-conformal tensor factors and the number of tensor factors would be indeed
this.

3. This algebra has as sub-algebra the algebra for which generators leave 3-surface invariant -
in other words, induce its diffeomorphism. Quantum states correspond to the coset repre-
sentations for entire algebra and this algebra so that differences of the corresponding super-
Virasoro generators annihilate physical states. This obviously generalizes Goddard-Olive-
Kent construction [A58]. It seems now clear that coset representation does not imply EP:
the four-momentum simply does not appear in the representation of the isotropy sub-algebra
since translations lead out of CD boundary.

To minimize confusions it must be emphasized that only the contribution of the symplectic
algebra realized in terms of single right-handed neutrino mode is discussed in this chapter and
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the WCW Hamiltonians have 2-dimensional representation. Also the direct connection with the
dynamics of Kéhler action is lacking. A more realistic construction [K80] uses 3-dimensional
representations of Hamiltonians and requires all modes of right-handed neutrino for symplectic
algebra and the modes of induced spinor field carrying electroweak quantum numbers in the case
of Kac-Moody algebra.

3.4 Complexification

A necessary prerequisite for the Kéhler geometry is the complexification of the tangent space in
vibrational degrees of freedom. What this means in recent context is non-trivial.

3.4.1 Why complexification is needed?

The Minkowskian signature of M* metric seems however to represent an insurmountable obstacle
for the complexification of M* type vibrational degrees of freedom. On the other hand, complexi-
fication seems to have deep roots in the actual physical reality.

1. In the perturbative quantization of gauge fields one associates to each gauge field excitation
polarization vector e and massless four-momentum vector p (p? = 0, p-e = 0). These vectors
define the decomposition of the tangent space of M?*: M* = M? x E?, where M? type
polarizations correspond to zero norm states and E? type polarizations correspond to physical
states with non-vanishing norm. Same type of decomposition occurs also in the linearized
theory of gravitation. The crucial feature is that E? allows complexification! The general
conclusion is that the modes of massless, linear, boson fields define always complexification
of M* (or its tangent space) by effectively reducing it to E2. Also in string models similar
situation is encountered. For a string in D-dimensional space only D-2 transversal Euclidian
degrees of freedom are physical.

2. Since symplectically extended isometry generators are expected to create physical states in
TGD approach same kind of physical complexification should take place for them, too: this
indeed takes place in string models in critical dimension. Somehow one should be able to
associate polarization vector and massless four momentum vector to the deformations of a
given 3-surface so that these vectors define the decomposition M* = M? x E? for each mode.
Configuration space metric should be degenerate: the norm of M? deformations should vanish
as opposed to the norm of E? deformations.

Consider now the implications of this requirement.

1. In order to associate four-momentum and polarization (or at least the decomposition M* =
M? x E?) to the deformations of the 3-surface one should have field equations, which deter-
mine the time development of the 3-surface uniquely. Furthermore, the time development
for small deformations should be such that it makes sense to associate four momentum and
polarization or at least the decomposition M* = M? x E? to the deformations in suitable
basis.

The solution to this problem is afforded by the proposed definition of the Kéhler function.
The definition of the Kahler function indeed associates to a given 3-surface a unique four-
surface as the preferred extremal of the Kéhler action. Therefore one can associate a unique
time development to the deformations of the surface X2 and if TGD describes the observed
world this time development should describe the evolution of photon, gluon, graviton, etc.
states and so we can hope that tangent space complexification could be defined.

2. We have found that M? part of the deformation should have zero norm. In particular, the
time like vibrational modes have zero norm in WCW metric. This is true if Kéhler function is
not only Dif f2 invariant but also Diff* invariant in the sense that Kihler function has same
value for all 3-surfaces belonging to the orbit of X3 and related to X3 by diffeomorphism of
X*. This is indeed the case.
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3. Even this is not enough. One expects the presence of massive modes having also longitudinal
polarization and for these states the number of physical vibrational degrees of freedom is 3
so that complexification seems to be impossible by odd dimension.

The reduction to the light cone boundary implied by Diff? invariance makes possible to
identify the complexification. Crucial role is played by the special properties of the boundary of
4-dimensional light cone, which is metrically two-sphere and thus allows generalized complex and
Kahler structure.

3.4.2 The metric, conformal and symplectic structures of the light cone
boundary

The special metric properties of the light cone boundary play a crucial role in the complexification.
The point is that the boundary of the light cone has degenerate metric: although light cone bound-
ary is topologically 3-dimensional it is metrically 2-dimensional: effectively sphere. In standard
spherical Minkowski coordinates light cone boundary is defined by the equation r; = m® and
induced metric reads

ds* = —r2,d0? = —ri;dzdz/(1 + 22)* | (3.4.1)

and has Euclidian signature. Since S? allows complexification and thus also Kihler structure (and
as a by-product also symplectic structure) there are good hopes of obtaining just the required type
of complexification in non-degenerate M* degrees of freedom: WCW would effectively inherit its
Kahler structure from S? x CPs.
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Figure 3.1: Conformal symmetry preserves angles in complex plane

By its effective two-dimensionality the boundary of the four-dimensional light cone has infinite-
dimensional group of (local) conformal transformations. Using complex coordinate z for S? the
general local conformal transformation reads

r = flrm,2,2)
z = g(z) , (3.4.2)

where f is an arbitrary real function and g is an arbitrary analytic function with a finite number of
poles. The infinitesimal generators of this group span an algebra, call it C, analogous to Virasoro
algebra. This algebra is semidirect sum of two algebras L and R given by

C = L®R,
[L,R]C R, (3.4.3)

where L denotes standard Virasoro algebra of the two- sphere generated by the generators

L, = 2""'d/dz (3.4.4)
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and R denotes the algebra generated by the vector fields

R’n = f’n(zvz?rM)aTJu b (345)

where f(z,%,7)) forms complete real scalar function basis for light cone boundary. The vector
fields of R have the special property that they have vanishing norm in M* metric.

This modification of conformal group implies that the Virasoro generator Ly becomes Ly =
zd/dz — rprd/dryy so that the scaling momentum becomes the difference n — m or S? and radial
scaling momenta. One could achieve conformal invariance by requiring that S? and radial scaling
quantum numbers compensate each other.

Of crucial importance is that light cone boundary allows infinite dimensional group of isome-
tries! An arbitrary conformal transformation z — f(z) induces to the metric a conformal factor
given by |df /dz|?>. The compensating radial scaling ry; — ras/|df /dz| compensates this factor so
that the line element remains invariant.

The Kéhler structure of light cone boundary defines automatically symplectic structure. The
symplectic form is degenerate and just the area form of S? given by

J =1r35in(0)df A do,

in standard spherical coordinates, there is infinite-dimensional group of symplectic transformations
leaving the symplectic form of the light cone boundary (that is S?) invariant. These transformations
are local with respect to the radial coordinate rj;. The symplectic and Kéhler structures of light
cone boundary are not unique: different structures are labeled by the coset space SO(3,1)/S0(3).
One can however associate with a given 3-surface Y2 a unique structure by requiring that the
the corresponding subgroup SO(3) of Lorentz group acts as the isotropy group of the conserved
classical four-momentum assigned to Y2 by the preferred extremal property.

In the case of 5Mjl_ x CP, both the conformal transformations, isometries and symplectic
transformations of the light cone boundary can be made local also with respect to C'P,. The idea
that the infinite-dimensional algebra of symplectic transformations of 6Mi x C'P, act as isometries
of WCW and that radial vector fields having zero norm in the metric of light cone boundary possess
zero norm also in WCW metric, looks extremely attractive.

In the case of 5Mi x C'Py one could combine the symplectic and Kéahler structures of 5Mi
and C'P, to single symplectic/Kéahler structure. The symplectic transformations leaving this sym-
plectic structure invariant would be generated by the function algebra of (5Mi x C'P, such that a
arbitrary function serves as a Hamiltonian of a symplectic transformation. This group serves as a
candidate for the isometry group of WCW. An alternative identification for the isometry algebra is
as symplectic symmetries of C' P, localized with respect to the light cone boundary. Hamiltonians
would be also now elements of the function algebra of 5Mﬁ x C' Py but their Poisson brackets would
be defined using only C'P, symplectic form.

The problem is to decide which option is correct. There is a simple argument fixing the
latter option. The symplecticly imbedded C'P; would be left invariant under 5M_‘f_ local symplec-
tic transformations of C'P,. This seems strange. Under symplectic algebra of 5Mi x C'Py also
symplecticly imbedded CP; is deformed and this sounds more realistic. The isometry algebra
is therefore assumed to be the group can((SMi x CPy) generated by the scalar function basis
S(6M% x CPy) = S(0M%) x S(CP,) of the light cone boundary using the Poisson brackets to be
discussed in more detail later.

There are some no-go theorems associated with higher-dimensional Abelian extensions [A49] ,
and although the contexts are quite different, it is interesting to consider the recent situation in
light of these theorems.

1. Conformal invariance is an essentially 2-dimensional notion. Light cone boundary is however
metrically and conformally 2-sphere, and therefore the conformal algebra is effectively that
associated with the 2-sphere. In the same manner, the quaternion conformal algebra asso-
ciated with the metrically 2-dimensional elementary particle horizons surrounding wormhole
contacts allows the usual Kac Moody algebra and actually also contributes to the WCW
metric.
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2. In dimensions D > 2 Abelian extensions of the gauge algebra are extensions by an infinite-
dimensional Abelian group rather than central extensions by the group U(1). This result
has an analog at the level of WCW geometry. The extension associated with the symplectic
algebra of C'Ps localized with respect to the light cone boundary is analogous a symplectic
extension defined by Poisson bracket {p,q} = 1. The central extension is the function space
associated with 5Mﬁ and indeed infinite-dimensional if only only C'P, symplectic structure
induces the Poisson bracket but one-dimensional if (5Mi x C'P, Poisson bracket induces
the extension. In the latter case the symmetries fix the metric completely at the point
corresponding to the origin of symmetric space (presumably the maximum of Kéahler function
for given values of zero modes).

3. D > 2 extensions possess no unitary faithful representations (satisfying certain well motivated
physical constraints) [A49] . Tt might be that the degeneracy of the WCW metric is the analog
for the loss of faithful representations.

3.4.3 Complexification and the special properties of the light cone bound-
ary

In case of Kéahler metric G and H Lie-algebras must allow complexification so that the isometries
can act as holomorphic transformations. Since G and H can be regarded as subalgebras of the
vector fields of M} x CP,, they inherit in a natural manner the complex structure of the light
cone boundary.

There are two candidates for WCW complexification. The simplest, and also the correct,
alternative is that complexification is induced by natural complexification of vector field basis on
6Mi X CPy. In C'P; degrees of freedom there is natural complexification

£—=¢& .
In (SMfilr degrees of freedom this could involve the transformation

zZ—z

and certainly involves complex conjugation for complex scalar function basis in the radial direction:

flrar) = flra)

which turns out to play same role as the function basis of circle in the Kéhler geometry of loop
groups [A37] .

The requirement that the functions are eigen functions of radial scalings favors functions
(rar/7ro)¥, where k is in general a complex number. The function can be expressed as a prod-
uct of real power of rj; and logarithmic plane wave. It turns out that the radial complexification
alternative is the correct manner to obtain Kahler structure. The reason is that symplectic trans-
formations leave the value of r,; invariant. Radial Virasoro invariance plays crucial role in making
the complexification possible.

One could consider also a second alternative assumed in the earlier formulation of the WCW
geometry. The close analogy with string models and conformal field theories suggests that for
Virasoro generators the complexification must reduce to the hermitian conjugation of the conformal
field theories: L, — L_, = L. Clearly this complexification is induced from the transformation
z = % and differs from the complexification induced by complex conjugation z — Z. The basis
would be polynomial in z and z. Since radial algebra could be also seen as Virasoro algebra
localized with respect to S? x C'P, one could consider the possibility that also in radial direction
the inversion rp; — i is involved.

In fact, the complexification changing the signs of radial conformal weights is induced from
inversion rr/ro — 7o/ra. This transformation is also an excellent candidate for the involution
necessary for obtaining the structure of symmetric space implying among other things the covariant
constancy of the curvature tensor, which is of special importance in infinite-D context.

The essential prerequisite for the Kahler structure is that both G and H allow same complex-
ification so that the isometries in question can be regarded as holomorphic transformations. In
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finite-dimensional case this essentially what is needed since metric can be constructed by parallel
translation along the orbit of G from H-invariant Ké&hler metric at a representative point. The
requirement of H-invariance forces the radial complexification based on complex powers rﬁz: radial
complexification works since symplectic transformations leave r,; invariant.

Some comments on the properties of the proposed complexification are in order.

1. The proposed complexification, which is analogous to the choice of gauge in gauge theories
is not Lorentz invariant unless one can fix the coordinates of the light cone boundary apart
from SO(3) rotation not affecting the value of the radial coordinate r; (if the imaginary
part of k£ in rf“w is always non-vanishing). This is possible as will be explained later.

2. It turns out that the function basis of light-cone boundary multiplying C'P» Hamiltonians
corresponds to unitary representations of the Lorentz group at light cone boundary so that
the Lorentz invariance is rather manifest.

3. There is a nice connection with the proposed physical interpretation of the complexification.
At the moment of the big bang all particles move with the velocity of light and therefore
behave as massless particles. To a given point of the light cone boundary one can associate
a unique direction of massless four-momentum by semiclassical considerations: at the point
mk = (m® m?) momentum is proportional to the vector (m° —m?). Since the particles
are massless only two polarization vectors are possible and these correspond to the tangent
vectors to the sphere m® = r5;. Of course, one must always fix polarizations at some point
of tangent space but since massless polarization vectors are not physical this doesn’t imply

difficulties: different choices correspond to different gauges.

4. Complexification in the proposed manner is not possible except in the case of four-dimensional
Minkowski space. Non-zero norm deformations correspond to vector fields of the light cone
boundary acting on the sphere S”~2 and the decomposition to (1,0) and (0,1) parts is
possible only when the sphere in question is two-dimensional since other spheres do allow
neither complexification nor Kéhler structure.

3.4.4 How to fix the complex and symplectic structures in a Lorentz
invariant manner?

One can assign to light-cone boundary a symplectic structure since it reduces effectively to S2.
The possible symplectic structures of §M? are parameterized by the coset space SO(3,1)/S0(3)),
where H is the isotropy group SO(3) of a time like vector. Complexification also fixes the choice of
the spherical coordinates apart from rotations around the quantization axis of angular momentum.

The selection of some preferred symplectic structure in an ad hoc manner breaks manifest
Lorentz invariance but is possible if physical theory remains Lorentz invariant. The more natural
possibility is that 3-surface Y3 itself fixes in some natural manner the choice of the symplectic
structure so that there is unique subgroup SO(3) of SO(3,1) associated with Y3. If WCW Kiihler
function corresponds to a preferred extremal of Kéhler action, this is indeed the case. One can
associate unique conserved four-momentum P*(Y3) to the preferred extremal X*(Y3) of the Kéhler
action and the requirement that the rotation group SO(3) leaving the symplectic structure invariant
leaves also P¥(Y?) invariant, fixes the symplectic structure associated with Y2 uniquely.

Therefore WCW decomposes into a union of symplectic spaces labeled by SO(3,1)/SO(3)
isomorphic to a = constant hyperboloid of light cone. The direction of the classical angular
momentum vector w* = e¥™" P J,. . determined by the classical angular momentum tensor of
associated with Y3 fixes one coordinate axis and one can require that SO(2) subgroup of SO(3)
acting as rotation around this coordinate axis acts as phase transformation of the complex coordi-
nate z of S2. Other rotations act as nonlinear holomorphic transformations respecting the complex
structure.

Clearly, the coordinates are uniquely fixed modulo SO(2) rotation acting as phase multiplication
in this case. If P¥(Y?) is light like, one can only require that the rotation group SO(2) serving as the
isotropy group of 3-momentum belongs to the group SO(3) characterizing the symplectic structure
and it seems that symplectic structure cannot be uniquely fixed without additional constraints in
this case. Probably this has no practical consequences since the 3-surfaces considered have actually
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infinite size and 4-momentum is most probably time like for them. Note however that the direction
of 3-momentum defines unique axis such that SO(2) rotations around this axis are represented as
phase multiplication.

Similar almost unique frame exists also in C'P, degrees of freedom and corresponds to the
complex coordinates transforming linearly under U(2) acting as isotropy group of the Lie-algebra
element defined by classical color charges @, of Y3. One can fix unique Cartan subgroup of U(2)
by noticing that SU(3) allows completely symmetric structure constants dgp. such that R, =
d °QuQ. defines Lie-algebra element commuting with Q,. This means that R, and @, span in
generic case U(1) x U(1) Cartan subalgebra and there are unique complex coordinates for which
this subgroup acts as phase multiplications. The space of nonequivalent frames is isomorphic
with CP(2) so that one can say that cm degrees of freedom correspond to Cartesian product
of SO(3,1)/S0(3) hyperboloid and CP, whereas coordinate choices correspond to the Cartesian
product of SO(3,1)/SO(2) and SU(3)/U(1) x U(1).

Symplectic transformations leave the value of 5Mjl_ radial coordinate 7,; invariant and this
implies large number of additional zero modes characterizing the size and shape of the 3-surface.
Besides this Kéhler magnetic fluxes through the r); = constant sections of X? as a function of 7,
provide additional invariants, which are functions rather than numbers. The Fourier components
for the magnetic fluxes provide infinite number of symplectic invariants. The presence of these
zero modes imply that 3-surfaces behave much like classical objects in the sense that neither their
shape nor form nor classical K&hler magnetic fields, are subject to Gaussian fluctuations. Of
course, quantum superpositions of 3-surfaces with different values of these invariants are possible.

There are reasons to expect that at least certain infinitesimal symplectic transformations corre-
spond to zero modes of the Kéhler metric (symplectic transformations act as dynamical symmetries
of the vacuum extremals of the K&hler action). If this is indeed the case, one can ask whether it
is possible to identify an integration measure for them.

If one can associate symplectic structure with zero modes, the symplectic structure defines
integration measure in a standard manner (for 2n-dimensional symplectic manifold the integration
measure is just the n-fold wedge power J A J... A J of the symplectic form J). Unfortunately, in
infinite-dimensional context this is not enough since divergence free functional integral analogous to
a Gaussian integral is needed and it seems that it is not possible to integrate in zero modes and that
this relates in a deep manner to state function reduction. If all symplectic transformations of & Mi X
C P, are represented as symplectic transformations of the configuration space, then the existence of
symplectic structure decomposing into Kéhler (and symplectic) structure in complexified degrees
of freedom and symplectic (but not Kéhler) structure in zero modes, is an automatic consequence.

3.4.5 The general structure of the isometry algebra

There are three options for the isometry algebra of WCW.

1. Isometry algebra as the algebra of C'P, symplectic transformations leaving invariant the
symplectic form of C' P, localized with respect to 5M_‘f_.

2. Certainly the WCW metric in 6Mi must be non-trivial and actually given by the magnetic
flux Hamiltonians defining symplectic invariants. Furthermore, the super-symplectic genera-
tors constructed from quarks automatically give as anti-commutators this part of the WCW
metric. One could interpret these symplectic invariants as WCW Hamiltonians for §Mi
symplectic transformations obtained when C'P, Hamiltonian is constant.

3. Isometry algebra consists of (FMj‘r x C P, symplectic transformations. In this case a local color
transformation involves necessarily a local S? transformation. Unfortunately, it is difficult
to decide at this stage which of these options is correct.

The eigen states of the rotation generator and Lorentz boost in the same direction defining a
unitary representation of the Lorentz group at light cone boundary define the most natural function
basis for the light cone boundary. The elements of this bases have also well defined scaling quantum
numbers and define also a unitary representation of the conformal algebra. The product of the
basic functions is very simple in this basis since various quantum numbers are additive.

Spherical harmonics of S? provide an alternative function basis for the light cone boundary:
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= V(9 0)rh,
(3.4.6)

One can criticize this basis for not having nice properties under Lorentz group.

The product of basis functions is given by Glebch-Gordan coefficients for symmetrized tensor
product of two representation of the rotation group. Poisson bracket in turn reduces to the Glebch-
Gordans of anti-symmetrized tensor product. The quantum numbers m and k are additive. The
basis is eigen-function basis for the imaginary part of the Virasoro generator Lg generating rotations
around quantization axis of angular momentum. In fact, only the imaginary part of the Virasoro
generator Lo = zd/dz = pd,— %3(15 has global single valued Hamiltonian, whereas the corresponding
representation for the transformation induced by the real part of Ly, with a compensating radial
scaling added, cannot be realized as a global symplectic transformation.

The Poisson bracket of two functions H and HT) = can be calculated and is of the general
form

{H;fingﬁQ} = C(j1m1j2m2|j,m1-i-mg)AHﬂlngj

(3.4.7)

The coefficients are Glebch-Gordan coefficients for the anti-symmetrized tensor product for the
representations of the rotation group.

The isometries of the light cone boundary correspond to conformal transformations accom-
panied by a local radial scaling compensating the conformal factor coming from the conformal
transformations having parametric dependence of radial variable and C'P, coordinates. It seems
however that isometries cannot in general be realized as symplectic transformations. The first
difficulty is that symplectic transformations cannot affect the value of the radial coordinate. For
rotation algebra the representation as symplectic transformations is however possible.

In C'P; degrees of freedom scalar function basis having definite color transformation properties
is desirable. Scalar function basis can be obtained as the algebra generated by the Hamiltonians
of color transformations by multiplication. The elements of basis can be typically expressed as
monomials of color Hamiltonians H

Hp = ZOgBlBQ....BNHHfi . (3.4.8)
{5} B,

where summation over all index combinations {B;} is understood. The coefficients C7 By Bs...By aT€
Glebch-Gordan coefficients for completely symmetric N:th power 8®8...®8 of octet representations.
The representation is not unique since Y , HAHA = 1 holds true. One can however find for each
representation D some minimum value of N.

The product of Hamiltonians H f‘) Yand H BZ can be decomposed by Glebch-Gordan coefficients
of the symmetrized representation (D; ® D3)g as

Hp Hp, = Cpiphpc(S)HE (3.4.9)

where /S’ indicates that the symmetrized representation is in question. In the similar manner one
can decompose the Poisson bracket of two Hamiltonians

{Hp, Hp,} = Cp/ppo(A)HS - (3.4.10)

Here ' A’ indicates that Glebch-Gordan coefficients for the anti-symmetrized tensor product of the
representations D and D, are in question.

One can express the infinitesimal generators of C'P, symplectic transformations in terms of the
color isometry generators JZ using the expansion of the Hamiltonian in terms of the monomials
of color Hamiltonians:
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jdn = FhpJ? ,
Fpp = N Z ChB.Bs. By 1B HHfj ) (3.4.11)
{B;} J

where summation over all possible {B;}:s appears. Therefore, the interpretation as a color group
localized with respect to C' P, coordinates is valid in the same sense as the interpretation of space-
time diffeomorphism group as local Poincare group. Thus one can say that TGD color is localized
with respect to the entire 5Mi X CPs.

A convenient basis for the Hamiltonians of §M${ x C'P, is given by the functions

mA __ m A

The symplectic transformation generated by Hﬁg acts both in M* and CP, degrees of freedom
and the corresponding vector field is given by

JT = HAJ(ML)OHN + HJ" (CP)0Hp, (3.4.12)

The general form for their Poisson bracket is:

my1 Ay moAa \ _ 17A1 17A2 my mo my ma Ay Aa
{Hjllel ’ Hj2k2D2} - HDI HD2 {Hjlkl ’ szkz} + Hjlkl Hj2k2 {HDI ’ HD2 }

= [Cﬁiéi%(S)C(jlmljzmzIjm)A + Céigig(A)C(jlmljzmz|jm)s} Hﬁ?%Q,D .

(3.4.13)

What is essential that radial 'momenta’ and angular momentum are additive in 5Mi degrees of
freedom and color quantum numbers are additive in C'Py degrees of freedom.

3.4.6 Representation of Lorentz group and conformal symmetries at
light cone boundary

A guess deserving testing is that the representations of the Lorentz group at light cone boundary
might provide natural building blocks for the construction of the WCW Hamiltonians. In the
following the explicit representation of the Lorentz algebra at light cone boundary is deduced,
and a function basis giving rise to the representations of Lorentz group and having very simple
properties under modified Poisson bracket of 5M_‘f_ is constructed.

Explicit representation of Lorentz algebra

It is useful to write the explicit expressions of Lorentz generators using complex coordinates for
S2. The expression for the SU(2) generators of the Lorentz group are

J, = (*=1)d/dz+cc.=L —L_4+cec.

J, = (iz>+1)d/dz+cc. =il +il_1+cec. ,
d

J, = zzd— +cc.=il, +cec. . (3.4.14)
z

The expressions for the generators of Lorentz boosts can be derived easily. The boost in m?

direction corresponds to an infinitesimal transformation

3
om° = —ery

orar —em?® = —5\/7“]2\/[ — (m1')2 — (m?2)2 . (3.4.15)
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The relationship between complex coordinates of S? and M* coordinates mF is given by stereo-
graphic projection

— (m! + im?)
(rar = /iy — (m1)? = (m?)?)
_ sin(0)(cos¢ + ising)
1 — cosb) ’
cot(0/2) = p=v>az |
tan(¢) = % . (3.4.16)

This implies that the change in z coordinate doesn’t depend at all on rj; and is of the following
form

€ z2(z+ 2
NG

The infinitesimal generator for the boosts in z-direction is therefore of the following form

)1+ 22) . (3.4.17)

L = 22 —1]7~Mai—uz. (3.4.18)

(1+22) (Y
Generators of L, and L, are most conveniently obtained as commutators of [L,, J,] and [L., J,].
For L, one obtains the following expression:

(zZ(z—i—E)—l—i(z—E))r 0
(14 2z)2 Ma

TM

L, = 2 —idy (3.4.19)
For L, one obtains analogous expressions. All Lorentz boosts are of the form L; = —iJ; +
local radial scaling and of zeroth degree in radial variable so that their action on the general gen-
erator X*™ zkélr}(} doesn’t change the value of the label m being a mere local scaling transfor-
mation in radial direction. If radial scalings correspond to zero norm isometries this representation
is metrically equivalent with the representations of Lorentz boosts as Mdbius transformations.

Representations of the Lorentz group reduced with respect to SO(3)

The ordinary harmonics of S define in a natural manner infinite series of representation functions
transformed to each other in Lorentz transformations. The inner product defined by the integration
measure 73,d0drys/ra remains invariant under Lorentz boosts since the scaling of 7y, induced by
the Lorentz boost compensates for the conformal scaling of df2 induced by a Lorentz transformation
represented as a Mobius transformation. Thus unitary representations of Lorentz group are in
question.

The unitary main series representations of the Lorentz group are characterized by half-integer
m and imaginary number ks = ip, where p is any real number [A45] . A natural guess is that
m = 0 holds true for all representations realizable at the light cone boundary and that radial waves
are of form r%,, k = ki +iky = —1+ip and thus eigen states of the radial scaling so that the action
of Lorentz boosts is simple in the angular momentum basis. The inner product in radial degrees
of freedom reduces to that for ordinary plane waves when log(rps) is taken as a new integration
variable. The complexification is well-defined for non-vanishing values of p.

It is also possible to have non-unitary representations of the Lorentz group and the realization
of the symmetric space structure suggests that one must have k = k; + iks, k1 half-integer. For
these representations unitarity fails because the inner product in the radial degrees of freedom is
non-unitary. A possible physical interpretation consistent with the general ideas about conformal
invariance is that the representations k = —1+ip correspond to the unitary ground state represen-
tations and k = —1 +n/2 +ip, n = +1,£2, ..., to non-unitary representations. The general view
about conformal invariance suggests that physical states constructed as tensor products satisfy the
condition ), n; = 0 completely analogous to Virasoro conditions.
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Representations of the Lorentz group with E? x SO(2) as isotropy group

One can construct representations of Lorentz group and conformal symmetries at the light cone
boundary. Since SL(2,C) is the group generated by the generators Lo and Ly of the conformal
algebra, it is clear that infinite-dimensional representations of Lorentz group can be also regarded
as representations of the conformal algebra. One can require that the basis corresponds to eigen
functions of the rotation generator J, and corresponding boost generator L,. For functions which
do not depend on rj; these generators are completely analogous to the generators Lg generating
scalings and iL( generating rotations. Also the generator of radial scalings appears in the formulas
and one must consider the possibility that it corresponds to the generator Lg.

In order to construct scalar function eigen basis of L, and J,, one can start from the expressions

2z%Z

0
L3 = 'L(LZ —+ Lg) = 22[ — 1]7’]\/187 + 'Lpap s

(1+22) (3,
J3 = 4L, —ilz; =10, . (3.4.20)

If the eigen functions do not depend on 7, one obtains the usual basis 2™ of Virasoro algebra, which
however is not normalizable basis. The eigenfunctions of the generators Ls, Js and Lo = irpsd/dry
satisfying

JSfm,n,k = mfm,n,k: )
L3fm,n,k - nfm,n,k 3
LOfm,n,k = kfm,n,k . (3421)

are given by

Sk = e”’“ﬁﬂx(rﬂ)’c : (3.4.22)
o (L+p2)k " 1o

n =n1 +ing and k = k1 4 iko are in general complex numbers. The condition

nl—klzo

is required by regularity at the origin of S2 The requirement that the integral over S? defining
norm exists (the expression for the differential solid angle is dQ = dedgﬁ) implies

n <3ki+2 .

From the relationship (cos(6), sin(6)) = (p* — 1)/(p* + 1),2p/(p* + 1)) one can conclude that
for ng = kg = 0 the representation functions are proportional to f sin(§)"~*(cos(g) — 1)"~*.
Therefore they have in their decomposition to spherical harmonics only spherical harmonics with
angular momentum ! < 2(n — k). This suggests that the condition

Im| < 2(n — k) (3.4.23)

is satisfied quite generally.

The emergence of the three quantum numbers (m, n, k) can be understood. Light cone boundary
can be regarded as a coset space SO(3,1)/E? x SO(2), where E? x SO(2) is the group leaving the
light like vector defined by a particular point of the light cone invariant. The natural choice of the
Cartan group is therefore E? x SO(2). The three quantum numbers (m,n, k) have interpretation
as quantum numbers associated with this Cartan algebra.

The representations of the Lorentz group are characterized by one half-integer valued and one
complex parameter. Thus ko and mo, which are Lorentz invariants, might not be independent
parameters, and the simplest option is ko = no.

The nice feature of the function basis is that various quantum numbers are additive under
multiplication:
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f(ma,na, ka) X f(my,ny, ky) = f(ma +my,ng + 1y, ka + ks)

These properties allow to cast the Poisson brackets of the symplectic algebra of WCW into an
elegant form.

The Poisson brackets for the (5Mff_ Hamiltonians defined by f,,,x can be written using the
expression J#? = (1+ p?)/p as

{fmayna7k3a7 fmb;nb7kb} = i[(na — ka)mp — (np — kp)ma] X Jmatmp,na+n,—2,ka+ks
+ 20[(2 = ka)mp — (2 = ko)Ma] X frngtmynatne—1kathy—1 -
(3.4.24)

Can one find unitary light-like representations of Lorentz group?

It is interesting to compare the representations in question to the unitary representations Gelfand

1. The unitary representations discussed in [A45] are characterized by are constructed by deduc-
ing the explicit representations for matrix elements of the rotation generators J, J,, J. and
boost generators L, Ly, L, by decomposing the representation into series of representations
of SU(2) defining the isotropy subgroup of a time like momentum. Therefore the states are
labeled by eigenvalues of J,. In the recent case the isotropy group is E? x SO(2) leaving
light like point invariant. States are therefore labeled by three different quantum numbers.

2. The representations of [A45] are realized the space of complex valued functions of complex
coordinates ¢ and £ labeling points of complex plane. These functions have complex degrees
ny = m/2 — 1 + Iy with respect to & and n_ = —m/2 — 1 + [; with respect to £. I
is complex number in the general case but for unitary representations of main series it is
given by I; = ip and for the representations of supplementary series [y is real and satisfies
0 < |l1] < 1. The main series representation is derived from a representation space consisting
of homogenous functions of variables z°, z! of degree n, and of z° and z! of degrees n..
One can separate express these functions as product of (zl)”Jr (z')"- and a polynomial of
¢ = 2z'/2% and ¢ with degrees n, and n_. Unitarity reduces to the requirement that the
integration measure of complex plane is invariant under the Lorentz transformations acting
as Moebius transformations of the complex plane. Unitarity implies I; = —1 + ip.

3. For the representations at éMi formal unitarity reduces to the requirement that the inte-
gration measure of TJQ\/[deT M/ of (5Mi remains invariant under Lorentz transformations.
The action of Lorentz transformation on the complex coordinates of S? induces a confor-
mal scaling which can be compensated by an S? local radial scaling. At least formally the
function space of 5Mfi thus defines a unitary representation. For the function basis fnk
k = —1 + ip defines a candidate for a unitary representation since the logarithmic waves in
the radial coordinate are completely analogous to plane waves for k; = —1. This condition
would be completely analogous to the vanishing of conformal weight for the physical states
of super conformal representations. The problem is that for &y = —1 guaranteeing square
integrability in S? implies —2 < n; < —2 so that unitarity is possible only for the function
basis consisting of spherical harmonics.

There is no deep reason against non-unitary representations and symmetric space structure
indeed requires that k; is half-integer valued. First of all, WCW spinor fields are analogous to
ordinary spinor fields in M4, which also define non-unitary representations of Lorentz group.
Secondly, if 3-surfaces at the light cone boundary are finite-sized, the integrals defined by
frmnk over 3-surfaces Y2 are always well-defined. Thirdly, the continuous spectrum of ks
could be transformed to a discrete spectrum when k; becomes half-integer valued.

Hermitian form for light cone Hamiltonians involves also the integration over S? degrees of
freedom and the non-unitarity of the inner product reflects itself as non-orthogonality of the the
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eigen function basis. Introducing the variable u = p? + 1 as a new integration variable, one can
express the inner product in the form

<maana7 ka|mba Ny, kb> - 7T-(S(kQa - ka) X 6m1,7rL2 x I 3
1= [
1
(N—K)4+iA
(u— 1)
) = M (3.4.25)

The integrand has cut from v = 1 to infinity along real axis. The first thing to observe is that
for N = K the exponent of the integral reduces to very simple form and integral exists only for
K = ki4 + k1 > —1. For k1; = —1/2 the integral diverges.

The discontinuity of the integrand due to the cut at the real axis is proportional to the integrand
and given by

=
<
N—
|
~
—
(9]
N
3
£
I

[1 - e_ﬂ—A:I f(u) )
A = nig—kia —niw+ k- (3.4.26)

This means that one can transform the integral to an integral around the cut. This integral can
in turn completed to an integral over closed loop by adding the circle at infinity to the integration
path. The integrand has K + 1-fold pole at v = 0.

Under these conditions one obtains

omi -
I = 1%xRx(R—1)....x(R—K—1)><(—1)N2K—K—1,
—e .

N-K

R
2

NG (3.4.27)

This expression is non-vanishing for A # 0. Thus it is not possible to satisfy orthogonality
conditions without the un-physical n = k, k; = 1/2 constraint. The result is finite for K > —1 so
that k; > —1/2 must be satisfied and if one allows only half-integers in the spectrum, one must
have k1 > 0, which is very natural if real conformal weights which are half integers are allowed.

3.4.7 How the complex eigenvalues of the radial scaling operator relate
to symplectic conformal weights?

3.4.8 How the complex eigenvalues of the radial scaling operator relate
to symplectic conformal weights?

Complexified Hamiltonians can be chosen to be eigenmodes of the radial scaling operator rp;d/dray,
and the first guess was that the correct interpretation is as conformal weights. The problem is
however that the eigenvalues are complex. Second problem is that general arguments are not
enough to fix the spectrum of eigenvalues. There should be a direct connection to the dynamics
defined by Kahler action with instanton term included and the modified Dirac action defined by
it.

The construction of WCW spinor structure in terms of second quantized induced spinor fields
[K9] leads to the conclusion that the modes of induced spinor fields must be restricted at surfaces
with 2-D C'P;, projection to guarantee vanishing W fields and well-defined em charge for them. In
the generic case these surfaces are 2-D string world sheets (or possibly also partonic 2-surfaces) and
in the non-generic case can be chosen to be such. The modes are labeled by generalized conformal
weights assignable to complex or hypercomplex string coordinate. Conformal weights are expected
to be integers from the experience with string models.

It is an open question whether these conformal weights are independent of the symplectic formal
weights or not but on can consider also the possibility that they are dependent. Note hovewer that
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string coordinate is not reducible to the light-like radial coordinate in the generic case and one
can imagine situations in which rj; is constant although string coordinate varies. Dependency
would be achieved if the Hamiltonians are generalized eigen modes of D = v*d/dz, x = log(r /1),
satisfying DH = \y* H and thus of form exp(A\x) = (r/ro)* with the same spectrum of eigenvalues
A as associated with the modified Dirac operator. That log(r/rp) naturally corresponds to the
coordinate u assignable to the generalized eigen modes of modified Dirac operator supports this
interpretation.

3.5 Magnetic and electric representations of the configura-
tion space Hamiltonians

Symmetry considerations lead to the hypothesis that WCW Hamiltonians are apart from a factor
depending on symplectic invariants equal to magnetic flux Hamiltonians. On the other hand,
the hypothesis that Kéhler function corresponds to a preferred extremal of Kéahler action leads
to the hypothesis that WCW Hamiltonians corresponds to classical charges associated with the
Hamiltonians of the light cone boundary. These charges are very much like electric charges. The
requirement that two approaches are equivalent leads to the hypothesis that magnetic and electric
Hamiltonians are identical apart from a factor depending on isometry invariants. At the level of
C'Py corresponding duality corresponds to the self-duality of Ké&hler form stating that the magnetic
and electric parts of Kahler form are identical.

3.5.1 Radial symplectic invariants

All (5Mi x C P, symplectic transformations leave invariant the value of the radial coordinate ry;.
Therefore the radial coordinate rj; of X3 regarded as a function of S? x C'P, coordinates serves
as height function. The number, type, ordering and values for the extrema for this height function
in the interior and boundary components are isometry invariants. These invariants characterize
not only the topology but also the size and shape of the 3-surface. The result implies that WCW
metric indeed differentiates between 3-surfaces with the size of Planck length and with the size of
galaxy. The characterization of these invariants reduces to Morse theory. The extrema correspond
to topology changes for the two-dimensional (one-dimensional) 7y, = constant section of 3-surface
(boundary of 3-surface). The height functions of sphere and torus serve as a good illustrations of
the situation. A good example about non-topological extrema is provided by a sphere with two
horns.

There are additional symplectic invariants. The 'magnetic fluxes’ associated with the (SM_‘fr
symplectic form

Js2 = r2,5in(0)do A de

over any X2 C X? are symplectic invariants. In particular, the integrals over rj; = constant
sections (assuming them to be 2-dimensional) are symplectic invariants. They give simply the
solid angle Q(rys) spanned by 7y = constant section and thus r3,Q(rys) characterizes transversal
geometric size of the 3-surface. A convenient manner to discretize these invariants is to consider
the Fourier components of these invariants in radial logarithmic plane wave basis discussed earlier:

dr M

Q(k’) = / /(TA/[/Tmaa;)kQ(TM) 5 k= kl +’L'k‘2 5 perkzl Z 0. (351)

Tmin

M

One must take into account that for each section in which the topology of ry; = constant section
remains constant one must associate invariants with separate components of the two-dimensional
section. For a given value of rps, rj constant section contains several components (to visualize
the situation consider torus as an example).

Also the quantities

Q+(X2):/XQ\J| E/|ea5Ja5|\/g72d2x

are symplectic invariants and provide additional geometric information about 3-surface. These
fluxes are non-vanishing also for closed surfaces and give information about the geometry of the
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boundary components of 3-surface (signed fluxes vanish for boundary components unless they
enclose the dip of the light cone).

Since zero norm generators remain invariant under complexification, their contribution to the
Kahler metric vanishes. It is not at all obvious whether WCW integration measure in these degrees
of freedom exists at all. A localization in zero modes occurring in each quantum jump seems a
more plausible and under suitable additional assumption it would have interpretation as a state
function reduction. In string model similar situation is encountered; besides the functional integral
determined by string action, one has integral over the moduli space.

If the effective 2-dimensionality implied by the strong form of general coordinate invariance
discussed in the introduction is accepted, there is no need to integrate over the variable rj; and
just the fluxes over the 2-surfaces X? identified as intersections of light like 3-D causal determinants
with X3 contain the data relevant for the construction of the WCW geometry. Also the symplectic
invariants associated with these surfaces are enough.

3.5.2 Kahler magnetic invariants

The Kéahler magnetic fluxes defined both the normal component of the Kéhler magnetic field and
by its absolute value

QulX?) = [ o = Jupe? Vi

b)) = [ Wenl= [ ope Vi (352)

over suitably defined 2-surfaces are invariants under both Lorentz isometries and the symplectic
transformations of C'P, and can be calculated once X? is given.

For a closed surface @,,(X?) vanishes unless the homology equivalence class of the surface is
nontrivial in CP, degrees of freedom. In this case the flux is quantized. @},(X?) is non-vanishing
for closed surfaces, too. Signed magnetic fluxes over non-closed surfaces depend on the boundary
of X2 only:

Jx2d = [5x2 A -
J=dA .

Un-signed fluxes can be written as sum of similar contributions over the boundaries of regions of
X2 in which the sign of J remains fixed.

Qm(X?) = /X2 Jop, = Jape®? \Jgud?z

QLX) = [ Venl= [ Wope Vi (353)

There are also symplectic invariants, which are Lorentz covariants and defined as

Qm(K,X?) = fxdep,
X2
Q:’T_L(KVX2) = / fK|JCP2| ’
X2
) n—k r
fKE(s,n,k) = ezs¢ X pi X (7M)k (354)

(1+p?)* To

These symplectic invariants transform like an infinite-dimensional unitary representation of Lorentz
group.

There must exist some minimal number of symplectically non-equivalent 2-surfaces of X2, and
the magnetic fluxes over the representatives these surfaces give thus good candidates for zero
modes.



Chapter 3. Construction of Configuration Space Kihler Geometry from Symmetry
104 Principles

1. If effective 2-dimensionality is accepted, the surfaces X? defined by the intersections of light
like 3-D causal determinants X l3 and X3 provide a natural identification for these 2-surfaces.

2. Without effective 2-dimensionality the situation is more complex. Since symplectic trans-
formations leave rj; invariant, a natural set of 2-surfaces X2 appearing in the definition of
fluxes are separate pieces for rj; = constant sections of 3-surface. For a generic 3-surface,
these surfaces are 2-dimensional and there is continuum of them so that discrete Fourier
transforms of these invariants are needed. Omne must however notice that ry; = constant
surfaces could be be 3-dimensional in which case the notion of flux is not well-defined.

3.5.3 Isometry invariants and spin glass analogy

The presence of isometry invariants implies coset space decomposition U;G/H. This means that
quantum states are characterized, not only by the vacuum functional, which is just the exponential
exp(K) of Kéahler function (Gaussian in lowest approximation) but also by a wave function in
vacuum modes. Therefore the functional integral over the WCW decomposes into an integral
over zero modes for approximately Gaussian functionals determined by exp(K). The weights for
the various vacuum mode contributions are given by the probability density associated with the
zero modes. The integration over the zero modes is a highly problematic notion and it could be
eliminated if a localization in the zero modes occurs in quantum jumps. The localization would
correspond to a state function reduction and zero modes would be effectively classical variables
correlated in one-one manner with the quantum numbers associated with the quantum fluctuating
degrees of freedom.

For a given orbit K depends on zero modes and thus one has mathematical similarity with spin
glass phase for which one has probability distribution for Hamiltonians appearing in the partition
function exp(—H/T). In fact, since TGD Universe is also critical, exact similarity requires that
also the temperature is critical for various contributions to the average partition function of spin
glass phase. The characterization of isometry invariants and zero modes of the Kéahler metric
provides a precise characterization for how TGD Universe is quantum analog of spin glass.

The spin glass analogy has been the basic starting point in the construction of p-adic field
theory limit of TGD. The ultra-metric topology for the free energy minima of spin glass phase
motivates the hypothesis that effective quantum average space-time possesses ultra-metric topology.
This approach leads to excellent predictions for elementary particle masses and predicts even new
branches of physics [K29, K55] . As a matter fact, an entire fractal hierarchy of copies of standard
physics is predicted.

3.5.4 Magnetic flux representation of the symplectic algebra

Accepting the strong form of general coordinate invariance implying effective two-dimensionality
WCW Hamiltonians correspond to the fluxes associated with various 2-surfaces X? defined by
the intersections of light-like light-like 3-surfaces X*; with X at the boundaries of CD considered.
Bearing in mind that zero energy ontology is the correct approach, one can restrict the consideration
on fluxes at 5Mi x C'Py One must also remember that if the proposed symmetries hold true, it
is in principle choose any partonic 2-surface in the conjectured slicing of the Minkowskian space-
time sheet to partonic 2-surfaces parametrized by the points of stringy world sheets.vA physically
attractive realization of the slicings of space-time surface by 3-surfaces and string world sheets is
discussed in [K23] by starting from the observation that TGD could define a natural realization of
braids, braid cobordisms, and 2-knots.

Generalized magnetic fluxes

Isometry invariants are just special case of the fluxes defining natural coordinate variables for
WCW. Symplectic transformations of C'P; act as U(1) gauge transformations on the Kéhler po-
tential of C'P, (similar conclusion holds at the level of SM{ x CP,).

One can generalize these transformations to local symplectic transformations by allowing the
Hamiltonians to be products of the C'P, Hamiltonians with the real and imaginary parts of the
functions fi, n.k (see Eq. 3.4.22) defining the Lorentz covariant function basis Ha, A = (a,m,n, k)
at the light cone boundary: Hy = H, X f(m,n, k), where a labels the Hamiltonians of C'P;.
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One can associate to any Hamiltonian H# of this kind both signed and unsigned magnetic flux
via the following formulas:

Qm(HalX?) = HyJ

QF (HalX?) = HalJ| .
(3.5.5)

Here X2 corresponds to any surface X? resulting as intersection of X? with X fl Both signed and
unsigned magnetic fluxes and their superpositions

QuP(HalX?) = aQum(HalX?)+BQ;)(HalX?) , A= (a,s,n,k) (3.5.6)

provide representations of Hamiltonians. Note that symplectic invariants Q%# correspond to HA =
1 and HA = fsn ke HA =1 can be regarded as a natural central term for the Poisson bracket
algebra. Therefore, the isometry invariance of Kéhler magnetic and electric gauge fluxes follows
as a natural consequence.

The obvious question concerns about the correct values of the parameters o and 5. One
possibility is that the flux is an unsigned flux so that one has o = 0. This option is favored by
the construction of the WCW spinor structure involving the construction of the fermionic super
charges anti-commuting to WCW Hamiltonians: super charges contain the square root of flux,
which must be therefore unsigned. Second possibility is that magnetic fluxes are signed fluxes so
that 8 vanishes.

One can define also the electric counterparts of the flux Hamiltonians by replacing J in the
defining formulas with its dual *J

§
*Jaﬂ = Eag st.

For H4 = 1 these fluxes reduce to ordinary Kéhler electric fluxes. These fluxes are however not
symplectic covariants since the definition of the dual involves the induced metric, which is not
symplectic invariant. The electric gauge fluxes for Hamiltonians in various representations of the
color group ought to be important in the description of hadrons, not only as string like objects,
but quite generally. These degrees of freedom would be identifiable as non-perturbative degrees of
freedom involving genuinely classical Kéhler field whereas quarks and gluons would correspond to
the perturbative degrees of freedom, that is the interactions between C'P; type extremals.

Poisson brackets

From the symplectic invariance of the radial component of Kahler magnetic field it follows that
the Lie-derivative of the flux Q%#(H 4) with respect to the vector field X (Hp) is given by

X(Hp)-Q%P(Ha) = Q%P({Hp, Ha}) . (3.5.7)

The transformation properties of Q% (H ) are very nice if the basis for Hp transforms according
to appropriate irreducible representation of color group and rotation group. This in turn implies
that the fluxes Q%% (H ) as functionals of 3-surface on given orbit provide a representation for the
Hamiltonian as a functional of 3-surface. For a given surface X3, the Poisson bracket for the two

fluxes Q%% (H ) and Q%% (Hp) can be defined as

{Q°(Ha), Q' (Hp)} = X(Hp) Q' (Ha)
QuP({Ha Hp}) = Q" ({Ha, Hp}) . (3.5.8)

The study of WCW gamma matrices identifiable as symplectic super charges demonstrates that the
supercharges associated with the radial deformations vanish identically so that radial deformations
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correspond to zero norm degrees of freedom as one might indeed expect on physical grounds. The
reason is that super generators involve the invariants j%*v; which vanish by ~,,, = 0.

The natural central extension associated with the symplectic group of CP, ({p, ¢} = 1!) induces
a central extension of this algebra. The central extension term resulting from {H 4, Hp} when C Py
Hamiltonians have {p, ¢} = 1 equals to the symplectic invariant Q%° (f(m, +mp, ng +np, ka +kp))
on the right hand side. This extension is however anti-symmetric in symplectic degrees of freedom
rather than in loop space degrees of freedom and therefore does not lead to the standard Kac
Moody type algebra.

Quite generally, the Virasoro and Kac Moody algebras of string models are replaced in TGD
context by much larger symmetry algebras. Kac Moody algebra corresponds to the the deforma-
tions of light-like 3-surfaces respecting their light-likeness and leaving partonic 2-surfaces at §C'D
intact and are highly relevant to the elementary particle physics. This algebra allows a repre-
sentation in terms of X} local Hamiltonians generating isometries of §M{ x C'P,. Hamiltonian
representation is essential for super-symmetrization since fermionic super charges anti-commute
to Hamiltonians rather than vector fields: this is one of the deep differences between TGD and
string models. Kac-Moody algebra does not contribute to WCW metric since by definition the
generators vanish at partonic 2-surfaces. This is essential for the coset space property.

A completely new algebra is the C'P, symplectic algebra localized with respect to the light
cone boundary and relevant to the configuration space geometry. This extends to S? x CP, -or
rather dM? x C'P, symplectic algebra and this gives the strongest predictions concerning WCW
metric. The local radial Virasoro localized with respect to S2 x C'P, acts in zero modes and has
automatically vanishing norm with respect to WCW metric defined by super charges.

3.5.5 Symplectic transformations of §M{ x C'P, as isometries and electric-
magnetic duality

According to the construction of Kihler metric, symplectic transformations of §M$ x CPy act
as isometries whereas radial Virasoro algebra localized with respect to C' P, has zero norm in the
WCW metric.

Hamiltonians can be organized into light like unitary representations of so(3,1) x su(3) and
the symmetry condition Zg(X,Y) = 0 requires that the component of the metric is so(3,1) x
su(3) invariant and this condition is satisfied if the component of metric between two different
representations Dy and Dj of so(3, 1) x su(3) is proportional to Glebch-Gordan coefficient Cp, p, D
between D ® Dy and singlet representation Dg. In particular, metric has components only between
states having identical so(3,1) x su(3) quantum numbers.

Magnetic representation of WCW Hamiltonians means the action of the symplectic transfor-
mations of the light cone boundary as WCW isometries is an intrinsic property of the light cone
boundary. If electric-magnetic duality holds true, the preferred extremal property only determines
the conformal factor of the metric depending on zero modes. This is precisely as it should be
if the group theoretical construction works. Hence it should be possible by a direct calculation
check whether the metric defined by the magnetic flux Hamiltonians as half Poisson brackets in
complex coordinates is invariant under isometries. Symplectic invariance of the metric means that
matrix elements of the metric are left translates of the metric along geodesic lines starting from the
origin of coordinates, which now naturally corresponds to the preferred extremal of Kéhler action.
Since metric derives from symplectic form this means that the matrix elements of symplectic form
given by Poisson brackets of Hamiltonians must be left translates of their values at origin along
geodesic line. The matrix elements in question are given by flux Hamiltonians and since symplectic
transforms of flux Hamiltonian is flux Hamiltonian for the symplectic transform of Hamiltonian,
it seems that the conditions are satisfied.

3.6 General expressions for the symplectic and Kahler forms

One can derive general expressions for symplectic and Kahler forms as well as Kéhler metric of
WCW. The fact that these expressions involve only first variation of the Kahler action implies
huge simplification of the basic formulas. Duality hypothesis leads to further simplifications of the
formulas.
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3.6.1 Closedness requirement

The fluxes of Kahler magnetic and electric fields for the Hamiltonians of (5M_‘ﬁ x C' P, suggest a gen-
eral representation for the components of the symplectic form of the WCW. The basic requirement
is that Kéahler form satisfies the defining condition

X JY,2)+ J(X,Y),2)+ J(X,[V.Z]) = O, (3.6.1)

where X, Y, Z are now vector fields associated with Hamiltonian functions defining WCW coordi-
nates.

3.6.2 Matrix elements of the symplectic form as Poisson brackets

Quite generally, the matrix element of J(X(H4), X(Hp)) between vector fields X(H,)) and
X (Hp)) defined by the Hamiltonians Hy and Hp of §M? x CP, isometries is expressible as
Poisson bracket

JAB = J(X(Ha),X(Hp)) = {Ha,Hp} . (3.6.2)
JAB denotes contravariant components of the symplectic form in coordinates given by a subset
of Hamiltonians. The magnetic flux Hamiltonians Q%”(H ar) of Eq. 4.4.1 provide an explicit
representation for the Hamiltonians at the level of WCW so that the components of the symplectic
form of the WCW are expressible as classical charges for the Poisson brackets of the Hamiltonians
of the light cone boundary:

J(X(Ha),X(Hp)) = Qu’({Ha,Hp}) .
(3.6.3)

Recall that the superscript «, 3 refers the coefficients of J and |J| in the superposition of these
Kiihler magnetic fluxes. Note that Q%" contains unspecified conformal factor depending on sym-
plectic invariants characterizing Y3 and is unspecified superposition of signed and unsigned mag-
netic fluxes.

This representation does not carry information about the tangent space of space-time surface
at the partonic 2-surface, which motivates the proposal that also electric fluxes are present and
proportional to magnetic fluxes with a factor K, which is symplectic invariant so that commutators
of flux Hamiltonians come out correctly. This would give

QuP(HA)em = QP(Ha)+QuP(Ha)= 1+ K)Qx% (Ha) . (3.6.4)

Since Kéhler form relates to the standard field tensor by a factor e/f, flux Hamiltonians are
dimensionless so that commutators do not involve A. The commutators would come as

Qi ({Ha, Hp}) — (1+ K)Q0"({Ha, Hp}) (3.6.5)

The factor 1 + K plays the same role as Planck constant in the commutators.

WCW Hamiltonians vanish for the extrema of the Kéhler function as variational derivatives
of the Kéhler action. Hence Hamiltonians are good candidates for the coordinates appearing as
coordinates in the perturbative functional integral around extrema (with maxima giving dominat-
ing contribution). It is clear that WCW coordinates around a given extremum include only those
Hamiltonians, which vanish at extremum (that is those Hamiltonians which span the tangent space
of G/H) In Darboux coordinates the Poisson brackets reduce to the symplectic form

{PI,QJ} JIJ:JIé‘I,J )
Jo= 1. (3.6.6)
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It is not clear whether Darboux coordinates with J; = 1 are possible in the recent case: probably
the unit matrix on right hand side of the defining equation is replaced with a diagonal matrix
depending on symplectic invariants so that one has J; # 1. The integration measure is given by the
symplectic volume element given by the determinant of the matrix defined by the Poisson brackets
of the Hamiltonians appearing as coordinates. The value of the symplectic volume element is given
by the matrix formed by the Poisson brackets of the Hamiltonians and reduces to the product

Vol =[]/
I

in generalized Darboux coordinates.
Kahler potential (that is gauge potential associated with Kéhler form) can be written in Dar-
boux coordinates as

A = > JPdQ . (3.6.7)
I

3.6.3 General expressions for Kihler form, Kahler metric and Kéahler
function
The expressions of Kdhler form and Kéahler metric in complex coordinates can obtained by trans-

forming the contravariant form of the symplectic form from symplectic coordinates provided by
Hamiltonians to complex coordinates:

JZ 2 —iGZ = 9uaZidys i JAB (3.6.8)

where JAP is given by the classical Kahler charge for the light cone Hamiltonian {H*4, HB}. Com-
plex coordinates correspond to linear coordinates of the complexified Lie-algebra providing expo-
nentiation of the isometry algebra via exponential mapping. What one must know is the precise
relationship between allowed complex coordinates and Hamiltonian coordinates: this relationship
is in principle calculable. In Darboux coordinates the expressions become even simpler:

JEZ =GP = N (1) 0pi 201 2 — 01 Z'0p:1 Z7) (3.6.9)
I
Kahler function can be formally integrated from the relationship

Ay = 0K |
—i0 K . (3.6.10)

S
Ny
I

holding true in complex coordinates. Kéhler function is obtained formally as integral

A
K = /(Azidzi—AZidZi). (3.6.11)
0

3.6.4 Diff(X?) invariance and degeneracy and conformal invariances of
the symplectic form

J(X(Ha), X(Hpg)) defines symplectic form for the coset space G/H only if it is Dif f(X?) degener-
ate. This means that the symplectic form J(X(Ha), X (Hp)) vanishes whenever Hamiltonian H 4
or Hp is such that it generates diffeomorphism of the 3-surface X3. If effective 2-dimensionality
holds true, J(X(Ha), X(Hp)) vanishes if H4 or Hp generates two-dimensional diffeomorphism
d(H,) at the surface X2.

One can always write
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J(X(Ha),X(Hp)) = X (HA)Q(Hp|X}) .

If H4 generates diffeomorphism, the action of X (H 4) reduces to the action of the vector field X 4
of some X ?2-diffeomorphism. Since Q(Hg|rys) is manifestly invariant under the diffemorphisms of
X2, the result is vanishing:

XAQ(HB|X12) =0 )

so that Dif f? invariance is achieved.

The radial diffeomorphisms possibly generated by the radial Virasoro algebra do not produce
trouble. The change of the flux integrand X under the infinitesimal transformation ry; — 7 +erf;
is given by r7,dX/dryr. Replacing 7y, with r3,"™!/(—n + 1) as variable, the integrand reduces to
a total divergence dX/du the integral of which vanishes over the closed 2-surface X?. Hence radial
Virasoro generators having zero norm annihilate all matrix elements of the symplectic form. The
induced metric of X? induces a unique conformal structure and since the conformal transformations
of X? can be interpreted as a mere coordinate changes, they leave the flux integrals invariant.

3.6.5 Complexification and explicit form of the metric and Kéahler form

The identification of the Kahler form and K&hler metric in symplectic degrees of freedom follows
trivially from the identification of the symplectic form and definition of complexification. The
requirement that Hamiltonians are eigen states of angular momentum (and possibly Lorentz boost
generator), isospin and hypercharge implies physically natural complexification. In order to fix the
complexification completely one must introduce some convention fixing which states correspond
to 'positive’ frequencies and which to 'negative frequencies’ and which to zero frequencies that is
to decompose the generators of the symplectic algebra to three sets Cany, Can_ and Cang. One
must distinguish between Cang and zero modes, which are not considered here at all. For instance,
C'P, Hamiltonians correspond to zero modes.

The natural complexification relies on the imaginary part of the radial conformal weight whereas
the real part defines the g = t + h decomposition naturally. The wave vector associated with the
radial logarithmic plane wave corresponds to the angular momentum quantum number associated
with a wave in S' in the case of Kac Moody algebra. One can imagine three options.

1. Tt is quite possible that the spectrum of k3 does not contain k; = 0 at all so that the sector
Cang could be empty. This complexification is physically very natural since it is manifestly
invariant under SU(3) and SO(3) defining the preferred spherical coordinates. The choice of
SO(3) is unique if the classical four-momentum associated with the 3-surface is time like so
that there are no problems with Lorentz invariance.

2. If ko = 0 is possible one could have

Cany = {Hp  j—p1, ik, k2 >0}
Can_ = {Hp, , k2 <0} ,
Cang = {Hp o ke =0} . (3.6.12)

3. If it is possible to ny # 0 for ko = 0, one could define the decomposition as

Cany = {Hp, ,,k2>0 or kg =0,n2 >0} ,
Can_ = {Hp, , ke <0 orky =0,ny <0} ,
C(l’rlo = {H;.;L,n,k’ ]{32 = N9 = 0} . (3613)

In this case the complexification is unique and Lorentz invariance guaranteed if one can fix
the SO(2) subgroup uniquely. The quantization axis of angular momentum could be chosen
to be the direction of the classical angular momentum associated with the 3-surface in its
rest system.



Chapter 3. Construction of Configuration Space Kihler Geometry from Symmetry
110 Principles

The only thing needed to get Kéhler form and Kéhler metric is to write the half Poisson bracket
defined by Eq. 3.9.15

Ji(X(Ha), X(Hp)) = 2Im(iQs({Ha,Hp}-+)) ,
Gi(X(Ha),X(Hp)) = 2Re(iQf({Ha, Hp}-1)) . (3.6.14)

Symplectic form, and thus also Kahler form and Kéahler metric, could contain a conformal
factor depending on the isometry invariants characterizing the size and shape of the 3-surface. At
this stage one cannot say much about the functional form of this factor.

3.6.6 Comparison of C'P, Kahler geometry with configuration space ge-
ometry

The explicit discussion of the role of ¢ = t + h decomposition of the tangent space of WCW
provides deep insights to the metric of the symmetric space. There are indeed many questions to
be answered. To what point of WCW (that is 3-surface) the proposed g = ¢ + h decomposition
corresponds to? Can one derive the components of the metric and Kéahler form from the Poisson
brackets of complexified Hamiltonians? Can one characterize the point in question in terms of the
properties of WCW Hamiltonians? Does the central extension of WCW reduce to the symplectic
central extension of the symplectic algebra or can one consider also other options?

Cartan decomposition for C'P,

A good manner to gain understanding is to consider the C'P; metric and K&hler form at the origin
of complex coordinates for which the sub-algebra h = u(2) defines the Cartan decomposition.

1. g = t + h decomposition depends on the point of the symmetric space in general. In case
of C'P, u(2) sub-algebra transforms as g o u(2) o g~ when the point s is replaced by gsg—*.
This is expected to hold true also in case of WCW (unless it is flat) so that the task is to

identify the point of WCW at which the proposed decomposition holds true.

2. The Killing vector fields of h sub-algebra vanish at the origin of C'P, in complex coordinates.
The corresponding Hamiltonians need not vanish but their Poisson brackets must vanish. It
is possible to add suitable constants to the Hamiltonians in order to guarantee that they
vanish at origin.

3. It is convenient to introduce complex coordinates and decompose isometry generators to
holomorphic components J¢ = j**9, and j* = j°*;. One can introduce what might be
called half Poisson bracket and half inner product defined as

8EHaJElale
— jakal_ij _ _'L<]i,]i) . (3615)

{Ha7 Hb}—-i—

One can express Poisson bracket of Hamiltonians and the inner product of the corresponding
Killing vector fields in terms of real and imaginary parts of the half Poisson bracket:

{H*,H*} = 2Im(i{H" H"}_,) ,
(7.7%) = 2Re(i(j$.5%)) = 2Re (i{H*, H*}_ ) . (3.6.16)
What this means that Hamiltonians and their half brackets code all information about metric

and Kéhler form. Obviously this is of utmost importance in the case of the WCW metric
whose symplectic structure and central extension are derived from those of C'P;.
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Consider now the properties of the metric and Kéahler form at the origin.

1. The relations satisfied by the half Poisson brackets can be written symbolically as

{h7h}*+ =0,
Re(i{h,t}_4) =0 , Im(i{h,t}_)=0 (3.6.17)
Re(i{t,) ) £0 . Tm(i{t, 1)) #0 .

2. The first two conditions state that h vector fields have vanishing inner products at the
origin. The first condition states also that the Hamiltonians for the commutator algebra
[h,h] = SU(2) vanish at origin whereas the Hamiltonian for U(1) algebra corresponding
to the color hyper charge need not vanish although it can be made vanishing. The third
condition implies that the Hamiltonians of ¢ vanish at origin.

3. The last two conditions state that the Kéhler metric and form are non-vanishing between
the elements of ¢. Since the Poisson brackets of ¢ Hamiltonians are Hamiltonians of h, the
only possibility is that {¢,¢} Poisson brackets reduce to a non-vanishing U(1) Hamiltonian
at the origin or that the bracket at the origin is due to the symplectic central extension. The
requirement that all Hamiltonians vanish at origin is very attractive aesthetically and forces to
interpret {t, ¢} brackets at origin as being due to a symplectic central extension. For instance,
for S? the requirement that Hamiltonians vanish at origin would mean the replacement of the
Hamiltonian H = cos(f) representing a rotation around z-axis with Hs = cos(f) — 1 so that
the Poisson bracket of the generators H; and Hy can be interpreted as a central extension
term.

4. The conditions for the Hamiltonians of u(2) sub-algebra state that their variations with
respect to g vanish at origin. Thus «(2) Hamiltonians have extremum value at origin.

5. Also the Kéhler function of C' P, has extremum at the origin. This suggests that in the case of
the WCW the counterpart of the origin corresponds to the maximum of the Kéhler function.

Cartan algebra decomposition at the level of WCW

The discussion of the properties of C'P, Kahler metric at origin provides valuable guide lines in an
attempt to understand what happens at the level of WCW. The use of the half bracket for WCW
Hamiltonians in turn allows to calculate the matrix elements of the WCW metric and Kéhler form
explicitly in terms of the magnetic or electric flux Hamiltonians.

The earlier construction was rather tricky and formula-rich and not very convincing physically.
Cartan decomposition had to be assigned with something and in lack of anything better it was
assigned with Super Virasoro algebra, which indeed allows this kind of decompositions but without
any strong physical justification. The realization that super-symplectic and super Kac-Moody
symmetries define coset construction at the level of basic quantum TGD. The wrong conclusions
were that this construction provides a realization of Equivalence Principle (EP) at microscopic
level that the coset space decomposition of WCW realizes EP geometrically. At quantum level the
EP reduces to Quantum Classical Correspondence (QCC). At classical level EP reduces to the fact
that GRT space-time follows naturally as an effective description of many-sheeted space-time [K56]
(see fig. http://www.tgdtheory.fi/appfigures/manysheeted. jpg or fig. 9 in the appendix of
this book).

It must be however emphasized that holography implying effective 2-dimensionality of 3-surfaces
in some length scale resolution is absolutely essential for this construction since it allows to effec-
tively reduce Kac-Moody generators associated with X13 to X2 = Xl?’ N6M3 x CP,. In the similar
manner super-symplectic generators can be dimensionally reduced to X2. Number theoretical
compactification forces the dimensional reduction and the known extremals are consistent with
it [K5] . The construction of WCW spinor structure and metric in terms of the second quantized
spinor fields [K9] relies to this picture as also the recent view about M-matrix [K12] .

In this framework the coset space decomposition becomes trivial.


http://www.tgdtheory.fi/appfigures/manysheeted.jpg
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1. The algebra g is labeled by color quantum numbers of C'P, Hamiltonians and by the label
(m,n, k) labeling the function basis of the light cone boundary. Also a localization with
respect to X? is needed. This is a new element as compared to the original view.

2. Super Kac-Moody algebra is labeled by color octet Hamiltonians and function basis of X2.
Since Lie-algebra action does not lead out of irreps, this means that Cartan algebra decom-
position is satisfied.

3.6.7 Comparison with loop groups

It is useful to compare the recent approach to the geometrization of the loop groups consisting of
maps from circle to Lie Freed , which served as the inspirer of the WCW geometry approach but
later turned out to not apply as such in TGD framework.

In the case of loop groups the tangent space T corresponds to the local Lie-algebra T'(k, A) =
exp(ikd)Ta, where T4 generates the finite-dimensional Lie-algebra g and ¢ denotes the angle
variable of circle; k is integer. The complexification of the tangent space corresponds to the
decomposition

T={Xk>0,A)}p{X(k<0,A)}e{X(k=0A)}=T,0T_&To

of the tangent space. Metric corresponds to the central extension of the loop algebra to Kac Moody
algebra and the Kéhler form is given by

J(X(/ﬁ < O,A),X(kg > O,B)) = kgé(k‘l + k‘g)(S(A,B) .

In present case the finite dimensional Lie algebra g is replaced with the Lie-algebra of the symplectic
transformations of 6 M. fi x C' Py centrally extended using symplectic extension. The scalar function
basis on circle is replaced with the function basis on an interval of length Arj; with periodic
boundary conditions; effectively one has circle also now.

The basic difference is that one can consider two kinds of central extensions now.

1. Central extension is most naturally induced by the natural central extension ({p,q} = 1)
defined by Poisson bracket. This extension is anti-symmetric with respect to the generators
of the symplectic group: in the case of the Kac Moody central extension it is symmetric
with respect to the group G. The symplectic transformations of C'P, might correspond to
non-zero modes also because they are not exact symmetries of Kéhler action. The situation is
however rather delicate since k = 0 light cone harmonic has a diverging norm due to the radial
integration unless one poses both lower and upper radial cutoffs although the matrix elements
would be still well defined for typical 3-surfaces. For Kac Moody group U(1) transformations
correspond to the zero modes. Light cone function algebra can be regarded as a local U(1)
algebra defining central extension in the case that only CP, symplectic transformations
local with respect to §Mf|1_ act as isometries: for Kac Moody algebra the central extension
corresponds to an ordinary U(1) algebra. In the case that entire light cone symplectic algebra
defines the isometries the central extension reduces to a U(1) central extension.

3.7 Magnetic and electric representations of the configura-
tion space Hamiltonians

Symmetry considerations lead to the hypothesis that WCW Hamiltonians are apart from a factor
depending on symplectic invariants equal to magnetic flux Hamiltonians. On the other hand,
the hypothesis that Kéahler function corresponds to a preferred extremal of Kahler action leads
to the hypothesis that WCW Hamiltonians corresponds to classical charges associated with the
Hamiltonians of the light cone boundary. These charges are very much like electric charges. The
requirement that two approaches are equivalent leads to the hypothesis that magnetic and electric
Hamiltonians are identical apart from a factor depending on isometry invariants. At the level of
C'P, corresponding duality corresponds to the self-duality of Kéhler form stating that the magnetic
and electric parts of Kahler form are identical.
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3.7.1 Radial symplectic invariants

All (5Mi x C P, symplectic transformations leave invariant the value of the radial coordinate ry;.
Therefore the radial coordinate rj; of X3 regarded as a function of S? x C'P, coordinates serves
as height function. The number, type, ordering and values for the extrema for this height function
in the interior and boundary components are isometry invariants. These invariants characterize
not only the topology but also the size and shape of the 3-surface. The result implies that WCW
metric indeed differentiates between 3-surfaces with the size of Planck length and with the size of
galaxy. The characterization of these invariants reduces to Morse theory. The extrema correspond
to topology changes for the two-dimensional (one-dimensional) ry; = constant section of 3-surface
(boundary of 3-surface). The height functions of sphere and torus serve as a good illustrations of
the situation. A good example about non-topological extrema is provided by a sphere with two
horns.

There are additional symplectic invariants. The 'magnetic fluxes’ associated with the (5M_‘ﬁ
symplectic form

Js2 = r2,5in(0)dO A de

over any X2 C X? are symplectic invariants. In particular, the integrals over ry; = constant
sections (assuming them to be 2-dimensional) are symplectic invariants. They give simply the
solid angle Q(rys) spanned by 7y = constant section and thus r3,Q(rys) characterizes transversal
geometric size of the 3-surface. A convenient manner to discretize these invariants is to consider
the Fourier components of these invariants in radial logarithmic plane wave basis discussed earlier:

Q(k) = /mm(TJVI/Tmax)kQ(TM)iiTM , k=ki+iky , perks >0 . (3.7.1)
M

Tmin

One must take into account that for each section in which the topology of ry; = constant section
remains constant one must associate invariants with separate components of the two-dimensional
section. For a given value of rys, rjs constant section contains several components (to visualize
the situation consider torus as an example).

Also the quantities

O+ (x2) :/Xz 1] E/|6aBJa5|@d2x

are symplectic invariants and provide additional geometric information about 3-surface. These
fluxes are non-vanishing also for closed surfaces and give information about the geometry of the
boundary components of 3-surface (signed fluxes vanish for boundary components unless they
enclose the dip of the light cone).

Since zero norm generators remain invariant under complexification, their contribution to the
Ké&hler metric vanishes. It is not at all obvious whether WCW integration measure in these degrees
of freedom exists at all. A localization in zero modes occurring in each quantum jump seems a
more plausible and under suitable additional assumption it would have interpretation as a state
function reduction. In string model similar situation is encountered; besides the functional integral
determined by string action, one has integral over the moduli space.

If the effective 2-dimensionality implied by the strong form of general coordinate invariance
discussed in the introduction is accepted, there is no need to integrate over the variable r5; and
just the fluxes over the 2-surfaces X? identified as intersections of light like 3-D causal determinants
with X3 contain the data relevant for the construction of the WCW geometry. Also the symplectic
invariants associated with these surfaces are enough.

3.7.2 Kahler magnetic invariants

The Kéahler magnetic fluxes defined both the normal component of the Kahler magnetic field and
by its absolute value

Qn(X) = /Xz Jop, = Jape®Jpd’t
/ | Jcp, | 5/ [Jape™” |Vgad’x (3.7.2)
X2 X2

QO (X?)
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over suitably defined 2-surfaces are invariants under both Lorentz isometries and the symplectic
transformations of C P, and can be calculated once X2 is given.

For a closed surface @,,(X?) vanishes unless the homology equivalence class of the surface is
nontrivial in C' P, degrees of freedom. In this case the flux is quantized. QX[(X 2) is non-vanishing
for closed surfaces, too. Signed magnetic fluxes over non-closed surfaces depend on the boundary
of X? only:

fsz:fész .
J=dA .

Un-signed fluxes can be written as sum of similar contributions over the boundaries of regions of
X2 in which the sign of J remains fixed.

Qm(XQ) = ,/XZ JCP2 = aﬁeaﬂ@de )
anx*) = [ enl= [ upelVinda (373)

There are also symplectic invariants, which are Lorentz covariants and defined as

Qum(K,X?) = fxJdep,
X2
Q;;(KvXQ) = fK|JCP2| )
X2
n—k
_ 5 14 "Mk
frztemiy = €0 X gy X (00) (3.7.4)

These symplectic invariants transform like an infinite-dimensional unitary representation of Lorentz
group.

There must exist some minimal number of symplectically non-equivalent 2-surfaces of X3, and
the magnetic fluxes over the representatives these surfaces give thus good candidates for zero
modes.

1. If effective 2-dimensionality is accepted, the surfaces X? defined by the intersections of light
like 3-D causal determinants X;* and X3 provide a natural identification for these 2-surfaces.

2. Without effective 2-dimensionality the situation is more complex. Since symplectic trans-
formations leave rj; invariant, a natural set of 2-surfaces X2 appearing in the definition of
fluxes are separate pieces for ry; = constant sections of 3-surface. For a generic 3-surface,
these surfaces are 2-dimensional and there is continuum of them so that discrete Fourier
transforms of these invariants are needed. One must however notice that ry; = constant
surfaces could be be 3-dimensional in which case the notion of flux is not well-defined.

3.7.3 Isometry invariants and spin glass analogy

The presence of isometry invariants implies coset space decomposition U;G/H. This means that
quantum states are characterized, not only by the vacuum functional, which is just the exponential
exp(K) of Kahler function (Gaussian in lowest approximation) but also by a wave function in
vacuum modes. Therefore the functional integral over the WCW decomposes into an integral
over zero modes for approximately Gaussian functionals determined by exp(K). The weights for
the various vacuum mode contributions are given by the probability density associated with the
zero modes. The integration over the zero modes is a highly problematic notion and it could be
eliminated if a localization in the zero modes occurs in quantum jumps. The localization would
correspond to a state function reduction and zero modes would be effectively classical variables
correlated in one-one manner with the quantum numbers associated with the quantum fluctuating
degrees of freedom.
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For a given orbit K depends on zero modes and thus one has mathematical similarity with spin
glass phase for which one has probability distribution for Hamiltonians appearing in the partition
function exp(—H/T). In fact, since TGD Universe is also critical, exact similarity requires that
also the temperature is critical for various contributions to the average partition function of spin
glass phase. The characterization of isometry invariants and zero modes of the Kéahler metric
provides a precise characterization for how TGD Universe is quantum analog of spin glass.

The spin glass analogy has been the basic starting point in the construction of p-adic field
theory limit of TGD. The ultra-metric topology for the free energy minima of spin glass phase
motivates the hypothesis that effective quantum average space-time possesses ultra-metric topology.
This approach leads to excellent predictions for elementary particle masses and predicts even new
branches of physics [K29, K55] . As a matter fact, an entire fractal hierarchy of copies of standard
physics is predicted.

3.7.4 Magnetic flux representation of the symplectic algebra

Accepting the strong form of general coordinate invariance implying effective two-dimensionality
WCW Hamiltonians correspond to the fluxes associated with various 2-surfaces X? defined by
the intersections of light-like light-like 3-surfaces X*; with X* at the boundaries of CD considered.
Bearing in mind that zero energy ontology is the correct approach, one can restrict the consideration
on fluxes at 5Mi x C'Py One must also remember that if the proposed symmetries hold true, it
is in principle choose any partonic 2-surface in the conjectured slicing of the Minkowskian space-
time sheet to partonic 2-surfaces parametrized by the points of stringy world sheets.vA physically
attractive realization of the slicings of space-time surface by 3-surfaces and string world sheets is
discussed in [K23] by starting from the observation that TGD could define a natural realization of
braids, braid cobordisms, and 2-knots.

Generalized magnetic fluxes

Isometry invariants are just special case of the fluxes defining natural coordinate variables for
WCW. Symplectic transformations of C P, act as U(1) gauge transformations on the Kéhler po-
tential of CP, (similar conclusion holds at the level of 6M$ x C'P5).

One can generalize these transformations to local symplectic transformations by allowing the
Hamiltonians to be products of the C'P, Hamiltonians with the real and imaginary parts of the
functions fy, n.1 (see Eq. 3.4.22) defining the Lorentz covariant function basis H4, A = (a, m, n, k)
at the light cone boundary: Hq = H, X f(m,n, k), where a labels the Hamiltonians of C'P;.

One can associate to any Hamiltonian H4 of this kind both signed and unsigned magnetic flux
via the following formulas:

Qm (H4|X?)

HAJa
X2
/ HalJ| .
X2

Here X2 corresponds to any surface X? resulting as intersection of X2 with X 131 Both signed and
unsigned magnetic fluxes and their superpositions

Qi (HalX?)

(3.7.5)

QuP(HAlX?) = aQum(HalX?)+BQ;)(HalX?) , A= (a,s,n,k) (3.7.6)

provide representations of Hamiltonians. Note that symplectic invariants Q%? correspond to HA =
1 and HA = Fsn k- HA =1 can be regarded as a natural central term for the Poisson bracket
algebra. Therefore, the isometry invariance of Kéhler magnetic and electric gauge fluxes follows
as a natural consequence.

The obvious question concerns about the correct values of the parameters o and 5. One
possibility is that the flux is an unsigned flux so that one has a = 0. This option is favored by
the construction of the WCW spinor structure involving the construction of the fermionic super
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charges anti-commuting to WCW Hamiltonians: super charges contain the square root of flux,
which must be therefore unsigned. Second possibility is that magnetic fluxes are signed fluxes so
that 8 vanishes.

One can define also the electric counterparts of the flux Hamiltonians by replacing J in the
defining formulas with its dual *.J

é
*Jaﬂ = €ag JWS'

For H4 = 1 these fluxes reduce to ordinary Kéhler electric fluxes. These fluxes are however not
symplectic covariants since the definition of the dual involves the induced metric, which is not
symplectic invariant. The electric gauge fluxes for Hamiltonians in various representations of the
color group ought to be important in the description of hadrons, not only as string like objects,
but quite generally. These degrees of freedom would be identifiable as non-perturbative degrees of
freedom involving genuinely classical Kdhler field whereas quarks and gluons would correspond to
the perturbative degrees of freedom, that is the interactions between C'P; type extremals.

Poisson brackets

From the symplectic invariance of the radial component of Kéhler magnetic field it follows that
the Lie-derivative of the flux Q% (H 4) with respect to the vector field X (Hp) is given by

m

X(Hp) Q%P(Ha) = Q%P({Hp,Ha}) . (3.7.7)

The transformation properties of Q% (H ) are very nice if the basis for Hp transforms according
to appropriate irreducible representation of color group and rotation group. This in turn implies
that the fluxes Q%#(H ) as functionals of 3-surface on given orbit provide a representation for the
Hamiltonian as a functional of 3-surface. For a given surface X3, the Poisson bracket for the two
fluxes Q%% (H ) and Q%% (Hp) can be defined as

X(Hp) - Q%P (Ha)
= Q%P({Ha, Hp}) = Q" ({Ha, Hp}) . (3.7.8)

{Q%F(Ha), Q" (Hp)}

The study of WCW gamma matrices identifiable as symplectic super charges demonstrates that the
supercharges associated with the radial deformations vanish identically so that radial deformations
correspond to zero norm degrees of freedom as one might indeed expect on physical grounds. The
reason is that super generators involve the invariants j%%v, which vanish by ~,,, = 0.

The natural central extension associated with the symplectic group of CP; ({p, ¢} = 1!) induces
a central extension of this algebra. The central extension term resulting from {H 4, Hp} when C Py
Hamiltonians have {p, ¢} = 1 equals to the symplectic invariant Q%% (f(mq +mp, ng +np, ka +kp))
on the right hand side. This extension is however anti-symmetric in symplectic degrees of freedom
rather than in loop space degrees of freedom and therefore does not lead to the standard Kac
Moody type algebra.

Quite generally, the Virasoro and Kac Moody algebras of string models are replaced in TGD
context by much larger symmetry algebras. Kac Moody algebra corresponds to the the deforma-
tions of light-like 3-surfaces respecting their light-likeness and leaving partonic 2-surfaces at dC'D
intact and are highly relevant to the elementary particle physics. This algebra allows a repre-
sentation in terms of X local Hamiltonians generating isometries of §M{ x CP,. Hamiltonian
representation is essential for super-symmetrization since fermionic super charges anti-commute
to Hamiltonians rather than vector fields: this is one of the deep differences between TGD and
string models. Kac-Moody algebra does not contribute to WCW metric since by definition the
generators vanish at partonic 2-surfaces. This is essential for the coset space property.

A completely new algebra is the C'P, symplectic algebra localized with respect to the light
cone boundary and relevant to the configuration space geometry. This extends to S? x C'P, -or
rather §M$ x C'P, symplectic algebra and this gives the strongest predictions concerning WCW
metric. The local radial Virasoro localized with respect to S? x C'P, acts in zero modes and has
automatically vanishing norm with respect to WCW metric defined by super charges.
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3.7.5 Symplectic transformations of 6 M x C'P; as isometries and electric-
magnetic duality

According to the construction of Kihler metric, symplectic transformations of dM{ x CP, act
as isometries whereas radial Virasoro algebra localized with respect to C'P, has zero norm in the
WCW metric.

Hamiltonians can be organized into light like unitary representations of so(3,1) x su(3) and
the symmetry condition Zg(X,Y) = 0 requires that the component of the metric is so(3,1) x
su(3) invariant and this condition is satisfied if the component of metric between two different
representations Dy and D of so(3, 1) x su(3) is proportional to Glebch-Gordan coefficient Cp, p, b
between Dy ® D and singlet representation Dg. In particular, metric has components only between
states having identical so(3,1) x su(3) quantum numbers.

Magnetic representation of WCW Hamiltonians means the action of the symplectic transfor-
mations of the light cone boundary as WCW isometries is an intrinsic property of the light cone
boundary. If electric-magnetic duality holds true, the preferred extremal property only determines
the conformal factor of the metric depending on zero modes. This is precisely as it should be
if the group theoretical construction works. Hence it should be possible by a direct calculation
check whether the metric defined by the magnetic flux Hamiltonians as half Poisson brackets in
complex coordinates is invariant under isometries. Symplectic invariance of the metric means that
matrix elements of the metric are left translates of the metric along geodesic lines starting from the
origin of coordinates, which now naturally corresponds to the preferred extremal of Kahler action.
Since metric derives from symplectic form this means that the matrix elements of symplectic form
given by Poisson brackets of Hamiltonians must be left translates of their values at origin along
geodesic line. The matrix elements in question are given by flux Hamiltonians and since symplectic
transforms of flux Hamiltonian is flux Hamiltonian for the symplectic transform of Hamiltonian,
it seems that the conditions are satisfied.

3.8 General expressions for the symplectic and Kahler forms

One can derive general expressions for symplectic and Kahler forms as well as Kéhler metric of
WCW. The fact that these expressions involve only first variation of the Kéhler action implies
huge simplification of the basic formulas. Duality hypothesis leads to further simplifications of the
formulas.

3.8.1 Closedness requirement

The fluxes of Kahler magnetic and electric fields for the Hamiltonians of 5Mi x C' Py suggest a gen-
eral representation for the components of the symplectic form of the WCW. The basic requirement
is that Kéahler form satisfies the defining condition

X-J(Y,2)+ J(X,Y],Z)+ J(X,[Y.Z]) = O, (3.8.1)

where X, Y, Z are now vector fields associated with Hamiltonian functions defining WCW coordi-
nates.

3.8.2 Matrix elements of the symplectic form as Poisson brackets

Quite generally, the matrix element of J(X(Ha),X(Hp)) between vector fields X (H,4)) and
X(Hp)) defined by the Hamiltonians Hy and Hp of §M3 x CP, isometries is expressible as
Poisson bracket

JAB = J(X(H.),X(Hp)) ={Ha,Hp} . (3.8.2)

JAB denotes contravariant components of the symplectic form in coordinates given by a subset
of Hamiltonians. The magnetic flux Hamiltonians Q%°(H ;) of Eq. 4.4.1 provide an explicit
representation for the Hamiltonians at the level of WCW so that the components of the symplectic
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form of the WCW are expressible as classical charges for the Poisson brackets of the Hamiltonians
of the light cone boundary:

J(X(Ha),X(Hp)) = Q%’({Ha, Hp}) .
(3.8.3)

Recall that the superscript «, 5 refers the coefficients of J and |J| in the superposition of these
Kihler magnetic fluxes. Note that Q%” contains unspecified conformal factor depending on sym-
plectic invariants characterizing Y3 and is unspecified superposition of signed and unsigned mag-
netic fluxes.

This representation does not carry information about the tangent space of space-time surface
at the partonic 2-surface, which motivates the proposal that also electric fluxes are present and
proportional to magnetic fluxes with a factor K, which is symplectic invariant so that commutators
of flux Hamiltonians come out correctly. This would give

QuP(HA)em = QP(Ha)+QuP(Ha)= (14 K)Qx (Ha) . (3.84)

Since Kéhler form relates to the standard field tensor by a factor e/, flux Hamiltonians are
dimensionless so that commutators do not involve A. The commutators would come as

Qe ({Ha, Hp}) — (1+ K)Q ({Ha, Hp}) (3.8.5)

The factor 1 + K plays the same role as Planck constant in the commutators.

WCW Hamiltonians vanish for the extrema of the Kéhler function as variational derivatives
of the Kéahler action. Hence Hamiltonians are good candidates for the coordinates appearing as
coordinates in the perturbative functional integral around extrema (with maxima giving dominat-
ing contribution). It is clear that WCW coordinates around a given extremum include only those
Hamiltonians, which vanish at extremum (that is those Hamiltonians which span the tangent space
of G/H) In Darboux coordinates the Poisson brackets reduce to the symplectic form

{PI,QJ} JIJ:JI(SI,J .
Jo= 1. (3.8.6)

It is not clear whether Darboux coordinates with J; = 1 are possible in the recent case: probably
the unit matrix on right hand side of the defining equation is replaced with a diagonal matrix
depending on symplectic invariants so that one has J; # 1. The integration measure is given by the
symplectic volume element given by the determinant of the matrix defined by the Poisson brackets
of the Hamiltonians appearing as coordinates. The value of the symplectic volume element is given
by the matrix formed by the Poisson brackets of the Hamiltonians and reduces to the product

Vol =[]/
1

in generalized Darboux coordinates.
Kéhler potential (that is gauge potential associated with Kéahler form) can be written in Dar-
boux coordinates as

A = > JPdQ" . (3.8.7)
I
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3.8.3 General expressions for Kahler form, Kahler metric and Kahler
function

The expressions of Kéhler form and Kéhler metric in complex coordinates can obtained by trans-
forming the contravariant form of the symplectic form from symplectic coordinates provided by
Hamiltonians to complex coordinates:

JZ? G = 9uaZi0ys i JAB (3.8.8)

where JAP is given by the classical Kahler charge for the light cone Hamiltonian {4, H?}. Com-
plex coordinates correspond to linear coordinates of the complexified Lie-algebra providing expo-
nentiation of the isometry algebra via exponential mapping. What one must know is the precise
relationship between allowed complex coordinates and Hamiltonian coordinates: this relationship
is in principle calculable. In Darboux coordinates the expressions become even simpler:

JZZ =GP = N (1) (0pi 201 27 — 01 Z'0p:1 Z7) . (3.8.9)
T
Kahler function can be formally integrated from the relationship

Az = i0uK
Az = —iduK . (3.8.10)

holding true in complex coordinates. Kahler function is obtained formally as integral

zZ
K = /(AzidZi—AZidZi). (3.8.11)
0

3.8.4 Diff(X?) invariance and degeneracy and conformal invariances of
the symplectic form

J(X(H,), X (Hp)) defines symplectic form for the coset space G/H only if it is Di f f(X?3) degener-
ate. This means that the symplectic form J(X(Ha), X (Hp)) vanishes whenever Hamiltonian H 4
or Hp is such that it generates diffeomorphism of the 3-surface X3. If effective 2-dimensionality
holds true, J(X(Ha), X (Hp)) vanishes if H4 or Hp generates two-dimensional diffeomorphism
d(Ha) at the surface X?.

One can always write

J(X(Ha),X(Hp)) = X(HA)Q(Hp|X}) .

If H4 generates diffeomorphism, the action of X (H 4) reduces to the action of the vector field X 4
of some X?-diffeomorphism. Since Q(Hp|rys) is manifestly invariant under the diffemorphisms of
X2, the result is vanishing:

XAQ(Hp|X?) =0,

so that Diff? invariance is achieved.

The radial diffeomorphisms possibly generated by the radial Virasoro algebra do not produce
trouble. The change of the flux integrand X under the infinitesimal transformation ry; — 7 +erf;
is given by 73,dX/drys. Replacing rpr with 73,7 /(—=n + 1) as variable, the integrand reduces to
a total divergence dX/du the integral of which vanishes over the closed 2-surface X?. Hence radial
Virasoro generators having zero norm annihilate all matrix elements of the symplectic form. The
induced metric of X? induces a unique conformal structure and since the conformal transformations
of X? can be interpreted as a mere coordinate changes, they leave the flux integrals invariant.
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3.8.5 Complexification and explicit form of the metric and Kahler form

The identification of the Kéhler form and K&ahler metric in symplectic degrees of freedom follows
trivially from the identification of the symplectic form and definition of complexification. The
requirement that Hamiltonians are eigen states of angular momentum (and possibly Lorentz boost
generator), isospin and hypercharge implies physically natural complexification. In order to fix the
complexification completely one must introduce some convention fixing which states correspond
to ’positive’ frequencies and which to ‘negative frequencies’ and which to zero frequencies that is
to decompose the generators of the symplectic algebra to three sets Cany, Can_ and Cang. One
must distinguish between Cang and zero modes, which are not considered here at all. For instance,
C P, Hamiltonians correspond to zero modes.

The natural complexification relies on the imaginary part of the radial conformal weight whereas
the real part defines the g = t + h decomposition naturally. The wave vector associated with the
radial logarithmic plane wave corresponds to the angular momentum quantum number associated
with a wave in S* in the case of Kac Moody algebra. One can imagine three options.

1. It is quite possible that the spectrum of ko does not contain ko = 0 at all so that the sector
Cang could be empty. This complexification is physically very natural since it is manifestly
invariant under SU(3) and SO(3) defining the preferred spherical coordinates. The choice of
SO(3) is unique if the classical four-momentum associated with the 3-surface is time like so
that there are no problems with Lorentz invariance.

2. If ko = 0 is possible one could have

Cany = {sz,n,kzkhrikg?k? >0},
Can_ = {Hp, , k2 <0},
CCLTLO = {H’gl,n,k’ kQ = 0} . (3812)

3. If it is possible to ny # 0 for ko = 0, one could define the decomposition as

Cany = {Hp, , k2 >0 or kg =0,ny >0} ,
Can_ = {Hp, , ,k2 <0 orky =0,ny <0} ,
C(ITLO = {Hgl’n’k, kz = Ng = O} . (3813)

In this case the complexification is unique and Lorentz invariance guaranteed if one can fix
the SO(2) subgroup uniquely. The quantization axis of angular momentum could be chosen
to be the direction of the classical angular momentum associated with the 3-surface in its
rest system.

The only thing needed to get Kahler form and Kéahler metric is to write the half Poisson bracket
defined by Eq. 3.9.15

Jr(X(Ha),X(Hp)) = 2Im(iQs({Ha,Hp} +)) ,
Gy(X(Ha),X(Hp)) = 2Re(iQ;({Ha,Hp}-+)) . (3.8.14)

Symplectic form, and thus also Kahler form and Kéahler metric, could contain a conformal
factor depending on the isometry invariants characterizing the size and shape of the 3-surface. At
this stage one cannot say much about the functional form of this factor.



3.8. General expressions for the symplectic and Kéahler forms 121

3.8.6 Comparison of C'P, Kahler geometry with configuration space ge-
ometry

The explicit discussion of the role of ¢ = t 4+ h decomposition of the tangent space of WCW
provides deep insights to the metric of the symmetric space. There are indeed many questions to
be answered. To what point of WCW (that is 3-surface) the proposed g = ¢ + h decomposition
corresponds to? Can one derive the components of the metric and Kéhler form from the Poisson
brackets of complexified Hamiltonians? Can one characterize the point in question in terms of the
properties of WCW Hamiltonians? Does the central extension of WCW reduce to the symplectic
central extension of the symplectic algebra or can one consider also other options?

Cartan decomposition for C'P,

A good manner to gain understanding is to consider the C'P; metric and Kéhler form at the origin
of complex coordinates for which the sub-algebra h = u(2) defines the Cartan decomposition.

1. g = t + h decomposition depends on the point of the symmetric space in general. In case
of C'P; u(2) sub-algebra transforms as g o u(2) o g~ when the point s is replaced by gsg~*.
This is expected to hold true also in case of WCW (unless it is flat) so that the task is to

identify the point of WCW at which the proposed decomposition holds true.

2. The Killing vector fields of h sub-algebra vanish at the origin of C'P, in complex coordinates.
The corresponding Hamiltonians need not vanish but their Poisson brackets must vanish. It
is possible to add suitable constants to the Hamiltonians in order to guarantee that they
vanish at origin.

3. It is convenient to introduce complex coordinates and decompose isometry generators to
holomorphic components J¢ = %9y, and j* = j% 0. One can introduce what might be
called half Poisson bracket and half inner product defined as

O HJ* o, HY
J* ™ = =i, 52) (3.8.15)

{Hav Hb}er

One can express Poisson bracket of Hamiltonians and the inner product of the corresponding
Killing vector fields in terms of real and imaginary parts of the half Poisson bracket:

{H*,H"} = 2Im(i{H" H"}_,) ,
(5%, 7% 2Re (i(j,5%)) = 2Re (i{ H*, H*}_) . (3.8.16)

What this means that Hamiltonians and their half brackets code all information about metric
and Kéhler form. Obviously this is of utmost importance in the case of the WCW metric
whose symplectic structure and central extension are derived from those of C'P;.

Consider now the properties of the metric and Kéahler form at the origin.

1. The relations satisfied by the half Poisson brackets can be written symbolically as

{hvh}*Jr =0,
Re(i{h,t}_4) =0 , Im(i{h,t}_)=0 (3.8.17)

Re(i{t,t}-1) £0 . Im(i{t,t}—4) #0 .
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2. The first two conditions state that h vector fields have vanishing inner products at the
origin. The first condition states also that the Hamiltonians for the commutator algebra
[h,h] = SU(2) vanish at origin whereas the Hamiltonian for U(1) algebra corresponding
to the color hyper charge need not vanish although it can be made vanishing. The third
condition implies that the Hamiltonians of ¢ vanish at origin.

3. The last two conditions state that the Kéhler metric and form are non-vanishing between
the elements of ¢. Since the Poisson brackets of ¢ Hamiltonians are Hamiltonians of h, the
only possibility is that {¢,¢} Poisson brackets reduce to a non-vanishing U(1) Hamiltonian
at the origin or that the bracket at the origin is due to the symplectic central extension. The
requirement that all Hamiltonians vanish at origin is very attractive aesthetically and forces to
interpret {t, ¢} brackets at origin as being due to a symplectic central extension. For instance,
for S? the requirement that Hamiltonians vanish at origin would mean the replacement of the
Hamiltonian H = cos(f) representing a rotation around z-axis with Hs = cos(f) — 1 so that
the Poisson bracket of the generators H; and Hy can be interpreted as a central extension
term.

4. The conditions for the Hamiltonians of u(2) sub-algebra state that their variations with
respect to ¢g vanish at origin. Thus u(2) Hamiltonians have extremum value at origin.

5. Also the Kéhler function of C' P, has extremum at the origin. This suggests that in the case of
the WCW the counterpart of the origin corresponds to the maximum of the Kéhler function.

Cartan algebra decomposition at the level of WCW

The discussion of the properties of C' P, Kéhler metric at origin provides valuable guide lines in an
attempt to understand what happens at the level of WCW. The use of the half bracket for WCW
Hamiltonians in turn allows to calculate the matrix elements of the WCW metric and Kéahler form
explicitly in terms of the magnetic or electric flux Hamiltonians.

The earlier construction was rather tricky and formula-rich and not very convincing physically.
Cartan decomposition had to be assigned with something and in lack of anything better it was
assigned with Super Virasoro algebra, which indeed allows this kind of decompositions but without
any strong physical justification. The realization that super-symplectic and super Kac-Moody
symmetries define coset construction at the level of basic quantum TGD. Contrary to the original
belief, this construction does not provide a realization of Equivalence Principle at quantum level.
The proper realization of EP at quantum level seems to be based on the identification of classical
Noether charges in Cartan algebra with the eigenvalues of their quantum counterparts assignable
to Kéhler-Dirac action. At classical level EP follows at GRT limit obtained by lumping many-
sheeted space-time to M* with effective metric satisfying Einstein’s equations as a reflection of the
underlying Poincare invariance.

It must be however emphasized that holography implying effective 2-dimensionality of 3-surfaces
in some length scale resolution is absolutely essential for this construction since it allows to effec-
tively reduce Kac-Moody generators associated with Xl?’ to X2 = Xl?’ N6M3 x CP,. In the similar
manner super-symplectic generators can be dimensionally reduced to X2. Number theoretical
compactification forces the dimensional reduction and the known extremals are consistent with
it [K5] . The construction of WCW spinor structure and metric in terms of the second quantized
spinor fields [K9] relies to this picture as also the recent view about M-matrix [K12] .

In this framework the coset space decomposition becomes trivial.

1. The algebra g is labeled by color quantum numbers of C'P, Hamiltonians and by the label
(m,n, k) labeling the function basis of the light cone boundary. Also a localization with
respect to X? is needed. This is a new element as compared to the original view.

2. Super Kac-Moody algebra is labeled by color octet Hamiltonians and function basis of X?2.
Since Lie-algebra action does not lead out of irreps, this means that Cartan algebra decom-
position is satisfied.
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3.8.7 Comparison with loop groups

It is useful to compare the recent approach to the geometrization of the loop groups consisting
of maps from circle to Lie group G [A37] , which served as the inspirer of the WCW geometry
approach but later turned out to not apply as such in TGD framework.

In the case of loop groups the tangent space T' corresponds to the local Lie-algebra T'(k, A) =
exp(ikg)Ty, where T4 generates the finite-dimensional Lie-algebra g and ¢ denotes the angle
variable of circle; k is integer. The complexification of the tangent space corresponds to the
decomposition

T={X(k>0A)}&{X(k<0A}e{X(k=0,A)}=T,aT_&T)

of the tangent space. Metric corresponds to the central extension of the loop algebra to Kac Moody
algebra and the Kéhler form is given by

J(X(k‘l < O,A),X(kg > O,B)) = kg(s(k/’l + k’g)(;(A,B) .

In present case the finite dimensional Lie algebra g is replaced with the Lie-algebra of the symplectic
transformations of 5Mjl_ x C' Py centrally extended using symplectic extension. The scalar function
basis on circle is replaced with the function basis on an interval of length Arj; with periodic
boundary conditions; effectively one has circle also now.

The basic difference is that one can consider two kinds of central extensions now.

1. Central extension is most naturally induced by the natural central extension ({p,q} = 1)
defined by Poisson bracket. This extension is anti-symmetric with respect to the generators
of the symplectic group: in the case of the Kac Moody central extension it is symmetric
with respect to the group G. The symplectic transformations of C'P, might correspond to
non-zero modes also because they are not exact symmetries of Kéhler action. The situation is
however rather delicate since k = 0 light cone harmonic has a diverging norm due to the radial
integration unless one poses both lower and upper radial cutoffs although the matrix elements
would be still well defined for typical 3-surfaces. For Kac Moody group U(1) transformations
correspond to the zero modes. Light cone function algebra can be regarded as a local U(1)
algebra defining central extension in the case that only CP, symplectic transformations
local with respect to 6Mjl_ act as isometries: for Kac Moody algebra the central extension
corresponds to an ordinary U(1) algebra. In the case that entire light cone symplectic algebra
defines the isometries the central extension reduces to a U(1) central extension.

3.8.8 Symmetric space property implies Ricci flatness and isometric ac-
tion of symplectic transformations

The basic structure of symmetric spaces is summarized by the following structural equations

g=h+t
B Ch, [hilct, [t{cCh. (3.8.18)
In present case the equations imply that all commutators of the Lie-algebra generators of Can(# 0)
having non-vanishing integer valued radial quantum number ns, possess zero norm. This condition
is extremely strong and guarantees isometric action of Can(6M3 x CP,) as well as Ricci flatness
of the WCW metric.

The requirement [t,t] C h and [h,t] C t are satisfied if the generators of the isometry algebra

possess generalized parity P such that the generators in ¢ have parity P = —1 and the generators
belonging to h have parity P = +1. Conformal weight n must somehow define this parity. The
first possibility to come into mind is that odd values of n correspond to P = —1 and even values to

P = 1. Since n is additive in commutation, this would automatically imply h@t decomposition with
the required properties. This assumption looks however somewhat artificial. TGD however forces a
generalization of Super Algebras and N-S and Ramond type algebras can be combined to a larger
algebra containing also Virasoro and Kac Moody generators labeled by half-odd integers. This
suggests strongly that isometry generators are labeled by half integer conformal weight and that
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half-odd integer conformal weight corresponds to parity P = —1 whereas integer conformal weight
corresponds to parity P = 1. Coset space would structure would state conformal invariance of the
theory since super-symplectic generators with integer weight would correspond to zero modes.

Quite generally, the requirement that the metric is invariant under the flow generated by vector
field X leads together with the covariant constancy of the metric to the Killing conditions

X-g¥,2) = 0=9(X,Y],2)+9(Y,[X,Z]) . (3.8.19)

If the commutators of the complexified generators in Can(# 0) have zero norm then the two terms
on the right hand side of Eq. (3.9.19) vanish separately. This is true if the conditions

QS@’B({HAv{HBaHC}}) = 0, (3.8.20)

are satisfied for all triplets of Hamiltonians in Cang. These conditions follow automatically from
the [t,t] C h property and guarantee also Ricci flatness as will be found later.

It must be emphasized that for Kédhler metric defined by purely magnetic fluxes, one cannot pose
the conditions of Eq. (3.9.20) as consistency conditions on the initial values of the time derivatives
of imbedding space coordinates whereas in general case this is possible. If the consistency conditions
are satisfied for a single surface on the orbit of symplectic group then they are satisfied on the
entire orbit. Clearly, isometry and Ricci flatness requirements and the requirement of time reversal
invariance might well force Kahler electric alternative.

3.8.9 How to find Kahler function?

If one has found the expansion of WCW Kéhler form in terms of electric fluxes one can solve also
the Kéahler function from the defining partial differential equations J,; = 0k0jK. The solution is
not unique since the equation allows the symmetry

K — K+ f(z") + f(zF) |

where f is arbitrary holomorphic function of z*. This non-uniqueness is probably eliminated by the
requirement that Kéahler function vanishes for vacuum extremals. This in turn makes in principle
possible to find the maxima of Kéahler function and to perform functional integration perturbatively
around them.

Electric-magnetic duality implies that, apart from conformal factor depending on isometry
invariants, one can solve Kahler metric without any knowledge on the initial values of the time
derivatives of the imbedding space coordinates. Apart from conformal factor the resulting geometry
is purely intrinsic to SCH. The role of Kihler action is only to to define Dif f* invariance and
give the rule how the metric is translated to metric on arbitrary point of C H. The degeneracy of
the preferred extrema also implies that configuration space has multi-sheeted structure analogous
to that encountered in case of Riemann surfaces.

As shown in [K22] , very general assumptions inspired by the light-likeness of Kéhler current
for the known extremals combined with electric-magnetic duality imply the reduction of Kéahler
action for the preferred extremals to Chern-Simons terms at the ends of CD and at wormhole
throats plus boundary term depending on induced metric so that one has almost topological QFT.

If Dirac determinant equals to the exponent of Kahler action, one might try to construct it
in terms of Kéahler-Dirac operator [K9]. Since Kéhler action reduces to Chern-Simons term the
result should be finite. Kéahler action contains Chern-Simons action at partonic orbits as analog of
boundary term and compensating the Chern-Simons term coming from Kéhler action at partonic
orbits so that only the contributions from the space-like ends of space-time surface remain. Byt
superconformal symmetry Kéahler Dirac action contains also Chern-Simons-Dirac term and the
generalized eigenvalues of C-S-D operator identifiable as virtual four-momenta allow to have non-
trivial fermionic propagator assignable to the boundaries of string world sheets and also define
Dirac determinant as a square root of the product of mass squared eigenvalues.

If the virtual four-momenta are identified as hyper-quaternions, one can define even their prod-
uct to get quaternionion valued determinant actually reducing to real number. Also the product of
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PPy makes sense. If the conjecture that Dirac determinant coincides with the exponent of Kéhler
action for a preferred extremal is correct, the value of the Kéahler coupling strength follows as a
prediction of the theory. The size of causal diamond (CD) induces IR cutoff and the smallest size
for the sup-CDs induces UV cutoff. Hence Dirac determinant involves only a finite number of
eigenvalues of the modified Dirac operator and can thus be an algebraic or even rational number
if eigenvalues have this property.

3.9 General expressions for the symplectic and Kahler forms

One can derive general expressions for symplectic and Kéhler forms as well as Kéhler metric of
WCW. The fact that these expressions involve only first variation of the Kéahler action implies
huge simplification of the basic formulas. Duality hypothesis leads to further simplifications of the
formulas.

3.9.1 Closedness requirement

The fluxes of Kahler magnetic and electric fields for the Hamiltonians of 5Mi x C' P, suggest a gen-
eral representation for the components of the symplectic form of the WCW. The basic requirement
is that Kéahler form satisfies the defining condition

X-J(Y,2)+ J(X,Y],Z)+ J(X,[Y,Z]) = O, (3.9.1)

where X, Y, Z are now vector fields associated with Hamiltonian functions defining WCW coordi-
nates.

3.9.2 Matrix elements of the symplectic form as Poisson brackets

Quite generally, the matrix element of J(X(Ha), X(Hp)) between vector fields X(H4)) and
X(Hp)) defined by the Hamiltonians H4 and Hp of (5Mj4r x CP, isometries is expressible as
Poisson bracket

JAB = J(X(Hp),X(Hp))={Ha, Hp} . (3.9.2)

JAB denotes contravariant components of the symplectic form in coordinates given by a subset
of Hamiltonians. The magnetic flux Hamiltonians Q%7 (H 1) of Eq. 4.4.1 provide an explicit
representation for the Hamiltonians at the level of WCW so that the components of the symplectic
form of the WCW are expressible as classical charges for the Poisson brackets of the Hamiltonians
of the light cone boundary:

J(X(Ha),X(Hp)) = Qu’({Ha,Hp}) .
(3.9.3)

Recall that the superscript «, 3 refers the coefficients of J and |J| in the superposition of these
Kihler magnetic fluxes. Note that Q%# contains unspecified conformal factor depending on sym-
plectic invariants characterizing Y3 and is unspecified superposition of signed and unsigned mag-
netic fluxes.

This representation does not carry information about the tangent space of space-time surface
at the partonic 2-surface, which motivates the proposal that also electric fluxes are present and
proportional to magnetic fluxes with a factor K, which is symplectic invariant so that commutators
of flux Hamiltonians come out correctly. This would give

QuP(Ha)em = QP(Ha)+Qu’(Ha)=(1+K)Qu (Ha) . (3.9.4)

Since Kéhler form relates to the standard field tensor by a factor e/fi, flux Hamiltonians are
dimensionless so that commutators do not involve . The commutators would come as
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Qe ({Ha, Hp}) — (1+ K)Q({Ha, Hp}) (3.9.5)

The factor 1 + K plays the same role as Planck constant in the commutators.

WCW Hamiltonians vanish for the extrema of the Kéhler function as variational derivatives
of the Kéahler action. Hence Hamiltonians are good candidates for the coordinates appearing as
coordinates in the perturbative functional integral around extrema (with maxima giving dominat-
ing contribution). It is clear that WCW coordinates around a given extremum include only those
Hamiltonians, which vanish at extremum (that is those Hamiltonians which span the tangent space
of G/H) In Darboux coordinates the Poisson brackets reduce to the symplectic form

{PI,QJ} JIJ:JI6I,J )
Jo= 1. (3.9.6)

It is not clear whether Darboux coordinates with J; = 1 are possible in the recent case: probably
the unit matrix on right hand side of the defining equation is replaced with a diagonal matrix
depending on symplectic invariants so that one has J; # 1. The integration measure is given by the
symplectic volume element given by the determinant of the matrix defined by the Poisson brackets
of the Hamiltonians appearing as coordinates. The value of the symplectic volume element is given
by the matrix formed by the Poisson brackets of the Hamiltonians and reduces to the product

Vol =[] /1
I

in generalized Darboux coordinates.
Kéhler potential (that is gauge potential associated with Kéahler form) can be written in Dar-
boux coordinates as

A = > JPdQ" . (3.9.7)
I

3.9.3 General expressions for Kihler form, Kahler metric and Kahler
function

The expressions of Kahler form and Kéahler metric in complex coordinates can obtained by trans-
forming the contravariant form of the symplectic form from symplectic coordinates provided by
Hamiltonians to complex coordinates:

=iG?? = OgaZ'OysZ7JAB | (3.9.8)
where J4P is given by the classical Kahler charge for the light cone Hamiltonian {H#, H®}. Com-
plex coordinates correspond to linear coordinates of the complexified Lie-algebra providing expo-
nentiation of the isometry algebra via exponential mapping. What one must know is the precise
relationship between allowed complex coordinates and Hamiltonian coordinates: this relationship
is in principle calculable. In Darboux coordinates the expressions become even simpler:

JZiZJ

JEZ =GP = N (1) 0pi 201 27— 0gi Z'0p:1 Z7) (3.9.9)
T
Kahler function can be formally integrated from the relationship

Ay = 05K
Azi = —idzK . (3.9.10)

holding true in complex coordinates. Kahler function is obtained formally as integral

zZ
K = /(AzidzhAZidZi). (3.9.11)
0
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3.9.4 Diff(X?) invariance and degeneracy and conformal invariances of
the symplectic form

J(X(Ha), X(Hpg)) defines symplectic form for the coset space G/H only if it is Dif f(X3) degener-
ate. This means that the symplectic form J(X(H4), X (Hp)) vanishes whenever Hamiltonian H 4
or Hp is such that it generates diffeomorphism of the 3-surface X3. If effective 2-dimensionality
holds true, J(X(Ha), X(Hp)) vanishes if Hy or Hp generates two-dimensional diffeomorphism
d(H,) at the surface X2.

One can always write

J(X(Ha), X(Hp)) = X(HA)Q(Hp|X?) .

If Hy generates diffeomorphism, the action of X (H 4) reduces to the action of the vector field X 4
of some X ?2-diffeomorphism. Since Q(Hg|rys) is manifestly invariant under the diffemorphisms of
X2, the result is vanishing:

XAQ(Hp|X?) =0,

so that Dif f? invariance is achieved.

The radial diffeomorphisms possibly generated by the radial Virasoro algebra do not produce
trouble. The change of the flux integrand X under the infinitesimal transformation ry; — 7 +erf;
is given by r1,dX/drys. Replacing ry; with 7" /(—n + 1) as variable, the integrand reduces to
a total divergence dX/du the integral of which vanishes over the closed 2-surface X?. Hence radial
Virasoro generators having zero norm annihilate all matrix elements of the symplectic form. The
induced metric of X? induces a unique conformal structure and since the conformal transformations

of X? can be interpreted as a mere coordinate changes, they leave the flux integrals invariant.

3.9.5 Complexification and explicit form of the metric and Kéahler form

The identification of the Kahler form and K&hler metric in symplectic degrees of freedom follows
trivially from the identification of the symplectic form and definition of complexification. The
requirement that Hamiltonians are eigen states of angular momentum (and possibly Lorentz boost
generator), isospin and hypercharge implies physically natural complexification. In order to fix the
complexification completely one must introduce some convention fixing which states correspond
to 'positive’ frequencies and which to 'negative frequencies’ and which to zero frequencies that is
to decompose the generators of the symplectic algebra to three sets Cany, Can_ and Cang. One
must distinguish between C'ang and zero modes, which are not considered here at all. For instance,
C P, Hamiltonians correspond to zero modes.

The natural complexification relies on the imaginary part of the radial conformal weight whereas
the real part defines the g =t + h decomposition naturally. The wave vector associated with the
radial logarithmic plane wave corresponds to the angular momentum quantum number associated
with a wave in S! in the case of Kac Moody algebra. One can imagine three options.

1. Tt is quite possible that the spectrum of k3 does not contain ky = 0 at all so that the sector
Cang could be empty. This complexification is physically very natural since it is manifestly
invariant under SU(3) and SO(3) defining the preferred spherical coordinates. The choice of
SO(3) is unique if the classical four-momentum associated with the 3-surface is time like so
that there are no problems with Lorentz invariance.

2. If k; = 0 is possible one could have

Cany = {Hp, o jp—k1,ikys k2 > 0},
Can_ = {Hp, , 1, k2 <0} ,
Cang = {Hp o ke =0} . (3.9.12)
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3. If it is possible to ng # 0 for ky = 0, one could define the decomposition as

Cany = {Hp, , ,k2>0 or kg =0,ny >0} ,
Can_ = {Hp, , 1 k2 <0 orky =0,ny <0} ,
C(ln() = {thn,k, k2 = N9 = 0} . (3913)

In this case the complexification is unique and Lorentz invariance guaranteed if one can fix
the SO(2) subgroup uniquely. The quantization axis of angular momentum could be chosen
to be the direction of the classical angular momentum associated with the 3-surface in its
rest system.

The only thing needed to get Kahler form and Kéahler metric is to write the half Poisson bracket
defined by Eq. 3.9.15

Ji(X(Ha), X(Hp)) = 2Im(iQs({Ha,Hp}-+)) ,
Gp(X(Ha),X(Hp)) = 2Re(iQf({Ha,Hp}-1)) . (3.9.14)

Symplectic form, and thus also Kahler form and Kéahler metric, could contain a conformal
factor depending on the isometry invariants characterizing the size and shape of the 3-surface. At
this stage one cannot say much about the functional form of this factor.

3.9.6 Comparison of C'P, Kahler geometry with configuration space ge-
ometry

The explicit discussion of the role of ¢ = t + h decomposition of the tangent space of WCW
provides deep insights to the metric of the symmetric space. There are indeed many questions to
be answered. To what point of WCW (that is 3-surface) the proposed g = ¢ + h decomposition
corresponds to? Can one derive the components of the metric and Kéhler form from the Poisson
brackets of complexified Hamiltonians? Can one characterize the point in question in terms of the
properties of WCW Hamiltonians? Does the central extension of WCW reduce to the symplectic
central extension of the symplectic algebra or can one consider also other options?

Cartan decomposition for C'P,

A good manner to gain understanding is to consider the C'P, metric and Kéahler form at the origin
of complex coordinates for which the sub-algebra h = u(2) defines the Cartan decomposition.

1. g = t + h decomposition depends on the point of the symmetric space in general. In case
of C'P; u(2) sub-algebra transforms as g o u(2) o g~! when the point s is replaced by gsg~*.
This is expected to hold true also in case of WCW (unless it is flat) so that the task is to

identify the point of WCW at which the proposed decomposition holds true.

2. The Killing vector fields of h sub-algebra vanish at the origin of C'P, in complex coordinates.
The corresponding Hamiltonians need not vanish but their Poisson brackets must vanish. It
is possible to add suitable constants to the Hamiltonians in order to guarantee that they
vanish at origin.

3. It is convenient to introduce complex coordinates and decompose isometry generators to
holomorphic components J¢ = §** 9y, and j* = j%0;. One can introduce what might be
called half Poisson bracket and half inner product defined as

aEHaJElale
_ jakjkfjbl _ 72(‘717‘75) . (3915)

{Hav Hb}—-i-
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One can express Poisson bracket of Hamiltonians and the inner product of the corresponding
Killing vector fields in terms of real and imaginary parts of the half Poisson bracket:

{H*,H"} = 2Im (i{H", H"}_}) ,
(5%, 7% 2Re (i(j$,3%)) = 2Re (i{H*, H*}_) . (3.9.16)

What this means that Hamiltonians and their half brackets code all information about metric
and Kahler form. Obviously this is of utmost importance in the case of the WCW metric
whose symplectic structure and central extension are derived from those of C'Ps.

Consider now the properties of the metric and Kéahler form at the origin.

1. The relations satisfied by the half Poisson brackets can be written symbolically as

{h’h}—-i- =0,
Re(i{h,t}_2) =0 , Im(i{h.t}_4)=0 (3.9.17)

Re(i{t,t_) £0 , Im(i{t.t}_4)#0 .

2. The first two conditions state that h vector fields have vanishing inner products at the
origin. The first condition states also that the Hamiltonians for the commutator algebra
[h,h] = SU(2) vanish at origin whereas the Hamiltonian for U(1) algebra corresponding
to the color hyper charge need not vanish although it can be made vanishing. The third
condition implies that the Hamiltonians of ¢ vanish at origin.

3. The last two conditions state that the Kéahler metric and form are non-vanishing between
the elements of t. Since the Poisson brackets of ¢ Hamiltonians are Hamiltonians of h, the
only possibility is that {¢,¢} Poisson brackets reduce to a non-vanishing U(1) Hamiltonian
at the origin or that the bracket at the origin is due to the symplectic central extension. The
requirement that all Hamiltonians vanish at origin is very attractive aesthetically and forces to
interpret {t, ¢} brackets at origin as being due to a symplectic central extension. For instance,
for S? the requirement that Hamiltonians vanish at origin would mean the replacement of the
Hamiltonian H = cos(f) representing a rotation around z-axis with Hs = cos(f) — 1 so that
the Poisson bracket of the generators H; and Hy can be interpreted as a central extension
term.

4. The conditions for the Hamiltonians of u(2) sub-algebra state that their variations with
respect to g vanish at origin. Thus u(2) Hamiltonians have extremum value at origin.

5. Also the Kahler function of C'P; has extremum at the origin. This suggests that in the case of
the WCW the counterpart of the origin corresponds to the maximum of the Kéhler function.

Cartan algebra decomposition at the level of WCW

The discussion of the properties of C'P, Kéhler metric at origin provides valuable guide lines in an
attempt to understand what happens at the level of WCW. The use of the half bracket for WCW
Hamiltonians in turn allows to calculate the matrix elements of the WCW metric and Kahler form
explicitly in terms of the magnetic or electric flux Hamiltonians.

The earlier construction was rather tricky and formula-rich and not very convincing physically.
Cartan decomposition had to be assigned with something and in lack of anything better it was
assigned with Super Virasoro algebra, which indeed allows this kind of decompositions but without
any strong physical justification.
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It must be however emphasized that holography implying effective 2-dimensionality of 3-surfaces
in some length scale resolution is absolutely essential for this construction since it allows to effec-
tively reduce Kac-Moody generators associated with X? to X? = X? NdM{ x CP,. In the similar
manner super-symplectic generators can be dimensionally reduced to X2. Number theoretical
compactification forces the dimensional reduction and the known extremals are consistent with
it [K5] . The construction of WCW spinor structure and metric in terms of the second quantized
spinor fields [K9] relies to this picture as also the recent view about M-matrix [K12] .

In this framework the coset space decomposition becomes trivial.

1. The algebra g is labeled by color quantum numbers of C'P, Hamiltonians and by the label
(m,n, k) labeling the function basis of the light cone boundary. Also a localization with
respect to X? is needed. This is a new element as compared to the original view.

2. Super Kac-Moody algebra is labeled by color octet Hamiltonians and function basis of X?2.
Since Lie-algebra action does not lead out of irreps, this means that Cartan algebra decom-
position is satisfied.

3.9.7 Comparison with loop groups

It is useful to compare the recent approach to the geometrization of the loop groups consisting
of maps from circle to Lie group G [A37] , which served as the inspirer of the WCW geometry
approach but later turned out to not apply as such in TGD framework.

In the case of loop groups the tangent space T' corresponds to the local Lie-algebra T'(k, A) =
exp(ikg)Ty, where T4 generates the finite-dimensional Lie-algebra g and ¢ denotes the angle
variable of circle; k is integer. The complexification of the tangent space corresponds to the
decomposition

T={X(k>0A)}&{X(k<0A}e{X(k=0,A)}=T,aT_&T)

of the tangent space. Metric corresponds to the central extension of the loop algebra to Kac Moody
algebra and the Kéahler form is given by

J(X(kil < O,A),X(k'g > O,B)) = k‘gé(k‘l + k‘g)(S(A,B) .

In present case the finite dimensional Lie algebra g is replaced with the Lie-algebra of the symplectic
transformations of (5Mj‘; x C Py centrally extended using symplectic extension. The scalar function
basis on circle is replaced with the function basis on an interval of length Arj, with periodic
boundary conditions; effectively one has circle also now.

The basic difference is that one can consider two kinds of central extensions now.

1. Central extension is most naturally induced by the natural central extension ({p,q} = 1)
defined by Poisson bracket. This extension is anti-symmetric with respect to the generators
of the symplectic group: in the case of the Kac Moody central extension it is symmetric
with respect to the group G. The symplectic transformations of C'P, might correspond to
non-zero modes also because they are not exact symmetries of Kéhler action. The situation is
however rather delicate since k = 0 light cone harmonic has a diverging norm due to the radial
integration unless one poses both lower and upper radial cutoffs although the matrix elements
would be still well defined for typical 3-surfaces. For Kac Moody group U(1) transformations
correspond to the zero modes. Light cone function algebra can be regarded as a local U(1)
algebra defining central extension in the case that only CP, symplectic transformations
local with respect to (5Mj4r act as isometries: for Kac Moody algebra the central extension
corresponds to an ordinary U(1) algebra. In the case that entire light cone symplectic algebra
defines the isometries the central extension reduces to a U(1) central extension.

3.9.8 Symmetric space property implies Ricci flatness and isometric ac-
tion of symplectic transformations

The basic structure of symmetric spaces is summarized by the following structural equations
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g=h+t,

[h,h| Ch , [ht]Ct, [t Ch . (3.9.18)

In present case the equations imply that all commutators of the Lie-algebra generators of Can(# 0)
having non-vanishing integer valued radial quantum number no, possess zero norm. This condition
is extremely strong and guarantees isometric action of Can(dMi x CPy) as well as Ricci flatness
of the WCW metric.

The requirement [t,t] C h and [h,t] C t are satisfied if the generators of the isometry algebra

possess generalized parity P such that the generators in ¢ have parity P = —1 and the generators
belonging to h have parity P = +1. Conformal weight n must somehow define this parity. The
first possibility to come into mind is that odd values of n correspond to P = —1 and even values to

P = 1. Since n is additive in commutation, this would automatically imply h@t decomposition with
the required properties. This assumption looks however somewhat artificial. TGD however forces a
generalization of Super Algebras and N-S and Ramond type algebras can be combined to a larger
algebra containing also Virasoro and Kac Moody generators labeled by half-odd integers. This
suggests strongly that isometry generators are labeled by half integer conformal weight and that
half-odd integer conformal weight corresponds to parity P = —1 whereas integer conformal weight
corresponds to parity P = 1. Coset space would structure would state conformal invariance of the
theory since super-symplectic generators with integer weight would correspond to zero modes.

Quite generally, the requirement that the metric is invariant under the flow generated by vector
field X leads together with the covariant constancy of the metric to the Killing conditions

X-g(v.2) = 0=g(X,Y].2)+g(V:[X,Z]) . (3.9.19)

If the commutators of the complexified generators in Can(# 0) have zero norm then the two terms
on the right hand side of Eq. (3.9.19) vanish separately. This is true if the conditions

Qg;ﬁ({HA7{HB7HC}}) = 0, (3920)

are satisfied for all triplets of Hamiltonians in Cang. These conditions follow automatically from
the [t,t] C h property and guarantee also Ricci flatness as will be found later.

It must be emphasized that for Kéhler metric defined by purely magnetic fluxes, one cannot pose
the conditions of Eq. (3.9.20) as consistency conditions on the initial values of the time derivatives
of imbedding space coordinates whereas in general case this is possible. If the consistency conditions
are satisfied for a single surface on the orbit of symplectic group then they are satisfied on the
entire orbit. Clearly, isometry and Ricci flatness requirements and the requirement of time reversal
invariance might well force Kahler electric alternative.

3.9.9 How to find Kahler function?

If one has found the expansion of WCW Kahler form in terms of electric fluxes one can solve also
the Kahler function from the defining partial differential equations J,; = 0kd;K. The solution is
not unique since the equation allows the symmetry

K= K+ f(z")+ f(zF) |

where f is arbitrary holomorphic function of z¥. This non-uniqueness is probably eliminated by the
requirement that Kahler function vanishes for vacuum extremals. This in turn makes in principle
possible to find the maxima of Kéhler function and to perform functional integration perturbatively
around them.

Electric-magnetic duality implies that, apart from conformal factor depending on isometry
invariants, one can solve Kéahler metric without any knowledge on the initial values of the time
derivatives of the imbedding space coordinates. Apart from conformal factor the resulting geometry
is purely intrinsic to 6CH. The role of Kihler action is only to to define Diff* invariance and
give the rule how the metric is translated to metric on arbitrary point of CH. The degeneracy of
the preferred extrema also implies that configuration space has multi-sheeted structure analogous
to that encountered in case of Riemann surfaces.
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1. As shown in [K22] , very general assumptions inspired by the light-likeness of Kéahler current
for the known extremals combined with electric-magnetic duality imply the reduction of
Kahler action for the preferred extremals to Chern-Simons terms at the ends of CD and at
wormhole throats plus boundary term depending on induced metric so that one has almost
topological QFT.

2. In order to obtain non-trivial fermion propagator one must add to Kéhler-Dirac action Chern-
Simons Dirac term located at partonic orbits at which the signature of the induced metric
changes. The modes of induced spinor field can be required to be generalized eigenmodes
of C-S-D operator with generalized eigenvalue p*~, with p¥ identified as virtual momentum
so that massless Dirac propagator is obtained. By super-symmetry one must add to Kahler
action Chern-Simons term located at partonic orbits and this term must cancel the Chern-
Simons term coming from Kéahler action by weak form of electric-magnetic duality so that
only the Chern-Simons terms associated with space-like ends of the space-time surface remain.
These terms reduce to Chern-Simons terms only if one poses weak form of electric magnetic
duality also here. This is not necessary.

3. The quantum numbers characterizing zero energy states couple directly to space-time geome-
try via the measurement interaction terms in Kéhler action expressing the equality of classical
conserved charges in Cartan algebra with their quantal counterparts for space-time surfaces
in quantum superposition. This makes sense if classical charges parametrize zero modes.
The localization in zero modes in state function reduction would be the WCW counterpart
of state function collapse.

Also a promising concrete construction recipe for Kahler function is in terms of the modified
Dirac operator [K9]. The modes of Kéahler-Dirac operator (modified Dirac operator) are localized
at string world sheets and are holomorphic spinors. K-D operator annihilates these modes so
that Dirac determinant must be assigned with the Chern-Simons Dirac term associated with the
light-like partonic orbits with vanishing metric determinant g4. Spinor modes at partonic orbits
are assumed to be generalized eigen modes of C-S-D operator with eigenvalues ip*~;, with p*
interpreted as virtual momentum of the fermion propagating along lined defined by the string world
sheet boundary. Therefore C-S-D term acts effectively as massless Dirac action in perturbation
theory.

The spectrum of p* is determined by the boundary conditions for C-S-D operator at the ends
of CD and periodic boundary conditions is one natural possibility. As in massless QFTs Dirac
determinant could be identified as a square root of the product of mass squared eigenvalues p?. If
the spectrum is unbounded, a regularization must be used. Finite measurement resolution means
UV and IR cutoffs and would make Dirac determinant finite. Finite IR resolution would be due to
the fact that only space-time surfaces within CD and thus having finite size scale are considered.
UV resolution would be due to the lower limit on the size of sub-CDs.

One can however define Dirac determinant directly as the product of the generalized eigenvalues
PPy or as product of hyper-quaternions defined by p*. By symmetry arguments the outcome must
be real.

The full Dirac determinant would be product of Dirac determinants associated with various
string world sheets. Needless to say that this is an enormous calculational advantage. If Dirac
determinant identified in this manner reduces to exponent of Kéhler action for preferred extremal
this definition of Dirac determinant should give exponent of Kéhler function reducing by weak form
of electric-magnetic duality to exponent of Chern-Simons terms associated with the space-like ends
of the space-time surface. Euclidian and Minkowskian regions would give contributions different
by a phase factor /—1. The reduction of determinant to exponent of Chern-Simons terms would
guarantee its finiteness.

3.10 Consistency conditions on metric

In this section various consistency conditions on the configuration space metric are discussed. In
particular, it will be found that the conditions guaranteeing the existence of Riemann connection
in the set of all(!) vector fields (including zero norm vector fields) gives very strong constraints
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on the general form of the metric and that these constraints are indeed satisfied for the proposed
metric.

3.10.1 Consistency conditions on Riemann connection

To study the consequences of the consistency conditions, it is most convenient to consider matrix
elements of the metric in the basis formed by the isometry generators themselves. The consistency
conditions state the covariant constancy of the metric tensor

V29(X,Y) = g(VzX,Y)+g(X,V,Y)=2Z g(X,Y) . (3.10.1)

Z-g(X,Y) vanishes, when Z generates isometries so that conditions state the covariant constancy
of the matrix elements in this case. It must be emphasized that the ill defined-ness of the inner
products of form g(VzX,Y) is just the reason for requiring infinite-dimensional isometry group.
The point is that VzX need not to belong to the Hilbert space spanned by the tangent vector
fields since the terms of type Zg(X,Y) do not necessarily exist mathematically [A37] . The
elegant solution to the problem is that all tangent space vector fields act as isometries so that
these quantities vanish identically.

The conditions of Eq. (3.10.1) can be written explicitly by using the general expression for the
covariant derivative

4 g(AdsX — AdyX — AdZ,Y)])2 . (3.10.2)

What happens is that the terms depending on the derivatives of the matrix elements (terms of
type Zg(X,Y) ) cancel each other (these terms vanish for the metric invariant under isometries),
and one obtains the following consistency conditions

9(AdzX — AdyX — Ad5 Z,Y) + g(X, AdgY — Ady,Y — AdeZ) =0 . (3.10.3)

Using the explicit representations of Adz X and Ad xz X in terms of structure constants

AdzX = [Z,X]=CzxuU .
AdyX = Cruve(X,V)g (U W)W =g(X,[Z,U))g " (UW)W . (3.10.4)

where the summation over repeated ”indices” is performed, one finds that consistency conditions
are identically satisfied provided the generators X and Y have a non-vanishing norm. The reason
is that the contributions coming from VzX and VzY cancel each other.

When one of the generators, say X, appearing in the inner product has a vanishing norm so
that one has g(X,Y’) = 0, for any generator Y, situation changes! The contribution of VzY term
to the consistency conditions drops away and using Egs. (3.10.3) and (3.10.4) one obtains the
following consistency conditions

CZ,X:Ug(Ua Y) —|—CX7y;Ug(U, Z) = -X g(Z, Y) . (3105)
Note that summation over U is carried out. If X is isometry generator (this need not be the case
always) the condition reduces to a simpler form:

CXyZ:Ug(UaY)+OX,Y:Ug(ZaU) = g([XaZ}Y)+g(Z7 [XaY]):O . (3106)
These conditions have nice geometric interpretation. If the matrix elements are regarded as ordi-

nary Hilbert space products between the isometry generators the conditions state that the metric
defining the inner product behaves as a scalar in the general case.
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3.10.2 Consistency conditions for the radial Virasoro algebra

The action of the radial Virasoro in nontrivial manner in the zero modes. Therefore isometry
interpretation is excluded and consistency conditions do not make sense in this case. One can
however consider the possibility that metric is invariant or suffers only an overall scaling under
the action of the radial scaling generated by Lo = rasd/dras. Since the radial integration measure
is scaling invariant and only powers of r3s/r¢ appear in Hamiltonians, the effect of the scaling
rar — Arys on the matrix elements of the metric is a scaling by A¥¢**). One can interpret this by
saying that scaling changes the values of zero modes and hence leads outside the symmetric space
in question.

Invariance of reduced matrix element obtained by dividing away the powers of the scaling factor
is achieved if the metric contains the conformal factor

1 T

5= adG

) (3.10.7)

where r; are the extrema of 75, interpreted as height function of X? and f is a priori arbitrary
positive definite function. Since the presence of f presumably gives rise to renormalization cor-
rections depending on the size and shape of 3-surface by scaling the propagator defined by the
contravariant metric, the dependence on the ratios r;/r; should be slow, logarithmic dependence.
Also the dependence on the Fourier components of the solid angles (r3;) associated with the
rar = constant sections is possible.

3.10.3 Explicit conditions for the isometry invariance

The identification of the Lie-algebra of isometry generators has been proposed but cannot provide
any proof for the existence of the infinite parameter symmetry group at this stage. What one can
do at this stage is to formulate explicitly the conditions guaranteeing isometry invariance of the
metric and try to see whether there are any hopes that these conditions are satisfied. It has been
already found that the expression of the metric reduces for light cone alternative to the sum of
two boundary terms coming from infinite future and from the boundary of the light cone. If the
contribution from infinitely distant future vanishes, as one might expect, then only the contribution
from the boundary of the light cone remains.

A tedious but straightforward evaluation of the second variation (see Appendix of the book)
for Kéhler action implies the following form for the second variation of the Kéahler action

528 = /a::OI;Lféthgéhl, (3.10.8)

where the tensor I 1?16 is defined as partial derivatives of the Kahler Lagrangian with respect to the
derivatives 9, h*

P = OO, Lut - (3.10.9)

If the upper limit @ = /(m°)2 —r2, = oo in the substitution vanishes then one can calculate
second variation and therefore metric from the knowledge of the time derivatives d,h* and 9,,6h*
on the boundary of the light cone only.

Kéhler metric can be identified as the (1,1) part of the second variation. This means that one
can express the deformation as an element of the isometry algebra plus a arbitrary deformation in
radial direction of the light cone boundary interpretable as conformal transformation of the light
cone boundary. Radial contributions to the second variation are dropped (by definition of Kéahler
metric) and what remains is essentially a deformation in S? degrees of freedom.

The left invariance of the metric under the deformations of the isometry algebra implies an
infinite number of conditions of the form

JCg(JA,JB) = 0, (3.10.10)
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where J4, JB and J¢ denote the generators of the isometry group. These conditions ought to fix
completely the time derivatives of the coordinates h* for each 3-surface at light cone boundary
and therefore in principle the whole minimizing four-surface provided the initial value problem
associated with the Kéhler action possesses a unique solution. What is nice that the requirement
of isometry invariance in principle would provides solution to the problem of finding preferred
extremals of the Kéhler action.

These conditions, when written explicitly give infinite number of conditions for the time deriva-
tive of the generator J¢ (we assume for a moment that C'is held fixed and let A and B run) at the
boundary of the light cone. Time derivatives are in principle determined also by the requirement
that deformed surface corresponds to an absolute minimum of the Kéahler action. The basis of 6 H
scalar functions respecting color and rotational symmetries is the most promising one.

3.10.4 Direct consistency checks

If duality holds true, the most general form of WCW metric is defined by the fluxes Q%7 where
«a and [ are the coefficients of signed and unsigned magnetic fluxes. Present is also a confor-
mal factor depending on those zero modes, which do not appear in the symplectic form and
which characterize the size and shape of the 3-surface. [t,t] C h property implying Ricci flat-
ness and isometry property of symplectic transformations, requires the vanishing of the fluxes
Q%P ({H A mro, {Hp nro, Hopzo}}) associated with double commutators and poses strong consis-
tency conditions on the metric. If n labelling symplectic generators has half integer values then the
conditions simply state conformal invariance: generators labelled by integers have vanishing norm
whereas half-odd integers correspond to non-vanishing norm. Isometry invariance gives additional
conditions on fluxes Q%7. Lorentz invariance strengthens these conditions further. It could be
that these conditions fix the initial values of the imbedding space coordinates completely.






Chapter 4

Configuration Space Spinor
Structure

4.1 Introduction

Quantum TGD should be reducible to the classical spinor geometry of the configuration space
(?world of classical worlds”, WCW). In particular, physical states should correspond to the modes
of the configuration space spinor fields. The immediate consequence is that configuration space
spinor fields cannot, as one might naively expect, be carriers of a definite spin and unit fermion
number. Concerning the construction of the WCW spinor structure there are some important
clues.

4.1.1 Geometrization of fermionic statistics in terms of WCW spinor
structure

The great vision has been that the second quantization of the induced spinor fields can be under-
stood geometrically in terms of the WCW spinor structure in the sense that the anti-commutation
relations for WCW gamma matrices require anti-commutation relations for the oscillator operators
for free second quantized induced spinor fields.

1. One must identify the counterparts of second quantized fermion fields as objects closely
related to the configuration space spinor structure. [B27] has as its basic field the anti-
commuting field T'*(z), whose Fourier components are analogous to the gamma matrices
of the configuration space and which behaves like a spin 3/2 fermionic field rather than a
vector field. This suggests that the are analogous to spin 3/2 fields and therefore expressible
in terms of the fermionic oscillator operators so that their naturally derives from the anti-
commutativity of the fermionic oscillator operators.

As a consequence, WCW spinor fields can have arbitrary fermion number and there would
be hopes of describing the whole physics in terms of WCW spinor field. Clearly, fermionic
oscillator operators would act in degrees of freedom analogous to the spin degrees of freedom
of the ordinary spinor and bosonic oscillator operators would act in degrees of freedom
analogous to the ’orbital’ degrees of freedom of the ordinary spinor field.

2. The classical theory for the bosonic fields is an essential part of the WCW geometry. It would
be very nice if the classical theory for the spinor fields would be contained in the definition
of the WCW spinor structure somehow. The properties of the associated with the induced
spinor structure are indeed very physical. The modified massless Dirac equation for the
induced spinors predicts a separate conservation of baryon and lepton numbers. Contrary
to the long held belief it seems that covariantly constant right handed neutrino does not
generate . The differences between quarks and leptons result from the different couplings to
the C'P, Kéahler potential. In fact, these properties are shared by the solutions of massless
Dirac equation of the imbedding space.

137
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3. Since TGD should have a close relationship to the ordinary quantum field theories it would
be highly desirable that the second quantized free induced spinor field would somehow appear
in the definition of the WCW geometry. This is indeed true if the complexified WCW gamma
matrices are linearly related to the oscillator operators associated with the second quantized
induced spinor field on the space-time surface and its boundaries. There is actually no
deep reason forbidding the gamma matrices of the WCW to be spin half odd-integer objects
whereas in the finite-dimensional case this is not possible in general. In fact, in the finite-
dimensional case the equivalence of the spinorial and vectorial vielbeins forces the spinor
and vector representations of the vielbein group SO(D) to have same dimension and this
is possible for D = 8-dimensional Euclidian space only. This coincidence might explain
the success of 10-dimensional super string models for which the physical degrees of freedom
effectively correspond to an 8-dimensional Euclidian space.

4. Tt took a long time to realize that the ordinary definition of the gamma matrix algebra in
terms of the anti-commutators {y4,vp} = 2945 must in TGD context be replaced with

{'VLa v} =1iJaB ,

where J4p denotes the matrix elements of the Kéhler form of the WCW. The presence of the
Hermitian conjugation is necessary because WCW gamma matrices carry fermion number.
This definition is numerically equivalent with the standard one in the complex coordinates.
The realization of this delicacy is necessary in order to understand how the square of the
WCW Dirac operator comes out correctly.

5. TGD as a generalized number theory vision leads to the understanding of how the second
quantization of the induced spinor fields should be carried out and space-time conformal
symmetries allow to explicitly solve the Dirac equation associated with the modified Dirac
action in the interior and at the 3-D light like causal determinants. An essentially new element
is the notion of number theoretic braid forced by the fact that the modified Dirac operator
allows only finite number of generalized eigen modes so that the number of fermionic oscillator
operators is finite. As a consequence, anti-commutation relations can be satisfied only for a
finite set of points defined by the number theoretic braid, which is uniquely identifiable. The
interpretation is in terms of finite measurement resolution. The finite Clifford algebra spanned
by the fermionic oscillator operators is interpreted as the factor space M /N of infinite hyper-
finite factors of type II; defined by WCW Clifford algebra A and included Clifford algebra
M C N interpreted as the characterizer of the finite measurement resolution. Note that the
finite number of eigenvalues guarantees that Dirac determinant identified as the exponent of
Kahler function is finite. Finite number of eigenvalues is also essential for number theoretic
universality.

4.1.2 Modified Dirac equation for induced classical spinor fields

It is now clear that Kahler-Dirac action with measurement interaction terms as boundary term is
the unique choice for the Dirac action.
There are several approaches for solving the modified Dirac (or Kéhler-Dirac) equation.

1. The most promising approach assumes that the solutions are restricted on 2-D stringy world
sheets and/or partonic 2-surfaces. This strange looking view is a rather natural consequence
of both strong form of holography and of number theoretic vision, and also follows from
the notion of finite measurement resolution having discretization at partonic 2-surfaces as a
geometric correlate. Furthermore, the conditions stating that electric charge is well-defined
for preferred extremals forces the localization of the modes to 2-D surfaces in the generic
case. This also resolves the interpretational problems related to possibility of strong parity
breaking effects since induce W fields and possibly also Z° field above weak scale, vahish at
these surfaces.

2. One expects that stringy approach based on 4-D generalization of conformal invariance or
its 2-D variant at 2-D preferred surfaces should also allow to understand the modified Dirac
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equation. Conformal invariance indeed allows to write the solutions explicitly using formulas
similar to encountered in string models. In accordance with the earlier conjecture, all modes
of the modified Dirac operator generate badly broken super-symmetries.

3. Covariantly constant right-handed neutrino certainly defines solutions de-localized inside en-
tire space-time sheet. This need not be the case if right-handed neutrino is not covarianty
constant since the non-vanishing C P, part for the induced gamma matrices mixes it with
left-handed neutrino. For massless extremals (at least) the C'P, part however vanishes and
right-handed neutrino allows also massless holomorphic modes de-localized at entire space-
time surface and the de-localization inside Euclidian region defining the line of generalized
Feynman diagram is a good candidate for the right-handed neutrino generating the least
broken super-symmetry.This super-symmetry seems however to differ from the ordinary one
in that vgr is expected to behave like a passive spectator in the scattering. Also for the
left-handed neutrino solutions localized inside string world sheet the condition that cou-
pling to right-handed neutrino vanishes is guaranteed if gamma matrices are either purely
Minkowskian or C'P, like inside the world sheet.

4.1.3 Identification of WCW gamma matrices as super Hamiltonians

The basic super-algebra corresponds to the fermionic oscillator operators and can be regarded as
a generalization N super algebras by replacing AV with the number of solutions of the modified
Dirac equation which can be infinite. This leads to QFT SUSY limit of TGD different in many
respects crucially from standard SUSYs.

WCW gamma matrices are identified as super generators of super-symplectic and are expressible
in terms of these oscillator operators. In the original proposal super-symplectic and super charges
were assumed to be expressible as integrals over 2-dimensional partonic surfaces X2 and interior
degrees of freedom of X* can be regarded as zero modes representing classical variables in one-one
correspondence with quantal degrees of freedom at X;* as indeed required by quantum measurement
theory.

Quite recently (at the end of 2013) it became clear that one must perform a generalization
analogous to a transition from field theory to string models requiring the replacement of points of
partonic 2-surfaces with stringy curves connecting the points of two partonic 2-surfaces. This does
not mean loss of effective 2-dimensionality implied by strong form of general coordinate invariance
but allows genuine generalization of super-conformal invariance in 4-D context.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
There are concept maps about topics related to the contents of the chapter prepared using CMAP
realized as html files. Links to all CMAP files can be found here [L13]. Another glossary type
representation involving both pdf and html files can be found at http://www.tgdtheory.fi/
tgdglossary.pdf. The topics relevant to this chapter are given by the following list.

e WCW gamma matrices [L41]

e WCW spinor fields [L42]

4.2 WCW spinor structure: general definition

The basic problem in constructing WCW spinor structure is clearly the construction of the explicit
representation for the gamma matrices of WCW. One should be able to identify the space, where
these gamma matrices act as well as the counterparts of the ”free” gamma matrices, in terms of
which the gamma matrices would be representable using generalized vielbein coefficients.

4.2.1 Defining relations for gamma matrices

The ordinary definition of the gamma matrix algebra is in terms of the anti-commutators

{va,7B} =29aB .
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This definition served implicitly also as a basic definition of the gamma matrix algebra in TGD
context until the difficulties related to the understanding of WCW d’Alembertian defined in terms
of the square of the Dirac operator forced to reconsider the definition. If WCW allows Kéhler struc-
ture, the most general definition allows to replace the metric any covariantly constant Hermitian
form. In particular, g4p can be replaced with

{0, T} =iJap . (4.2.1)

where J4p denotes the matrix element of the Kahler form of WCW. The reason is that gamma
matrices carry fermion number and are non-hermitian in all coordinate systems. This definition is
numerically equivalent with the standard one in the complex coordinates but in arbitrary coordi-
nates situation is different since in general coordinates iJy; is a nontrivial positive square root of
gri- The realization of this delicacy is necessary in order to understand how the square of WCW
Dirac operator comes out correctly. Obviously, what one must do is the equivalent of replacing
D? = (I*D},)? with DD with D defined as

D =iJ¥TiDy .

4.2.2 General vielbein representations

There are two ideas, which make the solution of the problem obvious.

1. Since the classical time development in bosonic degrees of freedom (induced gauge fields) is
coded into the geometry of WCW it seems natural to expect that same applies in the case
of the spinor structure. The time development of the induced spinor fields dictated by TGD
counterpart of the massless Dirac action should be coded into the definition of the WCW
spinor structure. This leads to the challenge of defining what classical spinor field means.

2. Since classical scalar field in WCW corresponds to second quantized boson fields of the
imbedding space same correspondence should apply in the case of the fermions, too. The
spinor fields of WCW should correspond to second quantized fermion field of the imbedding
space and the space of the configuration space spinors should be more or less identical with
the Fock space of the second quantized fermion field of imbedding space or X*4(X?). Since
classical spinor fields at space-time surface are obtained by restricting the spinor structure to
the space-time surface, one might consider the possibility that life is really simple: the second
quantized spinor field corresponds to the free spinor field of the imbedding space satisfying
the counterpart of the massless Dirac equation and more or less standard anti-commutation
relations. Unfortunately life is not so simple as the construction of WCW spinor structure
demonstrates: second quantization must be performed for induced spinor fields.

I

-+

is relatively simple to fill in the details once these basic ideas are accepted.

1. The only natural candidate for the second quantized spinor field is just the on X*. Since
this field is free field, one can indeed perform second quantization and construct fermionic
oscillator operator algebra with unique anti-commutation relations. The space of WCW
spinors can be identified as the associated with these oscillator operators. This space depends
on 3-surface and strictly speaking one should speak of the Fock bundle having WCW as its
base space.

2. The gamma matrices of WCW (or rather fermionic Kac Moody generators) are representable
as super positions of the fermionic oscillator algebra generators:

i = Bl
I, = Eja,
iJap = Y ERER (4.2.2)

n
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where E7; are the vielbein coefficients. Induced spinor fields can possess zero modes and
there is no oscillator operators associated with these modes. Since oscillator operators are
spin 1/2 objects, WCW gamma matrices are analogous to spin 3/2 spinor fields (in a very
general sense). Therefore the generalized vielbein and WCW metric is analogous to the pair
of spin 3/2 and spin 2 fields encountered in super gravitation! Notice that the contractions
GA*T, of the complexified gamma matrices with the isometry generators are genuine spin
1/2 objects labeled by the quantum numbers labeling isometry generators. In particular, in
C P, degrees of freedom these fermions are color octets.

3. A further great idea inspired by the symplectic and Kéhler structures of WCW is that
configuration gamma matrices are actually generators of super-symplectic symmetries. This
simplifies enormously the construction allows to deduce explicit formulas for the gamma
matrices.

4.2.3 Inner product for WCW spinor fields

The conjugation operation for WCW spinor s corresponds to the standard ket — bra operation
for the states of the Fock space:

U |0
oo (Y (4.2.3)

The inner product for WCW spinor s at a given point of WCW is just the standard Fock space
inner product, which is unitary.

Uy (XP)Wo(X%) = (Uq|Ty)xs (4.2.4)

WCW inner product for two WCW spinor fields is obtained as the integral of the Fock space inner
product over the whole WCW using the vacuum functional exp(K) as a weight factor

(01| Wy) = /<q:1|x1/2>|xgexp(K)\FGdX3 (4.2.5)

This inner product is obviously unitary. A modified form of the inner product is obtained by
including the factor exzp(K/2) in the definition of the spinor field. In fact, the construction of the
central extension for the isometry algebra leads automatically to the appearance of this factor in
vacuum spinor field.

The inner product differs from the standard inner product for, say, Minkowski space spinors in
that integration is over the entire WCW rather than over a time= constant slice of the WCW. Also
the presence of the vacuum functional makes it different from the finite dimensional inner product.
These are not un-physical features. The point is that (apart from classical non-determinism forcing
to generalized the concept of 3-surface) Diff* invariance dictates the behavior of WCW spinor field
completely: it is determined form its values at the moment of the big bang. Therefore there is no
need to postulate any Dirac equation to determine the behavior and therefore no need to use the
inner product derived from dynamics.

4.2.4 Holonomy group of the vielbein connection

Generalized vielbein allows huge gauge symmetry. An important constraint on physical observables
is that they do not depend at all on the gauge chosen to represent the gamma matrices. This is
indeed achieved using vielbein connection, which is now quadratic in fermionic oscillator operators.
The holonomy group of the vielbein connection is the WCW counterpart of the electro-weak gauge
group and its algebra is expected to have same general structure as the algebra of the WCW
isometries. In particular, the generators of this algebra should be labeled by conformal weights
like the elements of Kac Moody algebras. In present case however conformal weights are complex
as the construction of WCW geometry demonstrates.
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4.2.5 Realization of WCW gamma matrices in terms of super symmetry
generators

In string models super symmetry generators behave effectively as gamma matrices and it is very
tempting to assume that WCW gamma matrices can be regarded as generators of the symplectic
algebra extended to super-symplectic Kac Moody type algebra. The experience with string models
suggests also that radial Virasoro algebra extends to Super Virasoro algebra. There are good
reasons to expect that WCW Dirac operator and its square give automatically a realization of this
algebra. It this is indeed the case, then WCW spinor structure as well as Dirac equation reduces
to mere group theory.

One can actually guess the general form of the super-symplectic algebra. The form is a direct
generalization of the ordinary super Kac Moody algebra. The complexified super generators S4
are identifiable as WCW gamma matrices:

Ty = Sa. (4.2.6)

The anti-commutators {FL, I'p}4 = i2J4 p define a Hermitian matrix, which is proportional to the
Kéhler form of the configuration space rather than metric as usually. Only in complex coordinates
the anti-commutators equal to the metric numerically. This is, apart from the multiplicative
constant n, is expressible as the Poisson bracket of the WCW Hamiltonians H 4 and Hpg. Therefore
one should be able to identify super generators S4(ras) for each values of rp; as the counterparts
of fluxes. The anti-commutators between the super generators S4 and their Hermitian conjugates
should read as

{S4,Sh}+ = iQu(Hap) - (4.2.7)

and should be induced directly from the anti-commutation relations of free second quantized spinor
fields of the imbedding space restricted to the light cone boundary.

The commutation relations between s and super generators follow solely from the transformation
properties of the super generators under symplectic transformations, which are same as for the
Hamiltonians themselves

{HAmaSBTL}— = S[Am7Bn] 5 (428)

and are of the same form as in the case of Super-Kac-Moody algebra.

The task is to derive an explicit representation for the super generators S4 in both cases. For
obvious reason the spinor fields restricted to the 3-surfaces on the light cone boundary 6Mi X CP,
can be used. Leptonic/quark like oscillator operators are used to construct Ramond/NS type
algebra.

What is then the strategy that one should follow?

1. WCW Hamiltonians correspond to either magnetic or electric flux Hamiltonians and the
conjecture is that these representations are equivalent. It turns out that this electric-magnetic
duality generalizes to the level of super charges. It also turns out that quark representation
is the only possible option whereas leptonic super charges super-symmetrize the ordinary
function algebra of the light cone boundary.

2. The simplest option would be that second quantized imbedding space spinors could be used
in the definition of super charges. This turns out to not work and one must second quantize
the induced spinor fields.

3. The task is to identify a super-symmetric variational principle for the induced spinors: ordi-
nary Dirac action does not work. It turns out that in the most plausible scenario the modified
Dirac action varied with respect to both imbedding space coordinates and spinor fields is the
fundamental action principle. The c-number parts of the conserved symplectic charges asso-
ciated with this action give rise to bosonic conserved charges defining WCW Hamiltonians.
The second quantization of the spinor fields reduces to the requirement that super charges and
Hamiltonians generate super-symplectic algebra determining the anti-commutation relations
for the induced spinor fields.



4.2. WCW spinor structure: general definition 143

4.2.6 Central extension as symplectic extension at configuration space
level

The earlier attempts to understand the emergence of central extension of super-symplectic algebra
were based on the notion of symplectic extension. This general view is not given up although it
seems that this abstract approach is not very practical. Symplectic extension emerged originally in
the attempts to construct formal expression for the WCW Dirac equation. The rather obvious idea
was that the Dirac equation reduces to super Virasoro conditions with Super Virasoro generators
involving the Dirac operator of the imbedding space. The basic difficulty was the necessity to
assign to the gamma matrices of the imbedding space fermion number. In the recent formulation
the Dirac operator of H does not appear in in the Super Virasoro conditions so that this problem
disappears.

The proposal that Super Virasoro conditions should replaced with conditions stating that the
commutator of super-symplectic and super Kac-Moody algebras annihilates physical states, looks
rather feasible. One could call these conditions as WCW Dirac equation but at this moment I feel
that this would be just play with words and mask the group theoretical content of these conditions.
In any case, the formulas for the symplectic extension and action of isometry generators on WCW
spinor deserve to be summarized.

Symplectic extension

The Abelian extension of the super-symplectic algebra is obtained by an extremely simple trick.
Replace the ordinary derivatives appearing in the definition of, say spinorial isometry generator,
by the covariant derivatives defined by a coupling to a multiple of the K&hler potential.

i — Dy,
Dy, = 0O +ikAy/2 . (4.2.9)

where Ay denotes Kéhler potential. The reality of the parameter k is dictated by the Hermiticity
requirement and also by the requirement that Abelian extension reduces to the standard form
in Cartan algebra. k is expected to be integer also by the requirement that covariant derivative
corresponds to connection (quantization of magnetic charge).
The commutation relations for the centrally extended generators J4 read:

[(JA, T8 = JWBl Lk Ak B = JAB ik ap (4.2.10)
Since Kéhler form defines symplectic structure in WCW one can express Abelian extension term
as a Poisson bracket of two Hamiltonians

Jap = j¥J P ={HA HP} . (4.2.11)

Notice that Poisson bracket is well defined also when Kéhler form is degenerate.
The extension indeed has acceptable properties:

1. Jacobi-identities reduce to the form

> HWEC = o (4.2.12)

cyclic

and therefore to the Jacobi identities of the original Lie- algebra in Hamiltonian representa-
tion.
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. In the Cartan algebra Abelian extension reduces to a constant term since the Poisson bracket

for two commuting generators must be a multiple of a unit matrix. This feature is clearly
crucial for the non-triviality of the Abelian extension and is encountered already at the level
of ordinary (g, p) Poisson algebra: although the differential operators 9, and 9, commute the
Poisson bracket of the corresponding Hamiltonians p and ¢ is nontrivial: {p, ¢} = 1. Therefore
the extension term commutes with the generators of the Cartan subalgebra. Extension is
also local U(1) extension since Poisson algebra differs from the Lie-algebra of the vector fields
in that it contains constant Hamiltonian (”1” in the commutator), which commutes with all
other Hamiltonians and corresponds to a vanishing vector field.

. For the generators not belonging to Cartan sub-algebra of C H isometries Abelian extension

term is not annihilated by the generators of the original algebra and in this respect the
extension differs from the standard central extension for the loop algebras. It must be
however emphasized that for the super-symplectic algebra generators correspond to products
of 6Mi and C'P, Hamiltonians and this means that generators of say 5Mi—local SU(3)
Cartan algebra are non-commuting and the commutator is completely analogous to central
extension term since it is symmetric with respect to SU(3) generators.

. The proposed method yields a trivial extension in the case of Diff*. The reason is the (four-

dimensional!) Diff degeneracy of the Kéhler form. Abelian extension term is given by the
contraction of the Diff* generators with the Kéhler potential

i It = 0, (4.2.13)

which vanishes identically by the Diff degeneracy of the Kéhler form. Therefore neither
3- or 4-dimensional Diff invariance is not expected to cause any difficulties. Recall that 4-
dimensional Diff degeneracy is what is needed to eliminate time like vibrational excitations
from the spectrum of the theory. By the way, the fact that the loop space metric is not Diff
degenerate makes understandable the emergence of Diff anomalies in string models [B27, B20]

. The extension is trivial also for the other zero norm generators of the tangent space algebra,

in particular for the ks = Im(k) = 0 symplectic generators possible present so that these
generators indeed act as genuine U(1) transformations.

. Concerning the solution of WCW Dirac equation the maximum of K&hler function is expected

to be special, much like origin of Minkowski space and symmetric space property suggests
that the construction of solutions reduces to this point. At this point the generators and
Hamiltonians of the algebra h in the defining Cartan decomposition g = h 4t should vanish.
h corresponds to integer values of k1 = Re(k) for Cartan algebra of super-symplectic algebra
and integer valued conformal weights n for Super Kac-Moody algebra. The algebra reduces
at the maximum to an exceptionally simple form since only central extension contributes
to the metric and Kéahler form. In the ideal case the elements of the metric and Kahler
form could be even diagonal. The degeneracy of the metric might of course pose additional
complications.

Super symplectic action on WCW spinor s

The generators of symplectic transformations are obtained in the spinor representation of the
isometry group of WCW by the following formal construction. Take isometry generator in the
spinor representation and add to the covariant derivative Dy defined by vielbein connection the
coupling to the multiple of the Kahler potential: Dy — Dy + ikAk/2.

T4 = jDp+ D=2
—  JA = jA%(Dy, 4 ikAy/2) + Dyjitskt )2
(4.2.14)
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This induces the required central term to the commutation relations. Introduce complex coor-
dinates and define bosonic creation and annihilation operators as (1,0) and (0,1) parts of the
modified isometry generators

Bl = JA=j%Dy+..,
By = JY=j"%D;+.. .
(4.2.15)

where ”k” refers now to complex coordinates and ”k” to their conjugates.
Fermionic generators are obtained as the contractions of the complexified gamma matrices with
the isometry generators

rly = %1y,
ra = 541 . (4.2.16)

Notice that the bosonic Cartan algebra generators obey standard oscillator algebra commutation
relations and annihilate fermionic Cartan algebra generators. Hermiticity condition holds in the
sense that creation type generators are hermitian conjugates of the annihilation operator type
generators. There are two kinds of representations depending on whether one uses leptonic or
quark like oscillator operators to construct the gammas. These will be assumed to correspond to
Ramond and NS type generators with the radial plane waves being labeled by integer and half odd
integer indices respectively.

The non-vanishing commutators between the Cartan algebra bosonic generators are given by
the matrix elements of the Kéhler form in the basis of formed by the isometry generators

[BY.Bs] = J(G*.i%) = Jap - (4.2.17)

and are isometry invariant quantities. The commutators between local SU(3) generators not
belonging to Cartan algebra are just those of the local gauge algebra with Abelian extension term
added.

The anti-commutators between the fermionic generators are given by the elements of the metric
(as opposed to Kéhler form in the case of bosonic generators) in the basis formed by the isometry
generators

{Tat.Te} = 29(*,5%) =2945 - (4.2.18)

and are invariant under isometries. Numerically the commutators and anti-commutators differ
only the presence of the imaginary unit and the scale factor R relating the metric and Kahler form
to each other (the factor R is same for C'P; metric and Kéhler form).

The commutators between bosonic and fermionic generators are given by

[Ba,I'p] = Tap - (4.2.19)

The presence of vielbein and rotation terms in the representation of the isometry generators is
essential for obtaining these nice commutations relations. The commutators vanish identically for
Cartan algebra generators. From the commutation relations it is clear that Super Kac Moody
algebra structure is directly related to the Kéahler structure of WCW: the anti-commutator of
fermionic generators is proportional to the metric and the commutator of the bosonic generators
is proportional to the Ké&hler form. It is this algebra, which should generate the solutions of the
field equations of the theory.

The vielbein and rotational parts of the bosonic isometry generators are quadratic in the
fermionic oscillator operators and this suggests the interpretation as the fermionic contribution
to the isometry currents. This means that the action of the bosonic generators is essentially non-
perturbative since it creates fermion anti-fermion pairs besides exciting bosonic degrees of freedom.
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4.2.7 WCW C(lifford algebra as a hyper-finite factor of type /1,

The naive expectation is that the trace of the unit matrix associated with the Clifford algebra
spanned by WCW sigma matrices is infinite and thus defines an excellent candidate for a source of
divergences in perturbation theory. This potential source of infinities remained un-noticed until it
became clear that there is a connection with von Neumann algebras [A35] . In fact, for a separable
Hilbert space defines a standard representation for so called [A46] . This guarantees that the trace
of the unit matrix equals to unity and there is no danger about divergences.

Philosophical ideas behind von Neumann algebras

The goal of von Neumann was to generalize the algebra of quantum mechanical observables. The
basic ideas behind the von Neumann algebra are dictated by physics. The algebra elements allow
Hermitian conjugation * and observables correspond to Hermitian operators. Any measurable
function f(A) of operator A belongs to the algebra and one can say that non-commutative measure
theory is in question.

The predictions of quantum theory are expressible in terms of traces of observables. Density
matrix defining expectations of observables in ensemble is the basic example. The highly non-
trivial requirement of von Neumann was that identical a priori probabilities for a detection of
states of infinite state system must make sense. Since quantum mechanical expectation values are
expressible in terms of operator traces, this requires that unit operator has unit trace: tr(Id) = 1.

In the finite-dimensional case it is easy to build observables out of minimal projections to 1-
dimensional eigen spaces of observables. For infinite-dimensional case the probably of projection
to 1-dimensional sub-space vanishes if each state is equally probable. The notion of observable
must thus be modified by excluding 1-dimensional minimal projections, and allow only projections
for which the trace would be infinite using the straightforward generalization of the matrix algebra
trace as the dimension of the projection.

The non-trivial implication of the fact that traces of projections are never larger than one is that
the eigen spaces of the density matrix must be infinite-dimensional for non-vanishing projection
probabilities. Quantum measurements can lead with a finite probability only to mixed states with
a density matrix which is projection operator to infinite-dimensional subspace. The simple von
Neumann algebras for which unit operator has unit trace are known as factors of type I'T; [A46] .

The definitions of adopted by von Neumann allow however more general algebras. Type I,
algebras correspond to finite-dimensional matrix algebras with finite traces whereas I, associated
with a separable infinite-dimensional Hilbert space does not allow bounded traces. For algebras of
type I non-trivial traces are always infinite and the notion of trace becomes useless.

von Neumann, Dirac, and Feynman

The association of algebras of type I with the standard quantum mechanics allowed to unify matrix
mechanism with wave mechanics. Note however that the assumption about continuous momentum
state basis is in conflict with separability but the particle-in-box idealization allows to circumvent
this problem (the notion of space-time sheet brings the box in physics as something completely
real).

Because of the finiteness of traces von Neumann regarded the factors of type I]; as fundamental
and factors of type III as pathological. The highly pragmatic and successful approach of Dirac
based on the notion of delta function, plus the emergence of Feynman graphs, the possibility to
formulate the notion of delta function rigorously in terms of distributions, and the emergence of
path integral approach meant that von Neumann approach was forgotten by particle physicists.

Algebras of type I, have emerged only much later in conformal and topological quantum field
theories [A56, A62] allowing to deduce invariants of knots, links and 3-manifolds. Also algebraic
structures known as bi-algebras, Hopf algebras, and ribbon algebras [A47, A33] relate closely to
type I1; factors. In topological quantum computation [B21] based on braid groups [A64] modular
S-matrices they play an especially important role.
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Clifford algebra of WCW as von Neumann algebra

The Clifford algebra of WCW provides a school example of a hyper-finite factor of type I,
which means that fermionic sector does not produce divergence problems. Super-symmetry means
that also ”orbital” degrees of freedom corresponding to the deformations of 3-surface define similar
factor. The general theory of hyper-finite factors of type Il is very rich and leads to rather detailed
understanding of the general structure of S-matrix in TGD framework. For instance, there is a
unitary evolution operator intrinsic to the von Neumann algebra defining in a natural manner
single particle time evolution. Also a connection with 3-dimensional topological quantum field
theories and knot theory, conformal field theories, braid groups, quantum groups, and quantum
counterparts of quaternionic and octonionic division algebras emerges naturally. These aspects are
discussed in detail in [K60] .

4.3 An attempt to understand preferred extremals of Kahler
action

Preferred extremal of Kéhler action is one of the basic poorly defined notions of TGD. There are
pressing motivations for understanding what ”preferred” really means. For instance, the conformal
invariance of string models naturally generalizes to 4-D invariance defined by quantum Yangian
of quantum affine algebra (Kac-Moody type algebra) characterized by two complex coordinates
and therefore explaining naturally the effective 2-dimensionality [K61]. The problem is however
how to assign a complex coordinate with the string world sheet having Minkowskian signature
of metric. One can hope that the understanding of preferred extremals could allow to identify
two preferred complex coordinates whose existence is also suggested by number theoretical vision
giving preferred role for the rational points of partonic 2-surfaces in preferred coordinates. The
best one could hope is a general solution of field equations in accordance with the hints that TGD
is integrable quantum theory.

4.3.1 What ”preferred” could mean?

The first question is what preferred extremal could mean.

1. In positive energy ontology preferred extremal would be a space-time surface assignable to
given 3-surface and unique in the ideal situation: since one cannot pose conditions to the
normal derivatives of imbedding space coordinates at 3-surface, there is infinity of extremals.
Some additional conditions are required and space-time surface would be analogous to Bohr
orbit : hence the attribute ”preferred”. The problem would be to understand what ”pre-
ferred” could mean. The non-determinism of Kéhler action however destroyed this dream in
its original form and led to zero energy ontology (ZEO).

2. In ZEO one considers extremals as space-time surfaces connecting two space-like 3-surfaces
at the boundaries. One might hope that these 4-surfaces are unique. The non-determinism
of Kéahler action suggests that this is not the case. At least there is conformal invariance
respecting the light-likeness of the 3-D parton orbits at which the signature of the induced
metric changes: the conformal transformations would leave the space-like 3-D ends or at least
partonic 2-surfaces invariant. This non-determinism would correspond to quantum criticality.

3. Effective 2-dimensionality follows from strong form of general coordinate invariance (GCI)
stating that light-like partonic orbits and space-like 3-surfaces at the ends of space-time
surface are equivalent physically: partonic 2-surfaces and their 4-D tangent space data would
determine everything. One can however worry about how effective 2-dimensionality relates
to the the fact that the modes of the induced spinor field are localized at string world sheets
and partonic 2-surface. Are the tangent space data equivalent with the data characterizing
string world sheets as surfaces carrying vanishing electroweak fields?

There is however a problem: the hierarchy of Planck constants (dark matter) requires that
the conformal equivalence classes of light-like surfaces must be counted as physical degrees
of freedom so that either space-like or light-like surfaces do not seem to be quite enough.
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Should one then include also the light-like partonic orbits to the what one calls 3-surface?
The resulting connected 3-surfaces would define analogs of Wilson loops. Could the conformal
equivalence class of the preferred extremal be unique without any additional conditions? If
so, one could get rid of the attribute ”preferred”. The fractal character of the many-sheeted
space-time however suggests that one can have this kind of uniqueness only in given length
scale resolution and that ”radiative corrections” due to the non-determinism are always
present.

These considerations show that the notion of preferred extremal is still far from being precisely
defined and it is not even clear whether the attribute ”preferred” is needed. If not then the question
is what are the extremals of Kéhler action.

4.3.2 What is known about extremals?

A lot is is known about properties of extremals and just by trying to integrate all this understand-
ing, one might gain new visions. The problem is that all these arguments are heuristic and rely
heavily on physical intuition. The following considerations relate to the space-time regions having
Minkowskian signature of the induced metric. The attempt to generalize the construction also to
Euclidian regions could be very rewarding. Only a humble attempt to combine various ideas to a
more coherent picture is in question.

The core observations and visions are following.

1. Hamilton-Jacobi coordinates for M* (discussed in this chapter) define natural preferred co-
ordinates for Minkowskian space-time sheet and might allow to identify string world sheets
for X* as those for M*. Hamilton-Jacobi coordinates consist of light-like coordinate m and
its dual defining local 2-plane M? C M* and complex transversal complex coordinates (w, )
for a plane E2? orthogonal to M2 at each point of M*. Clearly, hyper-complex analyticity
and complex analyticity are in question.

2. Space-time sheets allow a slicing by string world sheets (partonic 2-surfaces) labelled by
partonic 2-surfaces (string world sheets).

3. The quaternionic planes of octonion space containing preferred hyper-complex plane are
labelled by CP», which might be called CPy*°¢ [K52]. The identification CP, = C P34
motivates the notion of M® — —M* x C' P, duality [K13]. It also inspires a concrete solution
ansatz assuming the equivalence of two different identifications of the quaternionic tangent
space of the space-time sheet and implying that string world sheets can be regarded as
strings in the 6-D coset space G3/SU(3). The group Gy of octonion automorphisms has
already earlier appeared in TGD framework.

4. The duality between partonic 2-surfaces and string world sheets in turn suggests that the
C Py = CPy"? conditions reduce to string model for partonic 2-surfaces in CP, = SU(3)/U(2).
String model in both cases could mean just hypercomplex/complex analyticity for the coor-
dinates of the coset space as functions of hyper-complex/complex coordinate of string world
sheet /partonic 2-surface.

The considerations of this section lead to a revival of an old very ambitious and very romantic
number theoretic idea.

1. To begin with express octonions in the form o = ¢; + Iq2, where ¢; is quaternion and [ is an
octonionic imaginary unit in the complement of fixed a quaternionic sub-space of octonions.
Map preferred coordinates of H = M* x CP; to octonionic coordinate, form an arbitrary
octonion analytic function having expansion with real Taylor or Laurent coefficients to avoid
problems due to non-commutativity and non-associativity. Map the outcome to a point of
H to get a map H — H. This procedure is nothing but a generalization of Wick rotation to
get an 8-D generalization of analytic map.

2. Identify the preferred extremals of Kdhler action as surfaces obtained by requiring the van-
ishing of the imaginary part of an octonion analytic function. Partonic 2-surfaces and string
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world sheets would correspond to commutative sub-manifolds of the space-time surface and
of imbedding space and would emerge naturally. The ends of braid strands at partonic 2-
surface would naturally correspond to the poles of the octonion analytic functions. This
would mean a huge generalization of conformal invariance of string models to octonionic
conformal invariance and an exact solution of the field equations of TGD and presumably of
quantum TGD itself.

4.3.3 Basic ideas about preferred extremals
The slicing of the space-time sheet by partonic 2-surfaces and string world sheets

The basic vision is that space-time sheets are sliced by partonic 2-surfaces and string world sheets.
The challenge is to formulate this more precisely at the level of the preferred extremals of Kéahler
action.

1. Almost topological QFT property means that the Kéhler action reduces to Chern-Simons
terms assignable to 3-surfaces. This is guaranteed by the vanishing of the Coulomb term in
the action density implied automatically if conserved Kahler current is proportional to the
instanton current with proportionality coefficient some scalar function.

2. The field equations reduce to the conservation of isometry currents. An attractive ansatz is
that the flow lines of these currents define global coordinates. This means that these currents
are Beltrami flows [B19] so that corresponding 1-forms J satisfy the condition J A dJ = 0.
These conditions are satisfied if

J=oVVY

hold true for conserved currents. From this one obtains that ¥ defines global coordinate
varying along flow lines of .J.

3. A possible interpretation is in terms of local polarization and momentum directions defined
by the scalar functions involved and natural additional conditions are that the gradients of
¥ and ® are orthogonal:

Vo -V =0 ,
and that the U satisfies massless d’Alembert equation
V20 =0
as a consequence of current conservation. If U defines a light-like vector field - in other words

VU .V¥ =0 ,

the light-like dual of ® -call it ®.- defines a light-like like coordinate and ® and ®. defines a
light-like plane at each point of space-time sheet.

If also ® satisfies d’Alembert equation
Ve =0 ,
also the current

K=9vV®

is conserved and its flow lines define a global coordinate in the polarization plane orthogonal
to time-lik plane defined by local light-like momentum direction.
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If ® allows a continuation to an analytic function of the transversal complex coordinate, one
obtains a coordinatization of space-time surface by ¥ and its dual (defining hyper-complex
coordinate) and w,w. Complex analyticity and its hyper-complex variant would allow to
provide space-time surface with four coordinates very much analogous with Hamilton-Jacobi
coordinates of M*.

This would mean a decomposition of the tangent space of space-time surface to orthogonal
planes defined by light-like momentum and plane orthogonal to it. If the flow lines of J
defined Beltrami flow it seems that the distribution of momentum planes is integrable.

4. General arguments suggest that the space-time sheets allow a slicing by string world sheets
parametrized by partonic 2-surfaces or vice versa. This would mean a intimate connection
with the mathematics of string models. The two complex coordinates assignable to the
Yangian of affine algebra would naturally relate to string world sheets and partonic 2-surfaces
and the highly non-trivial challenge is to identify them appropriately.

Hamilton-Jacobi coordinates for M*

The earlier attempts to construct preferred extremals [K5] led to the realization that so called
Hamilton-Jacobi coordinates (m,w) for M* define its slicing by string world sheets parametrized
by partonic 2-surfaces. m would be pair of light-like conjugate coordinates associated with an
integrable distribution of planes M? and w would define a complex coordinate for the integrable
distribution of 2-planes E? orthogonal to M?2. There is a great temptation to assume that these
coordinates define preferred coordinates for M*.

1. The slicing is very much analogous to that for space-time sheets and the natural question is
how these slicings relate. What is of special interest is that the momentum plane M? can
be defined by massless momentum. The scaling of this vector does not matter so that these
planes are labelled by points z of sphere S? telling the direction of the line M? N E3, when
one assigns rest frame and therefore S? with the preferred time coordinate defined by the
line connecting the tips of CD. This direction vector can be mapped to a twistor consisting of
a spinor and its conjugate. The complex scalings of the twistor (u, @) — Au,@/\) define the
same plane. Projective twistor like entities defining C'P; having only one complex component
instead of three are in question. This complex number defines with certain prerequisites a
local coordinate for space-time sheet and together with the complex coordinate of E? could
serve as a pair of complex coordinates (z,w) for space-time sheet. This brings strongly in
mind the two complex coordinates appearing in the expansion of the generators of quantum
Yangian of quantum affine algebra [K61].

2. The coordinate ¥ appearing in Beltrami flow defines the light-like vector field defining M?
distribution. Its hyper-complex conjugate would define ¥, and conjugate light-like direction.
An attractive possibility is that ® allows analytic continuation to a holomorphic function of
w. In this manner one would have four coordinates for M* also for space-time sheet.

3. The general vision is that at each point of space-time surface one can decompose the tangent
space to M?(z) C M* = M? x E? representing momentum plane and polarization plane
E? C E2 x T(CP,). The moduli space of planes E? C E° is 8-dimensional and parametrized
by SO(6)/SO(2) x SO(4) for a given E2. How can one achieve this selection and what
conditions it must satisfy? Certainly the choice must be integrable but this is not the only
condition.

Space-time surfaces as associative/co-associative surfaces

The idea that number theory determines classical dynamics in terms of associativity condition
means that space-time surfaces are in some sense quaternionic surfaces of an octonionic space-
time. It took several trials before the recent form of this hypothesis was achieved.

1. Octonionic structure is defined in terms of the octonionic representaton of gamma matrices
of the imbedding space existing only in dimension D = 8 since octonion units are in one-one
correspondence with tangent vectors of the tangent space. Octonionic real unit corresponds
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to a preferred time axes (and rest frame) identified naturally as that connecting the tips of
CD. What modified gamma matrices mean depends on variational principle for space-time
surface. For volume action one would obtain induced gamma matrices. For Kahler action
one obtains something different. In particular, the modified gamma matrices do not define
vector basis identical with tangent vector basis of space-time surface.

2. Quaternionicity means that the modified gamma matrices defined as contractions of gamma
matrices of H with canonical momentum densities for Kahler action span quaternionic sub-
space of the octonionic tangent space [K18]. A further condition is that each quaternionic
space defined in this manner contains a preferred hyper-complex subspace of octonions.

3. The sub-space defined by the modified gamma matrices does not co-incide with the tangent
space of space-time surface in general so that the interpretation of this condition is far from
obvious. The canonical momentum densities need not define four independent vectors at
given point. For instance, for massless extremals these densities are proportional to light-like
vector so that the situation is degenerate and the space in question reduces to 2-D hyper-
complex sub-space since light-like vector defines plane M?2.

The obvious questions are following.

1. Does the analog of tangent space defined by the octonionic modified gammas contain the local
tangent space M? C M* for preferred extremals? For massless extremals [K5] this condition
would be true. The orthogonal decomposition T'(X*) = M? @, E? can be defined at each
point if this is true. For massless extremals also the functions ¥ and ® can be identified.

2. One should answer also the following delicate question. Can M? really depend on point = of
space-time? C'P, as a moduli space of quaternionic planes emerges naturally if M? is same
everywhere. It however seems that one should allow an integrable distribution of M2 such
that M2 is same for all points of a given partonic 2-surface.

How could one speak about fixed C'Py (the imbedding space) at the entire space-time sheet
even when M? varies?

(a) Note first that G5 defines the Lie group of octonionic automorphisms and Gz action is
needed to change the preferred hyper-octonionic sub-space. Various SU(3) subgroups
of Gy are related by G2 automorphism. Clearly, one must assign to each point of a
string world sheet in the slicing parameterizing the partonic 2-surfaces an element of
G2. One would have Minkowskian string model with G5 as a target space. As a matter
fact, this string model is defined in the target space G3/SU(3) having dimension D = 6
since SU(3) automorphisms leave given SU(3) invariant.

(b) This would allow to identify at each point of the string world sheet standard quaternionic
basis - say in terms of complexified basis vectors consisting of two hyper-complex units
and octonionic unit ¢; with ”color isospin” I3 = 1/2 and ”color hypercharge” ¥ = —1/3
and its conjugate g; with opposite color isospin and hypercharge.

(¢) The C'P, point assigned with the quaternionic basis would correspond to the SU(3)
rotation needed to rotate the standard basis to this basis and would actually corre-
spond to the first row of SU(3) rotation matrix. Hyper-complex analyticity is the basic
property of the solutions of the field equations representing Minkowskian string world
sheets. Also now the same assumption is highly natural. In the case of string mod-
els in Minkowski space, the reduction of the induced metric to standard form implies
Virasoro conditions and similar conditions are expected also now. There is no need to
introduce action principle -just the hyper-complex analycitity is enough-since Kahler
action already defines it.

3. The WZW model inspired approach to the situation would be following. The parameteriza-
tion corresponds to a map g : X2 — Gy for which g defines a flat G5 connection at string
world sheet. WZW type action would give rise to this kind of situation. The transition
Go — G5/SU(3) would require that one gauges SU(3) degrees of freedom by bringing in
SU(3) connection. Similar procedure for CP, = SU(3)/U(2) would bring in SU(3) valued
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chiral field and U(2) gauge field. Instead of introducing these connections one can simply
introduce Go/SU(3) and SU(3)/U(2) valued chiral fields. What this observation suggests
that this ansatz indeed predicts gluons and electroweak gauge bosons assignable to string
like objects so that the mathematical picture would be consistent with physical intuition.

The two interpretations of CP,

An old observation very relevant for what I have called M® — H duality [K13] is that the moduli
space of quaternionic sub-spaces of octonionic space (identifiable as M®) containing preferred
hyper-complex plane is C'P,. Or equivalently, the space of two planes whose addition extends
hyper-complex plane to some quaternionic subspace can be parametrized by CP,. This CP,
can be called it CPy*°? to avoid confusion. In the recent case this would mean that the space
E%(z) C E? x T(CP) is represented by a point of CPy*°?. On the other hand, the imbedding of
space-time surface to H defines a point of "real” C'P,. This gives two different C Pss.

1. The highly suggestive idea is that the identification CPy*°? = C' P, (apart from isometry) is
crucial for the construction of preferred extremals. Indeed, the projection of the space-time
point to C'P, would fix the local polarization plane completely. This condition for E?(z)
would be purely local and depend on the values of C'P, coordinates only. Second condition
for E?(z) would involve the gradients of imbedding space coordinates including those of CP,
coordinates.

2. The conditions that the planes M2 form an integrable distribution at space-like level and that
M? is determined by the modified gamma matrices. The integrability of this distribution for
M* could imply the integrability for X2. X* would differ from M* only by a deformation in
degrees of freedom transversal to the string world sheets defined by the distribution of M?2s.

Does this mean that one can begin from vacuum extremal with constant values of CP»
coordinates and makes them non-constant but allows to depend only on transversal degrees
of freedom? This condition is too strong even for simplest massless extremals for which C P,
coordinates depend on transversal coordinates defined by € -m and € - k. One could however
allow dependence of C'P, coordinates on light-like M* coordinate since the modification of
the induced metric is light-like so that light-like coordinate remains light-like coordinate in
this modification of the metric.

Therefore, if one generalizes directly what is known about massless extremals, the most
general dependence of C'P, points on the light-like coordinates assignable to the distribu-
tion of M2 would be dependence on either of the light-like coordinates of Hamilton-Jacobi
coordinates but not both.

4.3.4 'What could be the construction recipe for the preferred extremals
assuming CP, = CPy? identification?

The crucial condition is that the planes E?(x) determined by the point of C P, = C'P3"°? identifica-
tion and by the tangent space of E2 x C' P, are same. The challenge is to transform this condition
to an explicit form. CP, = CPy*°? identification should be general coordinate invariant. This
requires that also the representation of E? as (e2, e3) plane is general coordinate invariant suggest-
ing that the use of preferred C' P, coordinates - presumably complex Eguchi-Hanson coordinates
- could make life easy. Preferred coordinates are also suggested by number theoretical vision. A
careful consideration of the situation would be required.

The modified gamma matrices define a quaternionic sub-space analogous to tangent space of
X* but not in general identical with the tangent space: this would be the case only if the action
were 4-volume. I will use the notation 7" (X*) about the modified tangent space and call the
vectors of T™(X*) modified tangent vectors. I hope that this would not cause confusion.

CPy = C’Pg”"d condition

Quaternionic property of the counterpart of 77 (X?) allows an explicit formulation using the
tangent vectors of T (X*).
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1. The unit vector pair (es,es) should correspond to a unique tangent vector of H defined
by the coordinate differentials dh* in some natural coordinates used. Complex Eguchi-
Hanson coordinates [L1] are a natural candidate for C' P, and require complexified octonionic
imaginary units. If octonionic units correspond to the tangent vector basis of H uniquely,
this is possible.

2. The pair (es, e3) as also its complexification (¢1 = ey + ie3,q = ex — ieg) is expressible as a
linear combination of octonionic units Iy, ...I7 should be mapped to a point of CP*% = CP,
in canonical manner. This mapping is what should be expressed explicitly. One should
express given (eg, e3) in terms of SU(3) rotation applied to a standard vector. After that
one should define the corresponding C'P, point by the bundle projection SU(3) — CPs.

3. The tangent vector pair

(Owhk, Bh*)

defines second representation of the tangent space of E?(x). This pair should be equivalent
with the pair (g1, q, ). Here one must be however very cautious with the choice of coordinates.
If the choice of w is unique apart from constant the gradients should be unique. One can use
also real coordinates (z,y) instead of (w = z + iy, w = x — iy) and the pair (eg, e3). One can
project the tangent vector pair to the standard vielbein basis which must correspond to the
octonionic basis

(&Chk,@yhk) — (8zhke,‘?e,476yhke;3)e,4) + (ea,€3)

where the e4 denote the octonion units in 1-1 correspondence with vielbein vectors. This
expression can be compared to the expression of (eg, e3) derived from the knowledge of C' P,
projection.

Formulation of quaternionicity condition in terms of octonionic structure constants

One can consider also a formulation of the quaternionic tangent planes in terms of (es, e3) expressed
in terms of octonionic units deducible from the condition that unit vectors obey quaternionic
algebra. The expressions for octonionic resp. quaternionic structure constants can be found at
[A17] resp. [A20].

1. The ansatz is

{Ek} = {17]17E27E3} )
7 7
E2 = Egkek = ZElek 5 E3 = Egkek = ZEgkek 5
k=2 k=2
|Eal = 1, [E3l=1. (4.3.1)

2. The multiplication table for octonionic units expressible in terms of octonionic triangle [A17]
gives

f¥ Boy = By, ™ B3 = —Fo , fM"EgFs =0} . (4.3.2)

Here the indices are raised by unit metric so that there is no difference between lower and
upper indices. Summation convention is assumed. Also the contribution of the real unit is
present in the structure constants of third equation but this contribution must vanish.
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3. The conditions are linear and quadratic in the coefficients For and E3; and are expected to
allow an explicit solution. The first two conditions define homogenous equations which must
allow solution. The coefficient matrix acting on (Eq, E3) is of the form

(5 5)
-1 h)7

where 1 denotes unit matrix. The vanishing of the determinant of this matrix should be due
to the highly symmetric properties of the structure constants. In fact the equations can be
written as eigen conditions

f1 o (EQ + ZEg) = $Z(E2 + ’LEg) y

and one can say that the structure constants are eigenstates of the hermitian operator defined
by I analogous to color hyper charge. Both values of color hyper charged are obtained.

Explicit expression for the CP, = CP}**? conditions

The symmetry under SU(3) allows to construct the solutions of the above equations directly.

1. One can introduce complexified basis of octonion units transforming like (1,1,3,3) under
SU(3). Note the analogy of triplet with color triplet of quarks. One can write complexified
basis as (1, e1, (¢1,92,43), (G192, G3))- The expressions for complexified basis elements are

1 . ) .
(q1,92,93) = ﬁ(ez + 1e3,e4 + 165, €6 +ze7) .

These options can be seen to be possible by studying octonionic triangle in which all lines
containing 3 units defined associative triple: any pair of octonion units at this kind of line
can be used to form pair of complexified unit and its conjugate. In the tangent space of
M* x CP;, the basis vectors ¢i, and g» are mixtures of Eﬁ and C'P, tangent vectors. g¢s
involves only C'P, tangent vectors and there is a temptation to interpret it as the analog of
the quark having no color isospin.

2. The quaternionic basis is real and must transform like (1,1,¢1,4;), where ¢ is any quark
in the triplet and @, its conjugate in antitriplet. Having fixed some basis one can perform
SU(3) rotations to get a new basis. The action of the rotation is by 3 x 3 special unitary
matrix. The over all phases of its rows do not matter since they induce only a rotation in
(e2, e3) plane not affecting the plane itself. The action of SU(3) on ¢ is simply the action
of its first row on (g1, g2, ¢3) triplet:

a1 = (U@ =Unaq + Ur2ge + Uraqs = 2101 + 2202 + 2343
= z1(eg +ie3) + za(eq +ies) + z3(e +ie7) . (4.3.3)

The triplets (21, 2o, 23) defining a complex unit vector and point of S°. Since overall phase
does not matter a point of C'P; is in question. The new real octonion units are given by the
formulas

ea — Re(z1)ea + Re(z2)eq + Re(zg)eg — Im(z1)es — Im(z9)es — Im(z3)er
es — Im(z1)ea + Im(za)eq + Im(z3)es + Re(z1)es + Re(za)es + Re(z3)er .
(4.3.4)

For instance the C'P, coordinates corresponding to the coordinate patch (z1,22,23) with
z3 # 0 are obtained as (&1,&2) = (21/23, 22/23).
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Using these expressions the equations expressing the conjecture C P, = C'Py*°? equivalence can
be expressed explicitly as first order differential equations. The conditions state the equivalence

(ea,e3) > (Oh"eftea,dyhefiea) (4.3.5)

where e4 denote octonion units. The comparison of two pairs of vectors requires normalization
of the tangent vectors on the right hand side to unit vectors so that one takes unit vector in the
direction of the tangent vector. After this the vectors can be equated. This allows to expresses
the contractions of the partial derivatives with vielbein vectors with the 6 components of e; and
e3. FEach condition gives 646 first order partial differential equations which are non-linear by the
presence of the overal normalization factor for the right hand side. The equations are invariant
under scalings of (z,y). The very special form of these equations suggests that some symmetry is
involved.

It must be emphasized that these equations make sense only in preferred coordinates: ordinary
Minkowski coordinates and Hamilton-Jacobi coordinates for M* and Eguchi-Hanson complex co-
ordinates in which SU(2) x U(1) is represented linearly for C'P». These coordinates are preferred
because they carry deep physical meaning.

Does TGD boil down to two string models?

It is good to look what have we obtained. Besides Hamilton-Jacobi conditions, and C P, = C P4
conditions one has what one might call string model with 6-dimensional G5/SU(3) as targent
space. The orbit of string in G5/SU(3) allows to deduce the G2 rotation identifiable as a point
of G5/SU(3) defining what one means with standard quaternionic plane at given point of string
world sheet. The hypothesis is that hyper-complex analyticity solves these equations.

The conjectured electric-magnetic duality implies duality between string world sheet and par-
tonic 2-surfaces central for the proposed mathematical applications of TGD [K23, K24, K50, K63].
This duality suggests that the solutions to the CP, = C Py*°? conditions could reduce to holomor-
phy with respect to the coordinate w for partonic 2-surface plus the analogs of Virasoro conditions.
The dependence on light-like coordinate would appear as a parametric dependence.

If this were the case, TGD would reduce at least partially to what might be regarded as dual
string models in G2 /SU(3) and SU(3)/U(2) and also to string model in M* and X*! In the previous
arguments one ends up to string models in moduli spaces of string world sheets and partonic 2-
surfaces. TGD seems to yield an inflation of string models! This not actually surprising since the
slicing of space-time sheets by string world sheets and partonic 2-surfaces implies automatically
various kinds of maps having interpretation in terms of string orbits.

4.4 Representations for WCW gamma matrices in terms of
super-symplectic charges at light cone boundary

During years I have considered several variants for the representation of WCW gamma matrices
and each of these proposals has had some weakness.

1. One question has been whether the Noether currents assignable to WCW Hamiltonians
should play any role in the construction or whether one can use only the generalization of flux
Hamiltonians. Magnetic flux Hamiltonians do not refer to the space-time dynamics implying
genuine 2-dimensionality, which is a catastrophe. If the sum of the magnetic and electric
flux Hamiltonians and the weak form of self duality is assumed effective 2-dimensionality
is achieved. The challenge is to identify the super-partners of the flux Hamiltonians and
postulate correct anti-commutation relations for the induced spinor fields to achieve anti-
commutation to flux Hamiltonians.

2. In the original proposal for WCW gamma matrices the covariantly constant right handed
spinors played a key role. This led to interpretational problems with quarks. Are they needed
at all or do leptons and quarks define somehow equivalent representations? I discovered only
recently a brutally simple but deadly objection against this approach: the resulting WCW
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gamma matrices do not generate all WCW spinors from Fock vacuum. Therefore all modes
of the induced spinor fields must be used.

The latter objection forced to realize that nothing is changed if one replaces the covariantly
constant right handed neutrino with the collection of quark spinor modes g,, resp. leptonic spinor
modes L, multiplied by the contractions J4, = jA*T resp. its conjugate Js_ = jAkFE. It is
essential that only of these contractions is used for a given H-chirality.

1. If the anti-commutator of the spinor fields is or form J = J,5e*/6%(x,y) at X? for magnetic
flux Hamiltonians and appropriate generalization of this fro the sum of magnetic and electric
flux Hamiltonians, the ”half-Poisson bracket” 0, H 4.J kl@jH g from the quark spinor field and
its conjugate as anti-commutator from the leptonic spinor field can combine to the full Poisson
bracket if the remaining factors are identical.

2. This happens if the quark modes and lepton-like modes are in 1-1 correspondence and the
contractions of the eigenmodes resulting in the contraction satisfy g,,7°¢n, = LinY° Ly, = ®pn-
The resulting Hamiltonians define an X 2-local algebra: that this extension is needed became
obvious already earlier. A stronger condition is that the spinors can be expressed in terms
of scalar function bases {®,,} so that one would have ¢, ; = {®s, }¢; and Ly, ; = {®.} L; so
that one would assign to the super-currents the local Hamiltonians ®,,, H 4.

3. One could of course still argue that it is questionable to use sum of quark and lepton gamma
matrices since this the resulting objects to not have a well defined fermion number and cannot
be used to generate physical states from vacuum. How seriously this argument should be
taken is not clear to me at this moment. One could of course consider also a scenario in
which one divides leptonic (or quark) modes to two classes analogous to quark and lepton
modes and uses Ja, resp. Ja_ for these two classes.

In any case, the recent view is that all modes of the induced spinor fields must be used,
that lepton-quark degeneracy is absolutely essential for the construction of WCW geometry, and
that the original super-symmetrization of the flux Hamiltonians combined with weak electric-
magnetic duality is the correct approach. There are also fermionic Noether charges and their
super counterparts implied by the criticality but these can be assigned with zero modes.

This section represents both the earlier version of the construction of WCW gamma matrices
and the construction introducing explicitly the notion of finite measurement resolution. The mo-
tivation for the latter option is that if the number the modes of modified Dirac operator is finite,
strictly local anti-commutation relations fail unless one restricts the set of points included to that
corresponding to number theoretic braid. In the following integral expressions for WCW Hamil-
tonians and their super-counterparts are derived first. After that the motivations for replacing
integrals with sums are discussed and the expressions for Hamiltonians and super Hamiltonians
are derived.

4.4.1 Magnetic flux representation of the super-symplectic algebra

In order to derive representation of WCW gamma matrices and super charges it is good to restate
the basic facts about the magnetic flux representation of WCW gamma matrices using the original
approach based on 2-dimensional integrals.

4.4.2 Quantization of the modified Dirac action and configuration space
geometry

The quantization of the modified Dirac action involves a fusion of various number theoretical ideas.
The naive approach would be based on standard canonical quantization of induced spinor fields by
posing anti-commutation relations between ¥ and canonical momentum density 0L/9(0; V).
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Generalized magnetic and electric fluxes

Isometry invariants are just a special case of fluxes defining natural coordinate variables for WCW.
Canonical transformations of CP, act as U(1) gauge transformations on the Kéhler potential of
CP, (similar conclusion holds at the level of M x CP,).

One can generalize these transformations to local symplectic transformations by allowing the
Hamiltonians to be products of the C'P, Hamiltonians with the real and imaginary parts of the
functions fs 5 defining the Lorentz covariant function basis Ha, A = (a, s,n, k) at the light cone
boundary: Ha = H, x f(s,n,k), where a labels the Hamiltonians of C Ps.

One can associate to any Hamiltonian H# of this kind magnetic or electric flux via the following
formulas:

QueHAIX?) = [ Hadny. (4.4.1)
X2

Here the magnetic (electric) flux Jy,, (J.) denotes the flux associated with induced K&hler field and
its dual which is well-defined since X2 is part of 4-D space-time surface.
The flux Hamiltonians

QHAIX?) = QuHalX?) , A= (a,sn,k) (4.4.2)
provide a representation of WCW Hamiltonians as far as the ”kinetic” part of Kéhler form is
considered.

Anti-commutation relations between oscillator operators associated with same par-
tonic 2-surface
The construction of WCW gamma matrices leads to the anti-commutation relations given by

[Je + Jpm )62

T,y

Jo = /JO3@. (4.4.3)
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Kihler magnetic flux J,, = ¢*? Jap+/92 has no dependence on the induced metric.
If the weak- form of the electric-magnetic duality holds true, Kahler electric flux relates to it
via the formula

JBgs =K ,

where K is symplectic invariant and identifiable in terms of K&hler coupling strength from classical
charge quantization condition for Kahler electric flux. The condition that the flux of F03 =
(h/gr)J® defining the counterpart of Kihler electric field equals to the Kihler charge gx gives
the condition K = g% /h = 4rayk, where gk is Kihler coupling constant. Within experimental
uncertainties one has ax = g% /4mthy = aem =~ 1/137, where ., is finite structure constant in
electron length scale and fg is the standard value of Planck constant. The arguments leading to the
identification € £+ 1 at the opposite boundaries of CD are discussed in [K22] , [L4] . An alternative
identification is as € = 0 but predicts that WCW is trivial in M* degrees of freedom if Kéhler
function reduces to Chern-Simons terms.
The general form of the anti-commutation relations is therefore

{U(@)’,¥(x)} = (1+K)J5, . (4.4.4)

What is nice that at the limit of vacuum extremals the right hand side vanishes when both J and
J! vanish so that spinor fields become non-dynamical. One can criticize the non-vanishing of the
anti-commutator for vacuum extremals of Kéhler action.
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For the latter option the fermionic counterparts of local flux Hamiltonians can be written in
the form

Hytn = (A F,n)Hasgn+er(A£)Ha+n
Hpoqgn = ]{@qundzx,
Hp—yn = }{anf\I/dzx,
Hao—rn = f@Jand%,
Haynn = j{fnJﬁ‘\I/d%,
JA o= Ty A = AT (4.4.5)

The commutative parameters €,(A, £, n) resp. €1, (A, £, n) are assumed to carry quark resp. lepton
number opposite to that of Ha x qn mesp. Ha 1 n and satisfy €;(4,4+,n)e; (A, —,n) = 1. One
encounters a hierarchy discrete algebras satisfying this condition in the construction of a symplectic
analog of conformal quantum field theory required by the construction of quantum TGD [K43] .
Associativity condition fixes uniquely the commutative multiplication of these units and analogs
of plane waves with discrete momentum are in question.

Suppose that there is a one-one correspondence between quark modes and leptonic modes is
satisfied and the label n decomposes as n = (m, i), where n labels a scalar function basis and 4
labels spinor components. This would give

qn = qm,;i = Sq;
L, = Lm,i = o, )
i’y = Lin’Lj=gi; - (4.4.6)

Suppose that the inner products g;; are constant. The simplest possibility is g;; = ;; Under these
assumptions the anti-commutators of the super-symmetric flux Hamiltonians give flux Hamiltoni-
ans.

{Ha+n,Ha—n}t = gijf.gmfanAJsz. (4.4.7)

The product of scalar functions can be expressed as

3,8, = c¢,"d . (4.4.8)

Note that the notion of symplectic QFT [K12] led to a scalar function algebra of similar kind
consisting of phase factors and there excellent reasons to consider the possibility that there is a
deep connection with this approach.

One expects that the symplectic algebra is restricted to a direct sum of symplectic algebras
localized to the regions where the induced Kéahler form is non-vanishing implying that the algebras
associated with different region form to a direct sum. Also the contributions to WCW metric
are direct sums. The symplectic algebras associated with different region can be truncated to
finite-dimensional spaces of symplectic algebras associated with the regions in question. As far
as coordinatization of the reduced WCW is considered, these symplectic sub-spaces are enough.
These truncated algebras naturally correspond to the hyper-finite factor property of the Clifford
algebra of WCW.
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Generalization of WCW Hamiltonians and anti-commutation relations between flux
Hamiltonians belonging to different ends of CD

This picture requires a generalization of the view about configuration space Hamiltonians since
also the interaction term between the ends of the line is present not taken into account in the
previous approach.

1. The proposed representation of WCW Hamiltonians as flux Hamiltonians [K10, K9] , [L5]

Q(Ha) = /HAJd%. (4.4.9)

works for the kinetic terms only since J is not expectred to be the same at the ends of the
line.

The assumption that Poisson bracket of WCW Hamiltonians reduces to the level of imbed-
ding space - in other words {Q(Ha),Q(Hp} = Q({Ha,Hp}) - can be justified. One
starts from the representation in terms of say flux Hamiltonians Q(H4) and defines Ja p
as Jap = Q({Ha,Hg}). One has 0H4/0tp = {Hp, Ha}, where tp is the parameter asso-
ciated with the exponentiation of Hg. The inverse JAZ of J Ap = OHp/Ot4 is expressible
as JAB = 0t4/0Hp. From these formulas one can deduce by using chain rule that the
bracket {Q(Ha),Q(Hp} = 0tcQ(HA)J POtpQ(Hp) of flux Hamiltonians equals to the
flux Hamiltonian Q({Ha, Hg}).

2. One should be able to assign to WCW Hamiltonians also a part corresponding to the inter-
action term. The symplectic conjugation associated with the interaction term permutes the
WCW coordinates assignable to the ends of the line. One should reduce this apparently non-
local symplectic conjugation (if one thinks the ends of line as separate objects) to a non-local
symplectic conjugation for §CD x C'P, by identifying the points of lower and upper end of
CD related by time reflection and assuming that conjugation corresponds to time reflection.
Formally this gives a well defined generalization of the local Poisson brackets between time
reflected points at the boundaries of CD. The connection of Hermitian conjugation and time
reflection in quantum field theories is is in accordance with this picture.

3. Perhaps the only manner to proceed is to assign to the flux Hamiltonian also a part obtained
by the replacement of the flux integral over X? with an integral over the projection of X2 to a
sphere S? assignable to the light-cone boundary or to a geodesic sphere of C' Py, which come as
two varieties corresponding to homologically trivial and non-trivial spheres. The projection
is defined as by the geodesic line orthogonal to S? and going through the point of X?2. The
hierarchy of Planck constants assigns to CD a preferred geodesic sphere of C'P, as well as a
unique sphere S? as a sphere for which the radial coordinate r; or the light-cone boundary
defined uniquely is constant: this radial coordinate corresponds to spherical coordinate in
the rest system defined by the time-like vector connecting the tips of CD. Either spheres or
possibly both of them could be relevant.

Recall that also the construction of number theoretic braids and symplectic QFT [K12] led to
the proposal that braid diagrams and symplectic triangulations could be defined in terms of
projections of braid strands to one of these spheres. One could also consider a weakening for
the condition that the points of the number theoretic braid are algebraic by requiring only
that the S2? coordinates of the projection are algebraic and that these coordinates correspond
to the discretization of S? in terms of the phase angles associated with # and ¢.

This gives for the corresponding contribution of the WCW Hamiltonian the expression

8 17 2
QHi)im = (1+K) [ HaX62(s4,s )d?ss = (1+K) / %@fuo)
S3 P(X2)NP(X?2) oz, r3)
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Here the Poisson brackets between ends of the line using the rules involve delta function
52(sy,s_) at S? and the resulting Hamiltonians can be expressed as a similar integral of
Hi 4, p) over the upper or lower end since the integral is over the intersection of .S 2 projections.

The expression must vanish when the induced Kéhler form vanishes for either end. This is
achieved by identifying the scalar X in the following manner:

X = Ji+Jda,
I = 8,58 051 IS0 (4.4.11)

The tensors are lifts of the induced Kéhler form of X3 to S? (not CP,).

4. One could of course ask why these Hamiltonians could not contribute also to the kinetic terms
and why the brackets with flux Hamiltonians should vanish. This relate to how one defines
the Kéahler form. It was shown above that in case of flux Hamiltonians the definition of
Kaéhler form as brackets gives the basic formula {Q(Ha),Q(Hp)} = Q({Ha, Hg} and same
should hold true now. In the recent case J4 g would contain an interaction term defined
in terms of flux Hamiltonians and the previous argument should go through also now by
identifying Hamiltonians as sums of two contributions and by introducing the doubling of
the coordinates ¢ 4.

5. The quantization of the modified Dirac operator must be reconsidered. It would seem that
one must add to the super-Hamiltonian completely analogous term obtained by replacing
J with X9(st,s?)/0(xL,2%). Besides the anti-commutation relations defining correct anti-
commutators to flux Hamiltonians, one should pose anti-commutation relations consistent
with the anti-commutation relations of super Hamiltonians. In these anti-commutation rela-
tions J&2(x,y) would be replaced with X62(s*,s™). This would guarantee that the oscillator
operators at the ends of the line are not independent and that the resulting Hamiltonian re-
duces to integral over either end for Hy4 p)-

4.4.3 Expressions for WCW super-symplectic generators in finite mea-
surement resolution

The expressions of WCW Hamiltonians and their super counterparts just discussed were based on
2-dimensional integrals. This is problematic for several reasons.

1. In p-adic context integrals do not makes sense so that this representation fails in p-adic
context (for pe-adic numbers see [A31] ). Sums would be more appropriate if one wants
number theoretic universality at the level of basic formulas.

2. The use of sums would also conform with the notion of finite measurement resolution having
discretization in terms of intersections of X? with number theoretic braids as a space-time
correlate.

3. Number theoretic duality suggests a unique realization of the discretization in the sense that
only the points of partonic 2-surface X2 whose § M$ projections commute in hyper-octonionic
sense and thus belong to the intersections of the projection Pysa(X?) with radial light-like
geodesics My representing intersections of M? C M* C M® with §M} x CP, contribute to
WCW Hamiltonians and super Hamiltonians and therefore to the WCW metric.

Clearly, finite measurement resolution seems to be an unavoidable aspect of the geometrization
of WCW as one can expect on basis of the fact that WCW Clifford algebra provides representation
for hyper-finite factors of type II; whose inclusions provide a representation for the finite mea-
surement resolution. This means that WCW can be represented as a finite-dimensional space in
arbitrary precise approximation so that also also configuration Clifford algebra and WCW spinor
fields becomes finite-dimensional.

The modification of anti-commutation relations to this case is
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{(T(@n’ U(n)} = (1+K)J8 0, - (4.4.12)

Note that the constancy of v implies a complete symmetry between the two points. The number
of points must be the maximal one consistent with the Kronecker delta type anti-commutation
relations so that information is not lost.

The question arises about the choice of the points x,,. This choice should general coordinate
invariant. The number theoretic vision leads to the notion of number theoretic braid defined as the
set of points common to real and p-adic variant of X2. The points of the number theoretic braid
are excellent candidates for points x,,. The p-adic variant exists only if X? is defined by rational
functions with coefficients which are possibly algebraic and thus make sense both in real and p-
adic sense. These points belong to the algebraic extension of rational numbers appearing in the
representation of X? as an algebraic surface but one can consider quite generally the possibility
that the points of the number theoretic braid are rational or in a finite algebraic extension of
rationals. What is important that if one restricts the consideration to rational points this criterion
makes sense even if X? is not algebraic. In the generic case one can expect that the number of
these points is finite.

4.4.4 'WCW geometry and hierarchy of inclusions of hyper-finite factors
of type I1;

The WCW metric defined as anti-commutators of the WCW gamma matrices is extremely degen-
erate since it effectively corresponds to a quadratic form in N-dimensional space, where N,, is the
total number of the eigenmodes of Dg. Since two Hamiltonians whose values and corresponding
Killing vector fields co-incide at the points of B are equivalent for given ray My, it is natural to
pose a cutoff in the number of Hamiltonians used for the representation of reduced WCW in given
region inside which induced K&ahler form is non-vanishing. The natural manner to pose this cutoff
is by ordering the representations with respect to dimension and eigenvalue of Casimir operator
for the irreducible representations of SO(3) x SO(4) in case of M® and for the representations of
SO(3) x SU(3) in case of H.

This boils down to a hierarchy of approximate representations of the WCW as Kéhler manifold
with spinor structure with a truncation of the Clifford algebra to a finite dimensional Clifford
algebra. This is in spirit with the proposed interpretation of the inclusion sequence of hyper-finite
factors of type II; and with the very notion of hyper-finiteness.

A rather concrete connection of WCW geometry with generalized eigenvalue spectrum of the
Kéhler-Dirac (K-D) operator and basic quantum physics suggests itself if the Dirac determinant
can be identified as exponent of Kéhler action. One must however be however aware of following
points.

1. It would be exaggeration to say that Kahler function emerges from K-D action. The reason
is that K-D gamma matrices appear in K-D action and internal consistency requires that an
extremal of K-D action is in question. Hence it seems that Khler action and K-D action are in
completely democratic position and one can wonder whether the possible connection actually
gives any profound insights or means anything practical. It could only create technical
challenges and one can claim that the definition of exponent of vacuum functional reducing
to exponent of Chern-Simons terms looks much more practical and elegant.

2. Kéhler function corresponds to Kahler action in Euclidian space-time regions assignable to
the lines of generalized Feynman diagrams. It is not clear whether one represent also the
Kéhler action from Minkowskian regions in this manner.

3. The definition of the Dirac determinant is far from obvious. The spectrum of the Kéahler Dirac
(KD) operator was originally identified in terms of generalized eigenvalues. The identification
coming first in mind would be in terms of conformal weights assignable to the modes of KD
operator. The experience with the string models suggests that these conformal weights are
integer valued, which would mean that the multiplicative contribution from given string world
sheet is constant and cannot depend on 3-surface at all!
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The boundary conditions at the string curves at the space-like ends of space-time surface
however give algebraic form of Dirac equation with the analog of Higgs coupling in algebraic
form (pk'y;~C +TI™)T =0, with p”* identifiable as four-momentum of fermionic line emanating
from partonic 2-surface. The normal component I'" (in time direction) of the vector defined
by K-D gamma matrices defines the analog of Higgs vacuum expectation value, and could be
covariantly constant along string curve for a suitable choice of string coordinates. h? = (I'™)?
could be interpreted as ground state conformal weight. In p-adic mass calculations ground
state conformal weight must be negative half-odd integer and the time-like character of I'™
could explain this. h? could have p-adically small deviation from half-odd integer value and
give rise to a Higgs like additional contribution to the conformal weights.

Since spinor modes effectively propagate as particles with momentum p* along braid strands
one could argue that one must include h? to the integer valued conformal weight so that
the square of Dirac determinant would be defined as as the product of conformal weights
h(n) = h? + nMZ, My the mass scale determined by CP; radius.

The resulting determinant - if well-defined - would depend on space-time surface and would
be obtained as a perturbation from the determinant assignable to Riemann Zeta. Modulus
squared for the exponent of vacuum functional would be analogous to the square of Dirac
determinant associated with a massless fermion with eigenvalues of m? replaced with h(n).
The overall determinant would be product over the determinants coming from various strings
and possibly also from he partonic 2-surfaces.

If one accepts this questionable proposal, one can relate WCW geometry directly to elementary
particle physics. For instance, from the general expression of Kéhler metric in terms of Kéahler
function

o _ OpOjexp(K)  Oyexp(K) drexp(K)
Gu = KoK = exp(K) erp(K) exp(K) (44.13)

and from the expression of exp(K) = [[, A; as the product of of finite number of eigenvalues of
Dx(X3), the expression

0RO\ B Ok Op lambda;
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Gy = (4.4.14)
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for the WCW metric follows. Here complex coordinates refer to the complex coordinates of WCW.

A good candidate for these complex coordinates are the complex coordinates of S2x S, S = CP,
or E* for the points of B so that a close connection with the geometry of imbedding space
is obtained. Once these coordinates have been specified G can be contracted with the Killing
vector fields of WCW isometries defining the coordinates for the truncated WCW. By studying
the behavior of eigenvalue spectrum under small deformations of X l3 by symplectic transformations
of 6C'D x S the components of G can be estimated.
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Does the Modified Dirac Equation
Define the Fundamental Action
Principle?

5.1 Introduction

Although quantum criticality in principle predicts the possible values of Kéhler coupling strength,
one might hope that there exists even more fundamental approach involving no coupling constants
and predicting even quantum criticality and realizing quantum gravitational holography. The Dirac
determinant associated with the Kéahler-Dirac action is an excellent candidate in this respect.

The original working hypothesis was that Dirac determinant defines the vacuum functional
of the theory having interpretation as product of the exponent of Kahler function of world of
classical worlds (WCW) identified as Kéhler action coming from Euclidian space-time regions and
the exponent of imaginary contribution identified as K&hler action from Minkowskian regions. It
seems however that the most one can demand is that Dirac determinant equals to the exponent of
Kahler action. The reason is that Kéhler-Dirac gamma matrices involving canonical momentum
densities for Kéhler action appear in modified (K&hler-Dirac) action.

5.1.1 What are the basic equations of quantum TGD?

A good place to start is to as what might the basic equations of quantum TGD. There are two
kinds of equations at the level of space-time surfaces.

1. Purely classical equations define the dynamics of the space-time sheets as preferred extremals
of Kéhler action. Preferred extremals are quantum critical in the sense that second varia-
tion vanishes for critical deformations representing zero modes. This condition guarantees
that corresponding fermionic currents linear in deformations are conserved. There is infinite
hierarchy of these currents and they define fermionic counterparts for zero modes.

Zero energy ontology (ZEO) was motivated by the non-determinism of Kéhler action sug-
gesting that it difficult to assign unique preferred extremal to given 3-surface in positive
energy ontology. In ZEO one can consider the possibility that the attribute ”preferred” is
not needed in given measurement resolution since the basic objects are now either pairs of
space-like 3-surfaces at the ends of CD or these plus parton orbits (light-like 3-surfaces at
which the signature of the induced metric changes).

2. The purely quantal equations are associated with the representations of various super-conformal
algebras and with the Kahler-Dirac equation. The requirement that there are deformations of
the space-time surface - actually infinite number of them - giving rise to conserved fermionic
charges implies quantum criticality at the level of Kéahler action in the sense of critical de-
formations.
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3. The precise forms of Kéhler action and Kéhler Dirac equation at effective and real boundaries
(boundary conditions) are not completely fixed without further input. For Kahler action the
inputs are Lagrange multiplier terms at boundary like 3-surfaces expressing weak form of
electric-magnetic duality and the equality of quantal and classical charges in Cartan algebra
required by quantum classical correspondence (QCC). These states with well-defined classical
charges might correspond to outcomes of state function reduction implying localization in
WCW.

The condition that fermionic propagator is non-trivial forces the addition of Chern-Simons
Dirac term at the partonic orbits at which the signature of the induced metric changes.
Supersymmetry requires the addition of Chern-Simons term at partonic orbits to Kahler
action. This means explicit breaking of CP and T. The effective reduction of both Kahler
and Kéahler-Dirac equation to boundary terms means enormous calculational simplification
and is consistent with the vision inspired by twistor approach [K44].

4. At the level of WCW spinor fields describing zero energy states quantal equations involve
also generalized Feynman rules for M-matrix generalizing S-matrix to a ”complex square
root” of density matrix and defined by time-like entanglement coefficients between positive
and negative energy parts of zero energy states is certainly the basic goal of quantum TGD.

5. The notion of weak electric-magnetic duality leads to a detailed understanding of how TGD
reduces to almost topological quantum field theory. If Kéhler current defines 4-D Beltrami
flow, it is possible to find a gauge in which Coulomb contribution to Kahler action vanishes so
that it reduces to Chern-Simons term. If light-like 3-surfaces and ends of space-time surface
are extremals of Chern-Simons action also effective 2-dimensionality is realized. The condi-
tion that the theory reduces to almost topological QFT and the hydrodynamical character of
field equations leads to a detailed ansatz for the general solution of field equations and also for
the solutions of the modified Dirac equation relying on the notion of Beltrami flow for which
the flow parameter associated with the flow lines defined by a conserved current extends to
a global coordinate. This makes the theory is in well-defined sense completely integrable.
Direct connection with massless theories emerges: every conserved Beltrami currents corre-
sponds to a pair of scalar functions with the first one satisfying massless d’Alembert equation
in the induced metric. The orthogonality of the gradients of these functions allows interpre-
tation in terms of polarization and momentum directions. The Beltrami flow property can
be also seen as one aspect of quantum criticality since the conserved currents associated with
critical deformations define this kind of pairs.

6. The hierarchy of Planck constants provides also a fresh view to the quantum criticality. The
original justification for the hierarchy of Planck constants came from the indications that
Planck constant could have large values in both astrophysical systems involving dark mat-
ter and also in biology. The realization of the hierarchy in terms of the singular coverings
and possibly also factor spaces of C'D and C'P, emerged from consistency conditions. It
however seems that TGD actually predicts this hierarchy of covering spaces. The extreme
non-linearity of the field equations defined by Kéhler action means that the correspondence
between canonical momentum densities and time derivatives of the imbedding space co-
ordinates is 1-to-many. This leads naturally to the introduction of the covering space of
CD x CP,, where CD denotes causal diamond defined as intersection of future and past
directed light-cones.

At the level of WCW there is the generalization of the Dirac equation, which can be regarded
as a purely classical Dirac equation. The modified Dirac operators associated with quarks and
leptons carry fermion number but the Dirac equations are well-defined. An orthogonal basis of
solutions of these Dirac operators define in zero energy ontology a basis of zero energy states. The
M-matrices defining entanglement between positive and negative energy parts of the zero energy
state define what can be regarded as analogs of thermal S-matrices. The M-matrices associated
with the solution basis of the WCW Dirac equation define by their orthogonality unitary U-matrix
between zero energy states. This matrix finds the proper interpretation in TGD inspired theory of
consciousness. WCW Dirac equation as the analog of super-Virasoro conditions for the ”gamma
fields” of superstring models defining super counterparts of Virasoro generators was the main focus
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during earlier period of quantum TGD but has not received so much attention lately and will not
be discussed in this chapter.

Quantum classical correspondence (QCC) requires a coupling between quantum and classical
and this coupling should also give rise to a generalization of quantum measurement theory. The
big question mark is how to realize this coupling.

1. The proposal discussed in this chapter is that the addition of a measurement interaction
term to the Kéhler-Dirac action could do the job, solve a handful of problems of quantum
TGD and unify various visions about the physics predicted by quantum TGD. This proposal
implies QCC at the level of Kéhler-Dirac action and Kéahler action.

2. Another possibility is that QCC is realized at the level of WCW Dirac operator and Kéhler-
Dirac operator contains only interior term. The vanishing of the normal component of fermion
current replaces Chern-Simons Dirac operator at various boundary like surfaces. I have pro-
posed that WCW spinor fields with given quantum charges in Cartan algebra are superposi-
tions of space-time surfaces with same classical charges. A stronger form of QCC at the level
of WCW would be that classical correlation functions for various geometric observables are
identical with quantal correlation functions.

QCC could be realized at the level of WCW by putting it in by hand. One can of course
consider also the possibility that the equality of quantal and classical Cartan charges is real-
ized by adding constraint terms realized using Lagrange multipliers at the space-like ends of
space-time surface at the boundaries of CD. This procedure would be very much like the ther-
modynamical procedure used to fix the average energy or particle number of the the system
with Lagrange multipliers identified as temperature or chemical potential. Since quantum
TGD in zero energy ontology (ZEQO) can be regarded as square root of thermodynamics, the
procedure looks logically sound.

5.1.2 Kahler-Dirac equation for induced classical spinor fields

The basic vision is that WCW geometry reduces to the second quantization of induced spinor fields.
This means that WCW gamma matrices are linear combinations of fermionic oscillator operators
and the Dirac determinant equals to vacuum functional of the theory. An unproven conjecture is
that this determinant equals to the exponent of Kéahler action for its preferred extremal.

The motivation for the Kéahler-Dirac action came from the observation that the counterpart
of the ordinary Dirac equation is internally consistent only if the space-time surfaces are minimal
surfaces. One can however assign to any general coordinate invariant action principle for space-
time surfaces a unique Kéahler-Dirac action, which is internally consistent and super-symmetric.
By quantum-classical correspondence space-time geometry must carry information about conserved
quantum charges assignable to partonic 2-surfaces and it took considerable to to realize that this
is achieved via measurement interaction terms realized as Lagrangian multiplier terms stating that
classical conserved charges belonging to Cartan algebra are equal to their quantum counterparts
for the space-time surfaces in quantum suerposition.

Second key idea [K69, K80] is that the well-definedness of em charge eigenvalue for spinor modes
requires their localization to 2-D string world sheets and possibly also partonic 2-surfaces at which
induced W boson field and possibly also Z° field vanish. Due to the presence of classical W boson
fields this is possible only if localization takes plce at 2-D string world sheets and partonic 2-surfaces.
Therefore string theory like structure emerges as part of TGD. The super Hamiltoanians defined
in terms fluxes of Hammiltonians over partonic 2-surfaces are modified: a super-Hamiltonian at
point of partonic 2-surface is replaced with an integral over stringy curve connecting points of two
partonic 2-surfaces. Boundary conditions for the modes of induced spinor field can be interpreted
as classical correlate for the stringy mass formula.

Preferred extremals as critical extremals

The study of the Kahler-Dirac equation leads to a detailed view about criticality. Quantum
criticality [D5] fixes the values of Kédhler coupling strength as the analog of critical temperature.
Quantum criticality implies that second variation of Kéhler action vanishes for critical deformations
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and the existence of conserved current except in the case of Cartan algebra of isometries. Quantum
criticality allows to fix the values of couplings appearing in the measurement interaction by using
the condition K — K + f + f. p-Adic coupling constant evolution can be understood also and
corresponds to scale hierarchy for the sizes of causal diamonds (CDs).

The discovery that the hierarchy of Planck constants realized in terms of singular covering spaces
of CD x CP, can be understood in terms of the extremely non-linear dynamics of Kéahler action
implying 1-to-many correspondence between canonical momentum densities and time derivatives
of the imbedding space coordinates led to a further very concrete understanding of the criticality
at space-time level and its relationship to zero energy ontology [K22] .

Criticality is accompanied by conformal invariance and this leads to the proposal that critical
deformations correspond to Kac-Moody type conformal algebra respecting the light-likeness of the
partonic orbits and acting trivially at partonic 2-surfaces. Sub-algebras of conformal algebras with
conformal weights divisible by integer n would act as gauge symmetries and these algebras would
form an inclusion hierarchy defining hierarchy of symmetry breakings. n would also characterize
the value of Planck constant h.rs = n X h assignable to various phases of dark matter.

Inclusion of the Chern-Simons Dirac term

Kahler action contains Chern-Simons term cancelling the Chern-Simons contribution of Kahler
action at space-time interior at partonic orbit reducing to Chern-Simons terms so that only the
contribution at space-like ends of space-time surface at the boundaries of causal diamond (CD)
remains.

By supersymmetry also Kahler-Dirac action contains Chern-Simons Dirac term at partonic
orbits implying non-trivial fermionic propagator at the boundaries of string world sheets at which
the spinor modes are localized. The generalized eigenvalues ip*y; of C-S-D operator correspond
to virtual four-momenta.

The inclusion of Chern-Simons term localized at partonic orbits to the definition of Kéahler
action and Chern-Simons-Dirac term to the definition Kéhler-Dirac action at partonic orbits implies
explicit breaking of CP and T. This term should explain the CP breaking associated with the CKM
matrix of quarks.

5.1.3 Dirac determinant as exponent of Kahler action?

Although quantum criticality in principle predicts the possible values of Kéahler coupling strength,
one might hope that there exists even more fundamental approach involving no coupling con-
stants and predicting even quantum criticality and realizing quantum gravitational holography.
An obvious guess is that Dirac determinant equals to the vacuum functional identified as expo-
nent of Kéahler function from Euclidian space-time regions and its its imaginary counterpart from
Minkowskian space-time regions. This does not mean that Kahler-Dirac action would be alone
enough as the original dream was. The reason is simple: K&hler-Dirac gamma matrices are defined
in terms of canonical momentum densities of Kéahler action.

1. The natural definition of Dirac determinant is as the product of the generalized eigenvalues.
This product makes sense in Clifford algebra and by symmetries must be equal proportional
to unit matrix. One can defined the product also as product of hyper-quaternionic numbers.
The product contains natural IR cutoff posed by the size of the CD involved and UV cutoff
defined by the size of the smalles sub-CD. The hypohtesis that the determinant equals to
exponent of Kahler action forces its finiteness. Dirac determinant depends on string world
sheet. For instance, if one poses periodic boundary conditions the generalized eigenvalues of
C-S-D operator depend on the length of the fermion line measured using the metric defined
by the anticommutators of C-S-D gamma matrices.

2. One can also add to Kéhler action 3-D boundary terms defining measurement interaction.
In particular, fixing the classical conserved charges of the space-time surfaces in the quan-
tum superposition. Also Kéhler-Dirac action contains measurement interaction term coming
from these terms. In absence of measurement interaction terms Kéahler-Dirac equation gives
boundary term I'"W¥ = 0. This equation is satisfied if one has T"W¥ = pF~, ¥ = 0 where



5.2. Weak form electric-magnetic duality and its implications 167

p¥ is light-like incoming four-momentum. Space-like boundaries correspond to on-mass-shell
states and do not contribute to Dirac determinant.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
There are concept maps about topics related to the contents of the chapter prepared using CMAP
realized as html files. Links to all CMAP files can be found here [L13]. Another glossary type
representation involving both pdf and html files can be found at http://www.tgdtheory.fi/
tgdglossary.pdf. The topics relevant to this chapter are given by the following list.

e TGD as infinite-dimensional geometry [L37]
e WCW spinor fields [L42]

e KD equation [L25]

e Kaehler-Dirac action [L24]

5.2 Weak form electric-magnetic duality and its implica-
tions

The notion of electric-magnetic duality [B2] was proposed first by Olive and Montonen and is
central in N/ = 4 supersymmetric gauge theories. It states that magnetic monopoles and ordinary
particles are two different phases of theory and that the description in terms of monopoles can be
applied at the limit when the running gauge coupling constant becomes very large and perturbation
theory fails to converge. The notion of electric-magnetic self-duality is more natural since for
CP, geometry Kéhler form is self-dual and Kahler magnetic monopoles are also Kahler electric
monopoles and Kéhler coupling strength is by quantum criticality renormalization group invariant
rather than running coupling constant. The notion of electric-magnetic (self-)duality emerged
already two decades ago in the attempts to formulate the Kahler geometric of world of classical
worlds. Quite recently a considerable step of progress took place in the understanding of this
notion [K10] . What seems to be essential is that one adopts a weaker form of the self-duality
applying at partonic 2-surfaces. What this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that this con-
cept leads to precise predictions. The point is that elementary particles do not generate monopole
fields in macroscopic length scales: at least when one considers visible matter. The first question is
whether elementary particles could have vanishing magnetic charges: this turns out to be impossi-
ble. The next question is how the screening of the magnetic charges could take place and leads to
an identification of the physical particles as string like objects identified as pairs magnetic charged
wormhole throats connected by magnetic flux tubes.

1. The first implication is a new view about electro-weak massivation reducing it to weak confine-
ment in TGD framework. The second end of the string contains particle having electroweak
isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak
scale would be in question. Hence the screening of electro-weak force takes place via weak
confinement realized in terms of magnetic confinement.

2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of
magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be
connected by flux tubes of length of order hadron size such that magnetic charges sum up to
zero. For instance, for baryonic valence quarks these charges could be (2, —1,—1) and could
be proportional to color hyper charge.

3. The highly non-trivial prediction making more precise the earlier stringy vision is that ele-
mentary particles are string like objects: this could become manifest at LHC energies.

4. The weak form electric-magnetic duality together with Beltrami flow property of Kahler leads
to the reduction of Kéhler action to Chern-Simons action so that TGD reduces to almost
topological QFT and that Kéahler function is explicitly calculable. This has enormous impact
concerning practical calculability of the theory.
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5. One ends up also to a general solution ansatz for field equations from the condition that the
theory reduces to almost topological QFT. The solution ansatz is inspired by the idea that
all isometry currents are proportional to Kahler current which is integrable in the sense that
the flow parameter associated with its flow lines defines a global coordinate. The proposed
solution ansatz would describe a hydrodynamical flow with the property that isometry charges
are conserved along the flow lines (Beltrami flow). A general ansatz satisfying the integrability
conditions is found.

The strongest form of the solution ansatz states that various classical and quantum currents
flow along flow lines of the Beltrami flow defined by Kéhler current (Kéhler magnetic field
associated with Chern-Simons action). Intuitively this picture is attractive. A more general
ansatz would allow several Beltrami flows meaning multi-hydrodynamics. The integrability
conditions boil down to two scalar functions: the first one satisfies massless d’Alembert
equation in the induced metric and the the gradients of the scalar functions are orthogonal.
The interpretation in terms of momentum and polarization directions is natural. Also Chern-
Simons Dirac equation implies the localization of solutions to flow lines, and this is consistent
with the localization solutions of Kéhler-Dirac equation to string world sheets.

5.2.1 Could a weak form of electric-magnetic duality hold true?

Holography means that the initial data at the partonic 2-surfaces should fix the WCW metric. A
weak form of this condition allows only the partonic 2-surfaces defined by the wormhole throats
at which the signature of the induced metric changes. A stronger condition allows all partonic
2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and string world sheets. Num-
ber theoretical vision suggests that hyper-quaternionicity resp. co-hyperquaternionicity constraint
could be enough to fix the initial values of time derivatives of the imbedding space coordinates in
the space-time regions with Minkowskian resp. Euclidian signature of the induced metric. This
is a condition on modified gamma matrices and hyper-quaternionicity states that they span a
hyper-quaternionic sub-space.

Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The argument
goes as follows.

1. The expression of the matrix elements of the metric and Kéahler form of WCW in terms of
the Kihler fluxes weighted by Hamiltonians of §M4{ at the partonic 2-surface X2 looks very
attractive. These expressions however carry no information about the 4-D tangent space of
the partonic 2-surfaces so that the theory would reduce to a genuinely 2-dimensional theory,
which cannot hold true. One would like to code to the WCW metric also information about
the electric part of the induced Ké&hler form assignable to the complement of the tangent
space of X2 C X*4.

2. Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial
manner to get electric magnetic duality at the level of the full theory would be via the
identification of the flux Hamiltonians as sums of of the magnetic and electric fluxes. The
presence of the induced metric is however troublesome since the presence of the induced
metric means that the simple transformation properties of flux Hamiltonians under symplectic
transformations -in particular color rotations- are lost.

3. A less trivial formulation of electric-magnetic duality would be as an initial condition which
eliminates the induced metric from the electric flux. In the Euclidian version of 4-D YM
theory this duality allows to solve field equations exactly in terms of instantons. This ap-
proach involves also quaternions. These arguments suggest that the duality in some form
might work. The full electric magnetic duality is certainly too strong and implies that space-
time surface at the partonic 2-surface corresponds to piece of C P, type vacuum extremal
and can hold only in the deep interior of the region with Euclidian signature. In the region
surrounding wormhole throat at both sides the condition must be replaced with a weaker
condition.
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4. To formulate a weaker form of the condition let us introduce coordinates (x°, 3, z!, 2?)

such (2!, 2?) define coordinates for the partonic 2-surface and (2°,23) define coordinates
labeling partonic 2-surfaces in the slicing of the space-time surface by partonic 2-surfaces
and string world sheets making sense in the regions of space-time sheet with Minkowskian
signature. The assumption about the slicing allows to preserve general coordinate invariance.
The weakest condition is that the generalized Kéhler electric fluxes are apart from constant
proportional to Kéhler magnetic fluxes. This requires the condition

J% g = KJia . (5.2.1)

A more general form of this duality is suggested by the considerations of [K22] reducing the
hierarchy of Planck constants to basic quantum TGD and also reducing Kéhler function for
preferred extremals to Chern-Simons terms [B1] at the boundaries of CD and at light-like
wormhole throats. This form is following

JPfg1 = Kex L5 /g1 . (5.2.2)

Here the index n refers to a normal coordinate for the space-like 3-surface at either boundary
of CD or for light-like wormhole throat. € is a sign factor which is opposite for the two ends of
CD. It could be also opposite of opposite at the opposite sides of the wormhole throat. Note
that the dependence on induced metric disappears at the right hand side and this condition
eliminates the potentials singularity due to the reduction of the rank of the induced metric
at wormhole throat.

5. Information about the tangent space of the space-time surface can be coded to the WCW
metric with loosing the nice transformation properties of the magnetic flux Hamiltonians if
Kahler electric fluxes or sum of magnetic flux and electric flux satisfying this condition are
used and K is symplectic invariant. Using the sum

Jo+ Iy = (1+K)J12 , (523)

where J denotes the Kahler magnetic flux, , makes it possible to have a non-trivial WCW
metric even for K = 0, which could correspond to the ends of a cosmic string like solution
carrying only Kahler magnetic fields. This condition suggests that it can depend only on
Kahler magnetic flux and other symplectic invariants. Whether local symplectic coordinate
invariants are possible at all is far from obvious, If the slicing itself is symplectic invariant
then K could be a non-constant function of X? depending on string world sheet coordinates.
The light-like radial coordinate of the light-cone boundary indeed defines a symplectically
invariant slicing and this slicing could be shifted along the time axis defined by the tips of
CD.

Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints are ob-
tained if one assumes that the quantization of electro-weak charges reduces to this condition at
classical level?

1. The first thing to notice is that the flux of J over the partonic 2-surface is analogous to
magnetic flux

Qm:%%Bcw‘:n .

n is non-vanishing only if the surface is homologically non-trivial and gives the homology
charge of the partonic 2-surface.
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2. The expressions of classical electromagnetic and Z° fields in terms of Kihler form [L1] , [L1]

read as
Fem .
v o= & I = 3 — sin®(6w)Ros
F
70 = gZhZ — 2Ry3 . (5.2.4)

Here Ry3 is one of the components of the curvature tensor in vielbein representation and F,,
and F'z correspond to the standard field tensors. From this expression one can deduce

€ . 9z
= —F 2 2Ry, . 2.
J o, Lem + sin*(Ow) antz (5.2.5)

3. The weak duality condition when integrated over X? implies

62 2
%Qem"’_%QZ,V = KjI{J:Kn ,
1'3
QZ,V = ?V - Qem , P= Sznz(GW) . (526)

Here the vectorial part of the Z° charge rather than as full Z° charge Q; = I%—l—sz'nQ Ow)Qem
appears. The reason is that only the vectorial isospin is same for left and right handed
components of fermion which are in general mixed for the massive states.

The coefficients are dimensionless and expressible in terms of the gauge coupling strengths
and using i = rhy one can write

oz 3
aeerm + p?QZ,V = — xrK 5

4
e? 9% Qem
em — 5 = = — 5.2.7
@ Ahy © Y% T dnhe  p(1—p) (5.2.7)

4. There is a great temptation to assume that the values of Q.,, and Qz correspond to their
quantized values and therefore depend on the quantum state assigned to the partonic 2-
surface. The linear coupling of the modified Dirac operator to conserved charges implies
correlation between the geometry of space-time sheet and quantum numbers assigned to the
partonic 2-surface. The assumption of standard quantized values for Q.. and @z would
be also seen as the identification of the fine structure constants a.,, and «yz. This however
requires weak isospin invariance.

The value of K from classical quantization of Kahler electric charge

The value of K can be deduced by requiring classical quantization of Kéahler electric charge.

1. The condition that the flux of F% = (h/gx)J? defining the counterpart of Kihler electric
field equals to the Kéhler charge gx would give the condition K = g% /h, where gf is Kéhler
coupling constant which should invariant under coupling constant evolution by quantum
criticality. Within experimental uncertainties one has ax = g%( /Amhy = Qe =~ 1/137, where
Qe 18 finite structure constant in electron length scale and Ay is the standard value of Planck
constant.
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2. The quantization of Planck constants makes the condition highly non-trivial. The most gen-
eral quantization of r is as rationals but there are good arguments favoring the quantization
as integers corresponding to the allowance of only singular coverings of CD andn CP,. The
point is that in this case a given value of Planck constant corresponds to a finite number
pages of the ”Big Book”. The quantization of the Planck constant implies a further quan-
tization of K and would suggest that K scales as 1/r unless the spectrum of values of Q¢
and @z allowed by the quantization condition scales as r. This is quite possible and the
interpretation would be that each of the r sheets of the covering carries (possibly same) el-
ementary charge. Kind of discrete variant of a full Fermi sphere would be in question. The
interpretation in terms of anyonic phases [K37] supports this interpretation.

3. The identification of J as a counterpart of eB/h means that Kéhler action and thus also
Kéhler function is proportional to 1/ak and therefore to A. This implies that for large
values of h Kihler coupling strength g% /47 becomes very small and large fluctuations are
suppressed in the functional integral. The basic motivation for introducing the hierarchy of
Planck constants was indeed that the scaling & — «/r allows to achieve the convergence
of perturbation theory: Nature itself would solve the problems of the theoretician. This of
course does not mean that the physical states would remain as such and the replacement of
single particles with anyonic states in order to satisfy the condition for K would realize this
concretely.

4. The condition K = g% /h implies that the Kiihler magnetic charge is always accompanied by
Kahler electric charge. A more general condition would read as

K = nx%{,neZ. (5.2.8)

This would apply in the case of cosmic strings and would allow vanishing K&ahler charge
possible when the partonic 2-surface has opposite fermion and anti-fermion numbers (for
both leptons and quarks) so that Kéhler electric charge should vanish. For instance, for
neutrinos the vanishing of electric charge strongly suggests n = 0 besides the condition that
abelian Z° flux contributing to em charge vanishes.

It took a year to realize that this value of K is natural at the Minkowskian side of the wormhole
throat. At the Euclidian side much more natural condition is

1
K = . 5.2.9
hbar ( )

In fact, the self-duality of C'P, Kéhler form favours this boundary condition at the Euclidian side
of the wormhole throat. Also the fact that one cannot distinguish between electric and magnetic
charges in Euclidian region since all charges are magnetic can be used to argue in favor of this
form. The same constraint arises from the condition that the action for C'P; type vacuum extremal
has the value required by the argument leading to a prediction for gravitational constant in terms
of the square of CP; radius and ay the effective replacement g% — 1 would spoil the argument.

The boundary condition Jg = Jp for the electric and magnetic parts of Kahlwer form at the
Fuclidian side of the wormhole throat inspires the question whether all Euclidian regions could
be self-dual so that the density of Kahler action would be just the instanton density. Self-duality
follows if the deformation of the metric induced by the deformation of the canonically imbedded
CP; is such that in CP, coordinates for the Euclidian region the tensor (¢®%g" — g‘“’g“ﬁ)/\/ﬁ
remains invariant. This is certainly the case for C'P; type vacuum extremals since by the light-
likeness of M* projection the metric remains invariant. Also conformal scalings of the induced
metric would satisfy this condition. Conformal scaling is not consistent with the degeneracy of the
4-metric at the wormhole.
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Reduction of the quantization of Kahler electric charge to that of electromagnetic
charge

The best manner to learn more is to challenge the form of the weak electric-magnetic duality based
on the induced Kahler form.

1.

Physically it would seem more sensible to pose the duality on electromagnetic charge rather
than Ké&hler charge. This would replace induced Kahler form with electromagnetic field,
which is a linear combination of induced Kahler field and classical Z° field

v = 3J—sin*0wRos ,
Z° = 2Rg; . (5.2.10)

Here Zy = 2Rg3 is the appropriate component of C' P, curvature form [L1]. For a vanishing
Weinberg angle the condition reduces to that for Kéhler form.

. For the Euclidian space-time regions having interpretation as lines of generalized Feynman

diagrams Weinberg angle should be non-vanishing. In Minkowskian regions Weinberg angle
could however vanish. If so, the condition guaranteeing that electromagnetic charge of the
partonic 2-surfaces equals to the above condition stating that the em charge assignable to
the fermion content of the partonic 2-surfaces reduces to the classical Kéhler electric flux
at the Minkowskian side of the wormhole throat. One can argue that Weinberg angle must
increase smoothly from a vanishing value at both sides of wormhole throat to its value in the
deep interior of the Euclidian region.

. The vanishing of the Weinberg angle in Minkowskian regions conforms with the physical

intuition. Above elementary particle length scales one sees only the classical electric field
reducing to the induced Kahler form and classical Z fields and color gauge fields are effec-
tively absent. Only in phases with a large value of Planck constant classical Z° field and
other classical weak fields and color gauge field could make themselves visible. Cell mem-
brane could be one such system [K41]. This conforms with the general picture about color
confinement and weak massivation.

The GRT limit of TGD suggests a further reason for why Weinberg angle should vanish in
Minkowskian regions.

1.

The value of the Kéhler coupling strength mut be very near to the value of the fine structure
constant in electron length scale and these constants can be assumed to be equal.

. GRT limit of TGD with space-time surfaces replaced with abstract 4-geometries would

naturally correspond to Einstein-Maxwell theory with cosmological constant which is non-
vanishing only in Euclidian regions of space-time so that both Reissner-Nordstrom metric and
CP, are allowed as simplest possible solutions of field equations [K56]. The extremely small
value of the observed cosmological constant needed in GRT type cosmology could be equal
to the large cosmological constant associated with C'P; metric multiplied with the 3-volume
fraction of Euclidian regions.

. Also at GRT limit quantum theory would reduce to almost topological QFT since Einstein-

Maxwell action reduces to 3-D term by field equations implying the vanishing of the Maxwell
current and of the curvature scalar in Minkowskian regions and curvature scalar + cosmo-
logical constant term in Euclidian regions. The weak form of electric-magnetic duality would
guarantee also now the preferred extremal property and prevent the reduction to a mere
topological QFT.

. GRT limit would make sense only for a vanishing Weinberg angle in Minkowskian regions. A

non-vanishing Weinberg angle would make sense in the deep interior of the Euclidian regions
where the approximation as a small deformation of C' P, makes sense.

The weak form of electric-magnetic duality has surprisingly strong implications for the basic
view about quantum TGD as following considerations show.



5.2. Weak form electric-magnetic duality and its implications 173

5.2.2 Magnetic confinement, the short range of weak forces, and color
confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one combines it
with some very general empirical facts such as the non-existence of magnetic monopole fields in
macroscopic length scales.

How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length scale
and one should have a mechanism neutralizing the monopole charge. How electroweak interactions
become short ranged in TGD framework is still a poorly understood problem. What suggests itself
is the neutralization of the weak isospin above the intermediate gauge boson Compton length by
neutral Higgs bosons. Could the two neutralization mechanisms be combined to single one?

1. In the case of fermions and their super partners the opposite magnetic monopole would be
a wormhole throat. If the magnetically charged wormhole contact is electromagnetically
neutral but has vectorial weak isospin neutralizing the weak vectorial isospin of the fermion
only the electromagnetic charge of the fermion is visible on longer length scales. The distance
of this wormhole throat from the fermionic one should be of the order weak boson Compton
length. An interpretation as a bound state of fermion and a wormhole throat state with the
quantum numbers of a neutral Higgs boson would therefore make sense. The neutralizing
throat would have quantum numbers of X_;,5 = v Vg or Xy, = Vivg. viVgr would
not be neutral Higgs boson (which should correspond to a wormhole contact) but a super-
partner of left-handed neutrino obtained by adding a right handed neutrino. This mechanism
would apply separately to the fermionic and anti-fermionic throats of the gauge bosons and
corresponding space-time sheets and leave only electromagnetic interaction as a long ranged
interaction.

2. One can of course wonder what is the situation situation for the bosonic wormhole throats
feeding gauge fluxes between space-time sheets. It would seem that these wormhole throats
must always appear as pairs such that for the second member of the pair monopole charges
and I3 cancel each other at both space-time sheets involved so that one obtains at both
space-time sheets magnetic dipoles of size of weak boson Compton length. The proposed
magnetic character of fundamental particles should become visible at TeV energies so that
LHC might have surprises in store!

Well-definedness of electromagnetic charge implies stringiness

Well-definedness of electromagnetic charged at string world sheets carrying spinor modes is very
natural constraint and not trivially satisfied because classical W boson fields are present. As a
matter fact, all weak fields should be effectively absent above weak scale. How this is possible
classical weak fields identified as induced gauge fields are certainly present.

The condition that em charge is well defined for spinor modes implies that the space-time region
in which spinor mode is non-vanishing has 2-D CP, projection such that the induced W boson
fields are vanishing. The vanishing of classical Z° field can be poses as additional condition - at
least in scales above weak scale. In the generic case this requires that the spinor mode is restricted
to 2-D surface: string world sheet or possibly also partonic 2-surface. This implies that TGD
reduces to string model in fermionic sector. Even for preferred extremals with 2-D projecting
the modes are expected to allow restriction to 2-surfaces. This localization is possible only for
Ka&hler-Dirac action.

A word of warning is however in order. The GRT limit or rather limit of TGD as Einstein
Yang-Mills theory replaces the sheets of many-sheeted space-time with Minkowski space with
effective metric obtained by summing to Minkowski metric the deviations of the induced metrics
of space-time sheets from Minkowski metric. For gauge potentials a similar identification applies.
YM-Einstein equations coupled with matter and with non-vanishing cosmological constant are
expected on basis of Poincare invariance. One cannot exclude the possibility that the sums of
weak gauge potentials from different space-time sheet tend to vanish above weak scale and that
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well-definedness of em charge at classical level follows from the effective absence of classical weak
gauge fields.

Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider also the
situation in which the magnetic charges of quarks (more generally, of color excited leptons and
quarks) do not vanish and they form color and magnetic singles in the hadronic length scale. This
would mean that magnetic charges of the state qii/2 — X+1/2 representing the physical quark
would not vanish and magnetic confinement would accompany also color confinement. This would
explain why free quarks are not observed. To how degree then quark confinement corresponds to
magnetic confinement is an interesting question.

For quark and antiquark of meson the magnetic charges of quark and antiquark would be
opposite and meson would correspond to a Kahler magnetic flux so that a stringy view about
meson emerges. For valence quarks of baryon the vanishing of the net magnetic charge takes
place provided that the magnetic net charges are (£2,F1,F1). This brings in mind the spectrum
of color hyper charges coming as (£2,F1,F1)/3 and one can indeed ask whether color hyper-
charge correlates with the Kahler magnetic charge. The geometric picture would be three strings
connected to single vertex. Amusingly, the idea that color hypercharge could be proportional to
color hyper charge popped up during the first year of TGD when I had not yet discovered CP»
and believed on M* x S2.

p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark
variants of particles suggest the existence of scaled up copies of QCD type physics and weak physics.
For p-adically scaled up variants the mass scales would be scaled by a power of v/2 in the most
general case. The dark variants of the particle would have the same mass as the original one. In
particular, Mersenne primes M, = 2¥ — 1 and Gaussian Mersennes Mg ; = (1 +14)* — 1 has been
proposed to define zoomed copies of these physics. At the level of magnetic confinement this would
mean hierarchy of length scales for the magnetic confinement.

One particular proposal is that the Mersenne prime Mgg should define a scaled up variant of
the ordinary hadron physics with mass scaled up roughly by a factor 2(107-89/2 = 512, The size
scale of color confinement for this physics would be same as the weal length scale. It would look
more natural that the weak confinement for the quarks of Mgg physics takes place in some shorter
scale and Mg is the first Mersenne prime to be considered. The mass scale of Mg; weak bosons
would be by a factor 29-61/2 = 214 higher and about 1.6 x 10* TeV. Mgy quarks would have
virtually no weak interactions but would possess color interactions with weak confinement length
scale reflecting themselves as new kind of jets at collisions above TeV energies.

In the biologically especially important length scale range 10 nm -2500 nm there are as many
as four scaled up electron Compton lengths L. (k) = v/5L(k): they are associated with Gaussian
Mersennes Mq j, k = 151,157,163,167. This would suggest that the existence of scaled up scales
of magnetic-, weak- and color confinement. An especially interesting possibly testable prediction is
the existence of magnetic monopole pairs with the size scale in this range. There are recent claims
about experimental evidence for magnetic monopole pairs [D3] .

Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one
recalls that electric-magnetic duality in super-symmetric quantum field theories means that the
descriptions in terms of particles and monopoles are in some sense dual descriptions. Fermions
would be replaced by string like objects defined by the magnetic flux tubes and bosons as pairs
of wormhole contacts would correspond to pairs of the flux tubes. Therefore the sharp distinction
between gravitons and physical particles would disappear.

The reason why gravitons are necessarily stringy objects formed by a pair of wormhole contacts
is that one cannot construct spin two objects using only single fermion states at wormhole throats.
Of course, also super partners of these states with higher spin obtained by adding fermions and
anti-fermions at the wormhole throat but these do not give rise to graviton like states [K19] . The
upper and lower wormhole throat pairs would be quantum superpositions of fermion anti-fermion
pairs with sum over all fermions. The reason is that otherwise one cannot realize graviton emission
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in terms of joining of the ends of light-like 3-surfaces together. Also now magnetic monopole
charges are necessary but now there is no need to assign the entities X1 with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below this
length scale the charges of the fermions become visible. Mersenne hypothesis suggests that some
Mersenne prime is in question. One proposal is that gravitonic size scale is given by electronic
Mersenne prime Mi57. It is however difficult to test whether graviton has a structure visible below
this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at all
clear how closely they relate to ordinary Feynman diagrams. All depends on what one is ready to
assume about what happens in the vertices. One could of course hope that zero energy ontology
could allow some very simple description allowing perhaps to get rid of the problematic aspects of
Feynman diagrams.

1. Consider first the recent view about generalized Feynman diagrams which relies zero energy
ontology. A highly attractive assumption is that the particles appearing at wormhole throats
are on mass shell particles. For incoming and outgoing elementary bosons and their super
partners they would be positive it resp. negative energy states with parallel on mass shell
momenta. For virtual bosons they the wormhole throats would have opposite sign of energy
and the sum of on mass shell states would give virtual net momenta. This would make
possible twistor description of virtual particles allowing only massless particles (in 4-D sense
usually and in 8-D sense in TGD framework). The notion of virtual fermion makes sense
only if one assumes in the interaction region a topological condensation creating another
wormhole throat having no fermionic quantum numbers.

2. The addition of the particles X* replaces generalized Feynman diagrams with the analogs of
stringy diagrams with lines replaced by pairs of lines corresponding to fermion and X, /s.
The members of these pairs would correspond to 3-D light-like surfaces glued together at the
vertices of generalized Feynman diagrams. The analog of 3-vertex would not be splitting of
the string to form shorter strings but the replication of the entire string to form two strings
with same length or fusion of two strings to single string along all their points rather than
along ends to form a longer string. It is not clear whether the duality symmetry of stringy
diagrams can hold true for the TGD variants of stringy diagrams.

3. How should one describe the bound state formed by the fermion and X*? Should one
describe the state as superposition of non-parallel on mass shell states so that the composite
state would be automatically massive? The description as superposition of on mass shell
states does not conform with the idea that bound state formation requires binding energy.
In TGD framework the notion of negentropic entanglement has been suggested to make
possible the analogs of bound states consisting of on mass shell states so that the binding
energy is zero [K28] . If this kind of states are in question the description of virtual states in
terms of on mass shell states is not lost. Of course, one cannot exclude the possibility that
there is infinite number of this kind of states serving as analogs for the excitations of string
like object.

4. What happens to the states formed by fermions and X.,,, in the internal lines of the
Feynman diagram? Twistor philosophy suggests that only the higher on mass shell excitations
are possible. If this picture is correct, the situation would not change in an essential manner
from the earlier one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles
should have stringy character in electro-weak length scales and could behaving to become manifest
at LHC energies. This adds one further item to the list of non-trivial predictions of TGD about
physics at LHC energies [K29] .

5.2.3 Could Quantum TGD reduce to almost topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD reduces
to almost topological quantum theory in the sense that the counterpart of Chern-Simons action as-
signed with the wormhole throats somehow dictates the dynamics. This proposal can be formulated
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also for the modified Dirac action action. I gave up this proposal but the following argument shows
that Kahler action with weak form of electric-magnetic duality effectively reduces to Chern-Simons
action plus Coulomb term.

1. Kahler action density can be written as a 4-dimensional integral of the Coulomb term j% A,
plus and integral of the boundary term J"BAg./g4 over the wormhole throats and of the
quantity J% Ag,/gs over the ends of the 3-surface.

2. If the self-duality conditions generalize to J"? = 47raKe”575J,y5 at throats and to J%% =
dra KGOM‘SJW; at the ends, the Kéhler function reduces to the counterpart of Chern-Simons
action evaluated at the ends and throats. It would have same value for each branch and the
replacement hy — rhy would effectively describe this. Boundary conditions would however
give 1/r factor so that i would disappear from the Kéhler function! The original attempt to
realize quantum TGD as an almost topological QFT was in terms of Chern-Simons action
but was given up. It is somewhat surprising that Kéhler action gives Chern-Simons action
in the vacuum sector defined as sector for which Kéhler current is light-like or vanishes.

Holography encourages to ask whether also the Coulomb interaction terms could vanish. This
kind of dimensional reduction would mean an enormous simplification since TGD would reduce to
an almost topological QFT. The attribute ”almost” would come from the fact that one has non-
vanishing classical Noether charges defined by K&hler action and non-trivial quantum dynamics in
M* degrees of freedom. One could also assign to space-time surfaces conserved four-momenta which
is not possible in topological QFTs. For this reason the conditions guaranteeing the vanishing of
Coulomb interaction term deserve a detailed analysis.

1. For the known extremals j& either vanishes or is light-like ("massless extremals” for which
weak self-duality condition does not make sense [K5] ) so that the Coulomb term vanishes
identically in the gauge used. The addition of a gradient to A induces terms located at the
ends and wormhole throats of the space-time surface but this term must be cancelled by the
other boundary terms by gauge invariance of Kihler action. This implies that the M* part of
WCW metric vanishes in this case. Therefore massless extremals as such are not physically
realistic: wormhole throats representing particles are needed.

2. The original naive conclusion was that since Chern-Simons action depends on C'P» coor-
dinates only, its variation with respect to Minkowski coordinates must vanish so that the
WCW metric would be trivial in M* degrees of freedom. This conclusion is in conflict with
quantum classical correspondence and was indeed too hasty. The point is that the allowed
variations of Kahler function must respect the weak electro-magnetic duality which relates
Kahler electric field depending on the induced 4-metric at 3-surface to the Kéhler magnetic
field. Therefore the dependence on M* coordinates creeps via a Lagrange multiplier term

/ Ao (J™ — K€" J5 gamma)/9adx (5.2.11)

The (1,1) part of second variation contributing to M* metric comes from this term.

3. This erratic conclusion about the vanishing of M* part WCW metric raised the question
about how to achieve a non-trivial metric in M* degrees of freedom. The proposal was
a modification of the weak form of electric-magnetic duality. Besides C'P, Kéhler form
there would be the Kéhler form assignable to the light-cone boundary reducing to that for
ry = constant sphere - call it J'. The generalization of the weak form of self-duality
would be J"# = "PYK (], 5 + 6J715). This form implies that the boundary term gives a
non-trivial contribution to the M* part of the WCW metric even without the constraint
from electric-magnetic duality. Kahler charge is not affected unless the partonic 2-surface
contains the tip of CD in its interior. In this case the value of Kéhler charge is shifted by a
topological contribution. Whether this term can survive depends on whether the resulting
vacuum extremals are consistent with the basic facts about classical gravitation.
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4. The Coulombic interaction term is not invariant under gauge transformations. The good
news is that this might allow to find a gauge in which the Coulomb term vanishes. The
vanishing condition fixing the gauge transformation ¢ is

Jx0ad = —j"Aa . (5.2.12)

This differential equation can be reduced to an ordinary differential equation along the flow
lines jx by using dz®/dt = j¢. Global solution is obtained only if one can combine the flow
parameter ¢ with three other coordinates- say those at the either end of CD to form space-
time coordinates. The condition is that the parameter defining the coordinate differential
is proportional to the covariant form of Kahler current: dt = ¢ji. This condition in turn
implies d*t = d(¢jx) = d(¢jx) = dé A jx + ¢djx = 0 implying jx A djg = 0 or more
concretely,

Eaﬁﬂyéj,é’ 8’le<<1€lta = 0. (5213)

ji is a four-dimensional counterpart of Beltrami field [B19] and could be called generalized
Beltrami field.

The integrability conditions follow also from the construction of the extremals of Kéahler
action [K5] . The conjecture was that for the extremals the 4-dimensional Lorentz force
vanishes (no dissipation): this requires jx A J = 0. One manner to guarantee this is the
topologization of the Kahler current meaning that it is proportional to the instanton current:
jx = ¢jr, where j; = *(J A A) is the instanton current, which is not conserved for 4-D CP,
projection. The conservation of jx implies the condition j§0,¢ = 0,j%¢ and from this ¢ can
be integrated if the integrability condition j; Adj; = 0 holds true implying the same condition
for ji. By introducing at least 3 or C' P, coordinates as space-time coordinates, one finds that
the contravariant form of j; is purely topological so that the integrability condition fixes the
dependence on M* coordinates and this selection is coded into the scalar function ¢. These
functions define families of conserved currents j% ¢ and j#¢ and could be also interpreted as
conserved currents associated with the critical deformations of the space-time surface.

5. There are gauge transformations respecting the vanishing of the Coulomb term. The vanish-
ing condition for the Coulomb term is gauge invariant only under the gauge transformations
A — A+ V¢ for which the scalar function the integral [ j%d.¢ reduces to a total divergence
a giving an integral over various 3-surfaces at the ends of CD and at throats vanishes. This
is satisfied if the allowed gauge transformations define conserved currents

Do(j%¢) = 0 . (5.2.14)

As a consequence Coulomb term reduces to a difference of the conserved charges Qf =
J 3°¢\/gad*x at the ends of the CD vanishing identically. The change of the Chern-Simons
type term is trivial if the total weighted Kahler magnetic flux Q' = > f JodA over wormhole
throats is conserved. The existence of an infinite number of conserved weighted magnetic
fluxes is in accordance with the electric-magnetic duality. How these fluxes relate to the flux
Hamiltonians central for WCW geometry is not quite clear.

6. The gauge transformations respecting the reduction to almost topological QFT should have
some special physical meaning. The measurement interaction term in the modified Dirac
interaction corresponds to a critical deformation of the space-time sheet and is realized as
an addition of a gauge part to the Kéahler gauge potential of C'P». It would be natural to
identify this gauge transformation giving rise to a conserved charge so that the conserved
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charges would provide a representation for the charges associated with the infinitesimal criti-
cal deformations not affecting Kahler action. The gauge transformed Kéhler gauge potential
couples to the modified Dirac equation and its effect could be visible in the value of Kéhler
function and therefore also in the properties of the preferred extremal. The effect on WCW
metric would however vanish since K would transform only by an addition of a real part of
a holomorphic function.

7. A first guess for the explicit realization of the quantum classical correspondence between
quantum numbers and space-time geometry is that the deformation of the preferred ex-
tremal due to the addition of the measurement interaction term is induced by a U(1) gauge
transformation induced by a transformation of dCD x CP, generating the gauge transfor-
mation represented by ¢. This interpretation makes sense if the fluxes defined by Q7' and
corresponding Hamiltonians affect only zero modes rather than quantum fluctuating degrees
of freedom.

8. Later a simpler proposal assuming Kahler action with Chern-Simons term at partonic orbits
and Ké&hler-Dirac action with Chern-Simons Dirac term at partonic orbits emerged. Mea-
surement interaction terms would correspond to Lagrange multiplier terms at the ends of
space-time surface fixing the values of classical conserved charges to their quantum values.
Super-symmetry requires the assignment of this kind of term also to modified Dirac action
as boundary term.

Kahler-Dirac equation gives rise to a boundary condition at space-like ends of the space-
time surface stating that the action of the Kéhler-Dirac gamma matrix in normal direction
annihilates the spinor modes. The normal vector would be light-like and the value of the
incoming on mass shell four-momentum would be coded to the geometry of the space-time
surface and string world sheet.

One can assign to partonic orbits Chern-Simons Dirac action and now the condition would
be that the action of C-S-D operator equals to that of massless M* Dirac operator. C-S-D
Dirac action would give rise to massless Dirac propagator. Twistor Grassmann approach
suggests that also the virtual fermions reduce effectively to massless on-shell states but have
non-physical helicity.

5.2.4 About the notion of measurement interaction

The notion of measurement has been central notion in quantum TGD but the precise definition of
this notion is far from clear. In the following two possibly equivalent formulations are considered.
The first formulation relies on the gauge transformations leaving Coulomb term of K&hler action
unchanged and the second one to the interpretation of TGD as a square root of thermodynamics
allowing to fix the values of conserved classical charges for zero energy energy state using Lagrange
multipliers analogous to chemical potentials.

1. There are gauge transformations respecting the vanishing of the Coulomb term. The vanish-
ing condition for the Coulomb term is gauge invariant only under the gauge transformations
A — A+ V¢ for which the scalar function the integral [ j%d,¢ reduces to a total divergence
a giving an integral over various 3-surfaces at the ends of CD and at throats vanishes. This
is satisfied if the allowed gauge transformations define conserved currents

Da(j%¢) = 0. (5.2.15)

As a consequence Coulomb term reduces to a difference of the conserved charges QZ, =
Ik j0¢@d3x at the ends of the CD vanishing identically. The change of the Chern-Simons
type term is trivial if the total weighted Kahler magnetic flux Q' = > | Jpd A over wormhole
throats is conserved. The existence of an infinite number of conserved weighted magnetic
fluxes is in accordance with the electric-magnetic duality. How these fluxes relate to the flux
Hamiltonians central for WCW geometry is not quite clear.
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2. The gauge transformations respecting the reduction to almost topological QFT should have
some special physical meaning. The measurement interaction term in the modified Dirac
interaction corresponds to a critical deformation of the space-time sheet and is realized as
an addition of a gauge part to the Kahler gauge potential of CP,. It would be natural to
identify this gauge transformation giving rise to a conserved charge so that the conserved
charges would provide a representation for the charges associated with the infinitesimal crit-
ical deformations not affecting Kéhler action.

The gauge transformed Kéhler potential couples to the modified Dirac equation and its effect
could be visible in the value of Kahler function and therefore also in the properties of the pre-
ferred extremal. The effect on WCW metric would however vanish since K would transform
only by an addition of a real part of a holomorphic function. Kéhler function is identified as
a Dirac determinant of Chern-Simons Dirac operator (after many turns and twists) and the
spectrum of this operator should not be invariant under these gauge transformations if this
picture is correct. This is is achieved if the gauge transformation is carried only in the Dirac
action corresponding to instanton term: this assumption is motivated by the breaking of time
reversal invariance induced by quantum measurements. The modification of Kéahler action
can be guessed to correspond just to the Chern-Simons contribution from the instanton term.

3. A reasonable looking guess for the explicit realization of the quantum classical correspon-
dence between quantum numbers and space-time geometry is that the deformation of the
preferred extremal due to the addition of the measurement interaction term is induced by a
U(1) gauge transformation induced by a transformation of 6C'D x C' P, generating the gauge
transformation represented by ¢. This interpretation makes sense if the fluxes defined by
QgL and corresponding Hamiltonians affect only zero modes rather than quantum fluctuating
degrees of freedom.

In zero energy ontology (ZEO) TGD can be seen as square root of thermodynamics and this
suggests an alternative manner to define what measurement interaction term means.

1. The condition that the space-time sheets appearing in superposition of space-time surfaces
with given quantum numbers in Cartan algebra have same classical quantum numbers as-
sociated with Kéahler action can be realized in terms of Lagrange multipliers in standard
manner. These kind of terms would be analogous to various chemical potential terms in
the partition function. One could call them measurement interaction terms. Measurement
interaction terms would code the values of quantum charges to the space-time geometry.

Kahler action contains also Chern-Simons term at partonic orbits compensating the Chern-
Simons terms coming from Kahler action when weak form of electric-magnetic duality is as-
sumed. This guarantees that Kahler action for preferred extremals reduces to Chern-Simons
terms at the space-like ends of the spacetime surface and one obtains almost topological
QFT.

2. If Kahler-Dirac action is constructed from Kahler action in super-symmetric manner by
defining the modified gamma matrices in terms of canonical momentum densities one obtains
also the fermionic counterparts of the Lagrange multiplier terms at partonic orbits and could
call also them measurement interaction terms. Besides this one has also the Chern-Simons
Dirac terms associated with the partonic orbits giving ordinary massless Dirac propagator.
In presence of measurement interaction terms at the space-like ends of the space-time surface
the boundary conditions I'"¥ = 0 at the ends would be modified by the addition of term
coming from the modified gamma matrix associated with the Lagrange multiplier terms. The
original generalized massless generalized eigenvalue spectrum p*~; of I'™ would be modified
to massive spectrum given by the condition

(" +> AT Da)¥ =0 ,

where @; refers to i:th conserved charge.
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An interesting question is whether these two manners to introduce measurement interaction
terms are actually equivalent.

To sum up, one could understand the basic properties of WCW metric in this framework. Effec-
tive 2-dimensionality would result from the existence of an infinite number of conserved charges in
two different time directions (genuine conservation laws plus gauge fixing). The infinite-dimensional
symmetric space for given values of zero modes corresponds to the Cartesian product of the WCWs
associated with the partonic 2-surfaces at both ends of CD and the generalized Chern-Simons term
decomposes into a sum of terms from the ends giving single particle Kéhler functions and to the
terms from light-like wormhole throats giving interaction term between positive and negative en-
ergy parts of the state. Hence Kéhler function could be calculated without any knowledge about
the interior of the space-time sheets and TGD would reduce to almost topological QFT as specu-
lated earlier. Needless to say this would have immense boost to the program of constructing WCW
Kahler geometry.

5.2.5 Kahler action for Euclidian regions as Kahler function and Kahler
action for Minkowskian regions as Morse function?

One of the nasty questions about the interpretation of Kéhler action relates to the square root of
the metric determinant. If one proceeds completely straightforwardly, the only reason conclusion is
that the square root is imaginary in Minkowskian space-time regions so that Kéhler action would
be complex. The Euclidian contribution would have a natural interpretation as positive definite
Kahler function but how should one interpret the imaginary Minkowskian contribution? Certainly
the path integral approach to quantum field theories supports its presence. For some mysterious
reason I was able to forget this nasty question and serious consideration of the obvious answer to
it. Only when I worked between possibile connections between TGD and Floer homology [K63]
I realized that the Minkowskian contribution is an excellent candidate for Morse function whose
critical points give information about WCW homology. This would fit nicely with the vision about
TGD as almost topological QFT.

Euclidian regions would guarantee the convergence of the functional integral and one would
have a mathematically well-defined theory. Minkowskian contribution would give the quantal
interference effects and stationary phase approximation. The analog of Floer homology would
represent quantum superpositions of critical points identifiable as ground states defined by the
extrema of Kahler action for Minkowskian regions. Perturbative approach to quantum TGD would
rely on functional integrals around the extrema of K&hler function. One would have maxima also
for the Kéhler function but only in the zero modes not contributing to the WCW metric.

There is a further question related to almost topological QFT character of TGD. Should
one assume that the reduction to Chern-Simons terms occurs for the preferred extremals in both
Minkowskian and Euclidian regions or only in Minkowskian regions?

1. All arguments for this have been represented for Minkowskian regions [K18] involve local
light-like momentum direction which does not make sense in the Euclidian regions. This does
not however kill the argument: one can have non-trivial solutions of Laplacian equation in the
region of C'P; bounded by wormhole throats: for C'Ps itself only covariantly constant right-
handed neutrino represents this kind of solution and at the same time supersymmetry. In the
general case solutions of Laplacian represent broken super-symmetries and should be in one-
one correspondences with the solutions of the modified Dirac equation. The interpretation for
the counterparts of momentum and polarization would be in terms of classical representation
of color quantum numbers.

2. If the reduction occurs in Euclidian regions, it gives in the case of C'P, two 3-D terms corre-
sponding to two 3-D gluing regions for three coordinate patches needed to define coordinates
and spinor connection for C' P, so that one would have two Chern-Simons terms. I have ear-
lier claimed that without any other contributions the first term would be identical with that
from Minkowskian region apart from imaginary unit and different coefficient. This statement
is wrong since the space-like parts of the corresponding 3-surfaces are discjoint for Euclidian
and Minkowskian regions.
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3. There is also an argument stating that Dirac determinant for Chern-Simons Dirac action
equals to Kéhler function, which would be lost if Euclidian regions would not obey holography.
The argument obviously generalizes and applies to both Morse and Kéhler function which
are definitely not proportional to each other.

CP breaking and ground state degeneracy

The Minkowskian contribution of K&ahler action is imaginary due to the negativity of the met-
ric determinant and gives a phase factor to vacuum functional reducing to Chern-Simons terms
at wormhole throats. Ground state degeneracy due to the possibility of having both signs for
Minkowskian contribution to the exponent of vacuum functional provides a general view about the
description of CP breaking in TGD framework.

1. In TGD framework path integral is replaced by inner product involving integral over WCV.
The vacuum functional and its conjugate are associated with the states in the inner product
so that the phases of vacuum functionals cancel if only one sign for the phase is allowed.
Minkowskian contribution would have no physical significance. This of course cannot be
the case. The ground state is actually degenerate corresponding to the phase factor and
its complex conjugate since /g can have two signs in Minkowskian regions. Therefore the
inner products between states associated with the two ground states define 2 x 2 matrix and
non-diagonal elements contain interference terms due to the presence of the phase factor. At
the limit of full C P, type vacuum extremal the two ground states would reduce to each other
and the determinant of the matrix would vanish.

2. A small mixing of the two ground states would give rise to CP breaking and the first principle
description of CP breaking in systems like K — K and of CKM matrix should reduce to
this mixing. K° mesons would be CP even and odd states in the first approximation and
correspond to the sum and difference of the ground states. Small mixing would be present
having exponential sensitivity to the actions of C'P, type extremals representing wormhole
throats. This might allow to understand qualitatively why the mixing is about 50 times
larger than expected for B° mesons.

3. There is a strong temptation to assign the two ground states with two possible arrows of geo-
metric time. At the level of M-matrix the two arrows would correspond to state preparation
at either upper or lower boundary of CD. Do long- and shortlived neutral K mesons corre-
spond to almost fifty-fifty orthogonal superpositions for the two arrow of geometric time or
almost completely to a fixed arrow of time induced by environment? Is the dominant part of
the arrow same for both or is it opposite for long and short-lived neutral measons? Different
lifetimes would suggest that the arrow must be the same and apart from small leakage that
induced by environment. CP breaking would be induced by the fact that CP is performed
only K° but not for the environment in the construction of states. One can probably imagine
also alternative interpretations.

5.2.6 A general solution ansatz based on almost topological QFT prop-
erty

The basic vision behind the ansatz is the reduction of quantum TGD to almost topological QFT.
This requires that the flow parameters associated with the flow lines of isometry currents and
Kahler current extend to global coordinates. This leads to integrability conditions implying gener-
alized Beltrami flow and Kéahler action for the preferred extremals reduces to Chern-Simons action
when weak electro-weak duality is applied as boundary conditions. The strongest form of the
hydrodynamical interpretation requires that all conserved currents are parallel to Kahler current.
In the more general case one would have several hydrodynamic flows. Also the braidings (several
of them for the most general ansatz) assigned with the light-like 3-surfaces are naturally defined
by the flow lines of conserved currents. The independent behavior of particles at different flow
lines can be seen as a realization of the complete integrability of the theory. In free quantum field
theories on mass shell Fourier components are in a similar role but the geometric interpretation
in terms of flow is of course lacking. This picture should generalize also to the solution of the
modified Dirac equation.
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Basic field equations

Consider first the equations at general level.

1. The breaking of the Poincare symmetry due to the presence of monopole field occurs and
leads to the isometry group 7' x SO(3) x SU(3) corresponding to time translations, rotations,
and color group. The Cartan algebra is four-dimensional and field equations reduce to the
conservation laws of energy E, angular momentum J, color isospin I3, and color hypercharge
Y.

2. Quite generally, one can write the field equations as conservation laws for I, J, I3, and Y.

D, [Ds(J*PHy) — jeHA + TP j4 hiydph'] = 0 . (5.2.16)

The first term gives a contraction of the symmetric Ricci tensor with antisymmetric Kahler
form and vanishes so that one has

Do [j&HA = TP jihudsh'] = 0 . (5.2.17)

For energy one has Hy = 1 and energy current associated with the flow lines is proportional
to the Kahler current. Its divergence vanishes identically.

3. One can express the divergence of the term involving energy momentum tensor as as sum of
terms involving j% J,3 and contraction of second fundamental form with energy momentum
tensor so that one obtains

JEDHY = jdlit +TPHE Gt (5.2.18)

Hydrodynamical solution ansatz

The characteristic feature of the solution ansatz would be the reduction of the dynamics to hydro-
dynamics analogous to that for a continuous distribution of particles initially at the end of X2 of
the light-like 3-surface moving along flow lines defined by currents j4 satisfying the integrability
condition j4 Adja = 0. Field theory would reduce effectively to particle mechanics along flow lines
with conserved charges defined by various isometry currents. The strongest condition is that all
isometry currents j4 and also Kahler current jx are proportional to the same current j. The more
general option corresponds to multi-hydrodynamics.

Conserved currents are analogous to hydrodynamical currents in the sense that the flow pa-
rameter along flow lines extends to a global space-time coordinate. The conserved current is
proportional to the gradient V® of the coordinate varying along the flow lines: J = YV ® and by
a proper choice of ¥ one can allow to have conservation. The initial values of ¥ and ® can be
selected freely along the flow lines beginning from either the end of the space-time surface or from
wormbhole throats.

If one requires hydrodynamics also for Chern-Simons action (effective 2-dimensionality is re-
quired for preferred extremals), the initial values of scalar functions can be chosen freely only at
the partonic 2-surfaces. The freedom to chose the initial values of the charges conserved along
flow lines at the partonic 2-surfaces means the existence of an infinite number of conserved charges
so that the theory would be integrable and even in two different coordinate directions. The basic
difference as compared to ordinary conservation laws is that the conserved currents are parallel
and their flow parameter extends to a global coordinate.
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1. The most general assumption is that the conserved isometry currents

IS = GRH =T jlhudsh! (5.2.19)

and Kahler current are integrable in the sense that J4 A J4 =0 and jx A jx = 0 hold true.
One could imagine the possibility that the currents are not parallel.

2. The integrability condition dJ4 A J4 = 0 is satisfied if one one has

Ja = Uudd, . (5.2.20)

The conservation of J4 gives

dx (Uaddy) = 0 . (5.2.21)

This would mean separate hydrodynamics for each of the currents involved. In principle
there is not need to assume any further conditions and one can imagine infinite basis of
scalar function pairs (¥ 4, ® 4) since criticality implies infinite number deformations implying
conserved Noether currents.

3. The conservation condition reduces to d’Alembert equation in the induced metric if one
assumes that VW, is orthogonal with every d® 4.

dvdPy = 0, dUy -dby=0 . (5.2.22)

Taking © = ®4 as a coordinate the orthogonality condition states g%’ 0j¥V4 = 0 and in
the general case one cannot solve the condition by simply assuming that ¥4 depends on
the coordinates transversal to ®4 only. These conditions bring in mind p-p =0 and p-e
condition for massless modes of Maxwell field having fixed momentum and polarization. d® 4
would correspond to p and d¥ 4 to polarization. The condition that each isometry current
corresponds its own pair (U4, ®4) would mean that each isometry current corresponds to
independent light-like momentum and polarization. Ordinary free quantum field theory
would support this view whereas hydrodynamics and QFT limit of TGD would support
single flow.

These are the most general hydrodynamical conditions that one can assume. One can consider
also more restricted scenarios.

1. The strongest ansatz is inspired by the hydrodynamical picture in which all conserved isom-
etry charges flow along same flow lines so that one would have

Ja = Uudd . (5.2.23)

In this case same ® would satisfy simultaneously the d’Alembert type equations.

dx«d® = 0, dVy-dd=0. (5.2.24)

This would mean that the massless modes associated with isometry currents move in parallel
manner but can have different polarizations. The spinor modes associated with light-light
like 3-surfaces carry parallel four-momenta, which suggest that this option is correct. This
allows a very general family of solutions and one can have a complete 3-dimensional basis of
functions W4 with gradient orthogonal to d®.
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2. Isometry invariance under T' x SO(3) x SU(3) allows to consider the possibility that one has

Ja = kaWadbgay , dx(dDa(A) =0, d¥, - ddg(A) =0 . (5.2.25)

where G(A) is T for energy current, SO(3) for angular momentum currents and SU(3) for
color currents. Energy would thus flow along its own flux lines, angular momentum along its
own flow lines, and color quantum numbers along their own flow lines. For instance, color
currents would differ from each other only by a numerical constant. The replacement of WU 4
with W4y would be too strong a condition since Killing vector fields are not related by a
constant factor.

To sum up, the most general option is that each conserved current J4 defines its own integrable
flow lines defined by the scalar function pair (U4,®4). A complete basis of scalar functions
satisfying the d’Alembert type equation guaranteeing current conservation could be imagined with
restrictions coming from the effective 2-dimensionality reducing the scalar function basis effectively
to the partonic 2-surface. The diametrically opposite option corresponds to the basis obtained by
assuming that only single ® is involved.

The proposed solution ansatz can be compared to the earlier ansatz [K22] stating that Kéahler
current is topologized in the sense that for D(CP;) = 3 it is proportional to the identically
conserved instanton current (so that 4-D Lorentz force vanishes) and vanishes for D(CP) = 4
(Maxwell phase). This hypothesis requires that instanton current is Beltrami field for D(CP,) = 3.
In the recent case the assumption that also instanton current satisfies the Beltrami hypothesis in
strong sense (single function ®) generalizes the topologization hypothesis for D(CP;) = 3. As
a matter fact, the topologization hypothesis applies to isometry currents also for D(CP;) = 4
although instanton current is not conserved anymore.

Can one require the extremal property in the case of Chern-Simons action?

Effective 2-dimensionality is achieved if the ends and wormhole throats are extremals of Chern-
Simons action. The strongest condition would be that space-time surfaces allow orthogonal slicings
by 3-surfaces which are extremals of Chern-Simons action.

Also in this case one can require that the flow parameter associated with the flow lines of the
isometry currents extends to a global coordinate. Kahler magnetic field B = *J defines a conserved
current so that all conserved currents would flow along the field lines of B and one would have 3-D
Beltrami flow. Note that in magnetohydrodynamics the standard assumption is that currents flow
along the field lines of the magnetic field.

For wormhole throats light-likeness causes some complications since the induced metric is degen-
erate and the contravariant metric must be restricted to the complement of the light-like direction.
This means that d’Alembert equation reduces to 2-dimensional Laplace equation. For space-like
3-surfaces one obtains the counterpart of Laplace equation with partonic 2-surfaces serving as
sources. The interpretation in terms of analogs of Coulomb potentials created by 2-D charge
distributions would be natural.

5.2.7 Hydrodynamic picture in fermionic sector

Super-symmetry inspires the conjecture that the hydrodynamical picture applies also to the solu-
tions of the modified Dirac equation. This would mean that the solutions of Dirac equation can
be localized to lower-dimensional surface or even flow lines.

Basic objection

The obvious objection against the localization to sub-manifolds is that it is not consistent with
uncertainty principle in transversal degrees of freedom. More concretely, the assumption that the
mode is localized to a lower-dimensional surface of X* implies that the action of the transversal
part of Dirac operator in question acts on delta function and gives something singular.
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The situation changes if the Dirac operator in question has vanishing transversal part at the
lower-dimensional surface. This is not possible for the Dirac operator defined by the induced metric
but is quite possible in the case of Kéhler-Dirac operator. For instance, in the case of massless
extremals Kéhler-Dirac gamma matrices are non-vanishing in single direction only and the solution
modes could be one-dimensional. For more general preferred extremals such as cosmic strings this
is not the case.

In fact, there is a strong physical argument in favor of the localization of spinor modes at 2-D
string world sheets so that hydrodynamical picture would result but with flow lines replaced with
fermionic string world sheets.

1. Well-definedness of electromagnetic charged at string world sheets carrying spinor modes is
very natural constraint and not trivially satisfied because classical W boson fields are present.
As a matter fact, all weak fields should be effectively absent above weak scale. How this is
possible classical weak fields identified as induced gauge fields are certainly present.

2. The condition that em charge is well defined for spinor modes implies that the space-time
region in which spinor mode is non-vanishing has 2-D C' P, projection such that the induced
W boson fields are vanishing. The vanishing of classical Z° field can be poses as additional
condition - at least in scales above weak scale. In the generic case this requires that the spinor
mode is restricted to 2-D surface: string world sheet or possibly also partonic 2-surface.
This implies that TGD reduces to string model in fermionic sector. Even for preferred
extremals with 2-D projecting the modes are expected to allow restriction to 2-surfaces.
This localization is possible only for Kahler-Dirac action and requires that the part of the
Kahler-Dirac operator transversal to 2-surface vanishes.

3. This localization does not hold for cosmic string solutions which however have 2-D CP,
projection which should have vanishing weak fields so that 4-D spinor modes with well-
defined em charge are possible.

4. A word of warning is however in order. The GRT limit or rather limit of TGD as Einstein
Yang-Mills theory replaces the sheets of many-sheeted space-time with Minkowski space with
effective metric obtained by summing to Minkowski metric the deviations of the induced met-
rics of space-time sheets from Minkowski metric. For gauge potentials a similar identification
applies. YM-Einstein equations coupled with matter and with non-vanishing cosmological
constant are expected on basis of Poincare invariance. One cannot exclude the possibility
that the sums of weak gauge potentials from different space-time sheet tend to vanish above
weak scale and that well-definedness of em charge at classical level follows from the effective
absence of classical weak gauge fields.

4-dimensional modified Dirac equation and hydrodynamical picture

In following consideration is restricted to preferred extremals for which one has decomposition to
regions characterized by local light-like vector and polarization direction. In this case one has good
hopes that the modes can be restricted to 1-D light-like geodesics.

Consider first the solutions of of the induced spinor field in the interior of space-time surface.

1. The local inner products of the modes of the induced spinor fields define conserved currents

DO‘J’I?LTL = 0 9
JS, = [ T ,
. OLxk
r« = —/—/——T% . 2.2
D) (5-2.26)

The conjecture is that the flow parameters of also these currents extend to a global coordinate
so that one would have in the completely general case the condition
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J';:m = 0, d¥Vpn
dx (dPpy) = 0, VU, P =0 . (5.2.27)

The condition ®,,,,, = ® would mean that the massless modes propagate in parallel manner
and along the flow lines of Kéahler current. The conservation condition along the flow line
implies tht the current component J,,, is constant along it. Everything would reduce to
initial values at the ends of the space-time sheet boundaries of CD and 3-D modified Dirac
equation would reduce everything to initial values at partonic 2-surfaces.

2. One might hope that the conservation of these super currents for all modes is equivalent with
the modified Dirac equation. The modes u, appearing in ¥ in quantized theory would be
kind of ”square roots” of the basis ®,,, and the challenge would be to deduce the modes
from the conservation laws.

3. The quantization of the induced spinor field in 4-D sense would be fixed by those at 3-D
space-like ends by the fact that the oscillator operators are carried along the flow lines as
such so that the anti-commutator of the induced spinor field at the opposite ends of the flow
lines at the light-like boundaries of CD is in principle fixed by the anti-commutations at the
either end. The anti-commutations at 3-D surfaces cannot be fixed freely since one has 3-D
Chern-Simons flow reducing the anti-commutations to those at partonic 2-surfaces.

The following argument suggests that induced spinor fields are in a suitable gauge simply
constant along the flow lines of the K&ahler current just as massless spinor modes are constant
along the geodesic in the direction of momentum.

1. The modified gamma matrices are of form TOT*, T = OL /9(9,h*). The H-vectors T can
be expressed as linear combinations of a subset of Killing vector fields j% spanning the tangent
space of H. For C'P, the natural choice are the 4 Lie-algebra generators in the complement
of U(2) sub-algebra. For CD one can used generator time translation and three generators of
rotation group SO(3). The completeness of the basis defined by the subset of Killing vector
fields gives completeness relation hf = j4%j 4. This implies T** = To‘kj;;‘jffl = TO‘Ajffl. One
can defined gamma matrices I'4 as T'j4 to get TET* = TAT 4.

2. This together with the condition that all isometry currents are proportional to the Kéahler
current (or if this vanishes to same conserved current- say energy current) satisfying Bel-
trami flow property implies that one can reduce the modified Dirac equation to an ordinary
differential equation along flow lines. The quantities T*4 are constant along the flow lines
and one obtains

TAj.DY = 0 . (5.2.28)

By choosing the gauge suitably the spinors are just constant along flow lines so that the spinor
basis reduces by effective 2-dimensionality to a complete spinor basis at partonic 2-surfaces.

5.3 An attempt to understand preferred extremals of Kahler
action

Preferred extremal of Kéhler action is one of the basic poorly defined notions of TGD. There are
pressing motivations for understanding what ”preferred” really means. For instance, the conformal
invariance of string models naturally generalizes to 4-D invariance defined by quantum Yangian
of quantum affine algebra (Kac-Moody type algebra) characterized by two complex coordinates
and therefore explaining naturally the effective 2-dimensionality [K61]. The problem is however
how to assign a complex coordinate with the string world sheet having Minkowskian signature
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of metric. One can hope that the understanding of preferred extremals could allow to identify
two preferred complex coordinates whose existence is also suggested by number theoretical vision
giving preferred role for the rational points of partonic 2-surfaces in preferred coordinates. The
best one could hope is a general solution of field equations in accordance with the hints that TGD
is integrable quantum theory.

5.3.1 What ”preferred” could mean?

The first question is what preferred extremal could mean.

1. In positive energy ontology preferred extremal would be a space-time surface assignable to
given 3-surface and unique in the ideal situation: since one cannot pose conditions to the
normal derivatives of imbedding space coordinates at 3-surface, there is infinity of extremals.
Some additional conditions are required and space-time surface would be analogous to Bohr
orbit : hence the attribute ”preferred”. The problem would be to understand what ”pre-
ferred” could mean. The non-determinism of Kéhler action however destroyed this dream in
its original form and led to zero energy ontology (ZEO).

2. In ZEO one considers extremals as space-time surfaces connecting two space-like 3-surfaces
at the boundaries. One might hope that these 4-surfaces are unique. The non-determinism
of Kahler action suggests that this is not the case. At least there is conformal invariance
respecting the light-likeness of the 3-D parton orbits at which the signature of the induced
metric changes: the conformal transformations would leave the space-like 3-D ends or at least
partonic 2-surfaces invariant. This non-determinism would correspond to quantum criticality.

3. Effective 2-dimensionality follows from strong form of general coordinate invariance (GCI)
stating that light-like partonic orbits and space-like 3-surfaces at the ends of space-time
surface are equivalent physically: partonic 2-surfaces and their 4-D tangent space data would
determine everything. One can however worry about how effective 2-dimensionality relates
to the the fact that the modes of the induced spinor field are localized at string world sheets
and partonic 2-surface. Are the tangent space data equivalent with the data characterizing
string world sheets as surfaces carrying vanishing electroweak fields?

There is however a problem: the hierarchy of Planck constants (dark matter) requires that
the conformal equivalence classes of light-like surfaces must be counted as physical degrees
of freedom so that either space-like or light-like surfaces do not seem to be quite enough.

Should one then include also the light-like partonic orbits to the what one calls 3-surface?
The resulting connected 3-surfaces would define analogs of Wilson loops. Could the conformal
equivalence class of the preferred extremal be unique without any additional conditions? If
so, one could get rid of the attribute ”preferred”. The fractal character of the many-sheeted
space-time however suggests that one can have this kind of uniqueness only in given length
scale resolution and that ”radiative corrections” due to the non-determinism are always
present.

These considerations show that the notion of preferred extremal is still far from being precisely
defined and it is not even clear whether the attribute ” preferred” is needed. If not then the question
is what are the extremals of Kéhler action.

5.3.2 What is known about extremals?

A lot is is known about properties of extremals and just by trying to integrate all this understand-
ing, one might gain new visions. The problem is that all these arguments are heuristic and rely
heavily on physical intuition. The following considerations relate to the space-time regions having
Minkowskian signature of the induced metric. The attempt to generalize the construction also to
Euclidian regions could be very rewarding. Only a humble attempt to combine various ideas to a
more coherent picture is in question.

The core observations and visions are following.
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1. Hamilton-Jacobi coordinates for M* (discussed in this chapter) define natural preferred co-
ordinates for Minkowskian space-time sheet and might allow to identify string world sheets
for X* as those for M*. Hamilton-Jacobi coordinates consist of light-like coordinate m and
its dual defining local 2-plane M? C M* and complex transversal complex coordinates (w, )
for a plane E? orthogonal to M2 at each point of M*. Clearly, hyper-complex analyticity
and complex analyticity are in question.

2. Space-time sheets allow a slicing by string world sheets (partonic 2-surfaces) labelled by
partonic 2-surfaces (string world sheets).

3. The quaternionic planes of octonion space containing preferred hyper-complex plane are
labelled by CP», which might be called CPy*°¢ [K52]. The identification CP, = C P34
motivates the notion of M® — —M* x C'P, duality [K13]. It also inspires a concrete solution
ansatz assuming the equivalence of two different identifications of the quaternionic tangent
space of the space-time sheet and implying that string world sheets can be regarded as
strings in the 6-D coset space G3/SU(3). The group G of octonion automorphisms has
already earlier appeared in TGD framework.

4. The duality between partonic 2-surfaces and string world sheets in turn suggests that the
C Py = C Py*°? conditions reduce to string model for partonic 2-surfaces in C Py = SU(3)/U(2).
String model in both cases could mean just hypercomplex/complex analyticity for the coor-
dinates of the coset space as functions of hyper-complex/complex coordinate of string world
sheet /partonic 2-surface.

The considerations of this section lead to a revival of an old very ambitious and very romantic
number theoretic idea.

1. To begin with express octonions in the form o = ¢; + Iq2, where ¢; is quaternion and [ is an
octonionic imaginary unit in the complement of fixed a quaternionic sub-space of octonions.
Map preferred coordinates of H = M* x CP, to octonionic coordinate, form an arbitrary
octonion analytic function having expansion with real Taylor or Laurent coefficients to avoid
problems due to non-commutativity and non-associativity. Map the outcome to a point of
H to get a map H — H. This procedure is nothing but a generalization of Wick rotation to
get an 8-D generalization of analytic map.

2. Identify the preferred extremals of Kéahler action as surfaces obtained by requiring the van-
ishing of the imaginary part of an octonion analytic function. Partonic 2-surfaces and string
world sheets would correspond to commutative sub-manifolds of the space-time surface and
of imbedding space and would emerge naturally. The ends of braid strands at partonic 2-
surface would naturally correspond to the poles of the octonion analytic functions. This
would mean a huge generalization of conformal invariance of string models to octonionic
conformal invariance and an exact solution of the field equations of TGD and presumably of
quantum TGD itself.

5.3.3 Basic ideas about preferred extremals
The slicing of the space-time sheet by partonic 2-surfaces and string world sheets

The basic vision is that space-time sheets are sliced by partonic 2-surfaces and string world sheets.
The challenge is to formulate this more precisely at the level of the preferred extremals of Kéahler
action.

1. Almost topological QFT property means that the Kéhler action reduces to Chern-Simons
terms assignable to 3-surfaces. This is guaranteed by the vanishing of the Coulomb term in
the action density implied automatically if conserved Kahler current is proportional to the
instanton current with proportionality coefficient some scalar function.

2. The field equations reduce to the conservation of isometry currents. An attractive ansatz is
that the flow lines of these currents define global coordinates. This means that these currents
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are Beltrami flows [B19] so that corresponding 1-forms J satisfy the condition J A dJ = 0.
These conditions are satisfied if

J=0oVVY

hold true for conserved currents. From this one obtains that W defines global coordinate
varying along flow lines of J.

3. A possible interpretation is in terms of local polarization and momentum directions defined
by the scalar functions involved and natural additional conditions are that the gradients of
U and ® are orthogonal:

Vo VI =0 ,

and that the ¥ satisfies massless d’Alembert equation

V20 =0

as a consequence of current conservation. If U defines a light-like vector field - in other words

VU-VU =0 ,

the light-like dual of @ -call it ®.- defines a light-like like coordinate and ® and ®. defines a
light-like plane at each point of space-time sheet.

If also ® satisfies d’Alembert equation

V2 =0 ,

also the current

K=9V®

is conserved and its flow lines define a global coordinate in the polarization plane orthogonal
to time-lik plane defined by local light-like momentum direction.

If ® allows a continuation to an analytic function of the transversal complex coordinate, one
obtains a coordinatization of space-time surface by ¥ and its dual (defining hyper-complex
coordinate) and w,w. Complex analyticity and its hyper-complex variant would allow to
provide space-time surface with four coordinates very much analogous with Hamilton-Jacobi
coordinates of M*.

This would mean a decomposition of the tangent space of space-time surface to orthogonal
planes defined by light-like momentum and plane orthogonal to it. If the flow lines of J
defined Beltrami flow it seems that the distribution of momentum planes is integrable.

4. General arguments suggest that the space-time sheets allow a slicing by string world sheets
parametrized by partonic 2-surfaces or vice versa. This would mean a intimate connection
with the mathematics of string models. The two complex coordinates assignable to the
Yangian of affine algebra would naturally relate to string world sheets and partonic 2-surfaces
and the highly non-trivial challenge is to identify them appropriately.
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Hamilton-Jacobi coordinates for M*

The earlier attempts to construct preferred extremals [K5] led to the realization that so called
Hamilton-Jacobi coordinates (m,w) for M* define its slicing by string world sheets parametrized
by partonic 2-surfaces. m would be pair of light-like conjugate coordinates associated with an
integrable distribution of planes M? and w would define a complex coordinate for the integrable
distribution of 2-planes E? orthogonal to M?. There is a great temptation to assume that these
coordinates define preferred coordinates for M*.

1. The slicing is very much analogous to that for space-time sheets and the natural question is
how these slicings relate. What is of special interest is that the momentum plane M? can
be defined by massless momentum. The scaling of this vector does not matter so that these
planes are labelled by points z of sphere S? telling the direction of the line M2 N E3, when
one assigns rest frame and therefore S? with the preferred time coordinate defined by the
line connecting the tips of CD. This direction vector can be mapped to a twistor consisting of
a spinor and its conjugate. The complex scalings of the twistor (u,@) — Au,@/A) define the
same plane. Projective twistor like entities defining C'P; having only one complex component
instead of three are in question. This complex number defines with certain prerequisites a
local coordinate for space-time sheet and together with the complex coordinate of E? could
serve as a pair of complex coordinates (z,w) for space-time sheet. This brings strongly in
mind the two complex coordinates appearing in the expansion of the generators of quantum
Yangian of quantum affine algebra [K61].

2. The coordinate ¥ appearing in Beltrami flow defines the light-like vector field defining M?2
distribution. Its hyper-complex conjugate would define ¥, and conjugate light-like direction.
An attractive possibility is that ® allows analytic continuation to a holomorphic function of
w. In this manner one would have four coordinates for M* also for space-time sheet.

3. The general vision is that at each point of space-time surface one can decompose the tangent
space to M?(z) C M* = M2 x E? representing momentum plane and polarization plane
E? C E2 x T(CP,). The moduli space of planes E? C E° is 8-dimensional and parametrized
by SO(6)/SO(2) x SO(4) for a given E2. How can one achieve this selection and what
conditions it must satisfy? Certainly the choice must be integrable but this is not the only
condition.

Space-time surfaces as associative/co-associative surfaces

The idea that number theory determines classical dynamics in terms of associativity condition
means that space-time surfaces are in some sense quaternionic surfaces of an octonionic space-
time. It took several trials before the recent form of this hypothesis was achieved.

1. Octonionic structure is defined in terms of the octonionic representaton of gamma matrices
of the imbedding space existing only in dimension D = 8 since octonion units are in one-one
correspondence with tangent vectors of the tangent space. Octonionic real unit corresponds
to a preferred time axes (and rest frame) identified naturally as that connecting the tips of
CD. What modified gamma matrices mean depends on variational principle for space-time
surface. For volume action one would obtain induced gamma matrices. For Kahler action
one obtains something different. In particular, the modified gamma matrices do not define
vector basis identical with tangent vector basis of space-time surface.

2. Quaternionicity means that the modified gamma matrices defined as contractions of gamma
matrices of H with canonical momentum densities for Kéhler action span quaternionic sub-
space of the octonionic tangent space [K18]. A further condition is that each quaternionic
space defined in this manner contains a preferred hyper-complex subspace of octonions.

3. The sub-space defined by the modified gamma matrices does not co-incide with the tangent
space of space-time surface in general so that the interpretation of this condition is far from
obvious. The canonical momentum densities need not define four independent vectors at
given point. For instance, for massless extremals these densities are proportional to light-like



5.3. An attempt to understand preferred extremals of Kéhler action 191

vector so that the situation is degenerate and the space in question reduces to 2-D hyper-
complex sub-space since light-like vector defines plane M?2.

The obvious questions are following.

1. Does the analog of tangent space defined by the octonionic modified gammas contain the local
tangent space M? C M* for preferred extremals? For massless extremals [K5] this condition
would be true. The orthogonal decomposition T(X*) = M? @&, E? can be defined at each
point if this is true. For massless extremals also the functions ¥ and ® can be identified.

2. One should answer also the following delicate question. Can M? really depend on point = of
space-time? CP, as a moduli space of quaternionic planes emerges naturally if M? is same
everywhere. It however seems that one should allow an integrable distribution of M2 such
that M2 is same for all points of a given partonic 2-surface.

How could one speak about fixed C'P; (the imbedding space) at the entire space-time sheet
even when M2 varies?

(a) Note first that G5 defines the Lie group of octonionic automorphisms and G» action is
needed to change the preferred hyper-octonionic sub-space. Various SU(3) subgroups
of Gy are related by G2 automorphism. Clearly, one must assign to each point of a
string world sheet in the slicing parameterizing the partonic 2-surfaces an element of
G5. One would have Minkowskian string model with G5 as a target space. As a matter
fact, this string model is defined in the target space G5/SU(3) having dimension D = 6
since SU(3) automorphisms leave given SU(3) invariant.

(b) This would allow to identify at each point of the string world sheet standard quaternionic
basis - say in terms of complexified basis vectors consisting of two hyper-complex units
and octonionic unit ¢; with ”color isospin” I3 = 1/2 and ”color hypercharge” Y = —1/3
and its conjugate g; with opposite color isospin and hypercharge.

(¢c) The CP, point assigned with the quaternionic basis would correspond to the SU(3)
rotation needed to rotate the standard basis to this basis and would actually corre-
spond to the first row of SU(3) rotation matrix. Hyper-complex analyticity is the basic
property of the solutions of the field equations representing Minkowskian string world
sheets. Also now the same assumption is highly natural. In the case of string mod-
els in Minkowski space, the reduction of the induced metric to standard form implies
Virasoro conditions and similar conditions are expected also now. There is no need to
introduce action principle -just the hyper-complex analycitity is enough-since Kahler
action already defines it.

3. The WZW model inspired approach to the situation would be following. The parameteriza-
tion corresponds to a map g : X2 — G4 for which g defines a flat G5 connection at string
world sheet. WZW type action would give rise to this kind of situation. The transition
Ga — G3/SU(3) would require that one gauges SU(3) degrees of freedom by bringing in
SU(3) connection. Similar procedure for CP, = SU(3)/U(2) would bring in SU(3) valued
chiral field and U(2) gauge field. Instead of introducing these connections one can simply
introduce Go/SU(3) and SU(3)/U(2) valued chiral fields. What this observation suggests
that this ansatz indeed predicts gluons and electroweak gauge bosons assignable to string
like objects so that the mathematical picture would be consistent with physical intuition.

The two interpretations of C' P,

An old observation very relevant for what I have called M® — H duality [K13] is that the moduli
space of quaternionic sub-spaces of octonionic space (identifiable as M®) containing preferred
hyper-complex plane is C'P,. Or equivalently, the space of two planes whose addition extends
hyper-complex plane to some quaternionic subspace can be parametrized by C'P,. This CP,
can be called it CP"°? to avoid confusion. In the recent case this would mean that the space
E?(x) C E? x T(CP,) is represented by a point of CPi*°¢. On the other hand, the imbedding of
space-time surface to H defines a point of "real” C'P,. This gives two different C Pss.
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1. The highly suggestive idea is that the identification CPj*°? = C'P, (apart from isometry) is
crucial for the construction of preferred extremals. Indeed, the projection of the space-time
point to CP, would fix the local polarization plane completely. This condition for E?(z)
would be purely local and depend on the values of C' P, coordinates only. Second condition
for E?(z) would involve the gradients of imbedding space coordinates including those of CP,
coordinates.

2. The conditions that the planes M2 form an integrable distribution at space-like level and that
M? is determined by the modified gamma matrices. The integrability of this distribution for
M* could imply the integrability for X2. X% would differ from M* only by a deformation in
degrees of freedom transversal to the string world sheets defined by the distribution of M?2s.

Does this mean that one can begin from vacuum extremal with constant values of CP
coordinates and makes them non-constant but allows to depend only on transversal degrees
of freedom? This condition is too strong even for simplest massless extremals for which C P,
coordinates depend on transversal coordinates defined by €-m and € - k. One could however
allow dependence of C'P, coordinates on light-like M* coordinate since the modification of
the induced metric is light-like so that light-like coordinate remains light-like coordinate in
this modification of the metric.

Therefore, if one generalizes directly what is known about massless extremals, the most
general dependence of C' P, points on the light-like coordinates assignable to the distribu-
tion of M2 would be dependence on either of the light-like coordinates of Hamilton-Jacobi
coordinates but not both.

5.3.4 What could be the construction recipe for the preferred extremals
assuming CP, = CPy? identification?

The crucial condition is that the planes E?(x) determined by the point of C P, = C'Py"°? identifica-
tion and by the tangent space of E2 x C' P, are same. The challenge is to transform this condition
to an explicit form. CP, = C’P{"Od identification should be general coordinate invariant. This
requires that also the representation of E? as (e2, e3) plane is general coordinate invariant suggest-
ing that the use of preferred C'P, coordinates - presumably complex Eguchi-Hanson coordinates
- could make life easy. Preferred coordinates are also suggested by number theoretical vision. A
careful consideration of the situation would be required.

The modified gamma matrices define a quaternionic sub-space analogous to tangent space of
X* but not in general identical with the tangent space: this would be the case only if the action
were 4-volume. I will use the notation 7" (X*) about the modified tangent space and call the
vectors of T™(X*) modified tangent vectors. I hope that this would not cause confusion.

CPy = C’P2m"d condition

Quaternionic property of the counterpart of T7*(X*) allows an explicit formulation using the
tangent vectors of T (X*).

1. The unit vector pair (eg,es) should correspond to a unique tangent vector of H defined
by the coordinate differentials dh* in some natural coordinates used. Complex Eguchi-
Hanson coordinates [L1] are a natural candidate for C'P; and require complexified octonionic
imaginary units. If octonionic units correspond to the tangent vector basis of H uniquely,
this is possible.

2. The pair (eg, e3) as also its complexification (¢1 = es + ie3,q, = ex — ie3) is expressible as a
linear combination of octonionic units Iy, ...I; should be mapped to a point of CPy*°% = CP,
in canonical manner. This mapping is what should be expressed explicitly. One should
express given (e, e3) in terms of SU(3) rotation applied to a standard vector. After that
one should define the corresponding C'P; point by the bundle projection SU(3) — CPs.

3. The tangent vector pair

(Owhk, Bh*)
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defines second representation of the tangent space of E?(x). This pair should be equivalent
with the pair (g1, g, ). Here one must be however very cautious with the choice of coordinates.
If the choice of w is unique apart from constant the gradients should be unique. One can use
also real coordinates (z,y) instead of (w = x + iy, W = x — iy) and the pair (ez, e3). One can
project the tangent vector pair to the standard vielbein basis which must correspond to the
octonionic basis

(8zhk,3yhk) — (8zhke?e,478yhke,?)e,4) + (ea,€3)

where the e4 denote the octonion units in 1-1 correspondence with vielbein vectors. This
expression can be compared to the expression of (e, e3) derived from the knowledge of C' P,
projection.

Formulation of quaternionicity condition in terms of octonionic structure constants

One can consider also a formulation of the quaternionic tangent planes in terms of (es, e3) expressed
in terms of octonionic units deducible from the condition that unit vectors obey quaternionic
algebra. The expressions for octonionic resp. quaternionic structure constants can be found at
[A17] resp. [A20].

1. The ansatz is

{Exy = {1, 5, B2, E3}
7 7
E2 = Egkek = ZElek s Ed = Egkek = ZEgkek s
k=2 k=2
By = 1, |Es|=1. (5.3.1)

2. The multiplication table for octonionic units expressible in terms of octonionic triangle [A17]
gives

¥ By, = By, YB3y = —Fy , [ EopFs =67 . (5.3.2)

Here the indices are raised by unit metric so that there is no difference between lower and
upper indices. Summation convention is assumed. Also the contribution of the real unit is
present in the structure constants of third equation but this contribution must vanish.

3. The conditions are linear and quadratic in the coefficients Fo; and E3; and are expected to
allow an explicit solution. The first two conditions define homogenous equations which must
allow solution. The coefficient matrix acting on (Eq, E3) is of the form

(%)
—1 fl ’

where 1 denotes unit matrix. The vanishing of the determinant of this matrix should be due
to the highly symmetric properties of the structure constants. In fact the equations can be
written as eigen conditions

fro (B +iE3) = Fi(Ey £iFE3) |

and one can say that the structure constants are eigenstates of the hermitian operator defined
by I analogous to color hyper charge. Both values of color hyper charged are obtained.
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Explicit expression for the CP, = CPy*°? conditions
The symmetry under SU(3) allows to construct the solutions of the above equations directly.

1. One can introduce complexified basis of octonion units transforming like (1,1,3,3) under
SU(3). Note the analogy of triplet with color triplet of quarks. One can write complexified
basis as (1, e1, (g1, ¢2,43), (1G2,G3))- The expressions for complexified basis elements are

1 ) ) .
(q1,q2,q3) = 5(62 + ie3, eq + ies, €6 + ie7) .

These options can be seen to be possible by studying octonionic triangle in which all lines
containing 3 units defined associative triple: any pair of octonion units at this kind of line
can be used to form pair of complexified unit and its conjugate. In the tangent space of
M* x CP, the basis vectors g1, and go are mixtures of E2 and C'P, tangent vectors. g3
involves only C'P, tangent vectors and there is a temptation to interpret it as the analog of
the quark having no color isospin.

2. The quaternionic basis is real and must transform like (1,1,¢1,q,), where ¢; is any quark
in the triplet and @, its conjugate in antitriplet. Having fixed some basis one can perform
SU(3) rotations to get a new basis. The action of the rotation is by 3 x 3 special unitary
matrix. The over all phases of its rows do not matter since they induce only a rotation in
(e2, e3) plane not affecting the plane itself. The action of SU(3) on ¢; is simply the action
of its first row on (g1, go, ¢3) triplet:

a1 = (U@ =Unq + Ur2g2 + Uraqs = 2101 + 2202 + 2343
= z1(eg +ie3) + za(eq +ies) + z3(es +ie7) . (5.3.3)

The triplets (21, 22, z3) defining a complex unit vector and point of S®. Since overall phase
does not matter a point of C'P; is in question. The new real octonion units are given by the
formulas

es — Re(z1)ea + Re(za)eq + Re(zz)eg — Im(z1)es — Im(z2)es — Im(z3)er
es — Im(z1)ea + Im(za)eq + Im(z3)es + Re(z1)es + Re(za)es + Re(zz)er .
(5.3.4)

For instance the C'P, coordinates corresponding to the coordinate patch (z1,29,23) with
z3 ?é 0 are obtained as (51,52) = (21/23, 22/2’3).

Using these expressions the equations expressing the conjecture C P, = C'Py*°? equivalence can

be expressed explicitly as first order differential equations. The conditions state the equivalence

(ea,e3) < (DhPefea,d b efleq) , (5.3.5)

where e4 denote octonion units. The comparison of two pairs of vectors requires normalization
of the tangent vectors on the right hand side to unit vectors so that one takes unit vector in the
direction of the tangent vector. After this the vectors can be equated. This allows to expresses
the contractions of the partial derivatives with vielbein vectors with the 6 components of e5 and
e3. Fach condition gives 646 first order partial differential equations which are non-linear by the
presence of the overal normalization factor for the right hand side. The equations are invariant
under scalings of (x,y). The very special form of these equations suggests that some symmetry is
involved.

It must be emphasized that these equations make sense only in preferred coordinates: ordinary
Minkowski coordinates and Hamilton-Jacobi coordinates for M* and Eguchi-Hanson complex co-
ordinates in which SU(2) x U(1) is represented linearly for C' P». These coordinates are preferred
because they carry deep physical meaning.
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Does TGD boil down to two string models?

mod

It is good to look what have we obtained. Besides Hamilton-Jacobi conditions, and C Py = C'P;
conditions one has what one might call string model with 6-dimensional G5/SU(3) as targent
space. The orbit of string in G5/SU(3) allows to deduce the G2 rotation identifiable as a point
of G2/SU(3) defining what one means with standard quaternionic plane at given point of string
world sheet. The hypothesis is that hyper-complex analyticity solves these equations.

The conjectured electric-magnetic duality implies duality between string world sheet and par-
tonic 2-surfaces central for the proposed mathematical applications of TGD [K23, K24, K50, K63].
This duality suggests that the solutions to the CP, = C' Py*°? conditions could reduce to holomor-
phy with respect to the coordinate w for partonic 2-surface plus the analogs of Virasoro conditions.
The dependence on light-like coordinate would appear as a parametric dependence.

If this were the case, TGD would reduce at least partially to what might be regarded as dual
string models in G5 /SU(3) and SU(3)/U(2) and also to string model in M* and X*! In the previous
arguments one ends up to string models in moduli spaces of string world sheets and partonic 2-
surfaces. TGD seems to yield an inflation of string models! This not actually surprising since the
slicing of space-time sheets by string world sheets and partonic 2-surfaces implies automatically
various kinds of maps having interpretation in terms of string orbits.

5.4 Handful of problems with a common resolution

Theory building could be compared to pattern recognition or to a solving a crossword puzzle. It
is essential to make trials, even if one is aware that they are probably wrong. When stares long
enough to the letters which do not quite fit, one suddenly realizes what one particular crossword
must actually be and it is soon clear what those other crosswords are. In the following I describe
an example in which this analogy is rather concrete.

I will first summarize the problems of ordinary Dirac action based on induced gamma ma-
trices and propose modified Dirac action (or K&hler Dirac action as solution). After that I will
describe the general structures of Kéhler action and Kéhler Dirac action. The non-trivial terms
are associated to 3-D boundary like surfaces - that is ends of space-time surface inside CD and
light-like 3-surfaces at which the signature of the induced metric changes. These terms are induced
as Lagrange multiplier terms guaranteeing weak form of E-M duality and quantum classical corre-
spondence (QCC) between classical and quantal Cartan charges. The condition guaranteeing that
Chern-Simons Dirac propagator reduces to ordinary massless Dirac propagator must be however
assumed as a property of the modes of Kéahler Dirac equation rather than forced by a separate
term in the Kahler-Dirac action as thought originally.

5.4.1 Why modified Dirac action?
Problems associated with the ordinary Dirac action

In the following the problems of the ordinary Dirac action are discussed and the notion of modified
Dirac action is introduced.

Minimal 2-surface represents a situation in which the representation of surface reduces to a
complex-analytic map. This implies that induced metric is hermitian so that it has no diagonal
components in complex coordinates (z,%Z) and the second fundamental form has only diagonal
components of type HY . This implies that minimal surface is in question since the trace of the
second fundamental form vanishes. At first it seems that the same must happen also in the more
general case with the consequence that the space-time surface is a minimal surface. Although
many basic extremals of Kéhler action are minimal surfaces, it seems difficult to believe that
minimal surface property plus extremization of Kahler action could really boil down to the absolute
minimization of Kéhler action or some other general principle selecting preferred extremals as Bohr
orbits [K10, K52] .

This brings in mind a similar long-standing problem associated with the Dirac equation for the
induced spinors. The problem is that right-handed neutrino generates super-symmetry only pro-
vided that space-time surface and its boundary are minimal surfaces. Although one could interpret
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this as a geometric symmetry breaking, there is a strong feeling that something goes wrong. In-
duced Dirac equation and super-symmetry fix the variational principle but this variational principle
is not consistent with Kéahler action.

One can also question the implicit assumption that Dirac equation for the induced spinors
is consistent with the super-symmetry of the WCW geometry. Super-symmetry would obviously
require that for vacuum extremals of Kéhler action also induced spinor fields represent vacua. This
is however not the case. This super-symmetry is however assumed in the construction of WCW
geometry so that there is internal inconsistency.

Super-symmetry forces modified Dirac equation

The above described three problems have a common solution. Nothing prevents from starting
directly from the hypothesis of a super-symmetry generated by covariantly constant right-handed
neutrino and finding a Dirac action which is consistent with this super-symmetry. Field equations
can be written as

DT = 0,
TY = ——Lk . (5.4.1)

If super-symmetry is present one can assign to this current its super-symmetric counterpart

Jak ﬁrkﬂarlq} ,
D,J* = 0. (5.4.2)

having a vanishing divergence. The isometry currents currents and super-currents are obtained by
contracting T and J* with the Killing vector fields of super-symmetries. Note also that the
super current

J* = wRIPTYY (5.4.3)
has a vanishing divergence.

By using the covariant constancy of the right-handed neutrino spinor, one finds that the diver-
gence of the super current reduces to

D,J** = wRT*TPT'D,Y .
(5.4.4)
The requirement that this current vanishes is guaranteed if one assumes that modified Dirac
equation
D, = 0,
re = T1ert . (5.4.5)

This equation must be derivable from a modified Dirac action. It indeed is. The action is given by

L = UI*D,0 . (5.4.6)

Thus the variational principle exists. For this variational principle induced gamma matrices are
replaced with effective induced gamma matrices and the requirement

D" = 0 (5.4.7)
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guaranteeing that super-symmetry is identically satisfied if the bosonic field equations are satis-
fied. For the ordinary Dirac action this condition would lead to the minimal surface property.
What sounds strange that the essentially hydrodynamical equations defined by Kéhler action have
fermionic counterpart: this is very far from intuitive expectations raised by ordinary Dirac equation
and something which one might not guess without taking super-symmetry very seriously.

How can one avoid minimal surface property?

These observations suggest how to avoid the emergence of the minimal surface property as a
consequence of field equations. It is not induced metric which appears in field equations. Rather,
the effective metric appearing in the field equations is defined by the anti-commutators of 4,

guu = {f‘p; fu} = 2T5Tvk . (548)

Here the index raising and lowering is however performed by using the induced metric so that
the problems resulting from the non-invertibility of the effective metric are avoided. It is this
dynamically generated effective metric which must appear in the number theoretic formulation of
the theory.

Field equations state that space-time surface is minimal surface with respect to the effective
metric. Note that a priori the choice of the bosonic action principle is arbitrary. The requirement
that effective metric defined by energy momentum tensor has only non-diagonal components except
in the case of non-light-like coordinates, is satisfied for the known solutions of field equations.

Does the modified Dirac action define the fundamental action principle?

There is quite fundamental and elegant interpretation of the modified Dirac action as a fundamental
action principle discussed also in [K52] . In this approach vacuum functional can be defined as the
Grassmannian functional integral associated with the exponent of the modified Dirac action. This
definition is invariant with respect to the scalings of the Dirac action so that theory contains no
free parameters.

An alternative definition is as a Dirac determinant which might be calculated in TGD framework
without applying the poorly defined functional integral. There are good reasons to expect that the
Dirac determinant equals to the exponent of Kéahler function for a preferred Bohr orbit like extremal
of the Kéahler action with the value of Kahler coupling strength coming out as a prediction. Hence
the dynamics of the modified Dirac action at light-like partonic 3-surfaces X 13, even when restricted
to almost-topological dynamics induced by Chern-Simons action, would dictate the dynamics at
the interior of the space-time sheet.

The knowledge of the symplectic currents and super-currents, together with the anti-commutation
relations stating that the fermionic super-currents S4 and Sp associated with Hamiltonians H 4 and
Hp anti-commute to a bosonic current H|4 pj, allows in principle to deduce the anti-commutation
relations satisfied by the induced spinor field. In fact, these conditions replace the usual anti-
commutation relations used to quantize free spinor field. Since the normal ordering of the Dirac
action would give Kéhler action,

Kahler coupling strength would be determined completely by the anti-commutation relations
of the super-symplectic algebra. Kéahler coupling strength would be dynamical and the selection
of preferred extremals of Kéahler action would be more or less equivalent with quantum criticality
because criticality corresponds to conformal invariance and the hyper-quaternionic version of the
super-conformal invariance results only for the extrema of Kahler action. p-Adic (or possibly
more general) coupling constant evolution and quantum criticality would come out as a prediction
whereas in the case that Kahler action is introduced as primary object, the value of Kahler coupling
strength must be fixed by quantum criticality hypothesis.

The mixing of the M* chiralities of the imbedding space spinors serves as a signal for particle
massivation and breaking of super-conformal symmetry. The induced gamma matrices for the
space-time surfaces which are deformations of M? indeed contain a small contribution from CPs
gamma matrices: this implies a mixing of M* chiralities even for the modified Dirac action so that
there is no need to introduce this mixing by hand.
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5.4.2 Overall view about Kahler action and Kahler Dirac action

In the following the most recent view about Kéhler action and the modified Dirac action (Kéhler-
Dirac action) is explained in more detail.

1. The minimal formulation involves in the bosonic case only 4-D Kahler action with Chern-
Simons boundary term localized to partonic orbits at which the signature of the induced
metric changes. The coefficient of Chern-Simons term is chosen so that this contribution to
bosonic action cancels the Chern-Simons term coming from Kéhler action (by weak form of
electric-magnetic duality) so that for preferred extremals Kéhler action reduces to Chern-
Simons terms at the ends of space-time surface at boundaries of causal diamond (CD).

There are constraint terms expressing weak form of electric-magnetic duality and constraints
forcing the total quantal charges for Kahler-Dirac action in Cartan algebra to be identical
with total classical charges for Kéhler action. This realizes quantum classical correspondence.
The constraints do not affect quantum fluctuating degrees of freedom if classical charges
parametrize zero modes so that the localization to a quantum superposition of space-time
surfaces with same classical charges is possible.

2. By supersymmetry requirement the modified Dirac action corresponding to the bosonic action
is obtained by associating to the various pieces in the bosonic action canonical momentum
densities and contracting them with imbedding space gamma matrices to obtain modified
gamma matrices. This gives rise to Kéhler-Dirac equation in the interior of space-time
surface. At partonic orbits one only assumes that spinors are generalized eigen modes of
Chern-Simons Dirac operator with generalized eigenvalues p*v; identified as virtual four-
momenta so that C-S-D term gives fermionic propagators. At the ends of space-time surface
one obtains boundary conditions stating in absence of measurement interaction terms that
fundamental fermions are massless on-mass-shell states.

Lagrange multiplier terms in Kahler action

Weak form of E-M duality can be realized by adding to Kéhler action 3-D constraint terms realized
in terms of Lagrange multipliers. These contribute to the Chern-Simons Dirac action too by
modifying the definition of the modified gamma matrices.

Quantum classical correspondence (QCC) is the principle motivating further additional terms
in Kéahler action.

1. QCC suggests a correlation between 4-D geometry of space-time sheet and quantum numbers.
This could result if the classical charges in Cartan algebra are identical with the quantal ones
assignable to Kéhler-Dirac action. This would give very powerful constraint on the allowed
space-time sheets in the superposition of space-time sheets defining WCW spinor field. An
even strong condition would be that classical correlation functions are equal to quantal ones.

2. The equality of quantal and classical Cartan charges could be realized by adding constraint
terms realized using Lagrange multipliers at the space-like ends of space-time surface at the
boundaries of CD. This procedure would be very much like the thermodynamical procedure
used to fix the average energy or particle number of the the system using Lagrange multipliers
identified as temperature or chemical potential. Since quantum TGD can be regarded as
square root of thermodynamics in zero energy ontology (ZEO), the procedure looks logically
sound.

3. The consistency with Kéhler-Dirac equation for which Chern-Simons boundary term at par-
ton orbits (not genuine boundaries) seems necessary suggests that also Kéhler action has
Chern-Simons term as a boundary term at partonic orbits. Ké&hler action would thus reduce
to contributions from the space-like ends of the space-time surface.

Boundary terms for Kahler-Dirac action

Weak form of E-M duality implies the reduction of Kéhler action to Chern-Simons terms for
preferred extremals satisfying j - A = 0 (contraction of K&hler current and Kéhler gauge potential
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vanishes). One obtains Chern-Simons terms at space-like 3-surfaces at the ends of space-time
surface at boundaries of causal diamond and at light-like 3-surfaces defined by parton orbits having
vanishing determinant of induced 4-metric. The naive guess that consistency requires Kéhler-Dirac-
Chern Simons equation at partonic orbits. This need not however be correct and therefore it is
best to carefully consider what one wants.

1. What one wants?

It is could to make first clear what one really wants.

1. What one wants is generalized Feynman diagrams demanding massless Dirac propagators at
the boundaries of string world sheets interpreted as fermionic lines of generalized Feynman
diagrams. This gives hopes that twistor Grassmannian approach emerges at QFT limit. This
boils down to the condition

VI = pty ¥ =0

at the space-like ends of space-time surface. The general idea is that the space-time geometry
near the fermion line would define the on mass shell massless four-momentum propagating
along the line and quantum classical correspondence would be realized.

The basic condition is thus that ,/g4I'™ is constant at the space-like boundaries of string
world sheets and depends only on the piece of this boundary representing fermion line rather
than on its point. Otherwise the propagator does not exist as a global notion. Constancy
allows to write \/g,["¥ = p*~, ¥ since only M* gamma matrices are constant.

Partonic orbits are not boundaries in the usual sense of the word and this condition is not
elegant at them since g4 vanishes at them. The assignement of Chern-Simons Dirac action
to partonic orbits required to be continuous at them solves the problems. One can require
that the induced spinors are generalized eigenstates of C-S-D operator with eigenvalues with
correspond to virtual four-moment. This guarantees that one obtains massless Dirac propa-
gator from C-S-D action. Note that the localization of induced spinor fields to string world
sheets implies that fermionic propagation takes place along their boundaries and one obtains
the braid picture.

2. If p* associated with the partonic orbit is light-like one can assume massless Dirac equation
and restriction of the induced spinor field inside the Euclidian regions defining the line of
generalized Feynman diagram since the fermion current in the normal direction vanishes.
The interpretation would be as on mass-shell massless fermion. If p¥ is not light-like, this
is not possible and induced spinor field is delocalized outside the Euclidian portions of the
line of generalized Feynman diagram: interactions would be basically due to the dispersion
of induced spinor fields to Minkowskian regions. The interpretation would be as a virtual
particle. The challenge is to find whether this interpretation makes sense and whether it
is possible to articulate this idea mathematically. The alternative assumption is that also
virtual particles can localized inside Euclidian regions.

3. One can wonder what the spectrum of p; could be. If the identification of p* as virtual
momentum is correct, continuous mass spectrum suggests itself. Boundary conditions at
the ends of CD might imply quantized mass spectrum and the study of C-S-D equation
indeed suggets this if periodic boundary conditions are assumed. For the incoming lines of
generalized Feynman diagram one expects light-like momenta so that I'™ should be light-like.
This assumption is consistent with super-conformal invariance since physical states would
correspond to bound states of massless fermions, whose four-momenta need not be parallel.
Stringy mass spectrum would be outcome of super-conformal invariance and 2-sheetedness
forced by boundary conditions for Kéhler action would be essential for massivation.

2. Chern-Simons Dirac action from mathematical consistency

A further natural condition is that the possible boundary term is well-defined. At partonic
orbits the boundary term of Kéhler-Dirac action need not be well-defined since /g4I becomes
singular. This leaves only Chern-Simons Dirac action
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under consideration at both sides of the partonic orbits and one can consider continuity of C-S-D
action as the boundary condition. Here I'¢,_ ¢ denotes the C-S-D gamma matrix, which does not
depend on the induced metric and is non-vanishing and well-defined. This picture conforms also
with the view about TGD as almost topological QFT.

One could restrict Chern-Simons-Dirac action to partonic orbits since they are special in the
sense that they are not genuine boundaries. Also Kéhler action would naturally contain Chern-
Simons term.

One can require that the action of Chern-Simons Dirac operator is equal to multiplication with
ipFy) so that massless Dirac propagator is the outcome. Since Chern-Simons term involves only
C'P, gamma matrices this would define the analog of Dirac equation at the level of imbedding space.
I have proposed this equation already earlier and introduction this it as generalized eigenvalue
equation having pseudomomenta p* as its solutions.

If C-S-D and C-S terms are assigned also with the space-like ends of space-time surface, Kahler
action and Kahler function vanish identically if the weak form of em duality holds true. Hence
C-S-D and C-S terms can be assigned only with partonic orbits. If space-like ends of space-time
surface involve no Chern-Simons term, one obtains the boundary condition

Vgl =0 (5.4.9)

at them. ¥ would behave like massless mode locally. The condition /gzI""¥ = —+*p, ¥ = 0 would
state that incoming fermion is massless mode globally. The physical interpretation would be as
incoming massless fermions.

Constraint terms at space-like ends of space-time surface

There are constraint terms coming from the condition that weak form of electric-magnetic duality
holds true and also from the condition that classical charges for the space-time sheets in the
superposition are identical with quantal charges which are net fermionic charges assignable to the
strings.

These terms give additional contribution to the algebraic equation I'"'¥ = 0 making in partial
differential equation reducing to ordinary differential equation if induced spinor fields are local-
ized at 2-D surfaces. These terms vanish if U is covariantly constant along the boundary of the
string world sheet so that fundamental fermions remain massless. By 1-dimensionality covariant
constancy can be always achieved.

Some details about Chern-Simons Dirac equation

To avoid confusion some general comments are in order. Only the Chern-Simons Dirac operator
will be considered. Modified gamma matrices contain also the contribution from the Lagrange
multiplier term stating weak form of electric-magnetic duality. At space-like 3-surface one has
also the contribution coming from the Lagrange multiplier terms identifying classical and quantal
charges in Cartan algebra.

When C-S-D action at partonic orbits is included, one obtains what I have called generalized
eigenvalue equation introduced in ad hoc manner in order to define Dirac determinant. Now Dirac
determinant at least formally reduces to the same expression as in massless gauge theories. Dirac
determinant could be also defined directly as the product of generalized eigenvalues p*+;, defining
virtual momenta propagating in fermion lines. Also the identification as hyperquaternions makes
sense and the outcome is by symmetries real number or perhaps complex number.

One can of course wonder whether the Dirac determinant has anything to do with the exponent
of Kahler action! Measurement interaction term states that the action of Dgc_g modified by
the contribution from em-duality constraint is identical with that of the Dirac operator of M*
regarded as algebraic multiplication with p*~;, where p¥ is the four-momentum associated with the
propagator line defined by the light-like orbit of parton. This simplifies the formalism enormously
and gives a direct connection with similar condition posed independently in twistorial approach
[K44].
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One can require that the modes annihilated by Kéhler-Dirac operator are eigenstates of C-S-D
oeprator with generalized eigenvalues p*+; giving rise to fermion propagator Consider now the
properties of eigenmodes of D¢e_g.

1. For p* = 0 there is vacuum avoidance in the sense that ¥ must vanish in the regions where
the modified gamma matrices vanish.

2. If only C'P, Kéhler form appears in the Kéhler action, the modified Dirac action defined by
the Chern-Simons term is non-vanishing only when the dimension of the C'P, projection of
the 3-surface is D(C'P;) > 2 and the induced Kéhler field is non-vanishing. This conforms
with the properties of Kéhler action.

D(CP,) < 2 is inconsistent with the weak form of electric-magnetic duality. The extrema
of Chern-Simons action have D(C'P,) < 2 and vanishing Chern-Simons density so that they
would naturally represent on mass shell particles appearing as incoming and outgoing parti-
cles. This conforms with the interpretation of the basic extremals as free particles (massless
extremals and cosmic strings with 2-D C' P, projection). One could say that CP breaking is
not present for free particles but unavoidably accompanies the propagator lines.

The explicit expression of Dc_g without constraint terms from the weak form of electric-
magnetic duality is given by

N 1 N
D = r“Du+§DMr# ,
AL 8LC—S naf l k
r = EN I'y=c¢ [2Jk18ah A[g + JaﬁAk} rp, ,
I
D,T* = B%(Jia +0aAr) ,
BY = P50 Jha = Jubas' , P =€ /g5 . (5.4.10)

Note é*#7 does not depend on the induced metric.
The extremals of Chern-Simons action satisfy

B (Ju + 0 AR)Ih = 0, BY =5, . (5.4.11)

For non-vanishing Kéhler magnetic field B* these equations hold true when CP, projection is
2-dimensional and S? projection is 1-dimensional or vice versa. This implies a vanishing of Chern-
Simons action for both options. Consider for the simplicity the case when S? projection is 1-
dimensional.

1. Suppose that one can assign a global coordinate to the flow lines of the Kahler magnetic field.
In this case one might hope that ordinary intuitions about motion in constant magnetic field
might be helpful. The repetition of the discussion of [K22] leads to the condition BAdB =0
implying that a Beltrami flow for which current flows along the field lines and Lorentz forces
vanishes is in question. This need not be the generic case.

2. With this assumption the Chern-Simons Dirac operator reduces to a one-dimensional Dirac
operator

D = & [2030.h' Ag + JupAi| T*D, . (5.4.12)

3. Consider first the general solutions of the modified Dirac equation when M* Dirac operator
p*, annhilates the spinor so that on mass shell massless fermion is in question. The spinor
is covariantly constant with respect to the coordinate 7:

DV = 0. (5.4.13)
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The solution to this condition can be written immediately in terms of a non-integrable phase
factor Pexp(i [ A,dr), where integration is along curve with constant transversal coordinates.
If T is light-like vector field also f”\Ilo defines a solution of Dx_g. This solution corresponds
to a zero mode for Do_g and does not contribute to the Dirac determinant. Note that the
dependence of these solutions on transversal coordinates of X} is arbitrary.

. For internal lines p*~v; does not annihilate the spinor although four-momentum can be still

on mass shell if the spinor has unphysical helicity. In this case the equation is modified.
Again the modes can be localized to 1-D curves.

. The formal solution associated with a general eigenvalue can be constructed by integrating

the eigenvalue equation separately along all coordinate curves. This makes sense if r indeed
assigned to light-like curves indeed defines a global coordinate.

The localization is of utmost importance since and is consistent with the localization of the
modes (other than right-handed neutrino) of Kéhler Dirac equation at string world sheets discussed
in chapter [K69]. String ends would thus define braid strands. The absence of correlation between
the behaviors with respect longitudinal coordinate and transversal coordinates looked very strange
at first glance. System looked like a collection of totally uncorrelated point like particles reflecting
the flow of the current along flux lines.

5.4.3 A connection with quantum measurement theory

It is encouraging that isometry charges and also other charges could make themselves visible in the
geometry of space-time surface as they should by quantum classical correspondence. This suggests
an interpretation in terms of quantum measurement theory.

1.

The interpretation resolves the problem caused by the fact that the choice of the commut-
ing isometry charges is not unique. Cartan algebra corresponds naturally to the measured
observables. For instance, one could choose the Cartan algebra of Poincare group to consist
of energy and momentum, angular momentum and boost (velocity) in particular direction
as generators of the Cartan algebra of Poincare group. In fact, the choices of a preferred
plane M? C M* and geodesic sphere S? C C'P;, allowing to fix the measurement sub-algebra
to a high degree are implied by the replacement of the imbedding space with a book like
structure forced by the hierarchy of Planck constants. Therefore the hierarchy of Planck
constants seems to be required by quantum measurement theory. One cannot overemphasize
the importance of this connection.

. One can add similar couplings of the net values of the measured observables to the cur-

rents whose existence and conservation is guaranteed by quantum criticality. It is essential
that one maps the observables to Cartan algebra coupled to critical current characterizing
the observable in question. The coupling should have interpretation as a replacement of
the induced Kéahler gauge potential with its gauge transform. Quantum classical correspon-
dence encourages the identification of the classical charges associated with Kéhler action with
quantal Cartan charges. This would support the interpretation in terms of a measurement
interaction feeding information to classical space-time physics about the eigenvalues of the
observables of the measured system. The resulting field equations remain second order par-
tial differential equations since the second order partial derivatives appear only linearly in
the added terms.

. What about the space-time correlates of electro-weak charges? The earlier proposal explains

this correlation in terms of the properties of quantum states: the coupling of electro-weak
charges to Chern-Simons term could give the correlation in stationary phase approximation.
It would be however very strange if the coupling of electro-weak charges with the geometry
of the space-time sheet would not have the same universal description based on quantum
measurement theory as isometry charges have.

(a) The hint as how this description could be achieved comes from a long standing un-
answered question motivated by the fact that electro-weak gauge group identifiable as
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the holonomy group of C'P, can be identified as U(2) subgroup of color group. Could
the electro-weak charges be identified as classical color charges? This might make sense
since the color charges have also identification as fermionic charges implied by quantum
criticality. Or could electro-weak charges be only represented as classical color charges
by mapping them to classical color currents in the measurement interaction term in the
modified Dirac action? At least this question might make sense.

It does not make sense to couple both electro-weak and color charges to the same fermion
current. There are also other fundamental fermion currents which are conserved. All
the following currents are conserved.

JY = VOr*w
O ¢ {1, J=Juxf | Sap , SapJ} . (5.4.14)

Here Jy; is the covariantly constant C'P, Kéhler form and X 45 is the (also covariantly)
constant sigma matrix of M* (flatness is absolutely essential).

Electromagnetic charge can be expressed as a linear combination of currents correspond-
ing to O = 1 and O = J and vectorial isospin current corresponds to J. It is natural
to couple of electromagnetic charge to the the projection of Killing vector field of color
hyper charge and coupling it to the current defined by O.,, = a + bJ. This allows to
interpret the puzzling finding that electromagnetic charge can be identified as anoma-
lous color hyper-charge for induced spinor fields made already during the first years
of TGD. There exist no conserved axial isospin currents in accordance with CVC and
PCAC hypothesis which belong to the basic stuff of the hadron physics of old days.

Color charges would couple naturally to lepton and quark number current and the U(1)
part of electro-weak charges to the n = 1 multiple of quark current and n = 3 multiple
of the lepton current (note that leptons resp. quarks correspond to t = 0 resp. t = +1
color partial waves). If electro-weak resp. couplings to H-chirality are proportional to
1 resp. T'g, the fermionic currents assigned to color and electro-weak charges can be
regarded as independent. This explains why the possibility of both vectorial and axial
couplings in 8-D sense does not imply the doubling of gauge bosons.

There is also an infinite variety of conserved currents obtained as the quantum critical
deformations of the basic fermion currents identified above. This would allow in principle
to couple an arbitrary number of observables to the geometry of the space-time sheet by
mapping them to Cartan algebras of Poincare and color group for a particular conserved
quantum critical current. Quantum criticality would therefore make possible classical
space-time correlates of observables necessary for quantum measurement theory.

The coupling constants associated with the deformations would appear in the couplings.
Quantum criticality (K — K + f + f condition) should predict the spectrum of these
couplings. In the case of momentum the coupling would be proportional to /G /hg=
kR/ho and k ~ 2! should follow from quantum criticality. p-Adic coupling constant
evolution should follow from the dependence on the scale of CD coming as powers of 2.

4. Quantum criticality implies fluctuations in long length and time scales and it is not surpris-
ing that quantum criticality is needed to produce a correlation between quantal degrees of
freedom and macroscopic degrees of freedom. Note that quantum classical correspondence
can be regarded as an abstract form of entanglement induced by the entanglement between
quantum charges @@ 4 and fermion number type charges assignable to zero modes.

5. Space-time sheets can have an arbitrary number of wormhole contacts so that the interpre-
tation in terms of measurement theory coupling short and long length scales suggests that
the measurement interaction terms are localizable at the wormhole throats. This would fa-
vor Chern-Simons term or possibly instanton term if reducible to Chern-Simons terms. The
breaking of CP and T might relate to the fact that state function reductions performed in
quantum measurements indeed induce dissipation and breaking of time reversal invariance.
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The formulation of quantum TGD in terms of the modified Dirac action requires the ad-
dition of CP and T breaking Chern-Simons term and corresponding Chern-Simons Dirac
term to partonic orbits such that it cancels the similar contribution coming from Kahler ac-
tion. Chern-Simons Dirac term fixed by superconformal symmetry and gives rise to massless
fermionic propagators at the boundaries of string world sheets. This seems to be a natural
first principle explanation for the CP breaking as it manifests at the level of CKM matrix
and perhaps also in breaking of matter antimatter asymmetry.

6. The experimental arrangement quite concretely splits the quantum state to a quantum su-
perposition of space-time sheets such that each eigenstate of the measured observables in
the superposition corresponds to different space-time sheet already before the realization of
state function reduction. This relates interestingly to the question whether state function
reduction really occurs or whether only a branching of wave function defined by WCW spinor
field takes place as in multiverse interpretation in which different branches correspond to dif-
ferent observers. TGD inspired theory consciousness requires that state function reduction
takes place. Maybe multiversalist might be able to find from this picture support for his own
beliefs.

7. One can argue that ”free will” appears not only at the level of quantum jumps but also as the
possibility to select the observables appearing in the modified Dirac action dictating in turn
the Kéhler function defining the Kéhler metric of WCW representing the ”laws of physics”.
This need not to be the case. The choice of CD fixes M? and the geodesic sphere S?: this does
not fix completely the choice of the quantization axis but by isometry invariance rotations
and color rotations do not affect Kahler function for given CD and for a given type of Cartan
algebra. In M* degrees of freedom the possibility to select the observables in two manners
corresponding to linear and cylindrical Minkowski coordinates could imply that the resulting
Kahler functions are different. The corresponding Kéhler metrics do not differ if the real
parts of the Kéahler functions associated with the two choices differ by a term f(Z) + f(2),
where Z denotes complex coordinates of WCW, the Kéhler metric remains the same. The
function f can depend also on zero modes. If this is the case then one can allow in given CD
superpositions of WCW spinor fields for which the measurement interactions are different.
This condition is expected to pose non-trivial constraints on the measurement action and
quantize coupling parameters appearing in it.

5.4.4 How to calculate Dirac determinant?

If the modes of the modified Dirac equation (or Kéhler-Dirac equation) are localized to 2-D string
world sheets as the well-definedness of em charge eigenvalue for the modes of induced spinor field
strongly suggests, the definition of Dirac determinant could be rather simple as following argument
shows.

The modes of Kahler-Dirac operator (modified Dirac operator) are localized at string world
sheets and are holomorphic spinors. K-D operator annihilates these modes so that Dirac determi-
nant must be assigned with the Chern-Simons Dirac term associated with the light-like partonic
orbits with vanishing metric determinant g4. Spinor modes at partonic orbits are assumed to be
generalized eigen modes of C-S-D operator with eigenvalues ip*~y;, with p* interpreted as virtual
momentum of the fermion propagating along lined defined by the string world sheet boundary.
Therefore C-S-D term acts effectively as massless Dirac action in perturbation theory.

The spectrum of p* is determined by the boundary conditions for C-S-D operator at the ends
of CD and periodic boundary conditions is one natural possibility. As in massless QFTs Dirac
determinant could be identified as a square root of the product of mass squared eigenvalues p?. If
the spectrum is unbounded, a regularization must be used. Finite measurement resolution means
UV and IR cutoffs and would make Dirac determinant finite. Finite IR resolution would be due to
the fact that only space-time surfaces within CD and thus having finite size scale are considered.
UV resolution would be due to the lower limit on the size of sub-CDs.

One can however define Dirac determinant directly as the product of the generalized eigenvalues
pFy, or as product of hyper-quaternions defined by p*. By symmetry arguments the outcome must
be real.
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The full Dirac determinant would be product of Dirac determinants associated with various
string world sheets. Needless to say that this is an enormous calculational advantage. If Dirac
determinant identified in this manner reduces to exponent of Kéhler action for preferred extremal
this definition of Dirac determinant should give exponent of Kahler function reducing by weak form
of electric-magnetic duality to exponent of Chern-Simons terms associated with the space-like ends
of the space-time surface. Euclidian and Minkowskian regions would give contributions different
by a phase factor /—1. The reduction of determinant to exponent of Chern-Simons terms would
guarantee its finiteness.

Before trying to calculate Dirac determinant it is good to try to guess what the reduction to
Chern Simons action could give as a result. This kind of guesses are of course highly speculative
but nothing prevents from trying.

1. Chern Simons action to which Kéahler action is expected to reduce for the preferred extremals
should be expressible in terms of invariants associated with string world sheets. The only
invariant, which comes in mind is K&hler magnetic flux, which is zero mode and by general vi-
sion quantized as integer, rational or even algebraic number for surfaces for which parameters
in their defining representations correspond to finite algebraic extensions of rationals. For
instance, fluxes could belong to rationals with p-adic norm not larger than p™ and allowing
realization as flux.

2. Finite measurement resolution suggests that the Kahler magnetic fluxes defined by J,/g2,
which is constant in preferred coordinates by the internal consistency of quantization of in-
duced spinors, are quantized as integer multiplies or rationals or even algebraic numbers
corresponding to the hierarchy of algebraic extensions assignable to the parameters char-
acterizing space-time surfaces (say the coefficients of polynomials defining the space-time
sheet). Therefore space-time surface itself would realize the finite measurement resolution
in their dynamics as the finiteness for the number of string world sheets and natural cutoffs
for the generalized eigenvalue spectrum of C-S-D operator, and the calculation of Dirac de-
terminant using finite number of string world sheets would not be an approximation. Finite
measurement resolution would be also a property of state.

3. The value of k could depend on string world sheet so that one would obtain K (X?3) oc 3, k;,
where the sum is sum over fluxes associated with string world sheets. Kahler function would
be equal to Chern-Simons term in turn equal to the sum of K&hler fluxes over all alowed
string world sheets: this looks indeed geometrically attractive.

4. The reduction of Chern-Simons action to a sum of terms proportional to Kéhler fluxes takes
place if Chern-Simons action is apart from a vanishing integral of divergence proportional to
the sum ), fci A, dz¥ around the string world sheet. This form would have interpretation in
terms of a coupling of charged particles at braid strands to Kahler potential so that particle
picture would emerge.

5. Since magnetic flux is conserved, one can argue that Chern-Simons term reduces to an integral
of constant magnetic flux J over transverse degrees of freedom multiplied by integral over
the boundary of string world sheet given by §C A, (dz*/ds)ds so that one indeed obtains
the desired result. The result is non-vanishing only for monopole flux. Elementary particles
indeed correspond to throats carrying monopole flux.

6. The arguent about finite measurement resolution can be of course criticized. An alternative
argument relies on idea that the sum over logariths of eigenvalues reduces to integral using as
measure the transversal induced Kéhler form Jp and the magnetic flux J over string world
sheet. This conforms with the existence of slicing by string world sheets labelled by points
of partonic 2-surface.

The formula would be

K %J(m,y)JTd:cl/\dx2 . (5.4.15)
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This would be non-local analog for the local quadratic dependence of Kéhler action on Kéhler
form. This decomposition might have interpretation in terms of intersections of 2-D surfaces
in relative homology.

5.5 Quantum criticality and modified Dirac action

The precise mathematical formulation of quantum criticality has remained one of the basic chal-
lenges of quantum TGD. The belief has been that the existence of conserved current for modified
Dirac equation are possible if Kahler action is critical for the 3-surface in question in the sense
that the deformation in question corresponds to vanishing of second variation of Kahler action.
The vanishing of the second variation states that the deformation of the modified gamma matrix
is divergence free just like the modified gamma matrix itself and is therefore very natural.

2-D conformal invariance accompanies 2-D criticality and allows to satisfy these conditions for
spinor modes localized at 2-D surfaces - string world sheets and possibly also partonic 2-surfaces.
This localization is in the generic case forced by the conditions that em charge is well-defined for
the spinor modes: this requires that classical W fields vanish and also the vanishing of classical Z°
field is natural -at least above weak scale. Only 2 modified gamma matrices can be non-vanishing
and this is possible only for Kahler-Dirac action.

5.5.1 What quantum criticality could mean?

Quantum criticality is one of the basic guiding principles of Quantum TGD. What it means math-
ematically is however far from clear and one can imagine several meanings for it.

1. What is obvious is that quantum criticality implies quantization of Kéhler coupling strength
as a mathematical analog of critical temperature so that the theory becomes mathematically
unique if only single critical temperature is possible. Physically this means the presence of
long range fluctuations characteristic for criticality and perhaps assignable to the effective
hierarchy of Planck constants having explanation in terms of effective covering spaces of the
imbedding space. This hierarchy follows from the vacuum degeneracy of Kéhler action, which
in turn implies 4-D spin-glass degeneracy. It is easy to interpret the degeneracy in terms of
criticality.

2. At more technical level one would expect criticality to correspond to deformations of a given
preferred extremal defining a vanishing second variation of Kéhler Khler function or Kéahler
action.

(a) For Kéhler function this criticality is analogous to thermodynamical criticality. The
Hessian matrix defined by the second derivatives of free energy or potential function
becomes degenerate at criticality as function of control variables which now would be
naturally zero modes not contribution to Kahler metric of WCW but appearing as
parameters in it. The bevavior variables correspond to quantum fluctuating degrees of
freedom and according to catastrophe theory a big change can in quantum fluctuating
degrees of freedom at criticality for zero modes. This would be control of quantum
state by varying classical variables. Cusp catastrophe is standard example of this. One
can imagined also a situation in which the roles of zero modes and behavior variables
change and big jump in the values of zero modes is induced by small variation in behavior
variables. This would mean quantum control of classical variables.

(b) Zero modes controlling quantum fluctuating variables in Kéhler function would cor-
respond to vanishing of also second derivatives of potential function at extremum in
certain directions so that the matrix defined by second derivatives does not have max-
imum rank. Entire hierarchy of criticalities is expected and a good finite-dimensional
model is provided by the catastrophe theory of Thom [?]. Cusp catastrophe [A2] is the
simplest catastrophe one can think of, and here the folds of cusp where discontinuous
jump occurs correspond to criticality with respect to one control variable and the tip to
criticality with respect to both control variables.


http://en.wikipedia.org/wiki/Catastrophe_theory#Cusp_catastrophe
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3. Quantum criticality makes sense also for Kéhler action.

(a)

Now one considers space-time surface connecting which 3-surfaces at the boundaries of
CD. The non-determinism of Kéhler action allows the possibility of having several space-
time sheets connecting the ends of space-time surface but the conditions that classical
charges are same for them reduces this number so that it could be finite. Quantum
criticality in this sense implies non-determinism analogous to that of critical systems
since preferred extremals can co-incide and suffer this kind of bifurcation in the interior
of CD. This quantum criticality can be assigned to the hierarchy of Planck constants and
the integer n in hepy = n x h [K17] corresponds to the number of degenerate space-time
sheets with same Kéhler action and conserved classical charges.

Also now one expects a hierarchy of criticalities and and since criticality and confor-
mal invariance are closely related, a natural conjecture is that the fractal hierarchy of
sub-algebras of conformal algebra isomorphic to conformal algebra itself and having
conformal weights coming as multiples of n corresponds to the hierarchy of Planck con-
stants. This hierarchy would define a hierarchy of symmetry breakings in the sense that
only the sub-algebra would act as gauge symmetries.

The assignment of this hierarchy with super-symplectic algebra having conformal struc-
ture with respect to the light-like radial coordinate of light-cone boundary looks very
attractive. An interesting question is what is the role of the super-conformal alge-
bra associated with the isometries of light-cone boundary Ry x S? which are confor-
mal transformations of sphere S? with a scaling of radial coordinate compensating the
scaling induced by the conformal transformation. Does it act as dynamical or gauge
symmetries?

4. T have discussed what criticality could mean for modified Dirac action [K18] .

(a)

I have conjectured that it leads to the existence of additional conserved currents defined
by the variations which do not affect the value of Kéhler action. These arguments are
far from being mathematically rigorous and the recent view about the solutions of the
modified Dirac equation predicting that the spinor modes are restricted to 2-D string
world sheets requires a modification of these arguments.

The basic challenge is to understand the mechanism making this kind of currents con-
served: the same challenge is met already in the case of isometries since imbedding space
coordinates appear as parameters in modified Dirac action. Modified Dirac equation is
satisfied if the first variation of the canonical momentum densities contracted with the
imbedding space gamma matrices annihilates the spinor mode. Situation is analogous
to massless Dirac equation: it does not imply the vanishing of four-momentum, only
the vanishing of mass. One obtains conserved fermion current associated with deforma-
tions only if the deformation of the modified Gamma matrix is divergenceless just like
the modified gamma matrix itself. This conditions requires the vanishing of the second
variation of Kahler action.

It is far from obvious that these conditions can be satisfied. The localization of the
spinor modes to string world sheets or partonic 2-surfaces guaranteeing in the generic
case that em charge is well-defined for spinor modes implies holomorphy allowing to
formulate current conservation for the deformations of the space-time surface for second
quantized induced spinor field. The crux is that the deformation respects the holomor-
phy properties of the modified gamma matrices at string world sheet and thus does not
mix I'* with I'*. The deformation of I'* has only z-component and also annihilates the
holomorphic spinor.

This mechanism is possible only for Kéhler-Dirac action since the Kéhler-Dirac gamma
matrices in directions orthogonal to the 2-surface must vanish and this is not possible
for other actions. This also means that energy momentum tensor has rank 2 as a matrix.
Cosmic string solutions are an exception since in this case C'P, projection of space-time
surface is 2-D and conditions guaranteing vanishing of classical W fields can be satisfied
without the restriction to 2-surface.
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The vacuum degeneracy of Kéahler action strongly suggests that the number of critical de-
formations is always infinite and that these deformations define an infinite inclusion hierarchy
of super-conformal algebras. This inclusion hierarchy would correspond to a fractal hierarchy of
breakings of super-conformal symmetry generalizing the symmetry breaking hierarchies of gauge
theories. These super-conformal inclusion hierarchies would realize the inclusion hierarchies for
hyper-finite factors of type II;.

5.5.2 Quantum criticality and fermionic representation of conserved charges
associated with second variations of Kahler action

It is rather obvious that TGD allows a huge generalizations of conformal symmetries. The devel-
opment of the understanding of conservation laws has been however slow. Modified Dirac action
provides excellent candidates for quantum counterparts of Noether charges. The problem is that
the imbedding space coordinates are in the role of classical external fields and induces spinor fields
are second quantized so that it is not at all clear whether one obtains conserved charges.

What does the conservation of the fermionic Noether current require?

The obvious anser to the question of the title is that the conservation of the fermionic current
requires the vanishing of the first variation of Kéhler-Dirac action with respect to imbedding space
coordinates. This is certainly true but need not mean vanishing of the second variation of Kéahler
action as thought first. Hence fermionic conserved currents might be obtained for much more
general variations than critical ones.

1. The modified Dirac action assigns to a deformation of the space-time surface a conserved
charge expressible as bilinears of fermionic oscillator operators only if the first variation of
the modified Dirac action under this deformation vanishes.

The vanishing of the first variation for the modified Dirac action is equivalent with the
vanishing of the second variation for the Kéahler action. This can be seen by the explicit
calculation of the second variation of the modified Dirac action and by performing partial
integration for the terms containing derivatives of ¥ and U to give a total divergence rep-
resenting the difference of the charge at upper and lower boundaries of the causal diamond
plus a four-dimensional integral of the divergence term defined as the integral of the quantity

ASp = UTI*D,Jev |
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Here h’g denote partial derivative of the imbedding space coordinates with respect to space-
time coordinates. ASp vanishes if this term vanishes:

Do JE =0 .

The condition states the vanishing of the second variation of K&hler action. This can of course
occur only for preferred deformations of X*. One could consider the possibility that these
deformations vanish at light-like 3-surfaces or at the boundaries of CD. Note that covariant
divergence is in question so that J;* does not define conserved classical charge in the general
case.

2. This condition is however un-necessarily strong. It is enough that that the deformation of
Dirac operator anihilates the spinor mode, which can also change in the deformation. It
must be possible to compensate the change of the covariant derivative in the deformation
by a gauge transformation which requires that deformations act as gauge transformations on
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induce gauge potentials. This gives additional constraint and strongly suggests Kac-Moody
type algebra for the deformations. Conformal transformations would satisfy this constraint
and are suggested by quantum criticality.

3. It is essential that the modified Dirac equation holds true so that the modified Dirac action
vanishes: this is needed to cancel the contribution to the second variation coming from
the determinant of the induced metric. The condition that the modified Dirac equation is
satisfied for the deformed space-time surface requires that also ¥ suffers a transformation
determined by the deformation. This gives

1
o = —erngxI/. (5.5.2)

Here 1/D is the inverse of the modified Dirac operator defining the counterpart of the
fermionic propagator.

4. The fermionic conserved currents associated with the deformations are obtained from the
standard conserved fermion current

J* =TT . (5.5.3)

Note that this current is conserved only if the space-time surface is extremal of Ké&hler action:
this is also needed to guarantee Hermiticity and same form for the modified Dirac equation for
U and its conjugate as well as absence of mass term essential for super-conformal invariance.
Note also that ordinary divergence rather only covariant divergence of the current vanishes.

The conserved currents are expressible as sums of three terms. The first term is obtained by
replacing modified gamma matrices with their increments in the deformation keeping ¥ and
its conjugate constant. Second term is obtained by replacing ¥ with its increment §¥. The
third term is obtained by performing same operation for §¥.

JY = WIFJow + U6 + 50T | (5.5.4)

These currents provide a representation for the algebra defined by the conserved charges
analogous to a fermionic representation of Kac-Moody algebra.

5. Also conserved super charges corresponding to super-conformal invariance are obtained. The
first class of super currents are obtained by replacing ¥ or ¥ right handed neutrino spinor or
its conjugate in the expression for the conserved fermion current and performing the above
procedure giving two terms since nothing happens to the covariantly constant right handed-
neutrino spinor. Second class of conserved currents is defined by the solutions of the modified
Dirac equation interpreted as c-number fields replacing ¥ or ¥ and the same procedure gives
three terms appearing in the super current.

6. The existence of vanishing of second variations is analogous to criticality in systems defined
by a potential function for which the rank of the matrix defined by second derivatives of
the potential function vanishes at criticality. Quantum criticality becomes the prerequisite
for the existence of quantum theory since fermionic anti-commutation relations in principle
can be fixed from the condition that the algebra in question is equivalent with the algebra
formed by the vector fields defining the deformations of the space-time surface defining second
variations. Quantum criticality in this sense would also select preferred extremals of Kahler
action as analogs of Bohr orbits and the the spectrum of preferred extremals would be more
or less equivalent with the expected existence of infinite-dimensional symmetry algebras.
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It is far from obvious that the criticality conditions or even the weaker conditions guaranteing
the existence of (say) isometry charges can be satisfied. It seems that the restriction of spinor
modes to 2-D surfaces - string world sheets and possibly also partonic 2-surfaces - implied by
the condition that em charge is well-define for them, is the manner to achieve this. The reason
is that conformal invariance allows complexification of the modified gamma matrices and allows
to construct spinor modes as holomorphic modes and their conjugates. Holomorphy reduces K-
D equation to algebraic condition that I'* annihilates the spinor mode. If this is true also the
deformation of I'* then the existince of conserved current follows. It is essential that only two
modified gamma matrices are non-vanishing and this is possible only for Kahler-Dirac action.

About the general structure of the algebra of conserved charges

Some general comments about the structure of the algebra of conserved charges are in order.

1. Any Cartan algebra of the isometry group P x SU(3) (there are two types of them for P
corresponding to linear and cylindrical Minkowski coordinates) defines critical deformations
(one could require that the isometries respect the geometry of CD). The corresponding second
order charges for Kahler action are conserved but vanish since the corresponding conjugate
coordinates are cyclic for the Kéahler metric and Kéhler form so that the conserved current is
proportional to the gradient of a Killing vector field which is constant in these coordinates.

2. Contrary to the original conclusion, the corresponding fermionic charges expressible as fermionic
bilinears are first order in deformation and do not vanish! Four-momentum and color quan-
tum numbers are defined for Kahler action as classical conserved quantities and for Kéahler-
Dirac action as quantal charges.

Critical manifold is infinite-dimensional for Kahler action

Some examples might help to understand what is involved.

1. The action defined by four-volume gives a first glimpse about what one can expect. In this
case modified gamma matrices reduce to the induced gamma matrices. Second variations
satisfy d’Alembert type equation in the induced metric so that the analogs of massless fields
are in question. Mass term is present only if some dimensions are compact. The vanishing
of excitations at light-like boundaries is a natural boundary condition and might well imply
that the solution spectrum could be empty. Hence it is quite possible that four-volume action
leads to a trivial theory.

2. For the vacuum extremals of Kéhler action the situation is different. There exists an infinite
number of second variations and the classical non-determinism suggests that deformations
vanishing at the light-like boundaries exist. For the canonical imbedding of M* the equation
for second variations is trivially satisfied. If the C' P, projection of the vacuum extremal is one-
dimensional, the second variation contains a non-vanishing term and an equation analogous
to massless d’Alembert equation for the increments of C'P, coordinates is obtained. Also
for the vacuum extremals of Kéhler action with 2-D C'P, projection all terms involving
induced Kéhler form vanish and the field equations reduce to d’Alembert type equations for
C P, coordinates. A possible interpretation is as the classical analog of Higgs field. For the
deformations of non-vacuum extremals this would suggest the presence of terms analogous
to mass terms: these kind of terms indeed appear and are proportional to §s;. M?* degrees
of freedom decouple completely and one obtains QFT type situation.

3. The physical expectation is that at least for the vacuum extremals the critical manifold is
infinite-dimensional. The notion of finite measurement resolution suggests infinite hierarchies
of inclusions of hyper-finite factors of type II; possibly having interpretation in terms of
inclusions of the super conformal algebras defined by the critical deformations.

4. The properties of Kahler action give support for this expectation. The critical manifold is
infinite-dimensional in the case of vacuum extremals. Canonical imbedding of M* would
correspond to maximal criticality analogous to that encountered at the tip of the cusp catas-
trophe. The natural guess would be that as one deforms the vacuum extremal the previously
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critical degrees of freedom are transformed to non-critical ones. The dimension of the critical
manifold could remain infinite for all preferred extremals of the K&hler action. For instance,
for cosmic string like objects any complex manifold of C'P, defines cosmic string like objects
so that there is a huge degeneracy is expected also now. For C'P, type vacuum extremals
M* projection is arbitrary light-like curve so that also now infinite degeneracy is expected
for the deformations.

This leads to the conjecture that the critical deformations correspond to sub-algebras of super-
conformal algebras with conformal weights coming as integer multiples of fixed integer m. One
would have infinite hierarchy of breakings of conformal symmetry labelled by m. The super-
conformal algebras would be effectively m-dimensional. Since all commutators with the critical
sub-algebra would create zero energy states. In ordinary conformal field theory one have maximal
criticality corresponding to m = 1.

Critical super-algebra and zero modes

The relationship of the critical super-algebra to WCW geometry is interesting.

1. The vanishing of the second variation plus the identification of K&hler function as a Kéahler
action for preferred extremals means that the critical variations are orthogonal to all defor-
mations of the space-time surface with respect to the WCW metric.

The original expectation was that critical deformations correspond to zero modes but this
interpretation need not be correct since critical deformations can leave 3-surface invariant
but affect corresponding preferred extremal: this would conform with the non-deterministic
character of the dynamics which is indeed the basic signature of criticality. Rather, criti-
cal deformations are limiting cases of ordinary deformations acting in quantum fluctuating
degrees of freedom.

This conforms with the fact that WCW metric vanishes identically for canonically imbedded
M* and that Kahler action has fourth order terms as first non-vanishing terms in perturbative
expansion (for modified Dirac the expansion is quadratic in deformation).

Therefore the super-conformal algebra associated with the critical deformations has genuine
physical content.

2. Since the action of X* local Hamiltonians of M3:CP, corresponds to the action in quan-
tum fluctuating degrees of freedom, critical deformations cannot correspond to this kind of
Hamiltonians.

3. The notion of finite measurement resolution suggests that the degrees of freedom which are
below measurement resolution correspond to vanishing gauge charges. The sub-algebras of
critical super-conformal algebra for which charges annihilate physical states could correspond
to this kind of gauge algebras.

4. The conserved super charges associated with the vanishing second variations cannot give
WOCW metric as their anti-commutator. This would also lead to a conflict with the effective
2-dimensionality stating that WCW line-element is expressible as sum of contribution coming
from partonic 2-surfaces as also with fermionic anti-commutation relations.

Connection with quantum criticality

The notion of quantum criticality of TGD Universe was originally inspired by the question how
to make TGD unique if Kéhler function for WCW is defined by the Kéhler action for a preferred
extremal assignable to a given 3-surface. Vacuum functional defined by the exponent of Kéahler
function is analogous to thermodynamical weight and the obviou idea with Kéhler coupling strength
taking the role of temperature. The obvious idea was that the value of Kéahler coupling strength
is analogous to critical temperature so that TGD would be more or less uniquely defined.

To understand the delicacies it is convenient to consider various variations of Kéhler action
first.
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1. The variation can leave 3-surface invariant but modify space-time surface such that Kéhler
action remains invariant. In this case infinitesimal deformation reduces to a diffeomorphism
at space-like 3-surface and perhaps also at light-like 3-surfaces. In this case the correspon-
dence between X3 and X*(X?) would not be unique and one would have non-deterministic
dynamics characteristic for critical systems. This criticality would correspond to criticality of
Kihler action at X3. Note that the original working hypothesis was that X*(X?) is unique.
The failure of the strict classical determinism implying spin glass type vacuum degeneracy
indeed suggets that this is the case.

2. The variation could act on zero modes which do not affect Kéhler metric which corresponds
to (1,1) part of Hessian in complex coordinates for WCW. Ounly the zero modes characterizing
3-surface appearing as parameters in the metric WCW would be affected and the result would
be a generalization of conformal transformation. Kéhler function would change but only due
to the change in zero modes. These transformations do not seem to correspond to critical
transformations since Kéhler function changes.

3. The variation could act on 3-surface both in zero modes and dynamical degrees of freedom
represented by complex coordinates. It would of course affect also the space-time surface.
Criticality for Kahler function would mean that Kahler metric has zero modes at X meaning
that (1,1) part of Hessian is degenerate. This could mean that in the vicinity of X3 the Kiihler
form has non-definite signature: physically this is unacceptable since inner product in Hilbert
space would not be positive definite.

Critical transformations might relate closely to the coset space decomposition of WCW to a
union of coset spaces G/H labelled by zero modes.

1. The critical deformations leave 3-surface X? invariant as do also the transformations of H
associated with X3. If H affects X#(X?) and corresponds to critical transformations then
critical transformation would extend WCW to a bundle for which 3-surfaces would be base
points and preferred extremals X*(X?) would define the fiber. Gauge invariance with respect
to H would generalize the assumption that X*(X3) is unique.

2. Critical deformations could correspond to H or sub-group of H (which dependes on X?3).
For other 3-surfaces than X2 the action of H is non-trivial as the case of CP, = SU(3)/U(2)
makes easy to understand.

3. A possible identification of Lie-algebra of H is as a sub-algebra of Virasoro algebra associated
with the symplectic transformations of 6M* x C'P, and acting as diffeomorphisms for the
light-like radial coordinate of 5Mjl_. The sub-algebras of Virasoro algebra have conformal
weights coming as integer multiplies of a given conformal weight m and form inclusion hier-
archies suggesting a direct connection with finite measurement resolution realized in terms of
inclusions of hyperfinite factors of type II;. For m > 1 one would have breaking of maximal
conformal symmetry. The action of these Virasoro algebra on symplectic algebra would make
the corresponding sub-algebras gauge degrees of freedom so that the number of symplectic
generators generating non-gauge transformations would be finite. This result is not surpris-
ing since also for 2-D critical systems criticality corresponds to conformal invariance acting
as local scalings.

The vanishing of the second variation for some deformations means that the system is critical,
in the recent case quantum critical. Basic example of criticality is bifurcation diagram for cusp
catastrophe. Quantum criticality realized as the vanishing of the second variation gives hopes about
a more or less unique identification of preferred extremals and considered alternative identifications
such as absolute minimization of K&hler action which is just the opposite of criticality.

One must be very cautious here: there are two criticalities: one for the extremals of K&hler
action with respect to deformations of four-surface and second for the Kéhler function itself with
respect to deformations of 3-surface: these criticalities are not equivalent since in the latter case
variation respects preferred extremal property unlike in the first case.

1. The criticality for preferred extremals would make 4-D criticality a property of all physical
systems.
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2. The criticality for Kéhler function would be 3-D and might hold only for very special systems.
In fact, the criticality means that some eigenvalues for the Hessian of Kéahler function vanish
and for nearby 3-surfaces some eigenvalues are negative. On the other hand the Kahler
metric defined by (1,1) part of Hessian in complex coordinates must be positive definite.
Thus criticality might imply problems.

This allows and suggests non-criticality of K&hler function coming from Kahler action for
Euclidian space-time regions: this is mathematically the simplest situation since in this case
there are no zero modes causing troubles in Gaussian approximation to functional integral.
The Morse function coming from Kahler action in Minkowskian as imaginary contribution
analogous to that appearing in path integral could be critical and allow non-definite signature
in principle. In fact this is expected by the defining properties of Morse function.

3. The almost 2-dimensionality implied by strong form of holography suggests that the interior
degrees of freedom of 3-surface can be regarded almost gauge degrees of freedom and that this
relates directly to generalised conformal symmetries associated with symplectic isometries of
WCW. These degrees of freedom are not critical in the sense inspired by G/H decomposition.
The only plausible interaction seems to be that these degrees of freedom correspond to
deformations in zero modes.

Both the super-symmetry of D and conservation Dirac Noether currents for modified Dirac
action have thus a connection with quantum criticality.

1. Finite-dimensional critical systems defined by a potential function V (z!, 22, ..) are character-
ized by the matrix defined by the second derivatives of the potential function and the rank of
system classifies the levels in the hierarchy of criticalities. Maximal criticality corresponds to
the complete vanishing of this matrix. Thom’s catastrophe theory classifies these hierarchies,
when the numbers of behavior and control variables are small (smaller than 5). In the recent
case the situation is infinite-dimensional and the criticality conditions give additional field
equations as existence of vanishing second variations of Kéahler action.

2. The vacuum degeneracy of Kahler action allows to expect that this kind infinite hierarchy

of criticalities is realized. For a general vacuum extremal with at most 2-D C'P» projection
the matrix defined by the second variation vanishes because J,g = 0 vanishes and also the
matrix (J9, + Jko‘)(,]ﬂl +J, #) vanishes by the antisymmetry J% = —.J,°.
The formulation of quantal version of Equivalence Principle (EP) in string picture demon-
strates that the conservation of of fermionic Noether currents defining gravitational four-
momentum and other Poincare quantum numbers requires that the deformation of the
Kéahler-Dirac equation obtained by replacing Kahler-Dirac gamma matrices with their defor-
mations is also satisfied. Holomorphy can guarantee this. The original wrong conclusion was
that this condition is equivalent with much stronger condition stating the vanishing of the
second variation of Kéhler action, which it is not. There is analogy for this: massless Dirac
equation does not imply the vanishing of four-momentum.

3. Conserved bosonic and fermionic Noether charges would characterize quantum criticality.
In particular, the isometries of the imbedding space define conserved currents represented in
terms of the fermionic oscillator operators if the second variations defined by the infinitesimal
isometries vanish for the modified Dirac action. For vacuum extremals the dimension of
the critical manifold is infinite: maybe there is hierarchy of quantum criticalities for which
this dimension decreases step by step but remains always infinite. This hierarchy could
closely relate to the hierarchy of inclusions of hyper-finite factors of type Il;. Also the
conserved charges associated with super-symplectic and Super Kac-Moody algebras would
require infinite-dimensional critical manifold defined by the spectrum of second variations.

4. Phase transitions are characterized by the symmetries of the phases involved with the tran-
sitions, and it is natural to expect that dynamical symmetries characterize the hierarchy of
quantum criticalities. The notion of finite quantum measurement resolution based on the
hierarchy of Jones inclusions indeed suggests the existence of a hierarchy of dynamical gauge
symmetries characterized by gauge groups in ADE hierarchy [K17] with degrees of freedom
below the measurement resolution identified as gauge degrees of freedom.
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5. Does this criticality have anything to do with the criticality against the phase transitions
changing the value of Planck constant? If the geodesic sphere S% for which induced Kéhler
form vanishes corresponds to the back of the C'P, book (as one expects), this could be the
case. The homologically non-trivial geodesic sphere S1'2;; is as far as possible from vacuum
extremals. If it corresponds to the back of C'P, book, cosmic strings would be quantum
critical with respect to phase transition changing Planck constant. They cannot however
correspond to preferred extremals.

5.5.3 Preferred extremal property as classical correlate for quantum
criticality, holography, and quantum classical correspondence

The Noether currents assignable to the modified Dirac equation are conserved only if the first
variation of the modified Dirac operator D defined by Kéhler action vanishes. This is equivalent
with the vanishing of the second variation of K&hler action -at least for the variations corresponding
to dynamical symmetries having interpretation as dynamical degrees of freedom which are below
measurement resolution and therefore effectively gauge symmetries.

The vanishing of the second variation in interior of X*4(X l?’) is what corresponds exactly to
quantum criticality so that the basic vision about quantum dynamics of quantum TGD would
lead directly to a precise identification of the preferred extremals. Something which I should have
noticed for more than decade ago! The question whether these extremals correspond to absolute
minima remains however open.

The vanishing of second variations of preferred extremals -at least for deformations representing
dynamical symmetries, suggests a generalization of catastrophe theory of Thom, where the rank of
the matrix defined by the second derivatives of potential function defines a hierarchy of criticalities
with the tip of bifurcation set of the catastrophe representing the complete vanishing of this matrix.
In the recent case this theory would be generalized to infinite-dimensional context. There are three
kind of variables now but quantum classical correspondence (holography) allows to reduce the types
of variables to two.

1. The variations of X*(X}}) vanishing at the intersections of X*(X?) with the light-like bound-
aries of causal diamonds CD would represent behavior variables. At least the vacuum ex-
tremals of K&hler action would represent extremals for which the second variation vanishes
identically (the ”tip” of the multi-furcation set).

2. The zero modes of Kahler function would define the control variables interpreted as classical
degrees of freedom necessary in quantum measurement theory. By effective 2-dimensionality
(or holography or quantum classical correspondence) meaning that the configuration space
metric is determined by the data coming from partonic 2-surfaces X? at intersections of X}
with boundaries of CD, the interiors of 3-surfaces X? at the boundaries of CDs in rough sense
correspond to zero modes so that there is indeed huge number of them. Also the variables
characterizing 2-surface, which cannot be complexified and thus cannot contribute to the
Kéhler metric of WCW represent zero modes. Fixing the interior of the 3-surface would
mean fixing of control variables. Extremum property would fix the 4-surface and behavior
variables if boundary conditions are fixed to sufficient degree.

3. The complex variables characterizing X2 would represent third kind of variables identified as
quantum fluctuating degrees of freedom contributing to the WCW metric. Quantum classical
correspondence requires 1-1 correspondence between zero modes and these variables. This
would be essentially holography stating that the 2-D ”causal boundary” X2 of X3(X?) codes
for the interior. Preferred extremal property identified as criticality condition would realize
the holography by fixing the values of zero modes once X?2 is known and give rise to the
holographic correspondence X2 — X3(X?). The values of behavior variables determined by
extremization would fix then the space-time surface X*(X?) as a preferred extremal.

4. Clearly, the presence of zero modes would be absolutely essential element of the picture.
Quantum criticality, quantum classical correspondence, holography, and preferred extremal
property would all represent more or less the same thing. One must of course be very cautious
since the boundary conditions at X} involve normal derivative and might bring in delicacies
forcing to modify the simplest heuristic picture.
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5. There is a possible connection with the notion of self-organized criticality [B4] introduced to
explain the behavior of systems like sand piles. Self-organization in these systems tends to
lead ”to the edge”. The challenge is to understand how system ends up to a critical state,
which by definition is unstable. Mechanisms for this have been discovered and based on
phase transitions occurring in a wide range of parameters so that critical point extends to
a critical manifold. In TGD Universe quantum criticality suggests a universal mechanism
of this kind. The criticality for the preferred extremals of Kéahler action would mean that
classically all systems are critical in well-defined sense and the question is only about the
degree of criticality. Evolution could be seen as a process leading gradually to increasingly
critical systems. One must however distinguish between the criticality associated with the
preferred extremals of Kéahler action and the criticality caused by the spin glass like energy
landscape like structure for the space of the maxima of Kéhler function.






Chapter 6

The recent vision about preferred
extremals and solutions of the
modified Dirac equation

6.1 Introduction

During years several approaches to what preferred extremals of Kéhler action and solutions of the
modified Dirac equation could be have been proposed and the challenge is to see whether at least
some of these approaches are consistent with each other.

The notion of preferred extremal emerged when I still lived in positive energy ontology. In
zero energy ontology (ZEO) situation changes since 3-surfaces are now unions of space-like 3-
surfaces at the opposite boundaries of causal diamond (CD). If K&hler action were deterministic,
the attribute ”preferred” would become obsolete. One of the most important outcomes of non-
determinism is quantum criticality realized as a conformal invariance acting as gauge symmetries.
The transformations in question are Kac-Moody type symmetries respecting the light-likeness of
partonic orbits identified as surfaces at which the signature of the induced metric changes from
Minkowskian to Euclidian. The orbits can be grouped to conformal equivalence classes and their
number n would define in a natural manner the value of the effective Planck constant heys = n x h.

One might hope that in finite measurement resolution the attribute ”preferred” would not be
needed. Bohr orbitology in ZEO would mean that one has Bohr orbits connecting 3-surfaces at
boundaries of CD and this would give strong correlations between these 3-surfaces. Not all of
them could be connected. Despite these uncertainties, I will talk in the following about preferred
extremals. This means no loss since what is known recently is known for extremals.

It is good to list various approaches first.

6.1.1 Construction of preferred extremals

There has been considerable progress in the understanding of both preferred extremals and K&hler-
Dirac equation.

1. For preferred extremals the generalization of conformal invariance to 4-D situation is very
attractive idea and leads to concrete conditions formally similar to those encountered in
string model [K5]. In particular, Einstein’s equations with cosmological constant would solve
consistency conditions and field equations would reduce to a purely algebraic statements
analogous to those appearing in equations for minimal surfaces if one assumes that space-
time surface has Hermitian structure or its Minkowskian variant Hamilton-Jacobi structure
(Appendix). The older approach based on basic heuristics for massless equations, on effective
3-dimensionality, weak form of electric magnetic duality, and Beltrami flows is also promising.
An alternative approach is inspired by number theoretical considerations and identifies space-
time surfaces as associative or co-associative sub-manifolds of octonionic imbedding space
[K52].
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Chapter 6. The recent vision about preferred extremals and solutions of the
modified Dirac equation

The basic step of progress was the realization that the known extremals of Kéahler action -
certainly limiting cases of more general extremals - can be deformed to more general extremals
having interpretation as preferred extremals.

(a)

The generalization boils down to the condition that field equations reduce to the condi-
tion that the traces Tr(THF) for the product of energy momentum tensor and second
fundamental form vanish. In string models energy momentum tensor corresponds to
metric and one obtains minimal surface equations. The equations reduce to purely
algebraic conditions stating that 7" and H* have no common components. Complex
structure of string world sheet makes this possible.

Stringy conditions for metric stating ¢g,, = ¢gzz = 0 generalize. The condition that
field equations reduce to Tr(TH") = 0 requires that the terms involving Kihler gauge
current in field equations vanish. This is achieved if Einstein’s equations hold true
(one can consider also more general manners to satisfy the conditions). The conditions
guaranteeing the vanishing of the trace in turn boil down to the existence of Hermitian
structure in the case of Euclidian signature and to the existence of its analog - Hamilton-
Jacobi structure - for Minkowskian signature (Appendix). These conditions state that
certain components of the induced metric vanish in complex coordinates or Hamilton-
Jacobi coordinates.

In string model the replacement of the imbedding space coordinate variables with quan-
tized ones allows to interpret the conditions on metric as Virasoro conditions. In the
recent case a generalization of classical Virasoro conditions to four-dimensional ones
would be in question. An interesting question is whether quantization of these con-
ditions could make sense also in TGD framework at least as a useful trick to deduce
information about quantum states in WCW degrees of freedom.

The interpretation of the extended algebra as Yangian [A27] [B18] suggested previ-
ously [K61] to act as a generalization of conformal algebra in TGD Universe is at-
tractive. There is also the conjecture that preferred extremals could be interpreted as
quaternionic of co-quaternionic 4-surface of the octonionic imbedding space with oc-
tonionic representation of the gamma matrices defining the notion of tangent space
quanternionicity.

6.1.2 Understanding Kahler-Dirac equation

There are several approaches for solving the modified Dirac (or Kahler-Dirac) equation.

(a)

The most promising approach is discussed in this chapter. It assumes that the solu-
tions are restricted on 2-D stringy world sheets and/or partonic 2-surfaces. This strange
looking view is a rather natural consequence of both strong form of holography and of
number theoretic vision, and also follows from the notion of finite measurement resolu-
tion having discretization at partonic 2-surfaces as a geometric correlate. Furthermore,
the conditions stating that electric charge is well-defined for preferred extremals forces
the localization of the modes to 2-D surfaces in the generic case. This also resolves the
interpretational problems related to possibility of strong parity breaking effects since
induce W fields and possibly also Z° field above weak scale, vahish at these surfaces.

One expects that stringy approach based on 4-D generalization of conformal invari-
ance or its 2-D variant at 2-D preferred surfaces should also allow to understand the
modified Dirac equation. Conformal invariance indeed allows to write the solutions
explicitly using formulas similar to encountered in string models. In accordance with
the earlier conjecture, all modes of the modified Dirac operator generate badly broken
super-symmetries.

Covariantly constant right-handed neutrino certainly defines solutions de-localized in-
side entire space-time sheet. This need not be the case if right-handed neutrino is not
covarianty constant since the non-vanishing C'P, part for the induced gamma matri-
ces mixes it with left-handed neutrino. For massless extremals (at least) the C'P, part
however vanishes and right-handed neutrino allows also massless holomorphic modes
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de-localized at entire space-time surface and the de-localization inside Euclidian re-
gion defining the line of generalized Feynman diagram is a good candidate for the
right-handed neutrino generating the least broken super-symmetry.This super-symmetry
seems however to differ from the ordinary one in that vg is expected to behave like a
passive spectator in the scattering. Also for the left-handed neutrino solutions localized
inside string world sheet the condition that coupling to right-handed neutrino vanishes
is guaranteed if gamma matrices are either purely Minkowskian or C'P; like inside the
world sheet.

6.1.3 Measurement interaction term and boundary conditions

Quantum classical correspondence (QCC) requires a coupling between quantum and classical
and this coupling should also give rise to a generalization of quantum measurement theory.
The big question is how to realize this coupling.

(a) The proposal discussed in previous chapter was that the addition of a measurement
interaction term to the modified Dirac action could do the job and solve a handful of
problems of quantum TGD and unify various visions about the physics predicted by
quantum TGD. This proposal implies QCC at the level of modified Dirac action and
Kahler action. The simplest form of this term is completely analogous to algebraic form
of Dirac action in M* but with integration measure det(g4)'/?d>x restricted to the 3-D
surface in question.

(b) Another possibility consistent with the considerations of this chapter is that QCC is
realized at the level of WCW Dirac operator and modified Dirac operator contains only
interior term. I have indeed proposed that WCW spinor fields with given quantum
charges in Cartan algebra are superpositions of space-time surfaces with same classical
charges. A stronger form of QCC at the level of WCW would be that classical corre-
lation functions for various geometric observables are identical with quantal correlation
functions.

The boundary conditions for modified Dirac equation at space-like 3-surfaces are determined
by the sum the analog of algebraic massless Dirac operator pFy; in M* coupled to the formal
analog of Higgs field defined by the normal component I'" of the Kahler-Dirac gamma matrix.
Higgs field is not in question. Rather the equation allows to formulate space-time correlate
for stringy mass formula and also to understand how the ground state conformal weight can
be negative half-integer as required by the p-adic mass calculations. At lightlike 3-surfaces
I'™ must vanish and the measurement interaction involving p¥v; vanishes identically.

6.1.4 Progress in the understanding of super-conformal symmetries

The considerations in the sequel lead to a considerable progress in the understanding of super
Virasoro representations for super-symplectic and super-Kac-Moody algebra. In particular,
the proposal is that super-Kac-Moody currents assignable to string world sheets define duals
of gauge potentials and their generalization for gravitons: in the approximation that gauge
group is Abelian - motivated by the notion of finite measurement resolution - the exponents
for the sum of KM charges would define non-integrable phase factors. One can also identify
Yangian as the algebra generated by these charges. The approach allows also to understand
the special role of the right handed neutrino in SUSY according to TGD. It must be however
emphasized that also a weaker form of Einstein’s equations can be considered solving the
condition that the energy momentum tensor for Kahler action has vanishing divergence [K78]
implying Einstein’s equations with cosmological constant in general relativity. The weaker
form involves several non-constant parameters analogous to cosmological constant.

The appendix of the book gives a summary about basic concepts of TGD with illustra-
tions. There are concept maps about topics related to the contents of the chapter pre-
pared using CMAP realized as html files. Links to all CMAP files can be found at http:


http://www.tgdtheory.fi/cmaphtml.html
http://www.tgdtheory.fi/cmaphtml.html
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//www.tgdtheory.fi/cmaphtml.html [L13]. Pdf representation of same files serving as a
kind of glossary can be found at http://www.tgdtheory.fi/tgdglossary.pdf [L14]. The
topics relevant to this chapter are given by the following list.

e TGD as infinite-dimensional geometry [L37]
o WCW spinor fields [L42]

o KD equation [L25]

e Kaehler-Dirac action [L24]

6.2 About deformations of known extremals of Kahler
action

I have done a considerable amount of speculative guesswork to identify what I have used to
call preferred extremals of Kéahler action. The difficulty is that the mathematical problem at
hand is extremely non-linear and that I do not know about existing mathematical literature
relevant to the situation. One must proceed by trying to guess the general constraints on
the preferred extremals which look physically and mathematically plausible. The hope is
that this net of constraints could eventually chrystallize to Eureka! Certainly the recent
speculative picture involves also wrong guesses. The need to find explicit ansatz for the
deformations of known extremals based on some common principles has become pressing.
The following considerations represent an attempt to combine the existing information to
achieve this.

6.2.1 What might be the common features of the deformations of
known extremals

The dream is to discover the deformations of all known extremals by guessing what is common
to all of them. One might hope that the following list summarizes at least some common
features.

Effective three-dimensionality at the level of action

(a) Holography realized as effective 3-dimensionality also at the level of action requires that
it reduces to 3-dimensional effective boundary terms. This is achieved if the contraction
j*A, vanishes. This is true if j* vanishes or is light-like, or if it is proportional to
instanton current in which case current conservation requires that C'P, projection of
the space-time surface is 3-dimensional. The first two options for j have a realization
for known extremals. The status of the third option - proportionality to instanton
current - has remained unclear.

(b) As I started to work again with the problem, I realized that instanton current could
be replaced with a more general current j = *B A J or concretely: % = 6“57535@5,
where B is vector field and C'P, projection is 3-dimensional, which it must be in any
case. The contractions of j appearing in field equations vanish automatically with this
ansatz.

(¢) Almost topological QFT property in turn requires the reduction of effective boundary
terms to Chern-Simons terms: this is achieved by boundary conditions expressing weak
form of electric magnetic duality. If one generalizes the weak form of electric-magnetic
duality to J = ® x J one has B = d® and j has a vanishing divergence for 3-D C'P;
projection. This is clearly a more general solution ansatz than the one based on pro-
portionality of j with instanton current and would reduce the field equations in concise
notation to Tr(TH*) = 0.
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(d)

Any of the alternative properties of the Kéhler current implies that the field equations
reduce to Tr(TH") = 0, where T and H* are shorthands for Maxwellian energy mo-
mentum tensor and second fundamental form and the product of tensors is obvious
generalization of matrix product involving index contraction.

Could Einstein’s equations emerge dynamically?

For j“ satisfying one of the three conditions, the field equations have the same form as the
equations for minimal surfaces except that the metric g is replaced with Maxwell energy
momentum tensor 7.

(a)

This raises the question about dynamical generation of small cosmological constant A:
T = Ag would reduce equations to those for minimal surfaces. For T = Ag modified
gamma matrices would reduce to induced gamma matrices and the modified Dirac op-
erator would be proportional to ordinary Dirac operator defined by the induced gamma
matrices. One can also consider weak form for 7' = Ag obtained by restricting the con-
sideration to a sub-space of tangent space so that space-time surface is only ”partially”
minimal surface but this option is not so elegant although necessary for other than C' P,
type vacuum extremals.

What is remarkable is that 7' = Ag implies that the divergence of T" which in the
general case equals to j° Jg vanishes. This is guaranteed by one of the conditions for
the Kahler current. Since also Einstein tensor has a vanishing divergence, one can ask
whether the condition to T' = kG + Ag could the general condition. This would give
Einstein’s equations with cosmological term besides the generalization of the minimal
surface equations. GRT would emerge dynamically from the non-linear Maxwell’s theory
although in slightly different sense as conjectured [K56]! Note that the expression for G
involves also second derivatives of the imbedding space coordinates so that actually a
partial differential equation is in question. If field equations reduce to purely algebraic
ones, as the basic conjecture states, it is possible to have Tr(GH*) = 0 and Tr(gH*) = 0
separately so that also minimal surface equations would hold true.

What is amusing that the first guess for the action of TGD was curvature scalar. It gave
analogs of Einstein’s equations as a definition of conserved four-momentum currents.
The recent proposal would give the analog of ordinary Einstein equations as a dynamical
constraint relating Maxwellian energy momentum tensor to Einstein tensor and metric.

Minimal surface property is physically extremely nice since field equations can be inter-
preted as a non-linear generalization of massless wave equation: something very natural
for non-linear variant of Maxwell action. The theory would be also very ”stringy” al-
though the fundamental action would not be space-time volume. This can however hold
true only for Euclidian signature. Note that for C' P, type vacuum extremals Einstein
tensor is proportional to metric so that for them the two options are equivalent. For
their small deformations situation changes and it might happen that the presence of G
is necessary. The GRT limit of TGD discussed in [K56] [L12] indeed suggests that C' P
type solutions satisfy Einstein’s equations with large cosmological constant and that the
small observed value of the cosmological constant is due to averaging and small volume
fraction of regions of Euclidian signature (lines of generalized Feynman diagrams).

For massless extremals and their deformations "= Ag cannot hold true. The reason is
that for massless extremals energy momentum tensor has component 7% which actually
quite essential for field equations since one has H¥, = 0. Hence for massless extremals
and their deformations 7' = Ag cannot hold true if the induced metric has Hamilton-
Jacobi structure meaning that ¢“* and ¢“Y vanish. A more general relationship of
form T = kG + AG can however be consistent with non-vanishing 7" but require that

deformation has at most 3-D C' P, projection (C' Py coordinates do not depend on v).

The non-determinism of vacuum extremals suggest for their non-vacuum deformations
a conflict with the conservation laws. In, also massless extremals are characterized by
a non-determinism with respect to the light-like coordinate but like-likeness saves the
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situation. This suggests that the transformation of a properly chosen time coordinate
of vacuum extremal to a light-like coordinate in the induced metric combined with
Einstein’s equations in the induced metric of the deformation could allow to handle the
non-determinism.

Are complex structure of C P, and Hamilton-Jacobi structure of M* respected by

the

deformations?

The complex structure of C' P, and Hamilton-Jacobi structure of M* could be central for the
understanding of the preferred extremal property algebraically.

(a)

There are reasons to believe that the Hermitian structure of the induced metric ((1,1)
structure in complex coordinates) for the deformations of C'P» type vacuum extremals
could be crucial property of the preferred extremals. Also the presence of light-like
direction is also an essential elements and 3-dimensionality of M?* projection could
be essential. Hence a good guess is that allowed deformations of C'P, type vacuum
extremals are such that (2,0) and (0,2) components the induced metric and/or of the
energy momentum tensor vanish. This gives rise to the conditions implying Virasoro
conditions in string models in quantization:

Jeigd =0, g?‘zj =0, 4,5=1,2. (6,2,1)

Holomorphisms of C'P, preserve the complex structure and Virasoro conditions are
expected to gene