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Preface

This book belongs to a series of online books summarizing the recent state Topological Geometro-
dynamics (TGD) and its applications. TGD can be regarded as a unified theory of fundamental
interactions but is not the kind of unified theory as so called GUTs constructed by graduate stu-
dents at seventies and eighties using detailed recipes for how to reduce everything to group theory.
Nowadays this activity has been completely computerized and it probably takes only a few hours to
print out the predictions of this kind of unified theory as an article in the desired format. TGD is
something different and I am not ashamed to confess that I have devoted the last 32 years of my life
to this enterprise and am still unable to write The Rules.

I got the basic idea of Topological Geometrodynamics (TGD) during autumn 1978, perhaps it
was October. What I realized was that the representability of physical space-times as 4-dimensional
surfaces of some higher-dimensional space-time obtained by replacing the points of Minkowski space
with some very small compact internal space could resolve the conceptual difficulties of general rela-
tivity related to the definition of the notion of energy. This belief was too optimistic and only with
the advent of what I call zero energy ontology the understanding of the notion of Poincare invariance
has become satisfactory.

It soon became clear that the approach leads to a generalization of the notion of space-time with
particles being represented by space-time surfaces with finite size so that TGD could be also seen as
a generalization of the string model. Much later it became clear that this generalization is consistent
with conformal invariance only if space-time is 4-dimensional and the Minkowski space factor of
imbedding space is 4-dimensional.

It took some time to discover that also the geometrization of also gauge interactions and elementary
particle quantum numbers could be possible in this framework: it took two years to find the unique
internal space providing this geometrization involving also the realization that family replication
phenomenon for fermions has a natural topological explanation in TGD framework and that the
symmetries of the standard model symmetries are much more profound than pragmatic TOE builders
have believed them to be. If TGD is correct, main stream particle physics chose the wrong track leading
to the recent deep crisis when people decided that quarks and leptons belong to same multiplet of the
gauge group implying instability of proton.

There have been also longstanding problems.

• Gravitational energy is well-defined in cosmological models but is not conserved. Hence the
conservation of the inertial energy does not seem to be consistent with the Equivalence Princi-
ple. Furthermore, the imbeddings of Robertson-Walker cosmologies turned out to be vacuum
extremals with respect to the inertial energy. About 25 years was needed to realize that the sign
of the inertial energy can be also negative and in cosmological scales the density of inertial energy
vanishes: physically acceptable universes are creatable from vacuum. Eventually this led to the
notion of zero energy ontology which deviates dramatically from the standard ontology being
however consistent with the crossing symmetry of quantum field theories. In this framework the
quantum numbers are assigned with zero energy states located at the boundaries of so called
causal diamonds defined as intersections of future and past directed light-cones. The notion of
energy-momentum becomes length scale dependent since one has a scale hierarchy for causal
diamonds. This allows to understand the non-conservation of energy as apparent. Equivalence
Principle generalizes and has a formulation in terms of coset representations of Super-Virasoro
algebras providing also a justification for p-adic thermodynamics.

• From the beginning it was clear that the theory predicts the presence of long ranged classical
electro-weak and color gauge fields and that these fields necessarily accompany classical electro-
magnetic fields. It took about 26 years to gain the maturity to admit the obvious: these fields
are classical correlates for long range color and weak interactions assignable to dark matter.
The only possible conclusion is that TGD physics is a fractal consisting of an entire hierarchy
of fractal copies of standard model physics. Also the understanding of electro-weak massivation
and screening of weak charges has been a long standing problem, and 32 years was needed to
discover that what I call weak form of electric-magnetic duality gives a satisfactory solution of
the problem and provides also surprisingly powerful insights to the mathematical structure of
quantum TGD.
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I started the serious attempts to construct quantum TGD after my thesis around 1982. The
original optimistic hope was that path integral formalism or canonical quantization might be enough
to construct the quantum theory but the first discovery made already during first year of TGD was that
these formalisms might be useless due to the extreme non-linearity and enormous vacuum degeneracy
of the theory. This turned out to be the case.

• It took some years to discover that the only working approach is based on the generalization
of Einstein’s program. Quantum physics involves the geometrization of the infinite-dimensional
”world of classical worlds” (WCW) identified as 3-dimensional surfaces. Still few years had
to pass before I understood that general coordinate invariance leads to a more or less unique
solution of the problem and implies that space-time surfaces are analogous to Bohr orbits. Still
a coupled of years and I discovered that quantum states of the Universe can be identified as
classical spinor fields in WCW. Only quantum jump remains the genuinely quantal aspect of
quantum physics.

• During these years TGD led to a rather profound generalization of the space-time concept.
Quite general properties of the theory led to the notion of many-sheeted space-time with sheets
representing physical subsystems of various sizes. At the beginning of 90s I became dimly
aware of the importance of p-adic number fields and soon ended up with the idea that p-adic
thermodynamics for a conformally invariant system allows to understand elementary particle
massivation with amazingly few input assumptions. The attempts to understand p-adicity from
basic principles led gradually to the vision about physics as a generalized number theory as
an approach complementary to the physics as an infinite-dimensional spinor geometry of WCW
approach. One of its elements was a generalization of the number concept obtained by fusing real
numbers and various p-adic numbers along common rationals. The number theoretical trinity
involves besides p-adic number fields also quaternions and octonions and the notion of infinite
prime.

• TGD inspired theory of consciousness entered the scheme after 1995 as I started to write a book
about consciousness. Gradually it became difficult to say where physics ends and consciousness
theory begins since consciousness theory could be seen as a generalization of quantum measure-
ment theory by identifying quantum jump as a moment of consciousness and by replacing the
observer with the notion of self identified as a system which is conscious as long as it can avoid
entanglement with environment. ”Everything is conscious and consciousness can be only lost”
summarizes the basic philosophy neatly. The idea about p-adic physics as physics of cognition
and intentionality emerged also rather naturally and implies perhaps the most dramatic gener-
alization of the space-time concept in which most points of p-adic space-time sheets are infinite
in real sense and the projection to the real imbedding space consists of discrete set of points.
One of the most fascinating outcomes was the observation that the entropy based on p-adic
norm can be negative. This observation led to the vision that life can be regarded as something
in the intersection of real and p-adic worlds. Negentropic entanglement has interpretation as
a correlate for various positively colored aspects of conscious experience and means also the
possibility of strongly correlated states stable under state function reduction and different from
the conventional bound states and perhaps playing key role in the energy metabolism of living
matter.

• One of the latest threads in the evolution of ideas is only slightly more than six years old.
Learning about the paper of Laurent Nottale about the possibility to identify planetary orbits
as Bohr orbits with a gigantic value of gravitational Planck constant made once again possible to
see the obvious. Dynamical quantized Planck constant is strongly suggested by quantum classical
correspondence and the fact that space-time sheets identifiable as quantum coherence regions can
have arbitrarily large sizes. During summer 2010 several new insights about the mathematical
structure and interpretation of TGD emerged. One of these insights was the realization that
the postulated hierarchy of Planck constants might follow from the basic structure of quantum
TGD. The point is that due to the extreme non-linearity of the classical action principle the
correspondence between canonical momentum densities and time derivatives of the imbedding
space coordinates is one-to-many and the natural description of the situation is in terms of local
singular covering spaces of the imbedding space. One could speak about effective value of Planck
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constant coming as a multiple of its minimal value. The implications of the hierarchy of Planck
constants are extremely far reaching so that the significance of the reduction of this hierarchy to
the basic mathematical structure distinguishing between TGD and competing theories cannot
be under-estimated.

From the point of view of particle physics the ultimate goal is of course a practical construction
recipe for the S-matrix of the theory. I have myself regarded this dream as quite too ambitious taking
into account how far reaching re-structuring and generalization of the basic mathematical structure
of quantum physics is required. It has indeed turned out that the dream about explicit formula
is unrealistic before one has understood what happens in quantum jump. Symmetries and general
physical principles have turned out to be the proper guide line here. To give some impressions about
what is required some highlights are in order.

• With the emergence of zero energy ontology the notion of S-matrix was replaced with M-matrix
which can be interpreted as a complex square root of density matrix representable as a diagonal
and positive square root of density matrix and unitary S-matrix so that quantum theory in zero
energy ontology can be said to define a square root of thermodynamics at least formally.

• A decisive step was the strengthening of the General Coordinate Invariance to the requirement
that the formulations of the theory in terms of light-like 3-surfaces identified as 3-surfaces at
which the induced metric of space-time surfaces changes its signature and in terms of space-like
3-surfaces are equivalent. This means effective 2-dimensionality in the sense that partonic 2-
surfaces defined as intersections of these two kinds of surfaces plus 4-D tangent space data at
partonic 2-surfaces code for the physics. Quantum classical correspondence requires the coding
of the quantum numbers characterizing quantum states assigned to the partonic 2-surfaces to
the geometry of space-time surface. This is achieved by adding to the modified Dirac action a
measurement interaction term assigned with light-like 3-surfaces.

• The replacement of strings with light-like 3-surfaces equivalent to space-like 3-surfaces means
enormous generalization of the super conformal symmetries of string models. A further general-
ization of these symmetries to non-local Yangian symmetries generalizing the recently discovered
Yangian symmetry of N = 4 supersymmetric Yang-Mills theories is highly suggestive. Here the
replacement of point like particles with partonic 2-surfaces means the replacement of conformal
symmetry of Minkowski space with infinite-dimensional super-conformal algebras. Yangian sym-
metry provides also a further refinement to the notion of conserved quantum numbers allowing
to define them for bound states using non-local energy conserved currents.

• A further attractive idea is that quantum TGD reduces to almost topological quantum field
theory. This is possible if the Kähler action for the preferred extremals defining WCW Kähler
function reduces to a 3-D boundary term. This takes place if the conserved currents are so called
Beltrami fields with the defining property that the coordinates associated with flow lines extend
to single global coordinate variable. This ansatz together with the weak form of electric-magnetic
duality reduces the Kähler action to Chern-Simons term with the condition that the 3-surfaces
are extremals of Chern-Simons action subject to the constraint force defined by the weak form
of electric magnetic duality. It is the latter constraint which prevents the trivialization of the
theory to a topological quantum field theory. Also the identification of the Kähler function of
WCW as Dirac determinant finds support as well as the description of the scattering amplitudes
in terms of braids with interpretation in terms of finite measurement resolution coded to the
basic structure of the solutions of field equations.

• In standard QFT Feynman diagrams provide the description of scattering amplitudes. The
beauty of Feynman diagrams is that they realize unitarity automatically via the so called
Cutkosky rules. In contrast to Feynman’s original beliefs, Feynman diagrams and virtual parti-
cles are taken only as a convenient mathematical tool in quantum field theories. QFT approach
is however plagued by UV and IR divergences and one must keep mind open for the possibility
that a genuine progress might mean opening of the black box of the virtual particle.

In TGD framework this generalization of Feynman diagrams indeed emerges unavoidably. Light-
like 3-surfaces replace the lines of Feynman diagrams and vertices are replaced by 2-D partonic
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2-surfaces. Zero energy ontology and the interpretation of parton orbits as light-like ”wormhole
throats” suggests that virtual particle do not differ from on mass shell particles only in that
the four- and three- momenta of wormhole throats fail to be parallel. The two throats of the
wormhole defining virtual particle would contact carry on mass shell quantum numbers but
for virtual particles the four-momenta need not be parallel and can also have opposite signs of
energy. Modified Dirac equation suggests a number theoretical quantization of the masses of the
virtual particles. The kinematic constraints on the virtual momenta are extremely restrictive
and reduce the dimension of the sub-space of virtual momenta and if massless particles are
not allowed (IR cutoff provided by zero energy ontology naturally), the number of Feynman
diagrams contributing to a particular kind of scattering amplitude is finite and manifestly UV
and IR finite and satisfies unitarity constraint in terms of Cutkosky rules. What is remarkable
that fermionic propagatos are massless propagators but for on mass shell four-momenta. This
gives a connection with the twistor approach and inspires the generalization of the Yangian
symmetry to infinite-dimensional super-conformal algebras.

What I have said above is strongly biased view about the recent situation in quantum TGD and
I have left all about applications to the introductions of the books whose purpose is to provide a
bird’s eye of view about TGD as it is now. This vision is single man’s view and doomed to contain
unrealistic elements as I know from experience. My dream is that young critical readers could take
this vision seriously enough to try to demonstrate that some of its basic premises are wrong or to
develop an alternative based on these or better premises. I must be however honest and tell that 32
years of TGD is a really vast bundle of thoughts and quite a challenge for anyone who is not able to
cheat himself by taking the attitude of a blind believer or a light-hearted debunker trusting on the
power of easy rhetoric tricks.

Matti Pitkänen

Hanko,
September 15, 2010
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Chapter 1

Introduction

1.1 Background

T(opological) G(eometro)D(ynamics) is one of the many attempts to find a unified description of basic
interactions. The development of the basic ideas of TGD to a relatively stable form took time of about
half decade [27]. The great challenge is to construct a mathematical theory around these physically
very attractive ideas and I have devoted the last twenty-three years for the realization of this dream
and this has resulted in seven online books about TGD and eight online books about TGD inspired
theory of consciousness and of quantum biology.

Quantum T(opological)D(ynamics) as a classical spinor geometry for infinite-dimensional configu-
ration space, p-adic numbers and quantum TGD, and TGD inspired theory of consciousness have been
for last decade of the second millenium the basic three strongly interacting threads in the tapestry of
quantum TGD.

For few yeas ago the discussions with Tony Smith generated a fourth thread which deserves the
name ’TGD as a generalized number theory’. The work with Riemann hypothesis made time ripe
for realization that the notion of infinite primes could provide, not only a reformulation, but a deep
generalization of quantum TGD. This led to a thorough and extremely fruitful revision of the basic
views about what the final form and physical content of quantum TGD might be.

The fifth thread came with the realization that by quantum classical correspondence TGD predicts
an infinite hierarchy of macroscopic quantum systems with increasing sizes, that it is not at all clear
whether standard quantum mechanics can accommodate this hierarchy, and that a dynamical quan-
tized Planck constant might be necessary and certainly possible in TGD framework. The identification
of hierarchy of Planck constants whose values TGD ”predicts” in terms of dark matter hierarchy would
be natural. This also led to a solution of a long standing puzzle: what is the proper interpretation of
the predicted fractal hierarchy of long ranged classical electro-weak and color gauge fields. Quantum
classical correspondences allows only single answer: there is infinite hierarchy of p-adically scaled up
variants of standard model physics and for each of them also dark hierarchy. Thus TGD Universe
would be fractal in very abstract and deep sense.

TGD forces the generalization of physics to a quantum theory of consciousness, and represent TGD
as a generalized number theory vision leads naturally to the emergence of p-adic physics as physics
of cognitive representations. The seven online books [1, 2, 5, 6, 3, 4, 7] about TGD and eight online
books about TGD inspired theory of consciousness and of quantum biology [8, 9, 10, 11, 12, 15, 13, 14]
are warmly recommended to the interested reader.

1.2 Basic Ideas of TGD

The basic physical picture behind TGD was formed as a fusion of two rather disparate approaches:
namely TGD is as a Poincare invariant theory of gravitation and TGD as a generalization of the
old-fashioned string model.

1



2 Chapter 1. Introduction

1.2.1 TGD as a Poincare invariant theory of gravitation

The first approach was born as an attempt to construct a Poincare invariant theory of gravitation.
Space-time, rather than being an abstract manifold endowed with a pseudo-Riemannian structure,
is regarded as a surface in the 8-dimensional space H = M4

+ × CP2, where M4
+ denotes the interior

of the future light cone of the Minkowski space (to be referred as light cone in the sequel) and
CP2 = SU(3)/U(2) is the complex projective space of two complex dimensions [45, 31, 34, 17]. The
identification of the space-time as a submanifold [33, 30] of M4 × CP2 leads to an exact Poincare
invariance and solves the conceptual difficulties related to the definition of the energy-momentum in
General Relativity. The actual choiceH = M4

+×CP2 implies the breaking of the Poincare invariance in
the cosmological scales but only at the quantum level. It soon however turned out that submanifold
geometry, being considerably richer in structure than the abstract manifold geometry, leads to a
geometrization of all basic interactions. First, the geometrization of the elementary particle quantum
numbers is achieved. The geometry of CP2 explains electro-weak and color quantum numbers. The
different H-chiralities of H-spinors correspond to the conserved baryon and lepton numbers. Secondly,
the geometrization of the field concept results. The projections of the CP2 spinor connection, Killing
vector fields of CP2 and of H-metric to four-surface define classical electro-weak, color gauge fields
and metric in X4.

1.2.2 TGD as a generalization of the hadronic string model

The second approach was based on the generalization of the mesonic string model describing mesons
as strings with quarks attached to the ends of the string. In the 3-dimensional generalization 3-
surfaces correspond to free particles and the boundaries of the 3- surface correspond to partons in
the sense that the quantum numbers of the elementary particles reside on the boundaries. Various
boundary topologies (number of handles) correspond to various fermion families so that one obtains
an explanation for the known elementary particle quantum numbers. This approach leads also to a
natural topological description of the particle reactions as topology changes: for instance, two-particle
decay corresponds to a decay of a 3-surface to two disjoint 3-surfaces.

1.2.3 Fusion of the two approaches via a generalization of the space-time
concept

The problem is that the two approaches seem to be mutually exclusive since the orbit of a particle like
3-surface defines 4-dimensional surface, which differs drastically from the topologically trivial macro-
scopic space-time of General Relativity. The unification of these approaches forces a considerable
generalization of the conventional space-time concept. First, the topologically trivial 3-space of Gen-
eral Relativity is replaced with a ”topological condensate” containing matter as particle like 3-surfaces
”glued” to the topologically trivial background 3-space by connected sum operation. Secondly, the
assumption about connectedness of the 3-space is given up. Besides the ”topological condensate”
there is ”vapor phase” that is a ”gas” of particle like 3-surfaces (counterpart of the ”baby universies”
of GRT) and the nonconservation of energy in GRT corresponds to the transfer of energy between the
topological condensate and vapor phase.

1.3 The five threads in the development of quantum TGD

The development of TGD has involved four strongly interacting threads: physics as infinite-dimensional
geometry; p-adic physics; TGD inspired theory of consciousness and TGD as a generalized number
theory. In the following these five threads are briefly described.

1.3.1 Quantum TGD as configuration space spinor geometry

A turning point in the attempts to formulate a mathematical theory was reached after seven years
from the birth of TGD. The great insight was ”Do not quantize”. The basic ingredients to the new
approach have served as the basic philosophy for the attempt to construct Quantum TGD since then
and are the following ones:
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1. Quantum theory for extended particles is free(!), classical(!) field theory for a generalized
Schrödinger amplitude in the configuration space CH consisting of all possible 3-surfaces in
H. ”All possible” means that surfaces with arbitrary many disjoint components and with
arbitrary internal topology and also singular surfaces topologically intermediate between two
different manifold topologies are included. Particle reactions are identified as topology changes
[35, 32, 29]. For instance, the decay of a 3-surface to two 3-surfaces corresponds to the decay
A→ B+C. Classically this corresponds to a path of configuration space leading from 1-particle
sector to 2-particle sector. At quantum level this corresponds to the dispersion of the gener-
alized Schrödinger amplitude localized to 1-particle sector to two-particle sector. All coupling
constants should result as predictions of the theory since no nonlinearities are introduced.

2. Configuration space is endowed with the metric and spinor structure so that one can define
various metric related differential operators, say Dirac operator, appearing in the field equations
of the theory.

1.3.2 p-Adic TGD

The p-adic thread emerged for roughly ten years ago as a dim hunch that p-adic numbers might be
important for TGD. Experimentation with p-adic numbers led to the notion of canonical identification
mapping reals to p-adics and vice versa. The breakthrough came with the successful p-adic mass
calculations using p-adic thermodynamics for Super-Virasoro representations with the super-Kac-
Moody algebra associated with a Lie-group containing standard model gauge group. Although the
details of the calculations have varied from year to year, it was clear that p-adic physics reduces not
only the ratio of proton and Planck mass, the great mystery number of physics, but all elementary
particle mass scales, to number theory if one assumes that primes near prime powers of two are in a
physically favored position. Why this is the case, became one of the key puzzless and led to a number
of arguments with a common gist: evolution is present already at the elementary particle level and
the primes allowed by the p-adic length scale hypothesis are the fittest ones.

It became very soon clear that p-adic topology is not something emerging in Planck length scale
as often believed, but that there is an infinite hierarchy of p-adic physics characterized by p-adic
length scales varying to even cosmological length scales. The idea about the connection of p-adics
with cognition motivated already the first attempts to understand the role of the p-adics and inspired
’Universe as Computer’ vision but time was not ripe to develop this idea to anything concrete (p-adic
numbers are however in a central role in TGD inspired theory of consciousness). It became however
obvious that the p-adic length scale hierarchy somehow corresponds to a hierarchy of intelligences and
that p-adic prime serves as a kind of intelligence quotient. Ironically, the almost obvious idea about
p-adic regions as cognitive regions of space-time providing cognitive representations for real regions
had to wait for almost a decade for the access into my consciousness.

There were many interpretational and technical questions crying for a definite answer. What is the
relationship of p-adic non-determinism to the classical non-determinism of the basic field equations
of TGD? Are the p-adic space-time region genuinely p-adic or does p-adic topology only serve as an
effective topology? If p-adic physics is direct image of real physics, how the mapping relating them
is constructed so that it respects various symmetries? Is the basic physics p-adic or real (also real
TGD seems to be free of divergences) or both? If it is both, how should one glue the physics in
different number field together to get The Physics? Should one perform p-adicization also at the level
of the configuration space of 3-surfaces? Certainly the p-adicization at the level of super-conformal
representation is necessary for the p-adic mass calculations. Perhaps the most basic and most irritating
technical problem was how to precisely define p-adic definite integral which is a crucial element of any
variational principle based formulation of the field equations. Here the frustration was not due to the
lack of solution but due to the too large number of solutions to the problem, a clear symptom for the
sad fact that clever inventions rather than real discoveries might be in question.

Despite these frustrating uncertainties, the number of the applications of the poorly defined p-adic
physics growed steadily and the applications turned out to be relatively stable so that it was clear
that the solution to these problems must exist. It became only gradually clear that the solution of
the problems might require going down to a deeper level than that represented by reals and p-adics.
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1.3.3 TGD as a generalization of physics to a theory consciousness

General coordinate invariance forces the identification of quantum jump as quantum jump between
entire deterministic quantum histories rather than time=constant snapshots of single history. The
new view about quantum jump forces a generalization of quantum measurement theory such that
observer becomes part of the physical system. Thus a general theory of consciousness is unavoidable
outcome. This theory is developed in detail in the books [8, 9, 10, 11, 12, 15, 13, 14].

Quantum jump as a moment of consciousness

The identification of quantum jump between deterministic quantum histories (configuration space
spinor fields) as a moment of consciousness defines microscopic theory of consciousness. Quantum
jump involves the steps

Ψi → UΨi → Ψf ,

where U is informational ”time development” operator, which is unitary like the S-matrix charac-
terizing the unitary time evolution of quantum mechanics. U is however only formally analogous to
Schrödinger time evolution of infinite duration although there is no real time evolution involved. It is
not however clear whether one should regard U-matrix and S-matrix as two different things or not: U -
matrix is a completely universal object characterizing the dynamics of evolution by self-organization
whereas S-matrix is a highly context dependent concept in wave mechanics and in quantum field
theories where it at least formally represents unitary time translation operator at the limit of an in-
finitely long interaction time. The S-matrix understood in the spirit of superstring models is however
something very different and could correspond to U-matrix.

The requirement that quantum jump corresponds to a measurement in the sense of quantum field
theories implies that each quantum jump involves localization in zero modes which parameterize also
the possible choices of the quantization axes. Thus the selection of the quantization axes performed
by the Cartesian outsider becomes now a part of quantum theory. Together these requirements imply
that the final states of quantum jump correspond to quantum superpositions of space-time surfaces
which are macroscopically equivalent. Hence the world of conscious experience looks classical. At
least formally quantum jump can be interpreted also as a quantum computation in which matrix U
represents unitary quantum computation which is however not identifiable as unitary translation in
time direction and cannot be ’engineered’.

The notion of self

The concept of self is absolutely essential for the understanding of the macroscopic and macro-temporal
aspects of consciousness. Self corresponds to a subsystem able to remain un-entangled under the
sequential informational ’time evolutions’ U . Exactly vanishing entanglement is practically impossible
in ordinary quantum mechanics and it might be that ’vanishing entanglement’ in the condition for
self-property should be replaced with ’subcritical entanglement’. On the other hand, if space-time
decomposes into p-adic and real regions, and if entanglement between regions representing physics in
different number fields vanishes, space-time indeed decomposes into selves in a natural manner.

It is assumed that the experiences of the self after the last ’wake-up’ sum up to single average
experience. This means that subjective memory is identifiable as conscious, immediate short term
memory. Selves form an infinite hierarchy with the entire Universe at the top. Self can be also
interpreted as mental images: our mental images are selves having mental images and also we represent
mental images of a higher level self. A natural hypothesis is that self S experiences the experiences
of its subselves as kind of abstracted experience: the experiences of subselves Si are not experienced
as such but represent kind of averages 〈Sij〉 of sub-subselves Sij . Entanglement between selves, most
naturally realized by the formation of join along boundaries bonds between cognitive or material space-
time sheets, provides a possible a mechanism for the fusion of selves to larger selves (for instance, the
fusion of the mental images representing separate right and left visual fields to single visual field) and
forms wholes from parts at the level of mental images.
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Relationship to quantum measurement theory

The third basic element relates TGD inspired theory of consciousness to quantum measurement theory.
The assumption that localization occurs in zero modes in each quantum jump implies that the world
of conscious experience looks classical. It also implies the state function reduction of the standard
quantum measurement theory as the following arguments demonstrate (it took incredibly long time
to realize this almost obvious fact!).

1. The standard quantum measurement theory a la von Neumann involves the interaction of brain
with the measurement apparatus. If this interaction corresponds to entanglement between mi-
croscopic degrees of freedom m with the macroscopic effectively classical degrees of freedom M
characterizing the reading of the measurement apparatus coded to brain state, then the reduc-
tion of this entanglement in quantum jump reproduces standard quantum measurement theory
provide the unitary time evolution operator U acts as flow in zero mode degrees of freedom and
correlates completely some orthonormal basis of configuration space spinor fields in non-zero
modes with the values of the zero modes. The flow property guarantees that the localization is
consistent with unitarity: it also means 1-1 mapping of quantum state basis to classical variables
(say, spin direction of the electron to its orbit in the external magnetic field).

2. Since zero modes represent classical information about the geometry of space-time surface
(shape, size, classical Kähler field,...), they have interpretation as effectively classical degrees
of freedom and are the TGD counterpart of the degrees of freedom M representing the reading
of the measurement apparatus. The entanglement between quantum fluctuating non-zero modes
and zero modes is the TGD counterpart for the m−M entanglement. Therefore the localization
in zero modes is equivalent with a quantum jump leading to a final state where the measurement
apparatus gives a definite reading.

This simple prediction is of utmost theoretical importance since the black box of the quantum
measurement theory is reduced to a fundamental quantum theory. This reduction is implied by the
replacement of the notion of a point like particle with particle as a 3-surface. Also the infinite-
dimensionality of the zero mode sector of the configuration space of 3-surfaces is absolutely essential.
Therefore the reduction is a triumph for quantum TGD and favors TGD against string models.

Standard quantum measurement theory involves also the notion of state preparation which reduces
to the notion of self measurement. Each localization in zero modes is followed by a cascade of self
measurements leading to a product state. This process is obviously equivalent with the state prepa-
ration process. Self measurement is governed by the so called Negentropy Maximization Principle
(NMP) stating that the information content of conscious experience is maximized. In the self mea-
surement the density matrix of some subsystem of a given self localized in zero modes (after ordinary
quantum measurement) is measured. The self measurement takes place for that subsystem of self for
which the reduction of the entanglement entropy is maximal in the measurement. In p-adic context
NMP can be regarded as the variational principle defining the dynamics of cognition. In real context
self measurement could be seen as a repair mechanism allowing the system to fight against quantum
thermalization by reducing the entanglement for the subsystem for which it is largest (fill the largest
hole first in a leaking boat).

Selves self-organize

The fourth basic element is quantum theory of self-organization based on the identification of quantum
jump as the basic step of self-organization [25]. Quantum entanglement gives rise to the generation
of long range order and the emergence of longer p-adic length scales corresponds to the emergence of
larger and larger coherent dynamical units and generation of a slaving hierarchy. Energy (and quantum
entanglement) feed implying entropy feed is a necessary prerequisite for quantum self-organization.
Zero modes represent fundamental order parameters and localization in zero modes implies that the
sequence of quantum jumps can be regarded as hopping in the zero modes so that Haken’s classical
theory of self organization applies almost as such. Spin glass analogy is a further important element:
self-organization of self leads to some characteristic pattern selected by dissipation as some valley of
the ”energy” landscape.
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Dissipation can be regarded as the ultimate Darwinian selector of both memes and genes. The
mathematically ugly irreversible dissipative dynamics obtained by adding phenomenological dissipa-
tion terms to the reversible fundamental dynamical equations derivable from an action principle can be
understood as a phenomenological description replacing in a well defined sense the series of reversible
quantum histories with its envelope.

Classical non-determinism of Kähler action

The fifth basic element are the concepts of association sequence and cognitive space-time sheet. The
huge vacuum degeneracy of the Kähler action suggests strongly that the absolute minimum space-time
is not always unique. For instance, a sequence of bifurcations can occur so that a given space-time
branch can be fixed only by selecting a finite number of 3-surfaces with time like(!) separations on the
orbit of 3-surface. Quantum classical correspondence suggest an alternative formulation. Space-time
surface decomposes into maximal deterministic regions and their temporal sequences have interpre-
tation a space-time correlate for a sequence of quantum states defined by the initial (or final) states
of quantum jumps. This is consistent with the fact that the variational principle selects preferred
extremals of Kähler action as generalized Bohr orbits.

In the case that non-determinism is located to a finite time interval and is microscopic, this sequence
of 3-surfaces has interpretation as a simulation of a classical history, a geometric correlate for contents
of consciousness. When non-determinism has long lasting and macroscopic effect one can identify it as
volitional non-determinism associated with our choices. Association sequences relate closely with the
cognitive space-time sheets defined as space-time sheets having finite time duration and psychological
time can be identified as a temporal center of mass coordinate of the cognitive space-time sheet. The
gradual drift of the cognitive space-time sheets to the direction of future force by the geometry of the
future light cone explains the arrow of psychological time.

p-Adic physics as physics of cognition and intentionality

The sixth basic element adds a physical theory of cognition to this vision. TGD space-time decomposes
into regions obeying real and p-adic topologies labelled by primes p = 2, 3, 5, .... p-Adic regions obey
the same field equations as the real regions but are characterized by p-adic non-determinism since
the functions having vanishing p-adic derivative are pseudo constants which are piecewise constant
functions. Pseudo constants depend on a finite number of positive pinary digits of arguments just like
numerical predictions of any theory always involve decimal cutoff. This means that p-adic space-time
regions are obtained by gluing together regions for which integration constants are genuine constants.
The natural interpretation of the p-adic regions is as cognitive representations of real physics. The
freedom of imagination is due to the p-adic non-determinism. p-Adic regions perform mimicry and
make possible for the Universe to form cognitive representations about itself. p-Adic physics space-
time sheets serve also as correlates for intentional action.

A more more precise formulation of this vision requires a generalization of the number concept
obtained by fusing reals and p-adic number fields along common rationals (in the case of algebraic
extensions among common algebraic numbers). This picture is discussed in [21]. The application
this notion at the level of the imbedding space implies that imbedding space has a book like structure
with various variants of the imbedding space glued together along common rationals (algebraics). The
implication is that genuinely p-adic numbers (non-rationals) are strictly infinite as real numbers so
that most points of p-adic space-time sheets are at real infinity, outside the cosmos, and that the
projection to the real imbedding space is discrete set of rationals (algebraics). Hence cognition and
intentionality are almost completely outside the real cosmos and touch it at a discrete set of points
only.

This view implies also that purely local p-adic physics codes for the p-adic fractality characterizing
long range real physics and provides an explanation for p-adic length scale hypothesis stating that
the primes p ' 2k, k integer are especially interesting. It also explains the long range correlations
and short term chaos characterizing intentional behavior and explains why the physical realizations
of cognition are always discrete (say in the case of numerical computations). Furthermore, a concrete
quantum model for how intentions are transformed to actions emerges.

The discrete real projections of p-adic space-time sheets serve also space-time correlate for a logical
thought. It is very natural to assign to p-adic pinary digits a p-valued logic but as such this kind
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of logic does not have any reasonable identification. p-Adic length scale hypothesis suggest that the
p = 2k−n pinary digits represent a Boolean logic Bk with k elementary statements (the points of the
k-element set in the set theoretic realization) with n taboos which are constrained to be identically
true.

1.3.4 TGD as a generalized number theory

Quantum T(opological)D(ynamics) as a classical spinor geometry for infinite-dimensional configura-
tion space, p-adic numbers and quantum TGD, and TGD inspired theory of consciousness, have been
for last ten years the basic three strongly interacting threads in the tapestry of quantum TGD. For few
yeas ago the discussions with Tony Smith generated a fourth thread which deserves the name ’TGD as
a generalized number theory’. It involves three separate threads: the fusion of real and various p-adic
physics to a single coherent whole by requiring number theoretic universality discussed already, the
formulation of quantum TGD in terms of hyper-counterparts of classical number fields identified as
sub-spaces of complexified classical number fields with Minkowskian signature of the metric defined
by the complexified inner product, and the notion of infinite prime.

The role of classical number fields

The vision about the physical role of the classical number fields relies on the notion of number theoretic
compactifiction stating that space-time surfaces can be regarded as surfaces of either M8 or M4×CP2.
As surfaces of M8 identifiable as space of hyper-octonions they are hyper-quaternionic or co-hyper-
quaternionic- and thus maximally associative or co-associative. This means that their tangent space
is either hyper-quaternionic plane of M8 or an orthogonal complement of such a plane. These surface
can be mapped in natural manner to surfaces in M4×CP2 [20] provided one can assign to each point
of tangent space a hyper-complex plane M2(x) ⊂M4. One can also speak about M8 −H duality.

This vision has very strong predictive power. It predicts that the extremals of Kähler action
correspond to either hyper-quaternionic or co-hyper-quaternionic surfaces such that one can assign
to tangent space at each point of space-time surface a hyper-complex plane M2(x) ⊂ M4. As a
consequence, the M4 projection of space-time surface at each point contains M2(x) and its orthogonal
complement. These distributions are integrable implying that space-time surface allows dual slicings
defined by string world sheets Y 2 and partonic 2-surfaces X2. The existence of this kind of slicing
was earlier deduced from the study of extremals of Kähler action and christened as Hamilton-Jacobi
structure. The physical interpretation of M2(x) is as the space of non-physical polarizations and the
plane of local 4-momentum.

One can fairly say, that number theoretical compactification is responsible for most of the under-
standing of quantum TGD that has emerged during last years. This includes the realization of Equiv-
alence Principle at space-time level, dual formulations of TGD as Minkowskian and Euclidian string
model type theories, the precise identification of preferred extremals of Kähler action as extremals
for which second variation vanishes (at least for deformations representing dynamical symmetries)
and thus providing space-time correlate for quantum criticality, the notion of number theoretic braid
implied by the basic dynamics of Kähler action and crucial for precise construction of quantum TGD
as almost-topological QFT, the construction of configuration space metric and spinor structure in
terms of second quantized induced spinor fields with modified Dirac action defined by Kähler action
realizing automatically the notion of finite measurement resolution and a connection with inclusions
of hyper-finite factors of type II1 about which Clifford algebra of configuration space represents an
example.

Infinite primes

The discovery of the hierarchy of infinite primes and their correspondence with a hierarchy defined by a
repeatedly second quantized arithmetic quantum field theory gave a further boost for the speculations
about TGD as a generalized number theory. The work with Riemann hypothesis led to further ideas.

After the realization that infinite primes can be mapped to polynomials representable as surfaces
geometrically, it was clear how TGD might be formulated as a generalized number theory with infinite
primes forming the bridge between classical and quantum such that real numbers, p-adic numbers, and
various generalizations of p-adics emerge dynamically from algebraic physics as various completions of
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the algebraic extensions of rational (hyper-)quaternions and (hyper-)octonions. Complete algebraic,
topological and dimensional democracy would characterize the theory.

What is especially satisfying is that p-adic and real regions of the space-time surface could emerge
automatically as solutions of the field equations. In the space-time regions where the solutions of
field equations give rise to in-admissible complex values of the imbedding space coordinates, p-adic
solution can exist for some values of the p-adic prime. The characteristic non-determinism of the
p-adic differential equations suggests strongly that p-adic regions correspond to ’mind stuff’, the
regions of space-time where cognitive representations reside. This interpretation implies that p-adic
physics is physics of cognition. Since Nature is probably extremely brilliant simulator of Nature, the
natural idea is to study the p-adic physics of the cognitive representations to derive information about
the real physics. This view encouraged by TGD inspired theory of consciousness clarifies difficult
interpretational issues and provides a clear interpretation for the predictions of p-adic physics.

1.3.5 Dynamical quantized Planck constant and dark matter hierarchy

By quantum classical correspondence space-time sheets can be identified as quantum coherence regions.
Hence the fact that they have all possible size scales more or less unavoidably implies that Planck
constant must be quantized and have arbitrarily large values. If one accepts this then also the idea
about dark matter as a macroscopic quantum phase characterized by an arbitrarily large value of
Planck constant emerges naturally as does also the interpretation for the long ranged classical electro-
weak and color fields predicted by TGD. Rather seldom the evolution of ideas follows simple linear
logic, and this was the case also now. In any case, this vision represents the fifth, relatively new thread
in the evolution of TGD and the ideas involved are still evolving.

Dark matter as large ~ phase

D. Da Rocha and Laurent Nottale [64] have proposed that Schrödinger equation with Planck constant
~ replaced with what might be called gravitational Planck constant ~gr = GmM

v0
(~ = c = 1). v0 is

a velocity parameter having the value v0 = 144.7± .7 km/s giving v0/c = 4.6× 10−4. This is rather
near to the peak orbital velocity of stars in galactic halos. Also subharmonics and harmonics of v0

seem to appear. The support for the hypothesis coming from empirical data is impressive.

Nottale and Da Rocha believe that their Schrödinger equation results from a fractal hydrodynamics.
Many-sheeted space-time however suggests astrophysical systems are not only quantum systems at
larger space-time sheets but correspond to a gigantic value of gravitational Planck constant. The
gravitational (ordinary) Schrödinger equation would provide a solution of the black hole collapse (IR
catastrophe) problem encountered at the classical level. The resolution of the problem inspired by
TGD inspired theory of living matter is that it is the dark matter at larger space-time sheets which
is quantum coherent in the required time scale [28].

Already before learning about Nottale’s paper I had proposed the possibility that Planck constant
is quantized [23] and the spectrum is given in terms of logarithms of Beraha numbers: the lowest
Beraha number B3 is completely exceptional in that it predicts infinite value of Planck constant. The
inverse of the gravitational Planck constant could correspond a gravitational perturbation of this as
1/~gr = v0/GMm. The general philosophy would be that when the quantum system would become
non-perturbative, a phase transition increasing the value of ~ occurs to preserve the perturbative
character and at the transition n = 4 → 3 only the small perturbative correction to 1/~(3) = 0
remains. This would apply to QCD and to atoms with Z > 137 as well.

TGD predicts correctly the value of the parameter v0 assuming that cosmic strings and their decay
remnants are responsible for the dark matter. The harmonics of v0 can be understood as corresponding
to perturbations replacing cosmic strings with their n-branched coverings so that tension becomes
n2-fold: much like the replacement of a closed orbit with an orbit closing only after n turns. 1/n-
sub-harmonic would result when a magnetic flux tube split into n disjoint magnetic flux tubes. Also
a model for the formation of planetary system as a condensation of ordinary matter around quantum
coherent dark matter emerges [28].
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Dark matter as a source of long ranged weak and color fields

Long ranged classical electro-weak and color gauge fields are unavoidable in TGD framework. The
smallness of the parity breaking effects in hadronic, nuclear, and atomic length scales does not however
seem to allow long ranged electro-weak gauge fields. The problem disappears if long range classical
electro-weak gauge fields are identified as space-time correlates for massless gauge fields created by
dark matter. Also scaled up variants of ordinary electro-weak particle spectra are possible. The
identification explains chiral selection in living matter and unbroken U(2)ew invariance and free color
in bio length scales become characteristics of living matter and of bio-chemistry and bio-nuclear
physics. An attractive solution of the matter antimatter asymmetry is based on the identification of
also antimatter as dark matter.

p-Adic and dark matter hierarchies and hierarchy of moments of consciousness

Dark matter hierarchy assigned to a spectrum of Planck constant having arbitrarily large values brings
additional elements to the TGD inspired theory of consciousness.

1. Macroscopic quantum coherence can be understood since a particle with a given mass can in
principle appear as arbitrarily large scaled up copies (Compton length scales as ~). The phase
transition to this kind of phase implies that space-time sheets of particles overlap and this makes
possible macroscopic quantum coherence.

2. The space-time sheets with large Planck constant can be in thermal equilibrium with ordinary
ones without the loss of quantum coherence. For instance, the cyclotron energy scale associated
with EEG turns out to be above thermal energy at room temperature for the level of dark matter
hierarchy corresponding to magnetic flux quanta of the Earth’s magnetic field with the size scale
of Earth and a successful quantitative model for EEG results [36].

Dark matter hierarchy leads to detailed quantitative view about quantum biology with several
testable predictions [36]. The applications to living matter suggests that the basic hierarchy cor-
responds to a hierarchy of Planck constants coming as ~(k) = λk(p)~0, λ ' 211 for p = 2127−1,
k = 0, 1, 2, ... [36]. Also integer valued sub-harmonics and integer valued sub-harmonics of λ might
be possible. Each p-adic length scale corresponds to this kind of hierarchy and number theoretical
arguments suggest a general formula for the allowed values of Planck constant λ depending logarith-
mically on p-adic prime [30]. Also the value of ~0 has spectrum characterized by Beraha numbers
Bn = 4cos2(π/n), n ≥ 3, varying by a factor in the range n > 3 [30]. It must be however emphasized
that the relation of this picture to the model of quantized gravitational Planck constant hgr appearing
in Nottale’s model is not yet completely understood.

The general prediction is that Universe is a kind of inverted Mandelbrot fractal for which each
bird’s eye of view reveals new structures in long length and time scales representing scaled down copies
of standard physics and their dark variants. These structures would correspond to higher levels in self
hierarchy. This prediction is consistent with the belief that 75 per cent of matter in the universe is
dark.

1. Living matter and dark matter

Living matter as ordinary matter quantum controlled by the dark matter hierarchy has turned out
to be a particularly successful idea. The hypothesis has led to models for EEG predicting correctly
the band structure and even individual resonance bands and also generalizing the notion of EEG [36].
Also a generalization of the notion of genetic code emerges resolving the paradoxes related to the
standard dogma [22, 36]. A particularly fascinating implication is the possibility to identify great
leaps in evolution as phase transitions in which new higher level of dark matter emerges [36].

It seems safe to conclude that the dark matter hierarchy with levels labelled by the values of
Planck constants explains the macroscopic and macro-temporal quantum coherence naturally. That
this explanation is consistent with the explanation based on spin glass degeneracy is suggested by
following observations. First, the argument supporting spin glass degeneracy as an explanation of
the macro-temporal quantum coherence does not involve the value of ~ at all. Secondly, the failure
of the perturbation theory assumed to lead to the increase of Planck constant and formation of
macroscopic quantum phases could be precisely due to the emergence of a large number of new degrees
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of freedom due to spin glass degeneracy. Thirdly, the phase transition increasing Planck constant has
concrete topological interpretation in terms of many-sheeted space-time consistent with the spin glass
degeneracy.

2. Dark matter hierarchy and the notion of self

The vision about dark matter hierarchy leads to a more refined view about self hierarchy and
hierarchy of moments of consciousness [18, 36]. The larger the value of Planck constant, the longer
the subjectively experienced duration and the average geometric duration T (k) ∝ λk of the quantum
jump.

Quantum jumps form also a hierarchy with respect to p-adic and dark hierarchies and the geometric
durations of quantum jumps scale like ~. Dark matter hierarchy suggests also a slight modification of
the notion of self. Each self involves a hierarchy of dark matter levels, and one is led to ask whether
the highest level in this hierarchy corresponds to single quantum jump rather than a sequence of
quantum jumps. The averaging of conscious experience over quantum jumps would occur only for
sub-selves at lower levels of dark matter hierarchy and these mental images would be ordered, and
single moment of consciousness would be experienced as a history of events. The quantum parallel
dissipation at the lower levels would give rise to the experience of flow of time. For instance, hadron
as a macro-temporal quantum system in the characteristic time scale of hadron is a dissipating system
at quark and gluon level corresponding to shorter p-adic time scales. One can ask whether even entire
life cycle could be regarded as a single quantum jump at the highest level so that consciousness would
not be completely lost even during deep sleep. This would allow to understand why we seem to know
directly that this biological body of mine existed yesterday.

The fact that we can remember phone numbers with 5 to 9 digits supports the view that self corre-
sponds at the highest dark matter level to single moment of consciousness. Self would experience the
average over the sequence of moments of consciousness associated with each sub-self but there would
be no averaging over the separate mental images of this kind, be their parallel or serial. These mental
images correspond to sub-selves having shorter wake-up periods than self and would be experienced as
being time ordered. Hence the digits in the phone number are experienced as separate mental images
and ordered with respect to experienced time.

3. The time span of long term memories as signature for the level of dark matter hierarchy

The simplest dimensional estimate gives for the average increment τ of geometric time in quantum
jump τ ∼ 104 CP2 times so that 2127− 1 ∼ 1038 quantum jumps are experienced during secondary p-
adic time scale T2(k = 127) ' 0.1 seconds which is the duration of physiological moment and predicted
to be fundamental time scale of human consciousness [26]. A more refined guess is that τp =

√
pτ gives

the dependence of the duration of quantum jump on p-adic prime p. By multi-p-fractality predicted
by TGD and explaining p-adic length scale hypothesis, one expects that at least p = 2-adic level is
also always present. For the higher levels of dark matter hierarchy τp is scaled up by ~/~0. One can
understand evolutionary leaps as the emergence of higher levels at the level of individual organism
making possible intentionality and memory in the time scale defined τ [22].

Higher levels of dark matter hierarchy provide a neat quantitative view about self hierarchy and
its evolution. For instance, EEG time scales corresponds to k = 4 level of hierarchy and a time scale
of .1 seconds [18, 36], and EEG frequencies correspond at this level dark photon energies above the
thermal threshold so that thermal noise is not a problem anymore. Various levels of dark matter
hierarchy would naturally correspond to higher levels in the hierarchy of consciousness and the typical
duration of life cycle would give an idea about the level in question.

The level would determine also the time span of long term memories as discussed in [36]. k = 7
would correspond to a duration of moment of conscious of order human lifetime which suggests that
k = 7 corresponds to the highest dark matter level relevant to our consciousness whereas higher levels
would in general correspond to transpersonal consciousness. k = 5 would correspond to time scale of
short term memories measured in minutes and k = 6 to a time scale of memories measured in days.

The emergence of these levels must have meant evolutionary leap since long term memory is also
accompanied by ability to anticipate future in the same time scale. This picture would suggest that the
basic difference between us and our cousins is not at the level of genome as it is usually understood
but at the level of the hierarchy of magnetic bodies [22, 36]. In fact, higher levels of dark matter
hierarchy motivate the introduction of the notions of super-genome and hyper-genome. The genomes
of entire organ can join to form super-genome expressing genes coherently. Hyper-genomes would
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result from the fusion of genomes of different organisms and collective levels of consciousness would
express themselves via hyper-genome and make possible social rules and moral.

1.4 Bird’s eye of view about the topics of the book

The topics of this book are the purely geometric aspects of the vision about physics as an infinite-
dimensional Kähler geometry of the ”world of classical worlds”, with ” classical world” identified
either as light-like 3-D surface of the unique Bohr orbit like 4-surface traversing through it. The
non-determinism of Kähler action forces to generalize the notion of 3-surface so that unions of space-
like surfaces with time like separations must be allowed. Zero energy ontology allows to formulate
this picture elegantly in terms of causal diamonds defined as intersections of future and past directed
light-cones. Also a a geometric realization of coupling constant evolution and finite measurement
resolution emerges.

There are two separate tasks involved.

1. Provide configuration space of 3-surfaces with Kähler geometry which is consistent with 4-
dimensional general coordinate invariance so that the metric is Diff4 degenerate. General coor-
dinate invariance implies that the definition of metric must assign to a given light-like 3-surface
X3 a 4-surface as a kind of Bohr orbit X4(X3).

2. Provide the configuration space with a spinor structure. The great idea is to identify config-
uration space gamma matrices in terms of super algebra generators expressible using second
quantized fermionic oscillator operators for induced free spinor fields at the space-time surface
assignable to a given 3-surface. The isometry generators and contractions of Killing vectors with
gamma matrices would thus form a generalization of Super Kac-Moody algebra.

The condition of mathematical existence poses surprisingly strong conditions on configuration
space metric and spinor structure.

1. From the experience with loop spaces one can expect that there is no hope about existence of
well-defined Riemann connection unless this space is union of infinite-dimensional symmetric
spaces with constant curvature metric and simple considerations requires that vacuum Einstein
equations are satisfied by each component in the union. The coordinates labeling these sym-
metric spaces are zero modes having interpretation as genuinely classical variables which do not
quantum fluctuate since they do not contribute to the line element of the configuration space.

2. The construction of the Kähler structure involves also the identification of complex structure.
Direct construction of Kähler function as action associated with a preferred Bohr orbit like
extremal for some physically motivated action action leads to a unique result. Second approach
is group theoretical and is based on a direct guess of isometries of the infinite-dimensional
symmetric space formed by 3-surfaces with fixed values of zero modes. The group of isometries
is generalization of Kac-Moody group obtained by replacing finite-dimensional Lie group with the
group of symplectic transformations of δM4

+×CP2, where δM4
+ is the boundary of 4-dimensional

future light-cone. A crucial role is played by the generalized conformal invariance assignable to
light-like 3-surfaces and to the boundaries of causal diamond. In particular, a generalization of
Equivalence Principle can be formulated in terms of generalized coset construction.

3. Fermionic statistics and quantization of spinor fields can be realized in terms of configuration
space spinors structure. Quantum criticality and the idea about space-time surfaces as analogs of
Bohr orbits have served as basic guiding lines of Quantum TGD. These notions can be formulated
more precisely in terms of the modified Dirac equation for induced spinor fields allowing also
realization of super-conformal symmetries and quantum gravitational holography. A rather
detailed view about how configuration space Kähler function emerges as Dirac determinant
allowing a tentative identification of the preferred extremals of Kähler action as surface for
which second variation of Kähler action vanishes for some deformations of the surface. The
catastrophe theoretic analog for quantum critical space-time surfaces are the points of space
spanned by behavior and control variables at which the determinant defined by the second
derivatives of potential function with respect to behavior variables vanishes. Number theoretic
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vision leads to rather detailed view about preferred extremals of Kähler action. In particular,
preferred extremals should be what I have dubbed as hyper-quaternionic surfaces. It it still an
open question whether this characterization is equivalent with quantum criticality or not.

The seven online books about TGD [1, 2, 5, 6, 3, 4, 7] and eight online books about TGD inspired
theory of consciousness and quantum biology [8, 9, 10, 11, 12, 15, 13, 14] are warmly recommended
for the reader willing to get overall view about what is involved.

1.5 The contents of the book

In the following abstracts of various chapters of the book are given in order to provide overall view.

1.5.1 Identification of the Configuration Space Kähler Function

There are two basic approaches to quantum TGD. The first approach, which is discussed in this
chapter, is a generalization of Einstein’s geometrization program of physics to an infinite-dimensional
context. Second approach is based on the identification of physics as a generalized number theory.
The first approach relies on the vision of quantum physics as infinite-dimensional Kähler geometry for
the ”world of classical worlds” (WCW) identified as the space of 3-surfaces in in certain 8-dimensional
space. There are three separate approaches to the challenge of constructing WCW Kähler geometry
and spinor structure. The first approach relies on direct guess of Kähler function. Second approach
relies on the construction of Kähler form and metric utilizing the huge symmetries of the geometry
needed to guarantee the mathematical existence of Riemann connection. The third approach relies
on the construction of spinor structure based on the hypothesis that complexified WCW gamma
matrices are representable as linear combinations of fermionic oscillator operator for second quantized
free spinor fields at space-time surface and on the geometrization of super-conformal symmetries in
terms of WCW spinor structure.

In this chapter the proposal for Kähler function based on the requirement of 4-dimensional General
Coordinate Invariance implying that its definition must assign to a given 3-surface a unique space-time
surface. Quantum classical correspondence requires that this surface is a preferred extremal of some
some general coordinate invariant action, and so called Kähler action is a unique candidate in this
respect. The preferred extremal has intepretation as an analog of Bohr orbit so that classical physics
becomes and exact part of WCW geometry and therefore also quantum physics.

The basic challenge is the explicit identification of WCW Kähler function K. Two assumptions
lead to the identification of K as a sum of Chern-Simons type terms associated with the ends of
causal diamond and with the light-like wormhole throats at which the signature of the induced metric
changes. The first assumption is the weak form of electric magnetic duality. Second assumption is
that the Kähler current for preferred extremals satisfies the condition jK ∧ djK = 0 implying that the
flow parameter of the flow lines of jK defines a global space-time coordinate. This would mean that
the vision about reduction to almost topological QFT would be realized.

Second challenge is the understanding of the space-time correlates of quantum criticality. Electric-
magnetic duality helps considerably here. The realization that the hierarchy of Planck constant
realized in terms of coverings of the imbedding space follows from basic quantum TGD leads to a
further understanding. The extreme non-linearity of canonical momentum densities as functions of
time derivatives of the imbedding space coordinates implies that the correspondence between these
two variables is not 1-1 so that it is natural to introduce coverings of CD×CP2. This leads also to a
precise geometric characterization of the criticality of the preferred extremals.

1.5.2 Construction of Configuration Space Kähler Geometry from Sym-
metry Principles

There are three separate approaches to the challenge of constructing WCW Kähler geometry and
spinor structure. The first one relies on a direct guess of Kähler function. Second approach relies
on the construction of Kähler form and metric utilizing the huge symmetries of the geometry needed
to guarantee the mathematical existence of Riemann connection. The third approach relies on the
construction of spinor structure assuming that complexified WCW gamma matrices are representable
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as linear combinations of fermionic oscillator operator for the second quantized free spinor fields
at space-time surface and on the geometrization of super-conformal symmetries in terms of spinor
structure.

In this chapter the construction of Kähler form and metric based on symmetries is discussed. The
basic vision is that WCW can be regarded as the space of generalized Feynman diagrams with lines
thickned to light-like 3-surfaces and vertices identified as partonic 2-surfaces. In zero energy ontology
the strong form of General Coordinate Invariance (GCI) implies effective 2-dimensionality and the
basic objects are pairs partonic 2-surfaces X2 at opposite light-like boundaries of causal diamonds
(CDs).

The hypothesis is that WCW can be regarded as a union of infinite-dimensional symmetric spaces
G/H labeled by zero modes having an interpretation as classical, non-quantum fluctuating variables.
A crucial role is played by the metric 2-dimensionality of the light-cone boundary δM4

+ and of light-
like 3-surfaces implying a generalization of conformal invariance. The group G acting as isometries of
WCW is tentatively identified as the symplectic group of δM4

+ × CP2 localized with respect to X2.
H is identified as Kac-Moody type group associated with isometries of H = M4 × CP2 acting on
light-like 3-surfaces and thus on X2.

An explicit construction for the Hamiltonians of WCW isometry algebra as so called flux Hamilto-
nians is proposed and also the elements of Kähler form can be constructed in terms of these. Explicit
expressions for WCW flux Hamiltonians as functionals of complex coordinates of the Cartesisian prod-
uct of the infinite-dimensional symmetric spaces having as points the partonic 2-surfaces defining the
ends of the the light 3-surface (line of generalized Feynman diagram) are proposed.

1.5.3 Configuration space spinor structure

There are three separate approaches to the challenge of constructing WCW Kähler geometry and
spinor structure. The first approach relies on a direct guess of Kähler function. Second approach
relies on the construction of Kähler form and metric utilizing the huge symmetries of the geometry
needed to guarantee the mathematical existence of Riemann connection. The third approach discussed
in this chapter relies on the construction of spinor structure based on the hypothesis that complexified
WCW gamma matrices are representable as linear combinations of fermionic oscillator operator for the
second quantized free spinor fields at space-time surface and on the geometrization of super-conformal
symmetries in terms of spinor structure. This implies a geometrization of fermionic statistics.

The basic philosophy is that at fundamental level the construction of WCW geometry reduces to the
second quantization of the induced spinor fields using Dirac action. This assumption is parallel with
the bosonic emergence stating that all gauge bosons are pairs of fermion and antifermion at opposite
throats of wormhole contact. Vacuum function is identified as Dirac determinant and the conjecture
is that it reduces to the exponent of Kähler function. In order to achieve internal consistency induced
gamma matrices appearing in Dirac operator must be replaced by the modified gamma matrices
defined uniquely by Kähler action and one must also assume that extremals of Kähler action are in
question so that the classical space-time dynamics reduces to a consistency condition. This implies
also super-symmetries and the fermionic oscillator algebra at partonic 2-surfaces has intepretation as
N =∞ generalization of space-time super-symmetry algebra different however from standard SUSY
algebra in that Majorana spinors are not needed. This algebra serves as a building brick of various
super-conformal algebras involved.

The requirement that there exist deformations giving rise to conserved Noether charges requires
that the preferred extremals are critical in the sense that the second variation of the Kähler action
vanishes for these deformations. Thus Bohr orbit property could correspond to criticality or at least
involve it.

Quantum classical correspondence demands that quantum numbers are coded to the properties
of the preferred extremals given by the Dirac determinant and this requires a linear coupling to
the conserved quantum charges in Cartan algebra. Effective 2-dimensionality allows a measurement
interaction term only in 3-D Chern-Simons Dirac action assignable to the wormhole throats and the
ends of the space-time surfaces at the boundaries of CD. This allows also to have physical propagators
reducing to Dirac propagator not possible without the measurement interaction term. An essential
point is that the measurement interaction corresponds formally to a gauge transformation for the
induced Kähler gauge potential. If one accepts the weak form of electric-magnetic duality Kähler
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function reduces to a generalized Chern-Simons term and the effect of measurement interaction term
to Kähler function reduces effectively to the same gauge transformation.

The basic vision is that WCW gamma matrices are expressible as super-symplectic charges at the
boundaries of CD. The basic building brick of WCW is the product of infinite-D symmetric spaces
assignable to the ends of the propagator line of the generalized Feynman diagram. WCW Kähler
metric has in this case ”kinetic” parts associated with the ends and ”interaction” part between the
ends. General expressions for the super-counterparts of WCW flux Hamiltoniansand for the matrix
elements of WCW metric in terms of their anticommutators are proposed on basis of this picture.

1.5.4 Does modified Dirac action define the fundamental action principle?

The construction of the spinor structure for the world of classical worlds (WCW) leads to the vision
that second quantized modified Dirac equation codes for the entire quantum TGD. Among other
things this would mean that Dirac determinant would define the vacuum functional of the theory
having interpretation as the exponent of Kähler function of WCW and Kähler function would reduce
to Kähler action for a preferred extremal of Kähler action. In this chapter the recent view about the
modified Dirac action are explained in more detail.

1. Identification of the modified Dirac action

The modified Dirac action action involves several terms. The first one is 4-dimensional assignable
to Kähler action. Second term is instanton term reducible to an expression restricted to wormhole
throats or any light-like 3-surfaces parallel to them in the slicing of space-time surface by light-like
3-surfaces. The third term is assignable to Chern-Simons term and has interpretation as a mea-
surement interaction term linear in Cartan algebra of the isometry group of the imbedding space in
order to obtain stringy propagators and also to realize coupling between the quantum numbers asso-
ciated with super-conformal representations and space-time geometry required by quantum classical
correspondence.

This means that 3-D light-like wormhole throats carry induced spinor field which can be regarded
as independent degrees of freedom having the spinor fields at partonic 2-surfaces as sources and acting
as 3-D sources for the 4-D induced spinor field. The most general measurement interaction would
involve the corresponding coupling also for Kähler action but is not physically motivated. There are
good arguments in favor of Chern-Simons Dirac action and corresponding measurement interaction.

1. A correlation between 4-D geometry of space-time sheet and quantum numbers is achieved
by the identification of exponent of Kähler function as Dirac determinant making possible the
entanglement of classical degrees of freedom in the interior of space-time sheet with quantum
numbers.

2. Cartan algebra plays a key role not only at quantum level but also at the level of space-time
geometry since quantum critical conserved currents vanish for Cartan algebra of isometries
and the measurement interaction terms giving rise to conserved currents are possible only for
Cartan algebras. Furthermore, modified Dirac equation makes sense only for eigen states of
Cartan algebra generators. The hierarchy of Planck constants realized in terms of the book like
structure of the generalized imbedding space assigns to each CD (causal diamond) preferred
Cartan algebra: in case of Poincare algebra there are two of them corresponding to linear and
cylindrical M4 coordinates.

3. Quantum holography and dimensional reduction hierarchy in which partonic 2-surface defined
fermionic sources for 3-D fermionic fields at light-like 3-surfaces Y 3

l in turn defining fermionic
sources for 4-D spinors find an elegant realization. Effective 2-dimensionality is achieved if the
replacement of light-like wormhole throat X3

l with light-like 3-surface Y 3
l ”parallel” with it in the

definition of Dirac determinant corresponds to the U(1) gauge transformation K → K + f + f
for Kähler function of WCW so that WCW Kähler metric is not affected. Here f is holomorphic
function of WCW (”world of classical worlds”) complex coordinates and arbitrary function of
zero mode coordinates.

4. An elegant description of the interaction between super-conformal representations realized at
partonic 2-surfaces and dynamics of space-time surfaces is achieved since the values of Cartan
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charges are feeded to the 3-D Dirac equation which also receives mass term at the same time.
Almost topological QFT at wormhole throats results at the limit when four-momenta vanish:
this is in accordance with the original vision about TGD as almost topological QFT.

5. A detailed view about the physical role of quantum criticality results. Quantum criticality
fixes the values of Kähler coupling strength as the analog of critical temperature. Quantum
criticality implies that second variation of Kähler action vanishes for critical deformations and
the existence of conserved current except in the case of Cartan algebra of isometries. Quantum
criticality allows to fix the values of couplings appearing in the measurement interaction by using
the condition K → K + f + f . p-Adic coupling constant evolution can be understood also and
corresponds to scale hierarchy for the sizes of causal diamonds (CDs).

6. The inclusion of imaginary instanton term to the definition of the modified gamma matrices is
not consistent with the conjugation of the induced spinor fields. Measurement interaction can
be however assigned to both Kähler action and its instanton term. CP breaking, irreversibility
and the space-time description of dissipation are closely related and the CP and T oddness of
the instanton part of the measurement interaction term could provide first level description for
dissipative effects. It must be however emphasized that the mere addition of instanton term to
Kähler function could be enough.

7. A radically new view about matter antimatter asymmetry based on zero energy ontology emerges
and one could understand the experimental absence of antimatter as being due to the fact
antimatter corresponds to negative energy states. The identification of bosons as wormhole
contacts is the only possible option in this framework.

8. Almost stringy propagators and a consistency with the identification of wormhole throats as
lines of generalized Feynman diagrams is achieved. The notion of bosonic emergence leads to a
long sought general master formula for the M -matrix elements. The counterpart for fermionic
loop defining bosonic inverse propagator at QFT limit is wormhole contact with fermion and
cutoffs in mass squared and hyperbolic angle for loop momenta of fermion and antifermion in
the rest system of emitting boson have precise geometric counterpart.

2. Hyper-quaternionicity and quantum criticality

The conjecture that quantum critical space-time surfaces are hyper-quaternionic in the sense that
the modified gamma matrices span a quaternionic subspace of complexified octonions at each point
of the space-time surface is consistent with what is known about preferred extremals. The condition
that both the modified gamma matrices and spinors are quaternionic at each point of the space-time
surface leads to a precise ansatz for the general solution of the modified Dirac equation making sense
also in the real context. The octonionic version of the modified Dirac equation is very simple since
SO(7, 1) as vielbein group is replaced with G2 acting as automorphisms of octonions so that only the
neutral Abelian part of the classical electro-weak gauge fields survives the map.

Octonionic gamma matrices provide also a non-associative representation for the 8-D version of
Pauli sigma matrices and encourage the identification of 8-D twistors as pairs of octonionic spinors
conjectured to be highly relevant also for quantum TGD. Quaternionicity condition implies that octo-
twistors reduce to something closely related to ordinary twistors.

3. The exponent of Kähler function as Dirac determinant for the modified Dirac action

Although quantum criticality in principle predicts the possible values of Kähler coupling strength,
one might hope that there exists even more fundamental approach involving no coupling constants
and predicting even quantum criticality and realizing quantum gravitational holography.

1. The Dirac determinant defined by the product of Dirac determinants associated with the light-
like partonic 3-surfaces X3

l associated with a given space-time sheet X4 is the simplest candidate
for vacuum functional identifiable as the exponent of the Kähler function. Individual Dirac de-
terminant is defined as the product of eigenvalues of the dimensionally reduced modified Dirac
operator DK,3 and there are good arguments suggesting that the number of eigenvalues is finite.
p-Adicization requires that the eigenvalues belong to a given algebraic extension of rationals.
This restriction would imply a hierarchy of physics corresponding to different extensions and
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could automatically imply the finiteness and algebraic number property of the Dirac deter-
minants if only finite number of eigenvalues would contribute. The regularization would be
performed by physics itself if this were the case.

2. It remains to be proven that the product of eigenvalues gives rise to the exponent of Kähler
action for the preferred extremal of Kähler action. At this moment the only justification for the
conjecture is that this the only thing that one can imagine.

3. A long-standing conjecture has been that the zeros of Riemann Zeta are somehow relevant for
quantum TGD. Rieman zeta is however naturally replaced Dirac zeta defined by the eigenvalues
of DK,3 and closely related to Riemann Zeta since the spectrum consists essentially for the
cyclotron energy spectra for localized solutions region of non-vanishing induced Kähler magnetic
field and hence is in good approximation integer valued up to some cutoff integer. In zero
energy ontology the Dirac zeta function associated with these eigenvalues defines ”square root”
of thermodynamics assuming that the energy levels of the system in question are expressible
as logarithms of the eigenvalues of the modified Dirac operator defining kind of fundamental
constants. Critical points correspond to approximate zeros of Dirac zeta and if Kähler function
vanishes at criticality as it indeed should, the thermal energies at critical points are in first
order approximation proportional to zeros themselves so that a connection between quantum
criticality and approximate zeros of Dirac zeta emerges.

4. The discretization induced by the number theoretic braids reduces the world of classical worlds
to effectively finite-dimensional space and configuration space Clifford algebra reduces to a finite-
dimensional algebra. The interpretation is in terms of finite measurement resolution represented
in terms of Jones inclusion M ⊂ N of HFFs with M taking the role of complex numbers.
The finite-D quantum Clifford algebra spanned by fermionic oscillator operators is identified
as a representation for the coset space N/M describing physical states modulo measurement
resolution. In the sectors of generalized imbedding space corresponding to non-standard values
of Planck constant quantum version of Clifford algebra is in question.

1.5.5 Miscellaneous topics

This chapter contains topics which do not fit naturally under any umbrella, but which I feel might be
of some relevance. Basically TGD inspired comments to the work of the people not terribly relevant to
quantum TGD itself are in question. For few years ago Witten’s approach to 3-D quantum gravitation
raised a considerable interest and this inspired the comparison of this approach with quantum TGD in
which light-like 3-surfaces are in a key role. Few years later the entropic gravity of Verlinde stimulated
a lot of fuss in blogs and it is interesting to point out how the formal thermodynamical structure (or
actually its ”square root”) emerges in the fundamental formulation of TGD. Lisi’s E8 theory was a
further blog favorite and some comments about its failures and possible manners to cure them are
discussed. It is also shown ho how E8 can be seed as being replaced with the Kac-Moody algebra
associated standard model symmetry group in TGD framework.
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Chapter 2

Identification of the Configuration
Space Kähler Function

2.1 Introduction

The motivation or the construction of configuration space geometry is the postulate that physics
reduces to the geometry of classical spinor fields in the the ”world of the classical worlds” (WCW)
identified as the infinite-dimensional configuration space of 3-surfaces of some subspace of M4×CP2.
The first candidates were M4

+ × CP2 and M4 × CP2, where M4 and M4
+ denote Minkowski space

and its light cone respectively. The recent identification of WCW is as the the union of sub-WCWs
consisting of light-like 3-surface representing generalized Feynman diagrams in CD×CP2, where CD
is intersection of future and past directed light-cones of M4. The details of this identification will be
discussed later.

Hermitian conjugation is the basic operation in quantum theory and its geometrization requires
that configuration space possesses Kähler geometry. One of the basic features of the Kähler geometry
is that it is solely determined by the so called Kähler function, which defines both the Kähler form J
and the components of the Kähler metric g in complex coordinates via the formulas [45]

J = i∂k∂l̄Kdz
k ∧ dz̄l ,

ds2 = 2∂k∂l̄Kdz
kdz̄l . (2.1.1)

Kähler form is covariantly constant two-form and can be regarded as a representation of imaginary
unit in the tangent space of the configuration space

JmrJ
rn = −g n

m . (2.1.2)

As a consequence Kähler form defines also symplectic structure in configuration space.

2.1.1 Configuration space Kähler metric from Kähler function

The task of finding Kähler geometry for the configuration space reduces to that of finding the Kähler
function. The main constraints on the Kähler function result from the requirement of General Co-
ordinate Invariance (GCI) -or more technically Diff4 symmetry and Diff degeneracy. GCI requires
that the definition of the Kähler function assigns to a given 3-surface X3 a unique space-time surface
X4(X3), the generalized Bohr orbit defining the classical physics associated with X3. The natural
guess inspired by quantum classical correspondence is that Kähler function is defined by what might
be called Kähler action, which is essentially Maxwell action with Maxwell field expressible in terms
of CP2 coordinates and that the space-time surface corresponds to a preferred extremal of Kähler
action.

One can end up with the identification of the preferred extremal via several routes. Kähler action
contains Kähler coupling strength as a temperature like parameter and this leads to the idea of
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quantum criticality fixing this parameter. One could go even even further, and require that space-
time surfaces are critical in the sense that there exist an infinite number of vanishing second variations
of Kähler action defining conserved Noether charges. The approach based on the modified Dirac action
indeed leads naturally to this picture [47]. Kähler coupling strength should be however visible in the
solutions of field equations somehow before one can say that these two criticalities have something to
do with each other. Since Kähler coupling strength does not appear in field equations it can make its
way to field equations only via boundary conditions. This is achieved if one accepts the weak form of
self-duality discussed in [22] which roughly states that for the partonic 2-surfaces the induced Kähler
electric field is proportional to the Kähler magnetic field strength. The proportionality constant turns
out to be essentially the Kähler coupling strength. The simplest hypothesis is that Kähler coupling
strength has single universal value for given value of Planck constant and the weak form of self-duality
fixes it.

If Kähler action would define a strictly deterministic variational principle, Diff4 degeneracy and in-
variance would be achieved by restricting the consideration to 3-surfaces Y 3 at the boundary ofM4

+ and
by defining Kähler function for 3-surfaces X3 at X4(Y 3) and diffeo-related to Y 3 as K(X3) = K(Y 3).
This reduction might be called quantum gravitational holography. The classical non-determinism of
the Kähler action introduces complications which might be overcome in zero energy ontology (ZEO).
ZEO and strong from of GCI lead to the effective replacement of X3 with partonic 2-surfaces at the
ends of CD plus the 4-D tangent space distribution associated with them as basic geometric objects
so that one can speak about effective 2-dimensionality and strong form of gravitational holography.

2.1.2 Configuration space metric from symmetries

A complementary approach to the problem of constructing configuration space geometry is based
on symmetries. The work of Dan Freed [45] has demonstrated that the Kähler geometry of loop
spaces is unique from the existence of Riemann connection and fixed completely by the Kac Moody
symmetries of the space. In 3-dimensional context one has even better reasons to expect uniqueness.
The guess is that configuration space is a union symmetric spaces labeled by zero modes not appearing
in the line element as differentials and having interpretations as classical degrees providing a rigorous
formulation of quantum measurement theory. The generalized conformal invariance of metrically 2-
dimensional light like 3-surfaces acting as causal determinants is the corner stone of the construction.
The construction works only for 4-dimensional space-time and imbedding space which is a product of
four-dimensional Minkowski space or its future light cone with CP2.

In this sequel I will first consider the basic properties of the configuration space, propose an
identification of the Kähler function and discuss various physical and mathematical motivations behind
the proposed definition. The key feature of the Kähler action is the failure of classical determinism in
its standard form, and various implications of the failure are discussed.

2.2 Configuration space

The view about configuration space or world of classical worlds (WCW) has developed considerably
during the last two decades. Here only the recent view is summarized in order to not load reader with
unessential details.

2.2.1 Basic notions

The notions of imbedding space, 3-surface (and 4-surface), and configuration space or ”world of
classical worlds” (WCW), are central to quantum TGD. The original idea was that 3-surfaces are
space-like 3-surfaces of H = M4 × CP2 or H = M4

+ × CP2, and WCW consists of all possible 3-
surfaces in H. The basic idea was that the definition of Kähler metric of WCW assigns to each X3 a
unique space-time surface X4(X3) allowing in this manner to realize GCI. During years these notions
have however evolved considerably.

The notion of imbedding space

Two generalizations of the notion of imbedding space were forced by number theoretical vision [21,
20, 19].
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1. p-Adicization forced to generalize the notion of imbedding space by gluing real and p-adic
variants of imbedding space together along rationals and common algebraic numbers. The
generalized imbedding space has a book like structure with reals and various p-adic number
fields (including their algebraic extensions) representing the pages of the book. As matter fact,
this gluing idea generalizes to the level of WCW.

2. With the discovery of zero energy ontology [30, 18] it became clear that the so called causal
diamonds (CDs) interpreted as intersections M4

+ ∩M4
− of future and past directed light-cones

of M4 × CP2 define correlates for the quantum states. The position of the ”lower” tip of CD
characterizes the position of CD in H. If the temporal distance between upper and lower tip of
CD is quantized power of 2 multiples of CP2 length, p-adic length scale hypothesis [29] follows
as a consequence. The upper resp. lower light-like boundary δM4

+ × CP2 resp. δM4
− × CP2

of CD can be regarded as the carrier of positive resp. negative energy part of the state. All
net quantum numbers of states vanish so that everything is creatable from vacuum. Space-time
surfaces assignable to zero energy states would would reside inside CD × CP2s and have their
3-D ends at the light-like boundaries of CD × CP2. Fractal structure is present in the sense
that CDs can contains CDs within CDs, and measurement resolution dictates the length scale
below which the sub-CDs are not visible.

3. The realization of the hierarchy of Planck constants [20] led to a further generalization of the
notion of imbedding space. Generalized imbedding space is obtained by gluing together Carte-
sian products of singular coverings and possibly also factor spaces of CD and CP2 to form a
book like structure. There are good physical and mathematical arguments suggesting that only
the singular coverings should be allowed [19]. The particles at different pages of this book be-
have like dark matter relative to each other. This generalization also brings in the geometric
correlate for the selection of quantization axes in the sense that the geometry of the sectors of
the generalized imbedding space with non-standard value of Planck constant involves symmetry
breaking reducing the isometries to Cartan subalgebra. Roughly speaking, each CD and CP2 is
replaced with a union of CDs and CP2s corresponding to different choices of quantization axes
so that no breaking of Poincare and color symmetries occurs at the level of entire WCW.

The notions of 3-surface and space-time surface

The question what one exactly means with 3-surface turned out to be non-trivial and the receont view
is an outcome of a long and tedious process involving many hastily done mis-interpretations.

1. The original identification of 3-surfaces was as arbitrary space-like 3-surfaces subject to equiva-
lence implied by GCI. There was a problem related to the realization of GCI since it was not at
all obvious why the preferred extremal X4(Y 3) for Y 3 at X4(X3) and Diff4 related X3 should
satisfy X4(Y 3) = X4(X3) .

2. Much later it became clear that light-like 3-surfaces have unique properties for serving as basic
dynamical objects, in particular for realizing the GCI in 4-D sense (obviously the identification
resolves the above mentioned problem) and understanding the conformal symmetries of the
theory. Light-like 3-surfaces can be regarded as orbits of partonic 2-surfaces. Therefore it seems
that one must choose between light-like and space-like 3-surfaces or assume generalized GCI
requiring that equivalently either space-like 3-surfaces or light-like 3-surfaces at the ends of
CDs can be identified as the fundamental geometric objects. General GCI requires that the
basic objects correspond to the partonic 2-surfaces identified as intersections of these 3-surfaces
plus common 4-D tangent space distribution. At the level of WCW metric this means that
the components of the Kähler form and metric can be expressed in terms of data assignable
to 2-D partonic surfaces. Since the information about normal space of the 2-surface is needed
one has only effective 2-dimensionality. Weak form of self-duality [22] however implies that the
normal data (flux Hamiltonians associated with Kähler electric field) reduces to magnetic flux
Hamiltonians. This is essential for conformal symmetries and also simplifies the construction
enormously.

3. At some stage came the realization that light-like 3-surfaces can have singular topology in the
sense that they are analogous to Feynman diagrams. This means that the light-like 3-surfaces
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representing lines of Feynman diagram can be glued along their 2-D ends playing the role of
vertices to form what I call generalized Feynman diagrams. The ends of lines are located at
boundaries of sub-CDs. This brings in also a hierarchy of time scales: the increase of the
measurement resolution means introduction of sub-CDs containing sub-Feynman diagrams. As
the resolution is improved, new sub-Feynman diagrams emerge so that effective 2-D character
holds true in discretized sense and in given resolution scale only.

4. A further but inessential complication relates to the hierarchy of Planck constants forcing to
generalize the notion of imbedding space and also to the fact that for non-standard values of
Planck constant there is symmetry breaking due to preferred plane M2 preferred homologically
trivial geodesic sphere of CP2 having interpretation as geometric correlate for the selection of
quantization axis. For given sector of CH this means union over choices of this kind.

The basic vision forced by the generalization of GCI has been that space-time surfaces correspond
to preferred extremals X4(X3) of Kähler action and are thus analogous to Bohr orbits. Kähler function
K(X3) defining the Kähler geometry of the world of classical worlds would correspond to the Kähler
action for the preferred extremal. The precise identification of the preferred extremals actually has
however remained open.

The study of the modified Dirac equation led to the realization that classical field equations for
Kähler action can be seen as consistency conditions for the modified Dirac action and led to the
identification of preferred extremals in terms of criticality. This identification which follows naturally
also from quantum criticality.

1. The detailed construction of the generalized eigen modes of the dimensional reduction of the
modified Dirac operator DK associated with Kähler action [18] relies on the vision that the
generalized eigenvalues of this operator code for information about preferred extremal of Kähler
action and that vacuum functional identified as Dirac determinant equals to exponent of Kähler
action for a preferred extremal.

2. The next step of progress was the realization that the requirement that the conservation of the
Noether currents associated with the modified Dirac equation requires that the second variation
of the Kähler action vanishes. In strongest form this condition would be satisfied for all variations
and in weak sense only for those defining dynamical symmetries. The interpretation is as a space-
time correlate for quantum criticality and the vacuum degeneracy of Kähler action makes the
criticality plausible. Weak form of electric-magnetic duality gives a precise formulation for how
Kähler coupling strength is visible in the properties of preferred extremals. A generalization
of the ideas of the catastrophe theory to infinite-dimensional context results. These conditions
make sense also in p-adic context and have a number theoretical universal form.

The notion of number theoretical compactication led to important progress in the understanding
of the preferred extremals and the conjectures were consistent with what is known about the known
extremals.

1. The conclusion was that one can assign to the 4-D tangent space T (X4(X3
l )) ⊂M8 a subspace

M2(x) ⊂M4 having interpretation as the plane of non-physical polarizations. This in the case
that the induced metric has Minkowskian signature. If not, and if co-hyper-quaternionic surface
is in question, similar assigned should be possible in normal space. This means a close connection
with super string models. Geometrically this would mean that the deformations of 3-surface in
the plane of non-physical polarizations would not contribute to the line element of WCW. This
is as it must be since complexification does not make sense in M2 degrees of freedom.

2. In number theoretical framework M2(x) has interpretation as a preferred hyper-complex sub-
space of hyper-octonions defined as 8-D subspace of complexified octonions with the property
that the metric defined by the octonionic inner product has signature of M8. The condition
M2(x) ⊂ T (X4(X3

l ))) in principle fixes the tangent space at X3
l , and one has good hopes that

the boundary value problem is well-defined and could fix X4(X3) at least partially as a preferred
extremal of Kähler action. This picture is rather convincing since the choice M2(x) ⊂M4 plays
also other important roles.
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3. At the level of H the counterpart for the choice of M2(x) seems to be following. Suppose
that X4(X3

l ) has Minkowskian signature. One can assign to each point of the M4 projection
PM4(X4(X3

l )) a sub-space M2(x) ⊂ M4 and its complement E2(x), and the distributions of
these planes are integrable and define what I have called Hamilton-Jacobi coordinates which can
be assigned to the known extremals of Kähler with Minkowskian signature. This decomposition
allows to slice space-time surfaces by string world sheets and their 2-D partonic duals. Also a
slicing to 1-D light-like surfaces and their 3-D light-like duals Y 3

l parallel to X3
l follows under

certain conditions on the induced metric of X4(X3
l ). This decomposition exists for known

extremals and has played key role in the recent developments. Physically it means that 4-
surface (3-surface) reduces effectively to 3-D (2-D) surface and thus holography at space-time
level.

4. The weakest form of number theoretic compactification [20] states that light-like 3-surfaces
X3 ⊂ X4(X3) ⊂ M8, where X4(X3) hyper-quaternionic surface in hyper-octonionic M8 can
be mapped to light-like 3-surfaces X3 ⊂ X4(X3) ⊂M4 × CP2, where X4(X3) is now preferred
extremum of Kähler action. The natural guess is that X4(X3) ⊂M8 is a preferred extremal of
Kähler action associated with Kähler form of E4 in the decomposition M8 = M4 × E4, where
M4 corresponds to hyper-quaternions. The conjecture would be that the value of the Kähler
action in M8 is same as in M4×CP2: in fact that 2-surface would have identical induced metric
and Kähler form so that this conjecture would follow trivial. M8−H duality would in this sense
be Kähler isometry.

If one takes M−H duality seriously, one must conclude that one can choose any partonic 2-surface
in the slicing of X4 as a representative. This means gauge invariance reflect in the definition of Kähler
function as U(1) gauge transformation K → K + f + f having no effect on Kähler metric and Kähler
form.

Although the details of this vision might change it can be defended by its ability to fuse together
all great visions about quantum TGD. In the sequel the considerations are restricted to 3-surfaces in
M4
±×CP2. The basic outcome is that Kähler metric is expressible using the data at partonic 2-surfaces

X2 ⊂ δM4
+ × CP2. The generalization to the actual physical situation requires the replacement of

X2 ⊂ δM4
+ × CP2 with unions of partonic 2-surfaces located at light-like boundaries of CDs and

sub-CDs.

The notion of configuration space

From the beginning there was a problem related to the precise definition of the configuration space
(”world of classical worlds” (WCW)). Should one regard CH as the space of 3-surfaces of M4 ×CP2

or M4
+ × CP2 or perhaps something more delicate.

1. For a long time I believed that the basis question is ”M4
+ or M4?” and that this question

had been settled in favor of M4
+ by the fact that M4

+ has interpretation as empty Roberson-
Walker cosmology. The huge conformal symmetries assignable to δM4

+ × CP2 were interpreted
as cosmological rather than laboratory symmetries. The work with the conceptual problems
related to the notions of energy and time, and with the symmetries of quantum TGD, however
led gradually to the realization that there are strong reasons for considering M4 instead of M4

+.

2. With the discovery of zero energy ontology it became clear that the so called causal diamonds
(CDs) define excellent candidates for the fundamental building blocks of the configuration space
or ”world of classical worlds” (WCW). The spaces CD ×CP2 regarded as subsets of H defined
the sectors of WCW.

3. This framework allows to realize the huge symmetries of δM4
±×CP2 as isometries of WCW. The

gigantic symmetries associated with the δM4
± × CP2 are also laboratory symmetries. Poincare

invariance fits very elegantly with the two types of super-conformal symmetries of TGD. The first
conformal symmetry corresponds to the light-like surfaces δM4

± × CP2 of the imbedding space
representing the upper and lower boundaries of CD. Second conformal symmetry corresponds
to light-like 3-surface X3

l , which can be boundaries of X4 and light-like surfaces separating
space-time regions with different signatures of the induced metric. This symmetry is identifiable
as the counterpart of the Kac Moody symmetry of string models.
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A rather plausible conclusion is that configuration space (WCW) is a union of configuration spaces
associated with the spaces CD×CP2. CDs can contain CDs within CDs so that a fractal like hierarchy
having interpretation in terms of measurement resolution results. It must be however emphasized that
Kähler function depends on partonic 2-surfaces at both ends of space-time surface so that WCW is
topologically Cartesian product of corresponding symmetric spaces. WCW metric must therefore have
parts corresponding to the partonic 2-surfaces (free part) and also an interaction term depending
on the partonic 2-surface at the opposite ends of the light-like 3-surface. The conclusion is that
geometrization reduces to that for single like of generalized Feynman diagram containing partonic
2-surfaces at its ends. Since the complications due to p-adic sectors and hierarchy of Planck constants
are not relevant for the basic construction, it reduces to a high degree to a study of a simple special
case corresponding to a line of generalized Feynman diagram. One can also deduce the free part of
the metric by restricting the consideration to partonic 2-surfaces at single end of generalized Feynman
diagram.

A further piece of understanding emerged from the following observations.

1. The induced Kähler form at the partonic 2-surface X2 - the basic dynamical object if holography
is accepted- can be seen as a fundamental symplectic invariant so that the values of εαβJαβ at
X2 define local symplectic invariants not subject to quantum fluctuations in the sense that they
would contribute to the configuration space metric. Hence only induced metric corresponds
to quantum fluctuating degrees of freedom at configuration space level and TGD is a genuine
theory of gravitation at this level.

2. Configuration space can be divided into slices for which the induced Kähler forms of CP2 and
δM4
± at the partonic 2-surfaces X2 at the light-like boundaries of CDs are fixed. The symplectic

group of δM4
±×CP2 parameterizes quantum fluctuating degrees of freedom in given scale (recall

the presence of hierarchy of CDs).

3. This leads to the identification of the coset space structure of the sub-configuration space asso-
ciated with given CD in terms of the generalized coset construction for super-symplectic and
super Kac-Moody type algebras (symmetries respecting light-likeness of light-like 3-surfaces).
Configuration space in quantum fluctuating degrees of freedom for given values of zero modes
can be regarded as being obtained by dividing symplectic group with Kac-Moody group. Equiv-
alently, the local coset space S2 × CP2 is in question: this was one of the first ideas about
configuration space which I gave up as too naive!

4. Generalized coset construction and coset space structure have very deep physical meaning since
they realize Equivalence Principle at quantum level: the identical actions of Super Virasoro
generators for super-symplectic and super Kac-Moody algebras implies that inertial and gravi-
tational four-momenta are identical.

2.2.2 Constraints on the configuration space geometry

The constraints on the WCW result both from the infinite dimension of the configuration space and
from physically motivated symmetry requirements. There are three basic physical requirements on the
configuration space geometry: namely four-dimensional GCI in strong form, Kähler property and the
decomposition of configuration space into a union ∪iG/Hi of symmetric spaces G/Hi, each coset space
allowing G-invariant metric such that G is subgroup of some ’universal group’ having natural action
on 3-surfaces. Together with the infinite dimensionality of the configuration space these requirements
pose extremely strong constraints on the configuration space geometry. In the following we shall
consider these requirements in more detail.

Diff4 invariance and Diff4 degeneracy

Diff4 plays fundamental role as the gauge group of General Relativity. In string models Diff2

invariance (Diff2 acts on the orbit of the string) plays central role in making possible the elimination
of the time like and longitudinal vibrational degrees of freedom of string. Also in the present case the
elimination of the tachyons (time like oscillatory modes of 3-surface) is a physical necessity and Diff4

invariance provides an obvious manner to do the job.
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In the standard path l integral formulation the realization of Diff4 invariance is an easy task at the
formal level. The problem is however that path integral over four-surfaces is plagued by divergences
and doesn’t make sense. In the present case the configuration space consists of 3-surfaces and only
Diff3 emerges automatically as the group of re-parameterizations of 3-surface. Obviously one should
somehow define the action of Diff4 in the space of 3-surfaces. Whatever the action of Diff4 is it must
leave the configuration space metric invariant. Furthermore, the elimination of tachyons is expected
to be possible only provided the time like deformations of the 3-surface correspond to zero norm
vector fields of the configuration space so that 3-surface and its Diff4 image have zero distance. The
conclusion is that configuration space metric should be both Diff4 invariant and Diff4 degenerate.

The problem is how to define the action of Diff4 in C(H). Obviously the only manner to achieve
Diff4 invariance is to require that the very definition of the configuration space metric somehow
associates a unique space time surface to a given 3-surface for Diff4 to act on. The obvious physical
interpretation of this space time surface is as ”classical space time” so that ”Classical Physics” would
be contained in configuration space geometry. In fact, this space-time surface is analogous to Bohr
orbit so that semiclassical quantization rules become an exact part of the quantum theory. It is this
requirement, which has turned out to be decisive concerning the understanding of the WCW geometry.

Decomposition of the configuration space into a union of symmetric spaces G/H

The extremely beautiful theory of finite-dimensional symmetric spaces constructed by Elie Cartan sug-
gests that configuration space should possess decomposition into a union of coset spaces CH = ∪iG/Hi

such that the metric inside each coset space G/Hi is left invariant under the infinite dimensional isom-
etry group G. The metric equivalence of surfaces inside each coset space G/Hi does not mean that
3-surfaces inside G/Hi are physically equivalent. The reason is that the vacuum functional is exponent
of Kähler action which is not isometry invariant so that the 3-surfaces, which correspond to maxima of
Kähler function for a given orbit, are in a preferred position physically. For instance, one can imagine
of calculating functional integral around this maximum perturbatively. Symmetric space property
actually allows also much more powerful non-perturbative approach based on harmonic analysis [47].
The sum of over i means actually integration over the zero modes of the metric (zero modes correspond
to coordinates not appearing as coordinate differentials in the metric tensor).

The coset space G/H is a symmetric space only under very special Lie-algebraic conditions. De-
noting the decomposition of the Lie-algebra g of G to the direct sum of H Lie-algebra h and its
complement t by g = h⊕ t, one has

[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h .

This decomposition turn out to play crucial role in guaranteing that G indeed acts as isometries and
that the metric is Ricci flat.

The four-dimensional Diff invariance indeed suggests to a beautiful solution of the problem of
identifying G. The point is that any 3-surface X3 is Diff4 equivalent to the intersection of X4(X3)
with the light cone boundary. This in turn implies that 3-surfaces in the space δH = δM4

+ × CP2

should be all what is needed to construct configuration space geometry. The group G can be identified
as some subgroup of diffeomorphisms of δH and Hi contains that subgroup of G, which acts as
diffeomorphisms of the 3-surface X3. Since G preserves topology, configuration space must decompose
into union ∪iG/Hi, where i labels 3-topologies and various zero modes of the metric. For instance,
the elements of the Lie-algebra of G invariant under configuration space complexification correspond
to zero modes.

The reduction to the light cone boundary, identifiable as the moment of big bang, looks perhaps
odd at first. In fact, it turns out that the classical non-determinism of Kähler action does not allow
the complete reduction to the light cone boundary: physically this is a highly desirable implication
but means a considerable mathematical challenge.

Kähler property

Kähler property implies that the tangent space of the configuration space allows complexification and
that there exists a covariantly constant two-form Jkl, which can be regarded as a representation of
the imaginary unit in the tangent space of the configuration space:
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J r
k Jrl = −Gkl . (2.2.1)

There are several physical and mathematical reasons suggesting that configuration space metric should
possess Kähler property in some generalized sense.

1. The deepest motivation comes from the need to geometrize hermitian conjugation which is basic
mathematical operation of quantum theory.

2. Kähler property turns out to be a necessary prerequisite for defining divergence free configuration
space integration. We will leave the demonstration of this fact later although the argument as
such is completely general.

3. Kähler property very probably implies an infinite-dimensional isometry group. The study of the
loop groups Map(S1, G) [45] shows that loop group allows only single Kähler metric with well
defined Riemann connection and this metric allows local G as its isometries!

To see this consider the construction of Riemannian connection for Map(X3, H). The defining
formula for the connection is given by the expression

2(∇XY,Z) = X(Y,Z) + Y (Z,X)− Z(X,Y )

+ ([X,Y ], Z) + ([Z,X], Y )− ([Y,Z], X) (2.2.2)

X,Y, Z are smooth vector fields in Map(X3, G). This formula defines ∇XY uniquely provided
the tangent space of Map is complete with respect to Riemann metric. In the finite-dimensional
case completeness means that the inverse of the covariant metric tensor exists so that one can
solve the components of connection from the conditions stating the covariant constancy of the
metric. In the case of the loop spaces with Kähler metric this is however not the case.

Now the symmetry comes into the game: if X,Y, Z are left (local gauge) invariant vector fields
defined by the Lie-algebra of local G then the first three terms drop away since the scalar
products of left invariant vector fields are constants. The expression for the covariant derivative
is given by

∇XY = (AdXY −Ad∗XY −Ad∗YX)/2 (2.2.3)

where Ad∗X is the adjoint of AdX with respect to the metric of the loop space.

At this point it is important to realize that Freed’s argument does not force the isometry group
of the configuration space to be Map(X3,M4×SU(3))! Any symmetry group, whose Lie algebra
is complete with respect to the configuration space metric ( in the sense that any tangent space
vector is expressible as superposition of isometry generators modulo a zero norm tangent vector)
is an acceptable alternative.

The Kähler property of the metric is quite essential in one-dimensional case in that it leads to
the requirement of left invariance as a mathematical consistency condition and we expect that
dimension three makes no exception in this respect. In 3-dimensional case the degeneracy of the
metric turns out to be even larger than in 1-dimensional case due to the four-dimensional Diff
degeneracy. So we expect that the metric ought to possess some infinite-dimensional isometry
group and that the above formula generalizes also to the 3-dimensional case and to the case of
local coset space. Note that in M4 degrees of freedom Map(X3,M4) invariance would imply
the flatness of the metric in M4 degrees of freedom.

The physical implications of the above purely mathematical conjecture should not be underes-
timated. For example, one natural looking manner to construct physical theory would be based
on the idea that configuration space geometry is dynamical and this approach is followed in the
attempts to construct string theories [43]. Various physical considerations (in particular the need
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to obtain oscillator operator algebra) seem to imply that configuration space geometry is neces-
sarily Kähler. The above result however states that configuration space Kähler geometry cannot
be dynamical quantity and is dictated solely by the requirement of internal consistency. This
result is extremely nice since it has been already found that the definition of the configuration
space metric must somehow associate a unique classical space time and ”classical physics” to a
given 3-surface: uniqueness of the geometry implies the uniqueness of the ”classical physics”.

4. The choice of the imbedding space becomes highly unique. In fact, the requirement that con-
figuration space is not only symmetric space but also (contact) Kähler manifold inheriting its
(degenerate) Kähler structure from the imbedding space suggests that spaces, which are products
of four-dimensional Minkowski space with complex projective spaces CPn, are perhaps the only
possible candidates for H. The reason for the unique position of the four-dimensional Minkowski
space turns out to be that the boundary of the light cone of D-dimensional Minkowski space
is metrically a sphere SD−2 despite its topological dimension D − 1: for D = 4 one obtains
two-sphere allowing Kähler structure and infinite parameter group of conformal symmetries!

5. It seems possible to understand the basic mathematical structures appearing in string model in
terms of the Kähler geometry rather nicely.

(a) The projective representations of the infinite-dimensional isometry group (not necessarily
Map!) correspond to the ordinary representations of the corresponding centrally extended
group [37]. The representations of Kac Moody group indeed play central role in string
models [63, 61] and configuration space approach would explain their occurrence, not as a
result of some quantization procedure, but as a consequence of symmetry of the underlying
geometric structure.

(b) The bosonic oscillator operators of string models would correspond to centrally extended
Lie-algebra generators of the isometry group acting on spinor fields of the configuration
space.

(c) The ”fermionic” fields ( Ramond fields, [63, 61]) should correspond to gamma matrices
of the configuration space. Fermionic oscillator operators would correspond simply to
contractions of isometry generators jkA with complexified gamma matrices of configuration
space

Γ±A = jkAΓ±k

Γ±k = (Γk ± JklΓl)/
√

2 (2.2.4)

(Jkl is the Kähler form of the configuration space) and would create various spin excita-
tions of the configuration space spinor field. Γ±k are the complexified gamma matrices,
complexification made possible by the Kähler structure of the configuration space.

This suggests that some generalization of the so called Super Kac Moody algebra of string models
[63, 61] should be regarded as a spectrum generating algebra for the solutions of field equations in
configuration space.

Although the Kähler structure seems to be physically well motivated there is a rather heavy counter
argument against the whole idea. Kähler structure necessitates complex structure in the tangent space
of the configuration space. In CP2 degrees of freedom no obvious problems of principle are expected:
configuration space should inherit in some sense the complex structure of CP2.

In Minkowski degrees of freedom the signature of the Minkowski metric seems to pose a serious
obstacle for complexification: somehow one should get rid of two degrees of freedom so that only two
Euclidian degrees of freedom remain. An analogous difficulty is encountered in quantum field theories:
only two of the four possible polarizations of gauge boson correspond to physical degrees of freedom:
mathematically the wrong polarizations correspond to zero norm states and transverse states span a
complex Hilbert space with Euclidian metric. Also in string model analogous situation occurs: in case
of D-dimensional Minkowski space only D−2 transversal degrees of freedom are physical. The solution
to the problem seems therefore obvious: configuration space metric must be degenerate so that each
vibrational mode spans effectively a 2-dimensional Euclidian plane allowing complexification.
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We shall find that the definition of Kähler function to be proposed indeed provides a solution to
this problem and also to the problems listed before.

1. The definition of the metric doesn’t differentiate between 1- and N-particle sectors, avoids spin
statistics difficulty and has the physically appealing property that one can associate to each
3-surface a unique classical space time: classical physics is described by the geometry of the
configuration space and d the geometry of the configuration space is determined uniquely by the
requirement of mathematical consistency.

2. Complexification is possible only provided the dimension of the Minkowski space equals to four
and is due to the effective 3-dimensionality of light-cone boundary.

3. It is possible to identify a unique candidate for the necessary infinite-dimensional isometry group
G. G is subgroup of the diffeomorphism group of δM4

+ × CP2. Essential role is played by the
fact that the boundary of the four-dimensional light cone, which, despite being topologically
3-dimensional, is metrically two-dimensional Euclidian sphere, and therefore allows infinite-
parameter groups of isometries as well as conformal and symplectic symmetries and also Kähler
structure unlike the higher-dimensional light cone boundaries. Therefore configuration space
metric is Kähler only in the case of four-dimensional Minkowski space and allows symplectic
U(1) central extension without conflict with the no-go theorems about higher dimensional central
extensions.

The study of the vacuum degeneracy of Kähler function defined by Kähler action forces to
conclude that the isometry group must consist of the symplectic transformations of δH = δM4

+×
CP2. The corresponding Lie algebra can be regarded as a loop algebra associated with the
symplectic group of S2 × CP2, where S2 is rM = constant sphere of light cone boundary.
Thus the finite-dimensional group G defining loop group in case of string models extends to
an infinite-dimensional group in TGD context. This group has a monstrous size. The radial
Virasoro localized with respect to S2×CP2 defines naturally complexification for both G and H.
The general form of the Kähler metric deduced on basis of this symmetry has same qualitative
properties as that deduced from Kähler function identified as preferred extremal of Kähler action.
Also the zero modes, among them isometry invariants, can be identified.

4. The construction of the configuration space spinor structure is based on the identification of
the configuration space gamma matrices as linear superpositions of the oscillator operators
associated with the second quantized induced spinor fields. The extension of the symplectic
invariance to super symplectic invariance fixes the anti-commutation relations of the induced
spinor fields, and configuration space gamma matrices correspond directly to the super genera-
tors. Physics as number theory vision suggests strongly that configuration space geometry exists
for 8-dimensional imbedding space only and that the choice M4

+×CP2 for the imbedding space
is the only possible one.

2.3 Identification of the Kähler function

There are three approaches to the construction of the WCW geometry: a direct physics based guess
of the Kähler function, a group theoretic approach based on the hypothesis that CH can be regarded
as a union of symmetric spaces, and the approach based on the construction of WCW spinor structure
first by second quantization of induced spinor fields. Here the first approach is discussed.

2.3.1 Definition of Kähler function

Kähler metric in terms of Kähler function

Quite generally, Kähler function K defines Kähler metric in complex coordinates via the following
formula

Jkl = igkl = i∂k∂lK . (2.3.1)
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Kähler function is defined only modulo a real part of holomorphic function so that one has the gauge
symmetry

K → K + f + f . (2.3.2)

Let X3 be a given 3-surface and let X4 be any four-surface containing X3 as a sub-manifold:
X4 ⊃ X3. The 4-surface X4 possesses in general boundary. If the 3-surface X3 has nonempty
boundary δX3 then the boundary of X3 belongs to the boundary of X4: δX3 ⊂ δX4.

Induced Kähler form and its physical interpretation

Induced Kähler form defines a Maxwell field and it is important to characterize precisely its relationship
to the gauge fields as they are defined in gauge theories. Kähler form J is related to the corresponding
Maxwell field F via the formula

J = xF , x =
gK
~

. (2.3.3)

Similar relationship holds true also for the other induced gauge fields. The inverse proportionality
of J to ~ does not matter in the ordinary gauge theory context where one routinely choses units by
putting ~ = 1 but becomes very important when one considers a hierachy of Planck constants [20].

Unless one has J = (gK/~0), where ~0 corresponds to the ordinary value of Planck constant,
αK = g2

K/4π~ together the large Planck constant means weaker interactions and convergence of the
functional integral defined by the exponent of Kähler function and one can argue that the convergence
of the functional integral is what forces the hierarchy of Planck constants. This is in accordance with
the vision that Mother Nature likes theoreticians and takes care that the perturbation theory works
by making a phase transition increasing the value of the Planck constant in the situation when
perturbation theory fails. This leads to a replacement of the M4 (or more precisely, causal diamond
CD) and CP2 factors of the imbedding space (CD×CP2) with its r = ~/~0-fold singular covering (one
can consider also singular factor spaces). If the components of the space-time surfaces at the sheets
of the covering are identical, one can interpret r-fold value of Kähler action as a sum of r identical
contributions from the sheets of the covering with ordinary value of Planck constant and forget the
presence of the covering. Physical states are however different even in the case that one assumes that
sheets carry identical quantum states and anyonic phase could correspond to this kind of phase [25].

Kähler action

One can associate to Kähler form Maxwell action and also Chern-Simons anomaly term proportional
to
∫
X4 J ∧ J in well known manner. Chern Simons term is purely topological term and well defined

for orientable 4-manifolds, only. Since there is no deep reason for excluding non-orientable space-time
surfaces it seems reasonable to drop Chern Simons term from consideration. Therefore Kähler action
SK(X4) can be defined as

SK(X4) = k1

∫
X4;X3⊂X4

J ∧ (∗J) . (2.3.4)

The sign of the square root of the metric determinant, appearing implicitly in the formula, is defined
in such a manner that the action density is negative for the Euclidian signature of the induced metric
and such that for a Minkowskian signature of the induced metric Kähler electric field gives a negative
contribution to the action density.

The notational convention

k1 ≡ 1

16παK
, (2.3.5)

where αK will be referred as Kähler coupling strength will be used in the sequel. If the preferred
extremals minimize/maximize [20] the absolute value of the action in each region where action density
has a definite sign, the value of αK can depend on space-time sheet.
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Kähler function

One can define the Kähler function in the following manner. Consider first the case H = M4
+ × CP2

and neglect for a moment the non-determinism of Kähler action. Let X3 be a 3-surface at the light-
cone boundary δM4

+ ×CP2. Define the value K(X3) of Kähler function K as the value of the Kähler
action for some preferred extremal in the set of four-surfaces containing X3 as a sub-manifold:

K(X3) = K(X4
pref ) , X4

pref ⊂ {X4|X3 ⊂ X4} . (2.3.6)

The most plausible identification of preferred extremals is in terms of quantum criticality in the sense
that the preferred extremals allow an infinite number of deformations for which the second variation of
Kähler action vanishes. Combined with the weak form of electric-magnetic duality forcing appearence
of Kähler coupling strength in the boundary conditions at partonic 2-surfaces this condition might be
enough to fix preferred extremals completely.

2.3.2 What are the values of the Kähler coupling strength?

Since the vacuum functional of the theory turns out to be essentially the exponent exp(K) of the
Kähler function, the dynamics depends on the normalization of the Kähler function. Since the Theory
of Everything should be unique it would be highly desirable to find arguments fixing the normalization
or equivalently the possible values of the Kähler coupling strength αK . Also a discrete spectrum of
values is acceptable.

The quantization of Kähler form could result in the following manner. It will be found that Abelian
extension of the isometry group results by coupling spinors of the configuration space to a multiple
of Kähler potential. This means that Kähler potential plays role of gauge connection so that Kähler
form must be integer valued by Dirac quantization condition for magnetic charge. So, if Kähler form
is co-homologically nontrivial it is quantized.

Unfortunately, the exact definition of renormalization group concept is not at all obvious. There
is however a much more general but more or less equivalent manner to formulate the condition fixing
the value of αK . Vacuum functional exp(K) is analogous to the exponent exp(−H/T ) appearing
in the definition of the partition function of a statistical system and S-matrix elements and other
interesting physical quantities are integrals of type 〈O〉 =

∫
exp(K)O

√
GdV and therefore analogous

to the thermal averages of various observables. αK is completely analogous to temperature. The
critical points of a statistical system correspond to critical temperatures Tc for which the partition
function is nonanalytic function of T − Tc and according RGE hypothesis critical systems correspond
to fixed points of renormalization group evolution. Therefore, a mathematically more precise manner
to fix the value of αK is to require that some integrals of type 〈O〉 (not necessary S-matrix elements)
become nonanalytic at 1/αK − 1/αcK .

This analogy suggests also a physical motivation for the unique value or value spectrum of αK . Be-
low the critical temperature critical systems suffer something analogous to spontaneous magnetization.
At the critical point critical systems are characterized by long range correlations and arbitrarily large
volumes of magnetized and non-magnetized phases are present. Spontaneous magnetization might
correspond to the generation of Kähler magnetic fields: the most probable 3-surfaces are Kähler mag-
netized for subcritical values of αK . At the critical values of αK the most probable 3-surfaces contain
regions dominated by either Kähler electric and or Kähler magnetic fields: by the compactness of CP2

these regions have in general outer boundaries.
This suggests that 3-space has hierarchical, fractal like structure: 3-surfaces with all sizes (and

with outer boundaries) are possible and they have suffered topological condensation on each other.
Therefore the critical value of αK allows the richest possible topological structure for the most probable
3-space. In fact, this hierarchical structure is in accordance with the basic ideas about renormalization
group invariance. This hypothesis has highly nontrivial consequences even at the level of ordinary
condensed matter physics.

Renormalization group invariance is closely related with criticality. The self duality of the Kähler
form and Weyl tensor of CP2 indeed suggest RG invariance. The point is that in N = 4 super-
symmetric field theories duality transformation relates the strong coupling limit for ordinary particles
with the weak coupling limit for magnetic monopoles and vice versa. If the theory is self-dual these
limits must be identical so that action and coupling strength must be RG invariant quantities. This
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form of self-duality cannot hold true in TGD. The weak form of self-duality discussed in [22] roughly
states that for the partonic 2-surface the induce Kähler electric field is proportional to the Kähler
magnetic field strength. The proportionality constant is essentially Kähler coupling strength. The
simplest hypothesis is that Kähler coupling strength has single universal valiue and the weak form
of self-duality fixes it. The proportionality αK = g2

K/4π~ and the proposed quantization of Planck
constant requiring a generalization of the imbedding space imply that Kähler coupling strength varies
but is constant at a given page of the ”Big Book” defined by the generalized imbedding space [20] .

2.3.3 What preferred extremal property means?

The requirement that the 4-surface having given 3-surface as its sub-manifold is absolute minimum
of the Kähler action is the most obvious guess for the principle selecting the preferred extremals
and has been taken as a working hypothesis for about one and half decades. Quantum criticality of
Quantum TGD should have however led to the idea that preferred extremals are critical in the sense
that space-time surface allows deformations for which second variation of Kähler action vanishes so
that the corresponding Noether currents are conserved.

Further insights emerged through the realization that Noether currents assignable to the modified
Dirac equation are conserved only if the first variation of the modified Dirac operator DK defined
by Kähler action vanishes. This is equivalent with the vanishing of the second variation of Kähler
action -at least for the variations corresponding to dynamical symmetries having interpretation as
dynamical degrees of freedom which are below measurement resolution and therefore effectively gauge
symmetries.

The vanishing of the second variation in interior of X4(X3
l ) is what corresponds exactly to quantum

criticality so that the basic vision about quantum dynamics of quantum TGD would lead directly to
a precise identification of the preferred extremals.

The vanishing of second variations of preferred extremals -at least for deformations representing
dynamical symmetries, suggests a generalization of catastrophe theory of Thom, where the rank of
the matrix defined by the second derivatives of potential function defines a hierarchy of criticalities
with the tip of bifurcation set of the catastrophe representing the complete vanishing of this matrix.
In the recent case this theory would be generalized to infinite-dimensional context. There are three
kind of variables now but quantum classical correspondence (holography) allows to reduce the types
of variables to two.

1. The variations of X4(X3
l ) vanishing at the intersections of X4(X3

l ) with the light-like boundaries
of causal diamonds CD would represent behavior variables. At least the vacuum extremals of
Kähler action would represent extremals for which the second variation vanishes identically (the
”tip” of the multi-furcation set).

2. The zero modes of Kähler function would define the control variables interpreted as classical
degrees of freedom necessary in quantum measurement theory. By effective 2-dimensionality (or
holography or quantum classical correspondence) meaning that the configuration space metric
is determined by the data coming from partonic 2-surfaces X2 at intersections of X3

l with
boundaries of CD, the interiors of 3-surfaces X3 at the boundaries of CDs in rough sense
correspond to zero modes so that there is indeed huge number of them. Also the variables
characterizing 2-surface, which cannot be complexified and thus cannot contribute to the Kähler
metric of configuration space represent zero modes. Fixing the interior of the 3-surface would
mean fixing of control variables. Extremum property would fix the 4-surface and behavior
variables if boundary conditions are fixed to sufficient degree.

3. The complex variables characterizing X2 would represent third kind of variables identified as
quantum fluctuating degrees of freedom contributing to the configuration space metric. Quantum
classical correspondence requires 1-1 correspondence between zero modes and these variables.
This would be essentially holography stating that the 2-D ”causal boundary” X2 of X3(X2)
codes for the interior. Preferred extremal property identified as criticality condition would
realize the holography by fixing the values of zero modes once X2 is known and give rise to
the holographic correspondence X2 → X3(X2). The values of behavior variables determined by
extremization would fix then the space-time surface X4(X3

l ) as a preferred extremal.
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4. Clearly, the presence of zero modes would be absolutely essential element of the picture. Quan-
tum criticality, quantum classical correspondence, holography, and preferred extremal property
would all represent more or less the same thing. One must of course be very cautious since the
boundary conditions at X3

l involve normal derivative and might bring in delicacies forcing to
modify the simplest heuristic picture.

One must be very cautious with what one means with the preferred extremal property and criti-
cality.

1. Does one assign criticality with the partonic 2-surfaces at the ends of CDs? Does one restrict
it with the throats for which light-like 3-surface has also degenerate induced 4-metric? Or does
one assume stronger form of holography requiring a slicing of space-time surface by partonic
2-surfaces and string world sheets and assign criticality to all partonic 2-surfaces. This kind of
slicing is suggested by the study of the extremals [33], required by the number theoretic vision
(M8 − H duality [19]), and also by the purely physical condition that a stringy realization of
GCI is possible.

2. What is the exact meaning of the preferred extremal property? The assumption that the vari-
ations of Kähler action leaving 3-surfaces at the ends of CDs invariant would not be consistent
with the effective 2-dimensionality. The assumption that the critical deformations leave invari-
ant only partonic 2-surfaces would imply genuine 2-dimensionality. Should one assume that
critical deformations leave invariant partonic 2-surface and 3-D tangent space in the direction of
space-like 3-surface or light-like 3-surface but not both. This would be consistent with effective
3-dimensionality and would explain why Kac-Moody symmetries associated with the light-like
3-surfaces act as gauge symmetries. This is also essential for the realization of Poincare invari-
ance since the quantization of the light-cone proper time distance between CDs implies that
infinitesimal Poincare transformations lead out of CD unless compensated by Kac-Moody type
transformations acting like gauge transformations. In the similar manner it would explain why
symplectic transformations of δCD act like gauge transformations.

3. Could one pose the criticality condition for all partonic 2-surfaces in the slicing or only for the
throats of light-like 3-surfaces? This hypothesis looks natural but is not necessary. Light-like
throats are very singular objects criticality might apply only to their variations only in the
limiting sense and it might be necesary to assume criticality for all partonic 2-surfaces.

2.3.4 Why non-local Kähler function?

Kähler function is nonlocal functional of 3-surface. Non-locality of the Kähler function seems to be
at odds with basic assumptions of local quantum field theories. Why this rather radical departure
from the basic assumptions of local quantum field theory? The answer is shortly given: configuration
space integration appears in the definition of the inner product for WCW spinor fields and this inner
product must be free from perturbative divergences. Consider now the argument more closely.

In the case of finite-dimensional symmetric space with Kähler structure the representations of the
isometry group necessitate the modification of the integration measure defining the inner product so
that the integration measure becomes proportional to the exponent exp(K) of the Kähler function
[56]. The generalization to infinite-dimensional case is obvious. Also the requirement of Kac-Moody
symmetry leads to the presence of this kind of vacuum functional as will be found later. The exponent
is in fact uniquely fixed by finiteness requirement. Configuration space integral is of the following form

∫
S̄1exp(K)S1

√
gdX . (2.3.7)

One can develop perturbation theory using local complex coordinates around a given 3-surface in the
following manner. The (1, 1)-part of the second variation of the Kähler function defines the metric
and therefore propagagator as contravariant metric and the remaining (2, 0)− and (0, 2)-parts of the
second variation are treated perturbatively. The most natural choice for the 3-surface are obviously
the 3-surfaces, which correspond to extrema of the Kähler function.

When perturbation theory is developed around the 3-surface one obtains two ill-defined determi-
nants.
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1. The Gaussian determinant coming from the exponent, which is just the inverse square root
for the matrix defined by the metric defining (1, 1)-part of the second variation of the Kähler
function in local coordinates.

2. The metric determinant. The matrix representing covariant metric is however same as the
matrix appearing in Gaussian determinant by the defining property of the Kähler metric: in
local complex coordinates the matrix defined by second derivatives is of type (1, 1). Therefore
these two ill defined determinants (recall the presence of Diff degeneracy) cancel each other
exactly for a unique choice of the vacuum functional!

Of course, the cancellation of the determinants is not enough. For an arbitrary local action one
encounters the standard perturbative divergences. Since most local actions (Chern-Simons term is
perhaps an exception [49]) for induced geometric quantities are extremely nonlinear there is no hope
of obtaining a finite theory. For nonlocal action the situation is however completely different. There
are no local interaction vertices and therefore no products of delta functions in perturbation theory.

A further nice feature of the perturbation theory is that the propagator for small deformations is
nothing but the contravariant metric. Also the various vertices of the theory are closely related to the
metric of the configuration space since they are determined by the Kähler function so that perturbation
theory would have a beautiful geometric interpretation. Furthermore, since four-dimensional Diff
degeneracy implies that the propagator doesn’t couple to un-physical modes.

It should be noticed that divergence cancellation arguments do not necessarily exclude Chern
Simons term from vacuum functional defined as imaginary exponent of exp(ik2

∫
X4 J ∧ J). The term

is not well defined for non-orientable space-time surfaces and one must assume that k2 vanishes for
these surfaces. The presence of this term might provide first principle explanation for CP breaking.
If k2 is integer multiple of 1/(8π) Chern Simons term gives trivial contribution for closed space-
time surfaces since instanton number is in question. By adding a suitable boundary term of form
exp(ik3

∫
δX3 J ∧A) it is possible to guarantee that the exponent is integer valued for 4-surfaces with

boundary, too.
There are two arguments suggesting that local Chern Simons term would not introduce diver-

gences. First, 3-dimensional Chern Simons term for ordinary Abelian gauge field is known to define
a divergence free field theory [49]. The term doesn’t depend at all on the induced metric and there-
fore contains no dimensional parameters (CP2 radius) and its expansion in terms of CP2 coordinate
variables is of the form allowed by renormalizable field theory in the sense that only quartic terms
appear. This is seen by noticing that there always exist symplectic coordinates, where the expression
of the Kähler potential is of the form

A =
∑
k

PkdQ
k . (2.3.8)

The expression for Chern-Simons term in these coordinates is given by

k2

∫
X3

∑
k,l

PldPk ∧ dQk ∧ dQl , (2.3.9)

and clearly quartic CP2 coordinates. A further nice property of the Chern Simons term is that
this term is invariant under symplectic transformations of CP2, which are realized as U(1) gauge
transformation for the Kähler potential.

2.4 Some properties of Kähler action

In this section some properties of Kähler action and Kähler function are discussed in light of experi-
enced gained during about 15 years after the introduction of the notion.

2.4.1 Vacuum degeneracy and some of its implications

The vacuum degeneracy is perhaps the most characteristic feature of the Kähler action. Although it
is not associated with the preferred extremals of Kähler action, there are good reasons to expect that
it has deep consequences concerning the structure of the theory.
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Vacuum degeneracy of the Kähler action

The basic reason for choosing Kähler action is its enormous vacuum degeneracy, which makes long
range interactions possible (the well known problem of the membrane theories is the absence of
massless particles [46]). The Kähler form of CP2 defines symplectic structure and any 4-surface
for which CP2 projection is so called Lagrangian manifold (at most two dimensional manifold with
vanishing induced Kähler form), is vacuum extremal due to the vanishing of the induced Kähler form.
More explicitly, in the local coordinates, where the vector potential A associated with the Kähler form
reads as A =

∑
k PkdQ

k. Lagrangian manifolds are expressible locally in the following form

Pk = ∂kf(Qi) . (2.4.1)

where the function f is arbitrary. Notice that for the general YM action surfaces with one-dimensional
CP2 projection are vacuum extremals but for Kähler action one obtains additional degeneracy.

There is also a second kind of vacuum degeneracy, which is relevant to the elementary particle
physics. The so called CP2 type vacuum extremals are warped imbeddings X4 of CP2 to H such that
Minkowski coordinates are functions of a single CP2 coordinate, and the one-dimensional projection
of X4 is random light like curve. These extremals have a non-vanishing action but vanishing Poincare
charges. Their small deformations are identified as space-time counterparts of fermions and their
super partners. Wormhole throats identified as pieces of these extremals are identified as bosons and
their super partners.

The conditions stating light likeness are equivalent with the Virasoro conditions of string models
and this actually led to the eventualo realization that conformal invariance is a basic symmetry of
TGD and that WCW can be regarded as a union of symmetric spaces with isometry groups having
identification as symplectic and Kac-Moody type groups assignable to the partonic 2-surfaces.

Approximate symplectic invariance

Vacuum extremals have diffeomorphisms of M4
+ and M4

+ local symplectic transformations as sym-
metries. For non-vacuum extremals these symmetries leave induced Kähler form invariant and only
induced metric breaks these symmetries. Symplectic transformations of CP2 act on the Maxwell
field defined by the induced Kähler form in the same manner as ordinary U(1) gauge symmetries.
They are however not gauge symmetries since gauge invariance is still present. In fact, the construc-
tion of the configuration space geometry relies on the assumption that symplectic transformations
of δM4

+ × CP2 which infinitesimally correspond to combinations of M4
+ local CP2 symplectic and

CP2-local M4
+ symplectic transformations act as isometries of the configuration space. In zero en-

ergy ontology these transformations act simultanoeusly on all partonic 2-surfaces characterizing the
space-time sheet representing a generalized Feynman diagram inside CD.

The fact that CP2 symplectic transformations do not act as genuine gauge transformations means
that U(1) gauge invariance is effectively broken. This has non-trivial implications. The field equations
allow purely geometric vacuum 4-currents not possible in Maxwell’s electrodynamics [33]. For the
known extremals (massless extremals) they are light-like and a possible interpretation is in terms of
Bose-Einstein condensates of collinear massless bosons.

Spin glass degeneracy

Vacuum degeneracy means that all surfaces belonging to M4
+ × Y 2, Y 2 any Lagrangian sub-manifold

of CP2 are vacua irrespective of the topology and that symplectic transformations of CP2 generate
new surfaces Y 2. If preferred extremals are obtained as small deformations of vacuum extremals (for
which the criticality is maximal), one expects therefore enormous ground state degeneracy, which
could be seen as 4-dimensional counterpart of the spin glass degeneracy. This degeneracy corresponds
to the hypothesis that configuration space is a union of symmetric spaces labeled by zero modes which
do not appear at the line-element of the configuration space metric.

Zero modes define what might be called the counterpart of spin glass energy landscape and the
maxima Kähler function as a function of zero modes define a discrete set which might be called re-
duced configuration space. Spin glass degeneracy turns out to be crucial element for understanding
how macro-temporal quantum coherence emerges in TGD framework. One of the basic ideas about
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p-adicization is that the maxima of Kähler function define the TGD counterpart of spin glass en-
ergy landscape [21, 23]. The hierarchy of discretizations of the symmetric spaces corresponding to a
hierarchy of measurement resolutions [47] could allow an identification in terms of a hierarchy spin
glass energy landscapes so that the algebraic points of the WCW would correspond to the maxima
of Kähler function. The hierarchical structure would be due to the failure of strict non-determinism
of Kähler action allowing in zero energy ontology to add endlessly details to the space-time sheets
representing zero energy states in shorter scale.

Generalized quantum gravitational holography

The original naive belief was that the construction of the configuration space geometry reduces to δH =
δM4

+×CP2. An analogous idea in string model context became later known as quantum gravitational
holography. The basic implication of the vacuum degeneracy is classical non-determinism, which is
expected to reflect itself as the properties of the Kähler function and configuration space geometry.
Obviously classical non-determinism challenges the notion of quantum gravitational holography.

The hope was that a generalization of the notion of 3-surface is enough to get rid of the degeneracy
and save quantum gravitational holography in its simplest form. This would mean that one just
replaces space-like 3-surfaces with ”association sequences” consisting of sequences of space-like 3-
surfaces with time like separations as causal determinants. This would mean that the absolute minima
of Kähler function would become degenerate: same space-like 3-surface at δH would correspond to
several association sequences with the same value of Kähler function.

The life turned out to be more complex than this. CP2 type extremals have Euclidian signature
of the induced metric and therefore CP2 type extremals glued to space-time sheet with Minkowskian
signature of the induced metric are surrounded by light like surfaces X3

l , which might be called
elementary particle horizons. The non-determinism of the CP2 type extremals suggests strongly
that also elementary particle horizons behave non-deterministically and must be regarded as causal
determinants having time like projection in M4

+. Pieces of CP2 type extremals are good candidates
for the wormhole contacts connecting a space-time sheet to a larger space-time sheet and are also
surrounded by an elementary particle horizons and non-determinism is also now present. That this
non-determinism would allow the proposed simple description seems highly implausible.

Zero energy ontology realized in terms of a hierarchy of CDs seems to provide the most plausible
treatment of the non-determinism and has indeed led to a breakthrough in the construction and
understanding of quantum TGD. At the level of generalized Feynman diagrams sub-CDs containing
zero energy states represent a hierarchy of radiative corrections so that the classical determinism
is direct correlate for the quantum non-determinism. Determinism makes sense only when one has
specified the length scale of measurement resolution. One can always add a CD containing a vacuum
extremal to get a new zero energy state and a preferred extremal containing more details.

Classical non-determinism saves the notion of time

Although classical non-determinism represents a formidable mathematical challenge it is a must for
several reasons. Quantum classical correspondence, which has become a basic guide line in the de-
velopment of TGD, states that all quantum phenomena have classical space-time correlates. This is
not new as far as properties of quantum states are considered. What is new that also quantum jumps
and quantum jump sequences which define conscious existence in TGD Universe, should have classical
space-time correlates: somewhat like written language is correlate for the contents of consciousness of
the writer. Classical non-determinism indeed makes this possible. Classical non-determinism makes
also possible the realization of statistical ensembles as ensembles formed by strictly deterministic
pieces of the space-time sheet so that even thermodynamics has space-time representations. Space-
time surface can thus be seen as symbolic representations for the quantum existence.

In canonically quantized general relativity the loss of time is fundamental problem. If quantum
gravitational holography would work in the most strict sense, time would be lost also in TGD since
all relevant information about quantum states would be determined by the moment of big bang.
More precisely, geometro-temporal localization for the contents of conscious experience would not be
possible. Classical non-determinism together with quantum-classical correspondence however suggests
that it is possible to have quantum jumps in which non-determinism is concentrated in space-time
region so that also conscious experience contains information about this region only.
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2.4.2 Four-dimensional General Coordinate Invariance

The proposed definition of the Kähler function is consistent with GCI and implies also 4-dimensional
Diff degeneracy of the Kähler metric. Zero energy ontology inspires strengthening of the GCI in the
sense that space-like 3-surfaces at the boundaries of CD are physically equivalent with the light-like
3-surfaces connecting the ends. This imples that basic geometric objects are partonic 2-surfaces at
the boundaries of CDs identified as the intersections of these two kinds of surfaces. Besides this the
distribution of 4-D tangent planes at partonic 2-surfaces would code for physics so that one would have
only effective 2-dimensionality. The failure of the non-determinism of Kähler action in the standard
sense of the word affects the situation also and one must allow a fractal hierarchy of CDs inside CDs
having interpretation in terms of radiative corrections.

Resolution of tachyon difficulty and absence of Diff anomalies

In TGD as in string models the tachyon difficulty is potentially present: unless the time like vibrational
excitations possess zero norm they contribute tachyonic term to the mass squared operator of Super
Kac Moody algebra. This difficulty is familiar already from string models [63, 61].

The degeneracy of the metric with respect to the time like vibrational excitations guarantees that
time like excitations do not contribute to the mass squared operator so that mass spectrum is tachyon
free. It also implies the decoupling of the tachyons from physical states: the propagator of the theory
corresponds essentially to the inverse of the Kähler metric and therefore decouples from time like
vibrational excitations. The experience with string model suggests that if metric is degenerate with
respect to diffeomorphisms of X4(X3) there are indeed good hopes that time like excitations possess
vanishing norm with respect to configuration space metric.

The four-dimensional Diff invariance of the Kähler function implies that Diff invariance is guaran-
teed in the strong sense since the scalar product of two Diff vector fields given by the matrix associated
with (1, 1) part of the second variation of the Kähler action vanishes identically. This property gives
hopes of obtaining theory, which is free from Diff anomalies: in fact loop space metric is not Diff
degenerate and this might be the underlying reason to the problems encountered in string models
[63, 61].

Complexification of the configuration space

Strong form of GCI plays a fundamental role in the complexification of the configuration space. GCI
in strong form reduces the basic building brick of WCW to the pairs of partonic 2-surfaces and their
4-D tangent space data associated with ends of light-like 3-surface at light-like boundaries of CD.
At boths end the imbedding space is effectively reduces to δM4

+ × CP2 (forgetting the complications
due to non-determinism of Kähler action). Light cone boundary in turn is metrically 2-dimensional
Euclidian sphere allowing infinite-dimensional group of conformal symmetries and Kähler structure.
Therefore one can say that in certain sense configuration space metric inherits the Kähler structure
of S2 × CP2. This mechanism works in case of four-dimensional Minkowski space only: higher-
dimensional spheres do not possess even Kähler structure. In fact, it turns out that the quantum
fluctuating degrees of freedom can be regarded in well-defined sense as a local variant of S2×CP2 and
thus as an infinite-dimensional analog of symmetric space as the considerations of [22] demonstrate.

The details of the complexification were understood only after the construction of configuration
space geometry and spinor structure in terms of second quantized induced spinor fields [18]. This also
allows to make detailed statements about complexification [22].

Contravariant metric and Diff4 degeneracy

Diff degeneracy implies that the definition of the contravariant metric, which corresponds to the
propagator associated to small deformations of minimizing surface is not quite straightforward. We
believe that this problem is only technical. Certainly this problem is not new, being encountered in
both GRT and gauge theories [45, 44]. In TGD a solution of the problem is provided by the existence
of infinite-dimensional isometry group. If the generators of this group form a complete set in the sense
that any vector of the tangent space is expressible as as sum of these generators plus some zero norm
vector fields then one can restrict the consideration to this subspace and in this subspace the matrix
g(X,Y ) defined by the components of the metric tensor indeed indeed possesses well defined inverse
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g−1(X,Y ). This procedure is analogous to gauge fixing conditions in gauge theories and coordinate
fixing conditions in General Relativity.

It has turned that the representability of WCW as a union of symmetric spaces makes possible an
approach to WCW integration based on harmonic analysis replacing the perturbative approach based
on perturbative functional integral. This approach allows also a p-adic variant and leads an effective
discretization in terms of discrete variants of WCW for which the points of symmetric space consist
of algebraic points. There is an infinite number of these discretizations [21] and the interpretation is
in terms of finite measurement resolution. This gives a connection with the p-adicization program,
infinite primes, inclusions of hyper-finite factors as representation of the finite measurement resolution,
and the hierarchy of Planck constants [19] so that various approaches to quantum TGD converge nicely.

General Coordinate Invariance and WCW spinor fields

GCI applies also at the level of quantum states. WCW spinor fields are Diff4 invariant. This in fact
fixes not only classical but also quantum dynamics completely. The point is that the values of the
configuration space spinor fields must be essentially same for all Diff4 related 3-surfaces at the orbit
X4 associated with a given 3-surface. This would mean that the time development of Diff4 invariant
configuration spinor field is completely determined by its initial value at the moment of the big bang!

This is of course a naive over statement. The non-determinism of Kähler action and zero energy
ontology force to take the causal diamond (CD) defined by the intersection of future and past directed
light-cones as the basic structural unit of configuration space, and there is fractal hierarchy of CDs
within CDs so that the above statement makes sense only for giving CD in measurement resolution
neglecting the presence of smaller CDs. Strong form of GCI also implies factorization of WCW spinor
fields into a sum of products associated with various partonic 2-surfaces. In particular, one obtains
time-like entanglement between positive and negative energy parts of zero energy states and entangle-
ment coefficients define what can be identified as M -matrix expressible as a ”complex square root” of
density matrix and reducing to a product of positive definite diagonal square root of density matrix
and unitary S-matrix. The collection of orthonormal M -matrices in turn define unitary U -matrix
between zero energy states. M -matrix is the basic object measured in particle physics laboratory.

2.4.3 Configuration space geometry, generalized catastrophe theory, and
phase transitions

The definition of configuration space geometry has nice catastrophe theoretic interpretation. To
understand the connection consider first the definition of the ordinary catastrophe theory [36].

1. In catastrophe theory one considers extrema of the potential function depending on dynamical
variables x as function of external parameters c. The basic space decomposes locally into carte-
sian product E = C × X of control variables c, appearing as parameters in potential function
V (c, x) and of state variables x appearing as dynamical variables. Equilibrium states of the
system correspond to the extrema of the potential V (x, c) with respect to the variables x and in
the absence of symmetries they form a sub-manifold of M with dimension equal to that of the
parameter space C. In some regions of C there are several extrema of potential function and
the extremum value of x as a function of c is multi-valued. These regions of C ×X are referred
to as catastrophes. The simplest example is cusp catastrophe (see Fig. 2.4.3) with two control
parameters and one state variable.

2. In catastrophe regions the actual equilibrium state must be selected by some additional physical
requirement. If system obeys flow dynamics defined by first order differential equations the
catastrophic jumps take place along the folds of the cusp catastrophe (delay rule). On the other
hand, the Maxwell rule obeyed by thermodynamic phase transitions states that the equilibrium
state corresponds to the absolute minimum of the potential function and the state of system
changes in discontinuous manner along the Maxwell line in the middle between the folds of the
cusp (see Fig. 2.4.3).

3. As far as discontinuous behavior is considered fold catastrophe is the basic catastrophe: all
catastrophes contain folds as there ’satellites’ and one aim of the catastrophe theory is to derive
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all possible manners for the stable organization of folds into higher catastrophes. The funda-
mental result of the catastrophe theory is that for dimensions d of C smaller than 5 there are
only 7 basic catastrophes and polynomial potential functions provide a canonical representation
for the catastrophes: fold catastrophe corresponds to third order polynomial (in fold the two
real roots become a pair of complex conjugate roots), cusp to fourth order polynomial, etc.

Consider now the TGD counterpart of this. TGD allows allows two kinds of catastrophe theories.

1. The first one is related to Kähler action as a local functional of 4-surface. The nature of this
catastrophe theory depends on what one means with the preferred extremals.

2. Second catastrophe theory corresponds to Kähler function a non-local functional of 3-surface.
The maxima of the vacuum functional defined as the exponent of Kähler function define what
might called effective space-times, and discontinuous jumps changing the values of the parame-
ters characterizing the maxima are possible.

Consider first the option based on Kähler action.

1. Potential function corresponds to Kähler action restricted to the solutions of Euler Lagrange
equations. Catastrophe surface corresponds to the four-surfaces found by extremizing Kähler
action with respect to to the variables of X (time derivatives of coordinates of C specifying X3

in Ha) keeping the variables of C specifying 3-surface X3 fixed. Preferred extremal property is
analogous to the Bohr quantization since canonical momenta cannot be chosen freely as in the
ordinary initial value problems of the classical physics. Preferred extremals are by definition at
criticality. Behavior variables correspond to the deformations of the 4-surface keeping partonic
2-surfaces and 3-D tangent space data fixed and preserving extremal property. Control variables
would correspond to these data.

2. At criticality the rank of the infinite-dimensional matrix defined by the second functional deriva-
tives of the Kähler action is reduced. Catastrophes form a hierarchy characterized by the reduc-
tion of the rank of this matrix and Thom’s catastrophe theory generalizes to infinite-dimensional
context. Criticality in this sense would be one aspect of quantum criticality having also other
aspects. No discrete jumps would occur and system would only move along the critical surface
becoming more or less critical.

3. There can exist however several critical extremals assignable to a given partonic 2-surface but
have nothing to do with the catastrophes as defined in Thom’s approach. In presence of degen-
eracy one should be able to choose one of the critical extremals or replace this kind of regions
of WCW by their multiple coverings so that single partonic 2-surface is replaced with its multi-
ple copy. The degeneracy of the preferred extremals could be actually a deeper reason for the
hierarchy of Planck constants involving in its most plausible version n-fold singular coverings of
CD and CP2. This interpretation is very satisfactory since the generalization of the imbedding
space and hierarchy of Planck constants would follow naturally from quantum criticality rather
than as separate hypothesis.

4. The existence of the catastrophes is implied by the vacuum degeneracy of the Kähler action.
For example, for pieces of Minkowski space in M4

+ × CP2 the second variation of the Kähler
action vanishes identically and only the fourth variation is non-vanishing: these 4-surfaces are
analogous to the tip of the cusp catastrophe. There are also space-time surfaces for which the
second variation is non-vanishing but degenerate and a hierarchy of subsets in the space of
extremal 4-surfaces with decreasing degeneracy of the second variation defines the boundaries of
the projection of the catastrophe surface to the space of 3-surfaces. The space-times for which
second variation is degenerate contain as subset the critical and initial value sensitive absolute
minimum space-times.

Consider next the catastrophe theory defined by Kähler function.

1. In this case the most obvious identification for the behavior variables would be in terms of the
space of all 3-surfaces in CD×CP2 - and if one believes in holography and zero energy ontology
- the 2-surfaces assignable the boundaries of causal diamonds (CDs).
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2. The natural control variables are zero modes whereas behavior variables would correspond to
quantum fluctuating degrees of freedom contributing to the configuration space metric. The
induced Kähler form at partonic 2-surface would define infinitude of purely classical control vari-
ables. There is also a correlation between zero modes identified as degrees of freedom assignable
to the interior of 3-surface and quantum fluctuating degrees of freedom assigned to the partonic
2-surfaces. This is nothing but holography and effective 2-dimensionality justifying the basic
assumption of quantum measurement theory about the correspondence between classical and
quantum variables. The absence of several maxima implies also the presence of saddle surfaces
at which the rank of the matrix defined by the second derivatives is reduced. This could lead
to a non-positive definite metric. It seems that it is possible to have maxima of Kähler function
without losing positive definiteness of the metric since metric is defined as (1,1)-type derivatives
with respect to complex coordinates. In case of CP2 however Kähler function has single degen-
erate maximum corresponding to the homologically trivial geodesic sphere at r = ∞. It might
happen that also in the case of infinite-D symmetric space finite maxima are impossible.

3. The criticality of Kähler function would be analogous to thermodynamical criticality and to the
criticality in the sense of catastrophe theory. In this case Maxwell’s rule is possible and even
plausible since quantum jump replaces the dynamics defined by a continuous flow.

Cusp catastrophe provides a simple concretization of the situation for the criticality of Kähler
action (as distinguished from that for Kähler function).

1. The set M of the critical 4-surfaces corresponds to the V -shaped boundary of the 2-D cusp
catastrophe in 3-D space to plane. In general case it forms codimension one set in configuration
space. In TGD Universe physical system would reside at this line or its generalization to higher
dimensional catastrophes. For the criticality associated with Kähler action the transitions would
be smooth transitions between different criticalities characterized by the rank defined above: in
the case of cusp from the tip of cusp to the vertex of cusp or vice versa. Evolution could
mean a gradual increase of criticality in this sense. If preferred extremals are not unique, cusp
catastrophe does not provide any analogy. The strong form of criticality would mean that
the system would be always ”at the tip of cusp” in metaphoric sense. Vacuum extremals are
maximally critical in trivial sense, and the deformations of vacuum extremals could define the
hierarchy of criticalities.

2. For the criticality of Kähler action Maxwell’s rule stating that discontinuous jumps occur along
the middle line of the cusp is in conflict with catastrophe theory predicting that jumps occurs
along at criticality. For the criticality of Kähler function -if allowed at all by symmetric space
property- Maxwell’s rule can hold true but cannot be regarded as a fundamental law. It is of
course known that phase transitions can occur in different manners (super heating and super
cooling).

Figure 2.1: Cusp catastrophe
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2.5 Weak form electric-magnetic duality and its implications

The notion of electric-magnetic duality [51] was proposed first by Olive and Montonen and is central
in N = 4 supersymmetric gauge theories. It states that magnetic monopoles and ordinary particles
are two different phases of theory and that the description in terms of monopoles can be applied
at the limit when the running gauge coupling constant becomes very large and perturbation theory
fails to converge. The notion of electric-magnetic self-duality is more natural since for CP2 geometry
Kähler form is self-dual and Kähler magnetic monopoles are also Kähler electric monopoles and
Kähler coupling strength is by quantum criticality renormalization group invariant rather than running
coupling constant. The notion of electric-magnetic (self-)duality emerged already two decades ago
in the attempts to formulate the Kähler geometric of world of classical worlds. Quite recently a
considerable step of progress took place in the understanding of this notion [22]. What seems to be
essential is that one adopts a weaker form of the self-duality applying at partonic 2-surfaces. What
this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that this concept
leads to precise predictions. The point is that elementary particles do not generate monopole fields in
macroscopic length scales: at least when one considers visible matter. The first question is whether
elementary particles could have vanishing magnetic charges: this turns out to be impossible. The next
question is how the screening of the magnetic charges could take place and leads to an identification
of the physical particles as string like objects identified as pairs magnetic charged wormhole throats
connected by magnetic flux tubes.

1. The first implication is a new view about electro-weak massivation reducing it to weak confine-
ment in TGD framework. The second end of the string contains particle having electroweak
isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak
scale would be in question. Hence the screening of electro-weak force takes place via weak
confinement realized in terms of magnetic confinement.

2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of
magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be
connected by flux tubes of length of order hadron size such that magnetic charges sum up to
zero. For instance, for baryonic valence quarks these charges could be (2,−1,−1) and could be
proportional to color hyper charge.

3. The highly non-trivial prediction making more precise the earlier stringy vision is that elementary
particles are string like objects in electro-weak scale: this should become manifest at LHC
energies.

4. The weak form electric-magnetic duality together with Beltrami flow property of Kähler leads to
the reduction of Kähler action to Chern-Simons action so that TGD reduces to almost topological
QFT and that Kähler function is explicitly calculable. This has enormous impact concerning
practical calculability of the theory.

5. One ends up also to a general solution ansatz for field equations from the condition that the
theory reduces to almost topological QFT. The solution ansatz is inspired by the idea that all
isometry currents are proportional to Kähler current which is integrable in the sense that the flow
parameter associated with its flow lines defines a global coordinate. The proposed solution ansatz
would describe a hydrodynamical flow with the property that isometry charges are conserved
along the flow lines (Beltrami flow). A general ansatz satisfying the integrability conditions
is found. The solution ansatz applies also to the extremals of Chern-Simons action and and
to the conserved currents associated with the modified Dirac equation defined as contractions
of the modified gamma matrices between the solutions of the modified Dirac equation. The
strongest form of the solution ansatz states that various classical and quantum currents flow
along flow lines of the Beltrami flow defined by Kähler current (Kähler magnetic field associated
with Chern-Simons action). Intuitively this picture is attractive. A more general ansatz would
allow several Beltrami flows meaning multi-hydrodynamics. The integrability conditions boil
down to two scalar functions: the first one satisfies massless d’Alembert equation in the induced
metric and the the gradients of the scalar functions are orthogonal. The interpretation in terms
of momentum and polarization directions is natural.



2.5. Weak form electric-magnetic duality and its implications 43

6. The general solution ansatz works for induced Kähler Dirac equation and Chern-Simons Dirac
equation and reduces them to ordinary differential equations along flow lines. The induced spinor
fields are simply constant along flow lines of indued spinor field for Dirac equation in suitable
gauge. Also the generalized eigen modes of the modified Chern-Simons Dirac operator can be
deduced explicitly if the throats and the ends of space-time surface at the boundaries of CD are
extremals of Chern-Simons action. Chern-Simons Dirac equation reduces to ordinary differential
equations along flow lines and one can deduce the general form of the spectrum and the explicit
representation of the Dirac determinant in terms of geometric quantities characterizing the 3-
surface (eigenvalues are inversely proportional to the lengths of strands of the flow lines in the
effective metric defined by the modified gamma matrices).

2.5.1 Could a weak form of electric-magnetic duality hold true?

Holography means that the initial data at the partonic 2-surfaces should fix the configuration space
metric. A weak form of this condition allows only the partonic 2-surfaces defined by the wormhole
throats at which the signature of the induced metric changes. A stronger condition allows all partonic
2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and string world sheets. Number
theoretical vision suggests that hyper-quaternionicity resp. co-hyperquaternionicity constraint could
be enough to fix the initial values of time derivatives of the imbedding space coordinates in the space-
time regions with Minkowskian resp. Euclidian signature of the induced metric. This is a condition
on modified gamma matrices and hyper-quaternionicity states that they span a hyper-quaternionic
sub-space.

Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The argument
goes as follows.

1. The expression of the matrix elements of the metric and Kähler form of WCW in terms of
the Kähler fluxes weighted by Hamiltonians of δM4

± at the partonic 2-surface X2 looks very
attractive. These expressions however carry no information about the 4-D tangent space of the
partonic 2-surfaces so that the theory would reduce to a genuinely 2-dimensional theory, which
cannot hold true. One would like to code to the WCW metric also information about the electric
part of the induced Kähler form assignable to the complement of the tangent space of X2 ⊂ X4.

2. Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial manner
to get electric magnetic duality at the level of the full theory would be via the identification of
the flux Hamiltonians as sums of of the magnetic and electric fluxes. The presence of the induced
metric is however troublesome since the presence of the induced metric means that the simple
transformation properties of flux Hamiltonians under symplectic transformations -in particular
color rotations- are lost.

3. A less trivial formulation of electric-magnetic duality would be as an initial condition which
eliminates the induced metric from the electric flux. In the Euclidian version of 4-D YM theory
this duality allows to solve field equations exactly in terms of instantons. This approach involves
also quaternions. These arguments suggest that the duality in some form might work. The full
electric magnetic duality is certainly too strong and implies that space-time surface at the
partonic 2-surface corresponds to piece of CP2 type vacuum extremal and can hold only in the
deep interior of the region with Euclidian signature. In the region surrounding wormhole throat
at both sides the condition must be replaced with a weaker condition.

4. To formulate a weaker form of the condition let us introduce coordinates (x0, x3, x1, x2) such
(x1, x2) define coordinates for the partonic 2-surface and (x0, x3) define coordinates labeling
partonic 2-surfaces in the slicing of the space-time surface by partonic 2-surfaces and string
world sheets making sense in the regions of space-time sheet with Minkowskian signature. The
assumption about the slicing allows to preserve general coordinate invariance. The weakest
condition is that the generalized Kähler electric fluxes are apart from constant proportional to
Kähler magnetic fluxes. This requires the condition
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J03√g4 = KJ12 . (2.5.1)

A more general form of this duality is suggested by the considerations of [34] reducing the
hierarchy of Planck constants to basic quantum TGD and also reducing Kähler function for pre-
ferred extremals to Chern-Simons terms [56] at the boundaries of CD and at light-like wormhole
throats. This form is following

Jnβ
√
g4 = Kε× εnβγδJγδ

√
g4 . (2.5.2)

Here the index n refers to a normal coordinate for the space-like 3-surface at either boundary of
CD or for light-like wormhole throat. ε is a sign factor which is opposite for the two ends of CD.
It could be also opposite of opposite at the opposite sides of the wormhole throat. Note that the
dependence on induced metric disappears at the right hand side and this condition eliminates
the potentials singularity due to the reduction of the rank of the induced metric at wormhole
throat.

5. Information about the tangent space of the space-time surface can be coded to the configuration
space metric with loosing the nice transformation properties of the magnetic flux Hamiltonians
if Kähler electric fluxes or sum of magnetic flux and electric flux satisfying this condition are
used and K is symplectic invariant. Using the sum

Je + Jm = (1 +K)J , (2.5.3)

where J can denotes the Kähler magnetic flux, makes it possible to have a non-trivial configu-
ration space metric even for K = 0, which could correspond to the ends of a cosmic string like
solution carrying only Kähler magnetic fields. This condition suggests that it can depend only
on Kähler magnetic flux and other symplectic invariants. Whether local symplectic coordinate
invariants are possible at all is far from obvious, If the slicing itself is symplectic invariant then
K could be a non-constant function of X2 depending on string world sheet coordinates. The
light-like radial coordinate of the light-cone boundary indeed defines a symplectically invariant
slicing and this slicing could be shifted along the time axis defined by the tips of CD.

Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints are obtained
if one assumes that the quantization of electro-weak charges reduces to this condition at classical
level?

1. The first thing to notice is that the flux of J over the partonic 2-surface is analogous to magnetic
flux

Qm =
e

~

∮
BdS = n .

n is non-vanishing only if the surface is homologically non-trivial and gives the homology charge
of the partonic 2-surface.

2. The expressions of classical electromagnetic and Z0 fields in terms of Kähler form [39] read as

γ =
eFem
~

= 3J − sin2(θW )R03 ,

Z0 =
gZFZ
~

= 2R03 . (2.5.4)
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Here R03 is one of the components of the curvature tensor in vielbein representation and Fem
and FZ correspond to the standard field tensors. From this expression one can deduce

J =
e

3~
Fem + sin2(θW )

gZ
6~
FZ . (2.5.5)

3. The weak duality condition when integrated over X2 implies

e2

3~
Qem +

g2
Zp

6
QZ,V = K

∮
J = Kn ,

QZ,V =
I3
V

2
−Qem , p = sin2(θW ) . (2.5.6)

Here the vectorial part of the Z0 charge rather than as full Z0 charge QZ = I3
L + sin2(θW )Qem

appears. The reason is that only the vectorial isospin is same for left and right handed compo-
nents of fermion which are in general mixed for the massive states.

The coefficients are dimensionless and expressible in terms of the gauge coupling strengths and
using ~ = r~0 one can write

αemQem + p
αZ
2
QZ,V =

3

4π
× rnK ,

αem =
e2

4π~0
, αZ =

g2
Z

4π~0
=

αem
p(1− p)

. (2.5.7)

4. There is a great temptation to assume that the values of Qem and QZ correspond to their
quantized values and therefore depend on the quantum state assigned to the partonic 2-surface.
The linear coupling of the modified Dirac operator to conserved charges implies correlation
between the geometry of space-time sheet and quantum numbers assigned to the partonic 2-
surface. The assumption of standard quantized values for Qem and QZ would be also seen as
the identification of the fine structure constants αem and αZ . This however requires weak isospin
invariance.

The value of K from classical quantization of Kähler electric charge

The value of K can be deduced by requiring classical quantization of Kähler electric charge.

1. The condition that the flux of F 03 = (~/gK)J03 defining the counterpart of Kähler electric field
equals to the Kähler charge gK would give the condition K = g2

K/~, where gK is Kähler cou-
pling constant which should invariant under coupling constant evolution by quantum criticality.
Within experimental uncertainties one has αK = g2

K/4π~0 = αem ' 1/137, where αem is finite
structure constant in electron length scale and ~0 is the standard value of Planck constant.

2. The quantization of Planck constants makes the condition highly non-trivial. The most general
quantization of r is as rationals but there are good arguments favoring the quantization as
integers corresponding to the allowance of only singular coverings of CD andn CP2. The point
is that in this case a given value of Planck constant corresponds to a finite number pages of
the ”Big Book”. The quantization of the Planck constant implies a further quantization of K
and would suggest that K scales as 1/r unless the spectrum of values of Qem and QZ allowed
by the quantization condition scales as r. This is quite possible and the interpretation would
be that each of the r sheets of the covering carries (possibly same) elementary charge. Kind
of discrete variant of a full Fermi sphere would be in question. The interpretation in terms of
anyonic phases [25] supports this interpretation.
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3. The identification of J as a counterpart of eB/~ means that Kähler action and thus also Kähler
function is proportional to 1/αK and therefore to ~. This implies that for large values of ~
Kähler coupling strength g2

K/4π becomes very small and large fluctuations are suppressed in
the functional integral. The basic motivation for introducing the hierarchy of Planck constants
was indeed that the scaling α→ α/r allows to achieve the convergence of perturbation theory:
Nature itself would solve the problems of the theoretician. This of course does not mean that
the physical states would remain as such and the replacement of single particles with anyonic
states in order to satisfy the condition for K would realize this concretely.

The weak form of electric-magnetic duality has surprisingly strong implications for basic view
about quantum TGD as following considerations show.

2.5.2 Magnetic confinement, the short range of weak forces, and color
confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one combines it with
some very general empirical facts such as the non-existence of magnetic monopole fields in macroscopic
length scales.

How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length scale and one
should have a mechanism neutralizing the monopole charge. How electroweak interactions become
short ranged in TGD framework is still a poorly understood problem. What suggests itself is the
neutralization of the weak isospin above the intermediate gauge boson Compton length by neutral
Higgs bosons. Could the two neutralization mechanisms be combined to single one?

1. In the case of fermions and their super partners the opposite magnetic monopole would be a
wormhole throat. If the magnetically charged wormhole contact is electromagnetically neutral
but has vectorial weak isospin neutralizing the weak vectorial isospin of the fermion only the
electromagnetic charge of the fermion is visible on longer length scales. The distance of this
wormhole throat from the fermionic one should be of the order weak boson Compton length.
An interpretation as a bound state of fermion and a wormhole throat state with the quantum
numbers of a neutral Higgs boson would therefore make sense. The neutralizing throat would
have quantum numbers of X−1/2 = νLνR or X1/2 = νLνR. νLνR would not be neutral Higgs
boson (which should correspond to a wormhole contact) but a super-partner of left-handed
neutrino obtained by adding a right handed neutrino. This mechanism would apply separately
to the fermionic and anti-fermionic throats of the gauge bosons and corresponding space-time
sheets and leave only electromagnetic interaction as a long ranged interaction.

2. One can of course wonder what is the situation situation for the bosonic wormhole throats feeding
gauge fluxes between space-time sheets. It would seem that these wormhole throats must always
appear as pairs such that for the second member of the pair monopole charges and I3

V cancel
each other at both space-time sheets involved so that one obtains at both space-time sheets
magnetic dipoles of size of weak boson Compton length. The proposed magnetic character of
fundamental particles should become visible at TeV energies so that LHC might have surprises
in store!

Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider also the
situation in which the magnetic charges of quarks (more generally, of color excited leptons and quarks)
do not vanish and they form color and magnetic singles in the hadronic length scale. This would mean
that magnetic charges of the state q±1/2−X∓1/2 representing the physical quark would not vanish and
magnetic confinement would accompany also color confinement. This would explain why free quarks
are not observed. To how degree then quark confinement corresponds to magnetic confinement is an
interesting question.
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For quark and antiquark of meson the magnetic charges of quark and antiquark would be opposite
and meson would correspond to a Kähler magnetic flux so that a stringy view about meson emerges.
For valence quarks of baryon the vanishing of the net magnetic charge takes place provided that the
magnetic net charges are (±2,∓1,∓1). This brings in mind the spectrum of color hyper charges
coming as (±2,∓1,∓1)/3 and one can indeed ask whether color hyper-charge correlates with the
Kähler magnetic charge. The geometric picture would be three strings connected to single vertex.
Amusingly, the idea that color hypercharge could be proportional to color hyper charge popped up
during the first year of TGD when I had not yet discovered CP2 and believed on M4 × S2.

p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark
variants of particles suggest the existence of scaled up copies of QCD type physics and weak physics.
For p-adically scaled up variants the mass scales would be scaled by a power of

√
2 in the most general

case. The dark variants of the particle would have the same mass as the original one. In particular,
Mersenne primes Mk = 2k − 1 and Gaussian Mersennes MG,k = (1 + i)k − 1 has been proposed to
define zoomed copies of these physics. At the level of magnetic confinement this would mean hierarchy
of length scales for the magnetic confinement.

One particular proposal is that the Mersenne prime M89 should define a scaled up variant of the
ordinary hadron physics with mass scaled up roughly by a factor 2(107−89)/2 = 512. The size scale
of color confinement for this physics would be same as the weal length scale. It would look more
natural that the weak confinement for the quarks of M89 physics takes place in some shorter scale
and M61 is the first Mersenne prime to be considered. The mass scale of M61 weak bosons would
be by a factor 2(89−61)/2 = 214 higher and about 1.6× 104 TeV. M89 quarks would have virtually no
weak interactions but would possess color interactions with weak confinement length scale reflecting
themselves as new kind of jets at collisions above TeV energies.

In the biologically especially important length scale range 10 nm -2500 nm there are as many as
four Gaussian Mersennes corresponding to MG,k, k = 151, 157, 163, 167. This would suggest that the
existence of scaled up scales of magnetic-, weak- and color confinement. An especially interesting
possibly testable prediction is the existence of magnetic monopole pairs with the size scale in this
range. There are recent claims about experimental evidence for magnetic monopole pairs [65].

Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one recalls
that electric-magnetic duality in super-symmetric quantum field theories means that the descriptions
in terms of particles and monopoles are in some sense dual descriptions. Fermions would be replaced
by string like objects defined by the magnetic flux tubes and bosons as pairs of wormhole contacts
would correspond to pairs of the flux tubes. Therefore the sharp distinction between gravitons and
physical particles would disappear.

The reason why gravitons are necessarily stringy objects formed by a pair of wormhole contacts
is that one cannot construct spin two objects using only single fermion states at wormhole throats.
Of course, also super partners of these states with higher spin obtained by adding fermions and anti-
fermions at the wormhole throat but these do not give rise to graviton like states [23]. The upper and
lower wormhole throat pairs would be quantum superpositions of fermion anti-fermion pairs with sum
over all fermions. The reason is that otherwise one cannot realize graviton emission in terms of joining
of the ends of light-like 3-surfaces together. Also now magnetic monopole charges are necessary but
now there is no need to assign the entities X± with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below this
length scale the charges of the fermions become visible. Mersenne hypothesis suggests that some
Mersenne prime is in question. One proposal is that gravitonic size scale is given by electronic
Mersenne prime M127. It is however difficult to test whether graviton has a structure visible below
this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at all
clear how closely they relate to ordinary Feynman diagrams. All depends on what one is ready to
assume about what happens in the vertices. One could of course hope that zero energy ontology could
allow some very simple description allowing perhaps to get rid of the problematic aspects of Feynman
diagrams.

1. Consider first the recent view about generalized Feynman diagrams which relies zero energy
ontology. A highly attractive assumption is that the particles appearing at wormhole throats
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are on mass shell particles. For incoming and outgoing elementary bosons and their super
partners they would be positive it resp. negative energy states with parallel on mass shell
momenta. For virtual bosons they the wormhole throats would have opposite sign of energy
and the sum of on mass shell states would give virtual net momenta. This would make possible
twistor description of virtual particles allowing only massless particles (in 4-D sense usually and
in 8-D sense in TGD framework). The notion of virtual fermion makes sense only if one assumes
in the interaction region a topological condensation creating another wormhole throat having
no fermionic quantum numbers.

2. The addition of the particles X± replaces generalized Feynman diagrams with the analogs of
stringy diagrams with lines replaced by pairs of lines corresponding to fermion and X±1/2. The
members of these pairs would correspond to 3-D light-like surfaces glued together at the vertices
of generalized Feynman diagrams. The analog of 3-vertex would not be splitting of the string to
form shorter strings but the replication of the entire string to form two strings with same length
or fusion of two strings to single string along all their points rather than along ends to form a
longer string. It is not clear whether the duality symmetry of stringy diagrams can hold true
for the TGD variants of stringy diagrams.

3. How should one describe the bound state formed by the fermion and X±? Should one describe
the state as superposition of non-parallel on mass shell states so that the composite state would
be automatically massive? The description as superposition of on mass shell states does not
conform with the idea that bound state formation requires binding energy. In TGD framework
the notion of negentropic entanglement has been suggested to make possible the analogs of
bound states consisting of on mass shell states so that the binding energy is zero [38]. If this
kind of states are in question the description of virtual states in terms of on mass shell states is
not lost. Of course, one cannot exclude the possibility that there is infinite number of this kind
of states serving as analogs for the excitations of string like object.

4. What happens to the states formed by fermions and X±1/2 in the internal lines of the Feynman
diagram? Twistor philosophy suggests that only the higher on mass shell excitations are possible.
If this picture is correct, the situation would not change in an essential manner from the earlier
one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles should
have stringy character in electro-weak length scales and could behaving to become manifest at LHC
energies. This adds one further item to the list of non-trivial predictions of TGD about physics at
LHC energies [31].

Should J + J1 appear in Kähler action?

The presence of the S2 Kähler form J1 in the weak form of electric-magnetic duality was originally
suggested by an erratic argument about the reduction to almost topological QFT to be described in
the next subsection. In any case this argument raises the question whether one could replace J with
J +J1 in the Kähler action. This would not affect the basic non-vacuum extremals but would modify
the vacuum degeneracy of the Kähler action. Canonically imbedded M4 would become a monopole
configuration with an infinite magnetic energy and Kähler action due to the monopole singularity at
the line connecting tips of the CD. Action and energy can be made small by drilling a small hole
around origin. This is however not consistent with the weak form of electro-weak duality. Amusingly,
the modified Dirac equation reduces to ordinary massless Dirac equation in M4.

This extremal can be transformed to a vacuum extremal by assuming that the solution is also
a CP2 magnetic monopole with opposite contribution to the magnetic charge so that J + J1 = 0
holds true. This is achieved if one can regard space-time surface as a map M4 → CP2 reducing to
a map (Θ,Φ) = (θ,±φ) with the sign chosen by properly projecting the homologically non-trivial
rM = constant spheres of CD to the homologically non-trivial geodesic sphere of CP2. Symplectic
transformations of S2×CP2 produce new vacuum extremals of this kind. Using Darboux coordinates
in which one has J =

∑
k=1,2 PkdQ

k and assuming that (P1, Q1) corresponds to the CP2 image of

S2, one can take Q2 to be arbitrary function of P 2, which in turn is an arbitrary function of M4

coordinates to obtain even more general vacuum extremals with 3-D CP2 projection. Therefore the
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spectrum of vacuum extremals, which is very relevant for the TGD based description of gravitation
in long length scales because it allows to satisfy Einstein’s equations as an additional condition, looks
much richer than for the original option, and it is natural to ask whether this option might make
sense.

An objection is that J1 is a radial monopole field and this breaks Lorentz invariance to SO(3).
Lorentz invariance is broken to SO(3) for a given CD also by the presence of the preferred time
direction defined by the time-like line connecting the tips of the CD becoming carrying the monopole
charge but is compensated since Lorentz boosts of CDs are possible. Could one consider similar com-
pensation also now? Certainly the extremely small breaking of Lorentz invariance and the vanishing
of the monopole charge for the vacuum extremals is all that is needed at the space-time level. No
new gauge fields would be introduced since only the Kähler field part of photon and Z0 boson would
receive an additional contribution.

The ultimate fate of the modification depends on whether it is consistent with the general relativis-
tic description of gravitation. Since a breaking of spherical symmetry is involved, it is not at all clear
whether one can find vacuum extremals which represent small deformations of the Reissner-Nordström
metric and Robertson-Walker metric. The argument below shows that this option does not allow the
imbedding of small deformations of physically plausible space-time metrics as vacuum extremals.

The basic vacuum extremal whose deformations should give vacuum extremals allowing interpre-
tation as solutions of Einstein’s equations is given by a map M4 → CP2 projecting the rM constant
spheres S2 of M2 to the homologically non-trivial geodesic sphere of CP2. The winding number of
this map is −1 in order to achieve vanishing of the induced Kähler form J + J1. For instance, the
following two canonical forms of the map are possible

(Θ,Ψ) = (θM ,−φM ) ,

(Θ,Ψ) = (π − θM , φM ) .

(2.5.8)

Here (Θ,Ψ) refers to the geodesic sphere of CP2 and (θM , φM ) to the sphere of M4.
The resulting space-time surface is not flat and Einstein tensor is non-vanishing. More complex metrics
can be constructed from this metric by a deformation making the CP2 projection 3-dimensional.

Using the expression of the CP2 line element in Eguchi-Hanson coordinates [41]

ds2

R2
=

dr2

F 2
+
r2

F
(dΨ + cosΘdΦ)2 +

r2

4F
(dΘ2 + fracr24Fsin2ΘdΦ2)

(2.5.9)

and s the relationship r = tan(Θ), one obtains following expression for the CP2 metric

ds2

R2
= dθ2

M + sin2(θM )

[
(dφM + cos(θ)dΦ)2 +

1

4
(dθ2 + sin2(θ)dΦ2

]
.

(2.5.10)

The resulting metric is obtained from the metric of S2 by replacing dφ2 which 3-D line element. The
factor sin2(θM ) implies that the induced metric becomes singular at North and South poles of S2.
In particular, the gravitational potential is proportional to sin2(θM ) so that gravitational force in
the radial direction vanishes at equators. It is very difficult to imagine any manner to produce a
small deformation of Reissner-Nordstrm metric or Robertson-Walker metric. Hence it seems that the
vacuum extremals produce by J + J1 option are not physical.

2.5.3 Could Quantum TGD reduce to almost topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD reduces to
almost topological quantum theory in the sense that the counterpart of Chern-Simons action assigned
with the wormhole throats somehow dictates the dynamics. This proposal can be formulated also
for the modified Dirac action action. I gave up this proposal but the following argument shows that
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Kähler action with weak form of electric-magnetic duality effectively reduces to Chern-Simons action
plus Coulomb term.

1. Kähler action density can be written as a 4-dimensional integral of the Coulomb term jαKAα plus
and integral of the boundary term JnβAβ

√
g4 over the wormhole throats and of the quantity

J0βAβ
√
g4 over the ends of the 3-surface.

2. If the self-duality conditions generalize to Jnβ = 4παKε
nβγδJγδ at throats and to J0β =

4παKε
0βγδJγδ at the ends, the Kähler function reduces to the counterpart of Chern-Simons

action evaluated at the ends and throats. It would have same value for each branch and the
replacement ~0 → r~0 would effectively describe this. Boundary conditions would however give
1/r factor so that ~ would disappear from the Kähler function! The original attempt to real-
ize quantum TGD as an almost topological QFT was in terms of Chern-Simons action but was
given up. It is somewhat surprising that Kähler action gives Chern-Simons action in the vacuum
sector defined as sector for which Kähler current is light-like or vanishes.

Holography encourages to ask whether also the Coulomb interaction terms could vanish. This
kind of dimensional reduction would mean an enormous simplification since TGD would reduce to an
almost topological QFT. The attribute ”almost” would come from the fact that one has non-vanishing
classical Noether charges defined by Kähler action and non-trivial quantum dynamics in M4 degrees
of freedom. One could also assign to space-time surfaces conserved four-momenta which is not possible
in topological QFTs. For this reason the conditions guaranteeing the vanishing of Coulomb interaction
term deserve a detailed analysis.

1. For the known extremals jαK either vanishes or is light-like (”massless extremals” for which weak
self-duality condition does not make sense [33]) so that the Coulombic term vanishes identically in
the gauge used. The addition of a gradient to A induces terms located at the ends and wormhole
throats of the space-time surface but this term must be cancelled by the other boundary terms
by gauge invariance of Kähler action. This implies that the M4 part of WCW metric vanishes
in this case. Therefore massless extremals as such are not physically realistic: wormhole throats
representing particles are needed.

2. The original naive conclusion was that since Chern-Simons action depends on CP2 coordinates
only, its variation with respect to Minkowski coordinates must vanish so that the WCW met-
ric would be trivial in M4 degrees of freedom. This conclusion is in conflict with quantum
classical correspondence and was indeed too hasty. The point is that the allowed variations of
Kähler function must respect the weak electro-magnetic duality which relates Kähler electric
field depending on the induced 4-metric at 3-surface to the Kähler magnetic field. Therefore the
dependence on M4 coordinates creeps via a Lagrange multiplier term

∫
Λα(Jnα −KεnαβγJβγ)

√
g4d

3x . (2.5.11)

The (1,1) part of second variation contributing to M4 metric comes from this term.

3. This erratic conclusion about the vanishing of M4 part WCW metric raised the question about
how to achieve a non-trivial metric in M4 degrees of freedom. The proposal was a modification of
the weak form of electric-magnetic duality. Besides CP2 Kähler form there would be the Kähler
form assignable to the light-cone boundary reducing to that for rM = constant sphere - call it
J1. The generalization of the weak form of self-duality would be Jnβ = εnβγδK(Jγδ + εJ1

γδ).

This form implies that the boundary term gives a non-trivial contribution to the M4 part of
the WCW metric even without the constraint from electric-magnetic duality. Kähler charge is
not affected unless the partonic 2-surface contains the tip of CD in its interior. In this case the
value of Kähler charge is shifted by a topological contribution. Whether this term can survive
depends on whether the resulting vacuum extremals are consistent with the basic facts about
classical gravitation.
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4. The Coulombic interaction term is not invariant under gauge transformations. The good news
is that this might allow to find a gauge in which the Coulomb term vanishes. The vanishing
condition fixing the gauge transformation φ is

jαK∂αφ = −jαAα . (2.5.12)

This differential equation can be reduced to an ordinary differential equation along the flow
lines jK by using dxα/dt = jαK . Global solution is obtained only if one can combine the flow
parameter t with three other coordinates- say those at the either end of CD to form space-
time coordinates. The condition is that the parameter defining the coordinate differential is
proportional to the covariant form of Kähler current: dt = φjK . This condition in turn implies
d2t = d(φjK) = d(φjK) = dφ ∧ jK + φdjK = 0 implying jK ∧ djK = 0 or more concretely,

εαβγδjKβ ∂γj
K
δ = 0 . (2.5.13)

jK is a four-dimensional counterpart of Beltrami field [55] and could be called generalized Bel-
trami field.

The integrability conditions follow also from the construction of the extremals of Kähler action
[33]. The conjecture was that for the extremals the 4-dimensional Lorentz force vanishes (no
dissipation): this requires jK ∧ J = 0. One manner to guarantee this is the topologization of
the Kähler current meaning that it is proportional to the instanton current: jK = φjI , where
jI = ∗(J ∧ A) is the instanton current, which is not conserved for 4-D CP2 projection. The
conservation of jK implies the condition jαI ∂αφ = ∂αj

αφ and from this φ can be integrated if the
integrability condition jI∧djI = 0 holds true implying the same condition for jK . By introducing
at least 3 or CP2 coordinates as space-time coordinates, one finds that the contravariant form of
jI is purely topological so that the integrability condition fixes the dependence onM4 coordinates
and this selection is coded into the scalar function φ. These functions define families of conserved
currents jαKφ and jαI φ and could be also interpreted as conserved currents associated with the
critical deformations of the space-time surface.

5. There are gauge transformations respecting the vanishing of the Coulomb term. The vanishing
condition for the Coulomb term is gauge invariant only under the gauge transformations A →
A+∇φ for which the scalar function the integral

∫
jαK∂αφ reduces to a total divergence a giving

an integral over various 3-surfaces at the ends of CD and at throats vanishes. This is satisfied
if the allowed gauge transformations define conserved currents

Dα(jαφ) = 0 . (2.5.14)

As a consequence Coulomb term reduces to a difference of the conserved chargesQeφ =
∫
j0φ
√
g4d

3x
at the ends of the CD vanishing identically. The change of the imons type term is trivial if the
total weighted Kähler magnetic flux Qmφ =

∑∫
JφdA over wormhole throats is conserved. The

existence of an infinite number of conserved weighted magnetic fluxes is in accordance with the
electric-magnetic duality. How these fluxes relate to the flux Hamiltonians central for WCW
geometry is not quite clear.

6. The gauge transformations respecting the reduction to almost topological QFT should have some
special physical meaning. The measurement interaction term in the modified Dirac interaction
corresponds to a critical deformation of the space-time sheet and is realized as an addition
of a gauge part to the Kähler gauge potential of CP2. It would be natural to identify this
gauge transformation giving rise to a conserved charge so that the conserved charges would
provide a representation for the charges associated with the infinitesimal critical deformations
not affecting Kähler action. The gauge transformed Kähler potential couples to the modified
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Dirac equation and its effect could be visible in the value of Kähler function and therefore also
in the properties of the preferred extremal. The effect on WCW metric would however vanish
since K would transform only by an addition of a real part of a holomorphic function. Kähler
function is identified as a Dirac determinant for Chern-Simons Dirac action and the spectrum
of this operator should not be invariant under these gauge transformations if this picture is
correct. This is is achieved if the gauge transformation is carried only in the Dirac action
corresponding to the Chern-Simons term: this assumption is motivated by the breaking of time
reversal invariance induced by quantum measurements. The modification of Kähler action can
be guessed to correspond just to the Chern-Simons contribution from the instanton term.

7. A reasonable looking guess for the explicit realization of the quantum classical correspondence
between quantum numbers and space-time geometry is that the deformation of the preferred
extremal due to the addition of the measurement interaction term is induced by a U(1) gauge
transformation induced by a transformation of δCD×CP2 generating the gauge transformation
represented by φ. This interpretation makes sense if the fluxes defined by Qmφ and corresponding
Hamiltonians affect only zero modes rather than quantum fluctuating degrees of freedom.

To sum up, one could understand the basic properties of WCW metric in this framework. Effec-
tive 2-dimensionality would result from the existence of an infinite number of conserved charges in
two different time directions (genuine conservation laws plus gauge fixing). The infinite-dimensional
symmetric space for given values of zero modes corresponds to the Cartesian product of the WCWs
associated with the partonic 2-surfaces at both ends of CD and the generalized Chern-Simons term
decomposes into a sum of terms from the ends giving single particle Kähler functions and to the terms
from light-like wormhole throats giving interaction term between positive and negative energy parts of
the state. Hence Kähler function could be calculated without any knowledge about the interior of the
space-time sheets and TGD would reduce to almost topological QFT as speculated earlier. Needless
to say this would have immense boost to the program of constructing WCW Kähler geometry.

2.5.4 A general solution ansatz based on almost topological QFT property

The basic vision behind the ansatz is the reduction of quantum TGD to almost topological field
theory. This requires that the flow parameters associated with the flow lines of isometry currents
and Kähler current extend to global coordinates. This leads to integrability conditions implying
generalized Beltrami flow and Kähler action for the preferred extremals reduces to Chern-Simons
action when weak electro-weak duality is applied as boundary conditions. The strongest form of the
hydrodynamical interpretation requires that all conserved currents are parallel to Kähler current. In
the more general case one would have several hydrodynamic flows. Also the braidings (several of them
for the most general ansatz) assigned with the light-like 3-surfaces are naturally defined by the flow
lines of conserved currents. The independent behavior of particles at different flow lines can be seen
as a realization of the complete integrability of the theory. In free quantum field theories on mass
shell Fourier components are in a similar role but the geometric interpretation in terms of flow is of
course lacking. This picture should generalize also to the solution of the modified Dirac equation.

Basic field equations

Consider first the equations at general level.

1. The breaking of the Poincare symmetry due to the presence of monopole field occurs and leads
to the isometry group T×SO(3)×SU(3) corresponding to time translations, rotations, and color
group. The Cartan algebra is four-dimensional and field equations reduce to the conservation
laws of energy E, angular momentum J , color isospin I3, and color hypercharge Y .

2. Quite generally, one can write the field equations as conservation laws for I, J, I3, and Y .

Dα

[
Dβ(JαβHA)− jαKHA + TαβjlAhkl∂βh

l
]

= 0 . (2.5.15)

The first term gives a contraction of the symmetric Ricci tensor with antisymmetric Kähler form
and vanishes so that one has
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Dα

[
jαKH

A − TαβjkAhkl∂βhl
]

= 0 . (2.5.16)

For energy one has HA = 1 and energy current associated with the flow lines is proportional to
the Kähler current. Its divergence vanishes identically.

3. One can express the divergence of the term involving energy momentum tensor as as sum of
terms involving jαKJαβ and contraction of second fundamental form with energy momentum
tensor so that one obtains

jαKDαH
A = jαKJ

β
α jAβ + TαβHk

αβj
A
k . (2.5.17)

Hydrodynamical solution ansatz

The characteristic feature of the solution ansatz would be the reduction of the dynamics to hydrody-
namics analogous to that for a continuous distribution of particles iniatially at the end of X3 of the
light-like 3-surface moving along flow lines defined by currents jA satisfying the integrability condi-
tion jA ∧ djA = 0. Field theory would reduce effectively to particle mechanics along flow lines with
conserved charges defined by various isometry currents. The strongest condition is that all isometry
currents jA and also Kähler current jK are proportional to the same current j. The more general
option corresponds to multi-hydrodynamics.

1. Solution ansatz

Conserved currents are analogous to hydrodynamical currents in the sense that the flow parameter
along flow lines extends to a global space-time coordinate. The conserved current is proportional to
the gradient ∇Φ of the coordinate varying along the flow lines: J = Ψ∇Φ and by a proper choice of
Ψ one can allow to have conservation. The initial values of Ψ and Φ can be selected freely along the
flow lines beginning from either the end of the space-time surface or from wormhole throats.

If one requires hydrodynamics also for Chern-Simons action (effective 2-dimensionality is required
for preferred extremals), the initial values of scalar functions can be chosen freely only at the partonic
2-surfaces. The freedom to chose the intial values of the charges conserved along flow lines at the
partonic 2-surfaces means the existence of an infinite number of conserved charges so that the theory
would be integrable and even in two different coordinate directions. The basic difference as compared
to ordinary conservation laws is that the conserved currents are parallel and their flow parameter
extends to a global coordinate.

1. The most general assumption is that the conserved isometry currents

JαA = jαKH
A − TαβjkAhkl∂βhl (2.5.18)

and Kähler current as well as instanto current are integrable in the sense that JA ∧ JA = 0 and
jK ∧ jK = 0 hold true. One could imagine the possibility that the currents are not parallel. If
instanton current and Kähler current are proportional to each other, Coulomb interaction term
in the Kähler action vanishes and almost topological QFT property is achieved.

2. The integrability condition dJA ∧ JA = 0 is satisfied if one one has

JA = ΨAdΦA . (2.5.19)

The ansatz allows a gauge transformation induced by a symplectic transformation of S2.ΦA is
same for Kähler current and instanton current.
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3. The conservation of JA gives

d ∗ (ΨAdΦA) = 0 . (2.5.20)

This would mean separate hydrodynamics for each of the currents involved. In principle there is
not need to assume any further conditions and one can imagine infinite basis of scalar function
pairs (ΨA,ΦA) since criticality implies infinite number deformations implying conserved Noether
currents.

4. The conservation condition reduces to d’Alembert equation in the induced metric if one assumes
that ∇ΨA is orthogonal with every dΦA.

d ∗ dΦA = 0 , dΨA · dΦA = 0 . (2.5.21)

Taking x = ΦA as a coordinate the orthogonality condition states gxj∂jΨA = 0 and in the gen-
eral case one cannot solve the condition by simply assuming that ΨA depends on the coordinates
transversal to ΦA only. These conditions bring in mind p · p = 0 and p · e condition for massless
modes of Maxwell field having fixed momentum and polarization. dΦA would correspond to p
and dΨA to polarization. The condition that each isometry current corresponds its own pair
(ΨA,ΦA) would mean that each isometry current corresponds to independent light-like momen-
tum and polarization. Ordinary free quantum field theory would support this view whereas
hydrodynamics and QFT limit of TGD would support single flow.

These are the most general hydrodynamical conditions that one can assume. One can consider
also more restricted scenarios.

1. The strongest ansatz is inspired by the hydrodynamical picture in which all conserved isometry
charges flow along same flow lines so that one would have

JA = ΨAdΦ . (2.5.22)

In this case same Φ would satisfy simultaneously the d’Alembert type equations.

d ∗ dΦ = 0 , dΨA · dΦ = 0. (2.5.23)

This would mean that the massless modes associated with isometry currents move in parallel
manner but can have different polarizations. The spinor modes associated with light-light like
3-surfaces carry parallel four-momenta, which suggest that this option is correct. This allows a
very general family of solutions and one can have a complete 3-dimensional basis of functions
ΨA with gradient orthogonal to dΦ.

2. Isometry invariance under T × SO(3)× SU(3) allows to consider the possibility that one has

JA = kAΨAdΦG(A) , d ∗ (dΦG(A)) = 0 , dΨA · dΦG(A)) = 0 . (2.5.24)

where G(A) is T for energy current, SO(3) for angular momentum currents and SU(3) for color
currents. Energy would thus flow along its own flux lines, angular momentum along its own flow
lines, and color quantum numbers along their own flow lines. For instance, color currents would
differ from each other only by a numerical constant. The replacement of ΨA with ΨG(A) would
be too strong a condition since Killing vector fields are not related by a constant factor.
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To sum up, the most general option is that each conserved current JA defines its own integrable
flow lines defined by the scalar function pair (ΨA,ΦA). A complete basis of scalar functions satisfying
the d’Alembert type equation guaranteing current conservation could be imagined with restrictions
coming from the effective 2-dimensionality reducing the scalar function basis effectively to the partonic
2-surface. The diametrically opposite option corresponds to the basis obtained by assuming that only
single Φ is involved. The ansatz does not distinguish between J and J + J1 options.

The proposed solution ansatz can be compared to the earlier ansatz [34] stating that Kähler
current is topologized in the sense that for D(CP2) = 3 it is proportional to the identically conserved
instanton current (so that 4-D Lorentz force vanishes) and vanishes for D(CP2) = 4 (Maxwell phase).
This hypothesis requires that instanton current is Beltrami field for D(CP2) = 3. In the recent
case the assumption that also instanton current satisfies the Beltrami hypothesis in strong sense
(single function Φ) generalizes the topologization hypothesis for D(CP2) = 3 and guarantees that
Coulomb term in Kähler action vanishes identically. A weaker form is obtained by replacing Kähler
potential by its gauge transform in which case one also obtains a boundary term. As a matter fact,
the topologization hypothesis applies to isometry currents also for D(CP2) = 4 although instanton
current is not conserved anymore. One can consider variants of instanton current since both (A1, J1)
and (A, J) are available.

Can one require the extremal property in the case of Chern-Simons action?

Effective 2-dimensionality is achieved if the ends and wormhole throats are extremals of Chern-Simons
action. The strongest condition would be that space-time surfaces allow orthogonal slicings by 3-
surfaces which are extremals of Chern-Simons action.

Also in this case one can require that the flow parameter associated with the flow lines of the
isometry currents extends to a global coordinate. Kähler magnetic field B = ∗J defines a conserved
current so that all conserved currents would flow along the field lines of B and one would have 3-D
Beltrami flow. Note that in magnetohydrodynamics the standard assumption is that currents flow
along the field lines of the magnetic field.

For wormhole throats light-likeness causes some complications since the induced metric is degener-
ate and the contravariant metric must be restricted to the complement of the light-like direction. This
means that d’Alembert equation reduces to 2-dimensional Laplace equation. For space-like 3-surfaces
one obtains the counterpart of Laplace equation with partonic 2-surfaces serving as sources. The
interpretation in terms of analogs of Coulomb potentials created by 2-D charge distributions would
be natural.

If J + J1 appears in Kähler action the extremals need not have 2-dimensional CP2 projection as
they must have for J option, and one can hope of obtaining large enough solution family consistent
with effective 2-dimensionality. The field equations can be reduced to conservation conditions for the
isometry currents for SO(3)× SU(3) along flow lines.

2.5.5 Holomorphic factorization of Kähler function

One can guess the general form of the core part of the Kähler function as function of complex coordi-
nates assignable to the partonic surfaces at positive and negative energy ends of CD. It its convenient
to restrict the consideration to the simplest possible non-trivial case which is represented by single
propagator line connecting the ends of CD.

1. The propagator line corresponds to a symmetric space defined as a coset space G/H of the
symplectic group and Kac-Moody group. This coset space is as a manifold Cartesian product
(G/H) × (G/H) of symmetric spaces G/H associated with ends of the line. Kähler metric
contains also an interaction term between the factors of the Cartesian product so that Kähler
function can be said to reduce to a sum of ”kinetic” terms and interaction term.

2. The exponent of Kähler function depends on both ends of the line and this means that the ge-
ometries at the ends are correlated in the sense that that Kähler form contains interaction terms
between the line ends. It is however not quite clear whether it contains separate ”kinetic” or self
interaction terms assignable to the line ends. For Kähler function the kinetic and interaction
terms should have the following general expressions as functions of complex WCW coordinates:
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Kkin,i =
∑
n

fi,n(Zi)fi,n(Zi) + c.c ,

Kint =
∑
n

g1,n(Z1)g2,n(Z2) + c.c , i = 1, 2 . (2.5.25)

Here Kkin,i define ”kinetic” terms and Kint defines interaction term. One would have what
might be called holomorphic factorization suggesting a connection with conformal field theories.
Kkin would correspond to the Chern-Simons term assignable to the ends of the line and Kint to
the Chern-Simons terms assignable to the wormhole throats.

2.5.6 Could the dynamics of Kähler action predict the hierarchy of Planck
constants?

The original justification for the hierarchy of Planck constants came from the indications that Planck
constant could have large values in both astrophysical systems involving dark matter and also in
biology. The realization of the hierarchy in terms of the singular coverings and possibly also factor
spaces of CD and CP2 emerged from consistency conditions. The formula for the Planck constant
involves heuristic guess work and physical plausibility arguments. There are good arguments in
favor of the hypothesis that only coverings are possible. Only a finite number of pages of the Big
Book correspond to a given value of Planck constant, biological evolution corresponds to a gradual
dispersion to the pages of the Big Book with larger Planck constant, and a connection with the
hierarchy of infinite primes and p-adicization program based on the mathematical realization of finite
measurement resolution emerges.

One can however ask whether this hierarchy could emerge directly from the basic quantum TGD
rather than as a separate hypothesis. The following arguments suggest that this might be possible. One
finds also a precise geometric interpretation of preferred extremal property interpreted as criticality
in zero energy ontology.

1-1 correspondence between canonical momentum densities and time derivatives fails for
Kähler action

The basic motivation for the geometrization program was the observation that canonical quantization
for TGD fails. To see what is involved let us try to perform a canonical quantization in zero energy
ontology at the 3-D surfaces located at the light-like boundaries of CD × CP2.

1. In canonical quantization canonical momentum densities π0
k ≡ πk = ∂LK/∂(∂0h

k), where ∂0h
k

denotes the time derivative of imbedding space coordinate, are the physically natural quantities
in terms of which to fix the initial values: once their value distribution is fixed also conserved
charges are fixed. Also the weak form of electric-magnetic duality given by J03√g4 = 4παKJ12

and a mild generalization of this condition to be discussed below can be interpreted as a manner
to fix the values of conserved gauge charges (not Noether charges) to their quantized values
since Kähler magnetic flux equals to the integer giving the homology class of the (wormhole)
throat. This condition alone need not characterize criticality, which requires an infinite number
of deformations of X4 for which the second variation of the Kähler action vanishes and implies
infinite number conserved charges. This in fact gives hopes of replacing πk with these conserved
Noether charges.

2. Canonical quantization requires that ∂0h
k in the energy is expressed in terms of πk. The equation

defining πk in terms of ∂0h
k is however highly non-linear although algebraic. By taking squares

the equations reduces to equations for rational functions of ∂0h
k. ∂0h

k appears in contravariant
and covariant metric at most quadratically and in the induced Kähler electric field linearly and
by multplying the equations by det(g4)3 one can transform the equations to a polynomial form
so that in principle ∂0h

k can obtained as a solution of polynomial equations.



2.5. Weak form electric-magnetic duality and its implications 57

3. One can always eliminate one half of the coordinates by choosing 4 imbedding space coordinates
as the coordinates of the spacetime surface so that the initial value conditions reduce to those for
the canonical momentum densities associated with the remaining four coordinates. For instance,
for space-time surfaces representable as map M4 → CP2 M

4 coordinates are natural and the
time derivatives ∂0s

k of CP2 coordinates are multivalued. One would obtain four polynomial
equations with ∂0s

k as unknowns. In regions where CP2 projection is 4-dimensional -in particular
for the deformations of CP2 vacuum extremals the natural coordinates are CP2 coordinates and
one can regard ∂0m

k as unknows. For the deformations of cosmic strings, which are of form
X4 = X2 × Y 2 ⊂M4 × CP2, one can use coordinates of M2 × S2, where S2 is geodesic sphere
as natural coordinates and regard as unknowns E2 coordinates and remaining CP2 coordinates.

4. One can imagine solving one of the four polynomials equations for time derivaties in terms of
other obtaining N roots. Then one would substitute these roots to the remaining 3 conditions
to obtain algebraic equations from which one solves then second variable. Obviously situa-
tion is very complex without additional symmetries. The criticality of the preferred extremals
might however give additional conditions allowing simplifications. The reasons for giving up the
canonical quantization program was following. For the vacuum extremals of Kähler action πk
are however identically vanishing and this means that there is an infinite number of value distri-
butions for ∂0h

k. For small deformations of vacuum extremals one might however hope a finite
number of solutions to the conditions and thus finite number of space-time surfaces carrying
same conserved charges.

If one assumes that physics is characterized by the values of the conserved charges one must treat
the the many-valuedness of ∂0h

k. The most obvious guess is that one should replace the space of
space-like 4-surfaces corresponding to different roots ∂0h

k = F k(πl) with four-surfaces in the covering
space of CD × CP2 corresponding to different branches of the many-valued function ∂0h

k = F (πl)
co-inciding at the ends of CD.

Do the coverings forces by the many-valuedness of ∂0h
k correspond to the coverings

associated with the hierarchy of Planck constants?

The obvious question is whether this covering space actually corresponds to the covering spaces asso-
ciated with the hierarchy of Planck constants. This would conform with quantum classical correspon-
dence. The hierarchy of Planck constants and hierarchy of covering spaces was introduced to cure
the failure of the perturbation theory at quantum level. At classical level the multivaluedness of ∂0h

k

means a failure of perturbative canonical quantization and forces the introduction of the covering
spaces. The interpretation would be that when the density of matter becomes critical the space-time
surface splits to several branches so that the density at each branches is sub-critical. It is of course not
at all obvious whether the proposed structure of the Big Book is really consistent with this hypothesis
and one also consider modifications of this structure if necessary. The manner to proceed is by making
questions.

1. The proposed picture would give only single integer characterizing the covering. Two integers
assignable to CD and CP2 degrees of freedom are however needed. How these two coverings
could emerge?

(a) One should fix also the values of πnk = ∂LK/∂h
k
n, where n refers to space-like normal

coordinate at the wormhole throats. If one requires that charges do not flow between
regions with different signatures of the metric the natural condition is πnk = 0 and allows
also multi-valued solution. Since wormhole throats carry magnetic charge and since weak
form of electric-magnetic duality is assumed, one can assume that CP2 projection is four-
dimensional so that one can use CP2 coordinates and regard ∂0m

k as un-knows. The basic
idea about topological condensation in turn suggests that M4 projection can be assumed
to be 4-D inside space-like 3-surfaces so that here ∂0s

k are the unknowns. At partonic 2-
surfaces one would have conditions for both π0

k and πnk . One might hope that the numbers
of solutions are finite for preferred extremals because of their symmetries and given by na
for ∂0m

k and by nb for ∂0s
k. The optimistic guess is that na and nb corresponds to the

numbers of sheets for singular coverings of CD and CP2. The covering could be visualized
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as replacement of space-time surfaces with space-time surfaces which have nanb branches.
nb branches would degenerate to single branch at the ends of diagrams of the generaled
Feynman graph and na branches would degenerate to single one at wormhole throats.

(b) This picture is not quite correct yet. The fixing of π0
k and πnk should relate closely to the

effective 2-dimensionality as an additional condition perhaps crucial for criticality. One
could argue that both π0

k and πnk must be fixed at X3 and X3
l in order to effectively bring

in dynamics in two directions so that X3 could be interpreted as a an orbit of partonic
2-surface in space-like direction and X3

l as its orbit in light-like direction. The additional
conditions could be seen as gauge conditions made possible by symplectic and Kac-Moody
type conformal symmetries. The conditions for πk0 would give nb branches in CP2 degrees
of freedom and the conditions for πnk would split each of these branches to na branches.

(c) The existence of these two kinds of conserved charges (possibly vanishing for πnk ) could
relate also very closely to the slicing of the space-time sheets by string world sheets and
partonic 2-surfaces.

2. Should one then treat these branches as separate space-time surfaces or as a single space-time
surface? The treatment as a single surface seems to be the correct thing to do. Classically the
conserved changes would be nanb times larger than for single branch. Kähler action need not
(but could!) be same for different branches but the total action is nanb times the average action
and this effectively corresponds to the replacement of the ~0/g

2
K factor of the action with ~/g2

K ,
r ≡ ~/~0 = nanb. Since the conserved quantum charges are proportional to ~ one could argue
that r = nanb tells only that the charge conserved charge is nanb times larger than without
multi-valuedness. ~ would be only effectively nanb fold. This is of course poor man’s argument
but might catch something essential about the situation.

3. How could one interpret the condition J03√g4 = 4παKJ12 and its generalization to be discussed
below in this framework? The first observation is that the total Kähler electric charge is by
αK ∝ 1/(nanb) same always. The interpretation would be in terms of charge fractionization
meaning that each branch would carry Kähler electric charge QK = ngK/nanb. I have indeed
suggested explanation of charge fractionization and quantum Hall effect based on this picture.

4. The vision about the hierarchy of Planck constants involves also assumptions about imbedding
space metric. The assumption that the M4 covariant metric is proportional to ~2 follows from
the physical idea about ~ scaling of quantum lengths as what Compton length is. One can
always introduce scaled M4 coordinates bringing M4 metric into the standard form by scaling
up the M4 size of CD. It is not clear whether the scaling up of CD size follows automatically
from the proposed scenario. The basic question is why the M4 size scale of the critical extremals
must scale like nanb? This should somehow relate to the weak self-duality conditions implying
that Kähler field at each branch is reduced by a factor 1/r at each branch. Field equations
should posses a dynamical symmetry involving the scaling of CD by integer k and J0β√g4 and
Jnβ
√
g4 by 1/k. The scaling of CD should be due to the scaling up of the M4 time interval

during which the branched light-like 3-surface returns back to a non-branched one.

5. The proposed view about hierarchy of Planck constants is that the singular coverings reduce
to single-sheeted coverings at M2 ⊂ M4 for CD and to S2 ⊂ CP2 for CP2. Here S2 is any
homologically trivial geodesic sphere of CP2 and has vanishing Kähler form. Weak self-duality
condition is indeed consistent with any value of ~ and impies that the vacuum property for the
partonic 2-surface implies vacuum property for the entire space-time sheet as holography indeed
requires. This condition however generalizes. In weak self-duality conditions the value of ~ is
free for any 2-D Lagrangian sub-manifold of CP2.

The branching along M2 would mean that the branches of preferred extremals always collapse
to single branch when their M4 projection belongs to M2. Magnetically charged light-light-like
throats cannot have M4 projection in M2 so that self-duality conditions for different values of
~ do not lead to inconsistencies. For spacelike 3-surfaces at the boundaries of CD the condition
would mean that the M4 projection becomes light-like geodesic. Straight cosmic strings would
have M2 as M4 projection. Also CP2 type vacuum extremals for which the random light-
like projection in M4 belongs to M2 would represent this of situation. One can ask whether
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the degeneration of branches actually takes place along any string like object X2 × Y 2, where
X2 defines a minimal surface in M4. For these the weak self-duality condition would imply
~ =∞ at the ends of the string. It is very plausible that string like objects feed their magnetic
fluxes to larger space-times sheets through wormhole contacts so that these conditions are not
encountered.

Connection with the criticality of preferred extremals

Also a connection with quantum criticality and the criticality of the preferred extremals suggests
itself. Criticality for the preferred extremals must be a property of space-like 3-surfaces and light-
like 3-surfaces with degenerate 4-metric and the degeneration of the nanb branches of the space-time
surface at the its ends and at wormhole throats is exactly what happens at criticality. For instance,
in catastrophe theory roots of the polynomial equation giving extrema of a potential as function of
control parameters co-incide at criticality. If this picture is correct the hierarchy of Planck constants
would be an outcome of criticality and of preferred extremal property and preferred extremals would
be just those multi-branched space-time surfaces for which branches co-incide at the the boundaries
of CD × CP2 and at the throats.
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Chapter 3

Construction of Configuration
Space Kähler Geometry from
Symmetry Principles

3.1 Introduction

The most general expectation is that configuration space can be regarded as a union of coset spaces
which are infinite-dimensional symmetric spaces with Kähler structure: C(H) = ∪iG/H(i). Index i
labels 3-topology and zero modes. The group G, which can depend on 3-surface, can be identified as
a subgroup of diffeomorphisms of δM4

+ × CP2 and H must contain as its subgroup a group, whose
action reduces to Diff(X3) so that these transformations leave 3-surface invariant.

The task is to identify plausible candidate for G and H and to show that the tangent space of
the configuration space allows Kähler structure, in other words that the Lie-algebras of G and H(i)
allow complexification. One must also identify the zero modes and construct integration measure
for the functional integral in these degrees of freedom. Besides this one must deduce information
about the explicit form of configuration space metric from symmetry considerations combined with
the hypothesis that Kähler function is Kähler action for a preferred extremal of Kähler action. One
must of course understand what ”preferred” means.

3.1.1 General Coordinate Invariance and generalized quantum gravita-
tional holography

The basic motivation for the construction of configuration space geometry is the vision that physics
reduces to the geometry of classical spinor fields in the infinite-dimensional configuration space of
3-surfaces of M4

+ × CP2 or of M4 × CP2. Hermitian conjugation is the basic operation in quantum
theory and its geometrization requires that configuration space possesses Kähler geometry. Kähler
geometry is coded into Kähler function.

The original belief was that the four-dimensional general coordinate invariance of Kähler function
reduces the construction of the geometry to that for the boundary of configuration space consisting
of 3-surfaces on δM4

+×CP2, the moment of big bang. The proposal was that Kähler function K(Y 3)
could be defined as a preferred extremal of so called Kähler action for the unique space-time surface
X4(Y 3) going through given 3-surface Y 3 at δM4

+×CP2. For Diff4 transforms of Y 3 at X4(Y 3) Kähler
function would have the same value so that Diff4 invariance and degeneracy would be the outcome.
The proposal was that the preferred extremals are absolute minima of Kähler action.

This picture turned out to be too simple.

1. I have already described the recent view about light-like 3-surfaces as generalized Feynman
diagrams and space-time surfaces as preferred extremals of Kähler action and will not repeat
what has been said.

2. It has also become obvious that the gigantic symmetries associated with δM4
±×CP2 ⊂ CD×CP2

manifest themselves as the properties of propagators and vertices. Cosmological considerations,
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Poincare invariance, and the new view about energy favor the decomposition of the configu-
ration space to a union of configuration spaces assignable to causal diamonds CDs defined as
intersections of future and past directed light-cones. The minimum assumption is that CDs
label the sectors of CH: the nice feature of this option is that the considerations of this chapter
restricted to δM4

+ ×CP2 generalize almost trivially. This option is beautiful because the center
of mass degrees of freedom associated with the different sectors of CH would correspond to M4

itself and its Cartesian powers.

The definition of the Kähler function requires that the many-to-one correspondence X3 → X4(X3)
must be replaced by a bijective correspondence in the sense that X3

l as light-like 3-surface is unique
among all its Diff4 translates. This also allows physically preferred ”gauge fixing” allowing to get rid
of the mathematical complications due to Diff4 degeneracy. The internal geometry of the space-time
sheet must define the preferred 3-surface X3

l .
The realization of this vision means a considerable mathematical challenge. The effective metric

2-dimensionality of 3-dimensional light-like surfaces X3
l of M4 implies generalized conformal and sym-

plectic symmetries allowing to generalize quantum gravitational holography from light like boundary
so that the complexities due to the non-determinism can be taken into account properly.

3.1.2 Light like 3-D causal determinants and effective 2-dimensionality

The light like 3-surfaces X3
l of space-time surface appear as 3-D causal determinants. Basic examples

are boundaries and elementary particle horizons at which Minkowskian signature of the induced metric
transforms to Euclidian one. This brings in a second conformal symmetry related to the metric 2-
dimensionality of the 3-D light-like 3-surface. This symmetry is identifiable as TGD counterpart of
the Kac Moody symmetry of string models. The challenge is to understand the relationship of this
symmetry to configuration space geometry and the interaction between the two conformal symmetries.

1. Field-particle duality is realized. Light-like 3-surfaces X3
l -generalized Feynman diagrams -

correspond to the particle aspect of field-particle duality whereas the physics in the interior of
space-time surface X4(X3

l ) would correspond to the field aspect. Generalized Feynman diagrams
in 4-D sense could be identified as regions of space-time surface having Euclidian signature.

2. One could also say that light-like 3-surfaces X3
l and the space-like 3-surfaces X3 in the inter-

sections of X4(X3
l ) ∩ CD × CP2 where the causal diamond CD is defined as the intersections

of future and past directed light-cones provide dual descriptions.

3. Generalized coset construction implies that the differences of super-symplectic and Super Kac-
Moody type Super Virasoro generators annihilated physical states. This implies Equivalence
Principle. This construction in turn led to the realization that configuration space for fixed
values of zero modes - in particular the values of the induced Kähler form of δM4

± × CP2 -
allows identification as a coset space obtained by dividing the symplectic group of δM4

± × CP2

with Kac-Moody group, whose generators vanish at X2 = X3
l × δM4

± × CP2. One can say that
quantum fluctuating degrees of freedom in a very concrete sense correspond to the local variant
of S2 × CP2.

The analog of conformal invariance in the light-like direction of X3
l and in the light-like radial

direction of δM4
± implies that the data at either X3 or X3

l should be enough to determine configuration
space geometry. This implies that the relevant data is contained to their intersection X2 at least for
finite regions of X3. This is the case if the deformations of X3

l not affecting X2 and preserving light
likeness corresponding to zero modes or gauge degrees of freedom and induce deformations of X3 also
acting as zero modes. The outcome is effective 2-dimensionality. One must be however cautious in
order to not make over-statements. The reduction to 2-D theory in global sense would trivialize the
theory and the reduction to 2-D theory must takes places for finite region of X3 only so one has in
well defined sense three-dimensionality in discrete sense. A more precise formulation of this vision
is in terms of hierarchy of CDs containing CDs containing.... The introduction of sub-CD:s brings
in improved measurement resolution and means also that effective 2-dimensionality is realized in the
scale of sub-CD only.

One cannot over-emphasize the importance of the effective 2-dimensionality. It indeed simplifies
dramatically the earlier formulas for configuration space metric involving 3-dimensional integrals over
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X3 ⊂ M4
+ × CP2 reducing now to 2-dimensional integrals. Note that X3 is determined by preferred

extremal property of X4(X3
l ) once X3

l is fixed and one can hope that this mapping is one-to-one.

3.1.3 Magic properties of light cone boundary and isometries of configu-
ration space

The special conformal, metric and symplectic properties of the light cone of four-dimensional Minkowski
space: δM4

+, the boundary of four-dimensional light cone is metrically 2-dimensional(!) sphere allowing
infinite-dimensional group of conformal transformations and isometries(!) as well as Kähler structure.
Kähler structure is not unique: possible Kähler structures of light cone boundary are paramet3rized
by Lobatchevski space SO(3, 1)/SO(3). The requirement that the isotropy group SO(3) of S2 cor-
responds to the isotropy group of the unique classical 3-momentum assigned to X4(Y 3) defined as a
preferred extremum of Kähler action, fixes the choice of the complex structure uniquely. Therefore
group theoretical approach and the approach based on Kähler action complement each other.

1. The allowance of an infinite-dimensional group of isometries isomorphic to the group of con-
formal transformations of 2-sphere is completely unique feature of the 4-dimensional light cone
boundary. Even more, in case of δM4

+×CP2 the isometry group of δM4
+ becomes localized with

respect to CP2! Furthermore, the Kähler structure of δM4
+ defines also symplectic structure.

Hence any function of δM4
+ ×CP2 would serve as a Hamiltonian transformation acting in both

CP2 and δM4
+ degrees of freedom. These transformations obviously differ from ordinary local

gauge transformations. This group leaves the symplectic form of δM4
+×CP2, defined as the sum

of light cone and CP2 symplectic forms, invariant. The group of symplectic transformations of
δM4

+ × CP2 is a good candidate for the isometry group of the configuration space.

2. The approximate symplectic invariance of Kähler action is broken only by gravitational effects
and is exact for vacuum extremals. If Kähler function were exactly invariant under the symplectic
transformations of CP2, CP2 symplectic transformations wiykd correspond to zero modes having
zero norm in the Kähler metric of configuration space. This does not make sense since symplectic
transformations of δM4×CP2 actually parameterize the quantum fluctuation degrees of freedom.

3. The groups G and H, and thus configuration space itself, should inherit the complex structure
of the light cone boundary. The diffeomorphims of M4 act as dynamical symmetries of vacuum
extremals. The radial Virasoro localized with respect to S2 × CP2 could in turn act in zero
modes perhaps inducing conformal transformations: note that these transformations lead out
from the symmetric space associated with given values of zero modes.

3.1.4 Symplectic transformations of δM4
+ × CP2 as isometries of configura-

tion space

The symplectic transformations of δM4
+×CP2 are excellent candidates for inducing symplectic trans-

formations of the configuration space acting as isometries. There are however deep differences with
respect to the Kac Moody algebras.

1. The conformal algebra of the configuration space is gigantic when compared with the Virasoro +
Kac Moody algebras of string models as is clear from the fact that the Lie-algebra generator of
a symplectic transformation of δM4

+×CP2 corresponding to a Hamiltonian which is product of
functions defined in δM4

+ and CP2 is sum of generator of δM4
+-local symplectic transformation

of CP2 and CP2-local symplectic transformations of δM4
+. This means also that the notion of

local gauge transformation generalizes.

2. The physical interpretation is also quite different: the relevant quantum numbers label the
unitary representations of Lorentz group and color group, and the four-momentum labeling
the states of Kac Moody representations is not present. Physical states carrying no energy and
momentum at quantum level are predicted. The appearance of a new kind of angular momentum
not assignable to elementary particles might shed some light to the longstanding problem of
baryonic spin (quarks are not responsible for the entire spin of proton). The possibility of a new
kind of color might have implications even in macroscopic length scales.
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3. The central extension induced from the natural central extension associated with δM4
+ × CP2

Poisson brackets is anti-symmetric with respect to the generators of the symplectic algebra
rather than symmetric as in the case of Kac Moody algebras associated with loop spaces. At
first this seems to mean a dramatic difference. For instance, in the case of CP2 symplectic
transformations localized with respect to δM4

+ the central extension would vanish for Cartan
algebra, which means a profound physical difference. For δM4

+ × CP2 symplectic algebra a
generalization of the Kac Moody type structure however emerges naturally.

The point is that δM4
+-local CP2 symplectic transformations are accompanied by CP2 local

δM4
+ symplectic transformations. Therefore the Poisson bracket of two δM4

+ local CP2 Hamil-
tonians involves a term analogous to a central extension term symmetric with respect to CP2

Hamiltonians, and resulting from the δM4
+ bracket of functions multiplying the Hamiltonians.

This additional term could give the entire bracket of the configuration space Hamiltonians at
the maximum of the Kähler function where one expects that CP2 Hamiltonians vanish and have
a form essentially identical with Kac Moody central extension because it is indeed symmetric
with respect to indices of the symplectic group.

3.1.5 Does the symmetric space property reduce to coset construction for
Super Virasoro algebras?

The idea about symmetric space is extremely beautiful but it took a long time and several false
alarms before the time was ripe for identifying the precise form of the Cartan decomposition g = t+h
satisfying the defining conditions

g = t+ h , [t, t] ⊂ h , [h, t] ⊂ t . (3.1.1)

The ultimate solution of the puzzle turned out to be amazingly simple and came only after quantum
TGD was understood well enough.

Configuration space geometry allows two super-conformal symmetries. The first one corresponds to
super-symplectic transformations acting at the level of imbedding space. The second one corresponds
to super Kac-Moody symmetry acting as deformations of light-like 3-surfaces respecting their light-
likeness. Super Kac-Moody algebra can be regarded as sub-algebra of super-symplectic algebra, and
quantum states correspond to the coset representations for these two algebras so that the differences
of the corresponding super-Virasoro generators annihilate physical states. This obviously generalizes
Goddard-Olive-Kent construction [48]. The physical interpretation is in terms of Equivalence Prin-
ciple. After having realized this it took still some time to realize that this coset representation and
therefore also Equivalence Principle also corresponds to the coset structure of the configuration space!

The conclusion would be that t corresponds to super-symplectic algebra made also local with
respect to X3 and h corresponds to super Kac-Moody algebra. The experience with finite-dimensional
coset spaces would suggest that super Kac-Moody generators interpreted in terms of h leave the points
of configuration space analogous to the origin of say CP2 invariant and in fact vanish at this point.
Therefore super Kac-Moody generators should vanish for those 3-surfaces X3

l which correspond to
the origin of coset space. The maxima of Kähler function could correspond to this kind of points
and could play also an essential role in the integration over configuration space by generalizing the
Gaussian integration of free quantum field theories.

3.1.6 What effective 2-dimensionality and holography really mean?

Concerning the interpretation of Kac-Moody algebra there are some poorly understood points, which
directly relate to what one means with holography.

1. The strongest view about effective 2-dimensionality (holography) is that for preferred extremals
the partonic 2-surfaces X2 at the ends of CD act as causal determinants fixing X3

l in the
resolution defined by CD. A weaker view about holography is that light-like 3-surfaces with
fixed ends give rise to same configuration space metric and the deformations of these surfaces
by Kac-Moody algebra correspond to zero modes just like the interior degrees of freedom for
space-like 3-surface do. Which of these options is the correct one? The same question can be
posed in the case of space-like 3-surfaces.
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2. The non-trivial action of Kac-Moody algebra in the interior of X3
l together with effective 2-

dimensionality and holography would encourage the interpretation of Kac-Moody symmetries
acting trivially at X2 as gauge symmetries. Light-like 3-surfaces having fixed partonic 2-surfaces
at their ends would be equivalent physically and effective 2-dimensionality and holography would
be realized modulo gauge transformations.

3. There are also Kac-Moody generators which do not vanish at the ends of the X3
l , and these

would act as physical symmetries and their action would reduce at X2 to symplectic action.
This Kac-Moody algebra should appear in p-adic mass calculations. This seems to be in conflict
with the idea that coset construction corresponds to coset space construction. Perhaps strict
correspondence is too naive an assumption. Why couldn’t one use the larger Kac-Moody algebra
in coset construction and smaller Kac-Moody algebra in coset space construction?

4. Gauge symmetry property means that the Kähler metric of the configuration space is same for all
gauge equivalent choices of X3

l and Kac-Moody deformations correspond to zero modes. Kähler
function could differ by a real part of a holomorphic function of configuration space coordinates
representing now Kac-Moody transforms of X3

l . If Dirac determinant gives the exponent of
Kähler function, the eigenvalues of the modified Dirac action can differ only by scalings with are
products of holomorphic function of configuration space coordinates and its conjugates labeling
different Kac-Moody transforms of X3

l . This condition makes sense if one restricts the consid-
eration to the finite number of eigenvalues λk assigned to DK . The introduction of instanton
term transforming the eigenvalues to λk +

√
n would not allow his scaling.

Either one must assume more general spectrum of form λk +
√
nxk with λk and xk scaling in

identical manner or that n = 0 modes are enough to define Kähler function. The latter option
might be correct since the preferred extremal realizes effective 2-dimensionality at space-time
level and conformal excitations break it so that they should not contribute to Kähler function.
Also number theoretic universality favors this option. One cannot however exclude the first
option. It must be admitted that the situation is not completely understood.

3.1.7 About the relationship between super-symplectic and super Kac-
Moody algebras

The relationship between Kac-Moody and symplectic algebras is now relatively well understood but
the physical interpretation of Kac-Moody algebra deserves attention. There are two Kac-Moody
algebras: the smaller one leaves partonic 2-surfaces invariant and second one affects also them. Both
of them are in dual relation to the symplectic algebra and these relations correspond to coset space
construction and coset construction.

TGD inspired quantum measurement theory suggests that the super-symplectic algebra and smaller
Kac-Moody algebra correspond to each other like classical and quantal degrees of freedom. Hence
smaller Kac-Moody algebra would act in the zero modes of the configuration space metric. In the
proposed construction this indeed is the case for Kac Moody algebra elements leaving partonic 2-
surface invariant and appearing in the coset space construction but not for those Kac-Moody algebra
elements affecting partonic 2-surface and allowing interpretation as sub-algebra of symplectic algebra
and appearing in coset construction. This interpretation conforms also with the fact that Kac-Moody
algebra generates massive excitations in p-adic thermodynamics.

In TGD inspired quantum measurement theory zero modes correspond to classical non-quantum
fluctuating dynamical variables in 1-1 correspondence with quantum fluctuating degrees of freedom
like the positions of the pointer of the measurement apparatus with the directions of spin of electron.
Hence Kac-Moody algebra would define configuration space coordinates in terms of the map induced
by correlation between classical and quantal degrees of freedom induced by entanglement. The choice
of gauge selecting one particular light-like 3-surface X3

l could have thus interpretation as a map
mapping quantum degrees of freedom to classical ones. This choice of gauge could be achieved by
the addition of phase factor depending on quantum numbers assigned with the braid strands so that
stationary phase approximation would select the preferred 3-surface with fluctuations around them
allowed.

The dual relation between super symplectic algebra and bigger Kac-Moody algebra is realized in
terms of coset construction. The idea inspired by Olive-Goddard-Kent coset construction is that the
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generators of Super Virasoro algebra corresponds to the differences of those associated with Super
Kac-Moody and super-symplectic algebras. The justification comes from the miraculous geometry
of the light cone boundary implying that Super Kac-Moody conformal symmetries of X2 can be
compensated by super-symplectic local radial scalings so that the differences of corresponding Super
Virasoro generators annihilate physical states. If the central extension parameters are same, the
resulting central extension is trivial. What is done is to construct first a state with a non-positive
conformal weight using super-symplectic generators, and then to apply Super-Kac Moody generators
to compensate this conformal weight to get a state with vanishing conformal weight. Mass squared
would however correspond to either Super-Kac Moody or super-symplectic mass. The identity of these
masses gives rise to Equivalence Principle as a one manifestation of the coset representation.

3.1.8 Attempts to identify configuration space Hamiltonians

I have made several attempts to identify configuration space Hamiltonians. The first two candidates
referred to as magnetic and electric Hamiltonians, emerged in a relatively early stage. The third
candidate identifies Hamiltonians as Noether charges and is motivated by the QFT analogy. Mag-
netic option is the simplest one and the only one consistent with the interpretation of Kac-Moody
symmetries leaving the ends of X3

l invariant.

Magnetic Hamiltonians

Assuming that the elements of the radial Virasoro algebra of δM4
+ have zero norm, one ends up with

an explicit identification of the symplectic structures of the configuration space. There is almost
unique identification for the symplectic structure. Configuration space counterparts of δM4 × CP2

Hamiltonians are defined by the generalized signed and and unsigned Kähler magnetic fluxes

Qm(HA, X
2) = Z

∫
X2 HAJ

√
g2d

2x ,

Q+
m(HA, rM ) = Z

∫
X2 HA|J |

√
g2d

2x ,

J ≡ εαβJαβ .

HA is CP2 Hamiltonian multiplied by a function of coordinates of light cone boundary belonging
to a unitary representation of the Lorentz group. Z is a conformal factor depending on symplectic
invariants. The symplectic structure is induced by the symplectic structure of CP2.

The most general flux is superposition of signed and unsigned fluxes Qm and Q+
m.

Qα,βm (HA, X
2) = αQm(HA, X

2) + βQ+
m(HA, X

2) .

Thus it seems that symmetry arguments fix the form of the configuration space metric apart from
the presence of a conformal factor Z multiplying the magnetic flux and the degeneracy related to the
signed and unsigned fluxes.

Holography requires that the relevant data about configuration space geometry is contained by
2-D surfaces X2 at the intersections of light-like 3-surfaces δM4

± + ×CP2 defining the boundaries of
causal diamonds. In this case the entire Hamiltonian could be defined as the sum of magnetic fluxes
over surfaces X2

i ⊂ X3.
The key feature of these Hamiltonians is that they depend on X2 only. This conforms with the

interpretation of Kac-Moody transformations leaving X2 invariant as gauge symmetries deforming
light-like 3-surfaces and leaving configuration space metric as such. By the identify gkl = iJkl the

half brackets jAkJklj
Bl = ∂kHAJ

kl∂lH
B would define the matrix elements of both Kähler metric

and Kähler form: this means a tight constraint if Kähler action defines the metric and magnetic
Hamiltonians are the correct choice.

Electric Hamiltonians and electric-magnetic duality

Preferred extremal property allows to consider the possibility that one can identify configuration
space Hamiltonians as classical charges Qe(HA) associated with the Hamiltonians of the symplectic
transformations of the light cone boundary, that is as variational derivatives of the Kähler action with
respect to the infinitesimal deformations induced by δM4

+ × CP2 Hamiltonians.
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Alternatively, one might simply replace Kähler magnetic field J with Kähler electric field defined
by space-time dual ∗J in the formulas of previous section. These Hamiltonians are analogous to Kähler
electric charge and the hypothesis motivated by the experience with the instantons of the Euclidian
Yang Mills theories and ’Yin-Yang’ principle, as well as by the duality of CP2 geometry, is that for
the preferred extremals of the Kähler action these Hamiltonians are affinely related:

Qe(HA) = Z [Qm(HA) + qe(HA)] .

Here Z and qe are constants depending on symplectic invariants only. Thus the equivalence of the
two approaches to the construction of configuration space geometry boils down to the hypothesis of a
physically well motivated electric-magnetic duality.

The crucial technical idea is to regard configuration space metric as a quadratic form in the entire
Lie-algebra of the isometry group G such that the matrix elements of the metric vanish in the sub-
algebra H of G acting as Diff3(X3). The Lie-algebra of G with degenerate metric in the sense that
H vector fields possess zero norm, can be regarded as a tangent space basis for the configuration space
at point X3 at which H acts as an isotropy group: at other points of the configuration space H is
different. For given values of zero modes the maximum of Kähler function is the best candidate for
X3. This picture applies also in symplectic degrees of freedom.

There are objections against electric representation.

1. Without additional assumptions the Hamiltonians obtained by replacing induced Kähler form
with its dual brings in the dependence on the induced metric of space-time surface at X2 so that
configuration space Hamiltonians do not transform nicely under symplectic transformations.
Only if the contravariant Kähler electric field defines a symplectic invariant - maybe the pre-
ferred extremal property could guarantee this- electric representation of the Hamiltonians looks
attractive. Electric-magnetic duality would follow trivially if the self duality of the induced
Kähler form of CP2 is preserved in the induction procedure at X2.

2. Kac-Moody transformations vanishing at X2 are not expected to leave the Hamiltonians in-
variant since they affect the induced metric. This is however highly desirable if effective 2-
dimensionality holds true as gauge invariance.

3.1.9 For the reader

Few words about the representation of ideas are in order. For a long time the books about TGD
served as kind of lab note books - a bottom-up representation providing kind of a ladder making clear
the evolution of ideas. This led gradually to a rather chaotic situation in which it was difficult for me
to control the internal consistency and for the possible reader to distinguish between the big ideas and
ad hoc guesses, most of them related to the detailed realization of big visions. Therefore I decided to
clean up a lot of the ad hoc stuff. I have also changed the representation so that it is more top-down
and tries to achieve over-all views.

There are several visions about what TGD is and I have worked hardly to achieve a fusion of this
visions. Hence simple linear representation in which reader climbs to a tree of wisdom is impossible.
I must summarize overall view from the beginning and refer to the results deduced in chapters to-
wards the end of the book and also to ideas discussed in other books. For instance, the construction
of configuration space spinor structure discussed in the last chapter [18] provides the understand-
ing necessary to make the construction of configuration space geometry more detailed. Also number
theoretical vision discussed in another book [6] is necessary. Somehow it seems that a graphic rep-
resentation emphasizing visually the big picture should be needed to make the representation more
comprehensible.

3.2 How to generalize the construction of configuration space
geometry to take into account the classical non-determinism?

If the imbedding space were H+ = M4
+×CP2 and if Kähler action were deterministic, the construction

of configuration space geometry reduces to δM4
+×CP2. Thus in this limit quantum holography prin-

ciple [59, 55] would be satisfied also in TGD framework and actually reduce to the general coordinate
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invariance. The classical non-determinism of Kähler action however means that this construction is
not quite enough and the challenge is to generalize the construction.

3.2.1 Quantum holography in the sense of quantum gravity theories

In string theory context quantum holography is more or less synonymous with Maldacena conjecture
[59] which (very roughly) states that string theory in Anti-de-Sitter space AdS is equivalent with a
conformal field theory at the boundary of AdS. In purely quantum gravitational context [55], quantum
holography principle states that quantum gravitational interactions at high energy limit in AdS can
be described using a topological field theory reducing to a conformal (and non-gravitational) field
theory defined at the time like boundary of the AdS. Thus the time like boundary plays the role of a
dynamical hologram containing all information about correlation functions of d+1 dimensional theory.
This reduction also conforms with the fact that black hole entropy is proportional to the horizon area
rather than the volume inside horizon.

Holography principle reduces to general coordinate invariance in TGD. If the action principle as-
signing space-time surface to a given 3-surface X3 at light cone boundary were completely determinis-
tic, four-dimensional general coordinate invariance would reduce the construction of the configuration
geometry for the space of 3-surfaces in M4

+ ×CP2 to the construction of the geometry at the bound-
ary of the configuration space consisting of 3-surfaces in δM4

+ ×CP2 (moment of big bang). Also the
quantum theory would reduce to the boundary of the future light cone.

The classical non-determinism of Kähler action however implies that quantum holography in this
strong form fails. This is very desirable from the point of view of both physics and consciousness theory.
Classical determinism would also mean that time would be lost in TGD as it is lost in GRT. Classical
non-determinism is also absolutely essential for quantum consciousness and makes possible conscious
experiences with contents localized into finite time interval despite the fact that quantum jumps occur
between configuration space spinor fields defining what I have used to call quantum histories. Classical
non-determinism makes it also possible to generalize quantum-classical correspondence in the sense
that classical non-determinism at the space-time level provides correlate for quantum non-determinism.
The failure of classical determinism is a difficult challenge for the construction of the configuration
space geometry. One might however hope that the notion of quantum holography generalizes.

3.2.2 How the classical determinism fails in TGD?

One might hope that determinism in a generalized sense might be achieved by generalizing the notion
of 3-surface by allowing unions of space-like 3-surfaces with time like separations with very strong
but not complete correlations between the space-like 3-surfaces. In this case the non-determinism
would mean that the 3-surfaces Y 3 at light cone boundary correspond to at most enumerable number
of preferred extremals X4(Y 3) of Kähler action so that one would get finite or at most enumerably
infinite number of replicas of a given configuration space region and the construction would still reduce
to the light cone boundary.

1. This is probably quite too simplistic view. Any 4-surface which has CP2 projection which
belongs to so called Lagrange manifold of CP2 having by definition vanishing induced Kähler
form is vacuum extremal. Thus there is an infinite variety of 6-dimensional sub-manifolds of H
for which all extremals of Kähler action are vacua.

2. CP2 type vacuum extremals are different since they possess non-vanishing Kähler form and
Kähler action. They are identifiable as classical counterparts of elementary particles have M4

+

projection which is a random light like curve (this in fact gives rise to conformal invariance
identifiable as counterpart of quaternion conformal invariance). Thus there are good reasons to
suspect that classical non-determinism might destroy the dream about complete reduction to
the light cone boundary.

3. The wormhole contacts connecting different space-time sheets together can be seen as pieces
of CP2 type extremals and one expects that the non-determinism is still there and that the
metrically 2-dimensional elementary particle horizons (light like 3-surfaces of H surrounding
wormhole contacts and having time-like M4

+ projection) might be a crucial element in the un-
derstanding of quantum TGD. The non-determinism of CP2 type extremals is absolutely crucial
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for the ordinary elementary particle physics. It seems that the conformal symmetries responsible
for the ordinary elementary particle quantum numbers acting in these degrees of freedom do not
contribute to the configuration space metric line element.

4. The possibility of space-time sheets with a negative time orientation with ensuing negative sign
of classical energy is a further blow against δM4

+ reductionism. Space-time sheets can be created
as pairs of positive and negative energy space-time sheet from vacuum and this forces to modify
radically the ontology of physics. Crossing symmetry allows to interpret particle reactions as a
creation of zero energy states from vacuum, and the identification of the gravitational energy as
the difference between positive and negative energies of matter supports the view that the net
inertial (conserved Poincare-) energy of the universe vanishes both in quantal and classical sense.
This option resolves unpleasant questions about net conserved quantum numbers of Universe,
and provides an elegant interpretation of the vacuum extremals as correlates for systems with
vanishing Poincare energy. This option is the only possible alternative from the point of view of
TGD inspired cosmology where Robertson-Walker metrics are vacuum extremals with respect to
inertial energy. In particular, super-symplectic invariance transforms to a fundamental symmetry
of elementary particle physics besides the conformal symmetry associated with 3-D light like
causal determinants which means a dramatic departure from string models unless it is somehow
equivalent with the super-symplectic symmetry.

The treatment of the non-determinism in a framework in which the prediction of time evolution is
seen as initial value problem, seems to be difficult. Also the notion of configuration space becomes a
messy concept. Zero energy ontology changes the situation completely. Light-like 3-surfaces become
representations of generalized Feynman diagrams and brings in the notion of finite time resolution.
One obtains adirect connection with the concepts of quantum field theory with path integral with
cutoff replaced with a sum over various preferred extremals with cutoff in time resolution.

3.2.3 The notions of imbedding space, 3-surface, and configuration space

The notions of imbedding space, 3-surface (and 4-surface), and configuration space (world of classical
worlds (WCW)) are central to quantum TGD. The original idea was that 3-surfaces are space-like
3-surfaces of H = M4 × CP2 or H = M4

+ × CP2, and WCW consists of all possible 3-surfaces in
H. The basic idea was that the definition of Kähler metric of WCW assigns to each X3 a unique
space-time surface X4(X3) allowing in this manner to realize general coordinate invariance. During
years these notions have however evolved considerably. Therefore it seems better to begin directly
from the recent picture.

The notion of imbedding space

Two generalizations of the notion of imbedding space were forced by number theoretical vision [21,
20, 19].

1. p-Adicization forced to generalize the notion of imbedding space by gluing real and p-adic
variants of imbedding space together along rationals and common algebraic numbers. The
generalized imbedding space has a book like structure with reals and various p-adic number
fields (including their algebraic extensions) representing the pages of the book.

2. With the discovery of zero energy ontology [30, 18] it became clear that the so called causal
diamonds (CDs) interpreted as intersections M4

+ ∩M4
− of future and past directed light-cones

of M4 × CP2 define correlates for the quantum states. The position of the ”lower” tip of CD
characterizes the position of CD in H. If the temporal distance between upper and lower tip of
CD is quantized power of 2 multiples of CP2 length, p-adic length scale hypothesis [25] follows
as a consequence. The upper resp. lower light-like boundary δM4

+ × CP2 resp. δM4
− × CP2

of CD can be regarded as the carrier of positive resp. negative energy part of the state. All
net quantum numbers of states vanish so that everything is creatable from vacuum. Space-time
surfaces assignable to zero energy states would would reside inside CD × CP2s and have their
3-D ends at the light-like boundaries of CD × CP2. Fractal structure is present in the sense
that CDs can contains CDs within CDs, and measurement resolution dictates the length scale
below which the sub-CDs are not visible.
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3. The realization of the hierarchy of Planck constants [20] led to a further generalization of the
notion of imbedding space. Generalized imbedding space is obtained by gluing together Cartesian
products of singular coverings and factor spaces of CD and CP2 to form a book like structure.
The particles at different pages of this book behave like dark matter relative to each other.
This generalization also brings in the geometric correlate for the selection of quantization axes
in the sense that the geometry of the sectors of the generalized imbedding space with non-
standard value of Planck constant involves symmetry breaking reducing the isometries to Cartan
subalgebra. Roughly speaking, each CD and CP2 is replaced with a union of CDs and CP2s
corresponding to different choices of quantization axes so that no breaking of Poincare and color
symmetries occurs at the level of entire WCW.

4. The construction of quantum theory at partonic level brings in very important delicacies related
to the Kähler gauge potential of CP2. Kähler gauge potential must have what one might call
pure gauge parts in M4 in order that the theory does not reduce to mere topological quantum
field theory. Hence the strict Cartesian product structure M4 × CP2 breaks down in a delicate
manner. These additional gauge components -present also in CP2- play key role in the model
of anyons, charge fractionization, and quantum Hall effect [25].

The notions of 3-surface and space-time surface

The question what one exactly means with 3-surface turned out to be non-trivial.

1. The original identification of 3-surfaces was as arbitrary space-like 3-surfaces subject to Equiva-
lence implied by General Coordinate Invariance. There was a problem related to the realization
of General Coordinate Invariance since it was not at all obvious why the preferred extremal
X4(Y 3) for Y 3 at X4(X3) and Diff4 related X3 should satisfy X4(Y 3) = X4(X3) .

2. Much later it became clear that light-like 3-surfaces have unique properties for serving as basic
dynamical objects, in particular for realizing the General Coordinate Invariance in 4-D sense
(obviously the identification resolves the above mentioned problem) and understanding the con-
formal symmetries of the theory. On basis of these symmetries light-like 3-surfaces can be
regarded as orbits of partonic 2-surfaces so that the theory is locally 2-dimensional. It is how-
ever important to emphasize that this indeed holds true only locally. At the level of WCW metric
this means that the components of the Kähler form and metric can be expressed in terms of
data assignable to 2-D partonic surfaces. It is however essential that information about normal
space of the 2-surface is needed.

3. At some stage came the realization that light-like 3-surfaces can have singular topology in the
sense that they are analogous to Feynman diagrams. This means that the light-like 3-surfaces
representing lines of Feynman diagram can be glued along their 2-D ends playing the role of
vertices to form what I call generalized Feynman diagrams. The ends of lines are located at
boundaries of sub-CDs. This brings in also a hierarchy of time scales: the increase of the
measurement resolution means introduction of sub-CDs containing sub-Feynman diagrams. As
the resolution is improved, new sub-Feynman diagrams emerge so that effective 2-D character
holds true in discretized sense and in given resolution scale only.

4. A further complication relates to the hierarchy of Planck constants forcing to generalize the
notion of imbedding space and also to the fact that for non-standard values of Planck constant
there is symmetry breaking due to preferred plane M2 preferred homologically trivial geodesic
sphere of CP2 having interpretation as geometric correlate for the selection of quantization axis.
For given sector of CH this means union over choices of this kind.

The basic vision forced by the generalization of General Coordinate Invariance has been that space-
time surfaces correspond to preferred extremals X4(X3) of Kähler action and are thus analogous to
Bohr orbits. Kähler function K(X3) defining the Kähler geometry of the world of classical worlds
would correspond to the Kähler action for the preferred extremal. The precise identification of the
preferred extremals actually has however remained open.

The obvious but rather ad hoc guess motivated by physical intuition was that preferred extremals
correspond to the absolute minima of Kähler action for space-time surfaces containing X3. This choice
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has some nice implications. For instance, one can develop an argument for the existence of an infinite
number of conserved charges. If X3 is light-like surface- either light-like boundary of X4 or light-like
3-surface assignable to a wormhole throat at which the induced metric of X4 changes its signature-
this identification circumvents the obvious objections. This option however failed to have a direct
analog in the p-adic sectors of the world of classical worlds (WCW). The reason is that minimization
does not make sense for the p-adic valued counterpart of Kähler action since it is not even well-defined
although the field equations make sense p-adically. Therefore, if absolute minimization makes sense
it must have expression as purely algebraic conditions.

Much later number theoretical compactication led to important progress in the understanding of
the preferred extremals and the conjectures were consistent with what is known about the known
extremals.

1. The conclusion was that one can assign to the 4-D tangent space T (X4(X3
l )) ⊂M8 a subspace

M2(x) ⊂M4 having interpretation as the plane of non-physical polarizations. This in the case
that the induced metric has Minkowskian signature. If not, and if co-hyper-quaternionic surface
is in question, similar assigned should be possible in normal space. This means a close connection
with super string models. Geometrically this would mean that the deformations of 3-surface in
the plane of non-physical polarizations would not contribute to the line element of WCW. This
is as it must be since complexification does not make sense in M2 degrees of freedom.

2. In number theoretical framework M2(x) has interpretation as a preferred hyper-complex sub-
space of hyper-octonions defined as 8-D subspace of complexified octonions with the property
that the metric defined by the octonionic inner product has signature of M8. The condition
M2(x) ⊂ T (X4(X3

l ))) in principle fixes the tangent space at X3
l , and one has good hopes that

the boundary value problem is well-defined and could fix X4(X3) at least partially as a preferred
extremal of Kähler action. This picture is rather convincing since the choice M2(x) ⊂M4 plays
also other important roles.

3. At the level of H the counterpart for the choice of M2(x) seems to be following. Suppose
that X4(X3

l ) has Minkowskian signature. One can assign to each point of the M4 projection
PM4(X4(X3

l )) a sub-space M2(x) ⊂ M4 and its complement E2(x), and the distributions of
these planes are integrable and define what I have called Hamilton-Jacobi coordinates which can
be assigned to the known extremals of Kähler with Minkowskian signature. This decomposition
allows to slice space-time surfaces by string world sheets and their 2-D partonic duals. Also a
slicing to 1-D light-like surfaces and their 3-D light-like duals Y 3

l parallel to X3
l follows under

certain conditions on the induced metric of X4(X3
l ). This decomposition exists for known

extremals and has played key role in the recent developments. Physically it means that 4-
surface (3-surface) reduces effectively to 3-D (2-D) surface and thus holography at space-time
level.

4. The weakest form of number theoretic compactification [20] states that light-like 3-surfaces
X3 ⊂ X4(X3) ⊂ M8, where X4(X3) hyper-quaternionic surface in hyper-octonionic M8 can
be mapped to light-like 3-surfaces X3 ⊂ X4(X3) ⊂M4 × CP2, where X4(X3) is now preferred
extremum of Kähler action. The natural guess is that X4(X3) ⊂M8 is a preferred extremal of
Kähler action associated with Kähler form of E4 in the decomposition M8 = M4 × E4, where
M4 corresponds to hyper-quaternions. The conjecture would be that the value of the Kähler
action in M8 is same as in M4×CP2: in fact that 2-surface would have identical induced metric
and Kähler form so that this conjecture would follow trivial. M8−H duality would in this sense
be Kähler isometry.

The study of the modified Dirac equation meant further steps of progress and lead to a rather
detailed view about what preferred extremals are.

1. The detailed construction of the generalized eigen modes of the modified Dirac operator DK

associated with Kähler action [18] relies on the vision that the generalized eigenvalues of this
operator code for information about preferred extremal of Kähler action. The view about TGD
as almost topological QFT is realized if the eigenmodes correspond to the solutions of DK ,
which are effectively 3-dimensional. Otherwise almost topological QFT property would require
Chern-Simons action alone and this choice is definitely un-physical. The first guess was that the
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eigenmodes are restricted to X3
l and therefore analogous to spinorial shock waves. As I realized

that number theoretical compactification requires the slicing of X4(X3
l ) by light-like 3-surfaces

Y 3
l parallel to X3

l , it became clear that super-conformal gauge invariance with respect to the
coordinate labeling the slices is a more natural manner to realized effective 3-dimensionality and
guarantees that Y 3

l is gauge equivalent with X3
l (General Coordinate Invariance).

2. The eigen modes of the modified Dirac operator DK have the defining property that they
are localized in regions of X3

l , where the induced Kähler gauge field is non-vanishing. This
guarantees that the number of generalized eigen modes is finite so that Dirac determinant is
also finite and algebraic number if eigenvalues are algebraic numbers, and therefore makes sense
also in p-adic context although Kähler action itself does not make sense p-adically.

3. The construction of the configuration space geometry in terms of modified Dirac action strength-
ens also the boundary conditions to the condition that there exists space-time coordinates in
which the induced CP2 Kähler form and induced metric satisfy the conditions Jni = 0, gni = 0
hold at X3

l . One could say that at X3
l situation is static both metrically and for the Maxwell

field defined by the induced Kähler form.

4. The final step in the rapid evolution of ideas that too place during three months - at least I hope
so since I do not want to continue this updating endlessly - was the realization that the introduc-
tion of imaginary CP breaking instanton part to the Kähler action is possible and also necessary
if one wants a stringy variant of Feynman rules. Imaginary part does not contribute to the
configuration space metric. This enriches the spectrum of the modified Dirac operator with an
infinite number of conformal excitations breaking the effective 2-dimensionality of 3-surfaces and
exact holography. Conformal excitations make possible stringy Feynman diagrammatics [16]. A
breaking of effective 3-dimensionality of space-time surface comes through the non-determinism
of Kähler action which indeed is the mechanism breaking the effective 2-dimensionality. Dirac
determinant can be defined in terms of zeta function regularization using Riemann Zeta. Finite
measurement resolution realized in terms of braids defined on basis of purely physical criteria
however forces a cutoff in conformal weight and finiteness so that number theoretical universality
is not lost.

5. This picture relying crucially on the the slicing of X4(X3) did not yet fix the definition of pre-
ferred extremals analytically at the level of field equations. The next step of progress was the
realization that the requirement that the conservation of the Noether currents associated with
the modified Dirac equation requires that the second variation of the Kähler action vanishes.
In strongest form this condition would be satisfied for all variations and in weak sense only for
those defining dynamical symmetries. The interpretation is as space-time correlate for quantum
criticality and the vacuum degeneracy of Kähler action makes the criticality plausible. A gener-
alization of the ideas of the catastrophe theory to infinite-dimensional context results [34]. These
conditions make sense also in p-adic context and have a number theoretical universal form.

Although the details of this vision might change it can be defended by its ability to fuse together
all great visions about quantum TGD. In the sequel the considerations are restricted to 3-surfaces in
M4

+×CP2. The basic outcome is that Kähler metric is expressible using the data at partonic 2-surfaces
X2 ⊂ δM4

+ × CP2. The generalization to the actual physical situation requires the replacement of
X2 ⊂ δM4

± × CP2 with unions of partonic 2-surfaces located at light-like boundaries of CDs and
sub-CDs.

The notion of configuration space

From the beginning there was a problem related to the precise definition of the configuration space
(”world of classical worlds” (WCW)). Should one regard CH as the space of 3-surfaces of M4 ×CP2

or M4
+ × CP2 or perhaps something more delicate.

1. For a long time I believed that the question ”M4
+ or M4?” had been settled in favor of M4

+ by
the fact that M4

+ has interpretation as empty Roberson-Walker cosmology. The huge conformal
symmetries assignable to δM4

+ × CP2 were interpreted as cosmological rather than laboratory
symmetries. The work with the conceptual problems related to the notions of energy and time,
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and with the symmetries of quantum TGD, however led gradually to the realization that there
are strong reasons for considering M4 instead of M4

+.

2. With the discovery of zero energy ontology it became clear that the so called causal diamonds
(CDs) define excellent candidates for the fundamental building blocks of the configuration space
or ”world of classical worlds” (WCW). The spaces CD ×CP2 regarded as subsets of H defined
the sectors of WCW.

3. This framework allows to realize the huge symmetries of δM4
±×CP2 as isometries of WCW. The

gigantic symmetries associated with the δM4
± × CP2 are also laboratory symmetries. Poincare

invariance fits very elegantly with the two types of super-conformal symmetries of TGD. The first
conformal symmetry corresponds to the light-like surfaces δM4

± × CP2 of the imbedding space
representing the upper and lower boundaries of CD. Second conformal symmetry corresponds
to light-like 3-surface X3

l , which can be boundaries of X4 and light-like surfaces separating
space-time regions with different signatures of the induced metric. This symmetry is identifiable
as the counterpart of the Kac Moody symmetry of string models.

A rather plausible conclusion is that configuration space (WCW) is a union of configuration spaces
associated with the spaces CD×CP2. CDs can contain CDs within CDs so that a fractal like hierarchy
having interpretation in terms of measurement resolution results. Since the complications due to p-
adic sectors and hierarchy of Planck constants are not relevant for the basic construction, it reduces
to a high degree to a study of a simple special case δM4

+ × CP2.

A further piece of understanding emerged from the following observations.

1. The induced Kähler form at the partonic 2-surface X2 - the basic dynamical object if holography
is accepted- can be seen as a fundamental symplectic invariant so that the values of εαβJαβ at
X2 define local symplectic invariants not subject to quantum fluctuations in the sense that they
would contribute to the configuration space metric. Hence only induced metric corresponds
to quantum fluctuating degrees of freedom at configuration space level and TGD is a genuine
theory of gravitation at this level.

2. Configuration space can be divided into slices for which the induced Kähler forms of CP2 and
δM4
± at the partonic 2-surfaces X2 at the light-like boundaries of CDs are fixed. The symplectic

group of δM4
±×CP2 parameterizes quantum fluctuating degrees of freedom in given scale (recall

the presence of hierarchy of CDs).

3. This leads to the identification of the coset space structure of the sub-configuration space asso-
ciated with given CD in terms of the generalized coset construction for super-symplectic and
super Kac-Moody type algebras (symmetries respecting light-likeness of light-like 3-surfaces).
Configuration space in quantum fluctuating degrees of freedom for given values of zero modes
can be regarded as being obtained by dividing symplectic group with Kac-Moody group. Equiv-
alently, the local coset space S2 × CP2 is in question: this was one of the first ideas about
configuration space which I gave up as too naive!

4. Generalized coset construction and coset space structure have very deep physical meaning since
they realize Equivalence Principle at quantum level: the identical actions of Super Virasoro
generators for super-symplectic and super Kac-Moody algebras implies that inertial and gravi-
tational four-momenta are identical.

3.2.4 The treatment of non-determinism of Kähler action in zero energy
ontology

The non-determinism of Kähler action means that the reduction of the construction of the configura-
tion space geometry to the light cone boundary fails. Besides degeneracy of the preferred extrema of
Kähler action, the non-determinism should manifest itself as a presence of causal determinants also
other than light cone boundary.

One can imagine two kinds of causal determinants.
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1. Elementary particle horizons and light-like boundaries X3
l ⊂ X4 of 4-surfaces representing worm-

hole throats act as causal determinants for the space-time dynamics defined by Kähler action.
The boundary values of this dynamics have been already considered.

2. At imbedding space level causal determinants correspond to light like CD forming a fractal
hierarchy of CDs within CDs. These causal determinants determine the dynamics of zero energy
states having interpretation as pairs of initial and final states in standard quantum theory.

The manner to treat the classical non-determinism would be roughly following.

1. The replacement of space-like 3-surface X3 with X3
l transforms initial value problem for X3 to

a boundary value problem for X3
l . In principle one can also use the surfaces X3 ⊂ δCD × CP2

if X3
l fixes X4(X3

l ) and thus X3 uniquely. For years an important question was whether both
X3 and X3

l contribute separately to the configuration space geometry or whether they provide
descriptions, which are in some sense dual. This lead to the notion of 7-3 duality and I even
considered the possibility that δM4

+ ×CP2 could be replaced with a more general surface X3
l ×

CP2 allowing also generalized symplectic and conformal symmetries. 7-3 duality is not a good
term since the actual duality actually relates descriptions based on space-like 3-surfaces X3 and
light-like 3-surfaces X3

l . Hence it seems that the proper place for 7-3 duality is in paper basked.

2. Only Super-Kac-Moody type conformal algebra makes sense in the interior of X3
l . In the 2-D

intersections of X3
l with the boundary of causal diamond (CD) defined as intersection of future

and past directed light-cones super-symplectic algebra makes sense. This implies effective two-
dimensionality which is broken by the non-determinism represented using the hierarchy of CDs
meaning that the data from these 2-D surfaces and their normal spaces at boundaries of CDs
in various scales determine the configuration space metric.

3. An important question has been whether Kac-Moody and super-symplectic algebras provide
descriptions which are dual in some sense. At the level of Super-Virasoro algebras duality seems
to be satisfied in the sense of generalized coset construction meaning that the differences of
Super Virasoro generators of super-symplectic and super Kac-Moody algebras annihilate physical
states. Among other things this means that four-momenta assignable to the two Super Virasoro
representations are identical. T he interpretation is in terms of a generalization of Equivalence
Principle [18, 30]. This gives also a justification for p-adic thermodynamics applying only to
Super Kac-Moody algebra.

4. Light-like 3-surfaces can be regarded also as generalized Feynman diagrams. The finite length
resolution mean means also a cutoff in the number of generalized Feynman diagrams and this
number remains always finite if the light-like 3-surfaces identifiable as maxima of Kähler function
correspond to the diagrams. The finiteness of this number is also essential for number theoretic
universality since it guarantees that the elements of M -matrix are algebraic numbers if momenta
and other quantum numbers have this property. The introduction of new sub-CDs means also
introduction of zero energy states in corresponding time scale.

5. The notion of finite measurement resolution expressed in terms of hierarchy of CDs within
CDs is important for the treatment of classical non-determinism. In a given resolution the non-
determinism of Kähler action remains invisible below the time scale assigned to the smallest CDs.
One could also say that complete non-determinism characterized in terms path integral with
cutoff is replaced in TGD framework with the partial failure of classical non-determinism leading
to generalized Feynman diagrams. This gives rise to to discrete coupling constant evolution and
avoids the mathematical ill-definedness and infinities plaguing path integral formalism since the
functional integral over 3-surfaces is well defined.

6. Dirac determinant defining vacuum functional is assumed to correspond to exponent of Kähler
action for its preferred extremal. Dirac determinant is defined as a product of finite number
of eigenvalues of the transverse part DK(X2) of the modified Dirac operator DK assumed
to have decomposition DK = DK(X2) + DK(Y 2) reflecting the dual slicings of X4 to string
world sheets Y 2 and partonic 2-surfaces X2. The existence of the slicing is supported by the
properties of known extremals of Kähler action and strongly suggested by number theoretical



3.3. Identification of the symmetries and coset space structure of the configuration
space 79

compactification, and it implies among other things dimensional reduction to Minkowskian string
model like theory and its Euclidian equivalent allowing to understand how Equivalence Principle
is realized at space-time level. Finite number for the eigenvalues raises even hope that in a given
resolution the functional integral reduces to Gaussian integral over a finite-dimensional space of
logarithms of eigenvalues.

7. One can ask why Kähler action and playing with all these delicacies related to the failure of
complete determinism. After all, one could formally replace Kähler action with 4-volume as
in brane models. Space-time surfaces would be minimal surfaces and Dirac operator would
be standard Dirac operator for the induced metric. Dirac determinant would however become
infinite since the modes would not be anymore analogs of cyclotron states necessarily localized
to a finite region of X3

l . Recall that for Kähler action X3
l indeed decomposes into patches

inside with induced Kähler form is non-vanishing and Dirac determinant defining the exponent
of Kähler function is well-defined and finite without any regularization procedure. Hence Kähler
action is completely unique.

3.2.5 Category theory and configuration space geometry

Due the effects caused by the classical non-determinism even classical TGD universes are very far from
simple Cartesian clockworks, and the understanding of the general structure of the configuration space
is a formidable challenge. Category theory is a branch of mathematics which is basically a theory
about universal aspects of mathematical structures. Thus category theoretical thinking might help
in disentangling the complexities of the configuration space geometry and the basic ideas of category
theory are discussed in this spirit and as an innocent layman. It indeed turns out that the approach
makes highly non-trivial predictions.

In zero energy ontology the effects of non-determinism are taken into account in terms of causal
diamonds forming a hierarchical fractal structure. One must allow also the unions of CDs, CDs
within CDs, and probably also overlapping of CDs, and there are good reasons to expert that CDs
and corresponding algebraic structures could define categories. If one does not allow overlapping CDs
then set theoretic inclusion map defines a natural arrow. If one allows both unions and intersections
then CDs would form a structure analogous to the set of open sets used in set theoretic topology.
One could indeed see CDs (or rather their Cartesian products with CP2) as analogs of open sets in
Minkowskian signature.

So called ribbon categories seem to be tailor made for the formulation of quantum TGD and allow
to build bridge to topological and conformal field theories. This discussion based on standard ontology.
In [17] rather detailed category theoretical constructions are discussed. Important role is played by
the notion of operad [46, 53]: this structure can be assigned with both generalized Feynman diagrams
and with the hierarchy of symplectic fusion algebras realizing symplectic analogs of the fusion rules
of conformal field theories.

3.3 Identification of the symmetries and coset space structure
of the configuration space

In this section the identification of the isometry group of the configuration space will be discussed at
general level.

3.3.1 Reduction to the light cone boundary

The reduction to the light cone boundary would occur exactly if Kähler action were strictly determin-
istic. This is not the case but it is possible to generalize the construction at light cone boundary to
the general case if causal diamonds define the basic structural units of the configuration space.

Old argument

The identification of the configuration space follows as a consequence of 4-dimensional Diff invariance.
The right question to ask is the following one. How could one coordinatize the physical(!) vibrational
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degrees of freedom for 3-surfaces in Diff4 invariant manner: coordinates should have same values for
all Diff4 related 3-surfaces belonging to the orbit of X3? The answer is following:

1. Fix some 3-surface (call it Y 3) on the orbit of X3 in Diff4 invariant manner.

2. Use as configuration space coordinates of X3 and all its diffeomorphs the coordinates param-
eterizing small deformations of Y 3. This kind of replacement is physically acceptable since
metrically the configuration space is equivalent with Map/Diff4.

3. Require that the fixing procedure is Lorentz invariant, where Lorentz transformations in question
leave light M4

+ invariant and thus act as isometries.

The simplest choice of Y 3 is the intersection of the orbit of 3-surface (X4) with the set δM4
+ ×CP2 ,

where δM4
+ denotes the boundary of the light cone (moment of big bang):

Y 3 = X4 ∩ δM4
+ × CP2 (3.3.1)

Lorentz invariance allows also the choice X × CP2, where X corresponds to the hyperboloid a =√
(m0)2 − r2

M = constant but only the proposed choice (a = 0) leads to a natural complexification in
M4 degrees of freedom. This choice is also cosmologically very natural and completely analogous to
the quantum gravitational holography of string theories.

Configuration space has a fiber space structure. Base space consists of 3-surfaces Y 3 ⊂ δM4
+×CP2

and fiber consists of 3-surfaces on the orbit of Y 3 , which are Diff4 equivalent with Y 3. The distance
between the surfaces in the fiber is vanishing in configuration space metric. An elegant manner to
avoid difficulties caused by Diff4 degeneracy in configuration space integration is to define integration
measure as integral over the reduced configuration space consisting of 3-surfaces Y 3 at the light cone
boundary.

Situation is however quite not so simple. The vacuum degeneracy of Kähler action suggests strongly
classical non-determinism so that there are several, possibly, infinite number of preferred extremals
X4(Y 3) associated with given Y 3 on light cone boundary. This implies additional degeneracy.

One might hope that the reduced configuration space could be replaced by its covering space so
that given Y 3 corresponds to several points of the covering space and configuration space has many-
sheeted structure. Obviously the copies of Y 3 have identical geometric properties. Configuration space
integral would decompose into a sum of integrals over different sheets of the reduced configuration
space. Note that configuration space spinor fields are in general different on different sheets of the
reduced configuration space.

Even this is probably not enough: it is quite possible that all light like surfaces of M4 possessing
Hamilton Jacobi structure (and thus interpretable as light fronts) are involved with the construction of
the configuration space geometry. Because of their metric two-dimensionality the proposed construc-
tion should generalize. This would mean that configuration space geometry has also local laboratory
scale aspects and that the general ideas might allow testing.

New version of the argument

This is was the argument for two decades ago. A more elegant formulation would in terms of light-like
3-surfaces connecting the boundaries of causal diamond taken as basic geometric objects and identified
as generalized Feynman diagrams so that they are singular as manifolds at the vertices.

If both formulations are required to be correct, the only conclusion is that effective 2-dimensionality
must hold true in the scale of given CD. In other words, the intersectionX2 = X3

l ∩X3 at the boundary
of CD is effectively the basic dynamical unit. The failure of strict non-determinism however forces to
introduce entire hierarchy of CDs responsible also for coupling constant evolution defined in terms of
the measurement resolution identified as the size of the smallest CD present.

3.3.2 Configuration space as a union of symmetric spaces

In finite-dimensional context globally symmetric spaces are of form G/H and connection and curvature
are independent of the metric, provided it is left invariant under G. The hope is that same holds true
in infinite-dimensional context. The most one can hope of obtaining is the decomposition C(H) =
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∪iG/Hi over orbits of G. One could allow also symmetry breaking in the sense that G and H depend
on the orbit: C(H) = ∪iGi/Hi but it seems that G can be chosen to be same for all orbits. What
is essential is that these groups are infinite-dimensional. The basic properties of the coset space
decomposition give very strong constraints on the group H, which certainly contains the subgroup of
G, whose action reduces to diffeomorphisms of X3.

Consequences of the decomposition

If the decomposition to a union of coset spaces indeed occurs, the consequences for the calculability of
the theory are enormous since it suffices to find metric and curvature tensor for single representative
3-surface on a given orbit (contravariant form of metric gives propagator in perturbative calculation
of matrix elements as functional integrals over the configuration space). The representative surface
can be chosen to correspond to the maximum of Kähler function on a given orbit and one obtains
perturbation theory around this maximum (Kähler function is not isometry invariant).

The task is to identify the infinite-dimensional groups G and H and to understand the zero mode
structure of the configuration space. Almost twenty (seven according to long held belief!) years after
the discovery of the candidate for the Kähler function defining the metric, it became finally clear
that these identifications follow quite nicely from Diff4 invariance and Diff4 degeneracy as well as
special properties of the Kähler action.

The guess (not the first one!) would be following. G corresponds to the symplectic transformations
of δM4

±×CP2 leaving the induced Kähler form invariant. If G acts as isometries the values of Kähler
form at partonic 2-surfaces (remember effective 2-dimensionality) are zero modes and configuration
space allows slicing to symplectic orbits of the partonic 2-surface with fixed induced Kähler form.
Quantum fluctuating degrees of freedom would correspond to symplectic group and to the fluctua-
tions of the induced metric. The group H dividing G would in turn correspond to the Kac-Moody
symmetries respecting light-likeness of X3

l and acting in X3
l but trivially at the partonic 2-surface X2.

This coset structure was originally discovered via coset construction for super Virasoro algebras of
super-symplectic and super Kac-Moody algebras and realizes Equivalence Principle at quantum level.

Configuration space isometries as a subgroup of Diff(δM4
+ × CP2)

The reduction to light cone boundary leads to the identification of the isometry group as some subgroup
of for the group G for the diffeomorphisms of δM4

+ × CP2. These diffeomorphisms indeed act in a
natural manner in δCH, the the space of 3-surfaces in δM4

+ × CP2. Configuration space is expected
to decompose to a union of the coset spaces G/Hi, where Hi corresponds to some subgroup of G
containing the transformations of G acting as diffeomorphisms for given X3. Geometrically the vector
fields acting as diffeomorphisms of X3 are tangential to the 3-surface. Hi could depend on the topology
of X3 and since G does not change the topology of 3-surface each 3-topology defines separate orbit
of G. Therefore, the union involves sum over all topologies of X3 plus possibly other ’zero modes’.
Different topologies are naturally glued together since singular 3-surfaces intermediate between two
3-topologies correspond to points common to the two sectors with different topologies.

3.3.3 Isometries of configuration space geometry as symplectic transfor-
mations of δM4

+ × CP2

During last decade I have considered several candidates for the group G of isometries of the configu-
ration space as the sub-algebra of the subalgebra of Diff(δM4

+ × CP2). To begin with let us write
the general decomposition of diff(δM4

+ × CP2):

diff(δM4
+ × CP2) = S(CP2)× diff(δM4

+)⊕ S(δM4
+)× diff(CP2) . (3.3.2)

Here S(X) denotes the scalar function basis of space X. This Lie-algebra is the direct sum of light cone
diffeomorphisms made local with respect to CP2 and CP2 diffeomorphisms made local with respect
to light cone boundary.

The idea that entire diffeomorphism group would act as isometries looks unrealistic since the theory
should be more or less equivalent with topological field theory in this case. Consider now the various
candidates for G.
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1. The fact that symplectic transformations of CP2 and M4
+ diffeomorphisms are dynamical sym-

metries of the vacuum extremals suggests the possibility that the diffeomorphisms of the light
cone boundary and symplectic transformations of CP2 could leave Kähler function invariant and
thus correspond to zero modes. The symplectic transformations of CP2 localized with respect
to light cone boundary acting as symplectic transformations of CP2 have interpretation as local
color transformations and are a good candidate for the isometries. The fact that local color
transformations are not even approximate symmetries of Kähler action is not a problem: if they
were exact symmetries, Kähler function would be invariant and zero modes would be in question.

2. CP2 local conformal transformations of the light cone boundary act as isometries of δM4
+. Be-

sides this there is a huge group of the symplectic symmetries of δM4
+×CP2 if light cone boundary

is provided with the symplectic structure. Both groups must be considered as candidates for
groups of isometries. δM4

+×CP2 option exploits fully the special properties of δM4
+×CP2, and

one can develop simple argument demonstrating that δM4
+ × CP2 symplectic invariance is the

correct option. Also the construction of configuration space gamma matrices as super-symplectic
charges supports δM4

+ × CP2 option.

This picture remained same for a long time. The discovery that Kac-Moody algebra consisting of
X2 local symmetries generated by Hamiltonians of isometry sub-algebra of symplectic algebra forced
to challenge this picture and ask whether also X2-local transformations of symplectic group could be
involved.

1. The basic condition is that the X2 local transformation acts leaves induced Kähler form in-
variant apart from diffeomorphism. Denote the infinitesimal generator of X2 local symplecto
morphism by ΦA(x)jAk, where A labels Hamiltonians in the sum and by jα the generator of X2

diffeomorphism.

2. The invariance of J = εαβJαβ
√
g2 modulo diffeomorphism under the infinitesimal symplectic

transformation gives

{HA,ΦA} ≡ ∂αH
Aεαβ∂βΦA = ∂αJj

α . (3.3.3)

3. Note that here the Poisson bracket is not defined by Jαβ but εαβ defined by the induced metric.
Left hand side reflects the failure of symplectomorphism property due to the dependence of
ΦA(x) on X2 coordinate which and comes from the gradients of δM4 × CP2 coordinates in the
expression of the induced Kähler form. Right hand side corresponds to the action of infinitesimal
diffeomorphism.

4. Let us assume that one can restrict the consideration to single Hamiltonian so that the trans-
formation is generated by Φ(x)HA and that to each Φ(x) there corresponds a diffeomorphism
of X2, which is a symplectic transformation of X2 with respect to symplectic form εαβ and
generated by Hamiltonian Ψ(x). This transforms the invariance condition to

{HA,Φ} ≡ ∂αH
Aεαβ∂βΦ = ∂αJε

αβ∂βΨA = {J,ΨA} . (3.3.4)

This condition can be solved identically by assuming that ΦA and Ψ are proportional to arbitrary
smooth function of J :

Φ = f(J) , ΨA = −f(J)HA . (3.3.5)

Therefore the X2 local symplectomorphisms of H reduce to symplectic transformations of X2

with Hamiltonians depending on single coordinate J of X2. The analogy with conformal in-
variance for which transformations depend on single coordinate z is obvious. As far as the
anti-commutation relations for induced spinor fields are considered this means that J = consant
curves behave as points points. For extrema of J appearing as candidates for points of number
theoretic braids J = constant curves reduce to points.
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5. From the structure of the conditions it is easy to see that the transformations generate a Lie-
algebra. For the transformations Φ1

AH
A Φ2

AH
A the commutator is

Φ
[1,2]
A = f BC

A ΦBΦC , (3.3.6)

where f BC
A are the structure constants for the symplectic algebra of δM4

± × CP2. From this
form it is easy to check that Jacobi identifies are satisfied. The commutator has same form as
the commutator of gauge algebra generators. BRST gauge symmetry is perhaps the nearest
analog of this symmetry. In the case of isometries these transforms realized local color gauge
symmetry in TGD sense.

6. If space-time surface allows a slicing to light-like 3-surfaces Y 3
l parallel to X3

l , these conditions
make sense also for the partonic 2-surfaces defined by the intersections of Y 3

l with δM4
± × CP2

and ”parallel” to X2. The local symplectic transformations also generalize to their local variants
in X3

l . Light-likeness of X3
l means effective metric 2-dimensionality so that 2-D Kähler metric

and symplectic form as well as the invariant J = εαβJαβ exist. A straightforward calculation
shows that the the notion of local symplectic transformation makes sense also now and formulas
are exactly the same as above.

3.3.4 Identification of Kac-Moody symmetries

The Kac-Moody algebra of symmetries acting as symmetries respecting the light-likeness of 3-surfaces
plays a crucial role in the identification of quantum fluctuating configuration space degrees of freedom
contributing to the metric.

Identification of Kac-Moody algebra

The generators of bosonic super Kac-Moody algebra leave the light-likeness condition
√
g3 = 0 invari-

ant. This gives the condition

δgαβCof(gαβ) = 0 , (3.3.7)

Here Cof refers to matrix cofactor of gαβ and summation over indices is understood. The conditions
can be satisfied if the symmetries act as combinations of infinitesimal diffeomorphisms xµ → xµ + ξµ

of X3 and of infinitesimal conformal symmetries of the induced metric

δgαβ = λ(x)gαβ + ∂µgαβξ
µ + gµβ∂αξ

µ + gαµ∂βξ
µ . (3.3.8)

Ansatz as an X3-local conformal transformation of imbedding space

Write δhk as a super-position of X3-local infinitesimal diffeomorphisms of the imbedding space gen-
erated by vector fields JA = jA,k∂k:

δhk = cA(x)jA,k . (3.3.9)

This gives

cA(x)
[
Dkj

A
l +Dlj

A
k

]
∂αh

k∂βh
l + 2∂αcAhklj

A,k∂βh
l

= λ(x)gαβ + ∂µgαβξ
µ + gµβ∂αξ

µ + gαµ∂βξ
µ . (3.3.10)

If an X3-local variant of a conformal transformation of the imbedding space is in question, the first
term is proportional to the metric since one has
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Dkj
A
l +Dlj

A
k = 2hkl . (3.3.11)

The transformations in question includes conformal transformations of H± and isometries of the
imbedding space H.

The contribution of the second term must correspond to an infinitesimal diffeomorphism of X3

reducible to infinitesimal conformal transformation ψµ:

2∂αcAhklj
A,k∂βh

l = ξµ∂µgαβ + gµβ∂αξ
µ + gαµ∂βξ

µ . (3.3.12)

A rough analysis of the conditions

One could consider a strategy of fixing cA and solving solving ξµ from the differential equations. In
order to simplify the situation one could assume that gir = grr = 0. The possibility to cast the metric
in this form is plausible since generic 3-manifold allows coordinates in which the metric is diagonal.

1. The equation for grr gives

∂rcAhklj
Ak∂rh

k = 0 . (3.3.13)

The radial derivative of the transformation is orthogonal to X3. No condition on ξα results. If
cA has common multiplicative dependence on cA = f(r)dA by a one obtains

dAhklj
Ak∂rh

k = 0 . (3.3.14)

so that JA is orthogonal to the light-like tangent vector ∂rh
k X3 which is the counterpart for

the condition that Kac-Moody algebra acts in the transversal degrees of freedom only. The
condition also states that the components gri is not changed in the infinitesimal transformation.

It is possible to choose f(r) freely so that one can perform the choice f(r) = rn and the notion
of radial conformal weight makes sense. The dependence of cA on transversal coordinates is
constrained by the transversality condition only. In particular, a common scale factor having
free dependence on the transversal coordinates is possible meaning that X3- local conformal
transformations of H are in question.

2. The equation for gri gives

∂rξ
i = ∂rcAhklj

Akhij∂jh
k . (3.3.15)

The equation states that gri are not affected by the symmetry. The radial dependence of ξi is
fixed by this differential equation. No condition on ξr results. These conditions imply that the
local gauge transformations are dynamical with the light-like radial coordinate r playing the
role of the time variable. One should be able to fix the transformation more or less arbitrarily
at the partonic 2-surface X2.

3. The three independent equations for gij give

ξα∂αgij + gkj∂iξ
k + gki∂jξ

k = ∂icAhklj
Ak∂jh

l . (3.3.16)

These are 3 differential equations for 3 functions ξα on 2 independent variables xi with r ap-
pearing as a parameter. Note however that the derivatives of ξr do not appear in the equation.
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At least formally equations are not over-determined so that solutions should exist for arbitrary
choices of cA as functions of X3 coordinates satisfying the orthogonality conditions. If this
is the case, the Kac-Moody algebra can be regarded as a local algebra in X3 subject to the
orthogonality constraint.

This algebra contains as a subalgebra the analog of Kac-Moody algebra for which all cA except
the one associated with time translation and fixed by the orthogonality condition depends on
the radial coordinate r only. The larger algebra decomposes into a direct sum of representations
of this algebra.

Commutators of infinitesimal symmetries

The commutators of infinitesimal symmetries need not be what one might expect since the vector
fields ξµ are functionals cA and of the induced metric and also cA depends on induced metric via the
orthogonality condition. What this means that jA,k in principle acts also to φB in the commutator
[cAJ

A, cBJ
B ].

[
cAJ

A, cBJ
B
]

= cAcBJ
[A,B] + JA ◦ cBJB − JB ◦ cAJA , (3.3.17)

where ◦ is a short hand notation for the change of cB induced by the effect of the conformal transfor-
mation JA on the induced metric.

Luckily, the conditions in the case grr = gir = 0 state that the components grr and gir of the
induced metric are unchanged in the transformation so that the condition for cA resulting from grr
component of the metric is not affected. Also the conditions coming from gir = 0 remain unchanged.
Therefore the commutation relations of local algebra apart from constraint from transversality result.

The commutator algebra of infinitesimal symmetries should also close in some sense. The or-
thogonality to the light-like tangent vector creates here a problem since the commutator does not
obviously satisfy this condition automatically. The problem can be solved by following the recipes of
non-covariant quantization of string model.

1. Make a choice of gauge by choosing time translation P 0 in a preferred M4 coordinate frame
to be the preferred generator JA0 ≡ P 0, whose coefficient ΦA0

≡ Ψ(P 0) is solved from the
orthogonality condition. This assumption is analogous with the assumption that time coordinate
is non-dynamical in the quantization of strings. The natural basis for the algebra is obtained
by allowing only a single generator JA besides P 0 and putting dA = 1.

2. This prescription must be consistent with the well-defined radial conformal weight for the JA 6=
P 0 in the sense that the proportionality of dA to rn for JA 6= P 0 must be consistent with
commutators. SU(3) part of the algebra is of course not a problem. From the Lorentz vector
property of P k it is clear that the commutators resulting in a repeated commutation have well-
defined radial conformal weights only if one restricts SO(3, 1) to SO(3) commuting with P 0. Also
D could be allowed without losing well-defined radial conformal weights but the argument below
excludes it. This picture conforms with the earlier identification of the Kac-Moody algebra.

Conformal algebra contains besides Poincare algebra and the dilation D = mk∂mk the mutually
commuting generators Kk = (mrmr∂mk − 2mkml∂ml)/2. The commutators involving added
generators are

[
D,Kk

]
= −Kk ,

[
D,P k

]
= P k ,[

Kk,Kl
]

= 0 ,
[
Kk, P l

]
= mklD −Mkl .

(3.3.18)

From the last commutation relation it is clear that the inclusion of Kk would mean loss of
well-defined radial conformal weights.

3. The coefficient dm0/dr of Ψ(P 0) in the equation

Ψ(P 0)
dm0

dr
= −JAkhkl∂rhl
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is always non-vanishing due to the light-likeness of r. Since P 0 commutes with generators of
SO(3) (but not with D so that it is excluded!), one can define the commutator of two generators
as a commutator of the remaining part and identify Ψ(P 0) from the condition above.

4. Of course, also the more general transformations act as Kac-Moody type symmetries but the
interpretation would be that the sub-algebra plays the same role as SO(3) in the case of Lorentz
group: that is gives rise to generalized spin degrees of freedom whereas the entire algebra divided
by this sub-algebra would define the coset space playing the role of orbital degrees of freedom. In
fact, also the Kac-Moody type symmetries for which cA depends on the transversal coordinates
of X3 would correspond to orbital degrees of freedom. The presence of these orbital degrees of
freedom arranging super Kac-Moody representations into infinite multiplets labeled by function
basis for X2 means that the number of degrees of freedom is much larger than in string models.

5. It is possible to replace the preferred time coordinate m0 with a preferred light-like coordinate.
There are good reasons to believe that orbifold singularity for phases of matter involving non-
standard value of Planck constant corresponds to a preferred light-ray going through the tip of
δM4
±. Thus it would be natural to assume that the preferred M4 coordinate varies along this

light ray or its dual. The Kac-Moody group SO(3)×E3 respecting the radial conformal weights
would reduce to SO(2) × E2 as in string models. E2 would act in tangent plane of S2

± along
this ray defining also SO(2) rotation axis.

3.3.5 Coset space structure for a symmetric space

The key ingredient in the theory of symmetric spaces is that the Lie-algebra of G has the following
decomposition

g = h+ t ,
[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h .

In present case this has highly nontrivial consequences. The commutator of any two infinitesimal
generators generating nontrivial deformation of 3-surface belongs to h and thus vanishing norm in the
configuration space metric at the point which is left invariant by H. In fact, this same condition follows
from Ricci flatness requirement and guarantees also thatG acts as isometries of the configuration space.
This generalization is supported by the properties of the unitary representations of Lorentz group at
the light cone boundary and by number theoretical considerations.

The algebras suggesting themselves as candidates are symplectic algebra of δM± ×CP2 and Kac-
Moody algebra mapping light-like 3-surfaces to light-like 3-surfaces to be discussed in the next section.

The identification of the precise form of the coset space structure is however somewhat delicate.

1. The essential point is that both symplectic and Kac-Moody algebras allow representation in
terms of X3

l -local Hamiltonians. The general expression for the Hamilton of Kac-Moody algebra
is

H =
∑

ΦA(x)HA . (3.3.19)

Here HA are Hamiltonians of SO(3)× SU(3) acting in δX3
l ×CP2. For symplectic algebra any

Hamiltonian is allowed. If x corresponds to any point of X3
l , one must assume a slicing of the

causal diamond CD by translates of δM4
±.

2. For symplectic generators the dependence of form on r∆ on light-like coordinate of δX3
l × CP2

is allowed. ∆ is complex parameter whose modulus squared is interpreted as conformal weight.
∆ is identified as analogous quantum number labeling the modes of induced spinor field.

3. One can wonder whether the choices of the rM = constant sphere S2 is the only choice. The
Hamiltonin-Jacobi coordinate for X4

X3
l

suggest an alternative choice as E2 in the decomposition

of M4 = M2(x)×E2(x) required by number theoretical compactification and present for known
extremals of Kähler action with Minkowskian signature of induced metric. In this case SO(3)
would be replaced with SO(2). It however seems that the radial light-like coordinate u of X4(X3

l )
would remain the same since any other curve along light-like boundary would be space-like.
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4. The vector fields for representing Kac-Moody algebra must vanish at the partonic 2-surface
X2 ⊂ δM4

± × CP2. The corresponding vector field must vanish at each point of X2:

jk =
∑

ΦA(x)JklHA
l = 0 . (3.3.20)

This means that the vector field corresponds to SO(2)×U(2) defining the isotropy group of the
point of S2 × CP2.

This expression could be deduced from the idea that the surfaces X2 are analogous to origin of
CP2 at which U(2) vector fields vanish. Configuration space at X2 could be also regarded as the
analog of the origin of local S2×CP2. This interpretation is in accordance with the original idea
which however was given up in the lack of proper realization. The same picture can be deduced
from braiding in which case the Kac-Moody algebra corresponds to local SO(2)×U(2) for each
point of the braid at X2. The condition that Kac-Moody generators with positive conformal
weight annihilate physical states could be interpreted by stating effective 2-dimensionality in the
sense that the deformations of X3

l preserving its light-likeness do not affect the physics. Note
however that Kac-Moody type Virasoro generators do not annihilate physical states.

5. Kac-Moody algebra generator must leave induced Kähler form invariant at X2. This is of course
trivial since the action leaves each point invariant. The conditions of Cartan decomposition are
satisfied. The commutators of the Kac-Moody vector fields with symplectic generators are
non-vanishing since the action of symplectic generator on Kac-Moody generator restricted to
X2 gives a non-vanishing result belonging to the symplectic algebra. Also the commutators of
Kac-Moody generators are Kac-Moody generators.

3.4 Complexification

A necessary prerequisite for the Kähler geometry is the complexification of the tangent space in
vibrational degrees of freedom. What this means in recent context is non-trivial.

3.4.1 Why complexification is needed?

The Minkowskian signature of M4 metric seems however to represent an insurmountable obstacle for
the complexification of M4 type vibrational degrees of freedom. On the other hand, complexification
seems to have deep roots in the actual physical reality.

1. In the perturbative quantization of gauge fields one associates to each gauge field excitation po-
larization vector e and massless four-momentum vector p (p2 = 0, p ·e = 0). These vectors define
the decomposition of the tangent space of M4: M4 = M2 × E2, where M2 type polarizations
correspond to zero norm states and E2 type polarizations correspond to physical states with non-
vanishing norm. Same type of decomposition occurs also in the linearized theory of gravitation.
The crucial feature is that E2 allows complexification! The general conclusion is that the modes
of massless, linear, boson fields define always complexification of M4 (or its tangent space) by
effectively reducing it to E2. Also in string models similar situation is encountered. For a string
in D-dimensional space only D-2 transversal Euclidian degrees of freedom are physical.

2. Since symplectically extended isometry generators are expected to create physical states in TGD
approach same kind of physical complexification should take place for them, too: this indeed
takes place in string models in critical dimension. Somehow one should be able to associate
polarization vector and massless four momentum vector to the deformations of a given 3-surface
so that these vectors define the decomposition M4 = M2 × E2 for each mode. Configuration
space metric should be degenerate: the norm of M2 deformations should vanish as opposed to
the norm of E2 deformations.

Consider now the implications of this requirement.
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1. In order to associate four-momentum and polarization (or at least the decomposition M4 =
M2×E2) to the deformations of the 3-surface one should have field equations, which determine
the time development of the 3-surface uniquely. Furthermore, the time development for small
deformations should be such that it makes sense to associate four momentum and polarization
or at least the decomposition M4 = M2 × E2 to the deformations in suitable basis.

The solution to this problem is afforded by the proposed definition of the Kähler function. The
definition of the Kähler function indeed associates to a given 3-surface a unique four-surface
as the preferred extremal of the Kähler action. Therefore one can associate a unique time
development to the deformations of the surface X3 and if TGD describes the observed world
this time development should describe the evolution of photon, gluon, graviton, etc. states and
so we can hope that tangent space complexification could be defined.

2. We have found that M2 part of the deformation should have zero norm. In particular, the
time like vibrational modes have zero norm in configuration space metric. This is true if Kähler
function is not only Diff3 invariant but also Diff4 invariant in the sense that Kähler function has
same value for all 3-surfaces belonging to the orbit of X3 and related to X3 by diffeomorphism
of X4. This is indeed the case.

3. Even this is not enough. One expects the presence of massive modes having also longitudinal
polarization and for these states the number of physical vibrational degrees of freedom is 3 so
that complexification seems to be impossible by odd dimension.

The reduction to the light cone boundary implied by Diff4 invariance makes possible to identify
the complexification. Crucial role is played by the special properties of the boundary of 4-dimensional
light cone, which is metrically two-sphere and thus allows generalized complex and Kähler structure.

3.4.2 The metric, conformal and symplectic structures of the light cone
boundary

The special metric properties of the light cone boundary play a crucial role in the complexification.
The point is that the boundary of the light cone has degenerate metric: although light cone boundary
is topologically 3-dimensional it is metrically 2-dimensional: effectively sphere. In standard spherical
Minkowski coordinates light cone boundary is defined by the equation rM = m0 and induced metric
reads

ds2 = −r2
MdΩ2 = −r2

Mdzdz̄/(1 + zz̄)2 , (3.4.1)

and has Euclidian signature. Since S2 allows complexification and thus also Kähler structure (and
as a by-product also symplectic structure) there are good hopes of obtaining just the required type
of complexification in non-degenerate M4 degrees of freedom: configuration space would effectively
inherit its Kähler structure from S2 × CP2.

By its effective two-dimensionality the boundary of the four-dimensional light cone has infinite-
dimensional group of (local) conformal transformations. Using complex coordinate z for S2 the general
local conformal transformation reads

r → f(rM , z, z̄) ,

z → g(z) , (3.4.2)

where f is an arbitrary real function and g is an arbitrary analytic function with a finite number of
poles. The infinitesimal generators of this group span an algebra, call it C, analogous to Virasoro
algebra. This algebra is semidirect sum of two algebras L and R given by

C = L⊕R ,

[L,R] ⊂ R , (3.4.3)
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where L denotes standard Virasoro algebra of the two- sphere generated by the generators

Ln = zn+1d/dz (3.4.4)

and R denotes the algebra generated by the vector fields

Rn = fn(z, z̄, rM )∂rM , (3.4.5)

where f(z, z̄, rM ) forms complete real scalar function basis for light cone boundary. The vector fields
of R have the special property that they have vanishing norm in M4 metric.

This modification of conformal group implies that the Virasoro generator L0 becomes L0 = zd/dz−
rMd/drM so that the scaling momentum becomes the difference n − m or S2 and radial scaling
momenta. One could achieve conformal invariance by requiring that S2 and radial scaling quantum
numbers compensate each other.

Of crucial importance is that light cone boundary allows infinite dimensional group of isometries!
An arbitrary conformal transformation z → f(z) induces to the metric a conformal factor given by
|df/dz|2. The compensating radial scaling rM → rM/|df/dz| compensates this factor so that the line
element remains invariant.

The Kähler structure of light cone boundary defines automatically symplectic structure. The
symplectic form is degenerate and just the area form of S2 given by

J = r2
Msin(θ)dθ ∧ dφ,

in standard spherical coordinates, there is infinite-dimensional group of symplectic transformations
leaving the symplectic form of the light cone boundary (that is S2) invariant. These transformations
are local with respect to the radial coordinate rM . The symplectic and Kähler structures of light
cone boundary are not unique: different structures are labeled by the coset space SO(3, 1)/SO(3).
One can however associate with a given 3-surface Y 3 a unique structure by requiring that the the
corresponding subgroup SO(3) of Lorentz group acts as the isotropy group of the conserved classical
four-momentum assigned to Y 3 by the preferred extremal property.

In case of δM4
+ × CP2 both the conformal transformations, isometries and symplectic transfor-

mations of the light cone boundary can be made local also with respect to CP2. The idea that the
infinite-dimensional algebra of symplectic transformations of δM4

+×CP2 act as isometries of the con-
figuration space and that radial vector fields having zero norm in the metric of light cone boundary
possess zero norm also in configuration space metric, looks extremely attractive.

In the case of δM4
+ × CP2 one could combine the symplectic and Kähler structures of δM4

+ and
CP2 to single symplectic/Kähler structure. The symplectic transformations leaving this symplectic
structure invariant would be generated by the function algebra of δM4

+ × CP2 such that a arbitrary
function serves as a Hamiltonian of a symplectic transformation. This group serves as a candidate for
the isometry group of the configuration space. An alternative identification for the isometry algebra
is as symplectic symmetries of CP2 localized with respect to the light cone boundary. Hamiltonians
would be also now elements of the function algebra of δM4

+ × CP2 but their Poisson brackets would
be defined using only CP2 symplectic form.

The problem is to decide which option is correct. There is a simple argument fixing the latter op-
tion. The symplecticly imbedded CP2 would be left invariant under δM4

+ local symplectic transforma-
tions of CP2. This seems strange. Under symplectic algebra of δM4

+×CP2 also symplecticly imbedded
CP2 is deformed and this sounds more realistic. The isometry algebra is therefore assumed to be the
group can(δM4

+ × CP2) generated by the scalar function basis S(δM4
+ × CP2) = S(δM4

+) × S(CP2)
of the light cone boundary using the Poisson brackets to be discussed in more detail later.

There are some no-go theorems associated with higher-dimensional Abelian extensions [51], and
although the contexts are quite different, it is interesting to consider the recent situation in light of
these theorems.

1. Conformal invariance is an essentially 2-dimensional notion. Light cone boundary is however
metrically and conformally 2-sphere, and therefore the conformal algebra is effectively that
associated with the 2-sphere. In the same manner, the quaternion conformal algebra associated
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with the metrically 2-dimensional elementary particle horizons surrounding wormhole contacts
allows the usual Kac Moody algebra and actually also contributes to the configuration space
metric.

2. In dimensions D > 2 Abelian extensions of the gauge algebra are extensions by an infinite-
dimensional Abelian group rather than central extensions by the group U(1). This result has an
analog at the level of configuration space geometry. The extension associated with the symplectic
algebra of CP2 localized with respect to the light cone boundary is analogous a symplectic
extension defined by Poisson bracket {p, q} = 1. The central extension is the function space
associated with δM4

+ and indeed infinite-dimensional if only only CP2 symplectic structure
induces the Poisson bracket but one-dimensional if δM4

+ × CP2 Poisson bracket induces the
extension. In the latter case the symmetries fix the metric completely at the point corresponding
to the origin of symmetric space (presumably the maximum of Kähler function for given values
of zero modes).

3. D > 2 extensions possess no unitary faithful representations (satisfying certain well motivated
physical constraints) [51]. It might be that the degeneracy of the configuration space metric is
the analog for the loss of faithful representations.

3.4.3 Complexification and the special properties of the light cone bound-
ary

In case of Kähler metric G and H Lie-algebras must allow complexification so that the isometries can
act as holomorphic transformations. Since G and H can be regarded as subalgebras of the vector fields
of δM4

+ × CP2, they inherit in a natural manner the complex structure of the light cone boundary.
There are two candidates for the configuration space complexification. The simplest, and also the

correct, alternative is that complexification is induced by natural complexification of vector field basis
on δM4

+ × CP2. In CP2 degrees of freedom there is natural complexification

ξ → ξ̄ .

In δM4
+ degrees of freedom this could involve the transformation

z → z̄

and certainly involves complex conjugation for complex scalar function basis in the radial direction:

f(rM )→ f(rM ) ,

which turns out to play same role as the function basis of circle in the Kähler geometry of loop groups
[45].

The requirement that the functions are eigen functions of radial scalings favors functions (rM/r0)k,
where k is in general a complex number. The function can be expressed as a product of real power of
rM and logarithmic plane wave. It turns out that the radial complexification alternative is the correct
manner to obtain Kähler structure. The reason is that symplectic transformations leave the value of
rM invariant. Radial Virasoro invariance plays crucial role in making the complexification possible.

One could consider also a second alternative assumed in the earlier formulation of the configuration
space geometry. The close analogy with string models and conformal field theories suggests that for
Virasoro generators the complexification must reduce to the hermitian conjugation of the conformal
field theories: Ln → L−n = L†n. Clearly this complexification is induced from the transformation
z → 1

z and differs from the complexification induced by complex conjugation z → z̄. The basis
would be polynomial in z and z̄. Since radial algebra could be also seen as Virasoro algebra localized
with respect to S2 ×CP2 one could consider the possibility that also in radial direction the inversion
rM → 1

rM
is involved.

The essential prerequisite for the Kähler structure is that both G and H allow same complexifi-
cation so that the isometries in question can be regarded as holomorphic transformations. In finite-
dimensional case this essentially what is needed since metric can be constructed by parallel translation
along the orbit of G from H-invariant Kähler metric at a representative point. The requirement of
H-invariance forces the radial complexification based on complex powers rkM : radial complexification
works since symplectic transformations leave rM invariant.

Some comments on the properties of the proposed complexification are in order.
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1. The proposed complexification, which is analogous to the choice of gauge in gauge theories is
not Lorentz invariant unless one can fix the coordinates of the light cone boundary apart from
SO(3) rotation not affecting the value of the radial coordinate rM (if the imaginary part of k in
rkM is always non-vanishing). This is possible as will be explained later.

2. It turns out that the function basis of light-cone boundary multiplying CP2 Hamiltonians cor-
responds to unitary representations of the Lorentz group at light cone boundary so that the
Lorentz invariance is rather manifest.

3. There is a nice connection with the proposed physical interpretation of the complexification.
At the moment of the big bang all particles move with the velocity of light and therefore
behave as massless particles. To a given point of the light cone boundary one can associate
a unique direction of massless four-momentum by semiclassical considerations: at the point
mk = (m0,mi) momentum is proportional to the vector (m0,−mi). Since the particles are
massless only two polarization vectors are possible and these correspond to the tangent vectors
to the sphere m0 = rM . Of course, one must always fix polarizations at some point of tangent
space but since massless polarization vectors are not physical this doesn’t imply difficulties:
different choices correspond to different gauges.

4. Complexification in the proposed manner is not possible except in the case of four-dimensional
Minkowski space. Non-zero norm deformations correspond to vector fields of the light cone
boundary acting on the sphere SD−2 and the decomposition to (1, 0) and (0, 1) parts is pos-
sible only when the sphere in question is two-dimensional since other spheres do allow neither
complexification nor Kähler structure.

3.4.4 How to fix the complex and symplectic structures in a Lorentz in-
variant manner?

One can assign to light-cone boundary a symplectic structure since it reduces effectively to S2. The
possible symplectic structures of δM4

+ are parameterized by the coset space SO(3, 1)/SO(3)), where
H is the isotropy group SO(3) of a time like vector. Complexification also fixes the choice of the
spherical coordinates apart from rotations around the quantization axis of angular momentum.

The selection of some preferred symplectic structure in an ad hoc manner breaks manifest Lorentz
invariance but is possible if physical theory remains Lorentz invariant. The more natural possibility
is that 3-surface Y 3 itself fixes in some natural manner the choice of the symplectic structure so
that there is unique subgroup SO(3) of SO(3, 1) associated with Y 3. If configuration space Kähler
function corresponds to a preferred extremal of Kähler action, this is indeed the case. One can
associate unique conserved four-momentum P k(Y 3) to the preferred extremal X4(Y 3) of the Kähler
action and the requirement that the rotation group SO(3) leaving the symplectic structure invariant
leaves also P k(Y 3) invariant, fixes the symplectic structure associated with Y 3 uniquely.

Therefore configuration space decomposes into a union of symplectic spaces labeled by SO(3, 1)/SO(3)
isomorphic to a = constant hyperboloid of light cone. The direction of the classical angular momen-
tum vector wk = εklmnPlJmn determined by the classical angular momentum tensor of associated with
Y 3 fixes one coordinate axis and one can require that SO(2) subgroup of SO(3) acting as rotation
around this coordinate axis acts as phase transformation of the complex coordinate z of S2. Other
rotations act as nonlinear holomorphic transformations respecting the complex structure.

Clearly, the coordinates are uniquely fixed modulo SO(2) rotation acting as phase multiplication
in this case. If P k(Y 3) is light like, one can only require that the rotation group SO(2) serving as the
isotropy group of 3-momentum belongs to the group SO(3) characterizing the symplectic structure
and it seems that symplectic structure cannot be uniquely fixed without additional constraints in
this case. Probably this has no practical consequences since the 3-surfaces considered have actually
infinite size and 4-momentum is most probably time like for them. Note however that the direction of
3-momentum defines unique axis such that SO(2) rotations around this axis are represented as phase
multiplication.

Similar almost unique frame exists also in CP2 degrees of freedom and corresponds to the complex
coordinates transforming linearly under U(2) acting as isotropy group of the Lie-algebra element
defined by classical color charges Qa of Y 3. One can fix unique Cartan subgroup of U(2) by noticing
that SU(3) allows completely symmetric structure constants dabc such that Ra = d bc

a QbQc defines
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Lie-algebra element commuting with Qa. This means that Ra and Qa span in generic case U(1)×U(1)
Cartan subalgebra and there are unique complex coordinates for which this subgroup acts as phase
multiplications. The space of nonequivalent frames is isomorphic with CP (2) so that one can say
that cm degrees of freedom correspond to Cartesian product of SO(3, 1)/SO(3) hyperboloid and CP2

whereas coordinate choices correspond to the Cartesian product of SO(3, 1)/SO(2) and SU(3)/U(1)×
U(1).

Symplectic transformations leave the value of δM4
+ radial coordinate rM invariant and this implies

large number of additional zero modes characterizing the size and shape of the 3-surface. Besides
this Kähler magnetic fluxes through the rM = constant sections of X3 as a function of rM provide
additional invariants, which are functions rather than numbers. The Fourier components for the
magnetic fluxes provide infinite number of symplectic invariants. The presence of these zero modes
imply that 3-surfaces behave much like classical objects in the sense that neither their shape nor
form nor classical Kähler magnetic fields, are subject to Gaussian fluctuations. Of course, quantum
superpositions of 3-surfaces with different values of these invariants are possible.

There are reasons to expect that at least certain infinitesimal symplectic transformations corre-
spond to zero modes of the Kähler metric (symplectic transformations act as dynamical symmetries
of the vacuum extremals of the Kähler action). If this is indeed the case, one can ask whether it is
possible to identify an integration measure for them.

If one can associate symplectic structure with zero modes, the symplectic structure defines integra-
tion measure in a standard manner (for 2n-dimensional symplectic manifold the integration measure is
just the n-fold wedge power J∧J...∧J of the symplectic form J). Unfortunately, in infinite-dimensional
context this is not enough since divergence free functional integral analogous to a Gaussian integral is
needed and it seems that it is not possible to integrate in zero modes and that this relates in a deep
manner to state function reduction. If all symplectic transformations of δM4

+ × CP2 are represented
as symplectic transformations of the configuration space, then the existence of symplectic structure
decomposing into Kähler (and symplectic) structure in complexified degrees of freedom and symplectic
(but not Kähler) structure in zero modes, is an automatic consequence.

3.4.5 The general structure of the isometry algebra

There are three options for the isometry algebra of configuration space

1. Isometry algebra as the algebra of CP2 symplectic transformations leaving invariant the sym-
plectic form of CP2 localized with respect to δM4

+.

2. Certainly the configuration space metric in δM4
+ must be non-trivial and actually given by the

magnetic flux Hamiltonians defining symplectic invariants. Furthermore, the super-symplectic
generators constructed from quarks automatically give as anti-commutators this part of the
configuration space metric. One could interpret these symplectic invariants as configuration
space Hamiltonians for δM4

+ symplectic transformations obtained when CP2 Hamiltonian is
constant.

3. Isometry algebra consists of δM4
+ × CP2 symplectic transformations. In this case a local color

transformation involves necessarily a local S2 transformation. Unfortunately, it is difficult to
decide at this stage which of these options is correct.

The eigen states of the rotation generator and Lorentz boost in the same direction defining a
unitary representation of the Lorentz group at light cone boundary define the most natural function
basis for the light cone boundary. The elements of this bases have also well defined scaling quantum
numbers and define also a unitary representation of the conformal algebra. The product of the basic
functions is very simple in this basis since various quantum numbers are additive.

Spherical harmonics of S2 provide an alternative function basis for the light cone boundary:

Hm
jk ≡ Yjm(θ, φ)rkM .

(3.4.6)

One can criticize this basis for not having nice properties under Lorentz group.
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The product of basis functions is given by Glebch-Gordan coefficients for symmetrized tensor
product of two representation of the rotation group. Poisson bracket in turn reduces to the Glebch-
Gordans of anti-symmetrized tensor product. The quantum numbers m and k are additive. The
basis is eigen-function basis for the imaginary part of the Virasoro generator L0 generating rotations
around quantization axis of angular momentum. In fact, only the imaginary part of the Virasoro
generator L0 = zd/dz = ρ∂ρ − 2

2∂φ has global single valued Hamiltonian, whereas the corresponding
representation for the transformation induced by the real part of L0, with a compensating radial
scaling added, cannot be realized as a global symplectic transformation.

The Poisson bracket of two functions Hm
j1k1

and Hm
j2k2

can be calculated and is of the general form

{Hm1

j1k
, Hm2

j2k2
} ≡ C(j1m1j2m2|j,m1 +m2)AH

m1+m2

j,k1+k2

. (3.4.7)

The coefficients are Glebch-Gordan coefficients for the anti-symmetrized tensor product for the rep-
resentations of the rotation group.

The isometries of the light cone boundary correspond to conformal transformations accompanied
by a local radial scaling compensating the conformal factor coming from the conformal transforma-
tions having parametric dependence of radial variable and CP2 coordinates. It seems however that
isometries cannot in general be realized as symplectic transformations. The first difficulty is that
symplectic transformations cannot affect the value of the radial coordinate. For rotation algebra the
representation as symplectic transformations is however possible.

In CP2 degrees of freedom scalar function basis having definite color transformation properties is
desirable. Scalar function basis can be obtained as the algebra generated by the Hamiltonians of color
transformations by multiplication. The elements of basis can be typically expressed as monomials of
color Hamiltonians HA

c

HA
D =

∑
{Bj}

CADB1B2....BN

∏
Bi

HBi
c , (3.4.8)

where summation over all index combinations {Bi} is understood. The coefficients CADB1B2....BN
are

Glebch-Gordan coefficients for completely symmetric N :th power 8⊗ 8...⊗ 8 of octet representations.
The representation is not unique since

∑
AH

A
c H

A
c = 1 holds true. One can however find for each

representation D some minimum value of N .
The product of Hamiltonians HD1

A and HB
D2

can be decomposed by Glebch-Gordan coefficients of
the symmetrized representation (D1 ⊗D2)S as

HA
D1
HB
D2

= CABDD1D2DC(S)HC
D , (3.4.9)

where ′S′ indicates that the symmetrized representation is in question. In the similar manner one can
decompose the Poisson bracket of two Hamiltonians

{HA
D1
, HB

D2
} = CABDD1D2DC(A)HC

D . (3.4.10)

Here ′A′ indicates that Glebch-Gordan coefficients for the anti-symmetrized tensor product of the
representations D1 and D2 are in question.

One can express the infinitesimal generators of CP2 symplectic transformations in terms of the
color isometry generators JBc using the expansion of the Hamiltonian in terms of the monomials of
color Hamiltonians:

jADN = FADBJ
B
c ,

FADB = N
∑
{Bj}

CADB1B2...BN−1B

∏
j

HBj
c , (3.4.11)
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where summation over all possible {Bj}:s appears. Therefore, the interpretation as a color group
localized with respect to CP2 coordinates is valid in the same sense as the interpretation of space-time
diffeomorphism group as local Poincare group. Thus one can say that TGD color is localized with
respect to the entire δM4

+ × CP2.

A convenient basis for the Hamiltonians of δM4
+ × CP2 is given by the functions

HmA
jkD = Hm

jkH
A
D .

The symplectic transformation generated by HmA
jkD acts both in M4 and CP2 degrees of freedom and

the corresponding vector field is given by

Jr = HA
DJ

rl(δM4
+)∂lH

m
jk +Hm

jkJ
rl(CP2)∂lH

A
D . (3.4.12)

The general form for their Poisson bracket is:

{Hm1A1

j1k1D1
, Hm2A2

j2k2D2
} = HA1

D1
HA2

D2
{Hm1

j1k1
, Hm2

j2k2
}+Hm1

j1k1
Hm2

j2k2
{HA1

D1
, HA2

D2
}

=
[
CA1A2A
D1D2D

(S)C(j1m1j2m2|jm)A + CA1A2A
D1D2D

(A)C(j1m1j2m2|jm)S

]
HmA
j,k1+k2,D .

(3.4.13)

What is essential that radial ’momenta’ and angular momentum are additive in δM4
+ degrees of

freedom and color quantum numbers are additive in CP2 degrees of freedom.

3.4.6 Representation of Lorentz group and conformal symmetries at light
cone boundary

A guess deserving testing is that the representations of the Lorentz group at light cone boundary might
provide natural building blocks for the construction of the configuration space Hamiltonians. In the
following the explicit representation of the Lorentz algebra at light cone boundary is deduced, and a
function basis giving rise to the representations of Lorentz group and having very simple properties
under modified Poisson bracket of δM4

+ is constructed.

Explicit representation of Lorentz algebra

It is useful to write the explicit expressions of Lorentz generators using complex coordinates for S2.
The expression for the SU(2) generators of the Lorentz group are

Jx = (z2 − 1)d/dz + c.c. = L1 − L−1 + c.c. ,

Jy = (iz2 + 1)d/dz + c.c. = iL1 + iL−1 + c.c. ,

Jz = iz
d

dz
+ c.c. = iLz + c.c. . (3.4.14)

The expressions for the generators of Lorentz boosts can be derived easily. The boost in m3 direction
corresponds to an infinitesimal transformation

δm3 = −εrM ,

δrM = −εm3 = −ε
√
r2
M − (m1)2 − (m2)2 . (3.4.15)

The relationship between complex coordinates of S2 and M4 coordinates mk is given by stereographic
projection
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z =
(m1 + im2)

(rM −
√
r2
M − (m1)2 − (m2)2)

=
sin(θ)(cosφ+ isinφ)

(1− cosθ)
,

cot(θ/2) = ρ =
√
zz̄ ,

tan(φ) =
m2

m1
. (3.4.16)

This implies that the change in z coordinate doesn’t depend at all on rM and is of the following form

δz = −ε
2

(1 +
z(z + z̄)

2
)(1 + zz̄) . (3.4.17)

The infinitesimal generator for the boosts in z-direction is therefore of the following form

Lz = [
2zz̄

(1 + zz̄)
− 1]rM

∂

∂rM
− iJz . (3.4.18)

Generators of Lx and Ly are most conveniently obtained as commutators of [Lz, Jy] and [Lz, Jx]. For
Ly one obtains the following expression:

Ly = 2
(zz̄(z + z̄) + i(z − z̄))

(1 + zz̄)2
rM

∂

∂rM
− iJy , (3.4.19)

For Lx one obtains analogous expressions. All Lorentz boosts are of the form Li = −iJi+local radial scaling
and of zeroth degree in radial variable so that their action on the general generator Xklm ∝ zkz̄lrmM
doesn’t change the value of the label m being a mere local scaling transformation in radial direction.
If radial scalings correspond to zero norm isometries this representation is metrically equivalent with
the representations of Lorentz boosts as Möbius transformations.

Representations of the Lorentz group reduced with respect to SO(3)

The ordinary harmonics of S2 define in a natural manner infinite series of representation functions
transformed to each other in Lorentz transformations. The inner product defined by the integration
measure r2

MdΩdrM/rM remains invariant under Lorentz boosts since the scaling of rM induced by
the Lorentz boost compensates for the conformal scaling of dΩ induced by a Lorentz transforma-
tion represented as a Möbius transformation. Thus unitary representations of Lorentz group are in
question.

The unitary main series representations of the Lorentz group are characterized by half-integer m
and imaginary number k2 = iρ, where ρ is any real number [52]. A natural guess is that m = 0 holds
true for all representations realizable at the light cone boundary and that radial waves are of form
rkM , k = k1 + ik2 = −1 + iρ and thus eigen states of the radial scaling so that the action of Lorentz
boosts is simple in the angular momentum basis. The inner product in radial degrees of freedom
reduces to that for ordinary plane waves when log(rM ) is taken as a new integration variable. The
complexification is well-defined for non-vanishing values of ρ.

It is also possible to have non-unitary representations of the Lorentz group and the realization of
the symmetric space structure suggests that one must have k = k1 + ik2, k1 half-integer. For these
representations unitarity fails because the inner product in the radial degrees of freedom is non-unitary.
A possible physical interpretation consistent with the general ideas about conformal invariance is
that the representations k = −1 + iρ correspond to the unitary ground state representations and
k = −1 +n/2 + iρ, n = ±1,±2, ..., to non-unitary representations. The general view about conformal
invariance suggests that physical states constructed as tensor products satisfy the condition

∑
i ni = 0

completely analogous to Virasoro conditions.
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Representations of the Lorentz group with E2 × SO(2) as isotropy group

One can construct representations of Lorentz group and conformal symmetries at the light cone
boundary. Since SL(2, C) is the group generated by the generators L0 and L± of the conformal
algebra, it is clear that infinite-dimensional representations of Lorentz group can be also regarded
as representations of the conformal algebra. One can require that the basis corresponds to eigen
functions of the rotation generator Jz and corresponding boost generator Lz. For functions which do
not depend on rM these generators are completely analogous to the generators L0 generating scalings
and iL0 generating rotations. Also the generator of radial scalings appears in the formulas and one
must consider the possibility that it corresponds to the generator L0.

In order to construct scalar function eigen basis of Lz and Jz, one can start from the expressions

L3 ≡ i(Lz + Lz̄) = 2i[
2zz̄

(1 + zz̄)
− 1]rM

∂

∂rM
+ iρ∂ρ ,

J3 ≡ iLz − iLz̄ = i∂φ . (3.4.20)

If the eigen functions do not depend on rM , one obtains the usual basis zn of Virasoro algebra, which
however is not normalizable basis. The eigenfunctions of the generators L3, J3 and L0 = irMd/drM
satisfying

J3fm,n,k = mfm,n,k ,

L3fm,n,k = nfm,n,k ,

L0fm,n,k = kfm,n,k . (3.4.21)

are given by

fm,n,k = eimφ
ρn−k

(1 + ρ2)k
× (

rM
r0

)k . (3.4.22)

n = n1 + in2 and k = k1 + ik2 are in general complex numbers. The condition

n1 − k1 ≥ 0

is required by regularity at the origin of S2 The requirement that the integral over S2 defining norm
exists (the expression for the differential solid angle is dΩ = ρ

(1+ρ2)2 dρdφ) implies

n1 < 3k1 + 2 .

From the relationship (cos(θ), sin(θ)) = (ρ2−1)/(ρ2 + 1), 2ρ/(ρ2 + 1)) one can conclude that for n2 =
k2 = 0 the representation functions are proportional to f sin(θ)n−k(cos(θ) − 1)n−k. Therefore they
have in their decomposition to spherical harmonics only spherical harmonics with angular momentum
l < 2(n− k). This suggests that the condition

|m| ≤ 2(n− k) (3.4.23)

is satisfied quite generally.
The emergence of the three quantum numbers (m,n, k) can be understood. Light cone boundary

can be regarded as a coset space SO(3, 1)/E2 × SO(2), where E2 × SO(2) is the group leaving the
light like vector defined by a particular point of the light cone invariant. The natural choice of the
Cartan group is therefore E2 × SO(2). The three quantum numbers (m,n, k) have interpretation as
quantum numbers associated with this Cartan algebra.

The representations of the Lorentz group are characterized by one half-integer valued and one com-
plex parameter. Thus k2 and n2, which are Lorentz invariants, might not be independent parameters,
and the simplest option is k2 = n2.

The nice feature of the function basis is that various quantum numbers are additive under multi-
plication:
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f(ma, na, ka)× f(mb, nb, kb) = f(ma +mb, na + nb, ka + kb) .

These properties allow to cast the Poisson brackets of the symplectic algebra of the configuration
space into an elegant form.

The Poisson brackets for the δM4
+ Hamiltonians defined by fmnk can be written using the expres-

sion Jρφ = (1 + ρ2)/ρ as

{fma,na,ka , fmb,nb,kb} = i [(na − ka)mb − (nb − kb)ma]× fma+mb,na+nb−2,ka+kb

+ 2i [(2− ka)mb − (2− kb)ma]× fma+mb,na+nb−1,ka+kb−1 .

(3.4.24)

Can one find unitary light-like representations of Lorentz group?

It is interesting to compare the representations in question to the unitary representations of Lorentz
group discussed in [52].

1. The unitary representations discussed in [52] are characterized by are constructed by deducing
the explicit representations for matrix elements of the rotation generators Jx, Jy, Jz and boost
generators Lx, Ly, Lz by decomposing the representation into series of representations of SU(2)
defining the isotropy subgroup of a time like momentum. Therefore the states are labeled by
eigenvalues of Jz. In the recent case the isotropy group is E2 × SO(2) leaving light like point
invariant. States are therefore labeled by three different quantum numbers.

2. The representations of [52] are realized the space of complex valued functions of complex co-
ordinates ξ and ξ labeling points of complex plane. These functions have complex degrees
n+ = m/2− 1 + l1 with respect to ξ and n− = −m/2− 1 + l1 with respect to ξ. l0 is complex
number in the general case but for unitary representations of main series it is given by l1 = iρ
and for the representations of supplementary series l1 is real and satisfies 0 < |l1| < 1. The main
series representation is derived from a representation space consisting of homogenous functions
of variables z0, z1 of degree n+ and of z0 and z1 of degrees n±. One can separate express these

functions as product of (z1)n
+

(z1)n− and a polynomial of ξ = z1/z2 and ξ with degrees n+

and n−. Unitarity reduces to the requirement that the integration measure of complex plane is
invariant under the Lorentz transformations acting as Moebius transformations of the complex
plane. Unitarity implies l1 = −1 + iρ.

3. For the representations at δM4
+ formal unitarity reduces to the requirement that the integration

measure of r2
MdΩdrM/rM of δM4

+ remains invariant under Lorentz transformations. The action
of Lorentz transformation on the complex coordinates of S2 induces a conformal scaling which
can be compensated by an S2 local radial scaling. At least formally the function space of δM4

+

thus defines a unitary representation. For the function basis fmnk k = −1+iρ defines a candidate
for a unitary representation since the logarithmic waves in the radial coordinate are completely
analogous to plane waves for k1 = −1. This condition would be completely analogous to the
vanishing of conformal weight for the physical states of super conformal representations. The
problem is that for k1 = −1 guaranteing square integrability in S2 implies −2 < n1 < −2 so
that unitarity is possible only for the function basis consisting of spherical harmonics.

There is no deep reason against non-unitary representations and symmetric space structure
indeed requires that k1 is half-integer valued. First of all, configuration space spinor fields
are analogous to ordinary spinor fields in M4, which also define non-unitary representations of
Lorentz group. Secondly, if 3-surfaces at the light cone boundary are finite-sized, the integrals
defined by fmnk over 3-surfaces Y 3 are always well-defined. Thirdly, the continuous spectrum
of k2 could be transformed to a discrete spectrum when k1 becomes half-integer valued.

Hermitian form for light cone Hamiltonians involves also the integration over S2 degrees of freedom
and the non-unitarity of the inner product reflects itself as non-orthogonality of the the eigen function
basis. Introducing the variable u = ρ2 + 1 as a new integration variable, one can express the inner
product in the form
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〈ma, na, ka|mb, nb, kb〉 = πδ(k2a − k2b)× δm1,m2
× I ,

I =

∫ ∞
1

f(u)du ,

f(u) =
(u− 1)

(N−K)+i∆
2

uK+2
. (3.4.25)

The integrand has cut from u = 1 to infinity along real axis. The first thing to observe is that
for N = K the exponent of the integral reduces to very simple form and integral exists only for
K = k1a + k1b > −1. For k1i = −1/2 the integral diverges.

The discontinuity of the integrand due to the cut at the real axis is proportional to the integrand
and given by

f(u)− f(ei2πu) =
[
1− e−π∆

]
f(u) ,

∆ = n1a − k1a − n1b + k1b . (3.4.26)

This means that one can transform the integral to an integral around the cut. This integral can in
turn completed to an integral over closed loop by adding the circle at infinity to the integration path.
The integrand has K + 1-fold pole at u = 0.

Under these conditions one obtains

I =
2πi

1− e−π∆
×R× (R− 1)....× (R−K − 1)× (−1)

N−K
2 −K−1 ,

R ≡ N −K
2

+ i∆ . (3.4.27)

This expression is non-vanishing for ∆ 6= 0. Thus it is not possible to satisfy orthogonality conditions
without the un-physical n = k, k1 = 1/2 constraint. The result is finite for K > −1 so that k1 > −1/2
must be satisfied and if one allows only half-integers in the spectrum, one must have k1 ≥ 0, which is
very natural if real conformal weights which are half integers are allowed.

3.4.7 How the complex eigenvalues of the radial scaling operator relate to
conformal weights?

Complexified Hamiltonians can be chosen to be eigenmodes of the radial scaling operator rMd/drM ,
and the first guess was that the correct interpretation is as conformal weights. The problem is however
that the eigenvalues are complex. Second problem is that general arguments are not enough to fix
the spectrum of eigenvalues. There should be a direct connection to the dynamics defined by Kähler
action with instanton term included and the modified Dirac action defined by it.

The construction of configuration space spinor structure in terms of second quantized induced
spinor fields [18] leads to the conclusion that the modes of induced spinor fields are labeled by gener-
alized eigenvalues λ such that |λ|2 has interpretation as a conformal weight and λ itself is analogous
to Higgs expectation value. Coset construction requires that super-symplectic and super Kac-Moody
conformal weights |λ|2 are same. This is achieved if the Hamiltonians are generalized eigen modes of
D = γxd/dx, x = log(r/r0), satisfying DH = λγxH and thus of form exp(λx) = (r/r0)λ with the same
spectrum of complex eigenvalues λ as associated with the modified Dirac operator. That log(r/r0)
naturally corresponds to the coordinate u assignable to the generalized eigen modes of modified Dirac
operator supports this interpretation.

If the Kähler action and modified Dirac action involve also the CP breaking instanton term,
the eigenvalues λ are complex and complexity relates directly also to the breaking of time reversal
invariance.
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3.5 Magnetic and electric representations of the configuration
space Hamiltonians

Symmetry considerations lead to the hypothesis that configuration space Hamiltonians are apart from
a factor depending on symplectic invariants equal to magnetic flux Hamiltonians. On the other hand,
the hypothesis that Kähler function corresponds to a preferred extremal of Kähler action leads to
the hypothesis that configuration space Hamiltonians corresponds to classical charges associated with
the Hamiltonians of the light cone boundary. These charges are very much like electric charges. The
requirement that two approaches are equivalent leads to the hypothesis that magnetic and electric
Hamiltonians are identical apart from a factor depending on isometry invariants. At the level of CP2

corresponding duality corresponds to the self-duality of Kähler form stating that the magnetic and
electric parts of Kähler form are identical.

3.5.1 Radial symplectic invariants

All δM4
+ × CP2 symplectic transformations leave invariant the value of the radial coordinate rM .

Therefore the radial coordinate rM of X3 regarded as a function of S2 × CP2 coordinates serves as
height function. The number, type, ordering and values for the extrema for this height function in
the interior and boundary components are isometry invariants. These invariants characterize not only
the topology but also the size and shape of the 3-surface. The result implies that configuration space
metric indeed differentiates between 3-surfaces with the size of Planck length and with the size of
galaxy. The characterization of these invariants reduces to Morse theory. The extrema correspond
to topology changes for the two-dimensional (one-dimensional) rM = constant section of 3-surface
(boundary of 3-surface). The height functions of sphere and torus serve as a good illustrations of the
situation. A good example about non-topological extrema is provided by a sphere with two horns.

There are additional symplectic invariants. The ’magnetic fluxes’ associated with the δM4
+ sym-

plectic form
JS2 = r2

Msin(θ)dθ ∧ dφ

over any X2 ⊂ X3 are symplectic invariants. In particular, the integrals over rM = constant
sections (assuming them to be 2-dimensional) are symplectic invariants. They give simply the solid
angle Ω(rM ) spanned by rM = constant section and thus r2

MΩ(rM ) characterizes transversal geometric
size of the 3-surface. A convenient manner to discretize these invariants is to consider the Fourier
components of these invariants in radial logarithmic plane wave basis discussed earlier:

Ω(k) =

∫ rmax

rmin

(rM/rmax)kΩ(rM )
drM
rM

, k = k1 + ik2 , perk1 ≥ 0 . (3.5.1)

One must take into account that for each section in which the topology of rM = constant section
remains constant one must associate invariants with separate components of the two-dimensional
section. For a given value of rM , rM constant section contains several components (to visualize the
situation consider torus as an example).

Also the quantities

Ω+(X2) =

∫
X2

|J | ≡
∫
|εαβJαβ |

√
g2d

2x

are symplectic invariants and provide additional geometric information about 3-surface. These fluxes
are non-vanishing also for closed surfaces and give information about the geometry of the boundary
components of 3-surface (signed fluxes vanish for boundary components unless they enclose the dip of
the light cone).

Since zero norm generators remain invariant under complexification, their contribution to the
Kähler metric vanishes. It is not at all obvious whether the configuration space integration measure
in these degrees of freedom exists at all. A localization in zero modes occurring in each quantum
jump seems a more plausible and under suitable additional assumption it would have interpretation
as a state function reduction. In string model similar situation is encountered; besides the functional
integral determined by string action, one has integral over the moduli space.

If the effective 2-dimensionality implied by the strong form of general coordinate invariance dis-
cussed in the introduction is accepted, there is no need to integrate over the variable rM and just the
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fluxes over the 2-surfaces X2
i identified as intersections of light like 3-D causal determinants with X3

contain the data relevant for the construction of the configuration space geometry. Also the symplectic
invariants associated with these surfaces are enough.

3.5.2 Kähler magnetic invariants

The Kähler magnetic fluxes defined both the normal component of the Kähler magnetic field and by
its absolute value

Qm(X2) =

∫
X2

JCP2 = Jαβε
αβ√g2d

2x ,

Q+
m(X2) =

∫
X2

|JCP2
| ≡

∫
X2

|Jαβεαβ |
√
g2d

2x , (3.5.2)

over suitably defined 2-surfaces are invariants under both Lorentz isometries and the symplectic trans-
formations of CP2 and can be calculated once X3 is given.

For a closed surface Qm(X2) vanishes unless the homology equivalence class of the surface is
nontrivial in CP2 degrees of freedom. In this case the flux is quantized. Q+

M (X2) is non-vanishing for
closed surfaces, too. Signed magnetic fluxes over non-closed surfaces depend on the boundary of X2

only: ∫
X2 J =

∫
δX2 A .

J = dA .

Un-signed fluxes can be written as sum of similar contributions over the boundaries of regions of X2

in which the sign of J remains fixed.

Qm(X2) =

∫
X2

JCP2
= Jαβε

αβ√g2d
2x ,

Q+
m(X2) =

∫
X2

|JCP2
| ≡

∫
X2

|Jαβεαβ |
√
g2d

2x , (3.5.3)

There are also symplectic invariants, which are Lorentz covariants and defined as

Qm(K,X2) =

∫
X2

fKJCP2
,

Q+
m(K,X2) =

∫
X2

fK |JCP2
| ,

fK≡(s,n,k) = eisφ × ρn−k

(1 + ρ2)k
× (

rM
r0

)k (3.5.4)

These symplectic invariants transform like an infinite-dimensional unitary representation of Lorentz
group.

There must exist some minimal number of symplectically non-equivalent 2-surfaces of X3, and the
magnetic fluxes over the representatives these surfaces give thus good candidates for zero modes.

1. If effective 2-dimensionality is accepted, the surfaces X2
i defined by the intersections of light like

3-D causal determinants X3
l and X3 provide a natural identification for these 2-surfaces.

2. Without effective 2-dimensionality the situation is more complex. Since symplectic transfor-
mations leave rM invariant, a natural set of 2-surfaces X2 appearing in the definition of fluxes
are separate pieces for rM = constant sections of 3-surface. For a generic 3-surface, these sur-
faces are 2-dimensional and there is continuum of them so that discrete Fourier transforms of
these invariants are needed. One must however notice that rM = constant surfaces could be be
3-dimensional in which case the notion of flux is not well-defined.



3.5. Magnetic and electric representations of the configuration space Hamiltonians 101

3.5.3 Isometry invariants and spin glass analogy

The presence of isometry invariants implies coset space decomposition ∪iG/H. This means that
quantum states are characterized, not only by the vacuum functional, which is just the exponential
exp(K) of Kähler function (Gaussian in lowest approximation) but also by a wave function in vacuum
modes. Therefore the functional integral over the configuration space decomposes into an integral
over zero modes for approximately Gaussian functionals determined by exp(K). The weights for the
various vacuum mode contributions are given by the probability density associated with the zero
modes. The integration over the zero modes is a highly problematic notion and it could be eliminated
if a localization in the zero modes occurs in quantum jumps. The localization would correspond to a
state function reduction and zero modes would be effectively classical variables correlated in one-one
manner with the quantum numbers associated with the quantum fluctuating degrees of freedom.

For a given orbit K depends on zero modes and thus one has mathematical similarity with spin
glass phase for which one has probability distribution for Hamiltonians appearing in the partition
function exp(−H/T ). In fact, since TGD Universe is also critical, exact similarity requires that also
the temperature is critical for various contributions to the average partition function of spin glass
phase. The characterization of isometry invariants and zero modes of the Kähler metric provides a
precise characterization for how TGD Universe is quantum analog of spin glass.

The spin glass analogy has been the basic starting point in the construction of p-adic field theory
limit of TGD. The ultra-metric topology for the free energy minima of spin glass phase motivates the
hypothesis that effective quantum average space-time possesses ultra-metric topology. This approach
leads to excellent predictions for elementary particle masses and predicts even new branches of physics
[31, 26]. As a matter fact, an entire fractal hierarchy of copies of standard physics is predicted.

3.5.4 Magnetic flux representation of the symplectic algebra

Accepting the strong form of general coordinate invariance implying effective two-dimensionality
WCW Hamiltonians correspond to the fluxes associated with various 2-surfaces X2

i defined by the
intersections of light-like light-like 3-surfaces X3

l,i with X3 at the boundaries of CD considered. Bear-
ing in mind that zero energy ontology is the correct approach, one can restrict the consideration on
fluxes at δM4

+ × CP2 One must also remember that if the proposed symmetries hold true, it is in
principle choose any partonic 2-surface in the conjectured slicing of the Minkowskian space-time sheet
to partonic 2-surfaces parametrized by the points of stringy world sheets.

Generalized magnetic fluxes

Isometry invariants are just special case of the fluxes defining natural coordinate variables for the
configuration space. Symplectic transformations of CP2 act as U(1) gauge transformations on the
Kähler potential of CP2 (similar conclusion holds at the level of δM4

+ × CP2).
One can generalize these transformations to local symplectic transformations by allowing the

Hamiltonians to be products of the CP2 Hamiltonians with the real and imaginary parts of the
functions fm,n,k (see Eq. 3.12.22) defining the Lorentz covariant function basis HA, A ≡ (a,m, n, k)
at the light cone boundary: HA = Ha × f(m,n, k), where a labels the Hamiltonians of CP2.

One can associate to any Hamiltonian HA of this kind both signed and unsigned magnetic flux
via the following formulas:

Qm(HA|X2) =

∫
X2

HAJ ,

Q+
m(HA|X2) =

∫
X2

HA|J | .

(3.5.5)

Here X2 corresponds to any surface X2
i resulting as intersection of X3 with X3

l,i. Both signed and
unsigned magnetic fluxes and their superpositions

Qα,βm (HA|X2) = αQm(HA|X2) + βQ+
m(HA|X2) , A ≡ (a, s, n, k) (3.5.6)
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provide representations of Hamiltonians. Note that symplectic invariants Qα,βm correspond to HA = 1
and HA = fs,n,k. HA = 1 can be regarded as a natural central term for the Poisson bracket algebra.
Therefore, the isometry invariance of Kähler magnetic and electric gauge fluxes follows as a natural
consequence.

The obvious question concerns about the correct values of the parameters α and β. One possibility
is that the flux is an unsigned flux so that one has α = 0. This option is favored by the construction
of the configuration space spinor structure involving the construction of the fermionic super charges
anti-commuting to configuration space Hamiltonians: super charges contain the square root of flux,
which must be therefore unsigned. Second possibility is that magnetic fluxes are signed fluxes so that
β vanishes.

One can define also the electric counterparts of the flux Hamiltonians by replacing J in the defining
formulas with its dual ∗J

∗Jαβ = ε γδ
αβ Jγδ.

For HA = 1 these fluxes reduce to ordinary Kähler electric fluxes. These fluxes are however not sym-
plectic covariants since the definition of the dual involves the induced metric, which is not symplectic
invariant. The electric gauge fluxes for Hamiltonians in various representations of the color group
ought to be important in the description of hadrons, not only as string like objects, but quite gener-
ally. These degrees of freedom would be identifiable as non-perturbative degrees of freedom involving
genuinely classical Kähler field whereas quarks and gluons would correspond to the perturbative de-
grees of freedom, that is the interactions between CP2 type extremals.

Poisson brackets

From the symplectic invariance of the radial component of Kähler magnetic field it follows that the
Lie-derivative of the flux Qα,βm (HA) with respect to the vector field X(HB) is given by

X(HB) ·Qα,βm (HA) = Qα,βm ({HB , HA}) . (3.5.7)

The transformation properties of Qα,βm (HA) are very nice if the basis for HB transforms according to
appropriate irreducible representation of color group and rotation group. This in turn implies that the
fluxes Qα,βm (HA) as functionals of 3-surface on given orbit provide a representation for the Hamiltonian
as a functional of 3-surface. For a given surface X3, the Poisson bracket for the two fluxes Qα,βm (HA)
and Qα,βm (HB) can be defined as

{Qα,βm (HA), Qα,βm (HB)} ≡ X(HB) ·Qα,βm (HA)

= Qα,βm ({HA, HB}) = Qα,βm ({HA, HB}) . (3.5.8)

The study of configuration space gamma matrices identifiable as symplectic super charges demon-
strates that the supercharges associated with the radial deformations vanish identically so that radial
deformations correspond to zero norm degrees of freedom as one might indeed expect on physical
grounds. The reason is that super generators involve the invariants jakγk which vanish by γrM = 0.

The natural central extension associated with the symplectic group of CP2 ({p, q} = 1!) induces
a central extension of this algebra. The central extension term resulting from {HA, HB} when CP2

Hamiltonians have {p, q} = 1 equals to the symplectic invariant Qα,βm (f(ma + mb, na + nb, ka + kb))
on the right hand side. This extension is however anti-symmetric in symplectic degrees of freedom
rather than in loop space degrees of freedom and therefore does not lead to the standard Kac Moody
type algebra.

Quite generally, the Virasoro and Kac Moody algebras of string models are replaced in TGD
context by much larger symmetry algebras. Kac Moody algebra corresponds to the the deformations
of light-like 3-surfaces respecting their light-likeness and leaving partonic 2-surfaces at δCD intact
and are highly relevant to the elementary particle physics. This algebra allows a representation in
terms of X3

l local Hamiltonians generating isometries of δM4
± × CP2. Hamiltonian representation is

essential for super-symmetrization since fermionic super charges anti-commute to Hamiltonians rather
than vector fields: this is one of the deep differences between TGD and string models. Kac-Moody
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algebra does not contribute to configuration space metric since by definition the generators vanish at
partonic 2-surfaces. This is essential for the coset space property.

A completely new algebra is the CP2 symplectic algebra localized with respect to the light cone
boundary and relevant to the configuration space geometry. This extends to S2 × CP2 -or rather
δM4
±×CP2 symplectic algebra and this gives the strongest predictions concerning configuration space

metric. The local radial Virasoro localized with respect to S2 × CP2 acts in zero modes and has
automatically vanishing norm with respect to configuration space metric defined by super charges.

3.5.5 Symplectic transformations of δM4
± × CP2 as isometries and electric-

magnetic duality

According to the construction of Kähler metric, symplectic transformations of δM4
± × CP2 act as

isometries whereas radial Virasoro algebra localized with respect to CP2 has zero norm in the config-
uration space metric.

Hamiltonians can be organized into light like unitary representations of so(3, 1) × su(3) and the
symmetry condition Zg(X,Y ) = 0 requires that the component of the metric is so(3, 1) × su(3)
invariant and this condition is satisfied if the component of metric between two different representations
D1 and D2 of so(3, 1)×su(3) is proportional to Glebch-Gordan coefficient CD1D2,DS between D1⊗D2

and singlet representation DS . In particular, metric has components only between states having
identical so(3, 1)× su(3) quantum numbers.

Magnetic representation of configuration space Hamiltonians means the action of the symplectic
transformations of the light cone boundary as configuration space isometries is an intrinsic property of
the light cone boundary. If electric-magnetic duality holds true, the preferred extremal property only
determines the conformal factor of the metric depending on zero modes. This is precisely as it should
be if the group theoretical construction works. Hence it should be possible by a direct calculation check
whether the metric defined by the magnetic flux Hamiltonians as half Poisson brackets in complex
coordinates is invariant under isometries. Symplectic invariance of the metric means that matrix
elements of the metric are left translates of the metric along geodesic lines starting from the origin
of coordinates, which now naturally corresponds to the preferred extremal of Kähler action. Since
metric derives from symplectic form this means that the matrix elements of symplectic form given by
Poisson brackets of Hamiltonians must be left translates of their values at origin along geodesic line.
The matrix elements in question are given by flux Hamiltonians and since symplectic transforms of
flux Hamiltonian is flux Hamiltonian for the symplectic transform of Hamiltonian, it seems that the
conditions are satisfied.

3.6 General expressions for the symplectic and Kähler forms

One can derive general expressions for symplectic and Kähler forms as well as Kähler metric of the
configuration space. The fact that these expressions involve only first variation of the Kähler action
implies huge simplification of the basic formulas. Duality hypothesis leads to further simplifications
of the formulas.

3.6.1 Closedness requirement

The fluxes of Kähler magnetic and electric fields for the Hamiltonians of δM4
+×CP2 suggest a general

representation for the components of the symplectic form of the configuration space. The basic
requirement is that Kähler form satisfies the defining condition

X · J(Y,Z) + J([X,Y ], Z) + J(X, [Y, Z]) = 0 , (3.6.1)

where X,Y, Z are now vector fields associated with Hamiltonian functions defining configuration space
coordinates.
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3.6.2 Matrix elements of the symplectic form as Poisson brackets

Quite generally, the matrix element of J(X(HA), X(HB)) between vector fields X(HA)) and X(HB))
defined by the Hamiltonians HA and HB of δM4

+ × CP2 isometries is expressible as Poisson bracket

JAB = J(X(HA), X(HB)) = {HA, HB} . (3.6.2)

JAB denotes contravariant components of the symplectic form in coordinates given by a subset of
Hamiltonians. The magnetic flux Hamiltonians Qα,βm (HA,k) of Eq. 4.6.1 provide an explicit rep-
resentation for the Hamiltonians at the level of configuration space so that the components of the
symplectic form of the configuration space are expressible as classical charges for the Poisson brackets
of the Hamiltonians of the light cone boundary:

J(X(HA), X(HB)) = Qα,βm ({HA, HB}) .

(3.6.3)

Recall that the superscript α, β refers the coefficients of J and |J | in the superposition of these
Kähler magnetic fluxes. Note that Qα,βm contains unspecified conformal factor depending on symplectic
invariants characterizing Y 3 and is unspecified superposition of signed and unsigned magnetic fluxes.

This representation does not carry information about the tangent space of space-time surface at
the partonic 2-surface, which motivates the proposal that also electric fluxes are present and propor-
tional to magnetic fluxes with a factor K, which is symplectic invariant so that commutators of flux
Hamiltonians come out correctly. This would give

Qα,βm (HA)em = Qα,βe (HA) +Qα,βm (HA) = (1 +K)Qα,βm (HA) . (3.6.4)

Since Kähler form relates to the standard field tensor by a factor e/~, flux Hamiltonians are dimen-
sionless so that commutators do not involve ~. The commutators would come as

Qα,βem ({HA, HB})→ (1 +K)Qα,βm ({HA, HB}) . (3.6.5)

The factor 1 +K plays the same role as Planck constant in the commutators.
WCW Hamiltonians vanish for the extrema of the Kähler function as variational derivatives of the

Kähler action. Hence Hamiltonians are good candidates for the coordinates appearing as coordinates in
the perturbative functional integral around extrema (with maxima giving dominating contribution). It
is clear that configuration space coordinates around a given extremum include only those Hamiltonians,
which vanish at extremum (that is those Hamiltonians which span the tangent space of G/H) In
Darboux coordinates the Poisson brackets reduce to the symplectic form

{P I , QJ} = JIJ = JIδ
I,J .

JI = 1 . (3.6.6)

It is not clear whether Darboux coordinates with JI = 1 are possible in the recent case: probably the
unit matrix on right hand side of the defining equation is replaced with a diagonal matrix depending
on symplectic invariants so that one has JI 6= 1. The integration measure is given by the symplectic
volume element given by the determinant of the matrix defined by the Poisson brackets of the Hamil-
tonians appearing as coordinates. The value of the symplectic volume element is given by the matrix
formed by the Poisson brackets of the Hamiltonians and reduces to the product

V ol =
∏
I

JI

in generalized Darboux coordinates.
Kähler potential (that is gauge potential associated with Kähler form) can be written in Darboux

coordinates as

A =
∑
I

JIPIdQ
I . (3.6.7)
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3.6.3 General expressions for Kähler form, Kähler metric and Kähler func-
tion

The expressions of Kähler form and Kähler metric in complex coordinates can obtained by transform-
ing the contravariant form of the symplectic form from symplectic coordinates provided by Hamilto-
nians to complex coordinates:

JZ
iZ̄j = iGZ

iZ̄j = ∂HAZ
i∂HB Z̄

jJAB , (3.6.8)

where JAB is given by the classical Kahler charge for the light cone Hamiltonian {HA, HB}. Complex
coordinates correspond to linear coordinates of the complexified Lie-algebra providing exponentiation
of the isometry algebra via exponential mapping. What one must know is the precise relationship
between allowed complex coordinates and Hamiltonian coordinates: this relationship is in principle
calculable. In Darboux coordinates the expressions become even simpler:

JZ
iZ̄j = iGZ

iZ̄j =
∑
I

J(I)(∂P iZ
i∂QI Z̄

j − ∂QIZi∂P I Z̄j) . (3.6.9)

Kähler function can be formally integrated from the relationship

AZi = i∂ZiK ,

AZ̄i = −i∂ZiK . (3.6.10)

holding true in complex coordinates. Kähler function is obtained formally as integral

K =

∫ Z

0

(AZidZ
i −AZ̄idZ̄i) . (3.6.11)

3.6.4 Diff(X3) invariance and degeneracy and conformal invariances of the
symplectic form

J(X(HA), X(HB)) defines symplectic form for the coset space G/H only if it is Diff(X3) degenerate.
This means that the symplectic form J(X(HA), X(HB)) vanishes whenever Hamiltonian HA or HB

is such that it generates diffeomorphism of the 3-surface X3. If effective 2-dimensionality holds true,
J(X(HA), X(HB)) vanishes if HA or HB generates two-dimensional diffeomorphism d(HA) at the
surface X2

i .
One can always write

J(X(HA), X(HB)) = X(HA)Q(HB |X2
i ) .

If HA generates diffeomorphism, the action of X(HA) reduces to the action of the vector field XA of
some X2

i -diffeomorphism. Since Q(HB |rM ) is manifestly invariant under the diffemorphisms of X2,
the result is vanishing:

XAQ(HB |X2
i ) = 0 ,

so that Diff2 invariance is achieved.
The radial diffeomorphisms possibly generated by the radial Virasoro algebra do not produce

trouble. The change of the flux integrand X under the infinitesimal transformation rM → rM + εrnM
is given by rnMdX/drM . Replacing rM with r−n+1

M /(−n + 1) as variable, the integrand reduces to
a total divergence dX/du the integral of which vanishes over the closed 2-surface X2

i . Hence radial
Virasoro generators having zero norm annihilate all matrix elements of the symplectic form. The
induced metric of X2

i induces a unique conformal structure and since the conformal transformations
of X2

i can be interpreted as a mere coordinate changes, they leave the flux integrals invariant.
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3.6.5 Complexification and explicit form of the metric and Kähler form

The identification of the Kähler form and Kähler metric in symplectic degrees of freedom follows
trivially from the identification of the symplectic form and definition of complexification. The re-
quirement that Hamiltonians are eigen states of angular momentum (and possibly Lorentz boost
generator), isospin and hypercharge implies physically natural complexification. In order to fix the
complexification completely one must introduce some convention fixing which states correspond to
’positive’ frequencies and which to ’negative frequencies’ and which to zero frequencies that is to
decompose the generators of the symplectic algebra to three sets Can+, Can− and Can0. One must
distinguish between Can0 and zero modes, which are not considered here at all. For instance, CP2

Hamiltonians correspond to zero modes.

The natural complexification relies on the imaginary part of the radial conformal weight whereas
the real part defines the g = t + h decomposition naturally. The wave vector associated with the
radial logarithmic plane wave corresponds to the angular momentum quantum number associated
with a wave in S1 in the case of Kac Moody algebra. One can imagine three options.

1. It is quite possible that the spectrum of k2 does not contain k2 = 0 at all so that the sector Can0

could be empty. This complexification is physically very natural since it is manifestly invariant
under SU(3) and SO(3) defining the preferred spherical coordinates. The choice of SO(3) is
unique if the classical four-momentum associated with the 3-surface is time like so that there
are no problems with Lorentz invariance.

2. If k2 = 0 is possible one could have

Can+ = {Ha
m,n,k=k1+ik2

, k2 > 0} ,

Can− = {Ha
m,n,k, k2 < 0} ,

Can0 = {Ha
m,n,k, k2 = 0} . (3.6.12)

3. If it is possible to n2 6= 0 for k2 = 0, one could define the decomposition as

Can+ = {Ha
m,n,k, k2 > 0 or k2 = 0, n2 > 0} ,

Can− = {Ha
m,n,k, k2 < 0 ork2 = 0, n2 < 0} ,

Can0 = {Ha
m,n,k, k2 = n2 = 0} . (3.6.13)

In this case the complexification is unique and Lorentz invariance guaranteed if one can fix the
SO(2) subgroup uniquely. The quantization axis of angular momentum could be chosen to be
the direction of the classical angular momentum associated with the 3-surface in its rest system.

The only thing needed to get Kähler form and Kähler metric is to write the half Poisson bracket
defined by Eq. 3.14.15

Jf (X(HA), X(HB)) = 2Im (iQf ({HA, HB}−+)) ,

Gf (X(HA), X(HB)) = 2Re (iQf ({HA, HB}−+)) . (3.6.14)

Symplectic form, and thus also Kähler form and Kähler metric, could contain a conformal factor
depending on the isometry invariants characterizing the size and shape of the 3-surface. At this stage
one cannot say much about the functional form of this factor.
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3.6.6 Comparison of CP2 Kähler geometry with configuration space geom-
etry

The explicit discussion of the role of g = t+h decomposition of the tangent space of the configuration
space provides deep insights to the metric of the symmetric space. There are indeed many questions
to be answered. To what point of configuration space (that is 3-surface) the proposed g = t + h
decomposition corresponds to? Can one derive the components of the metric and Kähler form from
the Poisson brackets of complexified Hamiltonians? Can one characterize the point in question in terms
of the properties of configuration space Hamiltonians? Does the central extension of the configuration
space reduce to the symplectic central extension of the symplectic algebra or can one consider also
other options?

Cartan decomposition for CP2

A good manner to gain understanding is to consider the CP2 metric and Kähler form at the origin of
complex coordinates for which the sub-algebra h = u(2) defines the Cartan decomposition.

1. g = t + h decomposition depends on the point of the symmetric space in general. In case of
CP2 u(2) sub-algebra transforms as g ◦ u(2) ◦ g−1 when the point s is replaced by gsg−1. This
is expected to hold true also in case of configuration space (unless it is flat) so that the task is
to identify the point of the configuration space at which the proposed decomposition holds true.

2. The Killing vector fields of h sub-algebra vanish at the origin of CP2 in complex coordinates.
The corresponding Hamiltonians need not vanish but their Poisson brackets must vanish. It is
possible to add suitable constants to the Hamiltonians in order to guarantee that they vanish
at origin.

3. It is convenient to introduce complex coordinates and decompose isometry generators to holo-
morphic components Ja+ = jak∂k and ja− = jak̄∂k̄. One can introduce what might be called half
Poisson bracket and half inner product defined as

{Ha, Hb}−+ ≡ ∂k̄H
aJ k̄l∂lH

b

= jakJkl̄j
bl̄ = −i(ja+, jb−) . (3.6.15)

One can express Poisson bracket of Hamiltonians and the inner product of the corresponding
Killing vector fields in terms of real and imaginary parts of the half Poisson bracket:

{Ha, Hb} = 2Im
(
i{Ha, Hb}−+

)
,

(ja, jb) = 2Re
(
i(ja+, j

b
−)
)

= 2Re
(
i{Ha, Hb}−+

)
. (3.6.16)

What this means that Hamiltonians and their half brackets code all information about metric
and Kähler form. Obviously this is of utmost importance in the case of the configuration space
metric whose symplectic structure and central extension are derived from those of CP2.

Consider now the properties of the metric and Kähler form at the origin.

1. The relations satisfied by the half Poisson brackets can be written symbolically as

{h, h}−+ = 0 ,

Re (i{h, t}−+) = 0 , Im (i{h, t}−+) = 0 ,

Re (i{t, t}−+) 6= 0 , Im (i{t, t}−+) 6= 0 .

(3.6.17)
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2. The first two conditions state that h vector fields have vanishing inner products at the origin.
The first condition states also that the Hamiltonians for the commutator algebra [h, h] = SU(2)
vanish at origin whereas the Hamiltonian for U(1) algebra corresponding to the color hyper
charge need not vanish although it can be made vanishing. The third condition implies that the
Hamiltonians of t vanish at origin.

3. The last two conditions state that the Kähler metric and form are non-vanishing between the
elements of t. Since the Poisson brackets of t Hamiltonians are Hamiltonians of h, the only pos-
sibility is that {t, t} Poisson brackets reduce to a non-vanishing U(1) Hamiltonian at the origin
or that the bracket at the origin is due to the symplectic central extension. The requirement
that all Hamiltonians vanish at origin is very attractive aesthetically and forces to interpret
{t, t} brackets at origin as being due to a symplectic central extension. For instance, for S2 the
requirement that Hamiltonians vanish at origin would mean the replacement of the Hamiltonian
H = cos(θ) representing a rotation around z-axis with H3 = cos(θ) − 1 so that the Poisson
bracket of the generators H1 and H2 can be interpreted as a central extension term.

4. The conditions for the Hamiltonians of u(2) sub-algebra state that their variations with respect
to g vanish at origin. Thus u(2) Hamiltonians have extremum value at origin.

5. Also the Kähler function of CP2 has extremum at the origin. This suggests that in the case of
the configuration space the counterpart of the origin corresponds to the maximum of the Kähler
function.

Cartan algebra decomposition at the level of configuration space

The discussion of the properties of CP2 Kähler metric at origin provides valuable guide lines in an
attempt to understand what happens at the level of the configuration space. The use of the half
bracket for the configuration space Hamiltonians in turn allows to calculate the matrix elements of
the configuration space metric and Kähler form explicitly in terms of the magnetic or electric flux
Hamiltonians.

The earlier construction was rather tricky and formula-rich and not very convincing physically.
Cartan decomposition had to be assigned with something and in lack of anything better it was assigned
with Super Virasoro algebra, which indeed allows this kind of decompositions but without any strong
physical justification. The realization that super-symplectic and super Kac-Moody symmetries define
coset construction at the level of basic quantum TGD, and that this construction provides a realization
of Equivalence Principle at microscopic level, forced eventually the realization that also the coset space
decomposition of configuration space realizes Equivalence Principle geometrically.

It must be however emphasized that holography implying effective 2-dimensionality of 3-surfaces
in some length scale resolution is absolutely essential for this construction since it allows to effectively
reduce Kac-Moody generators associated with X3

l to X2 = X3
l ∩ δM4

± × CP2. In the similar manner
super-symplectic generators can be dimensionally reduced to X2. Number theoretical compactification
forces the dimensional reduction and the known extremals are consistent with it [33]. The construction
of configuration space spinor structure and metric in terms of the second quantized spinor fields [18]
relies to this picture as also the recent view about M -matrix [16].

In this framework the coset space decomposition becomes trivial.

1. The algebra g is labeled by color quantum numbers of CP2 Hamiltonians and by the label
(m,n, k) labeling the function basis of the light cone boundary. Also a localization with respect
to X2 is needed. This is a new element as compared to the original view.

2. Super Kac-Moody algebra is labeled by color octet Hamiltonians and function basis of X2. Since
Lie-algebra action does not lead out of irreps, this means that Cartan algebra decomposition is
satisfied.

3.6.7 Comparison with loop groups

It is useful to compare the recent approach to the geometrization of the loop groups consisting of
maps from circle to Lie group G [45], which served as the inspirer of the configuration space geometry
approach but later turned out to not apply as such in TGD framework.
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In the case of loop groups the tangent space T corresponds to the local Lie-algebra T (k,A) =
exp(ikφ)TA, where TA generates the finite-dimensional Lie-algebra g and φ denotes the angle variable
of circle; k is integer. The complexification of the tangent space corresponds to the decomposition

T = {X(k > 0, A)} ⊕ {X(k < 0, A)} ⊕ {X(k = 0, A)} = T+ ⊕ T− ⊕ T0

of the tangent space. Metric corresponds to the central extension of the loop algebra to Kac Moody
algebra and the Kähler form is given by

J(X(k1 < 0, A), X(k2 > 0, B)) = k2δ(k1 + k2)δ(A,B) .

In present case the finite dimensional Lie algebra g is replaced with the Lie-algebra of the symplectic
transformations of δM4

+ × CP2 centrally extended using symplectic extension. The scalar function
basis on circle is replaced with the function basis on an interval of length ∆rM with periodic boundary
conditions; effectively one has circle also now.

The basic difference is that one can consider two kinds of central extensions now.

1. Central extension is most naturally induced by the natural central extension ({p, q} = 1) defined
by Poisson bracket. This extension is anti-symmetric with respect to the generators of the
symplectic group: in the case of the Kac Moody central extension it is symmetric with respect
to the group G. The symplectic transformations of CP2 might correspond to non-zero modes
also because they are not exact symmetries of Kähler action. The situation is however rather
delicate since k = 0 light cone harmonic has a diverging norm due to the radial integration
unless one poses both lower and upper radial cutoffs although the matrix elements would be
still well defined for typical 3-surfaces. For Kac Moody group U(1) transformations correspond
to the zero modes. Light cone function algebra can be regarded as a local U(1) algebra defining
central extension in the case that only CP2 symplectic transformations local with respect to
δM4

+ act as isometries: for Kac Moody algebra the central extension corresponds to an ordinary
U(1) algebra. In the case that entire light cone symplectic algebra defines the isometries the
central extension reduces to a U(1) central extension.

3.6.8 Symmetric space property implies Ricci flatness and isometric action
of symplectic transformations

The basic structure of symmetric spaces is summarized by the following structural equations

g = h+ t ,
[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h .

(3.6.18)

In present case the equations imply that all commutators of the Lie-algebra generators of Can( 6= 0)
having non-vanishing integer valued radial quantum number n2, possess zero norm. This condition is
extremely strong and guarantees isometric action of Can(δM4

+ ×CP2) as well as Ricci flatness of the
configuration space metric.

The requirement [t, t] ⊂ h and [h, t] ⊂ t are satisfied if the generators of the isometry algebra possess
generalized parity P such that the generators in t have parity P = −1 and the generators belonging
to h have parity P = +1. Conformal weight n must somehow define this parity. The first possibility
to come into mind is that odd values of n correspond to P = −1 and even values to P = 1. Since
n is additive in commutation, this would automatically imply h⊕ t decomposition with the required
properties. This assumption looks however somewhat artificial. TGD however forces a generalization
of Super Algebras and N-S and Ramond type algebras can be combined to a larger algebra containing
also Virasoro and Kac Moody generators labeled by half-odd integers. This suggests strongly that
isometry generators are labeled by half integer conformal weight and that half-odd integer conformal
weight corresponds to parity P = −1 whereas integer conformal weight corresponds to parity P = 1.
Coset space would structure would state conformal invariance of the theory since super-symplectic
generators with integer weight would correspond to zero modes.

Quite generally, the requirement that the metric is invariant under the flow generated by vector
field X leads together with the covariant constancy of the metric to the Killing conditions
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X · g(Y,Z) = 0 = g([X,Y ], Z) + g(Y, [X,Z]) . (3.6.19)

If the commutators of the complexified generators in Can( 6= 0) have zero norm then the two terms
on the right hand side of Eq. (3.14.19) vanish separately. This is true if the conditions

Qα,βm ({HA, {HB , HC}}) = 0 , (3.6.20)

are satisfied for all triplets of Hamiltonians in Can6=0. These conditions follow automatically from the
[t, t] ⊂ h property and guarantee also Ricci flatness as will be found later.

It must be emphasized that for Kähler metric defined by purely magnetic fluxes, one cannot pose
the conditions of Eq. (3.14.20) as consistency conditions on the initial values of the time derivatives of
imbedding space coordinates whereas in general case this is possible. If the consistency conditions are
satisfied for a single surface on the orbit of symplectic group then they are satisfied on the entire orbit.
Clearly, isometry and Ricci flatness requirements and the requirement of time reversal invariance might
well force Kähler electric alternative.

3.6.9 How to find Kähler function?

If one has found the expansion of configuration space Kähler form in terms of electric fluxes one
can solve also the Kähler function from the defining partial differential equations Jkl̄ = ∂k∂l̄K. The
solution is not unique since the equation allows the symmetry

K → K + f(zk) + f(zk) ,

where f is arbitrary holomorphic function of zk. This non-uniqueness is probably eliminated by the
requirement that Kähler function vanishes for vacuum extremals. This in turn makes in principle
possible to find the maxima of Kähler function and to perform functional integration perturbatively
around them.

Electric-magnetic duality implies that, apart from conformal factor depending on isometry invari-
ants, one can solve Kähler metric without any knowledge on the initial values of the time derivatives
of the imbedding space coordinates. Apart from conformal factor the resulting geometry is purely
intrinsic to δCH. The role of Kähler action is only to to define Diff4 invariance and give the rule how
the metric is translated to metric on arbitrary point of CH. The degeneracy of the preferred extrema
also implies that configuration space has multi-sheeted structure analogous to that encountered in
case of Riemann surfaces.

As shown in [34], very general assumptions inspired by the light-likeness of Kähler current for
the known extremals combined with electric-magnetic duality imply the reduction of Kähler action
for the preferred extremals to Chern-Simons terms at the ends of CD and at wormhole throats plus
boundary term depending on induced metric so that one has almost topological QFT. The latter is
due to the possibility to choose the gauge for Kähler potential to code information about conserved
quantum numbers to the Kähler function and is the counterpart for the measurement interaction term
in Dirac action. This term should correspond to a real part of a holomorphic function so that it does
not contribute to the Kähler metric.

Also a promising concrete construction recipe for Kähler function is in terms of the modified
Dirac operator [18]. The recipe is described briefly in the introduction. If the conjecture that Dirac
determinant coincides with the exponent of Kähler action for a preferred extremal is correct, the value
of the Kähler coupling strength follows as a prediction of the theory. From the construction it is clear
that Dirac determinant involves only a finite number of eigenvalues of the modified Dirac operator
and can thus be an algebraic or even rational number if eigenvalues have this property. The most
satisfactory property of the construction is that one can use the intuition from the behavior of 2-D
magnetic systems.

3.7 Ricci flatness and divergence cancelation

Divergence cancelation in configuration space integration requires Ricci flatness and in this section
the arguments in favor of Ricci flatness are discussed in detail.
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3.7.1 Inner product from divergence cancelation

Forgetting the delicacies related to the non-determinism of the Kähler action, the inner product is
given by integrating the usual Fock space inner product defined at each point of the configuration space
over the reduced configuration space containing only the 3-surfaces Y 3 belonging to δH = δM4

+×CP2

(’lightcone boundary’) using the exponent exp(K) as a weight factor:

〈Ψ1|Ψ2〉 =

∫
Ψ1(Y 3)Ψ2(Y 3)exp(K)

√
GdY 3 ,

Ψ1(Y 3)Ψ2(Y 3) ≡ 〈Ψ1(Y 3)|Ψ2(Y 3)〉Fock . (3.7.1)

The degeneracy for the preferred extremals of Kähler action implies additional summation over the
degenerate extremals associated with Y 3. The restriction of the integration on light cone boundary is
Diff4 invariant procedure and resolves in elegant manner the problems related to the integration over
Diff4 degrees of freedom. A variant of the inner product is obtained dropping the bosonic vacuum
functional exp(K) from the definition of the inner product and by assuming that it is included into
the spinor fields themselves. Probably it is just a matter of taste how the necessary bosonic vacuum
functional is included into the inner product: what is essential that the vacuum functional exp(K) is
somehow present in the inner product.

The unitarity of the inner product follows from the unitary of the Fock space inner product and
from the unitarity of the standard L2 inner product defined by configuration space integration in
the set of the L2 integrable scalar functions. It could well occur that Diff4 invariance implies the
reduction of the configuration space integration to C(δH).

Consider next the bosonic integration in more detail. The exponent of the Kähler function appears
in the inner product also in the context of the finite dimensional group representations. For the
representations of the noncompact groups (say SL(2, R)) in coset spaces (now SL(2, R)/U(1) endowed
with Kähler metric) the exponent of Kähler function is necessary in order to get square integrable
representations [56]. The scalar product for two complex valued representation functions is defined as

(f, g) =

∫
fgexp(nK)

√
gdV . (3.7.2)

By unitarity, the exponent is an integer multiple of the Kähler function. In the present case only
the possibility n = 1 is realized if one requires a complete cancelation of the determinants. In finite
dimensional case this corresponds to the restriction to single unitary representation of the group in
question.

The sign of the action appearing in the exponent is of decisive importance in order to make
theory stable. The point is that the theory must be well defined at the limit of infinitely large
system. Minimization of action is expected to imply that the action of infinitely large system is bound
from above: the generation of electric Kähler fields gives negative contributions to the action. This
implies that at the limit of the infinite system the average action per volume is non-positive. For
systems having negative average density of action vacuum functional exp(K) vanishes so that only
configurations with vanishing average action per volume have significant probability. On the other
hand, the choice exp(−K) would make theory unstable: probability amplitude would be infinite for
all configurations having negative average action per volume. In the fourth part of the book it will be
shown that the requirement that average Kähler action per volume cancels has important cosmological
consequences.

Consider now the divergence cancelation in the bosonic integration. One can develop the Kähler
function as a Taylor series around maximum of Kähler function and use the contravariant Kähler
metric as a propagator. Gaussian and metric determinants cancel each other for a unique vacuum
functional. Ricci flatness guarantees that metric determinant is constant in complex coordinates so
that one avoids divergences coming from it. The non-locality of the Kähler function as a functional
of the 3-surface serves as an additional regulating mechanism: if K(X3) were a local functional of X3

one would encounter divergences in the perturbative expansion.
The requirement that quantum jump corresponds to a quantum measurement in the sense of quan-

tum field theories implies that quantum jump involves localization in zero modes. Localization in the
zero modes implies automatically p-adic evolution since the decomposition of the configuration space
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into sectors DP labeled by the infinite primes P is determined by the corresponding decomposition in
zero modes. Localization in zero modes would suggest that the calculation of the physical predictions
does not involve integration over zero modes: this would dramatically simplify the calculational appa-
ratus of the theory. Probably this simplification occurs at the level of practical calculations if U -matrix
separates into a product of matrices associated with zero modes and fiber degrees of freedom.

One must also calculate the predictions for the ratios of the rates of quantum transitions to different
values of zero modes and here one cannot actually avoid integrals over zero modes. To achieve this
one is forced to define the transition probabilities for quantum jumps involving a localization in zero
modes as

P (x, α→ y, β) =
∑
r,s

|S(r, α→ s, β)|2|Ψr(x)|2|Ψs(y)|2 ,

where x and y correspond to the zero mode coordinates and r and s label a complete state functional
basis in zero modes and S(r,m → s, n) involves integration over zero modes. In fact, only in this
manner the notion of the localization in the zero modes makes mathematically sense at the level of
S-matrix. In this case also unitarity conditions are well-defined. In zero modes state function basis
can be freely constructed so that divergence difficulties could be avoided. An open question is whether
this construction is indeed possible.

Some comments about the actual evaluation of the bosonic functional integral are in order.

1. Since configuration space metric is degenerate and the bosonic propagator is essentially the
contravariant metric, bosonic integration is expected to reduce to an integration over the zero
modes. For instance, isometry invariants are variables of this kind. These modes are analogous
to the parameters describing the conformal equivalence class of the orbit of the string in string
models.

2. αK is a natural small expansion parameter in configuration space integration. It should be
noticed that αK , when defined by the criticality condition, could also depend on the coordinates
parameterizing the zero modes.

3. Semiclassical approximation, which means the expansion of the functional integral as a sum
over the extrema of the Kähler function, is a natural approach to the calculation of the bosonic
integral. Symmetric space property suggests that for the given values of the zero modes there
is only single extremum and corresponds to the maximum of the Kähler function. There are
theorems (Duistermaat-Hecke theorem) stating that semiclassical approximation is exact for
certain systems (for example for integrable systems [48]). Symmetric space property suggests
that Kähler function might possess the properties guaranteing the exactness of the semiclassical
approximation. This would mean that the calculation of the integral

∫
exp(K)

√
GdY 3 and even

more complex integrals involving configuration space spinor fields would be completely analogous
to a Gaussian integration of free quantum field theory. This kind of reduction actually occurs
in string models and is consistent with the criticality of the Kähler coupling constant suggesting
that all loop integrals contributing to the renormalization of the Kähler action should vanish.
Also the condition that configuration space integrals are continuable to p-adic number fields
requires this kind of reduction.

3.7.2 Why Ricci flatness

It has been already found that the requirement of divergence cancelation poses extremely strong
constraints on the metric of the configuration space. The results obtained hitherto are the following.

1. If the vacuum functional is the exponent of Kähler function one gets rid of the divergences
resulting from the Gaussian determinants and metric determinants: determinants cancel each
other.

2. The non-locality of the Kähler action gives good hopes of obtaining divergence free perturbation
theory.

The following arguments show that Ricci flatness of the metric is a highly desirable property.
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1. Dirac operator should be a well defined operator. In particular its square should be well defined.
The problem is that the square of Dirac operator contains curvature scalar, which need not
be finite since it is obtained via two infinite-dimensional trace operations from the curvature
tensor. In case of loop spaces [45] the Kähler property implies that even Ricci tensor is only
conditionally convergent. In fact, loop spaces with Kähler metric are Einstein spaces (Ricci
tensor is proportional to metric) and Ricci scalar is infinite.

In 3-dimensional case situation is even worse since the trace operation involves 3 summation
indices instead of one! The conclusion is that Ricci tensor had better to vanish in vibrational
degrees of freedom.

2. For Ricci flat metric the determinant of the metric is constant in geodesic complex coordinates
as is seen from the expression for Ricci tensor [45]

Rkl̄ = ∂k∂l̄ln(det(g)) (3.7.3)

in Kähler metric. This obviously simplifies considerably functional integration over the config-
uration space: one obtains just the standard perturbative field theory in the sense that metric
determinant gives no contributions to the functional integration.

3. The constancy of the metric determinant results not only in calculational simplifications: it also
eliminates divergences. This is seen by expanding the determinant as a functional Taylor series
with respect to the coordinates of the configuration space. In local complex coordinates the first
term in the expansion of the metric determinant is determined by Ricci tensor

δ
√
g ∝ Rkl̄zkz̄l . (3.7.4)

In configuration space integration using standard rules of Gaussian integration this term gives
a contribution proportional to the contraction of the propagator with Ricci tensor. But since
the propagator is just the contravariant metric one obtains Ricci scalar as result. So, in order
to avoid divergences, Ricci scalar must be finite: this is certainly guaranteed if Ricci tensor
vanishes.

4. The following group theoretic argument suggests that Ricci tensor either vanishes or is divergent.
The holonomy group of the configuration space is a subgroup of U(n = ∞) (D = 2n is the
dimension of the Kähler manifold) by Kähler property and Ricci flatness is guaranteed if the
U(1) factor is absent from the holonomy group. In fact Ricci tensor is proportional to the trace of
the U(1) generator and since this generator corresponds to an infinite dimensional unit matrix
the trace diverges: therefore given element of the Ricci tensor is either infinite or vanishes.
Therefore the vanishing of the Ricci tensor seems to be a mathematical necessity. This naive
argument doesn’t hold true in the case of loop spaces, for which Kähler metric with finite non-
vanishing Ricci tensor exists [45]. Note however that also in this case the sum defining Ricci
tensor is only conditionally convergent.

There are indeed good hopes that Ricci tensor vanishes. By the previous argument the vanishing
of the Ricci tensor is equivalent with the absence of divergences in configuration space integration.
That divergences are absent is suggested by the non-locality of the Kähler function as a functional of
3-surface: the divergences of local field theories result from the locality of interaction vertices. Ricci
flatness in vibrational degrees of freedom is not only necessary mathematically. It is also appealing
physically: one can regard Ricci flat configuration space as a vacuum solution of Einstein’s equations
Gαβ = 0.
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3.7.3 Ricci flatness and Hyper Kähler property

Ricci flatness property is guaranteed if configuration space geometry is Hyper Kähler [49, 50] (there
exists 3 covariantly constant antisymmetric tensor fields, which can be regarded as representations
of quaternionic imaginary units). Hyper Kähler property guarantees Ricci flatness because the con-
tractions of the curvature tensor appearing in the components of the Ricci tensor transform to traces
over Lie algebra generators, which are SU(n) generators instead of U(n) generators so that the traces
vanish. In the case of the loop spaces left invariance implies that Ricci tensor in the vibrational degrees
is a multiple of the metric tensor so that Ricci scalar has an infinite value. This is basically due to
the fact that Kac-Moody algebra has U(1) central extension.

Consider now the arguments in favor of Ricci flatness of the configuration space.

1. The symplectic algebra of δM4
+ takes effectively the role of the U(1) extension of the loop

algebra. More concretely, the SO(2) group of the rotation group SO(3) takes the role of U(1)
algebra. Since volume preserving transformations are in question, the traces of the symplectic
generators vanish identically and in finite-dimensional this should be enough for Ricci flatness
even if Hyper Kähler property is not achieved.

2. The comparison with CP2 allows to link Ricci flatness with conformal invariance. The elements
of the Ricci tensor are expressible in terms of traces of the generators of the holonomy group
U(2) at the origin of CP2, and since U(1) generator is non-vanishing at origin, the Ricci tensor
is non-vanishing. In recent case the origin of CP2 is replaced with the maximum of Kähler
function and holonomy group corresponds to super-symplectic generators labelled by integer
valued real parts k1 of the conformal weights k = k1 + iρ. If generators with k1 = n vanish at
the maximum of the Kähler function, the curvature scalar should vanish at the maximum and by
the symmetric space property everywhere. These conditions correspond to Virasoro conditions
in super string models.

A possible source of difficulties are the generators having k1 = 0 and resulting as commutators
of generators with opposite real parts of the conformal weights. It might be possible to assume
that only the conformal weights k = k1 + iρ, k1 = 0, 1, ... are possible since it is the imaginary
part of the conformal weight which defines the complexification in the recent case. This would
mean that the commutators involve only positive values of k1.

3. In the infinite-dimensional case the Ricci tensor involves also terms which are non-vanishing even
when the holonomy algebra does not contain U(1) factor. It will be found that symmetric space
property guarantees Ricci flatness even in this case and the reason is essentially the vanishing
of the generators having k1 = n at the maximum of Kähler function.

There are also arguments in favor of the Hyper Kähler property.

1. The dimensions of the imbedding space and space-time are 8 and 4 respectively so that the
dimension of configuration space in vibrational modes is indeed multiple of four as required by
Hyper Kähler property. Hyper Kähler property requires a quaternionic structure in the tangent
space of the configuration space. Since any direction on the sphere S2 defined by the linear com-
binations of quaternionic imaginary units with unit norm defines a particular complexification
physically, Hyper Kähler property means the possibility to perform complexification in S2-fold
manners.

2. S2-fold degeneracy is indeed associated with the definition of the complex structure of the
configuration space. First of all, the direction of the quantization axis for the spherical harmonics
or for the eigen states of Lorentz Cartan algebra at δM4

+ can be chosen in S2-fold manners.
Quaternion conformal invariance means Hyper Kähler property almost by definition and the
S2-fold degeneracy for the complexification is obvious in this case.

If these naive arguments survive a more critical inspection, the conclusion would be that the effec-
tive 2-dimensionality of light like 3-surfaces implying generalized conformal and symplectic symmetries
would also imply Hyper Kähler property of the configuration space and make the theory well-defined
mathematically. This obviously fixes the dimension of space-time surfaces as well as the dimension of
Minkowski space factor of the imbedding space.
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In the sequel we shall show that Ricci flatness is guaranteed provided that the holonomy group
of the configuration space is isomorphic to some subgroup of SU(n = ∞) instead of U(n = ∞) (n
is the complex dimension of the configuration space) implied by the Kähler property of the metric.
We also derive an expression for the Ricci tensor in terms of the structure constants of the isometry
algebra and configuration space metric. The expression for the Ricci tensor is formally identical with
that obtained by Freed for loop spaces: the only difference is that the structure constants of the
finite-dimensional group are replaced with the group Can(δH). Also the arguments in favor of Hyper
Kähler property are discussed in more detail.

3.7.4 The conditions guaranteing Ricci flatness

In the case of Kähler geometry Ricci flatness condition can be characterized purely Lie-algebraically:
the holonomy group of the Riemann connection, which in general is subgroup of U(n) for Kähler
manifold of complex dimension n, must be subgroup of SU(n) so that the Lie-algebra of this group
consists of traceless matrices. This condition is easy to derive using complex coordinates. Ricci tensor
is given by the following expression in complex vielbein basis

RAB̄ = RAC̄BC̄ , (3.7.5)

where the latter summation is only over the antiholomorphic indices C̄. Using the cyclic identities

∑
cycl C̄BD̄

RAC̄BD̄ = 0 , (3.7.6)

the expression for Ricci tensor reduces to the form

RAB̄ = RAB̄CC , (3.7.7)

where the summation is only over the holomorphic indices C. This expression can be regarded as
a trace of the curvature tensor in the holonomy algebra of the Riemann connection. The trace is
taken over holomorphic indices only: the traces over holomorphic and anti-holomorphic indices cancel
each other by the antisymmetry of the curvature tensor. For Kähler manifold holonomy algebra is
subalgebra of U(n), when the complex dimension of manifold is n and Ricci tensor vanishes if and
only if the holonomy Lie-algebra consists of traceless matrices, or equivalently: holonomy group is
subgroup of SU(n). This condition is expected to generalize also to the infinite-dimensional case.

We shall now show that if configuration space metric is Kähler and possesses infinite-dimensional
isometry algebra with the property that its generators form a complete basis for the tangent space
(every tangent vector is expressible as a superposition of the isometry generators plus zero norm
vector) it is possible to derive a representation for the Ricci tensor in terms of the structure constants
of the isometry algebra and of the components of the metric and its inverse in the basis formed by
the isometry generators and that Ricci tensor vanishes identically for the proposed complexification
of the configuration space provided the generators {HA,m 6=0, HB,n6=0} correspond to zero norm vector
fields of configuration space.

The general definition of the curvature tensor as an operator acting on vector fields reads

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z . (3.7.8)

If the vector fields considered are isometry generators the covariant derivative operator is given by the
expression

∇XY = (AdXY −Ad∗XY −Ad∗YX)/2 ,

(Ad∗XY,Z) = (Y,AdXZ) , (3.7.9)

where AdXY = [X,Y ] and Ad∗X denotes the adjoint of AdX with respect to configuration space metric.
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In the sequel we shall assume that the vector fields in question belong to the basis formed by the
isometry generators. The matrix representation of AdX in terms of the structure constants CX,Y :Z of
the isometry algebra is given by the expression

AdmXn = CX,Y :Z ŶnZ
m ,

[X,Y ] = CX,Y :ZZ ,

Ŷ = g−1(Y, V )V , (3.7.10)

where the summation takes place over the repeated indices and Ŷ denotes the dual vector field of Y
with respect to the configuration space metric. From its definition one obtains for Ad∗X the matrix
representation

Ad∗mXn = CX,Y :Z Ŷ
mZn ,

Ad∗XY = CX,U :V g(Y, U)g−1(V,W )W = g(Y,U)g−1([X,U ],W )W , (3.7.11)

where the summation takes place over the repeated indices.
Using the representations of ∇X in terms of AdX and its adjoint and the representations of

AdX and Ad∗X in terms of the structure constants and some obvious identities (such as C[X,Y ],Z:V =
CX,Y :UCU,Z:V ) one can by a straightforward but tedious calculation derive a more detailed expression
for the curvature tensor and Ricci tensor. Straightforward calculation of the Ricci tensor has however
turned to be very tedious even in the case of the diagonal metric and in the following we shall use a
more convenient representation [45] of the curvature tensor applying in case of the Kähler geometry.

The expression of the curvature tensor is given in terms of the so called Toeplitz operators TX
defined as linear operators in the ”positive energy part” G+ of the isometry algebra spanned by the
(1, 0) parts of the isometry generators. In present case the positive and negative energy parts and cm
part of the algebra can be defined just as in the case of loop spaces:

G+ = {HAk|k > 0} ,

G− = {HAk|k < 0} ,

G0 = {HAk|k = 0} . (3.7.12)

Here HAk denote the Hamiltonians generating the symplectic transformations of δH. The positive
energy generators with non-vanishing norm have positive radial scaling dimension: k ≥ 0, which
corresponds to the imaginary part of the scaling momentum K = k1 + iρ associated with the factors
(rM/r0)K . A priori the spectrum of ρ is continuous but it is quite possible that the spectrum of ρ
is discrete and ρ = 0 does not appear at all in the spectrum in the sense that the flux Hamiltonians
associated with ρ = 0 elements vanish for the maximum of Kähler function which can be taken to be
the point where the calculations are done.

TX differs from AdX in that the negative energy part of AdXY = [X,Y ] is dropped away:

TX : G+ → G+ ,

Y → [X,Y ]+ . (3.7.13)

Here ” + ” denotes the projection to ”positive energy” part of the algebra. Using Toeplitz operators
one can associate to various isometry generators linear operators Φ(X0), Φ(X−) and Φ(X+) acting
on G+:

Φ(X0) = TX0
, X0εG0 ,

Φ(X−) = TX− , X−εG− ,

Φ(X+) = −T ∗X− , X+εG+ . (3.7.14)

Here ”*” denotes hermitian conjugate in the diagonalized metric: the explicit representation Φ(X+)
is given by the expression [45]
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Φ(X+) = D−1TX−D ,

DX+ = d(X)X− ,

d(X) = g(X−, X+) . (3.7.15)

Here d(X) is just the diagonal element of metric assumed to be diagonal in the basis used. denotes
the conformal factor associated with the metric.

The representations for the action of ,Φ(X0), Φ(X−) and Φ(X+) in terms of metric and structure
constants of the isometry algebra are in the case of the diagonal metric given by the expressions

Φ(X0)Y+ = CX0,Y+:U+
U+ ,

Φ(X−)Y+ = CX−,Y+:U+
U+ ,

Φ(X+)Y+ =
d(Y )

d(U)
CX−,Y−:U−U+ . (3.7.16)

The expression for the action of the curvature tensor in positive energy part G+ of the isometry
algebra in terms of the these operators is given as [45]:

R(X,Y )Z+ = {[Φ(X),Φ(Y )]− Φ([X,Y ])}Z+ . (3.7.17)

The calculation of the Ricci tensor is based on the observation that for Kähler manifolds Ricci tensor
is a tensor of type (1, 1), and therefore it is possible to calculate Ricci tensor as the trace of the
curvature tensor with respect to indices associated with G+.

Ricci(X+, Y−) = (Ẑ+, R(X+, Y−)Z+) ≡ Trace(R(X+, Y−)) ,

(3.7.18)

where the summation over Z+ generators is performed.
Using the explicit representations of the operators Φ one obtains the following explicit expression

for the Ricci tensor

Ricci(X+, Y−) = Trace{[D−1TX+D,TY− ]− T[X+,Y−]|G0+G−

− D−1T[X+,Y−]|G+
D} . (3.7.19)

This expression is identical to that encountered in case of loop spaces and the following arguments
are repetition of those applying in the case of loop spaces.

The second term in the Ricci tensor is the only term present in the finite-dimensional case. This
term vanishes if the Lie-algebra in question consists of traceless matrices. Since symplectic transfor-
mations are volume-preserving the traces of Lie-algebra generators vanish so that this term is absent.
The last term gives a non-vanishing contribution to the trace for the same reason.

The first term is quadratic in structure constants and does not vanish in case of loop spaces. It
can be written explicitly using the explicit representations of the various operators appearing in the
formula:

Trace{[D−1TX−D,TY− ]} =
∑
Z+,U+

[CX−,U−:Z−CY−,Z+:U+

d(U)

d(Z)

− CX−,Z−:U−CY−,U+:Z+

d(Z)

d(U)
] . (3.7.20)

Each term is antisymmetric under the exchange of U and Z and one might fail to conclude that
the sum vanishes identically. This is not the case. By the diagonality of the metric with respect to
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radial quantum number, one has m(X−) = m(Y−) for the non-vanishing elements of the Ricci tensor.
Furthermore, one has m(U) = m(Z) − m(Y ), which eliminates summation over m(U) in the first
term and summation over m(Z) in the second term. Note however, that summation over other labels
related to symplectic algebra are present.

By performing the change U → Z in the second term one can combine the sums together and as
a result one has finite sum

∑
0<m(Z)<m(X)

[CX−,U−:Z−CY−,Z+:U+

d(U)

d(Z)
= C

∑
0<m(Z)<m(X)

m(X)

m(Z)−m(X)
,

C =
∑
Z,U

CX,U :ZCY,Z:U
d0(U)

d0(Z)
. (3.7.21)

Here the dependence of d(X) = |m(X)|d0(X) on m(X) is factored out; d0(X) does not depend on kX .
The dependence on m(X) in the resulting expression factorizes out, and one obtains just the purely
group theoretic term C, which should vanish for the space to be Ricci flat.

The sum is quadratic in structure constants and can be visualized as a loop sum. It is instructive
to write the sum in terms of the metric in the symplectic degrees of freedom to see the geometry
behind the Ricci flatness:

C =
∑
Z,U

g([Y,Z], U)g−1([X,U ], Z) . (3.7.22)

Each term of this sum involves a commutator of two generators with a non-vanishing norm. Since
tangent space complexification is inherited from the local coset space, the non-vanishing commutators
in complexified basis are always between generators in Can6=0; that is they do not not belong to rigid
su(2)× su(3).

The condition guaranteing Ricci flatness at the maximum of Kähler function and thus everywhere
is simple. All elements of type [X6=0, Y6=0] vanish or have vanishing norm. In case of CP2 Kähler
geometry this would correspond to the vanishing of the U(2) generators at the origin of CP2 (note
that the holonomy group is U(2) in case of CP2). At least formally stronger condition is that the
algebra generated by elements of this type, the commutator algebra associated with Can6=0, consist of
elements of zero norm. Already the (possibly) weaker condition implies that adjoint map AdX 6=0 and
its hermitian adjoint Ad∗X 6=0

create zero norm states. Since isometry conditions involve also adjoint
action the condition also implies that Can6=0 acts as isometries. More concrete form for the condition
is that all flux factors involving double Poisson bracket and three generators in Can6=0 vanish:

Qe({HA, {HB , HC}}) = 0 , for HA, HB , HC in Can6=0 . (3.7.23)

The vanishing of fluxes involving two Poisson brackets and three Hamiltonians guarantees isometry
invariance and Ricci flatness and, as found in [22], is implied by the [t, t] ⊂ h property of the Lie-algebra
of coset space G/H having symmetric space structure.

The conclusion is that the mere existence of the proposed isometry group (guaranteed by the
symmetric space property) implies the vanishing of the Ricci tensor and vacuum Einstein equations.
The existence of the infinite parameter isometry group in turn follows basically from the condition
guaranteing the existence of the Riemann connection. Therefore vacuum Einstein equations seem to
arise, not only as a consequence of a physically motivated variational principle but as a mathematical
consistency condition in infinite dimensional Kähler geometry. The flux representation seems to
provide elegant manner to formulate and solve these conditions and isometry invariance implies Ricci
flatness.

3.7.5 Is configuration space metric Hyper Kähler?

The requirement that configuration space integral integration is divergence free implies that configu-
ration space metric is Ricci flat. The so called Hyper-Kähler metrics [50, 49, 60] are particularly nice
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representatives of Ricci flat metrics. In the following the basic properties of Hyper-Kähler metrics are
briefly described and the problem whether Hyper Kähler property could realized in case of M4

+×CP2

is considered.

Hyper-Kähler property

Hyper-Kähler metric is a generalization of the Kähler metric. For Kähler metric metric tensor and
Kähler form correspond to the complex numbers 1 and i and therefore define complex structure in
the tangent space of the manifold. For Hyper Kähler metric tangent space allows three closed Kähler
forms I, J,K, which with respect to the multiplication obey the algebra of quaternionic imaginary
units and have square equal to - 1, which corresponds to the metric of Hyper Kähler space.

I2 = J2 = K2 = −1 IJ = −JI = K, etc. . (3.7.24)

To define Kähler structure one must choose one of the Kähler forms or any linear combination
of I, J and K with unit norm. The group SO(3) rotates different Kähler structures to each other
playing thus the role of quaternion automorphisms. This group acts also as coordinate transformations
in Hyper Kähler manifold but in general fails to act as isometries.

If K is chosen to define complex structure then K is tensor of type (1, 1) in complex coordinates,
I and J being tensors of type (2, 0) + (0, 2). The forms I + iJ and I − iJ are holomorphic and anti-
holomorphic forms of type (2, 0) and (0, 2) respectively and defined standard step operators I+ and
I− of SU(2) algebra. The holonomy group of Hyper-Kähler metric is always Sp(k), k ≤ dimM/4, the
group of k × k unitary matrices with quaternionic entries. This group is indeed subgroup of SU(2k),
so that its generators are traceless and Hyper Kähler metric is therefore Ricci flat.

Hyper Kähler metrics have been encountered in the context of 3-dimensional super symmetric
sigma models: a necessary prerequisite for obtaining N = 4 super-symmetric sigma model is that
target space allows Hyper Kähler metric [58, 60]. In particular, it has been found that Hyper Kähler
property is decisive for the divergence cancelation.

Hyper-Kähler metrics arise also in monopole and instanton physics [50]. The moduli spaces for
monopoles have Hyper Kähler property. This suggests that Hyper Kähler property is characteristic
for the configuration (or moduli) spaces of 4-dimensional Yang Mills types systems. Since YM action
appears in the definition of configuration space metric there are hopes that also in present case the
metric possesses Hyper-Kähler property.

CP2 allows what might be called almost Hyper-Kähler structure known as quaternionion structure.
This means that the Weil tensor of CP2 consists of three components in one-one correspondence with
components of iso-spin and only one of them- the one corresponding to Kähler form- is covariantly
constant. The physical interpretation is in terms of electroweak symmetry breaking selecting one
isospin direction as a favored direction.

Does the ’almost’ Hyper-Kähler structure of CP2 lift to a genuine Hyper-Kähler structure
in configuration space?

The Hyper-Kähler property of configuration space metric does not seem to be in conflict with the
general structure of TGD.

1. In string models the dimension of the ”space-time” is two and Weyl invariance and complex
structures play a decisive role in the theory. In present case the dimension of the space-time is
four and one therefore might hope that quaternions play a similar role. Indeed, Weyl invariance
implies YM action in dimension 4 and as already mentioned moduli spaces of instantons and
monopoles enjoy the Hyper Kähler property.

2. Also the dimension of the imbedding space is important. The dimension of Hyper Kähler
manifold must be multiple of 4. The dimension of configuration space is indeed infinite multiple
of 8: each vibrational mode giving one ”8”.

3. The complexification of the configuration space in symplectic degrees of freedom is inherited
from S2 × CP2 and CP2 Kähler form defines the symplectic form of configuration space. The
point is that CP2 Weyl tensor has 3 covariantly constant components, having as their square
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metric apart from sign. One of them is Kähler form, which is closed whereas the other two are
non-closed forms and therefore fail to define Kähler structure. The group SU(2) of electro-weak
isospin rotations rotate these forms to each other. It would not be too suprising if one could
identify the configuration space counterparts of these forms as representations of quaternionic
units at the level of configuration space. The failure of the Hyper Kähler property at the level of
CP2 geometry is due to the electro-weak symmetry breaking and physical intuition (in particular,
p-adic mass calculations [4]) suggests that electro-weak symmetry might not be broken at the
level of configuration space geometry).

A possible topological obstruction for the Hyper Kähler property is related to the cohomology
of the configuration space: the three Kähler forms must be co-homologically trivial as is clear from
the following argument. If any of 3 quaternionic 2-form is cohomologically nontrivial then by SO(3)
symmetry rotating Kähler forms to each other all must be co-homologically nontrivial. On the other
hand, electro-weak isospin rotation leads to a linear combination of 3 Kähler forms and the flux
associated with this form is in general not integer valued. The point is however that Kähler form
forms only the (1, 1) part of the symplectic form and must be co-homologically trivial whereas the
zero mode part is same for all complexifications and can be co-homologically nontrivial. The co-
homological non-triviality of the zero mode part of the symplectic form is indeed a nice feature since
it fixes the normalization of the Kähler function apart from a multiplicative integer. On the other
hand the hypothesis that Kähler coupling strength is analogous to critical temperature provides a
dynamical (and perhaps equivalent) manner to fix the normalization of the Kähler function.

Since the properties of the configuration space metric are inherited from M4
+ × CP2 then also

the Hyper Kähler property should be understandable in terms of the imbedding space geometry. In
particular, the complex structure in CP2 vibrational degrees of freedom is inherited from CP2. Hyper
Kähler property implies the existence of a continuum (sphere S2) of complex structures: any linear
superposition of 3 independent Kähler forms defines a respectable complex structure. Therefore also
CP2 should have this continuum of complex structures and this is certainly not the case.

Indeed, if we had instead of CP2 Hyper Kähler manifold with 3 covariantly constant 2-forms
then it would be easy to understand the Hyper Kähler structure of configuration space. Given the
Kähler structure of the configuration space would be obtained by replacing induced Kähler electric
and magnetic fields in the definition of flux factors Q(HA,m) with the appropriate component of the
induced Weyl tensor. CP2 indeed manages to be very nearly Hyper Kähler manifold!

How CP2 fails to be Hyper Kähler manifold can be seen in the following manner. The Weyl tensor
of CP2 allows three independent components, which are self dual as 2-forms and rotated to each other
by vielbein rotations.

W03 = W12 ≡ 2I3 = 2(e0 ∧ e3 + e1 ∧ e2) ,

W01 = W23 ≡ I1 = −e0 ∧ e1 − e2 ∧ e3 ,

W02 = W31 ≡ I2 = −e0 ∧ e2 − e3 ∧ e1 . (3.7.25)

The component I3 is just the Kähler form of CP2. Remaining components are covariantly constant
only with respect to spinor connection and not closed forms so that they cannot be interpreted as
Maxwell fields. Their squares equal however apart from sign with the metric of CP2, when appropriate
normalization factor is used. If these forms were covariantly constant Kähler action defined by any
linear superposition of these forms would indeed define Kähler structure in configuration space and
the group SO(3) would rotate these forms to each other. The projections of the components of
the Weyl tensor on 3-surface define 3 vector fields as their duals and only one of these vector fields
(Kähler magnetic field) is divergenceless. One might regard these 3 vector fields as counter parts of
quaternion units associated with the broken Hyper Kähler structure, that is quaternion structure.
The interpretation in terms of electro-weak symmetry breaking is obvious.

One cannot exclude the possibility that the symplectic invariance of the induced Kähler electric
field implies that the electric parts of the other two components of induced Weyl tensor are symplectic
invariants. This is the minimum requirement. What is however obvious is that the magnetic parts
cannot be closed forms for arbitrary 3-surfaces at light cone boundary. One counter example is enough
and CP2 type extremals seem to provide this counter example: the components of the induced Weyl
tensor are just the same as they are for CP2 and clearly not symplecticly invariant.
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Thus it seems that configuration space could allow Hyper Kähler structure broken by electro-weak
interactions but it cannot be inherited from CP2. An open question is whether it allows genuine
quaternionic structure. Good prospects for obtaining quaternionic structure are provided by the
quaternionic counterpart QP2 of CP2, which is 8-dimensional and has coset space structure QP2 =
Sp(3)/Sp(2)×Sp(1). This choice does not seem to be consistent with the symmetries of the standard
model. Note however that the over all symmetry group is obtained by replacing complex numbers
with quaternions on the matrix representation of the standard model group.

Could different complexifications for M4
+ and light like surfaces induce Hyper Kähler

structure for configuration space?

Quaternionic structure means also the existence of a family of complex structures parameterized by a
sphere S2. The complex structure of the configuration space is inherited from the complex structure
of some light like surface.

In the case of the light cone boundary δM4
+ the complex structure corresponds to the choice

of quantization axis of angular momentum for the sphere rM = constant so that the coordinates
orthogonal to the quantization axis define a complex coordinate: the sphere S2 parameterizes these
choices. Thus there is a temptation to identify the choice of quantization axis with a particular
imaginary unit and Hyper Kähler structure would directly relate to the properties rotation group.
This would bring an additional item to the list of miraculous properties of light like surfaces of 4-
dimensional space-times.

This might relate to the fact that configuration space geometry is not determined by the symplectic
algebra of CP2 localized with respect to the light cone boundary as one might first expect but consists
of M4

+ × CP2 Hamiltonians so that infinitesimal symplectic transformation of CP2 involves always
also M4

+-symplectic transformation. M4
+ Hamiltonians are defined by a function basis generated as

products of the Hamiltonians H3 and H1± iH2 generating rotations with respect to three orthogonal
axes, and two of these Hamiltonians are complexified.

Also the light like 3-surfaces X3
l associated with quaternion conformal invariance are determined

by some 2-surface X2 and the choice of complex coordinates and if X2 is sphere the choices are labelled
by S2. In this case, the presence of quaternion conformal structure would be almost obvious since it
is possible to choose some complex coordinate in several manners and the choices are labelled by S2.
The choice of the complex coordinate in turn fixes 2-surface X2 as a surface for which the remaining
coordinates are constant. X2 need not however be located at the elementary particle horizon unless
one poses additional constraint. One might hope that different choices of X2 resulting in this manner
correspond to all possible different selections of the complex structure and that this choice could fix
uniquely the conformal equivalence class of X2 appearing as argument in elementary particle vacuum
functionals. If X2 has a more complex topology the identification is not so clear but since conformal
algebra SL(2,C) containing algebra of rotation group is involved, one might argue that the choice of
quantization axis also now involves S2 degeneracy. If these arguments are correct one could conclude
that Hyper Kähler structure is implicitly involved and guarantees Ricci flatness of the configuration
space metric.

3.8 Consistency conditions on metric

In this section various consistency conditions on the configuration space metric are discussed. In
particular, it will be found that the conditions guaranteing the existence of Riemann connection in
the set of all(!) vector fields (including zero norm vector fields) gives very strong constraints on the
general form of the metric and that these constraints are indeed satisfied for the proposed metric.

3.8.1 Consistency conditions on Riemann connection

To study the consequences of the consistency conditions, it is most convenient to consider matrix
elements of the metric in the basis formed by the isometry generators themselves. The consistency
conditions state the covariant constancy of the metric tensor

∇Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY ) = Z · g(X,Y ) . (3.8.1)
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Z · g(X,Y ) vanishes, when Z generates isometries so that conditions state the covariant constancy of
the matrix elements in this case. It must be emphasized that the ill defined-ness of the inner products
of form g(∇ZX,Y ) is just the reason for requiring infinite-dimensional isometry group. The point is
that ∇ZX need not to belong to the Hilbert space spanned by the tangent vector fields since the terms
of type Zg(X,Y ) do not necessarily exist mathematically [45]. The elegant solution to the problem
is that all tangent space vector fields act as isometries so that these quantities vanish identically.

The conditions of Eq. (3.16.1) can be written explicitly by using the general expression for the
covariant derivative

g(∇ZX,Y ) = [Zg(X,Y ) +Xg(Z, Y )− Y g(Z,X)

+ g(AdZX −Ad∗ZX −Ad∗XZ, Y )]/2 . (3.8.2)

What happens is that the terms depending on the derivatives of the matrix elements (terms of type
Zg(X,Y ) ) cancel each other (these terms vanish for the metric invariant under isometries), and one
obtains the following consistency conditions

g(AdZX −Ad∗ZX −Ad∗XZ, Y ) + g(X,AdZY −Ad∗ZY −Ad∗Y Z) = 0 . (3.8.3)

Using the explicit representations of AdZX and Ad ∗Z X in terms of structure constants

AdZX = [Z,X] = CZ,X:UU .

Ad∗ZX = CZ,U :V g(X,V )g−1(U,W )W = g(X, [Z,U ])g−1(U,W )W . (3.8.4)

where the summation over repeated ”indices” is performed, one finds that consistency conditions are
identically satisfied provided the generators X and Y have a non-vanishing norm. The reason is that
the contributions coming from ∇ZX and ∇ZY cancel each other.

When one of the generators, say X, appearing in the inner product has a vanishing norm so that
one has g(X,Y ) = 0, for any generator Y , situation changes! The contribution of ∇ZY term to the
consistency conditions drops away and using Eqs. (3.16.3) and (3.16.4) one obtains the following
consistency conditions

CZ,X:Ug(U, Y ) + CX,Y :Ug(U,Z) = −X · g(Z, Y ) . (3.8.5)

Note that summation over U is carried out. If X is isometry generator (this need not be the case
always) the condition reduces to a simpler form:

CX,Z:Ug(U, Y ) + CX,Y :Ug(Z,U) = g([X,Z].Y ) + g(Z, [X,Y ]) = 0 . (3.8.6)

These conditions have nice geometric interpretation. If the matrix elements are regarded as ordinary
Hilbert space products between the isometry generators the conditions state that the metric defining
the inner product behaves as a scalar in the general case.

3.8.2 Consistency conditions for the radial Virasoro algebra

The action of the radial Virasoro in nontrivial manner in the zero modes. Therefore isometry inter-
pretation is excluded and consistency conditions do not make sense in this case. One can however
consider the possibility that metric is invariant or suffers only an overall scaling under the action of the
radial scaling generated by L0 = rMd/drM . Since the radial integration measure is scaling invariant
and only powers of rM/r0 appear in Hamiltonians, the effect of the scaling rM → λrM on the matrix
elements of the metric is a scaling by λka+k̄b). One can interpret this by saying that scaling changes
the values of zero modes and hence leads outside the symmetric space in question.

Invariance of reduced matrix element obtained by dividing away the powers of the scaling factor
is achieved if the metric contains the conformal factor
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S =
1

∆u
f(
ri
rj

) , (3.8.7)

where ri are the extrema of rM interpreted as height function of X3 and f is a priori arbitrary positive
definite function. Since the presence of f presumably gives rise to renormalization corrections depend-
ing on the size and shape of 3-surface by scaling the propagator defined by the contravariant metric,
the dependence on the ratios ri/rj should be slow, logarithmic dependence. Also the dependence
on the Fourier components of the solid angles Ω(rM ) associated with the rM = constant sections is
possible.

3.8.3 Explicit conditions for the isometry invariance

The identification of the Lie-algebra of isometry generators has been proposed but cannot provide
any proof for the existence of the infinite parameter symmetry group at this stage. What one can do
at this stage is to formulate explicitly the conditions guaranteing isometry invariance of the metric
and try to see whether there are any hopes that these conditions are satisfied. It has been already
found that the expression of the metric reduces for light cone alternative to the sum of two boundary
terms coming from infinite future and from the boundary of the light cone. If the contribution from
infinitely distant future vanishes, as one might expect, then only the contribution from the boundary
of the light cone remains.

A tedious but straightforward evaluation of the second variation (see Appendix of the book) for
Kähler action implies the following form for the second variation of the Kähler action

δ2S =
/a=∞

a=0
Inβkl δh

kDβδh
l , (3.8.8)

where the tensor Iαβkl is defined as partial derivatives of the Kähler Lagrangian with respect to the
derivatives ∂αh

k

Iαβkl = ∂∂αhk∂∂βhlLM . (3.8.9)

If the upper limit a =
√

(m0)2 − r2
M =∞ in the substitution vanishes then one can calculate second

variation and therefore metric from the knowledge of the time derivatives ∂nh
k and ∂nδh

k on the
boundary of the light cone only.

Kähler metric can be identified as the (1, 1) part of the second variation. This means that one
can express the deformation as an element of the isometry algebra plus a arbitrary deformation in
radial direction of the light cone boundary interpretable as conformal transformation of the light cone
boundary. Radial contributions to the second variation are dropped (by definition of Kähler metric)
and what remains is essentially a deformation in S2 degrees of freedom.

The left invariance of the metric under the deformations of the isometry algebra implies an infinite
number of conditions of the form

JCg(JA, JB) = 0 , (3.8.10)

where JA, JB and JC denote the generators of the isometry group. These conditions ought to fix
completely the time derivatives of the coordinates hk for each 3-surface at light cone boundary and
therefore in principle the whole minimizing four-surface provided the initial value problem associated
with the Kähler action possesses a unique solution. What is nice that the requirement of isometry
invariance in principle would provides solution to the problem of finding preferred extremals of the
Kähler action.

These conditions, when written explicitly give infinite number of conditions for the time derivative
of the generator JC (we assume for a moment that C is held fixed and let A and B run) at the
boundary of the light cone. Time derivatives are in principle determined also by the requirement that
deformed surface corresponds to an absolute minimum of the Kähler action. The basis of δH scalar
functions respecting color and rotational symmetries is the most promising one.
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3.8.4 Direct consistency checks

If duality holds true, the most general form of the configuration space metric is defined by the
fluxes Qα,βm , where α and β are the coefficients of signed and unsigned magnetic fluxes. Present
is also a conformal factor depending on those zero modes, which do not appear in the symplectic
form and which characterize the size and shape of the 3-surface. [t, t] ⊂ h property implying Ricci
flatness and isometry property of symplectic transformations, requires the vanishing of the fluxes
Qα,βm ({HA,m 6=0, {HB,n6=0, HC,p 6=0}}) associated with double commutators and poses strong consis-
tency conditions on the metric. If n labelling symplectic generators has half integer values then the
conditions simply state conformal invariance: generators labelled by integers have vanishing norm
whereas half-odd integers correspond to non-vanishing norm. Isometry invariance gives additional
conditions on fluxes Qα,βm . Lorentz invariance strengthens these conditions further. It could be that
these conditions fix the initial values of the imbedding space coordinates completely.
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3.9 Introduction

The most general expectation is that configuration space can be regarded as a union of coset spaces
which are infinite-dimensional symmetric spaces with Kähler structure: C(H) = ∪iG/H(i). Index i
labels 3-topology and zero modes. The group G, which can depend on 3-surface, can be identified as
a subgroup of diffeomorphisms of δM4

+ × CP2 and H must contain as its subgroup a group, whose
action reduces to Diff(X3) so that these transformations leave 3-surface invariant.

The task is to identify plausible candidate for G and H and to show that the tangent space of
the configuration space allows Kähler structure, in other words that the Lie-algebras of G and H(i)
allow complexification. One must also identify the zero modes and construct integration measure
for the functional integral in these degrees of freedom. Besides this one must deduce information
about the explicit form of configuration space metric from symmetry considerations combined with
the hypothesis that Kähler function is Kähler action for a preferred extremal of Kähler action. One
must of course understand what ”preferred” means.

3.9.1 General Coordinate Invariance and generalized quantum gravita-
tional holography

The basic motivation for the construction of configuration space geometry is the vision that physics
reduces to the geometry of classical spinor fields in the infinite-dimensional configuration space of
3-surfaces of M4

+ × CP2 or of M4 × CP2. Hermitian conjugation is the basic operation in quantum
theory and its geometrization requires that configuration space possesses Kähler geometry. Kähler
geometry is coded into Kähler function.

The original belief was that the four-dimensional general coordinate invariance of Kähler function
reduces the construction of the geometry to that for the boundary of configuration space consisting

http://en.wikipedia.org/wiki/Operad
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of 3-surfaces on δM4
+×CP2, the moment of big bang. The proposal was that Kähler function K(Y 3)

could be defined as a preferred extremal of so called Kähler action for the unique space-time surface
X4(Y 3) going through given 3-surface Y 3 at δM4

+×CP2. For Diff4 transforms of Y 3 at X4(Y 3) Kähler
function would have the same value so that Diff4 invariance and degeneracy would be the outcome.
The proposal was that the preferred extremals are absolute minima of Kähler action.

This picture turned out to be too simple.

1. I have already described the recent view about light-like 3-surfaces as generalized Feynman
diagrams and space-time surfaces as preferred extremals of Kähler action and will not repeat
what has been said.

2. It has also become obvious that the gigantic symmetries associated with δM4
±×CP2 ⊂ CD×CP2

manifest themselves as the properties of propagators and vertices. Cosmological considerations,
Poincare invariance, and the new view about energy favor the decomposition of the configu-
ration space to a union of configuration spaces assignable to causal diamonds CDs defined as
intersections of future and past directed light-cones. The minimum assumption is that CDs
label the sectors of CH: the nice feature of this option is that the considerations of this chapter
restricted to δM4

+ ×CP2 generalize almost trivially. This option is beautiful because the center
of mass degrees of freedom associated with the different sectors of CH would correspond to M4

itself and its Cartesian powers.

The definition of the Kähler function requires that the many-to-one correspondence X3 → X4(X3)
must be replaced by a bijective correspondence in the sense that X3

l as light-like 3-surface is unique
among all its Diff4 translates. This also allows physically preferred ”gauge fixing” allowing to get rid
of the mathematical complications due to Diff4 degeneracy. The internal geometry of the space-time
sheet must define the preferred 3-surface X3

l .

The realization of this vision means a considerable mathematical challenge. The effective metric
2-dimensionality of 3-dimensional light-like surfaces X3

l of M4 implies generalized conformal and sym-
plectic symmetries allowing to generalize quantum gravitational holography from light like boundary
so that the complexities due to the non-determinism can be taken into account properly.

3.9.2 Light like 3-D causal determinants and effective 2-dimensionality

The light like 3-surfaces X3
l of space-time surface appear as 3-D causal determinants. Basic examples

are boundaries and elementary particle horizons at which Minkowskian signature of the induced metric
transforms to Euclidian one. This brings in a second conformal symmetry related to the metric 2-
dimensionality of the 3-D light-like 3-surface. This symmetry is identifiable as TGD counterpart of
the Kac Moody symmetry of string models. The challenge is to understand the relationship of this
symmetry to configuration space geometry and the interaction between the two conformal symmetries.

1. Field-particle duality is realized. Light-like 3-surfaces X3
l -generalized Feynman diagrams -

correspond to the particle aspect of field-particle duality whereas the physics in the interior of
space-time surface X4(X3

l ) would correspond to the field aspect. Generalized Feynman diagrams
in 4-D sense could be identified as regions of space-time surface having Euclidian signature.

2. One could also say that light-like 3-surfaces X3
l and the space-like 3-surfaces X3 in the inter-

sections of X4(X3
l ) ∩ CD × CP2 where the causal diamond CD is defined as the intersections

of future and past directed light-cones provide dual descriptions.

3. Generalized coset construction implies that the differences of super-symplectic and Super Kac-
Moody type Super Virasoro generators annihilated physical states. This implies Equivalence
Principle. This construction in turn led to the realization that configuration space for fixed
values of zero modes - in particular the values of the induced Kähler form of δM4

± × CP2 -
allows identification as a coset space obtained by dividing the symplectic group of δM4

± × CP2

with Kac-Moody group, whose generators vanish at X2 = X3
l × δM4

± × CP2. One can say that
quantum fluctuating degrees of freedom in a very concrete sense correspond to the local variant
of S2 × CP2.
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The analog of conformal invariance in the light-like direction of X3
l and in the light-like radial

direction of δM4
± implies that the data at either X3 or X3

l should be enough to determine configuration
space geometry. This implies that the relevant data is contained to their intersection X2 at least for
finite regions of X3. This is the case if the deformations of X3

l not affecting X2 and preserving light
likeness corresponding to zero modes or gauge degrees of freedom and induce deformations of X3 also
acting as zero modes. The outcome is effective 2-dimensionality. One must be however cautious in
order to not make over-statements. The reduction to 2-D theory in global sense would trivialize the
theory and the reduction to 2-D theory must takes places for finite region of X3 only so one has in
well defined sense three-dimensionality in discrete sense. A more precise formulation of this vision
is in terms of hierarchy of CDs containing CDs containing.... The introduction of sub-CD:s brings
in improved measurement resolution and means also that effective 2-dimensionality is realized in the
scale of sub-CD only.

One cannot over-emphasize the importance of the effective 2-dimensionality. It indeed simplifies
dramatically the earlier formulas for configuration space metric involving 3-dimensional integrals over
X3 ⊂ M4

+ × CP2 reducing now to 2-dimensional integrals. Note that X3 is determined by preferred
extremal property of X4(X3

l ) once X3
l is fixed and one can hope that this mapping is one-to-one.

3.9.3 Magic properties of light cone boundary and isometries of configu-
ration space

The special conformal, metric and symplectic properties of the light cone of four-dimensional Minkowski
space: δM4

+, the boundary of four-dimensional light cone is metrically 2-dimensional(!) sphere allowing
infinite-dimensional group of conformal transformations and isometries(!) as well as Kähler structure.
Kähler structure is not unique: possible Kähler structures of light cone boundary are paramet3rized
by Lobatchevski space SO(3, 1)/SO(3). The requirement that the isotropy group SO(3) of S2 cor-
responds to the isotropy group of the unique classical 3-momentum assigned to X4(Y 3) defined as a
preferred extremum of Kähler action, fixes the choice of the complex structure uniquely. Therefore
group theoretical approach and the approach based on Kähler action complement each other.

1. The allowance of an infinite-dimensional group of isometries isomorphic to the group of con-
formal transformations of 2-sphere is completely unique feature of the 4-dimensional light cone
boundary. Even more, in case of δM4

+×CP2 the isometry group of δM4
+ becomes localized with

respect to CP2! Furthermore, the Kähler structure of δM4
+ defines also symplectic structure.

Hence any function of δM4
+ ×CP2 would serve as a Hamiltonian transformation acting in both

CP2 and δM4
+ degrees of freedom. These transformations obviously differ from ordinary local

gauge transformations. This group leaves the symplectic form of δM4
+×CP2, defined as the sum

of light cone and CP2 symplectic forms, invariant. The group of symplectic transformations of
δM4

+ × CP2 is a good candidate for the isometry group of the configuration space.

2. The approximate symplectic invariance of Kähler action is broken only by gravitational effects
and is exact for vacuum extremals. If Kähler function were exactly invariant under the symplectic
transformations of CP2, CP2 symplectic transformations wiykd correspond to zero modes having
zero norm in the Kähler metric of configuration space. This does not make sense since symplectic
transformations of δM4×CP2 actually parameterize the quantum fluctuation degrees of freedom.

3. The groups G and H, and thus configuration space itself, should inherit the complex structure
of the light cone boundary. The diffeomorphims of M4 act as dynamical symmetries of vacuum
extremals. The radial Virasoro localized with respect to S2 × CP2 could in turn act in zero
modes perhaps inducing conformal transformations: note that these transformations lead out
from the symmetric space associated with given values of zero modes.

3.9.4 Symplectic transformations of δM4
+ × CP2 as isometries of configura-

tion space

The symplectic transformations of δM4
+×CP2 are excellent candidates for inducing symplectic trans-

formations of the configuration space acting as isometries. There are however deep differences with
respect to the Kac Moody algebras.



Introduction 131

1. The conformal algebra of the configuration space is gigantic when compared with the Virasoro +
Kac Moody algebras of string models as is clear from the fact that the Lie-algebra generator of
a symplectic transformation of δM4

+×CP2 corresponding to a Hamiltonian which is product of
functions defined in δM4

+ and CP2 is sum of generator of δM4
+-local symplectic transformation

of CP2 and CP2-local symplectic transformations of δM4
+. This means also that the notion of

local gauge transformation generalizes.

2. The physical interpretation is also quite different: the relevant quantum numbers label the
unitary representations of Lorentz group and color group, and the four-momentum labeling
the states of Kac Moody representations is not present. Physical states carrying no energy and
momentum at quantum level are predicted. The appearance of a new kind of angular momentum
not assignable to elementary particles might shed some light to the longstanding problem of
baryonic spin (quarks are not responsible for the entire spin of proton). The possibility of a new
kind of color might have implications even in macroscopic length scales.

3. The central extension induced from the natural central extension associated with δM4
+ × CP2

Poisson brackets is anti-symmetric with respect to the generators of the symplectic algebra
rather than symmetric as in the case of Kac Moody algebras associated with loop spaces. At
first this seems to mean a dramatic difference. For instance, in the case of CP2 symplectic
transformations localized with respect to δM4

+ the central extension would vanish for Cartan
algebra, which means a profound physical difference. For δM4

+ × CP2 symplectic algebra a
generalization of the Kac Moody type structure however emerges naturally.

The point is that δM4
+-local CP2 symplectic transformations are accompanied by CP2 local

δM4
+ symplectic transformations. Therefore the Poisson bracket of two δM4

+ local CP2 Hamil-
tonians involves a term analogous to a central extension term symmetric with respect to CP2

Hamiltonians, and resulting from the δM4
+ bracket of functions multiplying the Hamiltonians.

This additional term could give the entire bracket of the configuration space Hamiltonians at
the maximum of the Kähler function where one expects that CP2 Hamiltonians vanish and have
a form essentially identical with Kac Moody central extension because it is indeed symmetric
with respect to indices of the symplectic group.

3.9.5 Does the symmetric space property reduce to coset construction for
Super Virasoro algebras?

The idea about symmetric space is extremely beautiful but it took a long time and several false
alarms before the time was ripe for identifying the precise form of the Cartan decomposition g = t+h
satisfying the defining conditions

g = t+ h , [t, t] ⊂ h , [h, t] ⊂ t . (3.9.1)

The ultimate solution of the puzzle turned out to be amazingly simple and came only after quantum
TGD was understood well enough.

Configuration space geometry allows two super-conformal symmetries. The first one corresponds to
super-symplectic transformations acting at the level of imbedding space. The second one corresponds
to super Kac-Moody symmetry acting as deformations of light-like 3-surfaces respecting their light-
likeness. Super Kac-Moody algebra can be regarded as sub-algebra of super-symplectic algebra, and
quantum states correspond to the coset representations for these two algebras so that the differences
of the corresponding super-Virasoro generators annihilate physical states. This obviously generalizes
Goddard-Olive-Kent construction [48]. The physical interpretation is in terms of Equivalence Prin-
ciple. After having realized this it took still some time to realize that this coset representation and
therefore also Equivalence Principle also corresponds to the coset structure of the configuration space!

The conclusion would be that t corresponds to super-symplectic algebra made also local with
respect to X3 and h corresponds to super Kac-Moody algebra. The experience with finite-dimensional
coset spaces would suggest that super Kac-Moody generators interpreted in terms of h leave the points
of configuration space analogous to the origin of say CP2 invariant and in fact vanish at this point.
Therefore super Kac-Moody generators should vanish for those 3-surfaces X3

l which correspond to
the origin of coset space. The maxima of Kähler function could correspond to this kind of points
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and could play also an essential role in the integration over configuration space by generalizing the
Gaussian integration of free quantum field theories.

3.9.6 What effective 2-dimensionality and holography really mean?

Concerning the interpretation of Kac-Moody algebra there are some poorly understood points, which
directly relate to what one means with holography.

1. The strongest view about effective 2-dimensionality (holography) is that for preferred extremals
the partonic 2-surfaces X2 at the ends of CD act as causal determinants fixing X3

l in the
resolution defined by CD. A weaker view about holography is that light-like 3-surfaces with
fixed ends give rise to same configuration space metric and the deformations of these surfaces
by Kac-Moody algebra correspond to zero modes just like the interior degrees of freedom for
space-like 3-surface do. Which of these options is the correct one? The same question can be
posed in the case of space-like 3-surfaces.

2. The non-trivial action of Kac-Moody algebra in the interior of X3
l together with effective 2-

dimensionality and holography would encourage the interpretation of Kac-Moody symmetries
acting trivially at X2 as gauge symmetries. Light-like 3-surfaces having fixed partonic 2-surfaces
at their ends would be equivalent physically and effective 2-dimensionality and holography would
be realized modulo gauge transformations.

3. There are also Kac-Moody generators which do not vanish at the ends of the X3
l , and these

would act as physical symmetries and their action would reduce at X2 to symplectic action.
This Kac-Moody algebra should appear in p-adic mass calculations. This seems to be in conflict
with the idea that coset construction corresponds to coset space construction. Perhaps strict
correspondence is too naive an assumption. Why couldn’t one use the larger Kac-Moody algebra
in coset construction and smaller Kac-Moody algebra in coset space construction?

4. Gauge symmetry property means that the Kähler metric of the configuration space is same for all
gauge equivalent choices of X3

l and Kac-Moody deformations correspond to zero modes. Kähler
function could differ by a real part of a holomorphic function of configuration space coordinates
representing now Kac-Moody transforms of X3

l . If Dirac determinant gives the exponent of
Kähler function, the eigenvalues of the modified Dirac action can differ only by scalings with are
products of holomorphic function of configuration space coordinates and its conjugates labeling
different Kac-Moody transforms of X3

l . This condition makes sense if one restricts the consid-
eration to the finite number of eigenvalues λk assigned to DK . The introduction of instanton
term transforming the eigenvalues to λk +

√
n would not allow his scaling.

Either one must assume more general spectrum of form λk +
√
nxk with λk and xk scaling in

identical manner or that n = 0 modes are enough to define Kähler function. The latter option
might be correct since the preferred extremal realizes effective 2-dimensionality at space-time
level and conformal excitations break it so that they should not contribute to Kähler function.
Also number theoretic universality favors this option. One cannot however exclude the first
option. It must be admitted that the situation is not completely understood.

3.9.7 About the relationship between super-symplectic and super Kac-
Moody algebras

The relationship between Kac-Moody and symplectic algebras is now relatively well understood but
the physical interpretation of Kac-Moody algebra deserves attention. There are two Kac-Moody
algebras: the smaller one leaves partonic 2-surfaces invariant and second one affects also them. Both
of them are in dual relation to the symplectic algebra and these relations correspond to coset space
construction and coset construction.

TGD inspired quantum measurement theory suggests that the super-symplectic algebra and smaller
Kac-Moody algebra correspond to each other like classical and quantal degrees of freedom. Hence
smaller Kac-Moody algebra would act in the zero modes of the configuration space metric. In the
proposed construction this indeed is the case for Kac Moody algebra elements leaving partonic 2-
surface invariant and appearing in the coset space construction but not for those Kac-Moody algebra
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elements affecting partonic 2-surface and allowing interpretation as sub-algebra of symplectic algebra
and appearing in coset construction. This interpretation conforms also with the fact that Kac-Moody
algebra generates massive excitations in p-adic thermodynamics.

In TGD inspired quantum measurement theory zero modes correspond to classical non-quantum
fluctuating dynamical variables in 1-1 correspondence with quantum fluctuating degrees of freedom
like the positions of the pointer of the measurement apparatus with the directions of spin of electron.
Hence Kac-Moody algebra would define configuration space coordinates in terms of the map induced
by correlation between classical and quantal degrees of freedom induced by entanglement. The choice
of gauge selecting one particular light-like 3-surface X3

l could have thus interpretation as a map
mapping quantum degrees of freedom to classical ones. This choice of gauge could be achieved by
the addition of phase factor depending on quantum numbers assigned with the braid strands so that
stationary phase approximation would select the preferred 3-surface with fluctuations around them
allowed.

The dual relation between super symplectic algebra and bigger Kac-Moody algebra is realized in
terms of coset construction. The idea inspired by Olive-Goddard-Kent coset construction is that the
generators of Super Virasoro algebra corresponds to the differences of those associated with Super
Kac-Moody and super-symplectic algebras. The justification comes from the miraculous geometry
of the light cone boundary implying that Super Kac-Moody conformal symmetries of X2 can be
compensated by super-symplectic local radial scalings so that the differences of corresponding Super
Virasoro generators annihilate physical states. If the central extension parameters are same, the
resulting central extension is trivial. What is done is to construct first a state with a non-positive
conformal weight using super-symplectic generators, and then to apply Super-Kac Moody generators
to compensate this conformal weight to get a state with vanishing conformal weight. Mass squared
would however correspond to either Super-Kac Moody or super-symplectic mass. The identity of these
masses gives rise to Equivalence Principle as a one manifestation of the coset representation.

3.9.8 Attempts to identify configuration space Hamiltonians

I have made several attempts to identify configuration space Hamiltonians. The first two candidates
referred to as magnetic and electric Hamiltonians, emerged in a relatively early stage. The third
candidate identifies Hamiltonians as Noether charges and is motivated by the QFT analogy. Mag-
netic option is the simplest one and the only one consistent with the interpretation of Kac-Moody
symmetries leaving the ends of X3

l invariant.

Magnetic Hamiltonians

Assuming that the elements of the radial Virasoro algebra of δM4
+ have zero norm, one ends up with

an explicit identification of the symplectic structures of the configuration space. There is almost
unique identification for the symplectic structure. Configuration space counterparts of δM4 × CP2

Hamiltonians are defined by the generalized signed and and unsigned Kähler magnetic fluxes

Qm(HA, X
2) = Z

∫
X2 HAJ

√
g2d

2x ,

Q+
m(HA, rM ) = Z

∫
X2 HA|J |

√
g2d

2x ,

J ≡ εαβJαβ .

HA is CP2 Hamiltonian multiplied by a function of coordinates of light cone boundary belonging
to a unitary representation of the Lorentz group. Z is a conformal factor depending on symplectic
invariants. The symplectic structure is induced by the symplectic structure of CP2.

The most general flux is superposition of signed and unsigned fluxes Qm and Q+
m.

Qα,βm (HA, X
2) = αQm(HA, X

2) + βQ+
m(HA, X

2) .

Thus it seems that symmetry arguments fix the form of the configuration space metric apart from
the presence of a conformal factor Z multiplying the magnetic flux and the degeneracy related to the
signed and unsigned fluxes.

Holography requires that the relevant data about configuration space geometry is contained by
2-D surfaces X2 at the intersections of light-like 3-surfaces δM4

± + ×CP2 defining the boundaries of
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causal diamonds. In this case the entire Hamiltonian could be defined as the sum of magnetic fluxes
over surfaces X2

i ⊂ X3.
The key feature of these Hamiltonians is that they depend on X2 only. This conforms with the

interpretation of Kac-Moody transformations leaving X2 invariant as gauge symmetries deforming
light-like 3-surfaces and leaving configuration space metric as such. By the identify gkl = iJkl the

half brackets jAkJklj
Bl = ∂kHAJ

kl∂lH
B would define the matrix elements of both Kähler metric

and Kähler form: this means a tight constraint if Kähler action defines the metric and magnetic
Hamiltonians are the correct choice.

Electric Hamiltonians and electric-magnetic duality

Preferred extremal property allows to consider the possibility that one can identify configuration
space Hamiltonians as classical charges Qe(HA) associated with the Hamiltonians of the symplectic
transformations of the light cone boundary, that is as variational derivatives of the Kähler action with
respect to the infinitesimal deformations induced by δM4

+ × CP2 Hamiltonians.
Alternatively, one might simply replace Kähler magnetic field J with Kähler electric field defined

by space-time dual ∗J in the formulas of previous section. These Hamiltonians are analogous to Kähler
electric charge and the hypothesis motivated by the experience with the instantons of the Euclidian
Yang Mills theories and ’Yin-Yang’ principle, as well as by the duality of CP2 geometry, is that for
the preferred extremals of the Kähler action these Hamiltonians are affinely related:

Qe(HA) = Z [Qm(HA) + qe(HA)] .

Here Z and qe are constants depending on symplectic invariants only. Thus the equivalence of the
two approaches to the construction of configuration space geometry boils down to the hypothesis of a
physically well motivated electric-magnetic duality.

The crucial technical idea is to regard configuration space metric as a quadratic form in the entire
Lie-algebra of the isometry group G such that the matrix elements of the metric vanish in the sub-
algebra H of G acting as Diff3(X3). The Lie-algebra of G with degenerate metric in the sense that
H vector fields possess zero norm, can be regarded as a tangent space basis for the configuration space
at point X3 at which H acts as an isotropy group: at other points of the configuration space H is
different. For given values of zero modes the maximum of Kähler function is the best candidate for
X3. This picture applies also in symplectic degrees of freedom.

There are objections against electric representation.

1. Without additional assumptions the Hamiltonians obtained by replacing induced Kähler form
with its dual brings in the dependence on the induced metric of space-time surface at X2 so that
configuration space Hamiltonians do not transform nicely under symplectic transformations.
Only if the contravariant Kähler electric field defines a symplectic invariant - maybe the pre-
ferred extremal property could guarantee this- electric representation of the Hamiltonians looks
attractive. Electric-magnetic duality would follow trivially if the self duality of the induced
Kähler form of CP2 is preserved in the induction procedure at X2.

2. Kac-Moody transformations vanishing at X2 are not expected to leave the Hamiltonians in-
variant since they affect the induced metric. This is however highly desirable if effective 2-
dimensionality holds true as gauge invariance.

3.9.9 For the reader

Few words about the representation of ideas are in order. For a long time the books about TGD
served as kind of lab note books - a bottom-up representation providing kind of a ladder making clear
the evolution of ideas. This led gradually to a rather chaotic situation in which it was difficult for me
to control the internal consistency and for the possible reader to distinguish between the big ideas and
ad hoc guesses, most of them related to the detailed realization of big visions. Therefore I decided to
clean up a lot of the ad hoc stuff. I have also changed the representation so that it is more top-down
and tries to achieve over-all views.

There are several visions about what TGD is and I have worked hardly to achieve a fusion of this
visions. Hence simple linear representation in which reader climbs to a tree of wisdom is impossible.
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I must summarize overall view from the beginning and refer to the results deduced in chapters to-
wards the end of the book and also to ideas discussed in other books. For instance, the construction
of configuration space spinor structure discussed in the last chapter [18] provides the understand-
ing necessary to make the construction of configuration space geometry more detailed. Also number
theoretical vision discussed in another book [6] is necessary. Somehow it seems that a graphic rep-
resentation emphasizing visually the big picture should be needed to make the representation more
comprehensible.

3.10 How to generalize the construction of configuration space
geometry to take into account the classical non-determinism?

If the imbedding space were H+ = M4
+×CP2 and if Kähler action were deterministic, the construction

of configuration space geometry reduces to δM4
+×CP2. Thus in this limit quantum holography prin-

ciple [59, 55] would be satisfied also in TGD framework and actually reduce to the general coordinate
invariance. The classical non-determinism of Kähler action however means that this construction is
not quite enough and the challenge is to generalize the construction.

3.10.1 Quantum holography in the sense of quantum gravity theories

In string theory context quantum holography is more or less synonymous with Maldacena conjecture
[59] which (very roughly) states that string theory in Anti-de-Sitter space AdS is equivalent with a
conformal field theory at the boundary of AdS. In purely quantum gravitational context [55], quantum
holography principle states that quantum gravitational interactions at high energy limit in AdS can
be described using a topological field theory reducing to a conformal (and non-gravitational) field
theory defined at the time like boundary of the AdS. Thus the time like boundary plays the role of a
dynamical hologram containing all information about correlation functions of d+1 dimensional theory.
This reduction also conforms with the fact that black hole entropy is proportional to the horizon area
rather than the volume inside horizon.

Holography principle reduces to general coordinate invariance in TGD. If the action principle as-
signing space-time surface to a given 3-surface X3 at light cone boundary were completely determinis-
tic, four-dimensional general coordinate invariance would reduce the construction of the configuration
geometry for the space of 3-surfaces in M4

+ ×CP2 to the construction of the geometry at the bound-
ary of the configuration space consisting of 3-surfaces in δM4

+ ×CP2 (moment of big bang). Also the
quantum theory would reduce to the boundary of the future light cone.

The classical non-determinism of Kähler action however implies that quantum holography in this
strong form fails. This is very desirable from the point of view of both physics and consciousness theory.
Classical determinism would also mean that time would be lost in TGD as it is lost in GRT. Classical
non-determinism is also absolutely essential for quantum consciousness and makes possible conscious
experiences with contents localized into finite time interval despite the fact that quantum jumps occur
between configuration space spinor fields defining what I have used to call quantum histories. Classical
non-determinism makes it also possible to generalize quantum-classical correspondence in the sense
that classical non-determinism at the space-time level provides correlate for quantum non-determinism.
The failure of classical determinism is a difficult challenge for the construction of the configuration
space geometry. One might however hope that the notion of quantum holography generalizes.

3.10.2 How the classical determinism fails in TGD?

One might hope that determinism in a generalized sense might be achieved by generalizing the notion
of 3-surface by allowing unions of space-like 3-surfaces with time like separations with very strong
but not complete correlations between the space-like 3-surfaces. In this case the non-determinism
would mean that the 3-surfaces Y 3 at light cone boundary correspond to at most enumerable number
of preferred extremals X4(Y 3) of Kähler action so that one would get finite or at most enumerably
infinite number of replicas of a given configuration space region and the construction would still reduce
to the light cone boundary.

1. This is probably quite too simplistic view. Any 4-surface which has CP2 projection which
belongs to so called Lagrange manifold of CP2 having by definition vanishing induced Kähler
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form is vacuum extremal. Thus there is an infinite variety of 6-dimensional sub-manifolds of H
for which all extremals of Kähler action are vacua.

2. CP2 type vacuum extremals are different since they possess non-vanishing Kähler form and
Kähler action. They are identifiable as classical counterparts of elementary particles have M4

+

projection which is a random light like curve (this in fact gives rise to conformal invariance
identifiable as counterpart of quaternion conformal invariance). Thus there are good reasons to
suspect that classical non-determinism might destroy the dream about complete reduction to
the light cone boundary.

3. The wormhole contacts connecting different space-time sheets together can be seen as pieces
of CP2 type extremals and one expects that the non-determinism is still there and that the
metrically 2-dimensional elementary particle horizons (light like 3-surfaces of H surrounding
wormhole contacts and having time-like M4

+ projection) might be a crucial element in the un-
derstanding of quantum TGD. The non-determinism of CP2 type extremals is absolutely crucial
for the ordinary elementary particle physics. It seems that the conformal symmetries responsible
for the ordinary elementary particle quantum numbers acting in these degrees of freedom do not
contribute to the configuration space metric line element.

4. The possibility of space-time sheets with a negative time orientation with ensuing negative sign
of classical energy is a further blow against δM4

+ reductionism. Space-time sheets can be created
as pairs of positive and negative energy space-time sheet from vacuum and this forces to modify
radically the ontology of physics. Crossing symmetry allows to interpret particle reactions as a
creation of zero energy states from vacuum, and the identification of the gravitational energy as
the difference between positive and negative energies of matter supports the view that the net
inertial (conserved Poincare-) energy of the universe vanishes both in quantal and classical sense.
This option resolves unpleasant questions about net conserved quantum numbers of Universe,
and provides an elegant interpretation of the vacuum extremals as correlates for systems with
vanishing Poincare energy. This option is the only possible alternative from the point of view of
TGD inspired cosmology where Robertson-Walker metrics are vacuum extremals with respect to
inertial energy. In particular, super-symplectic invariance transforms to a fundamental symmetry
of elementary particle physics besides the conformal symmetry associated with 3-D light like
causal determinants which means a dramatic departure from string models unless it is somehow
equivalent with the super-symplectic symmetry.

The treatment of the non-determinism in a framework in which the prediction of time evolution is
seen as initial value problem, seems to be difficult. Also the notion of configuration space becomes a
messy concept. Zero energy ontology changes the situation completely. Light-like 3-surfaces become
representations of generalized Feynman diagrams and brings in the notion of finite time resolution.
One obtains adirect connection with the concepts of quantum field theory with path integral with
cutoff replaced with a sum over various preferred extremals with cutoff in time resolution.

3.10.3 The notions of imbedding space, 3-surface, and configuration space

The notions of imbedding space, 3-surface (and 4-surface), and configuration space (world of classical
worlds (WCW)) are central to quantum TGD. The original idea was that 3-surfaces are space-like
3-surfaces of H = M4 × CP2 or H = M4

+ × CP2, and WCW consists of all possible 3-surfaces in
H. The basic idea was that the definition of Kähler metric of WCW assigns to each X3 a unique
space-time surface X4(X3) allowing in this manner to realize general coordinate invariance. During
years these notions have however evolved considerably. Therefore it seems better to begin directly
from the recent picture.

The notion of imbedding space

Two generalizations of the notion of imbedding space were forced by number theoretical vision [21,
20, 19].

1. p-Adicization forced to generalize the notion of imbedding space by gluing real and p-adic
variants of imbedding space together along rationals and common algebraic numbers. The
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generalized imbedding space has a book like structure with reals and various p-adic number
fields (including their algebraic extensions) representing the pages of the book.

2. With the discovery of zero energy ontology [30, 18] it became clear that the so called causal
diamonds (CDs) interpreted as intersections M4

+ ∩M4
− of future and past directed light-cones

of M4 × CP2 define correlates for the quantum states. The position of the ”lower” tip of CD
characterizes the position of CD in H. If the temporal distance between upper and lower tip of
CD is quantized power of 2 multiples of CP2 length, p-adic length scale hypothesis [25] follows
as a consequence. The upper resp. lower light-like boundary δM4

+ × CP2 resp. δM4
− × CP2

of CD can be regarded as the carrier of positive resp. negative energy part of the state. All
net quantum numbers of states vanish so that everything is creatable from vacuum. Space-time
surfaces assignable to zero energy states would would reside inside CD × CP2s and have their
3-D ends at the light-like boundaries of CD × CP2. Fractal structure is present in the sense
that CDs can contains CDs within CDs, and measurement resolution dictates the length scale
below which the sub-CDs are not visible.

3. The realization of the hierarchy of Planck constants [20] led to a further generalization of the
notion of imbedding space. Generalized imbedding space is obtained by gluing together Cartesian
products of singular coverings and factor spaces of CD and CP2 to form a book like structure.
The particles at different pages of this book behave like dark matter relative to each other.
This generalization also brings in the geometric correlate for the selection of quantization axes
in the sense that the geometry of the sectors of the generalized imbedding space with non-
standard value of Planck constant involves symmetry breaking reducing the isometries to Cartan
subalgebra. Roughly speaking, each CD and CP2 is replaced with a union of CDs and CP2s
corresponding to different choices of quantization axes so that no breaking of Poincare and color
symmetries occurs at the level of entire WCW.

4. The construction of quantum theory at partonic level brings in very important delicacies related
to the Kähler gauge potential of CP2. Kähler gauge potential must have what one might call
pure gauge parts in M4 in order that the theory does not reduce to mere topological quantum
field theory. Hence the strict Cartesian product structure M4 × CP2 breaks down in a delicate
manner. These additional gauge components -present also in CP2- play key role in the model
of anyons, charge fractionization, and quantum Hall effect [25].

The notions of 3-surface and space-time surface

The question what one exactly means with 3-surface turned out to be non-trivial.

1. The original identification of 3-surfaces was as arbitrary space-like 3-surfaces subject to Equiva-
lence implied by General Coordinate Invariance. There was a problem related to the realization
of General Coordinate Invariance since it was not at all obvious why the preferred extremal
X4(Y 3) for Y 3 at X4(X3) and Diff4 related X3 should satisfy X4(Y 3) = X4(X3) .

2. Much later it became clear that light-like 3-surfaces have unique properties for serving as basic
dynamical objects, in particular for realizing the General Coordinate Invariance in 4-D sense
(obviously the identification resolves the above mentioned problem) and understanding the con-
formal symmetries of the theory. On basis of these symmetries light-like 3-surfaces can be
regarded as orbits of partonic 2-surfaces so that the theory is locally 2-dimensional. It is how-
ever important to emphasize that this indeed holds true only locally. At the level of WCW metric
this means that the components of the Kähler form and metric can be expressed in terms of
data assignable to 2-D partonic surfaces. It is however essential that information about normal
space of the 2-surface is needed.

3. At some stage came the realization that light-like 3-surfaces can have singular topology in the
sense that they are analogous to Feynman diagrams. This means that the light-like 3-surfaces
representing lines of Feynman diagram can be glued along their 2-D ends playing the role of
vertices to form what I call generalized Feynman diagrams. The ends of lines are located at
boundaries of sub-CDs. This brings in also a hierarchy of time scales: the increase of the
measurement resolution means introduction of sub-CDs containing sub-Feynman diagrams. As
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the resolution is improved, new sub-Feynman diagrams emerge so that effective 2-D character
holds true in discretized sense and in given resolution scale only.

4. A further complication relates to the hierarchy of Planck constants forcing to generalize the
notion of imbedding space and also to the fact that for non-standard values of Planck constant
there is symmetry breaking due to preferred plane M2 preferred homologically trivial geodesic
sphere of CP2 having interpretation as geometric correlate for the selection of quantization axis.
For given sector of CH this means union over choices of this kind.

The basic vision forced by the generalization of General Coordinate Invariance has been that space-
time surfaces correspond to preferred extremals X4(X3) of Kähler action and are thus analogous to
Bohr orbits. Kähler function K(X3) defining the Kähler geometry of the world of classical worlds
would correspond to the Kähler action for the preferred extremal. The precise identification of the
preferred extremals actually has however remained open.

The obvious but rather ad hoc guess motivated by physical intuition was that preferred extremals
correspond to the absolute minima of Kähler action for space-time surfaces containing X3. This choice
has some nice implications. For instance, one can develop an argument for the existence of an infinite
number of conserved charges. If X3 is light-like surface- either light-like boundary of X4 or light-like
3-surface assignable to a wormhole throat at which the induced metric of X4 changes its signature-
this identification circumvents the obvious objections. This option however failed to have a direct
analog in the p-adic sectors of the world of classical worlds (WCW). The reason is that minimization
does not make sense for the p-adic valued counterpart of Kähler action since it is not even well-defined
although the field equations make sense p-adically. Therefore, if absolute minimization makes sense
it must have expression as purely algebraic conditions.

Much later number theoretical compactication led to important progress in the understanding of
the preferred extremals and the conjectures were consistent with what is known about the known
extremals.

1. The conclusion was that one can assign to the 4-D tangent space T (X4(X3
l )) ⊂M8 a subspace

M2(x) ⊂M4 having interpretation as the plane of non-physical polarizations. This in the case
that the induced metric has Minkowskian signature. If not, and if co-hyper-quaternionic surface
is in question, similar assigned should be possible in normal space. This means a close connection
with super string models. Geometrically this would mean that the deformations of 3-surface in
the plane of non-physical polarizations would not contribute to the line element of WCW. This
is as it must be since complexification does not make sense in M2 degrees of freedom.

2. In number theoretical framework M2(x) has interpretation as a preferred hyper-complex sub-
space of hyper-octonions defined as 8-D subspace of complexified octonions with the property
that the metric defined by the octonionic inner product has signature of M8. The condition
M2(x) ⊂ T (X4(X3

l ))) in principle fixes the tangent space at X3
l , and one has good hopes that

the boundary value problem is well-defined and could fix X4(X3) at least partially as a preferred
extremal of Kähler action. This picture is rather convincing since the choice M2(x) ⊂M4 plays
also other important roles.

3. At the level of H the counterpart for the choice of M2(x) seems to be following. Suppose
that X4(X3

l ) has Minkowskian signature. One can assign to each point of the M4 projection
PM4(X4(X3

l )) a sub-space M2(x) ⊂ M4 and its complement E2(x), and the distributions of
these planes are integrable and define what I have called Hamilton-Jacobi coordinates which can
be assigned to the known extremals of Kähler with Minkowskian signature. This decomposition
allows to slice space-time surfaces by string world sheets and their 2-D partonic duals. Also a
slicing to 1-D light-like surfaces and their 3-D light-like duals Y 3

l parallel to X3
l follows under

certain conditions on the induced metric of X4(X3
l ). This decomposition exists for known

extremals and has played key role in the recent developments. Physically it means that 4-
surface (3-surface) reduces effectively to 3-D (2-D) surface and thus holography at space-time
level.

4. The weakest form of number theoretic compactification [20] states that light-like 3-surfaces
X3 ⊂ X4(X3) ⊂ M8, where X4(X3) hyper-quaternionic surface in hyper-octonionic M8 can
be mapped to light-like 3-surfaces X3 ⊂ X4(X3) ⊂M4 × CP2, where X4(X3) is now preferred
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extremum of Kähler action. The natural guess is that X4(X3) ⊂M8 is a preferred extremal of
Kähler action associated with Kähler form of E4 in the decomposition M8 = M4 × E4, where
M4 corresponds to hyper-quaternions. The conjecture would be that the value of the Kähler
action in M8 is same as in M4×CP2: in fact that 2-surface would have identical induced metric
and Kähler form so that this conjecture would follow trivial. M8−H duality would in this sense
be Kähler isometry.

The study of the modified Dirac equation meant further steps of progress and lead to a rather
detailed view about what preferred extremals are.

1. The detailed construction of the generalized eigen modes of the modified Dirac operator DK

associated with Kähler action [18] relies on the vision that the generalized eigenvalues of this
operator code for information about preferred extremal of Kähler action. The view about TGD
as almost topological QFT is realized if the eigenmodes correspond to the solutions of DK ,
which are effectively 3-dimensional. Otherwise almost topological QFT property would require
Chern-Simons action alone and this choice is definitely un-physical. The first guess was that the
eigenmodes are restricted to X3

l and therefore analogous to spinorial shock waves. As I realized
that number theoretical compactification requires the slicing of X4(X3

l ) by light-like 3-surfaces
Y 3
l parallel to X3

l , it became clear that super-conformal gauge invariance with respect to the
coordinate labeling the slices is a more natural manner to realized effective 3-dimensionality and
guarantees that Y 3

l is gauge equivalent with X3
l (General Coordinate Invariance).

2. The eigen modes of the modified Dirac operator DK have the defining property that they
are localized in regions of X3

l , where the induced Kähler gauge field is non-vanishing. This
guarantees that the number of generalized eigen modes is finite so that Dirac determinant is
also finite and algebraic number if eigenvalues are algebraic numbers, and therefore makes sense
also in p-adic context although Kähler action itself does not make sense p-adically.

3. The construction of the configuration space geometry in terms of modified Dirac action strength-
ens also the boundary conditions to the condition that there exists space-time coordinates in
which the induced CP2 Kähler form and induced metric satisfy the conditions Jni = 0, gni = 0
hold at X3

l . One could say that at X3
l situation is static both metrically and for the Maxwell

field defined by the induced Kähler form.

4. The final step in the rapid evolution of ideas that too place during three months - at least I hope
so since I do not want to continue this updating endlessly - was the realization that the introduc-
tion of imaginary CP breaking instanton part to the Kähler action is possible and also necessary
if one wants a stringy variant of Feynman rules. Imaginary part does not contribute to the
configuration space metric. This enriches the spectrum of the modified Dirac operator with an
infinite number of conformal excitations breaking the effective 2-dimensionality of 3-surfaces and
exact holography. Conformal excitations make possible stringy Feynman diagrammatics [16]. A
breaking of effective 3-dimensionality of space-time surface comes through the non-determinism
of Kähler action which indeed is the mechanism breaking the effective 2-dimensionality. Dirac
determinant can be defined in terms of zeta function regularization using Riemann Zeta. Finite
measurement resolution realized in terms of braids defined on basis of purely physical criteria
however forces a cutoff in conformal weight and finiteness so that number theoretical universality
is not lost.

5. This picture relying crucially on the the slicing of X4(X3) did not yet fix the definition of pre-
ferred extremals analytically at the level of field equations. The next step of progress was the
realization that the requirement that the conservation of the Noether currents associated with
the modified Dirac equation requires that the second variation of the Kähler action vanishes.
In strongest form this condition would be satisfied for all variations and in weak sense only for
those defining dynamical symmetries. The interpretation is as space-time correlate for quantum
criticality and the vacuum degeneracy of Kähler action makes the criticality plausible. A gener-
alization of the ideas of the catastrophe theory to infinite-dimensional context results [34]. These
conditions make sense also in p-adic context and have a number theoretical universal form.
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Although the details of this vision might change it can be defended by its ability to fuse together
all great visions about quantum TGD. In the sequel the considerations are restricted to 3-surfaces in
M4

+×CP2. The basic outcome is that Kähler metric is expressible using the data at partonic 2-surfaces
X2 ⊂ δM4

+ × CP2. The generalization to the actual physical situation requires the replacement of
X2 ⊂ δM4

± × CP2 with unions of partonic 2-surfaces located at light-like boundaries of CDs and
sub-CDs.

The notion of configuration space

From the beginning there was a problem related to the precise definition of the configuration space
(”world of classical worlds” (WCW)). Should one regard CH as the space of 3-surfaces of M4 ×CP2

or M4
+ × CP2 or perhaps something more delicate.

1. For a long time I believed that the question ”M4
+ or M4?” had been settled in favor of M4

+ by
the fact that M4

+ has interpretation as empty Roberson-Walker cosmology. The huge conformal
symmetries assignable to δM4

+ × CP2 were interpreted as cosmological rather than laboratory
symmetries. The work with the conceptual problems related to the notions of energy and time,
and with the symmetries of quantum TGD, however led gradually to the realization that there
are strong reasons for considering M4 instead of M4

+.

2. With the discovery of zero energy ontology it became clear that the so called causal diamonds
(CDs) define excellent candidates for the fundamental building blocks of the configuration space
or ”world of classical worlds” (WCW). The spaces CD ×CP2 regarded as subsets of H defined
the sectors of WCW.

3. This framework allows to realize the huge symmetries of δM4
±×CP2 as isometries of WCW. The

gigantic symmetries associated with the δM4
± × CP2 are also laboratory symmetries. Poincare

invariance fits very elegantly with the two types of super-conformal symmetries of TGD. The first
conformal symmetry corresponds to the light-like surfaces δM4

± × CP2 of the imbedding space
representing the upper and lower boundaries of CD. Second conformal symmetry corresponds
to light-like 3-surface X3

l , which can be boundaries of X4 and light-like surfaces separating
space-time regions with different signatures of the induced metric. This symmetry is identifiable
as the counterpart of the Kac Moody symmetry of string models.

A rather plausible conclusion is that configuration space (WCW) is a union of configuration spaces
associated with the spaces CD×CP2. CDs can contain CDs within CDs so that a fractal like hierarchy
having interpretation in terms of measurement resolution results. Since the complications due to p-
adic sectors and hierarchy of Planck constants are not relevant for the basic construction, it reduces
to a high degree to a study of a simple special case δM4

+ × CP2.
A further piece of understanding emerged from the following observations.

1. The induced Kähler form at the partonic 2-surface X2 - the basic dynamical object if holography
is accepted- can be seen as a fundamental symplectic invariant so that the values of εαβJαβ at
X2 define local symplectic invariants not subject to quantum fluctuations in the sense that they
would contribute to the configuration space metric. Hence only induced metric corresponds
to quantum fluctuating degrees of freedom at configuration space level and TGD is a genuine
theory of gravitation at this level.

2. Configuration space can be divided into slices for which the induced Kähler forms of CP2 and
δM4
± at the partonic 2-surfaces X2 at the light-like boundaries of CDs are fixed. The symplectic

group of δM4
±×CP2 parameterizes quantum fluctuating degrees of freedom in given scale (recall

the presence of hierarchy of CDs).

3. This leads to the identification of the coset space structure of the sub-configuration space asso-
ciated with given CD in terms of the generalized coset construction for super-symplectic and
super Kac-Moody type algebras (symmetries respecting light-likeness of light-like 3-surfaces).
Configuration space in quantum fluctuating degrees of freedom for given values of zero modes
can be regarded as being obtained by dividing symplectic group with Kac-Moody group. Equiv-
alently, the local coset space S2 × CP2 is in question: this was one of the first ideas about
configuration space which I gave up as too naive!
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4. Generalized coset construction and coset space structure have very deep physical meaning since
they realize Equivalence Principle at quantum level: the identical actions of Super Virasoro
generators for super-symplectic and super Kac-Moody algebras implies that inertial and gravi-
tational four-momenta are identical.

3.10.4 The treatment of non-determinism of Kähler action in zero energy
ontology

The non-determinism of Kähler action means that the reduction of the construction of the configura-
tion space geometry to the light cone boundary fails. Besides degeneracy of the preferred extrema of
Kähler action, the non-determinism should manifest itself as a presence of causal determinants also
other than light cone boundary.

One can imagine two kinds of causal determinants.

1. Elementary particle horizons and light-like boundaries X3
l ⊂ X4 of 4-surfaces representing worm-

hole throats act as causal determinants for the space-time dynamics defined by Kähler action.
The boundary values of this dynamics have been already considered.

2. At imbedding space level causal determinants correspond to light like CD forming a fractal
hierarchy of CDs within CDs. These causal determinants determine the dynamics of zero energy
states having interpretation as pairs of initial and final states in standard quantum theory.

The manner to treat the classical non-determinism would be roughly following.

1. The replacement of space-like 3-surface X3 with X3
l transforms initial value problem for X3 to

a boundary value problem for X3
l . In principle one can also use the surfaces X3 ⊂ δCD × CP2

if X3
l fixes X4(X3

l ) and thus X3 uniquely. For years an important question was whether both
X3 and X3

l contribute separately to the configuration space geometry or whether they provide
descriptions, which are in some sense dual. This lead to the notion of 7-3 duality and I even
considered the possibility that δM4

+ ×CP2 could be replaced with a more general surface X3
l ×

CP2 allowing also generalized symplectic and conformal symmetries. 7-3 duality is not a good
term since the actual duality actually relates descriptions based on space-like 3-surfaces X3 and
light-like 3-surfaces X3

l . Hence it seems that the proper place for 7-3 duality is in paper basked.

2. Only Super-Kac-Moody type conformal algebra makes sense in the interior of X3
l . In the 2-D

intersections of X3
l with the boundary of causal diamond (CD) defined as intersection of future

and past directed light-cones super-symplectic algebra makes sense. This implies effective two-
dimensionality which is broken by the non-determinism represented using the hierarchy of CDs
meaning that the data from these 2-D surfaces and their normal spaces at boundaries of CDs
in various scales determine the configuration space metric.

3. An important question has been whether Kac-Moody and super-symplectic algebras provide
descriptions which are dual in some sense. At the level of Super-Virasoro algebras duality seems
to be satisfied in the sense of generalized coset construction meaning that the differences of
Super Virasoro generators of super-symplectic and super Kac-Moody algebras annihilate physical
states. Among other things this means that four-momenta assignable to the two Super Virasoro
representations are identical. T he interpretation is in terms of a generalization of Equivalence
Principle [18, 30]. This gives also a justification for p-adic thermodynamics applying only to
Super Kac-Moody algebra.

4. Light-like 3-surfaces can be regarded also as generalized Feynman diagrams. The finite length
resolution mean means also a cutoff in the number of generalized Feynman diagrams and this
number remains always finite if the light-like 3-surfaces identifiable as maxima of Kähler function
correspond to the diagrams. The finiteness of this number is also essential for number theoretic
universality since it guarantees that the elements of M -matrix are algebraic numbers if momenta
and other quantum numbers have this property. The introduction of new sub-CDs means also
introduction of zero energy states in corresponding time scale.
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5. The notion of finite measurement resolution expressed in terms of hierarchy of CDs within
CDs is important for the treatment of classical non-determinism. In a given resolution the non-
determinism of Kähler action remains invisible below the time scale assigned to the smallest CDs.
One could also say that complete non-determinism characterized in terms path integral with
cutoff is replaced in TGD framework with the partial failure of classical non-determinism leading
to generalized Feynman diagrams. This gives rise to to discrete coupling constant evolution and
avoids the mathematical ill-definedness and infinities plaguing path integral formalism since the
functional integral over 3-surfaces is well defined.

6. Dirac determinant defining vacuum functional is assumed to correspond to exponent of Kähler
action for its preferred extremal. Dirac determinant is defined as a product of finite number
of eigenvalues of the transverse part DK(X2) of the modified Dirac operator DK assumed
to have decomposition DK = DK(X2) + DK(Y 2) reflecting the dual slicings of X4 to string
world sheets Y 2 and partonic 2-surfaces X2. The existence of the slicing is supported by the
properties of known extremals of Kähler action and strongly suggested by number theoretical
compactification, and it implies among other things dimensional reduction to Minkowskian string
model like theory and its Euclidian equivalent allowing to understand how Equivalence Principle
is realized at space-time level. Finite number for the eigenvalues raises even hope that in a given
resolution the functional integral reduces to Gaussian integral over a finite-dimensional space of
logarithms of eigenvalues.

7. One can ask why Kähler action and playing with all these delicacies related to the failure of
complete determinism. After all, one could formally replace Kähler action with 4-volume as
in brane models. Space-time surfaces would be minimal surfaces and Dirac operator would
be standard Dirac operator for the induced metric. Dirac determinant would however become
infinite since the modes would not be anymore analogs of cyclotron states necessarily localized
to a finite region of X3

l . Recall that for Kähler action X3
l indeed decomposes into patches

inside with induced Kähler form is non-vanishing and Dirac determinant defining the exponent
of Kähler function is well-defined and finite without any regularization procedure. Hence Kähler
action is completely unique.

3.10.5 Category theory and configuration space geometry

Due the effects caused by the classical non-determinism even classical TGD universes are very far from
simple Cartesian clockworks, and the understanding of the general structure of the configuration space
is a formidable challenge. Category theory is a branch of mathematics which is basically a theory
about universal aspects of mathematical structures. Thus category theoretical thinking might help
in disentangling the complexities of the configuration space geometry and the basic ideas of category
theory are discussed in this spirit and as an innocent layman. It indeed turns out that the approach
makes highly non-trivial predictions.

In zero energy ontology the effects of non-determinism are taken into account in terms of causal
diamonds forming a hierarchical fractal structure. One must allow also the unions of CDs, CDs
within CDs, and probably also overlapping of CDs, and there are good reasons to expert that CDs
and corresponding algebraic structures could define categories. If one does not allow overlapping CDs
then set theoretic inclusion map defines a natural arrow. If one allows both unions and intersections
then CDs would form a structure analogous to the set of open sets used in set theoretic topology.
One could indeed see CDs (or rather their Cartesian products with CP2) as analogs of open sets in
Minkowskian signature.

So called ribbon categories seem to be tailor made for the formulation of quantum TGD and allow
to build bridge to topological and conformal field theories. This discussion based on standard ontology.
In [17] rather detailed category theoretical constructions are discussed. Important role is played by
the notion of operad [46, 53]: this structure can be assigned with both generalized Feynman diagrams
and with the hierarchy of symplectic fusion algebras realizing symplectic analogs of the fusion rules
of conformal field theories.
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3.11 Identification of the symmetries and coset space struc-
ture of the configuration space

In this section the identification of the isometry group of the configuration space will be discussed at
general level.

3.11.1 Reduction to the light cone boundary

The reduction to the light cone boundary would occur exactly if Kähler action were strictly determin-
istic. This is not the case but it is possible to generalize the construction at light cone boundary to
the general case if causal diamonds define the basic structural units of the configuration space.

Old argument

The identification of the configuration space follows as a consequence of 4-dimensional Diff invariance.
The right question to ask is the following one. How could one coordinatize the physical(!) vibrational
degrees of freedom for 3-surfaces in Diff4 invariant manner: coordinates should have same values for
all Diff4 related 3-surfaces belonging to the orbit of X3? The answer is following:

1. Fix some 3-surface (call it Y 3) on the orbit of X3 in Diff4 invariant manner.

2. Use as configuration space coordinates of X3 and all its diffeomorphs the coordinates param-
eterizing small deformations of Y 3. This kind of replacement is physically acceptable since
metrically the configuration space is equivalent with Map/Diff4.

3. Require that the fixing procedure is Lorentz invariant, where Lorentz transformations in question
leave light M4

+ invariant and thus act as isometries.

The simplest choice of Y 3 is the intersection of the orbit of 3-surface (X4) with the set δM4
+ ×CP2 ,

where δM4
+ denotes the boundary of the light cone (moment of big bang):

Y 3 = X4 ∩ δM4
+ × CP2 (3.11.1)

Lorentz invariance allows also the choice X × CP2, where X corresponds to the hyperboloid a =√
(m0)2 − r2

M = constant but only the proposed choice (a = 0) leads to a natural complexification in
M4 degrees of freedom. This choice is also cosmologically very natural and completely analogous to
the quantum gravitational holography of string theories.

Configuration space has a fiber space structure. Base space consists of 3-surfaces Y 3 ⊂ δM4
+×CP2

and fiber consists of 3-surfaces on the orbit of Y 3 , which are Diff4 equivalent with Y 3. The distance
between the surfaces in the fiber is vanishing in configuration space metric. An elegant manner to
avoid difficulties caused by Diff4 degeneracy in configuration space integration is to define integration
measure as integral over the reduced configuration space consisting of 3-surfaces Y 3 at the light cone
boundary.

Situation is however quite not so simple. The vacuum degeneracy of Kähler action suggests strongly
classical non-determinism so that there are several, possibly, infinite number of preferred extremals
X4(Y 3) associated with given Y 3 on light cone boundary. This implies additional degeneracy.

One might hope that the reduced configuration space could be replaced by its covering space so
that given Y 3 corresponds to several points of the covering space and configuration space has many-
sheeted structure. Obviously the copies of Y 3 have identical geometric properties. Configuration space
integral would decompose into a sum of integrals over different sheets of the reduced configuration
space. Note that configuration space spinor fields are in general different on different sheets of the
reduced configuration space.

Even this is probably not enough: it is quite possible that all light like surfaces of M4 possessing
Hamilton Jacobi structure (and thus interpretable as light fronts) are involved with the construction of
the configuration space geometry. Because of their metric two-dimensionality the proposed construc-
tion should generalize. This would mean that configuration space geometry has also local laboratory
scale aspects and that the general ideas might allow testing.
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New version of the argument

This is was the argument for two decades ago. A more elegant formulation would in terms of light-like
3-surfaces connecting the boundaries of causal diamond taken as basic geometric objects and identified
as generalized Feynman diagrams so that they are singular as manifolds at the vertices.

If both formulations are required to be correct, the only conclusion is that effective 2-dimensionality
must hold true in the scale of given CD. In other words, the intersectionX2 = X3

l ∩X3 at the boundary
of CD is effectively the basic dynamical unit. The failure of strict non-determinism however forces to
introduce entire hierarchy of CDs responsible also for coupling constant evolution defined in terms of
the measurement resolution identified as the size of the smallest CD present.

3.11.2 Configuration space as a union of symmetric spaces

In finite-dimensional context globally symmetric spaces are of form G/H and connection and curvature
are independent of the metric, provided it is left invariant under G. The hope is that same holds true
in infinite-dimensional context. The most one can hope of obtaining is the decomposition C(H) =
∪iG/Hi over orbits of G. One could allow also symmetry breaking in the sense that G and H depend
on the orbit: C(H) = ∪iGi/Hi but it seems that G can be chosen to be same for all orbits. What
is essential is that these groups are infinite-dimensional. The basic properties of the coset space
decomposition give very strong constraints on the group H, which certainly contains the subgroup of
G, whose action reduces to diffeomorphisms of X3.

Consequences of the decomposition

If the decomposition to a union of coset spaces indeed occurs, the consequences for the calculability of
the theory are enormous since it suffices to find metric and curvature tensor for single representative
3-surface on a given orbit (contravariant form of metric gives propagator in perturbative calculation
of matrix elements as functional integrals over the configuration space). The representative surface
can be chosen to correspond to the maximum of Kähler function on a given orbit and one obtains
perturbation theory around this maximum (Kähler function is not isometry invariant).

The task is to identify the infinite-dimensional groups G and H and to understand the zero mode
structure of the configuration space. Almost twenty (seven according to long held belief!) years after
the discovery of the candidate for the Kähler function defining the metric, it became finally clear
that these identifications follow quite nicely from Diff4 invariance and Diff4 degeneracy as well as
special properties of the Kähler action.

The guess (not the first one!) would be following. G corresponds to the symplectic transformations
of δM4

±×CP2 leaving the induced Kähler form invariant. If G acts as isometries the values of Kähler
form at partonic 2-surfaces (remember effective 2-dimensionality) are zero modes and configuration
space allows slicing to symplectic orbits of the partonic 2-surface with fixed induced Kähler form.
Quantum fluctuating degrees of freedom would correspond to symplectic group and to the fluctua-
tions of the induced metric. The group H dividing G would in turn correspond to the Kac-Moody
symmetries respecting light-likeness of X3

l and acting in X3
l but trivially at the partonic 2-surface X2.

This coset structure was originally discovered via coset construction for super Virasoro algebras of
super-symplectic and super Kac-Moody algebras and realizes Equivalence Principle at quantum level.

Configuration space isometries as a subgroup of Diff(δM4
+ × CP2)

The reduction to light cone boundary leads to the identification of the isometry group as some subgroup
of for the group G for the diffeomorphisms of δM4

+ × CP2. These diffeomorphisms indeed act in a
natural manner in δCH, the the space of 3-surfaces in δM4

+ × CP2. Configuration space is expected
to decompose to a union of the coset spaces G/Hi, where Hi corresponds to some subgroup of G
containing the transformations of G acting as diffeomorphisms for given X3. Geometrically the vector
fields acting as diffeomorphisms of X3 are tangential to the 3-surface. Hi could depend on the topology
of X3 and since G does not change the topology of 3-surface each 3-topology defines separate orbit
of G. Therefore, the union involves sum over all topologies of X3 plus possibly other ’zero modes’.
Different topologies are naturally glued together since singular 3-surfaces intermediate between two
3-topologies correspond to points common to the two sectors with different topologies.
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3.11.3 Isometries of configuration space geometry as symplectic transfor-
mations of δM4

+ × CP2

During last decade I have considered several candidates for the group G of isometries of the configu-
ration space as the sub-algebra of the subalgebra of Diff(δM4

+ × CP2). To begin with let us write
the general decomposition of diff(δM4

+ × CP2):

diff(δM4
+ × CP2) = S(CP2)× diff(δM4

+)⊕ S(δM4
+)× diff(CP2) . (3.11.2)

Here S(X) denotes the scalar function basis of space X. This Lie-algebra is the direct sum of light cone
diffeomorphisms made local with respect to CP2 and CP2 diffeomorphisms made local with respect
to light cone boundary.

The idea that entire diffeomorphism group would act as isometries looks unrealistic since the theory
should be more or less equivalent with topological field theory in this case. Consider now the various
candidates for G.

1. The fact that symplectic transformations of CP2 and M4
+ diffeomorphisms are dynamical sym-

metries of the vacuum extremals suggests the possibility that the diffeomorphisms of the light
cone boundary and symplectic transformations of CP2 could leave Kähler function invariant and
thus correspond to zero modes. The symplectic transformations of CP2 localized with respect
to light cone boundary acting as symplectic transformations of CP2 have interpretation as local
color transformations and are a good candidate for the isometries. The fact that local color
transformations are not even approximate symmetries of Kähler action is not a problem: if they
were exact symmetries, Kähler function would be invariant and zero modes would be in question.

2. CP2 local conformal transformations of the light cone boundary act as isometries of δM4
+. Be-

sides this there is a huge group of the symplectic symmetries of δM4
+×CP2 if light cone boundary

is provided with the symplectic structure. Both groups must be considered as candidates for
groups of isometries. δM4

+×CP2 option exploits fully the special properties of δM4
+×CP2, and

one can develop simple argument demonstrating that δM4
+ × CP2 symplectic invariance is the

correct option. Also the construction of configuration space gamma matrices as super-symplectic
charges supports δM4

+ × CP2 option.

This picture remained same for a long time. The discovery that Kac-Moody algebra consisting of
X2 local symmetries generated by Hamiltonians of isometry sub-algebra of symplectic algebra forced
to challenge this picture and ask whether also X2-local transformations of symplectic group could be
involved.

1. The basic condition is that the X2 local transformation acts leaves induced Kähler form in-
variant apart from diffeomorphism. Denote the infinitesimal generator of X2 local symplecto
morphism by ΦA(x)jAk, where A labels Hamiltonians in the sum and by jα the generator of X2

diffeomorphism.

2. The invariance of J = εαβJαβ
√
g2 modulo diffeomorphism under the infinitesimal symplectic

transformation gives

{HA,ΦA} ≡ ∂αH
Aεαβ∂βΦA = ∂αJj

α . (3.11.3)

3. Note that here the Poisson bracket is not defined by Jαβ but εαβ defined by the induced metric.
Left hand side reflects the failure of symplectomorphism property due to the dependence of
ΦA(x) on X2 coordinate which and comes from the gradients of δM4 × CP2 coordinates in the
expression of the induced Kähler form. Right hand side corresponds to the action of infinitesimal
diffeomorphism.
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4. Let us assume that one can restrict the consideration to single Hamiltonian so that the trans-
formation is generated by Φ(x)HA and that to each Φ(x) there corresponds a diffeomorphism
of X2, which is a symplectic transformation of X2 with respect to symplectic form εαβ and
generated by Hamiltonian Ψ(x). This transforms the invariance condition to

{HA,Φ} ≡ ∂αH
Aεαβ∂βΦ = ∂αJε

αβ∂βΨA = {J,ΨA} . (3.11.4)

This condition can be solved identically by assuming that ΦA and Ψ are proportional to arbitrary
smooth function of J :

Φ = f(J) , ΨA = −f(J)HA . (3.11.5)

Therefore the X2 local symplectomorphisms of H reduce to symplectic transformations of X2

with Hamiltonians depending on single coordinate J of X2. The analogy with conformal in-
variance for which transformations depend on single coordinate z is obvious. As far as the
anti-commutation relations for induced spinor fields are considered this means that J = consant
curves behave as points points. For extrema of J appearing as candidates for points of number
theoretic braids J = constant curves reduce to points.

5. From the structure of the conditions it is easy to see that the transformations generate a Lie-
algebra. For the transformations Φ1

AH
A Φ2

AH
A the commutator is

Φ
[1,2]
A = f BC

A ΦBΦC , (3.11.6)

where f BC
A are the structure constants for the symplectic algebra of δM4

± × CP2. From this
form it is easy to check that Jacobi identifies are satisfied. The commutator has same form as
the commutator of gauge algebra generators. BRST gauge symmetry is perhaps the nearest
analog of this symmetry. In the case of isometries these transforms realized local color gauge
symmetry in TGD sense.

6. If space-time surface allows a slicing to light-like 3-surfaces Y 3
l parallel to X3

l , these conditions
make sense also for the partonic 2-surfaces defined by the intersections of Y 3

l with δM4
± × CP2

and ”parallel” to X2. The local symplectic transformations also generalize to their local variants
in X3

l . Light-likeness of X3
l means effective metric 2-dimensionality so that 2-D Kähler metric

and symplectic form as well as the invariant J = εαβJαβ exist. A straightforward calculation
shows that the the notion of local symplectic transformation makes sense also now and formulas
are exactly the same as above.

3.11.4 Identification of Kac-Moody symmetries

The Kac-Moody algebra of symmetries acting as symmetries respecting the light-likeness of 3-surfaces
plays a crucial role in the identification of quantum fluctuating configuration space degrees of freedom
contributing to the metric.

Identification of Kac-Moody algebra

The generators of bosonic super Kac-Moody algebra leave the light-likeness condition
√
g3 = 0 invari-

ant. This gives the condition

δgαβCof(gαβ) = 0 , (3.11.7)
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Here Cof refers to matrix cofactor of gαβ and summation over indices is understood. The conditions
can be satisfied if the symmetries act as combinations of infinitesimal diffeomorphisms xµ → xµ + ξµ

of X3 and of infinitesimal conformal symmetries of the induced metric

δgαβ = λ(x)gαβ + ∂µgαβξ
µ + gµβ∂αξ

µ + gαµ∂βξ
µ . (3.11.8)

Ansatz as an X3-local conformal transformation of imbedding space

Write δhk as a super-position of X3-local infinitesimal diffeomorphisms of the imbedding space gen-
erated by vector fields JA = jA,k∂k:

δhk = cA(x)jA,k . (3.11.9)

This gives

cA(x)
[
Dkj

A
l +Dlj

A
k

]
∂αh

k∂βh
l + 2∂αcAhklj

A,k∂βh
l

= λ(x)gαβ + ∂µgαβξ
µ + gµβ∂αξ

µ + gαµ∂βξ
µ . (3.11.10)

If an X3-local variant of a conformal transformation of the imbedding space is in question, the first
term is proportional to the metric since one has

Dkj
A
l +Dlj

A
k = 2hkl . (3.11.11)

The transformations in question includes conformal transformations of H± and isometries of the
imbedding space H.

The contribution of the second term must correspond to an infinitesimal diffeomorphism of X3

reducible to infinitesimal conformal transformation ψµ:

2∂αcAhklj
A,k∂βh

l = ξµ∂µgαβ + gµβ∂αξ
µ + gαµ∂βξ

µ . (3.11.12)

A rough analysis of the conditions

One could consider a strategy of fixing cA and solving solving ξµ from the differential equations. In
order to simplify the situation one could assume that gir = grr = 0. The possibility to cast the metric
in this form is plausible since generic 3-manifold allows coordinates in which the metric is diagonal.

1. The equation for grr gives

∂rcAhklj
Ak∂rh

k = 0 . (3.11.13)

The radial derivative of the transformation is orthogonal to X3. No condition on ξα results. If
cA has common multiplicative dependence on cA = f(r)dA by a one obtains

dAhklj
Ak∂rh

k = 0 . (3.11.14)

so that JA is orthogonal to the light-like tangent vector ∂rh
k X3 which is the counterpart for

the condition that Kac-Moody algebra acts in the transversal degrees of freedom only. The
condition also states that the components gri is not changed in the infinitesimal transformation.

It is possible to choose f(r) freely so that one can perform the choice f(r) = rn and the notion
of radial conformal weight makes sense. The dependence of cA on transversal coordinates is
constrained by the transversality condition only. In particular, a common scale factor having
free dependence on the transversal coordinates is possible meaning that X3- local conformal
transformations of H are in question.
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2. The equation for gri gives

∂rξ
i = ∂rcAhklj

Akhij∂jh
k . (3.11.15)

The equation states that gri are not affected by the symmetry. The radial dependence of ξi is
fixed by this differential equation. No condition on ξr results. These conditions imply that the
local gauge transformations are dynamical with the light-like radial coordinate r playing the
role of the time variable. One should be able to fix the transformation more or less arbitrarily
at the partonic 2-surface X2.

3. The three independent equations for gij give

ξα∂αgij + gkj∂iξ
k + gki∂jξ

k = ∂icAhklj
Ak∂jh

l . (3.11.16)

These are 3 differential equations for 3 functions ξα on 2 independent variables xi with r ap-
pearing as a parameter. Note however that the derivatives of ξr do not appear in the equation.
At least formally equations are not over-determined so that solutions should exist for arbitrary
choices of cA as functions of X3 coordinates satisfying the orthogonality conditions. If this
is the case, the Kac-Moody algebra can be regarded as a local algebra in X3 subject to the
orthogonality constraint.

This algebra contains as a subalgebra the analog of Kac-Moody algebra for which all cA except
the one associated with time translation and fixed by the orthogonality condition depends on
the radial coordinate r only. The larger algebra decomposes into a direct sum of representations
of this algebra.

Commutators of infinitesimal symmetries

The commutators of infinitesimal symmetries need not be what one might expect since the vector
fields ξµ are functionals cA and of the induced metric and also cA depends on induced metric via the
orthogonality condition. What this means that jA,k in principle acts also to φB in the commutator
[cAJ

A, cBJ
B ].

[
cAJ

A, cBJ
B
]

= cAcBJ
[A,B] + JA ◦ cBJB − JB ◦ cAJA , (3.11.17)

where ◦ is a short hand notation for the change of cB induced by the effect of the conformal transfor-
mation JA on the induced metric.

Luckily, the conditions in the case grr = gir = 0 state that the components grr and gir of the
induced metric are unchanged in the transformation so that the condition for cA resulting from grr
component of the metric is not affected. Also the conditions coming from gir = 0 remain unchanged.
Therefore the commutation relations of local algebra apart from constraint from transversality result.

The commutator algebra of infinitesimal symmetries should also close in some sense. The or-
thogonality to the light-like tangent vector creates here a problem since the commutator does not
obviously satisfy this condition automatically. The problem can be solved by following the recipes of
non-covariant quantization of string model.

1. Make a choice of gauge by choosing time translation P 0 in a preferred M4 coordinate frame
to be the preferred generator JA0 ≡ P 0, whose coefficient ΦA0

≡ Ψ(P 0) is solved from the
orthogonality condition. This assumption is analogous with the assumption that time coordinate
is non-dynamical in the quantization of strings. The natural basis for the algebra is obtained
by allowing only a single generator JA besides P 0 and putting dA = 1.
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2. This prescription must be consistent with the well-defined radial conformal weight for the JA 6=
P 0 in the sense that the proportionality of dA to rn for JA 6= P 0 must be consistent with
commutators. SU(3) part of the algebra is of course not a problem. From the Lorentz vector
property of P k it is clear that the commutators resulting in a repeated commutation have well-
defined radial conformal weights only if one restricts SO(3, 1) to SO(3) commuting with P 0. Also
D could be allowed without losing well-defined radial conformal weights but the argument below
excludes it. This picture conforms with the earlier identification of the Kac-Moody algebra.

Conformal algebra contains besides Poincare algebra and the dilation D = mk∂mk the mutually
commuting generators Kk = (mrmr∂mk − 2mkml∂ml)/2. The commutators involving added
generators are

[
D,Kk

]
= −Kk ,

[
D,P k

]
= P k ,[

Kk,Kl
]

= 0 ,
[
Kk, P l

]
= mklD −Mkl .

(3.11.18)

From the last commutation relation it is clear that the inclusion of Kk would mean loss of
well-defined radial conformal weights.

3. The coefficient dm0/dr of Ψ(P 0) in the equation

Ψ(P 0)
dm0

dr
= −JAkhkl∂rhl

is always non-vanishing due to the light-likeness of r. Since P 0 commutes with generators of
SO(3) (but not with D so that it is excluded!), one can define the commutator of two generators
as a commutator of the remaining part and identify Ψ(P 0) from the condition above.

4. Of course, also the more general transformations act as Kac-Moody type symmetries but the
interpretation would be that the sub-algebra plays the same role as SO(3) in the case of Lorentz
group: that is gives rise to generalized spin degrees of freedom whereas the entire algebra divided
by this sub-algebra would define the coset space playing the role of orbital degrees of freedom. In
fact, also the Kac-Moody type symmetries for which cA depends on the transversal coordinates
of X3 would correspond to orbital degrees of freedom. The presence of these orbital degrees of
freedom arranging super Kac-Moody representations into infinite multiplets labeled by function
basis for X2 means that the number of degrees of freedom is much larger than in string models.

5. It is possible to replace the preferred time coordinate m0 with a preferred light-like coordinate.
There are good reasons to believe that orbifold singularity for phases of matter involving non-
standard value of Planck constant corresponds to a preferred light-ray going through the tip of
δM4
±. Thus it would be natural to assume that the preferred M4 coordinate varies along this

light ray or its dual. The Kac-Moody group SO(3)×E3 respecting the radial conformal weights
would reduce to SO(2) × E2 as in string models. E2 would act in tangent plane of S2

± along
this ray defining also SO(2) rotation axis.

3.11.5 Coset space structure for a symmetric space

The key ingredient in the theory of symmetric spaces is that the Lie-algebra of G has the following
decomposition

g = h+ t ,
[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h .

In present case this has highly nontrivial consequences. The commutator of any two infinitesimal
generators generating nontrivial deformation of 3-surface belongs to h and thus vanishing norm in the
configuration space metric at the point which is left invariant by H. In fact, this same condition follows
from Ricci flatness requirement and guarantees also thatG acts as isometries of the configuration space.
This generalization is supported by the properties of the unitary representations of Lorentz group at
the light cone boundary and by number theoretical considerations.
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The algebras suggesting themselves as candidates are symplectic algebra of δM± ×CP2 and Kac-
Moody algebra mapping light-like 3-surfaces to light-like 3-surfaces to be discussed in the next section.

The identification of the precise form of the coset space structure is however somewhat delicate.

1. The essential point is that both symplectic and Kac-Moody algebras allow representation in
terms of X3

l -local Hamiltonians. The general expression for the Hamilton of Kac-Moody algebra
is

H =
∑

ΦA(x)HA . (3.11.19)

Here HA are Hamiltonians of SO(3)× SU(3) acting in δX3
l ×CP2. For symplectic algebra any

Hamiltonian is allowed. If x corresponds to any point of X3
l , one must assume a slicing of the

causal diamond CD by translates of δM4
±.

2. For symplectic generators the dependence of form on r∆ on light-like coordinate of δX3
l × CP2

is allowed. ∆ is complex parameter whose modulus squared is interpreted as conformal weight.
∆ is identified as analogous quantum number labeling the modes of induced spinor field.

3. One can wonder whether the choices of the rM = constant sphere S2 is the only choice. The
Hamiltonin-Jacobi coordinate for X4

X3
l

suggest an alternative choice as E2 in the decomposition

of M4 = M2(x)×E2(x) required by number theoretical compactification and present for known
extremals of Kähler action with Minkowskian signature of induced metric. In this case SO(3)
would be replaced with SO(2). It however seems that the radial light-like coordinate u of X4(X3

l )
would remain the same since any other curve along light-like boundary would be space-like.

4. The vector fields for representing Kac-Moody algebra must vanish at the partonic 2-surface
X2 ⊂ δM4

± × CP2. The corresponding vector field must vanish at each point of X2:

jk =
∑

ΦA(x)JklHA
l = 0 . (3.11.20)

This means that the vector field corresponds to SO(2)×U(2) defining the isotropy group of the
point of S2 × CP2.

This expression could be deduced from the idea that the surfaces X2 are analogous to origin of
CP2 at which U(2) vector fields vanish. Configuration space at X2 could be also regarded as the
analog of the origin of local S2×CP2. This interpretation is in accordance with the original idea
which however was given up in the lack of proper realization. The same picture can be deduced
from braiding in which case the Kac-Moody algebra corresponds to local SO(2)×U(2) for each
point of the braid at X2. The condition that Kac-Moody generators with positive conformal
weight annihilate physical states could be interpreted by stating effective 2-dimensionality in the
sense that the deformations of X3

l preserving its light-likeness do not affect the physics. Note
however that Kac-Moody type Virasoro generators do not annihilate physical states.

5. Kac-Moody algebra generator must leave induced Kähler form invariant at X2. This is of course
trivial since the action leaves each point invariant. The conditions of Cartan decomposition are
satisfied. The commutators of the Kac-Moody vector fields with symplectic generators are
non-vanishing since the action of symplectic generator on Kac-Moody generator restricted to
X2 gives a non-vanishing result belonging to the symplectic algebra. Also the commutators of
Kac-Moody generators are Kac-Moody generators.

3.12 Complexification

A necessary prerequisite for the Kähler geometry is the complexification of the tangent space in
vibrational degrees of freedom. What this means in recent context is non-trivial.
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3.12.1 Why complexification is needed?

The Minkowskian signature of M4 metric seems however to represent an insurmountable obstacle for
the complexification of M4 type vibrational degrees of freedom. On the other hand, complexification
seems to have deep roots in the actual physical reality.

1. In the perturbative quantization of gauge fields one associates to each gauge field excitation po-
larization vector e and massless four-momentum vector p (p2 = 0, p ·e = 0). These vectors define
the decomposition of the tangent space of M4: M4 = M2 × E2, where M2 type polarizations
correspond to zero norm states and E2 type polarizations correspond to physical states with non-
vanishing norm. Same type of decomposition occurs also in the linearized theory of gravitation.
The crucial feature is that E2 allows complexification! The general conclusion is that the modes
of massless, linear, boson fields define always complexification of M4 (or its tangent space) by
effectively reducing it to E2. Also in string models similar situation is encountered. For a string
in D-dimensional space only D-2 transversal Euclidian degrees of freedom are physical.

2. Since symplectically extended isometry generators are expected to create physical states in TGD
approach same kind of physical complexification should take place for them, too: this indeed
takes place in string models in critical dimension. Somehow one should be able to associate
polarization vector and massless four momentum vector to the deformations of a given 3-surface
so that these vectors define the decomposition M4 = M2 × E2 for each mode. Configuration
space metric should be degenerate: the norm of M2 deformations should vanish as opposed to
the norm of E2 deformations.

Consider now the implications of this requirement.

1. In order to associate four-momentum and polarization (or at least the decomposition M4 =
M2×E2) to the deformations of the 3-surface one should have field equations, which determine
the time development of the 3-surface uniquely. Furthermore, the time development for small
deformations should be such that it makes sense to associate four momentum and polarization
or at least the decomposition M4 = M2 × E2 to the deformations in suitable basis.

The solution to this problem is afforded by the proposed definition of the Kähler function. The
definition of the Kähler function indeed associates to a given 3-surface a unique four-surface
as the preferred extremal of the Kähler action. Therefore one can associate a unique time
development to the deformations of the surface X3 and if TGD describes the observed world
this time development should describe the evolution of photon, gluon, graviton, etc. states and
so we can hope that tangent space complexification could be defined.

2. We have found that M2 part of the deformation should have zero norm. In particular, the
time like vibrational modes have zero norm in configuration space metric. This is true if Kähler
function is not only Diff3 invariant but also Diff4 invariant in the sense that Kähler function has
same value for all 3-surfaces belonging to the orbit of X3 and related to X3 by diffeomorphism
of X4. This is indeed the case.

3. Even this is not enough. One expects the presence of massive modes having also longitudinal
polarization and for these states the number of physical vibrational degrees of freedom is 3 so
that complexification seems to be impossible by odd dimension.

The reduction to the light cone boundary implied by Diff4 invariance makes possible to identify
the complexification. Crucial role is played by the special properties of the boundary of 4-dimensional
light cone, which is metrically two-sphere and thus allows generalized complex and Kähler structure.

3.12.2 The metric, conformal and symplectic structures of the light cone
boundary

The special metric properties of the light cone boundary play a crucial role in the complexification.
The point is that the boundary of the light cone has degenerate metric: although light cone boundary
is topologically 3-dimensional it is metrically 2-dimensional: effectively sphere. In standard spherical
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Minkowski coordinates light cone boundary is defined by the equation rM = m0 and induced metric
reads

ds2 = −r2
MdΩ2 = −r2

Mdzdz̄/(1 + zz̄)2 , (3.12.1)

and has Euclidian signature. Since S2 allows complexification and thus also Kähler structure (and
as a by-product also symplectic structure) there are good hopes of obtaining just the required type
of complexification in non-degenerate M4 degrees of freedom: configuration space would effectively
inherit its Kähler structure from S2 × CP2.

By its effective two-dimensionality the boundary of the four-dimensional light cone has infinite-
dimensional group of (local) conformal transformations. Using complex coordinate z for S2 the general
local conformal transformation reads

r → f(rM , z, z̄) ,

z → g(z) , (3.12.2)

where f is an arbitrary real function and g is an arbitrary analytic function with a finite number of
poles. The infinitesimal generators of this group span an algebra, call it C, analogous to Virasoro
algebra. This algebra is semidirect sum of two algebras L and R given by

C = L⊕R ,

[L,R] ⊂ R , (3.12.3)

where L denotes standard Virasoro algebra of the two- sphere generated by the generators

Ln = zn+1d/dz (3.12.4)

and R denotes the algebra generated by the vector fields

Rn = fn(z, z̄, rM )∂rM , (3.12.5)

where f(z, z̄, rM ) forms complete real scalar function basis for light cone boundary. The vector fields
of R have the special property that they have vanishing norm in M4 metric.

This modification of conformal group implies that the Virasoro generator L0 becomes L0 = zd/dz−
rMd/drM so that the scaling momentum becomes the difference n − m or S2 and radial scaling
momenta. One could achieve conformal invariance by requiring that S2 and radial scaling quantum
numbers compensate each other.

Of crucial importance is that light cone boundary allows infinite dimensional group of isometries!
An arbitrary conformal transformation z → f(z) induces to the metric a conformal factor given by
|df/dz|2. The compensating radial scaling rM → rM/|df/dz| compensates this factor so that the line
element remains invariant.

The Kähler structure of light cone boundary defines automatically symplectic structure. The
symplectic form is degenerate and just the area form of S2 given by

J = r2
Msin(θ)dθ ∧ dφ,

in standard spherical coordinates, there is infinite-dimensional group of symplectic transformations
leaving the symplectic form of the light cone boundary (that is S2) invariant. These transformations
are local with respect to the radial coordinate rM . The symplectic and Kähler structures of light
cone boundary are not unique: different structures are labeled by the coset space SO(3, 1)/SO(3).
One can however associate with a given 3-surface Y 3 a unique structure by requiring that the the
corresponding subgroup SO(3) of Lorentz group acts as the isotropy group of the conserved classical
four-momentum assigned to Y 3 by the preferred extremal property.
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In case of δM4
+ × CP2 both the conformal transformations, isometries and symplectic transfor-

mations of the light cone boundary can be made local also with respect to CP2. The idea that the
infinite-dimensional algebra of symplectic transformations of δM4

+×CP2 act as isometries of the con-
figuration space and that radial vector fields having zero norm in the metric of light cone boundary
possess zero norm also in configuration space metric, looks extremely attractive.

In the case of δM4
+ × CP2 one could combine the symplectic and Kähler structures of δM4

+ and
CP2 to single symplectic/Kähler structure. The symplectic transformations leaving this symplectic
structure invariant would be generated by the function algebra of δM4

+ × CP2 such that a arbitrary
function serves as a Hamiltonian of a symplectic transformation. This group serves as a candidate for
the isometry group of the configuration space. An alternative identification for the isometry algebra
is as symplectic symmetries of CP2 localized with respect to the light cone boundary. Hamiltonians
would be also now elements of the function algebra of δM4

+ × CP2 but their Poisson brackets would
be defined using only CP2 symplectic form.

The problem is to decide which option is correct. There is a simple argument fixing the latter op-
tion. The symplecticly imbedded CP2 would be left invariant under δM4

+ local symplectic transforma-
tions of CP2. This seems strange. Under symplectic algebra of δM4

+×CP2 also symplecticly imbedded
CP2 is deformed and this sounds more realistic. The isometry algebra is therefore assumed to be the
group can(δM4

+ × CP2) generated by the scalar function basis S(δM4
+ × CP2) = S(δM4

+) × S(CP2)
of the light cone boundary using the Poisson brackets to be discussed in more detail later.

There are some no-go theorems associated with higher-dimensional Abelian extensions [51], and
although the contexts are quite different, it is interesting to consider the recent situation in light of
these theorems.

1. Conformal invariance is an essentially 2-dimensional notion. Light cone boundary is however
metrically and conformally 2-sphere, and therefore the conformal algebra is effectively that
associated with the 2-sphere. In the same manner, the quaternion conformal algebra associated
with the metrically 2-dimensional elementary particle horizons surrounding wormhole contacts
allows the usual Kac Moody algebra and actually also contributes to the configuration space
metric.

2. In dimensions D > 2 Abelian extensions of the gauge algebra are extensions by an infinite-
dimensional Abelian group rather than central extensions by the group U(1). This result has an
analog at the level of configuration space geometry. The extension associated with the symplectic
algebra of CP2 localized with respect to the light cone boundary is analogous a symplectic
extension defined by Poisson bracket {p, q} = 1. The central extension is the function space
associated with δM4

+ and indeed infinite-dimensional if only only CP2 symplectic structure
induces the Poisson bracket but one-dimensional if δM4

+ × CP2 Poisson bracket induces the
extension. In the latter case the symmetries fix the metric completely at the point corresponding
to the origin of symmetric space (presumably the maximum of Kähler function for given values
of zero modes).

3. D > 2 extensions possess no unitary faithful representations (satisfying certain well motivated
physical constraints) [51]. It might be that the degeneracy of the configuration space metric is
the analog for the loss of faithful representations.

3.12.3 Complexification and the special properties of the light cone bound-
ary

In case of Kähler metric G and H Lie-algebras must allow complexification so that the isometries can
act as holomorphic transformations. Since G and H can be regarded as subalgebras of the vector fields
of δM4

+ × CP2, they inherit in a natural manner the complex structure of the light cone boundary.
There are two candidates for the configuration space complexification. The simplest, and also the

correct, alternative is that complexification is induced by natural complexification of vector field basis
on δM4

+ × CP2. In CP2 degrees of freedom there is natural complexification

ξ → ξ̄ .

In δM4
+ degrees of freedom this could involve the transformation

z → z̄
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and certainly involves complex conjugation for complex scalar function basis in the radial direction:

f(rM )→ f(rM ) ,

which turns out to play same role as the function basis of circle in the Kähler geometry of loop groups
[45].

The requirement that the functions are eigen functions of radial scalings favors functions (rM/r0)k,
where k is in general a complex number. The function can be expressed as a product of real power of
rM and logarithmic plane wave. It turns out that the radial complexification alternative is the correct
manner to obtain Kähler structure. The reason is that symplectic transformations leave the value of
rM invariant. Radial Virasoro invariance plays crucial role in making the complexification possible.

One could consider also a second alternative assumed in the earlier formulation of the configuration
space geometry. The close analogy with string models and conformal field theories suggests that for
Virasoro generators the complexification must reduce to the hermitian conjugation of the conformal
field theories: Ln → L−n = L†n. Clearly this complexification is induced from the transformation
z → 1

z and differs from the complexification induced by complex conjugation z → z̄. The basis
would be polynomial in z and z̄. Since radial algebra could be also seen as Virasoro algebra localized
with respect to S2 ×CP2 one could consider the possibility that also in radial direction the inversion
rM → 1

rM
is involved.

The essential prerequisite for the Kähler structure is that both G and H allow same complexifi-
cation so that the isometries in question can be regarded as holomorphic transformations. In finite-
dimensional case this essentially what is needed since metric can be constructed by parallel translation
along the orbit of G from H-invariant Kähler metric at a representative point. The requirement of
H-invariance forces the radial complexification based on complex powers rkM : radial complexification
works since symplectic transformations leave rM invariant.

Some comments on the properties of the proposed complexification are in order.

1. The proposed complexification, which is analogous to the choice of gauge in gauge theories is
not Lorentz invariant unless one can fix the coordinates of the light cone boundary apart from
SO(3) rotation not affecting the value of the radial coordinate rM (if the imaginary part of k in
rkM is always non-vanishing). This is possible as will be explained later.

2. It turns out that the function basis of light-cone boundary multiplying CP2 Hamiltonians cor-
responds to unitary representations of the Lorentz group at light cone boundary so that the
Lorentz invariance is rather manifest.

3. There is a nice connection with the proposed physical interpretation of the complexification.
At the moment of the big bang all particles move with the velocity of light and therefore
behave as massless particles. To a given point of the light cone boundary one can associate
a unique direction of massless four-momentum by semiclassical considerations: at the point
mk = (m0,mi) momentum is proportional to the vector (m0,−mi). Since the particles are
massless only two polarization vectors are possible and these correspond to the tangent vectors
to the sphere m0 = rM . Of course, one must always fix polarizations at some point of tangent
space but since massless polarization vectors are not physical this doesn’t imply difficulties:
different choices correspond to different gauges.

4. Complexification in the proposed manner is not possible except in the case of four-dimensional
Minkowski space. Non-zero norm deformations correspond to vector fields of the light cone
boundary acting on the sphere SD−2 and the decomposition to (1, 0) and (0, 1) parts is pos-
sible only when the sphere in question is two-dimensional since other spheres do allow neither
complexification nor Kähler structure.

3.12.4 How to fix the complex and symplectic structures in a Lorentz
invariant manner?

One can assign to light-cone boundary a symplectic structure since it reduces effectively to S2. The
possible symplectic structures of δM4

+ are parameterized by the coset space SO(3, 1)/SO(3)), where
H is the isotropy group SO(3) of a time like vector. Complexification also fixes the choice of the
spherical coordinates apart from rotations around the quantization axis of angular momentum.
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The selection of some preferred symplectic structure in an ad hoc manner breaks manifest Lorentz
invariance but is possible if physical theory remains Lorentz invariant. The more natural possibility
is that 3-surface Y 3 itself fixes in some natural manner the choice of the symplectic structure so
that there is unique subgroup SO(3) of SO(3, 1) associated with Y 3. If configuration space Kähler
function corresponds to a preferred extremal of Kähler action, this is indeed the case. One can
associate unique conserved four-momentum P k(Y 3) to the preferred extremal X4(Y 3) of the Kähler
action and the requirement that the rotation group SO(3) leaving the symplectic structure invariant
leaves also P k(Y 3) invariant, fixes the symplectic structure associated with Y 3 uniquely.

Therefore configuration space decomposes into a union of symplectic spaces labeled by SO(3, 1)/SO(3)
isomorphic to a = constant hyperboloid of light cone. The direction of the classical angular momen-
tum vector wk = εklmnPlJmn determined by the classical angular momentum tensor of associated with
Y 3 fixes one coordinate axis and one can require that SO(2) subgroup of SO(3) acting as rotation
around this coordinate axis acts as phase transformation of the complex coordinate z of S2. Other
rotations act as nonlinear holomorphic transformations respecting the complex structure.

Clearly, the coordinates are uniquely fixed modulo SO(2) rotation acting as phase multiplication
in this case. If P k(Y 3) is light like, one can only require that the rotation group SO(2) serving as the
isotropy group of 3-momentum belongs to the group SO(3) characterizing the symplectic structure
and it seems that symplectic structure cannot be uniquely fixed without additional constraints in
this case. Probably this has no practical consequences since the 3-surfaces considered have actually
infinite size and 4-momentum is most probably time like for them. Note however that the direction of
3-momentum defines unique axis such that SO(2) rotations around this axis are represented as phase
multiplication.

Similar almost unique frame exists also in CP2 degrees of freedom and corresponds to the complex
coordinates transforming linearly under U(2) acting as isotropy group of the Lie-algebra element
defined by classical color charges Qa of Y 3. One can fix unique Cartan subgroup of U(2) by noticing
that SU(3) allows completely symmetric structure constants dabc such that Ra = d bc

a QbQc defines
Lie-algebra element commuting with Qa. This means that Ra and Qa span in generic case U(1)×U(1)
Cartan subalgebra and there are unique complex coordinates for which this subgroup acts as phase
multiplications. The space of nonequivalent frames is isomorphic with CP (2) so that one can say
that cm degrees of freedom correspond to Cartesian product of SO(3, 1)/SO(3) hyperboloid and CP2

whereas coordinate choices correspond to the Cartesian product of SO(3, 1)/SO(2) and SU(3)/U(1)×
U(1).

Symplectic transformations leave the value of δM4
+ radial coordinate rM invariant and this implies

large number of additional zero modes characterizing the size and shape of the 3-surface. Besides
this Kähler magnetic fluxes through the rM = constant sections of X3 as a function of rM provide
additional invariants, which are functions rather than numbers. The Fourier components for the
magnetic fluxes provide infinite number of symplectic invariants. The presence of these zero modes
imply that 3-surfaces behave much like classical objects in the sense that neither their shape nor
form nor classical Kähler magnetic fields, are subject to Gaussian fluctuations. Of course, quantum
superpositions of 3-surfaces with different values of these invariants are possible.

There are reasons to expect that at least certain infinitesimal symplectic transformations corre-
spond to zero modes of the Kähler metric (symplectic transformations act as dynamical symmetries
of the vacuum extremals of the Kähler action). If this is indeed the case, one can ask whether it is
possible to identify an integration measure for them.

If one can associate symplectic structure with zero modes, the symplectic structure defines integra-
tion measure in a standard manner (for 2n-dimensional symplectic manifold the integration measure is
just the n-fold wedge power J∧J...∧J of the symplectic form J). Unfortunately, in infinite-dimensional
context this is not enough since divergence free functional integral analogous to a Gaussian integral is
needed and it seems that it is not possible to integrate in zero modes and that this relates in a deep
manner to state function reduction. If all symplectic transformations of δM4

+ × CP2 are represented
as symplectic transformations of the configuration space, then the existence of symplectic structure
decomposing into Kähler (and symplectic) structure in complexified degrees of freedom and symplectic
(but not Kähler) structure in zero modes, is an automatic consequence.

3.12.5 The general structure of the isometry algebra

There are three options for the isometry algebra of configuration space
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1. Isometry algebra as the algebra of CP2 symplectic transformations leaving invariant the sym-
plectic form of CP2 localized with respect to δM4

+.

2. Certainly the configuration space metric in δM4
+ must be non-trivial and actually given by the

magnetic flux Hamiltonians defining symplectic invariants. Furthermore, the super-symplectic
generators constructed from quarks automatically give as anti-commutators this part of the
configuration space metric. One could interpret these symplectic invariants as configuration
space Hamiltonians for δM4

+ symplectic transformations obtained when CP2 Hamiltonian is
constant.

3. Isometry algebra consists of δM4
+ × CP2 symplectic transformations. In this case a local color

transformation involves necessarily a local S2 transformation. Unfortunately, it is difficult to
decide at this stage which of these options is correct.

The eigen states of the rotation generator and Lorentz boost in the same direction defining a
unitary representation of the Lorentz group at light cone boundary define the most natural function
basis for the light cone boundary. The elements of this bases have also well defined scaling quantum
numbers and define also a unitary representation of the conformal algebra. The product of the basic
functions is very simple in this basis since various quantum numbers are additive.

Spherical harmonics of S2 provide an alternative function basis for the light cone boundary:

Hm
jk ≡ Yjm(θ, φ)rkM .

(3.12.6)

One can criticize this basis for not having nice properties under Lorentz group.
The product of basis functions is given by Glebch-Gordan coefficients for symmetrized tensor

product of two representation of the rotation group. Poisson bracket in turn reduces to the Glebch-
Gordans of anti-symmetrized tensor product. The quantum numbers m and k are additive. The
basis is eigen-function basis for the imaginary part of the Virasoro generator L0 generating rotations
around quantization axis of angular momentum. In fact, only the imaginary part of the Virasoro
generator L0 = zd/dz = ρ∂ρ − 2

2∂φ has global single valued Hamiltonian, whereas the corresponding
representation for the transformation induced by the real part of L0, with a compensating radial
scaling added, cannot be realized as a global symplectic transformation.

The Poisson bracket of two functions Hm
j1k1

and Hm
j2k2

can be calculated and is of the general form

{Hm1

j1k
, Hm2

j2k2
} ≡ C(j1m1j2m2|j,m1 +m2)AH

m1+m2

j,k1+k2

. (3.12.7)

The coefficients are Glebch-Gordan coefficients for the anti-symmetrized tensor product for the rep-
resentations of the rotation group.

The isometries of the light cone boundary correspond to conformal transformations accompanied
by a local radial scaling compensating the conformal factor coming from the conformal transforma-
tions having parametric dependence of radial variable and CP2 coordinates. It seems however that
isometries cannot in general be realized as symplectic transformations. The first difficulty is that
symplectic transformations cannot affect the value of the radial coordinate. For rotation algebra the
representation as symplectic transformations is however possible.

In CP2 degrees of freedom scalar function basis having definite color transformation properties is
desirable. Scalar function basis can be obtained as the algebra generated by the Hamiltonians of color
transformations by multiplication. The elements of basis can be typically expressed as monomials of
color Hamiltonians HA

c

HA
D =

∑
{Bj}

CADB1B2....BN

∏
Bi

HBi
c , (3.12.8)

where summation over all index combinations {Bi} is understood. The coefficients CADB1B2....BN
are

Glebch-Gordan coefficients for completely symmetric N :th power 8⊗ 8...⊗ 8 of octet representations.
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The representation is not unique since
∑
AH

A
c H

A
c = 1 holds true. One can however find for each

representation D some minimum value of N .
The product of Hamiltonians HD1

A and HB
D2

can be decomposed by Glebch-Gordan coefficients of
the symmetrized representation (D1 ⊗D2)S as

HA
D1
HB
D2

= CABDD1D2DC(S)HC
D , (3.12.9)

where ′S′ indicates that the symmetrized representation is in question. In the similar manner one can
decompose the Poisson bracket of two Hamiltonians

{HA
D1
, HB

D2
} = CABDD1D2DC(A)HC

D . (3.12.10)

Here ′A′ indicates that Glebch-Gordan coefficients for the anti-symmetrized tensor product of the
representations D1 and D2 are in question.

One can express the infinitesimal generators of CP2 symplectic transformations in terms of the
color isometry generators JBc using the expansion of the Hamiltonian in terms of the monomials of
color Hamiltonians:

jADN = FADBJ
B
c ,

FADB = N
∑
{Bj}

CADB1B2...BN−1B

∏
j

HBj
c , (3.12.11)

where summation over all possible {Bj}:s appears. Therefore, the interpretation as a color group
localized with respect to CP2 coordinates is valid in the same sense as the interpretation of space-time
diffeomorphism group as local Poincare group. Thus one can say that TGD color is localized with
respect to the entire δM4

+ × CP2.
A convenient basis for the Hamiltonians of δM4

+ × CP2 is given by the functions

HmA
jkD = Hm

jkH
A
D .

The symplectic transformation generated by HmA
jkD acts both in M4 and CP2 degrees of freedom and

the corresponding vector field is given by

Jr = HA
DJ

rl(δM4
+)∂lH

m
jk +Hm

jkJ
rl(CP2)∂lH

A
D . (3.12.12)

The general form for their Poisson bracket is:

{Hm1A1

j1k1D1
, Hm2A2

j2k2D2
} = HA1

D1
HA2

D2
{Hm1

j1k1
, Hm2

j2k2
}+Hm1

j1k1
Hm2

j2k2
{HA1

D1
, HA2

D2
}

=
[
CA1A2A
D1D2D

(S)C(j1m1j2m2|jm)A + CA1A2A
D1D2D

(A)C(j1m1j2m2|jm)S

]
HmA
j,k1+k2,D .

(3.12.13)

What is essential that radial ’momenta’ and angular momentum are additive in δM4
+ degrees of

freedom and color quantum numbers are additive in CP2 degrees of freedom.

3.12.6 Representation of Lorentz group and conformal symmetries at light
cone boundary

A guess deserving testing is that the representations of the Lorentz group at light cone boundary might
provide natural building blocks for the construction of the configuration space Hamiltonians. In the
following the explicit representation of the Lorentz algebra at light cone boundary is deduced, and a
function basis giving rise to the representations of Lorentz group and having very simple properties
under modified Poisson bracket of δM4

+ is constructed.
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Explicit representation of Lorentz algebra

It is useful to write the explicit expressions of Lorentz generators using complex coordinates for S2.
The expression for the SU(2) generators of the Lorentz group are

Jx = (z2 − 1)d/dz + c.c. = L1 − L−1 + c.c. ,

Jy = (iz2 + 1)d/dz + c.c. = iL1 + iL−1 + c.c. ,

Jz = iz
d

dz
+ c.c. = iLz + c.c. . (3.12.14)

The expressions for the generators of Lorentz boosts can be derived easily. The boost in m3 direction
corresponds to an infinitesimal transformation

δm3 = −εrM ,

δrM = −εm3 = −ε
√
r2
M − (m1)2 − (m2)2 . (3.12.15)

The relationship between complex coordinates of S2 and M4 coordinates mk is given by stereographic
projection

z =
(m1 + im2)

(rM −
√
r2
M − (m1)2 − (m2)2)

=
sin(θ)(cosφ+ isinφ)

(1− cosθ)
,

cot(θ/2) = ρ =
√
zz̄ ,

tan(φ) =
m2

m1
. (3.12.16)

This implies that the change in z coordinate doesn’t depend at all on rM and is of the following form

δz = −ε
2

(1 +
z(z + z̄)

2
)(1 + zz̄) . (3.12.17)

The infinitesimal generator for the boosts in z-direction is therefore of the following form

Lz = [
2zz̄

(1 + zz̄)
− 1]rM

∂

∂rM
− iJz . (3.12.18)

Generators of Lx and Ly are most conveniently obtained as commutators of [Lz, Jy] and [Lz, Jx]. For
Ly one obtains the following expression:

Ly = 2
(zz̄(z + z̄) + i(z − z̄))

(1 + zz̄)2
rM

∂

∂rM
− iJy , (3.12.19)

For Lx one obtains analogous expressions. All Lorentz boosts are of the form Li = −iJi+local radial scaling
and of zeroth degree in radial variable so that their action on the general generator Xklm ∝ zkz̄lrmM
doesn’t change the value of the label m being a mere local scaling transformation in radial direction.
If radial scalings correspond to zero norm isometries this representation is metrically equivalent with
the representations of Lorentz boosts as Möbius transformations.
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Representations of the Lorentz group reduced with respect to SO(3)

The ordinary harmonics of S2 define in a natural manner infinite series of representation functions
transformed to each other in Lorentz transformations. The inner product defined by the integration
measure r2

MdΩdrM/rM remains invariant under Lorentz boosts since the scaling of rM induced by
the Lorentz boost compensates for the conformal scaling of dΩ induced by a Lorentz transforma-
tion represented as a Möbius transformation. Thus unitary representations of Lorentz group are in
question.

The unitary main series representations of the Lorentz group are characterized by half-integer m
and imaginary number k2 = iρ, where ρ is any real number [52]. A natural guess is that m = 0 holds
true for all representations realizable at the light cone boundary and that radial waves are of form
rkM , k = k1 + ik2 = −1 + iρ and thus eigen states of the radial scaling so that the action of Lorentz
boosts is simple in the angular momentum basis. The inner product in radial degrees of freedom
reduces to that for ordinary plane waves when log(rM ) is taken as a new integration variable. The
complexification is well-defined for non-vanishing values of ρ.

It is also possible to have non-unitary representations of the Lorentz group and the realization of
the symmetric space structure suggests that one must have k = k1 + ik2, k1 half-integer. For these
representations unitarity fails because the inner product in the radial degrees of freedom is non-unitary.
A possible physical interpretation consistent with the general ideas about conformal invariance is
that the representations k = −1 + iρ correspond to the unitary ground state representations and
k = −1 +n/2 + iρ, n = ±1,±2, ..., to non-unitary representations. The general view about conformal
invariance suggests that physical states constructed as tensor products satisfy the condition

∑
i ni = 0

completely analogous to Virasoro conditions.

Representations of the Lorentz group with E2 × SO(2) as isotropy group

One can construct representations of Lorentz group and conformal symmetries at the light cone
boundary. Since SL(2, C) is the group generated by the generators L0 and L± of the conformal
algebra, it is clear that infinite-dimensional representations of Lorentz group can be also regarded
as representations of the conformal algebra. One can require that the basis corresponds to eigen
functions of the rotation generator Jz and corresponding boost generator Lz. For functions which do
not depend on rM these generators are completely analogous to the generators L0 generating scalings
and iL0 generating rotations. Also the generator of radial scalings appears in the formulas and one
must consider the possibility that it corresponds to the generator L0.

In order to construct scalar function eigen basis of Lz and Jz, one can start from the expressions

L3 ≡ i(Lz + Lz̄) = 2i[
2zz̄

(1 + zz̄)
− 1]rM

∂

∂rM
+ iρ∂ρ ,

J3 ≡ iLz − iLz̄ = i∂φ . (3.12.20)

If the eigen functions do not depend on rM , one obtains the usual basis zn of Virasoro algebra, which
however is not normalizable basis. The eigenfunctions of the generators L3, J3 and L0 = irMd/drM
satisfying

J3fm,n,k = mfm,n,k ,

L3fm,n,k = nfm,n,k ,

L0fm,n,k = kfm,n,k . (3.12.21)

are given by

fm,n,k = eimφ
ρn−k

(1 + ρ2)k
× (

rM
r0

)k . (3.12.22)

n = n1 + in2 and k = k1 + ik2 are in general complex numbers. The condition

n1 − k1 ≥ 0
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is required by regularity at the origin of S2 The requirement that the integral over S2 defining norm
exists (the expression for the differential solid angle is dΩ = ρ

(1+ρ2)2 dρdφ) implies

n1 < 3k1 + 2 .

From the relationship (cos(θ), sin(θ)) = (ρ2−1)/(ρ2 + 1), 2ρ/(ρ2 + 1)) one can conclude that for n2 =
k2 = 0 the representation functions are proportional to f sin(θ)n−k(cos(θ) − 1)n−k. Therefore they
have in their decomposition to spherical harmonics only spherical harmonics with angular momentum
l < 2(n− k). This suggests that the condition

|m| ≤ 2(n− k) (3.12.23)

is satisfied quite generally.
The emergence of the three quantum numbers (m,n, k) can be understood. Light cone boundary

can be regarded as a coset space SO(3, 1)/E2 × SO(2), where E2 × SO(2) is the group leaving the
light like vector defined by a particular point of the light cone invariant. The natural choice of the
Cartan group is therefore E2 × SO(2). The three quantum numbers (m,n, k) have interpretation as
quantum numbers associated with this Cartan algebra.

The representations of the Lorentz group are characterized by one half-integer valued and one com-
plex parameter. Thus k2 and n2, which are Lorentz invariants, might not be independent parameters,
and the simplest option is k2 = n2.

The nice feature of the function basis is that various quantum numbers are additive under multi-
plication:

f(ma, na, ka)× f(mb, nb, kb) = f(ma +mb, na + nb, ka + kb) .

These properties allow to cast the Poisson brackets of the symplectic algebra of the configuration
space into an elegant form.

The Poisson brackets for the δM4
+ Hamiltonians defined by fmnk can be written using the expres-

sion Jρφ = (1 + ρ2)/ρ as

{fma,na,ka , fmb,nb,kb} = i [(na − ka)mb − (nb − kb)ma]× fma+mb,na+nb−2,ka+kb

+ 2i [(2− ka)mb − (2− kb)ma]× fma+mb,na+nb−1,ka+kb−1 .

(3.12.24)

Can one find unitary light-like representations of Lorentz group?

It is interesting to compare the representations in question to the unitary representations of Lorentz
group discussed in [52].

1. The unitary representations discussed in [52] are characterized by are constructed by deducing
the explicit representations for matrix elements of the rotation generators Jx, Jy, Jz and boost
generators Lx, Ly, Lz by decomposing the representation into series of representations of SU(2)
defining the isotropy subgroup of a time like momentum. Therefore the states are labeled by
eigenvalues of Jz. In the recent case the isotropy group is E2 × SO(2) leaving light like point
invariant. States are therefore labeled by three different quantum numbers.

2. The representations of [52] are realized the space of complex valued functions of complex co-
ordinates ξ and ξ labeling points of complex plane. These functions have complex degrees
n+ = m/2− 1 + l1 with respect to ξ and n− = −m/2− 1 + l1 with respect to ξ. l0 is complex
number in the general case but for unitary representations of main series it is given by l1 = iρ
and for the representations of supplementary series l1 is real and satisfies 0 < |l1| < 1. The main
series representation is derived from a representation space consisting of homogenous functions
of variables z0, z1 of degree n+ and of z0 and z1 of degrees n±. One can separate express these

functions as product of (z1)n
+

(z1)n− and a polynomial of ξ = z1/z2 and ξ with degrees n+

and n−. Unitarity reduces to the requirement that the integration measure of complex plane is
invariant under the Lorentz transformations acting as Moebius transformations of the complex
plane. Unitarity implies l1 = −1 + iρ.
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3. For the representations at δM4
+ formal unitarity reduces to the requirement that the integration

measure of r2
MdΩdrM/rM of δM4

+ remains invariant under Lorentz transformations. The action
of Lorentz transformation on the complex coordinates of S2 induces a conformal scaling which
can be compensated by an S2 local radial scaling. At least formally the function space of δM4

+

thus defines a unitary representation. For the function basis fmnk k = −1+iρ defines a candidate
for a unitary representation since the logarithmic waves in the radial coordinate are completely
analogous to plane waves for k1 = −1. This condition would be completely analogous to the
vanishing of conformal weight for the physical states of super conformal representations. The
problem is that for k1 = −1 guaranteing square integrability in S2 implies −2 < n1 < −2 so
that unitarity is possible only for the function basis consisting of spherical harmonics.

There is no deep reason against non-unitary representations and symmetric space structure
indeed requires that k1 is half-integer valued. First of all, configuration space spinor fields
are analogous to ordinary spinor fields in M4, which also define non-unitary representations of
Lorentz group. Secondly, if 3-surfaces at the light cone boundary are finite-sized, the integrals
defined by fmnk over 3-surfaces Y 3 are always well-defined. Thirdly, the continuous spectrum
of k2 could be transformed to a discrete spectrum when k1 becomes half-integer valued.

Hermitian form for light cone Hamiltonians involves also the integration over S2 degrees of freedom
and the non-unitarity of the inner product reflects itself as non-orthogonality of the the eigen function
basis. Introducing the variable u = ρ2 + 1 as a new integration variable, one can express the inner
product in the form

〈ma, na, ka|mb, nb, kb〉 = πδ(k2a − k2b)× δm1,m2
× I ,

I =

∫ ∞
1

f(u)du ,

f(u) =
(u− 1)

(N−K)+i∆
2

uK+2
. (3.12.25)

The integrand has cut from u = 1 to infinity along real axis. The first thing to observe is that
for N = K the exponent of the integral reduces to very simple form and integral exists only for
K = k1a + k1b > −1. For k1i = −1/2 the integral diverges.

The discontinuity of the integrand due to the cut at the real axis is proportional to the integrand
and given by

f(u)− f(ei2πu) =
[
1− e−π∆

]
f(u) ,

∆ = n1a − k1a − n1b + k1b . (3.12.26)

This means that one can transform the integral to an integral around the cut. This integral can in
turn completed to an integral over closed loop by adding the circle at infinity to the integration path.
The integrand has K + 1-fold pole at u = 0.

Under these conditions one obtains

I =
2πi

1− e−π∆
×R× (R− 1)....× (R−K − 1)× (−1)

N−K
2 −K−1 ,

R ≡ N −K
2

+ i∆ . (3.12.27)

This expression is non-vanishing for ∆ 6= 0. Thus it is not possible to satisfy orthogonality conditions
without the un-physical n = k, k1 = 1/2 constraint. The result is finite for K > −1 so that k1 > −1/2
must be satisfied and if one allows only half-integers in the spectrum, one must have k1 ≥ 0, which is
very natural if real conformal weights which are half integers are allowed.
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3.12.7 How the complex eigenvalues of the radial scaling operator relate
to conformal weights?

Complexified Hamiltonians can be chosen to be eigenmodes of the radial scaling operator rMd/drM ,
and the first guess was that the correct interpretation is as conformal weights. The problem is however
that the eigenvalues are complex. Second problem is that general arguments are not enough to fix
the spectrum of eigenvalues. There should be a direct connection to the dynamics defined by Kähler
action with instanton term included and the modified Dirac action defined by it.

The construction of configuration space spinor structure in terms of second quantized induced
spinor fields [18] leads to the conclusion that the modes of induced spinor fields are labeled by gener-
alized eigenvalues λ such that |λ|2 has interpretation as a conformal weight and λ itself is analogous
to Higgs expectation value. Coset construction requires that super-symplectic and super Kac-Moody
conformal weights |λ|2 are same. This is achieved if the Hamiltonians are generalized eigen modes of
D = γxd/dx, x = log(r/r0), satisfying DH = λγxH and thus of form exp(λx) = (r/r0)λ with the same
spectrum of complex eigenvalues λ as associated with the modified Dirac operator. That log(r/r0)
naturally corresponds to the coordinate u assignable to the generalized eigen modes of modified Dirac
operator supports this interpretation.

If the Kähler action and modified Dirac action involve also the CP breaking instanton term,
the eigenvalues λ are complex and complexity relates directly also to the breaking of time reversal
invariance.

3.13 Magnetic and electric representations of the configura-
tion space Hamiltonians

Symmetry considerations lead to the hypothesis that configuration space Hamiltonians are apart from
a factor depending on symplectic invariants equal to magnetic flux Hamiltonians. On the other hand,
the hypothesis that Kähler function corresponds to a preferred extremal of Kähler action leads to
the hypothesis that configuration space Hamiltonians corresponds to classical charges associated with
the Hamiltonians of the light cone boundary. These charges are very much like electric charges. The
requirement that two approaches are equivalent leads to the hypothesis that magnetic and electric
Hamiltonians are identical apart from a factor depending on isometry invariants. At the level of CP2

corresponding duality corresponds to the self-duality of Kähler form stating that the magnetic and
electric parts of Kähler form are identical.

3.13.1 Radial symplectic invariants

All δM4
+ × CP2 symplectic transformations leave invariant the value of the radial coordinate rM .

Therefore the radial coordinate rM of X3 regarded as a function of S2 × CP2 coordinates serves as
height function. The number, type, ordering and values for the extrema for this height function in
the interior and boundary components are isometry invariants. These invariants characterize not only
the topology but also the size and shape of the 3-surface. The result implies that configuration space
metric indeed differentiates between 3-surfaces with the size of Planck length and with the size of
galaxy. The characterization of these invariants reduces to Morse theory. The extrema correspond
to topology changes for the two-dimensional (one-dimensional) rM = constant section of 3-surface
(boundary of 3-surface). The height functions of sphere and torus serve as a good illustrations of the
situation. A good example about non-topological extrema is provided by a sphere with two horns.

There are additional symplectic invariants. The ’magnetic fluxes’ associated with the δM4
+ sym-

plectic form

JS2 = r2
Msin(θ)dθ ∧ dφ

over any X2 ⊂ X3 are symplectic invariants. In particular, the integrals over rM = constant
sections (assuming them to be 2-dimensional) are symplectic invariants. They give simply the solid
angle Ω(rM ) spanned by rM = constant section and thus r2

MΩ(rM ) characterizes transversal geometric
size of the 3-surface. A convenient manner to discretize these invariants is to consider the Fourier
components of these invariants in radial logarithmic plane wave basis discussed earlier:
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Ω(k) =

∫ rmax

rmin

(rM/rmax)kΩ(rM )
drM
rM

, k = k1 + ik2 , perk1 ≥ 0 . (3.13.1)

One must take into account that for each section in which the topology of rM = constant section
remains constant one must associate invariants with separate components of the two-dimensional
section. For a given value of rM , rM constant section contains several components (to visualize the
situation consider torus as an example).

Also the quantities

Ω+(X2) =

∫
X2

|J | ≡
∫
|εαβJαβ |

√
g2d

2x

are symplectic invariants and provide additional geometric information about 3-surface. These fluxes
are non-vanishing also for closed surfaces and give information about the geometry of the boundary
components of 3-surface (signed fluxes vanish for boundary components unless they enclose the dip of
the light cone).

Since zero norm generators remain invariant under complexification, their contribution to the
Kähler metric vanishes. It is not at all obvious whether the configuration space integration measure
in these degrees of freedom exists at all. A localization in zero modes occurring in each quantum
jump seems a more plausible and under suitable additional assumption it would have interpretation
as a state function reduction. In string model similar situation is encountered; besides the functional
integral determined by string action, one has integral over the moduli space.

If the effective 2-dimensionality implied by the strong form of general coordinate invariance dis-
cussed in the introduction is accepted, there is no need to integrate over the variable rM and just the
fluxes over the 2-surfaces X2

i identified as intersections of light like 3-D causal determinants with X3

contain the data relevant for the construction of the configuration space geometry. Also the symplectic
invariants associated with these surfaces are enough.

3.13.2 Kähler magnetic invariants

The Kähler magnetic fluxes defined both the normal component of the Kähler magnetic field and by
its absolute value

Qm(X2) =

∫
X2

JCP2
= Jαβε

αβ√g2d
2x ,

Q+
m(X2) =

∫
X2

|JCP2
| ≡

∫
X2

|Jαβεαβ |
√
g2d

2x , (3.13.2)

over suitably defined 2-surfaces are invariants under both Lorentz isometries and the symplectic trans-
formations of CP2 and can be calculated once X3 is given.

For a closed surface Qm(X2) vanishes unless the homology equivalence class of the surface is
nontrivial in CP2 degrees of freedom. In this case the flux is quantized. Q+

M (X2) is non-vanishing for
closed surfaces, too. Signed magnetic fluxes over non-closed surfaces depend on the boundary of X2

only: ∫
X2 J =

∫
δX2 A .

J = dA .

Un-signed fluxes can be written as sum of similar contributions over the boundaries of regions of X2

in which the sign of J remains fixed.

Qm(X2) =

∫
X2

JCP2
= Jαβε

αβ√g2d
2x ,

Q+
m(X2) =

∫
X2

|JCP2
| ≡

∫
X2

|Jαβεαβ |
√
g2d

2x , (3.13.3)

There are also symplectic invariants, which are Lorentz covariants and defined as
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Qm(K,X2) =

∫
X2

fKJCP2 ,

Q+
m(K,X2) =

∫
X2

fK |JCP2
| ,

fK≡(s,n,k) = eisφ × ρn−k

(1 + ρ2)k
× (

rM
r0

)k (3.13.4)

These symplectic invariants transform like an infinite-dimensional unitary representation of Lorentz
group.

There must exist some minimal number of symplectically non-equivalent 2-surfaces of X3, and the
magnetic fluxes over the representatives these surfaces give thus good candidates for zero modes.

1. If effective 2-dimensionality is accepted, the surfaces X2
i defined by the intersections of light like

3-D causal determinants X3
l and X3 provide a natural identification for these 2-surfaces.

2. Without effective 2-dimensionality the situation is more complex. Since symplectic transfor-
mations leave rM invariant, a natural set of 2-surfaces X2 appearing in the definition of fluxes
are separate pieces for rM = constant sections of 3-surface. For a generic 3-surface, these sur-
faces are 2-dimensional and there is continuum of them so that discrete Fourier transforms of
these invariants are needed. One must however notice that rM = constant surfaces could be be
3-dimensional in which case the notion of flux is not well-defined.

3.13.3 Isometry invariants and spin glass analogy

The presence of isometry invariants implies coset space decomposition ∪iG/H. This means that
quantum states are characterized, not only by the vacuum functional, which is just the exponential
exp(K) of Kähler function (Gaussian in lowest approximation) but also by a wave function in vacuum
modes. Therefore the functional integral over the configuration space decomposes into an integral
over zero modes for approximately Gaussian functionals determined by exp(K). The weights for the
various vacuum mode contributions are given by the probability density associated with the zero
modes. The integration over the zero modes is a highly problematic notion and it could be eliminated
if a localization in the zero modes occurs in quantum jumps. The localization would correspond to a
state function reduction and zero modes would be effectively classical variables correlated in one-one
manner with the quantum numbers associated with the quantum fluctuating degrees of freedom.

For a given orbit K depends on zero modes and thus one has mathematical similarity with spin
glass phase for which one has probability distribution for Hamiltonians appearing in the partition
function exp(−H/T ). In fact, since TGD Universe is also critical, exact similarity requires that also
the temperature is critical for various contributions to the average partition function of spin glass
phase. The characterization of isometry invariants and zero modes of the Kähler metric provides a
precise characterization for how TGD Universe is quantum analog of spin glass.

The spin glass analogy has been the basic starting point in the construction of p-adic field theory
limit of TGD. The ultra-metric topology for the free energy minima of spin glass phase motivates the
hypothesis that effective quantum average space-time possesses ultra-metric topology. This approach
leads to excellent predictions for elementary particle masses and predicts even new branches of physics
[31, 26]. As a matter fact, an entire fractal hierarchy of copies of standard physics is predicted.

3.13.4 Magnetic flux representation of the symplectic algebra

Accepting the strong form of general coordinate invariance implying effective two-dimensionality
WCW Hamiltonians correspond to the fluxes associated with various 2-surfaces X2

i defined by the
intersections of light-like light-like 3-surfaces X3

l,i with X3 at the boundaries of CD considered. Bear-
ing in mind that zero energy ontology is the correct approach, one can restrict the consideration on
fluxes at δM4

+ × CP2 One must also remember that if the proposed symmetries hold true, it is in
principle choose any partonic 2-surface in the conjectured slicing of the Minkowskian space-time sheet
to partonic 2-surfaces parametrized by the points of stringy world sheets.
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Generalized magnetic fluxes

Isometry invariants are just special case of the fluxes defining natural coordinate variables for the
configuration space. Symplectic transformations of CP2 act as U(1) gauge transformations on the
Kähler potential of CP2 (similar conclusion holds at the level of δM4

+ × CP2).
One can generalize these transformations to local symplectic transformations by allowing the

Hamiltonians to be products of the CP2 Hamiltonians with the real and imaginary parts of the
functions fm,n,k (see Eq. 3.12.22) defining the Lorentz covariant function basis HA, A ≡ (a,m, n, k)
at the light cone boundary: HA = Ha × f(m,n, k), where a labels the Hamiltonians of CP2.

One can associate to any Hamiltonian HA of this kind both signed and unsigned magnetic flux
via the following formulas:

Qm(HA|X2) =

∫
X2

HAJ ,

Q+
m(HA|X2) =

∫
X2

HA|J | .

(3.13.5)

Here X2 corresponds to any surface X2
i resulting as intersection of X3 with X3

l,i. Both signed and
unsigned magnetic fluxes and their superpositions

Qα,βm (HA|X2) = αQm(HA|X2) + βQ+
m(HA|X2) , A ≡ (a, s, n, k) (3.13.6)

provide representations of Hamiltonians. Note that symplectic invariants Qα,βm correspond to HA = 1
and HA = fs,n,k. HA = 1 can be regarded as a natural central term for the Poisson bracket algebra.
Therefore, the isometry invariance of Kähler magnetic and electric gauge fluxes follows as a natural
consequence.

The obvious question concerns about the correct values of the parameters α and β. One possibility
is that the flux is an unsigned flux so that one has α = 0. This option is favored by the construction
of the configuration space spinor structure involving the construction of the fermionic super charges
anti-commuting to configuration space Hamiltonians: super charges contain the square root of flux,
which must be therefore unsigned. Second possibility is that magnetic fluxes are signed fluxes so that
β vanishes.

One can define also the electric counterparts of the flux Hamiltonians by replacing J in the defining
formulas with its dual ∗J

∗Jαβ = ε γδ
αβ Jγδ.

For HA = 1 these fluxes reduce to ordinary Kähler electric fluxes. These fluxes are however not sym-
plectic covariants since the definition of the dual involves the induced metric, which is not symplectic
invariant. The electric gauge fluxes for Hamiltonians in various representations of the color group
ought to be important in the description of hadrons, not only as string like objects, but quite gener-
ally. These degrees of freedom would be identifiable as non-perturbative degrees of freedom involving
genuinely classical Kähler field whereas quarks and gluons would correspond to the perturbative de-
grees of freedom, that is the interactions between CP2 type extremals.

Poisson brackets

From the symplectic invariance of the radial component of Kähler magnetic field it follows that the
Lie-derivative of the flux Qα,βm (HA) with respect to the vector field X(HB) is given by

X(HB) ·Qα,βm (HA) = Qα,βm ({HB , HA}) . (3.13.7)

The transformation properties of Qα,βm (HA) are very nice if the basis for HB transforms according to
appropriate irreducible representation of color group and rotation group. This in turn implies that the
fluxes Qα,βm (HA) as functionals of 3-surface on given orbit provide a representation for the Hamiltonian
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as a functional of 3-surface. For a given surface X3, the Poisson bracket for the two fluxes Qα,βm (HA)
and Qα,βm (HB) can be defined as

{Qα,βm (HA), Qα,βm (HB)} ≡ X(HB) ·Qα,βm (HA)

= Qα,βm ({HA, HB}) = Qα,βm ({HA, HB}) . (3.13.8)

The study of configuration space gamma matrices identifiable as symplectic super charges demon-
strates that the supercharges associated with the radial deformations vanish identically so that radial
deformations correspond to zero norm degrees of freedom as one might indeed expect on physical
grounds. The reason is that super generators involve the invariants jakγk which vanish by γrM = 0.

The natural central extension associated with the symplectic group of CP2 ({p, q} = 1!) induces
a central extension of this algebra. The central extension term resulting from {HA, HB} when CP2

Hamiltonians have {p, q} = 1 equals to the symplectic invariant Qα,βm (f(ma + mb, na + nb, ka + kb))
on the right hand side. This extension is however anti-symmetric in symplectic degrees of freedom
rather than in loop space degrees of freedom and therefore does not lead to the standard Kac Moody
type algebra.

Quite generally, the Virasoro and Kac Moody algebras of string models are replaced in TGD
context by much larger symmetry algebras. Kac Moody algebra corresponds to the the deformations
of light-like 3-surfaces respecting their light-likeness and leaving partonic 2-surfaces at δCD intact
and are highly relevant to the elementary particle physics. This algebra allows a representation in
terms of X3

l local Hamiltonians generating isometries of δM4
± × CP2. Hamiltonian representation is

essential for super-symmetrization since fermionic super charges anti-commute to Hamiltonians rather
than vector fields: this is one of the deep differences between TGD and string models. Kac-Moody
algebra does not contribute to configuration space metric since by definition the generators vanish at
partonic 2-surfaces. This is essential for the coset space property.

A completely new algebra is the CP2 symplectic algebra localized with respect to the light cone
boundary and relevant to the configuration space geometry. This extends to S2 × CP2 -or rather
δM4
±×CP2 symplectic algebra and this gives the strongest predictions concerning configuration space

metric. The local radial Virasoro localized with respect to S2 × CP2 acts in zero modes and has
automatically vanishing norm with respect to configuration space metric defined by super charges.

3.13.5 Symplectic transformations of δM4
±×CP2 as isometries and electric-

magnetic duality

According to the construction of Kähler metric, symplectic transformations of δM4
± × CP2 act as

isometries whereas radial Virasoro algebra localized with respect to CP2 has zero norm in the config-
uration space metric.

Hamiltonians can be organized into light like unitary representations of so(3, 1) × su(3) and the
symmetry condition Zg(X,Y ) = 0 requires that the component of the metric is so(3, 1) × su(3)
invariant and this condition is satisfied if the component of metric between two different representations
D1 and D2 of so(3, 1)×su(3) is proportional to Glebch-Gordan coefficient CD1D2,DS between D1⊗D2

and singlet representation DS . In particular, metric has components only between states having
identical so(3, 1)× su(3) quantum numbers.

Magnetic representation of configuration space Hamiltonians means the action of the symplectic
transformations of the light cone boundary as configuration space isometries is an intrinsic property of
the light cone boundary. If electric-magnetic duality holds true, the preferred extremal property only
determines the conformal factor of the metric depending on zero modes. This is precisely as it should
be if the group theoretical construction works. Hence it should be possible by a direct calculation check
whether the metric defined by the magnetic flux Hamiltonians as half Poisson brackets in complex
coordinates is invariant under isometries. Symplectic invariance of the metric means that matrix
elements of the metric are left translates of the metric along geodesic lines starting from the origin
of coordinates, which now naturally corresponds to the preferred extremal of Kähler action. Since
metric derives from symplectic form this means that the matrix elements of symplectic form given by
Poisson brackets of Hamiltonians must be left translates of their values at origin along geodesic line.
The matrix elements in question are given by flux Hamiltonians and since symplectic transforms of
flux Hamiltonian is flux Hamiltonian for the symplectic transform of Hamiltonian, it seems that the
conditions are satisfied.
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3.14 General expressions for the symplectic and Kähler forms

One can derive general expressions for symplectic and Kähler forms as well as Kähler metric of the
configuration space. The fact that these expressions involve only first variation of the Kähler action
implies huge simplification of the basic formulas. Duality hypothesis leads to further simplifications
of the formulas.

3.14.1 Closedness requirement

The fluxes of Kähler magnetic and electric fields for the Hamiltonians of δM4
+×CP2 suggest a general

representation for the components of the symplectic form of the configuration space. The basic
requirement is that Kähler form satisfies the defining condition

X · J(Y,Z) + J([X,Y ], Z) + J(X, [Y, Z]) = 0 , (3.14.1)

where X,Y, Z are now vector fields associated with Hamiltonian functions defining configuration space
coordinates.

3.14.2 Matrix elements of the symplectic form as Poisson brackets

Quite generally, the matrix element of J(X(HA), X(HB)) between vector fields X(HA)) and X(HB))
defined by the Hamiltonians HA and HB of δM4

+ × CP2 isometries is expressible as Poisson bracket

JAB = J(X(HA), X(HB)) = {HA, HB} . (3.14.2)

JAB denotes contravariant components of the symplectic form in coordinates given by a subset of
Hamiltonians. The magnetic flux Hamiltonians Qα,βm (HA,k) of Eq. 4.6.1 provide an explicit rep-
resentation for the Hamiltonians at the level of configuration space so that the components of the
symplectic form of the configuration space are expressible as classical charges for the Poisson brackets
of the Hamiltonians of the light cone boundary:

J(X(HA), X(HB)) = Qα,βm ({HA, HB}) .

(3.14.3)

Recall that the superscript α, β refers the coefficients of J and |J | in the superposition of these
Kähler magnetic fluxes. Note that Qα,βm contains unspecified conformal factor depending on symplectic
invariants characterizing Y 3 and is unspecified superposition of signed and unsigned magnetic fluxes.

This representation does not carry information about the tangent space of space-time surface at
the partonic 2-surface, which motivates the proposal that also electric fluxes are present and propor-
tional to magnetic fluxes with a factor K, which is symplectic invariant so that commutators of flux
Hamiltonians come out correctly. This would give

Qα,βm (HA)em = Qα,βe (HA) +Qα,βm (HA) = (1 +K)Qα,βm (HA) . (3.14.4)

Since Kähler form relates to the standard field tensor by a factor e/~, flux Hamiltonians are dimen-
sionless so that commutators do not involve ~. The commutators would come as

Qα,βem ({HA, HB})→ (1 +K)Qα,βm ({HA, HB}) . (3.14.5)

The factor 1 +K plays the same role as Planck constant in the commutators.
WCW Hamiltonians vanish for the extrema of the Kähler function as variational derivatives of the

Kähler action. Hence Hamiltonians are good candidates for the coordinates appearing as coordinates in
the perturbative functional integral around extrema (with maxima giving dominating contribution). It
is clear that configuration space coordinates around a given extremum include only those Hamiltonians,
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which vanish at extremum (that is those Hamiltonians which span the tangent space of G/H) In
Darboux coordinates the Poisson brackets reduce to the symplectic form

{P I , QJ} = JIJ = JIδ
I,J .

JI = 1 . (3.14.6)

It is not clear whether Darboux coordinates with JI = 1 are possible in the recent case: probably the
unit matrix on right hand side of the defining equation is replaced with a diagonal matrix depending
on symplectic invariants so that one has JI 6= 1. The integration measure is given by the symplectic
volume element given by the determinant of the matrix defined by the Poisson brackets of the Hamil-
tonians appearing as coordinates. The value of the symplectic volume element is given by the matrix
formed by the Poisson brackets of the Hamiltonians and reduces to the product

V ol =
∏
I

JI

in generalized Darboux coordinates.

Kähler potential (that is gauge potential associated with Kähler form) can be written in Darboux
coordinates as

A =
∑
I

JIPIdQ
I . (3.14.7)

3.14.3 General expressions for Kähler form, Kähler metric and Kähler
function

The expressions of Kähler form and Kähler metric in complex coordinates can obtained by transform-
ing the contravariant form of the symplectic form from symplectic coordinates provided by Hamilto-
nians to complex coordinates:

JZ
iZ̄j = iGZ

iZ̄j = ∂HAZ
i∂HB Z̄

jJAB , (3.14.8)

where JAB is given by the classical Kahler charge for the light cone Hamiltonian {HA, HB}. Complex
coordinates correspond to linear coordinates of the complexified Lie-algebra providing exponentiation
of the isometry algebra via exponential mapping. What one must know is the precise relationship
between allowed complex coordinates and Hamiltonian coordinates: this relationship is in principle
calculable. In Darboux coordinates the expressions become even simpler:

JZ
iZ̄j = iGZ

iZ̄j =
∑
I

J(I)(∂P iZ
i∂QI Z̄

j − ∂QIZi∂P I Z̄j) . (3.14.9)

Kähler function can be formally integrated from the relationship

AZi = i∂ZiK ,

AZ̄i = −i∂ZiK . (3.14.10)

holding true in complex coordinates. Kähler function is obtained formally as integral

K =

∫ Z

0

(AZidZ
i −AZ̄idZ̄i) . (3.14.11)
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3.14.4 Diff(X3) invariance and degeneracy and conformal invariances of
the symplectic form

J(X(HA), X(HB)) defines symplectic form for the coset space G/H only if it is Diff(X3) degenerate.
This means that the symplectic form J(X(HA), X(HB)) vanishes whenever Hamiltonian HA or HB

is such that it generates diffeomorphism of the 3-surface X3. If effective 2-dimensionality holds true,
J(X(HA), X(HB)) vanishes if HA or HB generates two-dimensional diffeomorphism d(HA) at the
surface X2

i .

One can always write

J(X(HA), X(HB)) = X(HA)Q(HB |X2
i ) .

If HA generates diffeomorphism, the action of X(HA) reduces to the action of the vector field XA of
some X2

i -diffeomorphism. Since Q(HB |rM ) is manifestly invariant under the diffemorphisms of X2,
the result is vanishing:

XAQ(HB |X2
i ) = 0 ,

so that Diff2 invariance is achieved.

The radial diffeomorphisms possibly generated by the radial Virasoro algebra do not produce
trouble. The change of the flux integrand X under the infinitesimal transformation rM → rM + εrnM
is given by rnMdX/drM . Replacing rM with r−n+1

M /(−n + 1) as variable, the integrand reduces to
a total divergence dX/du the integral of which vanishes over the closed 2-surface X2

i . Hence radial
Virasoro generators having zero norm annihilate all matrix elements of the symplectic form. The
induced metric of X2

i induces a unique conformal structure and since the conformal transformations
of X2

i can be interpreted as a mere coordinate changes, they leave the flux integrals invariant.

3.14.5 Complexification and explicit form of the metric and Kähler form

The identification of the Kähler form and Kähler metric in symplectic degrees of freedom follows
trivially from the identification of the symplectic form and definition of complexification. The re-
quirement that Hamiltonians are eigen states of angular momentum (and possibly Lorentz boost
generator), isospin and hypercharge implies physically natural complexification. In order to fix the
complexification completely one must introduce some convention fixing which states correspond to
’positive’ frequencies and which to ’negative frequencies’ and which to zero frequencies that is to
decompose the generators of the symplectic algebra to three sets Can+, Can− and Can0. One must
distinguish between Can0 and zero modes, which are not considered here at all. For instance, CP2

Hamiltonians correspond to zero modes.

The natural complexification relies on the imaginary part of the radial conformal weight whereas
the real part defines the g = t + h decomposition naturally. The wave vector associated with the
radial logarithmic plane wave corresponds to the angular momentum quantum number associated
with a wave in S1 in the case of Kac Moody algebra. One can imagine three options.

1. It is quite possible that the spectrum of k2 does not contain k2 = 0 at all so that the sector Can0

could be empty. This complexification is physically very natural since it is manifestly invariant
under SU(3) and SO(3) defining the preferred spherical coordinates. The choice of SO(3) is
unique if the classical four-momentum associated with the 3-surface is time like so that there
are no problems with Lorentz invariance.

2. If k2 = 0 is possible one could have

Can+ = {Ha
m,n,k=k1+ik2

, k2 > 0} ,

Can− = {Ha
m,n,k, k2 < 0} ,

Can0 = {Ha
m,n,k, k2 = 0} . (3.14.12)
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3. If it is possible to n2 6= 0 for k2 = 0, one could define the decomposition as

Can+ = {Ha
m,n,k, k2 > 0 or k2 = 0, n2 > 0} ,

Can− = {Ha
m,n,k, k2 < 0 ork2 = 0, n2 < 0} ,

Can0 = {Ha
m,n,k, k2 = n2 = 0} . (3.14.13)

In this case the complexification is unique and Lorentz invariance guaranteed if one can fix the
SO(2) subgroup uniquely. The quantization axis of angular momentum could be chosen to be
the direction of the classical angular momentum associated with the 3-surface in its rest system.

The only thing needed to get Kähler form and Kähler metric is to write the half Poisson bracket
defined by Eq. 3.14.15

Jf (X(HA), X(HB)) = 2Im (iQf ({HA, HB}−+)) ,

Gf (X(HA), X(HB)) = 2Re (iQf ({HA, HB}−+)) . (3.14.14)

Symplectic form, and thus also Kähler form and Kähler metric, could contain a conformal factor
depending on the isometry invariants characterizing the size and shape of the 3-surface. At this stage
one cannot say much about the functional form of this factor.

3.14.6 Comparison of CP2 Kähler geometry with configuration space ge-
ometry

The explicit discussion of the role of g = t+h decomposition of the tangent space of the configuration
space provides deep insights to the metric of the symmetric space. There are indeed many questions
to be answered. To what point of configuration space (that is 3-surface) the proposed g = t + h
decomposition corresponds to? Can one derive the components of the metric and Kähler form from
the Poisson brackets of complexified Hamiltonians? Can one characterize the point in question in terms
of the properties of configuration space Hamiltonians? Does the central extension of the configuration
space reduce to the symplectic central extension of the symplectic algebra or can one consider also
other options?

Cartan decomposition for CP2

A good manner to gain understanding is to consider the CP2 metric and Kähler form at the origin of
complex coordinates for which the sub-algebra h = u(2) defines the Cartan decomposition.

1. g = t + h decomposition depends on the point of the symmetric space in general. In case of
CP2 u(2) sub-algebra transforms as g ◦ u(2) ◦ g−1 when the point s is replaced by gsg−1. This
is expected to hold true also in case of configuration space (unless it is flat) so that the task is
to identify the point of the configuration space at which the proposed decomposition holds true.

2. The Killing vector fields of h sub-algebra vanish at the origin of CP2 in complex coordinates.
The corresponding Hamiltonians need not vanish but their Poisson brackets must vanish. It is
possible to add suitable constants to the Hamiltonians in order to guarantee that they vanish
at origin.

3. It is convenient to introduce complex coordinates and decompose isometry generators to holo-
morphic components Ja+ = jak∂k and ja− = jak̄∂k̄. One can introduce what might be called half
Poisson bracket and half inner product defined as

{Ha, Hb}−+ ≡ ∂k̄H
aJ k̄l∂lH

b

= jakJkl̄j
bl̄ = −i(ja+, jb−) . (3.14.15)
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One can express Poisson bracket of Hamiltonians and the inner product of the corresponding
Killing vector fields in terms of real and imaginary parts of the half Poisson bracket:

{Ha, Hb} = 2Im
(
i{Ha, Hb}−+

)
,

(ja, jb) = 2Re
(
i(ja+, j

b
−)
)

= 2Re
(
i{Ha, Hb}−+

)
. (3.14.16)

What this means that Hamiltonians and their half brackets code all information about metric
and Kähler form. Obviously this is of utmost importance in the case of the configuration space
metric whose symplectic structure and central extension are derived from those of CP2.

Consider now the properties of the metric and Kähler form at the origin.

1. The relations satisfied by the half Poisson brackets can be written symbolically as

{h, h}−+ = 0 ,

Re (i{h, t}−+) = 0 , Im (i{h, t}−+) = 0 ,

Re (i{t, t}−+) 6= 0 , Im (i{t, t}−+) 6= 0 .

(3.14.17)

2. The first two conditions state that h vector fields have vanishing inner products at the origin.
The first condition states also that the Hamiltonians for the commutator algebra [h, h] = SU(2)
vanish at origin whereas the Hamiltonian for U(1) algebra corresponding to the color hyper
charge need not vanish although it can be made vanishing. The third condition implies that the
Hamiltonians of t vanish at origin.

3. The last two conditions state that the Kähler metric and form are non-vanishing between the
elements of t. Since the Poisson brackets of t Hamiltonians are Hamiltonians of h, the only pos-
sibility is that {t, t} Poisson brackets reduce to a non-vanishing U(1) Hamiltonian at the origin
or that the bracket at the origin is due to the symplectic central extension. The requirement
that all Hamiltonians vanish at origin is very attractive aesthetically and forces to interpret
{t, t} brackets at origin as being due to a symplectic central extension. For instance, for S2 the
requirement that Hamiltonians vanish at origin would mean the replacement of the Hamiltonian
H = cos(θ) representing a rotation around z-axis with H3 = cos(θ) − 1 so that the Poisson
bracket of the generators H1 and H2 can be interpreted as a central extension term.

4. The conditions for the Hamiltonians of u(2) sub-algebra state that their variations with respect
to g vanish at origin. Thus u(2) Hamiltonians have extremum value at origin.

5. Also the Kähler function of CP2 has extremum at the origin. This suggests that in the case of
the configuration space the counterpart of the origin corresponds to the maximum of the Kähler
function.

Cartan algebra decomposition at the level of configuration space

The discussion of the properties of CP2 Kähler metric at origin provides valuable guide lines in an
attempt to understand what happens at the level of the configuration space. The use of the half
bracket for the configuration space Hamiltonians in turn allows to calculate the matrix elements of
the configuration space metric and Kähler form explicitly in terms of the magnetic or electric flux
Hamiltonians.

The earlier construction was rather tricky and formula-rich and not very convincing physically.
Cartan decomposition had to be assigned with something and in lack of anything better it was assigned
with Super Virasoro algebra, which indeed allows this kind of decompositions but without any strong
physical justification. The realization that super-symplectic and super Kac-Moody symmetries define
coset construction at the level of basic quantum TGD, and that this construction provides a realization
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of Equivalence Principle at microscopic level, forced eventually the realization that also the coset space
decomposition of configuration space realizes Equivalence Principle geometrically.

It must be however emphasized that holography implying effective 2-dimensionality of 3-surfaces
in some length scale resolution is absolutely essential for this construction since it allows to effectively
reduce Kac-Moody generators associated with X3

l to X2 = X3
l ∩ δM4

± × CP2. In the similar manner
super-symplectic generators can be dimensionally reduced to X2. Number theoretical compactification
forces the dimensional reduction and the known extremals are consistent with it [33]. The construction
of configuration space spinor structure and metric in terms of the second quantized spinor fields [18]
relies to this picture as also the recent view about M -matrix [16].

In this framework the coset space decomposition becomes trivial.

1. The algebra g is labeled by color quantum numbers of CP2 Hamiltonians and by the label
(m,n, k) labeling the function basis of the light cone boundary. Also a localization with respect
to X2 is needed. This is a new element as compared to the original view.

2. Super Kac-Moody algebra is labeled by color octet Hamiltonians and function basis of X2. Since
Lie-algebra action does not lead out of irreps, this means that Cartan algebra decomposition is
satisfied.

3.14.7 Comparison with loop groups

It is useful to compare the recent approach to the geometrization of the loop groups consisting of
maps from circle to Lie group G [45], which served as the inspirer of the configuration space geometry
approach but later turned out to not apply as such in TGD framework.

In the case of loop groups the tangent space T corresponds to the local Lie-algebra T (k,A) =
exp(ikφ)TA, where TA generates the finite-dimensional Lie-algebra g and φ denotes the angle variable
of circle; k is integer. The complexification of the tangent space corresponds to the decomposition

T = {X(k > 0, A)} ⊕ {X(k < 0, A)} ⊕ {X(k = 0, A)} = T+ ⊕ T− ⊕ T0

of the tangent space. Metric corresponds to the central extension of the loop algebra to Kac Moody
algebra and the Kähler form is given by

J(X(k1 < 0, A), X(k2 > 0, B)) = k2δ(k1 + k2)δ(A,B) .

In present case the finite dimensional Lie algebra g is replaced with the Lie-algebra of the symplectic
transformations of δM4

+ × CP2 centrally extended using symplectic extension. The scalar function
basis on circle is replaced with the function basis on an interval of length ∆rM with periodic boundary
conditions; effectively one has circle also now.

The basic difference is that one can consider two kinds of central extensions now.

1. Central extension is most naturally induced by the natural central extension ({p, q} = 1) defined
by Poisson bracket. This extension is anti-symmetric with respect to the generators of the
symplectic group: in the case of the Kac Moody central extension it is symmetric with respect
to the group G. The symplectic transformations of CP2 might correspond to non-zero modes
also because they are not exact symmetries of Kähler action. The situation is however rather
delicate since k = 0 light cone harmonic has a diverging norm due to the radial integration
unless one poses both lower and upper radial cutoffs although the matrix elements would be
still well defined for typical 3-surfaces. For Kac Moody group U(1) transformations correspond
to the zero modes. Light cone function algebra can be regarded as a local U(1) algebra defining
central extension in the case that only CP2 symplectic transformations local with respect to
δM4

+ act as isometries: for Kac Moody algebra the central extension corresponds to an ordinary
U(1) algebra. In the case that entire light cone symplectic algebra defines the isometries the
central extension reduces to a U(1) central extension.

3.14.8 Symmetric space property implies Ricci flatness and isometric ac-
tion of symplectic transformations

The basic structure of symmetric spaces is summarized by the following structural equations
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g = h+ t ,
[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h .

(3.14.18)

In present case the equations imply that all commutators of the Lie-algebra generators of Can( 6= 0)
having non-vanishing integer valued radial quantum number n2, possess zero norm. This condition is
extremely strong and guarantees isometric action of Can(δM4

+ ×CP2) as well as Ricci flatness of the
configuration space metric.

The requirement [t, t] ⊂ h and [h, t] ⊂ t are satisfied if the generators of the isometry algebra possess
generalized parity P such that the generators in t have parity P = −1 and the generators belonging
to h have parity P = +1. Conformal weight n must somehow define this parity. The first possibility
to come into mind is that odd values of n correspond to P = −1 and even values to P = 1. Since
n is additive in commutation, this would automatically imply h⊕ t decomposition with the required
properties. This assumption looks however somewhat artificial. TGD however forces a generalization
of Super Algebras and N-S and Ramond type algebras can be combined to a larger algebra containing
also Virasoro and Kac Moody generators labeled by half-odd integers. This suggests strongly that
isometry generators are labeled by half integer conformal weight and that half-odd integer conformal
weight corresponds to parity P = −1 whereas integer conformal weight corresponds to parity P = 1.
Coset space would structure would state conformal invariance of the theory since super-symplectic
generators with integer weight would correspond to zero modes.

Quite generally, the requirement that the metric is invariant under the flow generated by vector
field X leads together with the covariant constancy of the metric to the Killing conditions

X · g(Y,Z) = 0 = g([X,Y ], Z) + g(Y, [X,Z]) . (3.14.19)

If the commutators of the complexified generators in Can( 6= 0) have zero norm then the two terms
on the right hand side of Eq. (3.14.19) vanish separately. This is true if the conditions

Qα,βm ({HA, {HB , HC}}) = 0 , (3.14.20)

are satisfied for all triplets of Hamiltonians in Can6=0. These conditions follow automatically from the
[t, t] ⊂ h property and guarantee also Ricci flatness as will be found later.

It must be emphasized that for Kähler metric defined by purely magnetic fluxes, one cannot pose
the conditions of Eq. (3.14.20) as consistency conditions on the initial values of the time derivatives of
imbedding space coordinates whereas in general case this is possible. If the consistency conditions are
satisfied for a single surface on the orbit of symplectic group then they are satisfied on the entire orbit.
Clearly, isometry and Ricci flatness requirements and the requirement of time reversal invariance might
well force Kähler electric alternative.

3.14.9 How to find Kähler function?

If one has found the expansion of configuration space Kähler form in terms of electric fluxes one
can solve also the Kähler function from the defining partial differential equations Jkl̄ = ∂k∂l̄K. The
solution is not unique since the equation allows the symmetry

K → K + f(zk) + f(zk) ,

where f is arbitrary holomorphic function of zk. This non-uniqueness is probably eliminated by the
requirement that Kähler function vanishes for vacuum extremals. This in turn makes in principle
possible to find the maxima of Kähler function and to perform functional integration perturbatively
around them.

Electric-magnetic duality implies that, apart from conformal factor depending on isometry invari-
ants, one can solve Kähler metric without any knowledge on the initial values of the time derivatives
of the imbedding space coordinates. Apart from conformal factor the resulting geometry is purely
intrinsic to δCH. The role of Kähler action is only to to define Diff4 invariance and give the rule how
the metric is translated to metric on arbitrary point of CH. The degeneracy of the preferred extrema
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also implies that configuration space has multi-sheeted structure analogous to that encountered in
case of Riemann surfaces.

As shown in [34], very general assumptions inspired by the light-likeness of Kähler current for
the known extremals combined with electric-magnetic duality imply the reduction of Kähler action
for the preferred extremals to Chern-Simons terms at the ends of CD and at wormhole throats plus
boundary term depending on induced metric so that one has almost topological QFT. The latter is
due to the possibility to choose the gauge for Kähler potential to code information about conserved
quantum numbers to the Kähler function and is the counterpart for the measurement interaction term
in Dirac action. This term should correspond to a real part of a holomorphic function so that it does
not contribute to the Kähler metric.

Also a promising concrete construction recipe for Kähler function is in terms of the modified
Dirac operator [18]. The recipe is described briefly in the introduction. If the conjecture that Dirac
determinant coincides with the exponent of Kähler action for a preferred extremal is correct, the value
of the Kähler coupling strength follows as a prediction of the theory. From the construction it is clear
that Dirac determinant involves only a finite number of eigenvalues of the modified Dirac operator
and can thus be an algebraic or even rational number if eigenvalues have this property. The most
satisfactory property of the construction is that one can use the intuition from the behavior of 2-D
magnetic systems.

3.15 Ricci flatness and divergence cancelation

Divergence cancelation in configuration space integration requires Ricci flatness and in this section
the arguments in favor of Ricci flatness are discussed in detail.

3.15.1 Inner product from divergence cancelation

Forgetting the delicacies related to the non-determinism of the Kähler action, the inner product is
given by integrating the usual Fock space inner product defined at each point of the configuration space
over the reduced configuration space containing only the 3-surfaces Y 3 belonging to δH = δM4

+×CP2

(’lightcone boundary’) using the exponent exp(K) as a weight factor:

〈Ψ1|Ψ2〉 =

∫
Ψ1(Y 3)Ψ2(Y 3)exp(K)

√
GdY 3 ,

Ψ1(Y 3)Ψ2(Y 3) ≡ 〈Ψ1(Y 3)|Ψ2(Y 3)〉Fock . (3.15.1)

The degeneracy for the preferred extremals of Kähler action implies additional summation over the
degenerate extremals associated with Y 3. The restriction of the integration on light cone boundary is
Diff4 invariant procedure and resolves in elegant manner the problems related to the integration over
Diff4 degrees of freedom. A variant of the inner product is obtained dropping the bosonic vacuum
functional exp(K) from the definition of the inner product and by assuming that it is included into
the spinor fields themselves. Probably it is just a matter of taste how the necessary bosonic vacuum
functional is included into the inner product: what is essential that the vacuum functional exp(K) is
somehow present in the inner product.

The unitarity of the inner product follows from the unitary of the Fock space inner product and
from the unitarity of the standard L2 inner product defined by configuration space integration in
the set of the L2 integrable scalar functions. It could well occur that Diff4 invariance implies the
reduction of the configuration space integration to C(δH).

Consider next the bosonic integration in more detail. The exponent of the Kähler function appears
in the inner product also in the context of the finite dimensional group representations. For the
representations of the noncompact groups (say SL(2, R)) in coset spaces (now SL(2, R)/U(1) endowed
with Kähler metric) the exponent of Kähler function is necessary in order to get square integrable
representations [56]. The scalar product for two complex valued representation functions is defined as

(f, g) =

∫
fgexp(nK)

√
gdV . (3.15.2)
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By unitarity, the exponent is an integer multiple of the Kähler function. In the present case only
the possibility n = 1 is realized if one requires a complete cancelation of the determinants. In finite
dimensional case this corresponds to the restriction to single unitary representation of the group in
question.

The sign of the action appearing in the exponent is of decisive importance in order to make
theory stable. The point is that the theory must be well defined at the limit of infinitely large
system. Minimization of action is expected to imply that the action of infinitely large system is bound
from above: the generation of electric Kähler fields gives negative contributions to the action. This
implies that at the limit of the infinite system the average action per volume is non-positive. For
systems having negative average density of action vacuum functional exp(K) vanishes so that only
configurations with vanishing average action per volume have significant probability. On the other
hand, the choice exp(−K) would make theory unstable: probability amplitude would be infinite for
all configurations having negative average action per volume. In the fourth part of the book it will be
shown that the requirement that average Kähler action per volume cancels has important cosmological
consequences.

Consider now the divergence cancelation in the bosonic integration. One can develop the Kähler
function as a Taylor series around maximum of Kähler function and use the contravariant Kähler
metric as a propagator. Gaussian and metric determinants cancel each other for a unique vacuum
functional. Ricci flatness guarantees that metric determinant is constant in complex coordinates so
that one avoids divergences coming from it. The non-locality of the Kähler function as a functional
of the 3-surface serves as an additional regulating mechanism: if K(X3) were a local functional of X3

one would encounter divergences in the perturbative expansion.
The requirement that quantum jump corresponds to a quantum measurement in the sense of quan-

tum field theories implies that quantum jump involves localization in zero modes. Localization in the
zero modes implies automatically p-adic evolution since the decomposition of the configuration space
into sectors DP labeled by the infinite primes P is determined by the corresponding decomposition in
zero modes. Localization in zero modes would suggest that the calculation of the physical predictions
does not involve integration over zero modes: this would dramatically simplify the calculational appa-
ratus of the theory. Probably this simplification occurs at the level of practical calculations if U -matrix
separates into a product of matrices associated with zero modes and fiber degrees of freedom.

One must also calculate the predictions for the ratios of the rates of quantum transitions to different
values of zero modes and here one cannot actually avoid integrals over zero modes. To achieve this
one is forced to define the transition probabilities for quantum jumps involving a localization in zero
modes as

P (x, α→ y, β) =
∑
r,s

|S(r, α→ s, β)|2|Ψr(x)|2|Ψs(y)|2 ,

where x and y correspond to the zero mode coordinates and r and s label a complete state functional
basis in zero modes and S(r,m → s, n) involves integration over zero modes. In fact, only in this
manner the notion of the localization in the zero modes makes mathematically sense at the level of
S-matrix. In this case also unitarity conditions are well-defined. In zero modes state function basis
can be freely constructed so that divergence difficulties could be avoided. An open question is whether
this construction is indeed possible.

Some comments about the actual evaluation of the bosonic functional integral are in order.

1. Since configuration space metric is degenerate and the bosonic propagator is essentially the
contravariant metric, bosonic integration is expected to reduce to an integration over the zero
modes. For instance, isometry invariants are variables of this kind. These modes are analogous
to the parameters describing the conformal equivalence class of the orbit of the string in string
models.

2. αK is a natural small expansion parameter in configuration space integration. It should be
noticed that αK , when defined by the criticality condition, could also depend on the coordinates
parameterizing the zero modes.

3. Semiclassical approximation, which means the expansion of the functional integral as a sum
over the extrema of the Kähler function, is a natural approach to the calculation of the bosonic
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integral. Symmetric space property suggests that for the given values of the zero modes there
is only single extremum and corresponds to the maximum of the Kähler function. There are
theorems (Duistermaat-Hecke theorem) stating that semiclassical approximation is exact for
certain systems (for example for integrable systems [48]). Symmetric space property suggests
that Kähler function might possess the properties guaranteing the exactness of the semiclassical
approximation. This would mean that the calculation of the integral

∫
exp(K)

√
GdY 3 and even

more complex integrals involving configuration space spinor fields would be completely analogous
to a Gaussian integration of free quantum field theory. This kind of reduction actually occurs
in string models and is consistent with the criticality of the Kähler coupling constant suggesting
that all loop integrals contributing to the renormalization of the Kähler action should vanish.
Also the condition that configuration space integrals are continuable to p-adic number fields
requires this kind of reduction.

3.15.2 Why Ricci flatness

It has been already found that the requirement of divergence cancelation poses extremely strong
constraints on the metric of the configuration space. The results obtained hitherto are the following.

1. If the vacuum functional is the exponent of Kähler function one gets rid of the divergences
resulting from the Gaussian determinants and metric determinants: determinants cancel each
other.

2. The non-locality of the Kähler action gives good hopes of obtaining divergence free perturbation
theory.

The following arguments show that Ricci flatness of the metric is a highly desirable property.

1. Dirac operator should be a well defined operator. In particular its square should be well defined.
The problem is that the square of Dirac operator contains curvature scalar, which need not
be finite since it is obtained via two infinite-dimensional trace operations from the curvature
tensor. In case of loop spaces [45] the Kähler property implies that even Ricci tensor is only
conditionally convergent. In fact, loop spaces with Kähler metric are Einstein spaces (Ricci
tensor is proportional to metric) and Ricci scalar is infinite.

In 3-dimensional case situation is even worse since the trace operation involves 3 summation
indices instead of one! The conclusion is that Ricci tensor had better to vanish in vibrational
degrees of freedom.

2. For Ricci flat metric the determinant of the metric is constant in geodesic complex coordinates
as is seen from the expression for Ricci tensor [45]

Rkl̄ = ∂k∂l̄ln(det(g)) (3.15.3)

in Kähler metric. This obviously simplifies considerably functional integration over the config-
uration space: one obtains just the standard perturbative field theory in the sense that metric
determinant gives no contributions to the functional integration.

3. The constancy of the metric determinant results not only in calculational simplifications: it also
eliminates divergences. This is seen by expanding the determinant as a functional Taylor series
with respect to the coordinates of the configuration space. In local complex coordinates the first
term in the expansion of the metric determinant is determined by Ricci tensor

δ
√
g ∝ Rkl̄zkz̄l . (3.15.4)

In configuration space integration using standard rules of Gaussian integration this term gives
a contribution proportional to the contraction of the propagator with Ricci tensor. But since
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the propagator is just the contravariant metric one obtains Ricci scalar as result. So, in order
to avoid divergences, Ricci scalar must be finite: this is certainly guaranteed if Ricci tensor
vanishes.

4. The following group theoretic argument suggests that Ricci tensor either vanishes or is divergent.
The holonomy group of the configuration space is a subgroup of U(n = ∞) (D = 2n is the
dimension of the Kähler manifold) by Kähler property and Ricci flatness is guaranteed if the
U(1) factor is absent from the holonomy group. In fact Ricci tensor is proportional to the trace of
the U(1) generator and since this generator corresponds to an infinite dimensional unit matrix
the trace diverges: therefore given element of the Ricci tensor is either infinite or vanishes.
Therefore the vanishing of the Ricci tensor seems to be a mathematical necessity. This naive
argument doesn’t hold true in the case of loop spaces, for which Kähler metric with finite non-
vanishing Ricci tensor exists [45]. Note however that also in this case the sum defining Ricci
tensor is only conditionally convergent.

There are indeed good hopes that Ricci tensor vanishes. By the previous argument the vanishing
of the Ricci tensor is equivalent with the absence of divergences in configuration space integration.
That divergences are absent is suggested by the non-locality of the Kähler function as a functional of
3-surface: the divergences of local field theories result from the locality of interaction vertices. Ricci
flatness in vibrational degrees of freedom is not only necessary mathematically. It is also appealing
physically: one can regard Ricci flat configuration space as a vacuum solution of Einstein’s equations
Gαβ = 0.

3.15.3 Ricci flatness and Hyper Kähler property

Ricci flatness property is guaranteed if configuration space geometry is Hyper Kähler [49, 50] (there
exists 3 covariantly constant antisymmetric tensor fields, which can be regarded as representations
of quaternionic imaginary units). Hyper Kähler property guarantees Ricci flatness because the con-
tractions of the curvature tensor appearing in the components of the Ricci tensor transform to traces
over Lie algebra generators, which are SU(n) generators instead of U(n) generators so that the traces
vanish. In the case of the loop spaces left invariance implies that Ricci tensor in the vibrational degrees
is a multiple of the metric tensor so that Ricci scalar has an infinite value. This is basically due to
the fact that Kac-Moody algebra has U(1) central extension.

Consider now the arguments in favor of Ricci flatness of the configuration space.

1. The symplectic algebra of δM4
+ takes effectively the role of the U(1) extension of the loop

algebra. More concretely, the SO(2) group of the rotation group SO(3) takes the role of U(1)
algebra. Since volume preserving transformations are in question, the traces of the symplectic
generators vanish identically and in finite-dimensional this should be enough for Ricci flatness
even if Hyper Kähler property is not achieved.

2. The comparison with CP2 allows to link Ricci flatness with conformal invariance. The elements
of the Ricci tensor are expressible in terms of traces of the generators of the holonomy group
U(2) at the origin of CP2, and since U(1) generator is non-vanishing at origin, the Ricci tensor
is non-vanishing. In recent case the origin of CP2 is replaced with the maximum of Kähler
function and holonomy group corresponds to super-symplectic generators labelled by integer
valued real parts k1 of the conformal weights k = k1 + iρ. If generators with k1 = n vanish at
the maximum of the Kähler function, the curvature scalar should vanish at the maximum and by
the symmetric space property everywhere. These conditions correspond to Virasoro conditions
in super string models.

A possible source of difficulties are the generators having k1 = 0 and resulting as commutators
of generators with opposite real parts of the conformal weights. It might be possible to assume
that only the conformal weights k = k1 + iρ, k1 = 0, 1, ... are possible since it is the imaginary
part of the conformal weight which defines the complexification in the recent case. This would
mean that the commutators involve only positive values of k1.

3. In the infinite-dimensional case the Ricci tensor involves also terms which are non-vanishing even
when the holonomy algebra does not contain U(1) factor. It will be found that symmetric space
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property guarantees Ricci flatness even in this case and the reason is essentially the vanishing
of the generators having k1 = n at the maximum of Kähler function.

There are also arguments in favor of the Hyper Kähler property.

1. The dimensions of the imbedding space and space-time are 8 and 4 respectively so that the
dimension of configuration space in vibrational modes is indeed multiple of four as required by
Hyper Kähler property. Hyper Kähler property requires a quaternionic structure in the tangent
space of the configuration space. Since any direction on the sphere S2 defined by the linear com-
binations of quaternionic imaginary units with unit norm defines a particular complexification
physically, Hyper Kähler property means the possibility to perform complexification in S2-fold
manners.

2. S2-fold degeneracy is indeed associated with the definition of the complex structure of the
configuration space. First of all, the direction of the quantization axis for the spherical harmonics
or for the eigen states of Lorentz Cartan algebra at δM4

+ can be chosen in S2-fold manners.
Quaternion conformal invariance means Hyper Kähler property almost by definition and the
S2-fold degeneracy for the complexification is obvious in this case.

If these naive arguments survive a more critical inspection, the conclusion would be that the effec-
tive 2-dimensionality of light like 3-surfaces implying generalized conformal and symplectic symmetries
would also imply Hyper Kähler property of the configuration space and make the theory well-defined
mathematically. This obviously fixes the dimension of space-time surfaces as well as the dimension of
Minkowski space factor of the imbedding space.

In the sequel we shall show that Ricci flatness is guaranteed provided that the holonomy group
of the configuration space is isomorphic to some subgroup of SU(n = ∞) instead of U(n = ∞) (n
is the complex dimension of the configuration space) implied by the Kähler property of the metric.
We also derive an expression for the Ricci tensor in terms of the structure constants of the isometry
algebra and configuration space metric. The expression for the Ricci tensor is formally identical with
that obtained by Freed for loop spaces: the only difference is that the structure constants of the
finite-dimensional group are replaced with the group Can(δH). Also the arguments in favor of Hyper
Kähler property are discussed in more detail.

3.15.4 The conditions guaranteing Ricci flatness

In the case of Kähler geometry Ricci flatness condition can be characterized purely Lie-algebraically:
the holonomy group of the Riemann connection, which in general is subgroup of U(n) for Kähler
manifold of complex dimension n, must be subgroup of SU(n) so that the Lie-algebra of this group
consists of traceless matrices. This condition is easy to derive using complex coordinates. Ricci tensor
is given by the following expression in complex vielbein basis

RAB̄ = RAC̄BC̄ , (3.15.5)

where the latter summation is only over the antiholomorphic indices C̄. Using the cyclic identities

∑
cycl C̄BD̄

RAC̄BD̄ = 0 , (3.15.6)

the expression for Ricci tensor reduces to the form

RAB̄ = RAB̄CC , (3.15.7)

where the summation is only over the holomorphic indices C. This expression can be regarded as
a trace of the curvature tensor in the holonomy algebra of the Riemann connection. The trace is
taken over holomorphic indices only: the traces over holomorphic and anti-holomorphic indices cancel
each other by the antisymmetry of the curvature tensor. For Kähler manifold holonomy algebra is
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subalgebra of U(n), when the complex dimension of manifold is n and Ricci tensor vanishes if and
only if the holonomy Lie-algebra consists of traceless matrices, or equivalently: holonomy group is
subgroup of SU(n). This condition is expected to generalize also to the infinite-dimensional case.

We shall now show that if configuration space metric is Kähler and possesses infinite-dimensional
isometry algebra with the property that its generators form a complete basis for the tangent space
(every tangent vector is expressible as a superposition of the isometry generators plus zero norm
vector) it is possible to derive a representation for the Ricci tensor in terms of the structure constants
of the isometry algebra and of the components of the metric and its inverse in the basis formed by
the isometry generators and that Ricci tensor vanishes identically for the proposed complexification
of the configuration space provided the generators {HA,m 6=0, HB,n6=0} correspond to zero norm vector
fields of configuration space.

The general definition of the curvature tensor as an operator acting on vector fields reads

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z . (3.15.8)

If the vector fields considered are isometry generators the covariant derivative operator is given by the
expression

∇XY = (AdXY −Ad∗XY −Ad∗YX)/2 ,

(Ad∗XY,Z) = (Y,AdXZ) , (3.15.9)

where AdXY = [X,Y ] and Ad∗X denotes the adjoint of AdX with respect to configuration space metric.
In the sequel we shall assume that the vector fields in question belong to the basis formed by the

isometry generators. The matrix representation of AdX in terms of the structure constants CX,Y :Z of
the isometry algebra is given by the expression

AdmXn = CX,Y :Z ŶnZ
m ,

[X,Y ] = CX,Y :ZZ ,

Ŷ = g−1(Y, V )V , (3.15.10)

where the summation takes place over the repeated indices and Ŷ denotes the dual vector field of Y
with respect to the configuration space metric. From its definition one obtains for Ad∗X the matrix
representation

Ad∗mXn = CX,Y :Z Ŷ
mZn ,

Ad∗XY = CX,U :V g(Y, U)g−1(V,W )W = g(Y,U)g−1([X,U ],W )W , (3.15.11)

where the summation takes place over the repeated indices.
Using the representations of ∇X in terms of AdX and its adjoint and the representations of

AdX and Ad∗X in terms of the structure constants and some obvious identities (such as C[X,Y ],Z:V =
CX,Y :UCU,Z:V ) one can by a straightforward but tedious calculation derive a more detailed expression
for the curvature tensor and Ricci tensor. Straightforward calculation of the Ricci tensor has however
turned to be very tedious even in the case of the diagonal metric and in the following we shall use a
more convenient representation [45] of the curvature tensor applying in case of the Kähler geometry.

The expression of the curvature tensor is given in terms of the so called Toeplitz operators TX
defined as linear operators in the ”positive energy part” G+ of the isometry algebra spanned by the
(1, 0) parts of the isometry generators. In present case the positive and negative energy parts and cm
part of the algebra can be defined just as in the case of loop spaces:

G+ = {HAk|k > 0} ,

G− = {HAk|k < 0} ,

G0 = {HAk|k = 0} . (3.15.12)
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Here HAk denote the Hamiltonians generating the symplectic transformations of δH. The positive
energy generators with non-vanishing norm have positive radial scaling dimension: k ≥ 0, which
corresponds to the imaginary part of the scaling momentum K = k1 + iρ associated with the factors
(rM/r0)K . A priori the spectrum of ρ is continuous but it is quite possible that the spectrum of ρ
is discrete and ρ = 0 does not appear at all in the spectrum in the sense that the flux Hamiltonians
associated with ρ = 0 elements vanish for the maximum of Kähler function which can be taken to be
the point where the calculations are done.

TX differs from AdX in that the negative energy part of AdXY = [X,Y ] is dropped away:

TX : G+ → G+ ,

Y → [X,Y ]+ . (3.15.13)

Here ” + ” denotes the projection to ”positive energy” part of the algebra. Using Toeplitz operators
one can associate to various isometry generators linear operators Φ(X0), Φ(X−) and Φ(X+) acting
on G+:

Φ(X0) = TX0 , X0εG0 ,

Φ(X−) = TX− , X−εG− ,

Φ(X+) = −T ∗X− , X+εG+ . (3.15.14)

Here ”*” denotes hermitian conjugate in the diagonalized metric: the explicit representation Φ(X+)
is given by the expression [45]

Φ(X+) = D−1TX−D ,

DX+ = d(X)X− ,

d(X) = g(X−, X+) . (3.15.15)

Here d(X) is just the diagonal element of metric assumed to be diagonal in the basis used. denotes
the conformal factor associated with the metric.

The representations for the action of ,Φ(X0), Φ(X−) and Φ(X+) in terms of metric and structure
constants of the isometry algebra are in the case of the diagonal metric given by the expressions

Φ(X0)Y+ = CX0,Y+:U+U+ ,

Φ(X−)Y+ = CX−,Y+:U+U+ ,

Φ(X+)Y+ =
d(Y )

d(U)
CX−,Y−:U−U+ . (3.15.16)

The expression for the action of the curvature tensor in positive energy part G+ of the isometry
algebra in terms of the these operators is given as [45]:

R(X,Y )Z+ = {[Φ(X),Φ(Y )]− Φ([X,Y ])}Z+ . (3.15.17)

The calculation of the Ricci tensor is based on the observation that for Kähler manifolds Ricci tensor
is a tensor of type (1, 1), and therefore it is possible to calculate Ricci tensor as the trace of the
curvature tensor with respect to indices associated with G+.

Ricci(X+, Y−) = (Ẑ+, R(X+, Y−)Z+) ≡ Trace(R(X+, Y−)) ,

(3.15.18)

where the summation over Z+ generators is performed.
Using the explicit representations of the operators Φ one obtains the following explicit expression

for the Ricci tensor
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Ricci(X+, Y−) = Trace{[D−1TX+
D,TY− ]− T[X+,Y−]|G0+G−

− D−1T[X+,Y−]|G+
D} . (3.15.19)

This expression is identical to that encountered in case of loop spaces and the following arguments
are repetition of those applying in the case of loop spaces.

The second term in the Ricci tensor is the only term present in the finite-dimensional case. This
term vanishes if the Lie-algebra in question consists of traceless matrices. Since symplectic transfor-
mations are volume-preserving the traces of Lie-algebra generators vanish so that this term is absent.
The last term gives a non-vanishing contribution to the trace for the same reason.

The first term is quadratic in structure constants and does not vanish in case of loop spaces. It
can be written explicitly using the explicit representations of the various operators appearing in the
formula:

Trace{[D−1TX−D,TY− ]} =
∑
Z+,U+

[CX−,U−:Z−CY−,Z+:U+

d(U)

d(Z)

− CX−,Z−:U−CY−,U+:Z+

d(Z)

d(U)
] . (3.15.20)

Each term is antisymmetric under the exchange of U and Z and one might fail to conclude that
the sum vanishes identically. This is not the case. By the diagonality of the metric with respect to
radial quantum number, one has m(X−) = m(Y−) for the non-vanishing elements of the Ricci tensor.
Furthermore, one has m(U) = m(Z) − m(Y ), which eliminates summation over m(U) in the first
term and summation over m(Z) in the second term. Note however, that summation over other labels
related to symplectic algebra are present.

By performing the change U → Z in the second term one can combine the sums together and as
a result one has finite sum

∑
0<m(Z)<m(X)

[CX−,U−:Z−CY−,Z+:U+

d(U)

d(Z)
= C

∑
0<m(Z)<m(X)

m(X)

m(Z)−m(X)
,

C =
∑
Z,U

CX,U :ZCY,Z:U
d0(U)

d0(Z)
. (3.15.21)

Here the dependence of d(X) = |m(X)|d0(X) on m(X) is factored out; d0(X) does not depend on kX .
The dependence on m(X) in the resulting expression factorizes out, and one obtains just the purely
group theoretic term C, which should vanish for the space to be Ricci flat.

The sum is quadratic in structure constants and can be visualized as a loop sum. It is instructive
to write the sum in terms of the metric in the symplectic degrees of freedom to see the geometry
behind the Ricci flatness:

C =
∑
Z,U

g([Y,Z], U)g−1([X,U ], Z) . (3.15.22)

Each term of this sum involves a commutator of two generators with a non-vanishing norm. Since
tangent space complexification is inherited from the local coset space, the non-vanishing commutators
in complexified basis are always between generators in Can6=0; that is they do not not belong to rigid
su(2)× su(3).

The condition guaranteing Ricci flatness at the maximum of Kähler function and thus everywhere
is simple. All elements of type [X6=0, Y6=0] vanish or have vanishing norm. In case of CP2 Kähler
geometry this would correspond to the vanishing of the U(2) generators at the origin of CP2 (note
that the holonomy group is U(2) in case of CP2). At least formally stronger condition is that the
algebra generated by elements of this type, the commutator algebra associated with Can6=0, consist of
elements of zero norm. Already the (possibly) weaker condition implies that adjoint map AdX 6=0 and
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its hermitian adjoint Ad∗X 6=0
create zero norm states. Since isometry conditions involve also adjoint

action the condition also implies that Can6=0 acts as isometries. More concrete form for the condition
is that all flux factors involving double Poisson bracket and three generators in Can6=0 vanish:

Qe({HA, {HB , HC}}) = 0 , for HA, HB , HC in Can6=0 . (3.15.23)

The vanishing of fluxes involving two Poisson brackets and three Hamiltonians guarantees isometry
invariance and Ricci flatness and, as found in [22], is implied by the [t, t] ⊂ h property of the Lie-algebra
of coset space G/H having symmetric space structure.

The conclusion is that the mere existence of the proposed isometry group (guaranteed by the
symmetric space property) implies the vanishing of the Ricci tensor and vacuum Einstein equations.
The existence of the infinite parameter isometry group in turn follows basically from the condition
guaranteing the existence of the Riemann connection. Therefore vacuum Einstein equations seem to
arise, not only as a consequence of a physically motivated variational principle but as a mathematical
consistency condition in infinite dimensional Kähler geometry. The flux representation seems to
provide elegant manner to formulate and solve these conditions and isometry invariance implies Ricci
flatness.

3.15.5 Is configuration space metric Hyper Kähler?

The requirement that configuration space integral integration is divergence free implies that configu-
ration space metric is Ricci flat. The so called Hyper-Kähler metrics [50, 49, 60] are particularly nice
representatives of Ricci flat metrics. In the following the basic properties of Hyper-Kähler metrics are
briefly described and the problem whether Hyper Kähler property could realized in case of M4

+×CP2

is considered.

Hyper-Kähler property

Hyper-Kähler metric is a generalization of the Kähler metric. For Kähler metric metric tensor and
Kähler form correspond to the complex numbers 1 and i and therefore define complex structure in
the tangent space of the manifold. For Hyper Kähler metric tangent space allows three closed Kähler
forms I, J,K, which with respect to the multiplication obey the algebra of quaternionic imaginary
units and have square equal to - 1, which corresponds to the metric of Hyper Kähler space.

I2 = J2 = K2 = −1 IJ = −JI = K, etc. . (3.15.24)

To define Kähler structure one must choose one of the Kähler forms or any linear combination
of I, J and K with unit norm. The group SO(3) rotates different Kähler structures to each other
playing thus the role of quaternion automorphisms. This group acts also as coordinate transformations
in Hyper Kähler manifold but in general fails to act as isometries.

If K is chosen to define complex structure then K is tensor of type (1, 1) in complex coordinates,
I and J being tensors of type (2, 0) + (0, 2). The forms I + iJ and I − iJ are holomorphic and anti-
holomorphic forms of type (2, 0) and (0, 2) respectively and defined standard step operators I+ and
I− of SU(2) algebra. The holonomy group of Hyper-Kähler metric is always Sp(k), k ≤ dimM/4, the
group of k × k unitary matrices with quaternionic entries. This group is indeed subgroup of SU(2k),
so that its generators are traceless and Hyper Kähler metric is therefore Ricci flat.

Hyper Kähler metrics have been encountered in the context of 3-dimensional super symmetric
sigma models: a necessary prerequisite for obtaining N = 4 super-symmetric sigma model is that
target space allows Hyper Kähler metric [58, 60]. In particular, it has been found that Hyper Kähler
property is decisive for the divergence cancelation.

Hyper-Kähler metrics arise also in monopole and instanton physics [50]. The moduli spaces for
monopoles have Hyper Kähler property. This suggests that Hyper Kähler property is characteristic
for the configuration (or moduli) spaces of 4-dimensional Yang Mills types systems. Since YM action
appears in the definition of configuration space metric there are hopes that also in present case the
metric possesses Hyper-Kähler property.
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CP2 allows what might be called almost Hyper-Kähler structure known as quaternionion structure.
This means that the Weil tensor of CP2 consists of three components in one-one correspondence with
components of iso-spin and only one of them- the one corresponding to Kähler form- is covariantly
constant. The physical interpretation is in terms of electroweak symmetry breaking selecting one
isospin direction as a favored direction.

Does the ’almost’ Hyper-Kähler structure of CP2 lift to a genuine Hyper-Kähler structure
in configuration space?

The Hyper-Kähler property of configuration space metric does not seem to be in conflict with the
general structure of TGD.

1. In string models the dimension of the ”space-time” is two and Weyl invariance and complex
structures play a decisive role in the theory. In present case the dimension of the space-time is
four and one therefore might hope that quaternions play a similar role. Indeed, Weyl invariance
implies YM action in dimension 4 and as already mentioned moduli spaces of instantons and
monopoles enjoy the Hyper Kähler property.

2. Also the dimension of the imbedding space is important. The dimension of Hyper Kähler
manifold must be multiple of 4. The dimension of configuration space is indeed infinite multiple
of 8: each vibrational mode giving one ”8”.

3. The complexification of the configuration space in symplectic degrees of freedom is inherited
from S2 × CP2 and CP2 Kähler form defines the symplectic form of configuration space. The
point is that CP2 Weyl tensor has 3 covariantly constant components, having as their square
metric apart from sign. One of them is Kähler form, which is closed whereas the other two are
non-closed forms and therefore fail to define Kähler structure. The group SU(2) of electro-weak
isospin rotations rotate these forms to each other. It would not be too suprising if one could
identify the configuration space counterparts of these forms as representations of quaternionic
units at the level of configuration space. The failure of the Hyper Kähler property at the level of
CP2 geometry is due to the electro-weak symmetry breaking and physical intuition (in particular,
p-adic mass calculations [4]) suggests that electro-weak symmetry might not be broken at the
level of configuration space geometry).

A possible topological obstruction for the Hyper Kähler property is related to the cohomology
of the configuration space: the three Kähler forms must be co-homologically trivial as is clear from
the following argument. If any of 3 quaternionic 2-form is cohomologically nontrivial then by SO(3)
symmetry rotating Kähler forms to each other all must be co-homologically nontrivial. On the other
hand, electro-weak isospin rotation leads to a linear combination of 3 Kähler forms and the flux
associated with this form is in general not integer valued. The point is however that Kähler form
forms only the (1, 1) part of the symplectic form and must be co-homologically trivial whereas the
zero mode part is same for all complexifications and can be co-homologically nontrivial. The co-
homological non-triviality of the zero mode part of the symplectic form is indeed a nice feature since
it fixes the normalization of the Kähler function apart from a multiplicative integer. On the other
hand the hypothesis that Kähler coupling strength is analogous to critical temperature provides a
dynamical (and perhaps equivalent) manner to fix the normalization of the Kähler function.

Since the properties of the configuration space metric are inherited from M4
+ × CP2 then also

the Hyper Kähler property should be understandable in terms of the imbedding space geometry. In
particular, the complex structure in CP2 vibrational degrees of freedom is inherited from CP2. Hyper
Kähler property implies the existence of a continuum (sphere S2) of complex structures: any linear
superposition of 3 independent Kähler forms defines a respectable complex structure. Therefore also
CP2 should have this continuum of complex structures and this is certainly not the case.

Indeed, if we had instead of CP2 Hyper Kähler manifold with 3 covariantly constant 2-forms
then it would be easy to understand the Hyper Kähler structure of configuration space. Given the
Kähler structure of the configuration space would be obtained by replacing induced Kähler electric
and magnetic fields in the definition of flux factors Q(HA,m) with the appropriate component of the
induced Weyl tensor. CP2 indeed manages to be very nearly Hyper Kähler manifold!
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How CP2 fails to be Hyper Kähler manifold can be seen in the following manner. The Weyl tensor
of CP2 allows three independent components, which are self dual as 2-forms and rotated to each other
by vielbein rotations.

W03 = W12 ≡ 2I3 = 2(e0 ∧ e3 + e1 ∧ e2) ,

W01 = W23 ≡ I1 = −e0 ∧ e1 − e2 ∧ e3 ,

W02 = W31 ≡ I2 = −e0 ∧ e2 − e3 ∧ e1 . (3.15.25)

The component I3 is just the Kähler form of CP2. Remaining components are covariantly constant
only with respect to spinor connection and not closed forms so that they cannot be interpreted as
Maxwell fields. Their squares equal however apart from sign with the metric of CP2, when appropriate
normalization factor is used. If these forms were covariantly constant Kähler action defined by any
linear superposition of these forms would indeed define Kähler structure in configuration space and
the group SO(3) would rotate these forms to each other. The projections of the components of
the Weyl tensor on 3-surface define 3 vector fields as their duals and only one of these vector fields
(Kähler magnetic field) is divergenceless. One might regard these 3 vector fields as counter parts of
quaternion units associated with the broken Hyper Kähler structure, that is quaternion structure.
The interpretation in terms of electro-weak symmetry breaking is obvious.

One cannot exclude the possibility that the symplectic invariance of the induced Kähler electric
field implies that the electric parts of the other two components of induced Weyl tensor are symplectic
invariants. This is the minimum requirement. What is however obvious is that the magnetic parts
cannot be closed forms for arbitrary 3-surfaces at light cone boundary. One counter example is enough
and CP2 type extremals seem to provide this counter example: the components of the induced Weyl
tensor are just the same as they are for CP2 and clearly not symplecticly invariant.

Thus it seems that configuration space could allow Hyper Kähler structure broken by electro-weak
interactions but it cannot be inherited from CP2. An open question is whether it allows genuine
quaternionic structure. Good prospects for obtaining quaternionic structure are provided by the
quaternionic counterpart QP2 of CP2, which is 8-dimensional and has coset space structure QP2 =
Sp(3)/Sp(2)×Sp(1). This choice does not seem to be consistent with the symmetries of the standard
model. Note however that the over all symmetry group is obtained by replacing complex numbers
with quaternions on the matrix representation of the standard model group.

Could different complexifications for M4
+ and light like surfaces induce Hyper Kähler

structure for configuration space?

Quaternionic structure means also the existence of a family of complex structures parameterized by a
sphere S2. The complex structure of the configuration space is inherited from the complex structure
of some light like surface.

In the case of the light cone boundary δM4
+ the complex structure corresponds to the choice

of quantization axis of angular momentum for the sphere rM = constant so that the coordinates
orthogonal to the quantization axis define a complex coordinate: the sphere S2 parameterizes these
choices. Thus there is a temptation to identify the choice of quantization axis with a particular
imaginary unit and Hyper Kähler structure would directly relate to the properties rotation group.
This would bring an additional item to the list of miraculous properties of light like surfaces of 4-
dimensional space-times.

This might relate to the fact that configuration space geometry is not determined by the symplectic
algebra of CP2 localized with respect to the light cone boundary as one might first expect but consists
of M4

+ × CP2 Hamiltonians so that infinitesimal symplectic transformation of CP2 involves always
also M4

+-symplectic transformation. M4
+ Hamiltonians are defined by a function basis generated as

products of the Hamiltonians H3 and H1± iH2 generating rotations with respect to three orthogonal
axes, and two of these Hamiltonians are complexified.

Also the light like 3-surfaces X3
l associated with quaternion conformal invariance are determined

by some 2-surface X2 and the choice of complex coordinates and if X2 is sphere the choices are labelled
by S2. In this case, the presence of quaternion conformal structure would be almost obvious since it
is possible to choose some complex coordinate in several manners and the choices are labelled by S2.
The choice of the complex coordinate in turn fixes 2-surface X2 as a surface for which the remaining
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coordinates are constant. X2 need not however be located at the elementary particle horizon unless
one poses additional constraint. One might hope that different choices of X2 resulting in this manner
correspond to all possible different selections of the complex structure and that this choice could fix
uniquely the conformal equivalence class of X2 appearing as argument in elementary particle vacuum
functionals. If X2 has a more complex topology the identification is not so clear but since conformal
algebra SL(2,C) containing algebra of rotation group is involved, one might argue that the choice of
quantization axis also now involves S2 degeneracy. If these arguments are correct one could conclude
that Hyper Kähler structure is implicitly involved and guarantees Ricci flatness of the configuration
space metric.

3.16 Consistency conditions on metric

In this section various consistency conditions on the configuration space metric are discussed. In
particular, it will be found that the conditions guaranteing the existence of Riemann connection in
the set of all(!) vector fields (including zero norm vector fields) gives very strong constraints on the
general form of the metric and that these constraints are indeed satisfied for the proposed metric.

3.16.1 Consistency conditions on Riemann connection

To study the consequences of the consistency conditions, it is most convenient to consider matrix
elements of the metric in the basis formed by the isometry generators themselves. The consistency
conditions state the covariant constancy of the metric tensor

∇Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY ) = Z · g(X,Y ) . (3.16.1)

Z · g(X,Y ) vanishes, when Z generates isometries so that conditions state the covariant constancy of
the matrix elements in this case. It must be emphasized that the ill defined-ness of the inner products
of form g(∇ZX,Y ) is just the reason for requiring infinite-dimensional isometry group. The point is
that ∇ZX need not to belong to the Hilbert space spanned by the tangent vector fields since the terms
of type Zg(X,Y ) do not necessarily exist mathematically [45]. The elegant solution to the problem
is that all tangent space vector fields act as isometries so that these quantities vanish identically.

The conditions of Eq. (3.16.1) can be written explicitly by using the general expression for the
covariant derivative

g(∇ZX,Y ) = [Zg(X,Y ) +Xg(Z, Y )− Y g(Z,X)

+ g(AdZX −Ad∗ZX −Ad∗XZ, Y )]/2 . (3.16.2)

What happens is that the terms depending on the derivatives of the matrix elements (terms of type
Zg(X,Y ) ) cancel each other (these terms vanish for the metric invariant under isometries), and one
obtains the following consistency conditions

g(AdZX −Ad∗ZX −Ad∗XZ, Y ) + g(X,AdZY −Ad∗ZY −Ad∗Y Z) = 0 . (3.16.3)

Using the explicit representations of AdZX and Ad ∗Z X in terms of structure constants

AdZX = [Z,X] = CZ,X:UU .

Ad∗ZX = CZ,U :V g(X,V )g−1(U,W )W = g(X, [Z,U ])g−1(U,W )W . (3.16.4)

where the summation over repeated ”indices” is performed, one finds that consistency conditions are
identically satisfied provided the generators X and Y have a non-vanishing norm. The reason is that
the contributions coming from ∇ZX and ∇ZY cancel each other.

When one of the generators, say X, appearing in the inner product has a vanishing norm so that
one has g(X,Y ) = 0, for any generator Y , situation changes! The contribution of ∇ZY term to the
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consistency conditions drops away and using Eqs. (3.16.3) and (3.16.4) one obtains the following
consistency conditions

CZ,X:Ug(U, Y ) + CX,Y :Ug(U,Z) = −X · g(Z, Y ) . (3.16.5)

Note that summation over U is carried out. If X is isometry generator (this need not be the case
always) the condition reduces to a simpler form:

CX,Z:Ug(U, Y ) + CX,Y :Ug(Z,U) = g([X,Z].Y ) + g(Z, [X,Y ]) = 0 . (3.16.6)

These conditions have nice geometric interpretation. If the matrix elements are regarded as ordinary
Hilbert space products between the isometry generators the conditions state that the metric defining
the inner product behaves as a scalar in the general case.

3.16.2 Consistency conditions for the radial Virasoro algebra

The action of the radial Virasoro in nontrivial manner in the zero modes. Therefore isometry inter-
pretation is excluded and consistency conditions do not make sense in this case. One can however
consider the possibility that metric is invariant or suffers only an overall scaling under the action of the
radial scaling generated by L0 = rMd/drM . Since the radial integration measure is scaling invariant
and only powers of rM/r0 appear in Hamiltonians, the effect of the scaling rM → λrM on the matrix
elements of the metric is a scaling by λka+k̄b). One can interpret this by saying that scaling changes
the values of zero modes and hence leads outside the symmetric space in question.

Invariance of reduced matrix element obtained by dividing away the powers of the scaling factor
is achieved if the metric contains the conformal factor

S =
1

∆u
f(
ri
rj

) , (3.16.7)

where ri are the extrema of rM interpreted as height function of X3 and f is a priori arbitrary positive
definite function. Since the presence of f presumably gives rise to renormalization corrections depend-
ing on the size and shape of 3-surface by scaling the propagator defined by the contravariant metric,
the dependence on the ratios ri/rj should be slow, logarithmic dependence. Also the dependence
on the Fourier components of the solid angles Ω(rM ) associated with the rM = constant sections is
possible.

3.16.3 Explicit conditions for the isometry invariance

The identification of the Lie-algebra of isometry generators has been proposed but cannot provide
any proof for the existence of the infinite parameter symmetry group at this stage. What one can do
at this stage is to formulate explicitly the conditions guaranteing isometry invariance of the metric
and try to see whether there are any hopes that these conditions are satisfied. It has been already
found that the expression of the metric reduces for light cone alternative to the sum of two boundary
terms coming from infinite future and from the boundary of the light cone. If the contribution from
infinitely distant future vanishes, as one might expect, then only the contribution from the boundary
of the light cone remains.

A tedious but straightforward evaluation of the second variation (see Appendix of the book) for
Kähler action implies the following form for the second variation of the Kähler action

δ2S =
/a=∞

a=0
Inβkl δh

kDβδh
l , (3.16.8)

where the tensor Iαβkl is defined as partial derivatives of the Kähler Lagrangian with respect to the
derivatives ∂αh

k
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Iαβkl = ∂∂αhk∂∂βhlLM . (3.16.9)

If the upper limit a =
√

(m0)2 − r2
M =∞ in the substitution vanishes then one can calculate second

variation and therefore metric from the knowledge of the time derivatives ∂nh
k and ∂nδh

k on the
boundary of the light cone only.

Kähler metric can be identified as the (1, 1) part of the second variation. This means that one
can express the deformation as an element of the isometry algebra plus a arbitrary deformation in
radial direction of the light cone boundary interpretable as conformal transformation of the light cone
boundary. Radial contributions to the second variation are dropped (by definition of Kähler metric)
and what remains is essentially a deformation in S2 degrees of freedom.

The left invariance of the metric under the deformations of the isometry algebra implies an infinite
number of conditions of the form

JCg(JA, JB) = 0 , (3.16.10)

where JA, JB and JC denote the generators of the isometry group. These conditions ought to fix
completely the time derivatives of the coordinates hk for each 3-surface at light cone boundary and
therefore in principle the whole minimizing four-surface provided the initial value problem associated
with the Kähler action possesses a unique solution. What is nice that the requirement of isometry
invariance in principle would provides solution to the problem of finding preferred extremals of the
Kähler action.

These conditions, when written explicitly give infinite number of conditions for the time derivative
of the generator JC (we assume for a moment that C is held fixed and let A and B run) at the
boundary of the light cone. Time derivatives are in principle determined also by the requirement that
deformed surface corresponds to an absolute minimum of the Kähler action. The basis of δH scalar
functions respecting color and rotational symmetries is the most promising one.

3.16.4 Direct consistency checks

If duality holds true, the most general form of the configuration space metric is defined by the
fluxes Qα,βm , where α and β are the coefficients of signed and unsigned magnetic fluxes. Present
is also a conformal factor depending on those zero modes, which do not appear in the symplectic
form and which characterize the size and shape of the 3-surface. [t, t] ⊂ h property implying Ricci
flatness and isometry property of symplectic transformations, requires the vanishing of the fluxes
Qα,βm ({HA,m 6=0, {HB,n6=0, HC,p 6=0}}) associated with double commutators and poses strong consis-
tency conditions on the metric. If n labelling symplectic generators has half integer values then the
conditions simply state conformal invariance: generators labelled by integers have vanishing norm
whereas half-odd integers correspond to non-vanishing norm. Isometry invariance gives additional
conditions on fluxes Qα,βm . Lorentz invariance strengthens these conditions further. It could be that
these conditions fix the initial values of the imbedding space coordinates completely.
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Chapter 4

Configuration Space Spinor
Structure

4.1 Introduction

Quantum TGD should be reducible to the classical spinor geometry of the configuration space. In
particular, physical states should correspond to the modes of the configuration space spinor fields.
The immediate consequence is that configuration space spinor fields cannot, as one might naively
expect, be carriers of a definite spin and unit fermion number. Concerning the construction of the
configuration space spinor structure there are some important clues.

4.1.1 Geometrization of fermionic statistics in terms of configuration space
spinor structure

The great vision has been that the second quantization of the induced spinor fields can be under-
stood geometrically in terms of the configuration space spinor structure in the sense that the anti-
commutation relations for configuration space gamma matrices require anti-commutation relations for
the oscillator operators for free second quantized induced spinor fields.

1. One must identify the counterparts of second quantized fermion fields as objects closely related
to the configuration space spinor structure. [63] has as its basic field the anti-commuting field
Γk(x), whose Fourier components are analogous to the gamma matrices of the configuration
space and which behaves like a spin 3/2 fermionic field rather than a vector field. This suggests
that the are analogous to spin 3/2 fields and therefore expressible in terms of the fermionic
oscillator operators so that their naturally derives from the anti-commutativity of the fermionic
oscillator operators.

As a consequence, configuration space spinor fields can have arbitrary fermion number and
there would be hopes of describing the whole physics in terms of configuration space spinor
field. Clearly, fermionic oscillator operators would act in degrees of freedom analogous to the
spin degrees of freedom of the ordinary spinor and bosonic oscillator operators would act in
degrees of freedom analogous to the ’orbital’ degrees of freedom of the ordinary spinor field.

2. The classical theory for the bosonic fields is an essential part of the configuration space geometry.
It would be very nice if the classical theory for the spinor fields would be contained in the
definition of the configuration space spinor structure somehow. The properties of the associated
with the induced spinor structure are indeed very physical. The modified massless Dirac equation
for the induced spinors predicts a separate conservation of baryon and lepton numbers. Contrary
to the long held belief it seems that covariantly constant right handed neutrino does not generate .
The differences between quarks and leptons result from the different couplings to the CP2 Kähler
potential. In fact, these properties are shared by the solutions of massless Dirac equation of the
imbedding space.
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3. Since TGD should have a close relationship to the ordinary quantum field theories it would
be highly desirable that the second quantized free induced spinor field would somehow appear
in the definition of the configuration space geometry. This is indeed true if the complexified
configuration space gamma matrices are linearly related to the oscillator operators associated
with the second quantized induced spinor field on the space-time surface and its boundaries.
There is actually no deep reason forbidding the gamma matrices of the configuration space to
be spin half odd-integer objects whereas in the finite-dimensional case this is not possible in
general. In fact, in the finite-dimensional case the equivalence of the spinorial and vectorial
vielbeins forces the spinor and vector representations of the vielbein group SO(D) to have same
dimension and this is possible for D = 8-dimensional Euclidian space only. This coincidence
might explain the success of 10-dimensional super string models for which the physical degrees
of freedom effectively correspond to an 8-dimensional Euclidian space.

4. It took a long time to realize that the ordinary definition of the gamma matrix algebra in terms
of the anti-commutators {γA, γB} = 2gAB must in TGD context be replaced with

{γ†A, γB} = iJAB ,

where JAB denotes the matrix elements of the Kähler form of the configuration space. The
presence of the Hermitian conjugation is necessary because configuration space gamma matrices
carry fermion number. This definition is numerically equivalent with the standard one in the
complex coordinates. The realization of this delicacy is necessary in order to understand how
the square of the configuration space Dirac operator comes out correctly.

5. TGD as a generalized number theory vision leads to the understanding of how the second quan-
tization of the induced spinor fields should be carried out and space-time conformal symmetries
allow to explicitly solve the Dirac equation associated with the modified Dirac action in the
interior and at the 3-D light like causal determinants. An essentially new element is the no-
tion of number theoretic braid forced by the fact that the modified Dirac operator allows only
finite number of generalized eigen modes so that the number of fermionic oscillator operators
is finite. As a consequence, anticommutation relations can be satisfied only for a finite set of
points defined by the number theoretic braid, which is uniquely identifiable. The interpretation
is in terms of finite measurement resolution. The finite Clifford algebra spanned by the fermionic
oscillator operators is interpreted as the factor spaceM/N of infinite hyper-finite factors of type
II1 defined by configuration space Clifford algebra N and included Clifford algebra M⊂ N in-
terpreted as the characterizer of the finite measurement resolution. Note that the finite number
of eigenvalues guarantees that Dirac determinant identified as the exponent of Kähler function
is finite. Finite number of eigenvalues is also essential for number theoretic universality.

4.1.2 Modified Dirac equation for induced classical spinor fields

The earlier approach to the definition of the configuration space spinor structure relied on the second
quantized ordinary massless Dirac action for the induced spinors. This action had some anomalous
looking features. The first anomaly was the appearance of the effective tachyonic mass term propor-
tional to the trace of the second fundamental form vanishing only for minimal surfaces. The breaking
of N = 2 super symmetry generated by right-handed neutrinos for other than minimal surfaces was
the second anomalous feature. It became also clear that the divergences of the fermionic isometry
currents can have a non-vanishing c-number anomaly unless one varies Dirac action also with respect
to the configuration space coordinates. This anomaly obviously might destroy the definition of the
configuration space spinor structure.

The vision about quantum TGD as a generalized number theory [21, 20, 19] comes in rescue
here. One of its outcomes was the realization that, in order to achieve exact super-symmetry, one
must modify Dirac action so that its variation with respect to the imbedding space coordinates gives
the field equations derivable from the action principle in question. By taking the modified Dirac
action as the fundamental action, one can identify vacuum functional as the Dirac determinant. If
this determinant equals to exponent of Kähler action for the preferred extremal containing partonic
3-surfaces, one can predict even the value of the Kähler coupling constant.
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Chern-Simons - or Kähler Dirac action?

Two alternative choices represented themselves as candidates for the modified Dirac action: either
the 3-D Chern-Simons Dirac action or 4-D Kähler action. Eventually came the realization that the
addition of a measurement interaction term to either Chern-Simons action or Kähler action is needed
to resolve a bundle of conceptual problems. It took still some time to conclude that Kähler action
with instanton term is the correct choice since the measurement interaction term assigned to Chern-
Simons-Dirac action creates more problems than it solves.

1. Basic implications

1. A correlation between 4-D geometry of space-time sheet and quantum numbers is achieved
by the identification of exponent of Kähler function as Dirac determinant making possible the
entanglement of classical degrees of freedom in the interior of space-time sheet with quantum
numbers.

2. Cartan algebra plays a key role not only at quantum level but also at the level of space-time
geometry since quantum critical conserved currents vanish for Cartan algebra of isometries
and the measurement interaction terms giving rise to conserved currents are possible only for
Cartan algebras. Furthermore, modified Dirac equation makes sense only for eigen states of
Cartan algebra generators. The hierarchy of Planck constants realized in terms of the book like
structure of the generalized imbedding space assigns to each CD (causal diamond) preferred
Cartan algebra: in case of Poincare algebra there are two of them corresponding to linear and
cylindrical M4 coordinates.

3. Quantum holography and dimensional reduction hierarchy in which partonic 2-surface defined
fermionic sources for 3-D fermionic fields at light-like 3-surfaces Y 3

l in turn defining fermionic
sources for 4-D spinors find an elegant realization. Effective 2-dimensionality is achieved if the
replacement of light-like wormhole throat X3

l with light-like 3-surface Y 3
l ”parallel” with it in the

definition of Dirac determinant corresponds to the U(1) gauge transformation K → K + f + f
for Kähler function of WCW so that WCW Kähler metric is not affected. Here f is holomorphic
function of WCW (”world of classical worlds”) complex coordinates and arbitrary function of
zero mode coordinates.

4. An elegant description of the interaction between super-conformal representations realized at
partonic 2-surfaces and dynamics of space-time surfaces is achieved since the values of Cartan
charges are feeded to the 3-D Dirac equation which also receives mass term at the same time.
Almost topological QFT at wormhole throats results at the limit when four-momenta vanish:
this is in accordance with the original vision about TGD as almost topological QFT.

5. A detailed view about the physical role of quantum criticality results. Quantum criticality
fixes the values of Kähler coupling strength as the analog of critical temperature. Quantum
criticality implies that second variation of Kähler action vanishes for critical deformations and
the existence of conserved current except in the case of Cartan algebra of isometries. Quantum
criticality allows to fix the values of couplings appearing in the measurement interaction by using
the condition K → K + f + f . p-Adic coupling constant evolution can be understood also and
corresponds to scale hierarchy for the sizes of causal diamonds (CDs).

6. The inclusion of imaginary instanton term to the definition of the modified gamma matrices is
not consistent with the conjugation of the induced spinor fields. Measurement interaction can
be however assigned to both Kähler action and its instanton term. CP breaking, irreversibility
and the space-time description of dissipation are closely related and the CP and T oddness of
the instanton part of the measurement interaction term could provide first level description for
dissipative effects. It must be however emphasized that the mere addition of instanton term to
Kähler function could be enough.

7. A radically new view about matter antimatter asymmetry based on zero energy ontology emerges
and one could understand the experimental absence of antimatter as being due to the fact
antimatter corresponds to negative energy states. The identification of bosons as wormhole
contacts is the only possible option in this framework.
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8. Almost stringy propagators and a consistency with the identification of wormhole throats as
lines of generalized Feynman diagrams is achieved. The notion of bosonic emergence leads to a
long sought general master formula for the M -matrix elements. The counterpart for fermionic
loop defining bosonic inverse propagator at QFT limit is wormhole contact with fermion and
cutoffs in mass squared and hyperbolic angle for loop momenta of fermion and antifermion in
the rest system of emitting boson have precise geometric counterpart.

2. Hyper-quaternionicity and quantum criticality

The conjecture that quantum critical space-time surfaces are hyper-quaternionic in the sense that
the modified gamma matrices span a quaternionic subspace of complexified octonions at each point
of the space-time surface is consistent with what is known about preferred extremals. The condition
that both the modified gamma matrices and spinors are quaternionic at each point of the space-time
surface leads to a precise ansatz for the general solution of the modified Dirac equation making sense
also in the real context. The octonionic version of the modified Dirac equation is very simple since
SO(7, 1) as vielbein group is replaced with G2 acting as automorphisms of octonions so that only the
neutral Abelian part of the classical electro-weak gauge fields survives the map.

Octonionic gamma matrices provide also a non-associative representation for the 8-D version of
Pauli sigma matrices and encourage the identification of 8-D twistors as pairs of octonionic spinors
conjectured to be highly relevant also for quantum TGD. Quaternionicity condition implies that octo-
twistors reduce to something closely related to ordinary twistors.

Super-conformal symmetries of modified Dirac action

The modified Dirac equation allows large number of super-conformal gauge symmetries as zero modes
of DK(Y 3

l ) and are interpreted as generators of exact N = 4 super-conformal gauge symmetries in both
quark and lepton sectors. These super-symmetries correspond to pure super gauge transformations
and state the the effective 3-dimensionality of space-time dynamics.

Super-symplectic and super Kac-Moody transformations respecting the light-likeness of light-like 3-
surfaces define dynamical super conformal symmetries with covariantly constant right handed neutrino
spinor serving as the generator of super symmetries. These are crucial for p-adic thermodynamics.
No spartners of ordinary particles are predictedin particular N = 2 space-time super-symmetry is
generated by the righthanded neutrino is absent contrary to the earlier beliefs. There is no need to
emphasize the experimental implications of this finding.

An essential difference with respect to the standard super-conformal symmetries is that Majo-
rana condition is not satisfied and the usual super-space formalism does not apply. The notion of
super-space is un-necessary since fermionic super-generators do not anticommute to vector fields of
symmetries but to their Hamiltonians.

Identification of configuration space gamma matrices

Configuration space gamma matrices identified as super generators of super-symplectic or super Kac-
Moody algebras (depending on CH coordinates used) are expressible in terms of the oscillator oper-
ators associated with the eigen modes of the modified Dirac operator. Super-symplectic and super
Kac-Moody charges are expressible as integrals over 2-dimensional partonic surfaces X2 and interior
degrees of freedom of X4 can be regarded as zero modes representing classical variables in one-one
correspondence with quantal degrees of freedom at X3

l as indeed required by quantum measurement
theory. The resulting situation is highly reminiscent of WZW model and the results imply that at
technical level the methods of 2-D conformal field theories should allow to construct quantum TGD.

4.1.3 The exponent of Kähler function as Dirac determinant for the mod-
ified Dirac action?

Although quantum criticality in principle predicts the possible values of Kähler coupling strength, one
might hope that there exists even more fundamental approach involving no coupling constants and
predicting even quantum criticality and realizing quantum gravitational holography.
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1. The Dirac determinant defined by the product of Dirac determinants associated with the light-
like partonic 3-surfaces X3

l associated with a given space-time sheet X4 is the simplest candidate
for vacuum functional identifiable as the exponent of the Kähler function. One can of course
worry about the finiteness of the Dirac determinant. p-Adicization requires that the eigenvalues
belong to a given algebraic extension of rationals. This restriction would imply a hierarchy of
physics corresponding to different extensions and could automatically imply the finiteness and
algebraic number property of the Dirac determinants if only finite number of eigenvalues would
contribute. The regularization would be performed by physics itself if this were the case.

2. The basic problem has been how to feed in the information about the preferred extremal of
Kähler action to the eigenvalue spectrum of the Dirac operator in question. The identification
of the preferred extremal associated with X3

l became possible via the boundary conditions at X3
l

dictated by number theoretical compactification, which also predicted the dual slicings of the
M4 projection of space-time surface by string world sheets and partonic 2-surfaces. The basic
observation is that the Dirac equation associated with the 4-D Dirac operator DK associated
with by Kähler action can be seen as a conservation law for a super current. The slicing of
X4(X3

l ) by the parallel light-like 3-surfaces Y 3
l allows solutions for which the super current

flows along Y 3
l and has no component in normal direction. The zero modes of DK reducing

to effectively 3-D solutions of DK at each Y 3
l give a family of holographic copies of X3

l . The
effective 3-dimensionality is due to the super-conformal gauge invariance in the direction of
light-like coordinate u labeling the 3-surfaces Y 3

l .

3. The spectrum of eigenvalues corresponds to the ”energy” spectrum of DK and the product of the
eigenvalues defines the Dirac determinant in standard manner. If the eigenmodes are restricted
to those localized to regions of strong induced electro-weak magnetic field, the number of eigen
modes is finite and therefore also Dirac determinant is finite.

4. The requirement that the Noether currents associated with Dirac Kähler action are conserved is
that preferred extremals of Kähler action correspond to extremals for which the second variation
of Kähler action vanishes at least for the deformations associated with the conserved currents.
Obviously this is nothing but the formulation of quantum criticality at space-time level!

5. The physical analog is energy spectrum for Dirac operator in external magnetic field. The effec-
tive metric appearing in the modified Dirac operator corresponds to ĝαβ = ∂LK/∂h

k
α∂LK/∂h

l
βhkl,

and vanishes at the boundaries of regions carrying non-vanishing Kähler magnetic field. Hence
the modes must be localized to regions X3

l,i containing a non-vanishing Kähler magnetic field.
Cyclotron states in constant magnetic field serve as a good analog for the situation and only a
finite number of cyclotron states are possible since for higher cyclotron states the wave function
-essentially harmonic oscillator wave function- would concentrate outside X3

l,i.

6. A more precise argument goes as follows. Assume that it is induced Kähler magnetic field
BK that matters. The vanishing of the effective contravariant metric near the boundary of
X3
l,i corresponds to an infinite effective mass for massive particle in constant magnetic field so

that the counterpart for the cyclotron frequency scale eB/m reduces to zero. The radius of
the cyclotron orbit is proportional to 1/

√
eB and approaches to infinity. Hence the required

localization is not possible only for cyclotron states for which the cyclotron radius is below that
the transversal size scale of X3

l,i.

7. It remains to be proven that the product of eigenvalues gives rise to the exponent of Kähler
action for the preferred extremal of Kähler action. At this moment the only justification for the
conjecture is that this the only thing that one can imagine.

4.1.4 Super-conformal symmetries

The almost topological QFT property of partonic formulation based on modified Dirac Kähler ac-
tion allows a rich structure of N = 4 super-conformal symmetries. In particular, the generalized
Kac-Moody symmetries leave corresponding X3-local isometries respecting the light-likeness condi-
tion. A rather detailed view about various aspects of super-conformal symmetries emerge leading to
identification of fermionic anti-commutation relations and explicit expressions for configuration space
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gamma matrices and Kähler metric. This picture is consistent with the conditions posed by p-adic
mass calculations.

The relationship between super-symplectic (SC) and Super Kac-Moody (SKM) symmetries has
been one of the central themes in the development of TGD. The progress in the understanding of
the number theoretical aspects of TGD gives good hopes of lifting SKMV (V denotes Virasoro) to a
subalgebra of SCV so that coset construction works meaning that the differences of SCV and SKMV
generators annihilate physical states. This condition has interpretation in terms of Equivalence Prin-
ciple with coset Super Virasoro conditions defining a generalization of Einstein’s equations in TGD
framework. Also p-adic thermodynamics finds a justification since the expectation values of SKM
conformal weights can be non-vanishing in physical states.

Number theoretical considerations play a key role and lead to the picture in which effective dis-
cretization occurs so that partonic two-surface is effectively replaced by a discrete set of algebraic
points belonging to the intersection of the real partonic 2-surface and its p-adic counterpart obeying
the same algebraic equations. This implies effective discretization of super-conformal field theory
giving N-point functions defining vertices via discrete versions of stringy formulas.

Before continuing I must represent apologies for the reader. This chapter is just now under
updating due to the dramatic simplifications related to identification of the eigenvalue spectrum of
the modified Dirac operator and the definition of the Dirac determinant. The new vision is briefly
discussed but a lot of mammoth bones remains to be eliminated.

4.2 Configuration space spinor structure: general definition

The basic problem in constructing configuration space spinor structure is clearly the construction of
the explicit representation for the gamma matrices of the configuration space. One should be able to
identify the space, where these gamma matrices act as well as the counterparts of the ”free” gamma
matrices, in terms of which the gamma matrices would be representable using generalized vielbein
coefficients.

4.2.1 Defining relations for gamma matrices

The ordinary definition of the gamma matrix algebra is in terms of the anti-commutators

{γA, γB} = 2gAB .

This definition served implicitly also as a basic definition of the gamma matrix algebra in TGD
context until the difficulties related to the understanding of the configuration space d’Alembertian
defined in terms of the square of the Dirac operator forced to reconsider the definition. If configuration
space allows Kähler structure, the most general definition allows to replace the metric any covariantly
constant Hermitian form. In particular, gAB can be replaced with

{Γ†A,ΓB} = iJAB , (4.2.1)

where JAB denotes the matrix element of the Kähler form of the configuration space. The reason is
that gamma matrices carry fermion number and are non-hermitian in all coordinate systems. This
definition is numerically equivalent with the standard one in the complex coordinates but in arbitrary
coordinates situation is different since in general coordinates iJkl is a nontrivial positive square root
of gkl. The realization of this delicacy is necessary in order to understand how the square of the
configuration space Dirac operator comes out correctly. Obviously, what one must do is the equivalent
of replacing D2 = (ΓkDk)2 with DD̂ with D̂ defined as

D̂ = iJklΓ†lDk .

4.2.2 General vielbein representations

There are two ideas, which make the solution of the problem obvious.
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1. Since the classical time development in bosonic degrees of freedom (induced gauge fields) is coded
into the geometry of the configuration space it seems natural to expect that same applies in the
case of the spinor structure. The time development of the induced spinor fields dictated by TGD
counterpart of the massless Dirac action should be coded into the definition of the configuration
space spinor structure. This leads to the challenge of defining what classical spinor field means.

2. Since classical scalar field in the configuration space corresponds to second quantized boson
fields of the imbedding space same correspondence should apply in the case of the fermions,
too. The spinor fields of configuration space should correspond to second quantized fermion
field of the imbedding space and the space of the configuration space spinors should be more
or less identical with the Fock space of the second quantized fermion field of imbedding space
or X4(X3). Since classical spinor fields at space-time surface are obtained by restricting the
spinor structure to the space-time surface, one might consider the possibility that life is really
simple: the second quantized spinor field corresponds to the free spinor field of the imbedding
space satisfying the counterpart of the massless Dirac equation and more or less standard anti-
commutation relations. Unfortunately life is not so simple as the construction of configuration
space spinor structure demonstrates: second quantization must be performed for induced spinor
fields.

It is relatively simple to fill in the details once these basic ideas are accepted.

1. The only natural candidate for the second quantized spinor field is just the on X4. Since this
field is free field, one can indeed perform second quantization and construct fermionic oscillator
operator algebra with unique anti-commutation relations. The space of the configuration space
spinors can be identified as the associated with these oscillator operators. This space depends
on 3-surface and strictly speaking one should speak of the Fock bundle having configuration
space as its base space.

2. The gamma matrices of the configuration space (or rather fermionic Kac Moody generators) are
representable as super positions of the fermionic oscillator algebra generators:

Γ+
A = EnAa

†
n

Γ−A = ĒnAan

iJAB̄ =
∑
n

EnAĒ
n
B (4.2.2)

where EnA are the vielbein coefficients. Induced spinor fields can possess zero modes and there
is no oscillator operators associated with these modes. Since oscillator operators are spin 1/2
objects, configuration space gamma matrices are analogous to spin 3/2 spinor fields (in a very
general sense). Therefore the generalized vielbein and configuration space metric is analogous
to the pair of spin 3/2 and spin 2 fields encountered in super gravitation! Notice that the
contractions jAkΓk of the complexified gamma matrices with the isometry generators are genuine
spin 1/2 objects labeled by the quantum numbers labeling isometry generators. In particular,
in CP2 degrees of freedom these fermions are color octets.

3. A further great idea inspired by the symplectic and Kähler structures of the configuration space
is that configuration gamma matrices are actually generators of super-symplectic symmetries.
This simplifies enormously the construction allows to deduce explicit formulas for the gamma
matrices.

4.2.3 Inner product for configuration space spinor fields

The conjugation operation for configuration space spinors corresponds to the standard ket → bra
operation for the states of the Fock space:
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Ψ ↔ |Ψ〉
Ψ̄ ↔ 〈Ψ| (4.2.3)

The inner product for configuration space spinors at a given point of the configuration space is just
the standard Fock space inner product, which is unitary.

Ψ̄1(X3)Ψ2(X3) = 〈Ψ1|Ψ2〉|X3 (4.2.4)

Configuration space inner product for two configuration space spinor fields is obtained as the integral of
the Fock space inner product over the whole configuration space using the vacuum functional exp(K)
as a weight factor

〈Ψ1|Ψ2〉 =

∫
〈Ψ1|Ψ2〉|X3exp(K)

√
GdX3 (4.2.5)

This inner product is obviously unitary. A modified form of the inner product is obtained by including
the factor exp(K/2) in the definition of the spinor field. In fact, the construction of the central
extension for the isometry algebra leads automatically to the appearance of this factor in vacuum
spinor field.

The inner product differs from the standard inner product for, say, Minkowski space spinors in
that integration is over the entire configuration space rather than over a time= constant slice of the
configuration space. Also the presence of the vacuum functional makes it different from the finite
dimensional inner product. These are not un-physical features. The point is that (apart from classical
non-determinism forcing to generalized the concept of 3-surface) Diff4 invariance dictates the behavior
of the configuration space spinor field completely: it is determined form its values at the moment of
the big bang. Therefore there is no need to postulate any Dirac equation to determine the behavior
and therefore no need to use the inner product derived from dynamics.

4.2.4 Holonomy group of the vielbein connection

Generalized vielbein allows huge gauge symmetry. An important constraint on physical observables
is that they do not depend at all on the gauge chosen to represent the gamma matrices. This is
indeed achieved using vielbein connection, which is now quadratic in fermionic oscillator operators.
The holonomy group of the vielbein connection is the configuration space counterpart of the electro-
weak gauge group and its algebra is expected to have same general structure as the algebra of the
configuration space isometries. In particular, the generators of this algebra should be labeled by
conformal weights like the elements of Kac Moody algebras. In present case however conformal
weights are complex as the construction of the configuration space geometry demonstrates.

4.2.5 Realization of configuration space gamma matrices in terms of super
symmetry generators

In string models super symmetry generators behave effectively as gamma matrices and it is very
tempting to assume that configuration space gamma matrices can be regarded as generators of the
symplectic algebra extended to super-symplectic Kac Moody type algebra. The experience with
string models suggests also that radial Virasoro algebra extends to Super Virasoro algebra. There are
good reasons to expect that configuration space Dirac operator and its square give automatically a
realization of this algebra. It this is indeed the case, then configuration space spinor structure as well
as Dirac equation reduces to mere group theory.

One can actually guess the general form of the super-symplectic algebra. The form is a direct
generalization of the ordinary super Kac Moody algebra. The complexified super generators SA are
identifiable as configuration space gamma matrices:

ΓA = SA . (4.2.6)
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The anti-commutators {Γ†A,ΓB}+ = i2JA,B define a Hermitian matrix, which is proportional to the
Kähler form of the configuration space rather than metric as usually. Only in complex coordinates the
anti-commutators equal to the metric numerically. This is, apart from the multiplicative constant n,
is expressible as the Poisson bracket of the configuration space Hamiltonians HA and HB . Therefore
one should be able to identify super generators SA(rM ) for each values of rM as the counterparts of
fluxes. The anti-commutators between the super generators SA and their Hermitian conjugates should
read as

{SA, S†B}+ = iQm(H[A,B]) . (4.2.7)

and should be induced directly from the anti-commutation relations of free second quantized spinor
fields of the imbedding space restricted to the light cone boundary.

The commutation relations between s and super generators follow solely from the transforma-
tion properties of the super generators under symplectic transformations, which are same as for the
Hamiltonians themselves

{HAm, SBn}− = S[Am,Bn] , (4.2.8)

and are of the same form as in the case of Super-Kac-Moody algebra.
The task is to derive an explicit representation for the super generators SA in both cases. For

obvious reason the spinor fields restricted to the 3-surfaces on the light cone boundary δM4
+ × CP2

can be used. Leptonic/quark like oscillator operators are used to construct Ramond/NS type algebra.
What is then the strategy that one should follow?

1. Configuration space Hamiltonians correspond to either magnetic or electric flux Hamiltonians
and the conjecture is that these representations are equivalent. It turns out that this electric-
magnetic duality generalizes to the level of super charges. It also turns out that quark represen-
tation is the only possible option whereas leptonic super charges super-symmetrize the ordinary
function algebra of the light cone boundary.

2. The simplest option would be that second quantized imbedding space spinors could be used in
the definition of super charges. This turns out to not work and one must second quantize the
induced spinor fields.

3. The task is to identify a super-symmetric variational principle for the induced spinors: ordinary
Dirac action does not work. It turns out that in the most plausible scenario the modified
Dirac action varied with respect to both imbedding space coordinates and spinor fields is the
fundamental action principle. The c-number parts of the conserved symplectic charges associated
with this action give rise to bosonic conserved charges defining configuration space Hamiltonians.
The second quantization of the spinor fields reduces to the requirement that super charges and
Hamiltonians generate super-symplectic algebra determining the anti-commutation relations for
the induced spinor fields.

4.2.6 Central extension as symplectic extension at configuration space
level

The earlier attempts to understand the emergence of central extension of super-symplectic algebra
were based on the notion of symplectic extension. This general view is not given up although it
seems that this abstract approach is not very practical. Symplectic extension emerged originally in
the attempts to construct formal expression for the configuration space Dirac equation. The rather
obvious idea was that the Dirac equation reduces to super Virasoro conditions with Super Virasoro
generators involving the Dirac operator of the imbedding space. The basic difficulty was the necessity
to assign to the gamma matrices of the imbedding space fermion number. In the recent formulation
the Dirac operator of H does not appear in in the Super Virasoro conditions so that this problem
disappears.

The proposal that Super Virasoro conditions should replaced with conditions stating that the
commutator of super-symplectic and super Kac-Moody algebras annihilates physical states, looks
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rather feasible. One could call these conditions as configuration space Dirac equation but at this
moment I feel that this would be just play with words and mask the group theoretical content of these
conditions. In any case, the formulas for the symplectic extension and action of isometry generators
on configuration space spinor deserve to be summarized.

Symplectic extension

The Abelian extension of the super-symplectic algebra is obtained by an extremely simple trick.
Replace the ordinary derivatives appearing in the definition of, say spinorial isometry generator, by
the covariant derivatives defined by a coupling to a multiple of the Kähler potential.

jAk∂k → jAkDk ,

Dk = ∂k + ikAk/2 . (4.2.9)

where Ak denotes Kähler potential. The reality of the parameter k is dictated by the Hermiticity
requirement and also by the requirement that Abelian extension reduces to the standard form in Cartan
algebra. k is expected to be integer also by the requirement that covariant derivative corresponds to
connection (quantization of magnetic charge).

The commutation relations for the centrally extended generators JA read:

[JA, JB ] = J [A,B] + ikjAkJklj
Bl ≡ J [A,B] + ikJAB . (4.2.10)

Since Kähler form defines symplectic structure in configuration space one can express Abelian exten-
sion term as a Poisson bracket of two Hamiltonians

JAB ≡ jAkJklj
Bl = {HA, HB} . (4.2.11)

Notice that Poisson bracket is well defined also when Kähler form is degenerate.
The extension indeed has acceptable properties:

1. Jacobi-identities reduce to the form

∑
cyclic

H [A,[B,C]] = 0 , (4.2.12)

and therefore to the Jacobi identities of the original Lie- algebra in Hamiltonian representation.

2. In the Cartan algebra Abelian extension reduces to a constant term since the Poisson bracket
for two commuting generators must be a multiple of a unit matrix. This feature is clearly
crucial for the non-triviality of the Abelian extension and is encountered already at the level
of ordinary (q, p) Poisson algebra: although the differential operators ∂p and ∂q commute the
Poisson bracket of the corresponding Hamiltonians p and q is nontrivial: {p, q} = 1. Therefore
the extension term commutes with the generators of the Cartan subalgebra. Extension is also
local U(1) extension since Poisson algebra differs from the Lie-algebra of the vector fields in
that it contains constant Hamiltonian (”1” in the commutator), which commutes with all other
Hamiltonians and corresponds to a vanishing vector field.

3. For the generators not belonging to Cartan sub-algebra of CH isometries Abelian extension term
is not annihilated by the generators of the original algebra and in this respect the extension differs
from the standard central extension for the loop algebras. It must be however emphasized that for
the super-symplectic algebra generators correspond to products of δM4

+ and CP2 Hamiltonians
and this means that generators of say δM4

+-local SU(3) Cartan algebra are non-commuting and
the commutator is completely analogous to central extension term since it is symmetric with
respect to SU(3) generators.
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4. The proposed method yields a trivial extension in the case of Diff4. The reason is the (four-
dimensional!) Diff degeneracy of the Kähler form. Abelian extension term is given by the
contraction of the Diff4 generators with the Kähler potential

jAkJklj
Bl = 0 , (4.2.13)

which vanishes identically by the Diff degeneracy of the Kähler form. Therefore neither 3- or
4-dimensional Diff invariance is not expected to cause any difficulties. Recall that 4-dimensional
Diff degeneracy is what is needed to eliminate time like vibrational excitations from the spectrum
of the theory. By the way, the fact that the loop space metric is not Diff degenerate makes
understandable the emergence of Diff anomalies in string models [63, 61].

5. The extension is trivial also for the other zero norm generators of the tangent space algebra, in
particular for the k2 = Im(k) = 0 symplectic generators possible present so that these generators
indeed act as genuine U(1) transformations.

6. Concerning the solution of configuration space Dirac equation the maximum of Kähler function
is expected to be special, much like origin of Minkowski space and symmetric space property
suggests that the construction of solutions reduces to this point. At this point the generators
and Hamiltonians of the algebra h in the defining Cartan decomposition g = h+ t should vanish.
h corresponds to integer values of k1 = Re(k) for Cartan algebra of super-symplectic algebra
and integer valued conformal weights n for Super Kac-Moody algebra. The algebra reduces at
the maximum to an exceptionally simple form since only central extension contributes to the
metric and Kähler form. In the ideal case the elements of the metric and Kähler form could be
even diagonal. The degeneracy of the metric might of course pose additional complications.

Super symplectic action on configuration space spinors

The generators of symplectic transformations are obtained in the spinor representation of the isometry
group of the configuration space by the following formal construction. Take isometry generator in
the spinor representation and add to the covariant derivative Dk defined by vielbein connection the
coupling to the multiple of the Kähler potential: Dk → Dk + ikAk/2.

JA = jAkDk +DljkΣkl/2 ,

→ ĴA = jAk(Dk + ikAk/2) +Dlj
A
k Σkl/2 ,

(4.2.14)

This induces the required central term to the commutation relations. Introduce complex coordinates
and define bosonic creation and annihilation operators as (1, 0) and (0, 1) parts of the modified isometry
generators

B†A = JA+ = jAk(Dk + ... ,

BA = JA− = jAk̄(Dk̄ + ... .

(4.2.15)

where ”k” refers now to complex coordinates and ”k̄” to their conjugates.
Fermionic generators are obtained as the contractions of the complexified gamma matrices with

the isometry generators

Γ†A = jAkΓk ,

ΓA = jAk̄Γk̄ . (4.2.16)
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Notice that the bosonic Cartan algebra generators obey standard oscillator algebra commutation re-
lations and annihilate fermionic Cartan algebra generators. Hermiticity condition holds in the sense
that creation type generators are hermitian conjugates of the annihilation operator type generators.
There are two kinds of representations depending on whether one uses leptonic or quark like oscil-
lator operators to construct the gammas. These will be assumed to correspond to Ramond and NS
type generators with the radial plane waves being labeled by integer and half odd integer indices
respectively.

The non-vanishing commutators between the Cartan algebra bosonic generators are given by the
matrix elements of the Kähler form in the basis of formed by the isometry generators

[B†A, BB ] = J(jA†, jB) ≡ JĀB . (4.2.17)

and are isometry invariant quantities. The commutators between local SU(3) generators not belonging
to Cartan algebra are just those of the local gauge algebra with Abelian extension term added.

The anti-commutators between the fermionic generators are given by the elements of the metric
(as opposed to Kähler form in the case of bosonic generators) in the basis formed by the isometry
generators

{ΓA†,ΓB} = 2g(jA†, jB) ≡ 2gĀB . (4.2.18)

and are invariant under isometries. Numerically the commutators and anti-commutators differ only
the presence of the imaginary unit and the scale factor R relating the metric and Kähler form to each
other (the factor R is same for CP2 metric and Kähler form).

The commutators between bosonic and fermionic generators are given by

[BA,ΓB ] = Γ[A,B] . (4.2.19)

The presence of vielbein and rotation terms in the representation of the isometry generators is essential
for obtaining these nice commutations relations. The commutators vanish identically for Cartan
algebra generators. From the commutation relations it is clear that Super Kac Moody algebra structure
is directly related to the Kähler structure of the configuration space: the anti-commutator of fermionic
generators is proportional to the metric and the commutator of the bosonic generators is proportional
to the Kähler form. It is this algebra, which should generate the solutions of the field equations of
the theory.

The vielbein and rotational parts of the bosonic isometry generators are quadratic in the fermionic
oscillator operators and this suggests the interpretation as the fermionic contribution to the isometry
currents. This means that the action of the bosonic generators is essentially non-perturbative since it
creates fermion antifermion pairs besides exciting bosonic degrees of freedom.

4.2.7 Configuration space Clifford algebra as a hyper-finite factor of type
II1

The naive expectation is that the trace of the unit matrix associated with the Clifford algebra spanned
by configuration space sigma matrices is infinite and thus defines an excellent candidate for a source
of divergences in perturbation theory. This potential source of infinities remained un-noticed until
it became clear that there is a connection with von Neumann algebras [52]. In fact, for a separable
Hilbert space defines a standard representation for so called [54]. This guarantees that the trace of
the unit matrix equals to unity and there is no danger about divergences.

Philosophical ideas behind von Neumann algebras

The goal of von Neumann was to generalize the algebra of quantum mechanical observables. The basic
ideas behind the von Neumann algebra are dictated by physics. The algebra elements allow Hermitian
conjugation ∗ and observables correspond to Hermitian operators. Any measurable function f(A) of
operator A belongs to the algebra and one can say that non-commutative measure theory is in question.



4.3. Hierarchy of Planck constants and the generalization of the notion of imbedding
space 205

The predictions of quantum theory are expressible in terms of traces of observables. Density
matrix defining expectations of observables in ensemble is the basic example. The highly non-trivial
requirement of von Neumann was that identical a priori probabilities for a detection of states of infinite
state system must make sense. Since quantum mechanical expectation values are expressible in terms
of operator traces, this requires that unit operator has unit trace: tr(Id) = 1.

In the finite-dimensional case it is easy to build observables out of minimal projections to 1-
dimensional eigen spaces of observables. For infinite-dimensional case the probably of projection to
1-dimensional sub-space vanishes if each state is equally probable. The notion of observable must thus
be modified by excluding 1-dimensional minimal projections, and allow only projections for which the
trace would be infinite using the straightforward generalization of the matrix algebra trace as the
dimension of the projection.

The non-trivial implication of the fact that traces of projections are never larger than one is
that the eigen spaces of the density matrix must be infinite-dimensional for non-vanishing projection
probabilities. Quantum measurements can lead with a finite probability only to mixed states with a
density matrix which is projection operator to infinite-dimensional subspace. The simple von Neumann
algebras for which unit operator has unit trace are known as factors of type II1 [54].

The definitions of adopted by von Neumann allow however more general algebras. Type In algebras
correspond to finite-dimensional matrix algebras with finite traces whereas I∞ associated with a
separable infinite-dimensional Hilbert space does not allow bounded traces. For algebras of type III
non-trivial traces are always infinite and the notion of trace becomes useless.

von Neumann, Dirac, and Feynman

The association of algebras of type I with the standard quantum mechanics allowed to unify matrix
mechanism with wave mechanics. Note however that the assumption about continuous momentum
state basis is in conflict with separability but the particle-in-box idealization allows to circumvent this
problem (the notion of space-time sheet brings the box in physics as something completely real).

Because of the finiteness of traces von Neumann regarded the factors of type II1 as fundamental
and factors of type III as pathological. The highly pragmatic and successful approach of Dirac based
on the notion of delta function, plus the emergence of Feynman graphs, the possibility to formulate
the notion of delta function rigorously in terms of distributions, and the emergence of path integral
approach meant that von Neumann approach was forgotten by particle physicists.

Algebras of type II1 have emerged only much later in conformal and topological quantum field
theories [51, 43] allowing to deduce invariants of knots, links and 3-manifolds. Also algebraic structures
known as bi-algebras, Hopf algebras, and ribbon algebras [55, 46] relate closely to type II1 factors.
In topological quantum computation [60] based on braid groups [49] modular S-matrices they play an
especially important role.

Clifford algebra of configuration space as von Neumann algebra

The Clifford algebra of the configuration space provides a school example of a hyper-finite factor of
type II1, which means that fermionic sector does not produce divergence problems. Super-symmetry
means that also ”orbital” degrees of freedom corresponding to the deformations of 3-surface define
similar factor. The general theory of hyper-finite factors of type II1 is very rich and leads to rather
detailed understanding of the general structure of S-matrix in TGD framework. For instance, there is
a unitary evolution operator intrinsic to the von Neumann algebra defining in a natural manner single
particle time evolution. Also a connection with 3-dimensional topological quantum field theories and
knot theory, conformal field theories, braid groups, quantum groups, and quantum counterparts of
quaternionic and octonionic division algebras emerges naturally. These aspects are discussed in detail
in [30].

4.3 Hierarchy of Planck constants and the generalization of
the notion of imbedding space

In the following the recent view about structure of imbedding space forced by the quantization of
Planck constant is summarized. The question is whether it might be possible in some sense to replace
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H or its Cartesian factors by their necessarily singular multiple coverings and factor spaces. One can
consider two options: either M4 or the causal diamond CD. The latter one is the more plausible
option from the point of view of WCW geometry.

4.3.1 The evolution of physical ideas about hierarchy of Planck constants

The evolution of the physical ideas related to the hierarchy of Planck constants and dark matter as a
hierarchy of phases of matter with non-standard value of Planck constants was much faster than the
evolution of mathematical ideas and quite a number of applications have been developed during last
five years.

1. The starting point was the proposal of Nottale [64] that the orbits of inner planets correspond
to Bohr orbits with Planck constant ~gr = GMm/v0 and outer planets with Planck constant
~gr = 5GMm/v0, v0/c ' 2−11. The basic proposal [28, 16] was that ordinary matter condenses
around dark matter which is a phase of matter characterized by a non-standard value of Planck
constant whose value is gigantic for the space-time sheets mediating gravitational interaction.
The interpretation of these space-time sheets could be as magnetic flux quanta or as massless
extremals assignable to gravitons.

2. Ordinary particles possibly residing at these space-time sheet have enormous value of Compton
length meaning that the density of matter at these space-time sheets must be very slowly varying.
The string tension of string like objects implies effective negative pressure characterizing dark
energy so that the interpretation in terms of dark energy might make sense [24]. TGD predicted a
one-parameter family of Robertson-Walker cosmologies with critical or over-critical mass density
and the ”pressure” associated with these cosmologies is negative.

3. The quantization of Planck constant does not make sense unless one modifies the view about
standard space-time is. Particles with different Planck constant must belong to different worlds
in the sense local interactions of particles with different values of ~ are not possible. This inspires
the idea about the book like structure of the imbedding space obtained by gluing almost copies
of H together along common ”back” and partially labeled by different values of Planck constant.

4. Darkness is a relative notion in this framework and due to the fact that particles at different
pages of the book like structure cannot appear in the same vertex of the generalized Feynman di-
agram. The phase transitions in which partonic 2-surface X2 during its travel along X3

l leaks to
another page of book are however possible and change Planck constant. Particle (say photon -)
exchanges of this kind allow particles at different pages to interact. The interactions are strongly
constrained by charge fractionization and are essentially phase transitions involving many par-
ticles. Classical interactions are also possible. It might be that we are actually observing dark
matter via classical fields all the time and perhaps have even photographed it [38].

5. The realization that non-standard values of Planck constant give rise to charge and spin fraction-
ization and anyonization led to the precise identification of the prerequisites of anyonic phase.
If the partonic 2-surface, which can have even astrophysical size, surrounds the tip of CD, the
matter at the surface is anyonic and particles are confined at this surface. Dark matter could
be confined inside this kind of light-like 3-surfaces around which ordinary matter condenses. If
the radii of the basic pieces of these nearly spherical anyonic surfaces - glued to a connected
structure by flux tubes mediating gravitational interaction - are given by Bohr rules, the find-
ings of Nottale [64] can be understood. Dark matter would resemble to a high degree matter in
black holes replaced in TGD framework by light-like partonic 2-surfaces with a minimum size
of order Schwartschild radius rS of order scaled up Planck length lPl =

√
~grG = GM . Black

hole entropy is inversely proportional to ~ and predicted to be of order unity so that dramatic
modification of the picture about black holes is implied.

6. Perhaps the most fascinating applications are in biology. The anomalous behavior ionic currents
through cell membrane (low dissipation, quantal character, no change when the membrane is
replaced with artificial one) has a natural explanation in terms of dark supra currents. This
leads to a vision about how dark matter and phase transitions changing the value of Planck
constant could relate to the basic functions of cell, functioning of DNA and aminoacids, and to
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the mysteries of bio-catalysis. This leads also a model for EEG interpreted as a communication
and control tool of magnetic body containing dark matter and using biological body as motor
instrument and sensory receptor. One especially amazing outcome is the emergence of genetic
code of vertebrates from the model of dark nuclei as nuclear strings [44, 38].

4.3.2 The most general option for the generalized imbedding space

Simple physical arguments pose constraints on the choice of the most general form of the imbedding
space.

1. The fundamental group of the space for which one constructs a non-singular covering space or
factor space should be non-trivial. This is certainly not possible for M4, CD, CP2, or H. One
can however construct singular covering spaces. The fixing of the quantization axes implies a
selection of the sub-space H4 = M2 × S2 ⊂ M4 × CP2, where S2 is geodesic sphere of CP2.
M̂4 = M4\M2 and ĈP 2 = CP2\S2 have fundamental group Z since the codimension of the
excluded sub-manifold is equal to two and homotopically the situation is like that for a punctured
plane. The exclusion of these sub-manifolds defined by the choice of quantization axes could
naturally give rise to the desired situation.

2. CP2 allows two geodesic spheres which left invariant by U(2 resp. SO(3). The first one is homo-
logically non-trivial. For homologically non-trivial geodesic sphere H4 = M2 × S2 represents a
straight cosmic string which is non-vacuum extremal of Kähler action (not necessarily preferred
extremal). One can argue that the many-valuedness of ~ is un-acceptable for non-vacuum ex-
tremals so that only homologically trivial geodesic sphere S2 would be acceptable. One could go
even further. If the extremals in M2×CP2 can be preferred non-vacuum extremals, the singular
coverings of M4 are not possible. Therefore only the singular coverings and factor spaces of
CP2 over the homologically trivial geodesic sphere S2 would be possible. This however looks a
non-physical outcome.

(a) The situation changes if the extremals of type M2×Y 2, Y 2 a holomorphic surface of CP3,
fail to be hyperquaternionic. The tangent space M2 represents hypercomplex sub-space
and the product of the modified gamma matrices associated with the tangent spaces of Y 2

should belong to M2 algebra. This need not be the case in general.

(b) The situation changes also if one reinterprets the gluing procedure by introducing scaled
up coordinates for M4 so that metric is continuous at M2 × CP2 but CDs with different
size have different sizes differing by the ratio of Planck constants and would thus have only
piece of lower or upper boundary in common.

3. For the more general option one would have four different options corresponding to the Cartesian
products of singular coverings and factor spaces. These options can be denoted by C−C, C−F ,
F − C, and F − F , where C (F ) signifies for covering (factor space) and first (second) letter
signifies for CD (CP2) and correspond to the spaces (ĈD×̂Ga) × ( ˆCP2×̂Gb), (ĈD×̂Ga) ×

ˆCP2/Gb, ĈD/Ga × ( ˆCP2×̂Gb), and ĈD/Ga × ˆCP2/Gb.

4. The groups Gi could correspond to cyclic groups Zn. One can also consider an extension by
replacing M2 and S2 with its orbit under more general group G (say tedrahedral, octahedral, or
icosahedral group). One expects that the discrete subgroups of SU(2) emerge naturally in this
framework if one allows the action of these groups on the singular sub-manifolds M2 or S2. This
would replace the singular manifold with a set of its rotated copies in the case that the subgroups
have genuinely 3-dimensional action (the subgroups which corresponds to exceptional groups in
the ADE correspondence). For instance, in the case of M2 the quantization axes for angular
momentum would be replaced by the set of quantization axes going through the vertices of
tedrahedron, octahedron, or icosahedron. This would bring non-commutative homotopy groups
into the picture in a natural manner.

4.3.3 About the phase transitions changing Planck constant

There are several non-trivial questions related to the details of the gluing procedure and phase tran-
sition as motion of partonic 2-surface from one sector of the imbedding space to another one.
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1. How the gluing of copies of imbedding space at M2 × CP2 takes place? It would seem that the
covariant metric of CD factor proportional to ~2 must be discontinuous at the singular manifold
since only in this manner the idea about different scaling factor of CD metric can make sense.
On the other hand, one can always scale the M4 coordinates so that the metric is continuous
but the sizes of CDs with different Planck constants differ by the ratio of the Planck constants.

2. One might worry whether the phase transition changing Planck constant means an instantaneous
change of the size of partonic 2-surface in M4 degrees of freedom. This is not the case. Light-
likeness in M2 × S2 makes sense only for surfaces X1 ×D2 ⊂ M2 × S2, where X1 is light-like
geodesic. The requirement that the partonic 2-surface X2 moving from one sector of H to
another one is light-like at M2 × S2 irrespective of the value of Planck constant requires that
X2 has single point of M2 as M2 projection. Hence no sudden change of the size X2 occurs.

3. A natural question is whether the phase transition changing the value of Planck constant can
occur purely classically or whether it is analogous to quantum tunneling. Classical non-vacuum
extremals of Chern-Simons action have two-dimensional CP2 projection to homologically non-
trivial geodesic sphere S2

I . The deformation of the entire S2
I to homologically trivial geodesic

sphere S2
II is not possible so that only combinations of partonic 2-surfaces with vanishing total

homology charge (Kähler magnetic charge) can in principle move from sector to another one,
and this process involves fusion of these 2-surfaces such that CP2 projection becomes single
homologically trivial 2-surface. A piece of a non-trivial geodesic sphere S2

I of CP2 can be
deformed to that of S2

II using 2-dimensional homotopy flattening the piece of S2 to curve. If this
homotopy cannot be chosen to be light-like, the phase transitions changing Planck constant take
place only via quantum tunnelling. Obviously the notions of light-like homotopies (cobordisms)
are very relevant for the understanding of phase transitions changing Planck constant.

4.3.4 How one could fix the spectrum of Planck constants?

The question how the observed Planck constant relates to the integers na and nb defining the covering
and factors spaces, is far from trivial and I have considered several options. The basic physical inputs
are the condition that scaling of Planck constant must correspond to the scaling of the metric of CD
(that is Compton lengths) on one hand and the scaling of the gauge coupling strength g2/4π~ on the
other hand.

1. One can assign to Planck constant to both CD and CP2 by assuming that it appears in the
commutation relations of corresponding symmetry algebras. Algebraist would argue that Planck
constants ~(CD) and ~(CP2) must define a homomorphism respecting multiplication and divi-
sion (when possible) by Gi. This requires r(X) = ~(X)~0 = n for covering and r(X) = 1/n for
factor space or vice versa.

2. If one assumes that ~2(X), X = M4, CP2 corresponds to the scaling of the covariant metric
tensor gij and performs an over-all scaling of H-metric allowed by the Weyl invariance of Kähler
action by dividing metric with ~2(CP2), one obtains the scaling of M4 covariant metric by
r2 ≡ ~2/~2

0 = ~2(M4)/~2(CP2) whereas CP2 metric is not scaled at all.

3. The condition that ~ scales as na is guaranteed if one has ~(CD) = na~0. This does not fix
the dependence of ~(CP2) on nb and one could have ~(CP2) = nb~0 or ~(CP2) = ~0/nb. The
intuitive picture is that nb- fold covering gives in good approximation rise to nanb sheets and
multiplies YM action action by nanb which is equivalent with the ~ = nanb~0 if one effectively
compresses the covering to CD×CP2. One would have ~(CP2) = ~0/nb and ~ = nanb~0. Note
that the descriptions using ordinary Planck constant and coverings and scaled Planck constant
but contracting the covering would be alternative descriptions.

This gives the following formulas r ≡ ~/~0 = r(M4)/r(CP2) in various cases.

C − C F − C C − F F − F

r nanb
na
nb

nb
na

1
nanb
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4.3.5 Preferred values of Planck constants

Number theoretic considerations favor the hypothesis that the integers corresponding to Fermat
polygons constructible using only ruler and compass and given as products nF = 2k

∏
s Fs, where

Fs = 22s + 1 are distinct Fermat primes, are favored. The reason would be that quantum phase
q = exp(iπ/n) is in this case expressible using only iterated square root operation by starting from
rationals. The known Fermat primes correspond to s = 0, 1, 2, 3, 4 so that the hypothesis is very
strong and predicts that p-adic length scales have satellite length scales given as multiples of nF of
fundamental p-adic length scale. nF = 211 corresponds in TGD framework to a fundamental constant
expressible as a combination of Kähler coupling strength, CP2 radius and Planck length appearing in
the expression for the tension of cosmic strings, and the powers of 211 seem to be especially favored
as values of na in living matter [36].

4.3.6 How Planck constants are visible in Kähler action?

~(M4) and ~(CP2) appear in the commutation and anticommutation relations of various supercon-
formal algebras. Only the ratio of M4 and CP2 Planck constants appears in Kähler action and is
due to the fact that the M4 and CP2 metrics of the imbedding space sector with given values of
Planck constants are proportional to the corresponding Planck constants. This implies that Kähler
function codes for radiative corrections to the classical action, which makes possible to consider the
possibility that higher order radiative corrections to functional integral vanish as one might expect
at quantum criticality. For a given p-adic length scale space-time sheets with all allowed values of
Planck constants are possible. Hence the spectrum of quantum critical fluctuations could in the ideal
case correspond to the spectrum of ~ coding for the scaled up values of Compton lengths and other
quantal lengths and times. If so, large ~ phases could be crucial for understanding of quantum critical
superconductors, in particular high Tc superconductors.

4.3.7 Could the dynamics of Kähler action predict the hierarchy of Planck
constants?

The original justification for the hierarchy of Planck constants came from the indications that Planck
constant could have large values in both astrophysical systems involving dark matter and also in
biology. The realization of the hierarchy in terms of the singular coverings and possibly also factor
spaces of CD and CP2 emerged from consistency conditions. The formula for the Planck constant
involves heuristic guess work and physical plausibility arguments. There are good arguments in
favor of the hypothesis that only coverings are possible. Only a finite number of pages of the Big
Book correspond to a given value of Planck constant, biological evolution corresponds to a gradual
dispersion to the pages of the Big Book with larger Planck constant, and a connection with the
hierarchy of infinite primes and p-adicization program based on the mathematical realization of finite
measurement resolution emerges.

One can however ask whether this hierarchy could emerge directly from the basic quantum TGD
rather than as a separate hypothesis. The following arguments suggest that this might be possible. One
finds also a precise geometric interpretation of preferred extremal property interpreted as criticality
in zero energy ontology.

1-1 correspondence between canonical momentum densities and time derivatives fails for
Kähler action

The basic motivation for the geometrization program was the observation that canonical quantization
for TGD fails. To see what is involved let us try to perform a canonical quantization in zero energy
ontology at the 3-D surfaces located at the light-like boundaries of CD × CP2.

1. In canonical quantization canonical momentum densities π0
k ≡ πk = ∂LK/∂(∂0h

k), where ∂0h
k

denotes the time derivative of imbedding space coordinate, are the physically natural quantities
in terms of which to fix the initial values: once their value distribution is fixed also conserved
charges are fixed. Also the weak form of electric-magnetic duality given by J03√g4 = 4παKJ12

and a mild generalization of this condition to be discussed below can be interpreted as a manner
to fix the values of conserved gauge charges (not Noether charges) to their quantized values
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since Kähler magnetic flux equals to the integer giving the homology class of the (wormhole)
throat. This condition alone need not characterize criticality, which requires an infinite number
of deformations of X4 for which the second variation of the Kähler action vanishes and implies
infinite number conserved charges. This in fact gives hopes of replacing πk with these conserved
Noether charges.

2. Canonical quantization requires that ∂0h
k in the energy is expressed in terms of πk. The equation

defining πk in terms of ∂0h
k is however highly non-linear although algebraic. By taking squares

the equations reduces to equations for rational functions of ∂0h
k. ∂0h

k appears in contravariant
and covariant metric at most quadratically and in the induced Kähler electric field linearly and
by multplying the equations by det(g4)3 one can transform the equations to a polynomial form
so that in principle ∂0h

k can obtained as a solution of polynomial equations.

3. One can always eliminate one half of the coordinates by choosing 4 imbedding space coordinates
as the coordinates of the spacetime surface so that the initial value conditions reduce to those for
the canonical momentum densities associated with the remaining four coordinates. For instance,
for space-time surfaces representable as map M4 → CP2 M

4 coordinates are natural and the
time derivatives ∂0s

k of CP2 coordinates are multivalued. One would obtain four polynomial
equations with ∂0s

k as unknowns. In regions where CP2 projection is 4-dimensional -in particular
for the deformations of CP2 vacuum extremals the natural coordinates are CP2 coordinates and
one can regard ∂0m

k as unknows. For the deformations of cosmic strings, which are of form
X4 = X2 × Y 2 ⊂M4 × CP2, one can use coordinates of M2 × S2, where S2 is geodesic sphere
as natural coordinates and regard as unknowns E2 coordinates and remaining CP2 coordinates.

4. One can imagine solving one of the four polynomials equations for time derivaties in terms of
other obtaining N roots. Then one would substitute these roots to the remaining 3 conditions
to obtain algebraic equations from which one solves then second variable. Obviously situa-
tion is very complex without additional symmetries. The criticality of the preferred extremals
might however give additional conditions allowing simplifications. The reasons for giving up the
canonical quantization program was following. For the vacuum extremals of Kähler action πk
are however identically vanishing and this means that there is an infinite number of value distri-
butions for ∂0h

k. For small deformations of vacuum extremals one might however hope a finite
number of solutions to the conditions and thus finite number of space-time surfaces carrying
same conserved charges.

If one assumes that physics is characterized by the values of the conserved charges one must treat
the the many-valuedness of ∂0h

k. The most obvious guess is that one should replace the space of
space-like 4-surfaces corresponding to different roots ∂0h

k = F k(πl) with four-surfaces in the covering
space of CD × CP2 corresponding to different branches of the many-valued function ∂0h

k = F (πl)
co-inciding at the ends of CD.

Do the coverings forces by the many-valuedness of ∂0h
k correspond to the coverings

associated with the hierarchy of Planck constants?

The obvious question is whether this covering space actually corresponds to the covering spaces asso-
ciated with the hierarchy of Planck constants. This would conform with quantum classical correspon-
dence. The hierarchy of Planck constants and hierarchy of covering spaces was introduced to cure
the failure of the perturbation theory at quantum level. At classical level the multivaluedness of ∂0h

k

means a failure of perturbative canonical quantization and forces the introduction of the covering
spaces. The interpretation would be that when the density of matter becomes critical the space-time
surface splits to several branches so that the density at each branches is sub-critical. It is of course not
at all obvious whether the proposed structure of the Big Book is really consistent with this hypothesis
and one also consider modifications of this structure if necessary. The manner to proceed is by making
questions.

1. The proposed picture would give only single integer characterizing the covering. Two integers
assignable to CD and CP2 degrees of freedom are however needed. How these two coverings
could emerge?
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(a) One should fix also the values of πnk = ∂LK/∂h
k
n, where n refers to space-like normal

coordinate at the wormhole throats. If one requires that charges do not flow between
regions with different signatures of the metric the natural condition is πnk = 0 and allows
also multi-valued solution. Since wormhole throats carry magnetic charge and since weak
form of electric-magnetic duality is assumed, one can assume that CP2 projection is four-
dimensional so that one can use CP2 coordinates and regard ∂0m

k as un-knows. The basic
idea about topological condensation in turn suggests that M4 projection can be assumed
to be 4-D inside space-like 3-surfaces so that here ∂0s

k are the unknowns. At partonic 2-
surfaces one would have conditions for both π0

k and πnk . One might hope that the numbers
of solutions are finite for preferred extremals because of their symmetries and given by na
for ∂0m

k and by nb for ∂0s
k. The optimistic guess is that na and nb corresponds to the

numbers of sheets for singular coverings of CD and CP2. The covering could be visualized
as replacement of space-time surfaces with space-time surfaces which have nanb branches.
nb branches would degenerate to single branch at the ends of diagrams of the generaled
Feynman graph and na branches would degenerate to single one at wormhole throats.

(b) This picture is not quite correct yet. The fixing of π0
k and πnk should relate closely to the

effective 2-dimensionality as an additional condition perhaps crucial for criticality. One
could argue that both π0

k and πnk must be fixed at X3 and X3
l in order to effectively bring

in dynamics in two directions so that X3 could be interpreted as a an orbit of partonic
2-surface in space-like direction and X3

l as its orbit in light-like direction. The additional
conditions could be seen as gauge conditions made possible by symplectic and Kac-Moody
type conformal symmetries. The conditions for πk0 would give nb branches in CP2 degrees
of freedom and the conditions for πnk would split each of these branches to na branches.

(c) The existence of these two kinds of conserved charges (possibly vanishing for πnk ) could
relate also very closely to the slicing of the space-time sheets by string world sheets and
partonic 2-surfaces.

2. Should one then treat these branches as separate space-time surfaces or as a single space-time
surface? The treatment as a single surface seems to be the correct thing to do. Classically the
conserved changes would be nanb times larger than for single branch. Kähler action need not
(but could!) be same for different branches but the total action is nanb times the average action
and this effectively corresponds to the replacement of the ~0/g

2
K factor of the action with ~/g2

K ,
r ≡ ~/~0 = nanb. Since the conserved quantum charges are proportional to ~ one could argue
that r = nanb tells only that the charge conserved charge is nanb times larger than without
multi-valuedness. ~ would be only effectively nanb fold. This is of course poor man’s argument
but might catch something essential about the situation.

3. How could one interpret the condition J03√g4 = 4παKJ12 and its generalization to be discussed
below in this framework? The first observation is that the total Kähler electric charge is by
αK ∝ 1/(nanb) same always. The interpretation would be in terms of charge fractionization
meaning that each branch would carry Kähler electric charge QK = ngK/nanb. I have indeed
suggested explanation of charge fractionization and quantum Hall effect based on this picture.

4. The vision about the hierarchy of Planck constants involves also assumptions about imbedding
space metric. The assumption that the M4 covariant metric is proportional to ~2 follows from
the physical idea about ~ scaling of quantum lengths as what Compton length is. One can
always introduce scaled M4 coordinates bringing M4 metric into the standard form by scaling
up the M4 size of CD. It is not clear whether the scaling up of CD size follows automatically
from the proposed scenario. The basic question is why the M4 size scale of the critical extremals
must scale like nanb? This should somehow relate to the weak self-duality conditions implying
that Kähler field at each branch is reduced by a factor 1/r at each branch. Field equations
should posses a dynamical symmetry involving the scaling of CD by integer k and J0β√g4 and
Jnβ
√
g4 by 1/k. The scaling of CD should be due to the scaling up of the M4 time interval

during which the branched light-like 3-surface returns back to a non-branched one.

5. The proposed view about hierarchy of Planck constants is that the singular coverings reduce
to single-sheeted coverings at M2 ⊂ M4 for CD and to S2 ⊂ CP2 for CP2. Here S2 is any
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homologically trivial geodesic sphere of CP2 and has vanishing Kähler form. Weak self-duality
condition is indeed consistent with any value of ~ and impies that the vacuum property for the
partonic 2-surface implies vacuum property for the entire space-time sheet as holography indeed
requires. This condition however generalizes. In weak self-duality conditions the value of ~ is
free for any 2-D Lagrangian sub-manifold of CP2.

The branching along M2 would mean that the branches of preferred extremals always collapse
to single branch when their M4 projection belongs to M2. Magnetically charged light-light-like
throats cannot have M4 projection in M2 so that self-duality conditions for different values of
~ do not lead to inconsistencies. For spacelike 3-surfaces at the boundaries of CD the condition
would mean that the M4 projection becomes light-like geodesic. Straight cosmic strings would
have M2 as M4 projection. Also CP2 type vacuum extremals for which the random light-
like projection in M4 belongs to M2 would represent this of situation. One can ask whether
the degeneration of branches actually takes place along any string like object X2 × Y 2, where
X2 defines a minimal surface in M4. For these the weak self-duality condition would imply
~ =∞ at the ends of the string. It is very plausible that string like objects feed their magnetic
fluxes to larger space-times sheets through wormhole contacts so that these conditions are not
encountered.

Connection with the criticality of preferred extremals

Also a connection with quantum criticality and the criticality of the preferred extremals suggests
itself. Criticality for the preferred extremals must be a property of space-like 3-surfaces and light-
like 3-surfaces with degenerate 4-metric and the degeneration of the nanb branches of the space-time
surface at the its ends and at wormhole throats is exactly what happens at criticality. For instance,
in catastrophe theory roots of the polynomial equation giving extrema of a potential as function of
control parameters co-incide at criticality. If this picture is correct the hierarchy of Planck constants
would be an outcome of criticality and of preferred extremal property and preferred extremals would
be just those multi-branched space-time surfaces for which branches co-incide at the the boundaries
of CD × CP2 and at the throats.

4.4 Number theoretic compactification and M 8 −H duality

This section summarizes the basic vision about number theoretic compactification reducing the clas-
sical dynamics to number theory. In strong form M8 − H duality boils down to the assumption
that space-time surfaces can be regarded either as surfaces of H or as surfaces of M8 composed of
hyper-quaternionic and co-hyper-quaternionic regions identifiable as regions of space-time possessing
Minkowskian resp. Euclidian signature of the induced metric.

4.4.1 Basic idea behind M8 −M4 × CP2 duality

The hopes of giving M4×CP2 hyper-octonionic structure are meager. This circumstance forces to ask
whether four-surfaces X4 ⊂M8 could under some conditions define 4-surfaces in M4×CP2 indirectly
so that the spontaneous compactification of super string models would correspond in TGD to two
different manners to interpret the space-time surface. The following arguments suggest that this is
indeed the case.

The hard mathematical fact behind number theoretical compactification is that the quaternionic
sub-algebras of octonions with fixed complex structure (that is complex sub-space) are parameterized
by CP2 just as the complex planes of quaternion space are parameterized by CP1 = S2. Same applies
to hyper-quaternionic sub-spaces of hyper-octonions. SU(3) would thus have an interpretation as the
isometry group of CP2, as the automorphism sub-group of octonions, and as color group.

1. The space of complex structures of the octonion space is parameterized by S6. The subgroup
SU(3) of the full automorphism group G2 respects the a priori selected complex structure and
thus leaves invariant one octonionic imaginary unit, call it e1. Hyper-quaternions can be identi-
fied as U(2) Lie-algebra but it is obvious that hyper-octonions do not allow an identification as
SU(3) Lie algebra. Rather, octonions decompose as 1⊕1⊕3⊕3 to the irreducible representations
of SU(3).
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2. Geometrically the choice of a preferred complex (quaternionic) structure means fixing of complex
(quaternionic) sub-space of octonions. The fixing of a hyper-quaternionic structure of hyper-
octonionic M8 means a selection of a fixed hyper-quaternionic sub-space M4 ⊂ M8 implying
the decomposition M8 = M4 ×E4. If M8 is identified as the tangent space of H = M4 × CP2,
this decomposition results naturally. It is also possible to select a fixed hyper-complex structure,
which means a further decomposition M4 = M2 × E2.

3. The basic result behind number theoretic compactification and M8 −H duality is that hyper-
quaternionic sub-spaces M4 ⊂M8 containing a fixed hyper-complex sub-space M2 ⊂M4 or its
light-like line M± are parameterized by CP2. The choices of a fixed hyper-quaternionic basis
1, e1, e2, e3 with a fixed complex sub-space (choice of e1) are labeled by U(2) ⊂ SU(3). The choice
of e2 and e3 amounts to fixing e2 ±

√
−1e3, which selects the U(2) = SU(2) × U(1) subgroup

of SU(3). U(1) leaves 1 invariant and induced a phase multiplication of e1 and e2 ± e3. SU(2)
induces rotations of the spinor having e2 and e3 components. Hence all possible completions of
1, e1 by adding e2, e3 doublet are labeled by SU(3)/U(2) = CP2.

4. Space-time surface X4 ⊂ M8 is by the standard definition hyper-quaternionic if the tangent
spaces ofX4 are hyper-quaternionic planes. Co-hyper-quaternionicity means the same for normal
spaces. The presence of fixed hyper-complex structure means at space-time level that the tangent
space of X4 contains fixed M2 at each point. Under this assumption one can map the points
(m, e) ∈M8 to points (m, s) ∈ H by assigning to the point (m, e) of X4 the point (m, s), where
s ∈ CP2 characterize T (X4) as hyper-quaternionic plane. This definition is not the only one and
even the appropriate one in TGD context the replacement of the tangent plane with the 4-D
plane spanned by modified gamma matrices defined by Kähler action is a more natural choice.
This plane is not parallel to tangent plane in general. In the sequel T (X4) denotes the preferred
4-plane which co-incides with tangent plane of X4 only if the action defining modified gamma
matrices is 4-volume.

5. The choice of M2 can be made also local in the sense that one has T (X4) ⊃ M2(x) ⊂ M4 ⊂
H. It turns out that strong form of number theoretic compactification requires this kind of
generalization. In this case one must be able to fix the convention how the point of CP2 is
assigned to a hyper-quaternionic plane so that it applies to all possible choices of M2 ⊂ M4.
Since SO(3) hyper-quaternionic rotation relates the hyper-quaternionic planes to each other,
the natural assumption is hyper-quaternionic planes related by SO(3) rotation correspond to
the same point of CP2. Under this assumption it is possible to map hyper-quaternionic surfaces
of M8 for which M2 ⊂M4 depends on point of X4 to H.

4.4.2 Hyper-octonionic Pauli ”matrices” and modified definition of hyper-
quaternionicity

Hyper-octonionic Pauli matrices suggest an interesting possibility to define precisely what hyper-
quaternionicity means at space-time level (for background see [28]).

1. According to the standard definition space-time surface X4 is hyper-quaternionic if the tangent
space at each point of X4 in X4 ⊂ M8 picture is hyper-quaternionic. What raises worries is
that this definition involves in no manner the action principle so that it is far from obvious that
this identification is consistent with the vacuum degeneracy of Kähler action. It also unclear
how one should formulate hyper-quaternionicity condition in X4 ⊂M4 × CP2 picture.

2. The idea is to map the modified gamma matrices Γα = ∂LK
∂hkα

Γk, Γk = eAk γA, to hyper-octonionic

Pauli matrices σα by replacing γA with hyper-octonion unit. Hyper-quaternionicity would state
that the hyper-octonionic Pauli matrices σα obtained in this manner span complexified quater-
nion sub-algebra at each point of space-time. These conditions would provide a number theoretic
manner to select preferred extremals of Kähler action. Remarkably, this definition applies both
in case of M8 and M4 × CP2.

3. Modified Pauli matrices span the tangent space of X4 if the action is four-volume because one has
∂LK
∂hkα

=
√
ggαβ∂hlβhkl. Modified gamma matrices reduce to ordinary induced gamma matrices

in this case: 4-volume indeed defines a super-conformally symmetric action for ordinary gamma



214 Chapter 4. Configuration Space Spinor Structure

matrices since the mass term of the Dirac action given by the trace of the second fundamental
form vanishes for minimal surfaces.

4. For Kähler action the hyper-quaternionic sub-space does not coincide with the tangent space
since ∂LK

∂hkα
contains besides the gravitational contribution coming from the induced metric also

the ”Maxwell contribution” from the induced Kähler form not parallel to space-time surface.
Modified gamma matrices are required by super conformal symmetry for the extremals of Kähler
action and they also guarantee that vacuum extremals defined by surfaces in M4 × Y 2, Y 2 a
Lagrange sub-manifold of CP2, are trivially hyper-quaternionic surfaces. The modified definition
of hyper-quaternionicity does not affect in any manner M8 ↔M4×CP2 duality allowing purely
number theoretic interpretation of standard model symmetries.

A side comment not strictly related to hyper-quaternionicity is in order. The anticommutators
of the modified gamma matrices define an effective Riemann metric and one can assign to it the
counterparts of Riemann connection, curvature tensor, geodesic line, volume, etc... One would have
two different metrics associated with the space-time surface. Only if the action defining space-time
surface is identified as the volume in the ordinary metric, these metrics are equivalent. The index
raising for the effective metric could be defined also by the induced metric and it is not clear whether
one can define Riemann connection also in this case. Could this effective metric have concrete physical
significance and play a deeper role in quantum TGD? For instance, AdS-CFT duality leads to ask
whether interactions be coded in terms of the gravitation associated with the effective metric.

4.4.3 Minimal form of M8 −H duality

The basic problem in the construction of quantum TGD has been the identification of the preferred
extremals of Kähler action playing a key role in the definition of the theory. The most elegant manner
to do this is by fixing the 4-D tangent space T (X4(X3

l )) of X4(X3
l ) at each point of X3

l so that the
boundary value problem is well defined. What I called number theoretical compactification allows to
achieve just this although I did not fully realize this in the original vision. The minimal picture is
following.

1. The basic observations are following. Let M8 be endowed with hyper-octonionic structure. For
hyper-quaternionic space-time surfaces inM8 tangent spaces are by definition hyper-quaternionic.
If they contain a preferred plane M2 ⊂M4 ⊂M8 in their tangent space, they can be mapped to
4-surfaces in M4 × CP2. The reason is that the hyper-quaternionic planes containing preferred
the hyper-complex plane M2 of M± ⊂ M2 are parameterized by points of CP2. The map is
simply (m, e) → (m, s(m, e)), where m is point of M4, e is point of E4, and s(m, 2) is point of
CP2 representing the hyperquaternionic plane. The inverse map assigns to each point (m, s) in
M4×CP2 point m of M4, undetermined point e of E4 and 4-D plane. The requirement that the
distribution of planes containing the preferred M2 or M± corresponds to a distribution of planes
for 4-D surface is expected to fix the points e. The physical interpretation of M2 is in terms
of plane of non-physical polarizations so that gauge conditions have purely number theoretical
interpretation.

2. In principle, the condition that T (X4) contains M2 can be replaced with a weaker condition
that either of the two light-like vectors of M2 is contained in it since already this condition
assigns to T (X4) M2 and the map H → M8 becomes possible. Only this weaker form applies
in the case of massless extremals [33] as will be found.

3. The original idea was that hyper-quaternionic 4-surfaces in M8 containing M2 ⊂ M4 in their
tangent space could correspond to preferred extremals of Kähler action. This condition does
not seem to be consistent with what is known about the extremals of Kähler action. The
weaker form of the hypothesis is that hyper-quaternionicity holds only for 4-D tangent spaces
of X3

l ⊂ H = M4 × CP2 identified as wormhole throats or boundary components lifted to 3-
surfaces in 8-D tangent space M8 of H. The minimal hypothesis would be that only T (X4(X3

l ))
at X3

l is associative that is hyper-quaternionic for fixed M2. X3
l ⊂ M8 and T (X4(X3

l )) at X3
l

can be mapped to X3
l ⊂ H if tangent space contains also M± ⊂ M2 or M2 ⊂ M4 ⊂ M8 itself

having interpretation as preferred hyper-complex plane. This condition is not satisfied by all
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surfaces X3
l as is clear from the fact that the inverse map involves local E4 translation. The

requirements that the distribution of hyper-quaternionic planes containing M2 corresponds to
a distribution of 4-D tangent planes should fix the E4 translation to a high degree.

4. A natural requirement is that the image of X3
l ⊂ H in M8 is light-like. The condition that the

determinant of induced metric vanishes gives an additional condition reducing the number of
free parameters by one. This condition cannot be formulated as a condition on CP2 coordinate
characterizing the hyper-quaternionic plane. Since M4 projections are same for the two repre-
sentations, this condition is satisfied if the contributions from CP2 and E4 and projections to
the induced metric are identical: skl∂αs

k∂βs
l = ekl∂αe

k∂βe
l. This condition means that only

a subset of light-like surfaces of M8 are realized physically. One might argue that this is as it
must be since the volume of E4 is infinite and that of CP2 finite: only an infinitesimal portion
of all possible light-like 3-surfaces in M8 can can have H counterparts. The conclusion would
be that number theoretical compactification is 4-D isometry between X4 ⊂ H and X4 ⊂M8 at
X3
l . This unproven conjecture is unavoidable.

5. M2 ⊂ T (X4(X3
l )) condition fixes T (X4(X3

l )) in the generic case by extending the tangent space
of X3

l , and the construction of configuration space spinor structure fixes boundary conditions
completely by additional conditions necessary when X3

l corresponds to a light-like 3 surfaces
defining wormhole throat at which the signature of induced metric changes. What is especially
beautiful that only the data in T (X4(X3

l )) at X3
l is needed to calculate the vacuum functional of

the theory as Dirac determinant: the only remaining conjecture (strictly speaking un-necessary
but realistic looking) is that this determinant gives exponent of Kähler action for the preferred
extremal and there are excellent hopes for this by the structure of the basic construction.

The basic criticism relates to the condition that light-like 3-surfaces are mapped to light-like 3-
surfaces guaranteed by the condition that M8 −H duality is isometry at X3

l .

4.4.4 Strong form of M8 −H duality

The proposed picture is the minimal one. One can of course ask whether the original much stronger
conjecture that the preferred extrema of Kähler action correspond to hyper-quaternionic surfaces could
make sense in some form. One can also wonder whether one could allow the choice of the plane M2

of non-physical polarization to be local so that one would have M2(x) ⊂M4 ⊂M4 × E4, where M4

is fixed hyper-quaternionic sub-space of M8 and identifiable as M4 factor of H.

1. If M2 is same for all points of X3
l , the inverse map X3

l ⊂ H → X3
l ⊂ M8 is fixed apart from

possible non-uniquencess related to the local translation in E4 from the condition that hyper-
quaternionic planes represent light-like tangent 4-planes of light-like 3-surfaces. The question is
whether not only X3

l but entire four-surface X4(X3
l ) could be mapped to the tangent space of

M8. By selecting suitably the local E4 translation one might hope of achieving the achieving
this. The conjecture would be that the preferred extrema of Kähler action are those for which
the distribution integrates to a distribution of tangent planes.

2. There is however a problem. What is known about extremals of Kähler action is not consistent
with the assumption that fixed M2 of M± ⊂ M2is contained in the tangent space of X4. This
suggests that one should relax the condition that M2 ⊂M4 ⊂M8 is a fixed hyper-complex plane
associated with the tangent space or normal space X4 and allow M2 to vary from point to point
so that one would have M2 = M2(x). In M8 → H direction the justification comes from the
observation (to be discussed below) that it is possible to uniquely fix the convention assigning
CP2 point to a hyper-quaternionic plane containing varying hyper-complex plane M2(x) ⊂M4.

Number theoretic compactification fixes naturally M4 ⊂M8 so that it applies to any M2(x) ⊂
M4. Under this condition the selection is parameterized by an element of SO(3)/SO(2) = S2.
Note that M4 projection of X4 would be at least 2-dimensional in hyper-quaternionic case. In
co-hyper-quaternionic case E4 projection would be at least 2-D. SO(2) would act as a number
theoretic gauge symmetry and the SO(3) valued chiral field would approach to constant at X3

l

invariant under global SO(2) in the case that one keeps the assumption that M2 is fixed ad X3
l .
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3. This picture requires a generalization of the map assigning to hyper-quaternionic plane a point
of CP2 so that this map is defined for all possible choices of M2 ⊂M4. Since the SO(3) rotation
of the hyper-quaternionic unit defining M2 rotates different choices parameterized by S2 to each
other, a natural assumption is that the hyper-quaternionic planes related by SO(3) rotation
correspond to the same point of CP2. Denoting by M2 the standard representative of M2, this
means that for the map M8 → H one must perform SO(3) rotation of hyper-quaternionic plane
taking M2(x) to M2 and map the rotated plane to CP2 point. In M8 → H case one must first
map the point of CP2 to hyper-quaternionic plane and rotate this plane by a rotation taking
M2(x) to M2.

4. In this framework local M2 can vary also at the surfaces X3
l , which considerably relaxes the

boundary conditions at wormhole throats and light-like boundaries and allows much more general
variety of light-like 3-surfaces since the basic requirement is that M4 projection is at least 1-
dimensional. The physical interpretation would be that a local choice of the plane of non-physical
polarizations is possible everywhere in X4(X3

l ). This does not seem to be in any obvious conflict
with physical intuition.

These observation provide support for the conjecture that (classical) S2 = SO(3)/SO(2) conformal
field theory might be relevant for (classical) TGD.

1. General coordinate invariance suggests that the theory should allow a formulation using any
light-like 3-surface X3 inside X4(X3

l ) besides X3
l identified as union of wormhole throats and

boundary components. For these surfaces the element g(x) ∈ SO(3) would vary also at partonic
2-surfaces X2 defined as intersections of δCD×CP2 and X3 (here CD denotes causal diamond
defined as intersection of future and past directed light-cones). Hence one could have S2 =
SO(3)/SO(2) conformal field theory at X2 (regarded as quantum fluctuating so that also g(x)
varies) generalizing to WZW model for light-like surfaces X3.

2. The presence of E4 factor would extend this theory to a classical E4×S2 WZW model bringing
in mind string model with 6-D Euclidian target space extended to a model of light-like 3-surfaces.
A further extension to X4 would be needed to integrate the WZW models associated with 3-
surfaces to a full 4-D description. General Coordinate Invariance however suggests that X3

l

description is enough for practical purposes.

3. The choices of M2(x) in the interior of X3
l is dictated by dynamics and the first optimistic

conjecture is that a classical solution of SO(3)/SO(2) Wess-Zumino-Witten model obtained by
coupling SO(3) valued field to a covariantly constant SO(2) gauge potential characterizes the
choice of M2(x) in the interior of M8 ⊃ X4(X3

l ) ⊂ H and thus also partially the structure of
the preferred extremal. Second optimistic conjecture is that the Kähler action involving also E4

degrees of freedom allows to assign light-like 3-surface to light-like 3-surface.

4. The best that one can hope is that M8−H duality could allow to transform the extremely non-
linear classical dynamics of TGD to a generalization of WZW-type model. The basic problem
is to understand how to characterize the dynamics of CP2 projection at each point.

In H picture there are two basic types of vacuum extremals: CP2 type extremals representing
elementary particles and vacuum extremals having CP2 projection which is at most 2-dimensional
Lagrange manifold and representing say hadron. Vacuum extremals can appear only as limiting cases
of preferred extremals which are non-vacuum extremals. Since vacuum extremals have so decisive role
in TGD, it is natural to requires that this notion makes sense also in M8 picture. In particular, the
notion of vacuum extremal makes sense in M8.

This requires that Kähler form exist in M8. E4 indeed allows full S2 of covariantly constant Kähler
forms representing quaternionic imaginary units so that one can identify Kähler form and construct
Kähler action. The obvious conjecture is that hyper-quaternionic space-time surface is extremal of
this Kähler action and that the values of Kähler actions in M8 and H are identical. The elegant
manner to achieve this, as well as the mapping of vacuum extremals to vacuum extremals and the
mapping of light-like 3-surfaces to light-like 3-surfaces is to assume that M8 − H duality is Kähler
isometry so that induced Kähler forms are identical.

This picture contains many speculative elements and some words of warning are in order.
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1. Light-likeness conjecture would boil down to the hypothesis that M8 − H correspondence is
Kähler isometry so that the metric and Kähler form of X4 induced from M8 and H would be
identical. This would guarantee also that Kähler actions for the preferred extremal are identical.
This conjecture is beautiful but strong.

2. The slicing of X4(X3
l ) by light-like 3-surfaces is very strong condition on the classical dynamics

of Kähler action and does not make sense for pieces of CP2 type vacuum extremals.

Minkowskian-Euclidian ↔ associative–co-associative

The 8-dimensionality ofM8 allows to consider both associativity (hyper-quaternionicity) of the tangent
space and associativity of the normal space- let us call this co-assosiativity of tangent space- as
alternative options. Both options are needed as has been already found. Since space-time surface
decomposes into regions whose induced metric possesses either Minkowskian or Euclidian signature,
there is a strong temptation to propose that Minkowskian regions correspond to associative and
Euclidian regions to co-associative regions so that space-time itself would provide both the description
and its dual.

The proposed interpretation of conjectured associative-co-associative duality relates in an inter-
esting manner to p-adic length scale hypothesis selecting the primes p ' 2k, k positive integer as
preferred p-adic length scales. Lp ∝

√
p corresponds to the p-adic length scale defining the size of

the space-time sheet at which elementary particle represented as CP2 type extremal is topologically
condensed and is of order Compton length. Lk ∝

√
k represents the p-adic length scale of the worm-

hole contacts associated with the CP2 type extremal and CP2 size is the natural length unit now.
Obviously the quantitative formulation for associative-co-associative duality would be in terms p→ k
duality.

Are the known extremals of Kähler action consistent with the strong form of M8 − H
duality

It is interesting to check whether the known extremals of Kähler action [33] are consistent with strong
form of M8−H duality assuming that M2 or its light-like ray is contained in T (X4) or normal space.

1. CP2 type vacuum extremals correspond cannot be hyper-quaternionic surfaces but co-hyper-
quaternionicity is natural for them. In the same manner canonically imbedded M4 can be only
hyper-quaternionic.

2. String like objects are associative since tangent space obviously contains M2(x). Objects of form
M1 ×X3 ⊂M4 × CP2 do not have M2 either in their tangent space or normal space in H. So
that the map from H →M8 is not well defined. There are no known extremals of Kähler action
of this type. The replacement of M1 random light-like curve however gives vacuum extremal
with vanishing volume, which need not mean physical triviality since fundamental objects of the
theory are light-like 3-surfaces.

3. For canonically imbedded CP2 the assignment of M2(x) to normal space is possible but the
choice of M2(x) ⊂ N(CP2) is completely arbitrary. For a generic CP2 type vacuum extremals
M4 projection is a random light-like curve in M4 = M1 × E3 and M2(x) can be defined
uniquely by the normal vector n ∈ E3 for the local plane defined by the tangent vector dxµ/dt
and acceleration vector d2xµ/dt2 assignable to the orbit.

4. Consider next massless extremals. Let us fix the coordinates ofX4 as (t, z, x, y) = (m0,m2,m1,m2).
For simplest massless extremals CP2 coordinates are arbitrary functions of variables u = k ·m =
t−z and v = ε ·m = x, where k = (1, 1, 0, 0) is light-like vector of M4 and ε = (0, 0, 1, 0) a polar-
ization vector orthogonal to it. Obviously, the extremals defines a decomposition M4 = M2×E2.
Tangent space is spanned by the four H-vectors ∇αhk with M4 part given by ∇αmk = δkα and
CP2 part by ∇αsk = ∂us

kkα + ∂vs
kεα.

The normal space cannot contain M4 vectors since the M4 projection of the extremal is M4.
To realize hyper-quaternionic representation one should be able to from these vector two vectors
of M2, which means linear combinations of tangent vectors for which CP2 part vanishes. The
vector ∂th

k−∂zhk has vanishing CP2 part and corresponds to M4 vector (1,−1, 0, 0) fix assigns
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to each point the plane M2. To obtain M2 one would need (1, 1, 0, 0) too but this is not
possible. The vector ∂yh

k is M4 vector orthogonal to ε but M2 would require also (1, 0, 0, 0).
The proposed generalization of massless extremals allows the light-like line M± to depend on
point of M4 [33], and leads to the introduction of Hamilton-Jacobi coordinates involving a local
decomposition of M4 to M2(x) and its orthogonal complement with light-like coordinate lines
having interpretation as curved light rays. M2(x) ⊂ T (X4) assumption fails fails also for vacuum
extremals of form X1 × X3 ⊂ M4 × CP2, where X1 is light-like random curve. In the latter
case, vacuum property follows from the vanishing of the determinant of the induced metric.

5. The deformations of string like objects to magnetic flux quanta are basic conjectural extremals of
Kähler action and the proposed picture supports this conjecture. In hyper-quaternionic case the
assumption that local 4-D plane of X3 defined by modified gamma matrices contains M2(x) but
that T (X3) does not contain it, is very strong. It states that T (X4) at each point can be regarded
as a product M2(x)×T 2, T 2 ⊂ T (CP2), so that hyper-quaternionic X4 would be a collection of
Cartesian products of infinitesimal 2-D planes M2(x) ⊂ M4 and T 2(x) ⊂ CP2. The extremals
in question could be seen as local variants of string like objects X2×Y 2 ⊂M4×CP2, where X2

is minimal surface and Y 2 holomorphic surface of CP2. One can say that X2 is replaced by a
collection of infinitesimal pieces of M2(x) and Y 2 with similar pieces of homologically non-trivial
geodesic sphere S2(x) of CP2, and the Cartesian products of these pieces are glued together to
form a continuous surface defining an extremal of Kähler action. Field equations would pose
conditions on how M2(x) and S2(x) can depend on x. This description applies to magnetic flux
quanta, which are the most important must-be extremals of Kähler action.

Geometric interpretation of strong M8 −H duality

In the proposed framework M8 −H duality would have a purely geometric meaning and there would
nothing magical in it.

1. X4(X3
l ) ⊂ H could be seen a curve representing the orbit of a light-like 3-surface defining a

4-D surface. The question is how to determine the notion of tangent vector for the orbit of X3
l .

Intuitively tangent vector is a one-dimensional arrow tangential to the curve at point X3
l . The

identification of the hyper-quaternionic surface X4(X3
l ) ⊂M8 as tangent vector conforms with

this intuition.

2. One could argue that M8 representation of space-time surface is kind of chart of the real space-
time surface obtained by replacing real curve by its tangent line. If so, one cannot avoid the
question under which conditions this kind of chart is faithful. An alternative interpretation is
that a representation making possible to realize number theoretical universality is in question.

3. An interesting question is whether X4(X3
l ) as orbit of light-like 3-surface is analogous to a

geodesic line -possibly light-like- so that its tangent vector would be parallel translated in the
sense that X4(X3) for any light-like surface at the orbit is same as X4(X3

l ). This would give
justification for the possibility to interpret space-time surfaces as a geodesic of configuration
space: this is one of the first -and practically forgotten- speculations inspired by the construction
of configuration space geometry. The light-likeness of the geodesic could correspond at the level
of X4 the possibility to decompose the tangent space to a direct sum of two light-like spaces and
2-D transversal space producing the foliation of X4 to light-like 3-surfaces X3

l along light-like
curves.

4. M8−H duality would assign to X3
l classical orbit and its tangent vector at X3

l as a generalization
of Bohr orbit. This picture differs from the wave particle duality of wave mechanics stating that
once the position of particle is known its momentum is completely unknown. The outcome is
however the same: for X3

l corresponding to wormhole throats and light-like boundaries of X4,
canonical momentum densities in the normal direction vanish identically by conservation laws
and one can say that the the analog of (q, p) phase space as the space carrying wave functions
is replaced with the analog of subspace consisting of points (q, 0). The dual description in M8

would not be analogous to wave functions in momentum space space but to those in the space
of unique tangents of curves at their initial points.
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The Kähler and spinor structures of M8

If one introduces M8 as dual of H, one cannot avoid the idea that hyper-quaternionic surfaces obtained
as images of the preferred extremals of Kähler action in H are also extremals of M8 Kähler action
with same value of Kähler action. As found, this leads to the conclusion that theM8 −H duality is
Kähler isometry. Coupling of spinors to Kähler potential is the next step and this in turn leads to the
introduction of spinor structure so that quantum TGD in H should have full M8 dual.

There are strong physical constraints on M8 dual and they could kill the hypothesis. The basic
constraint to the spinor structure of M8 is that it reproduces basic facts about electro-weak inter-
actions. This includes neutral electro-weak couplings to quarks and leptons identified as different
H-chiralities and parity breaking.

1. By the flatness of the metric of E4 its spinor connection is trivial. E4 however allows full S2 of
covariantly constant Kähler forms so that one can accommodate free independent Abelian gauge
fields assuming that the independent gauge fields are orthogonal to each other when interpreted
as realizations of quaternionic imaginary units.

2. One should be able to distinguish between quarks and leptons also inM8, which suggests that one
introduce spinor structure and Kähler structure in E4. The Kähler structure of E4 is unique
apart form SO(3) rotation since all three quaternionic imaginary units and the unit vectors
formed from them allow a representation as an antisymmetric tensor. Hence one must select one
preferred Kähler structure, that is fix a point of S2 representing the selected imaginary unit.
It is natural to assume different couplings of the Kähler gauge potential to spinor chiralities
representing quarks and leptons: these couplings can be assumed to be same as in case of H.

3. Electro-weak gauge potential has vectorial and axial parts. Em part is vectorial involving cou-
pling to Kähler form and Z0 contains both axial and vector parts. The free Kähler forms could
thus allow to produce M8 counterparts of these gauge potentials possessing same couplings as
their H counterparts. This picture would produce parity breaking in M8 picture correctly.

4. Only the charged parts of classical electro-weak gauge fields would be absent. This would
conform with the standard thinking that charged classical fields are not important. The predicted
classical W fields is one of the basic distinctions between TGD and standard model and in this
framework. A further prediction is that this distinction becomes visible only in situations,
where H picture is necessary. This is the case at high energies, where the description of quarks
in terms of SU(3) color is convenient whereas SO(4) QCD would require large number of E4

partial waves. At low energies large number of SU(3) color partial waves are needed and the
convenient description would be in terms of SO(4) QCD. Proton spin crisis might relate to this.

5. Also super-symmetries of quantum TGD crucial for the construction of configuration space
geometry force this picture. In the absence of coupling to Kähler gauge potential all constant
spinor fields and their conjugates would generate super-symmetries so that M8 would allow N =
8 super-symmetry. The introduction of the coupling to Kähler gauge potential in turn means
that all covariantly constant spinor fields are lost. Only the representation of all three neutral
parts of electro-weak gauge potentials in terms of three independent Kähler gauge potentials
allows right-handed neutrino as the only super-symmetry generator as in the case of H.

6. The SO(3) element characterizing M2(x) is fixed apart from a local SO(2) transformation, which
suggests an additional U(1) gauge field associated with SO(2) gauge invariance and representable
as Kähler form corresponding to a quaternionic unit of E4. A possible identification of this gauge
field would be as a part of electro-weak gauge field.

M8 dual of configuration space geometry and spinor structure?

If one introduces M8 spinor structure and preferred extremals of M8 Kähler action, one cannot avoid
the question whether it is possible or useful to formulate the notion of configuration space geometry
and spinor structure for light-like 3-surfaces in M8 using the exponent of Kähler action as vacuum
functional.
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1. The isometries of the configuration space in M8 and H formulations would correspond to sym-
plectic transformation of δM4

± × E4 and δM4
± × CP2 and the Hamiltonians involved would

belong to the representations of SO(4) and SU(3) with 2-dimensional Cartan sub-algebras.
In H picture color group would be the familiar SU(3) but in M8 picture it would be SO(4).
Color confinement in both SU(3) and SO(4) sense could allow these two pictures without any
inconsistency.

2. For M4×CP2 the two spin states of covariantly constant right handed neutrino and antineutrino
spinors generate super-symmetries. This super-symmetry plays an important role in the pro-
posed construction of configuration space geometry. As found, this symmetry would be present
also in M8 formulation so that the construction of M8 geometry should reduce more or less
to the replacement of CP2 Hamiltonians in representations of SU(3) with E4 Hamiltonians in
representations of SO(4). These Hamiltonians can be taken to be proportional to functions of
E4 radius which is SO(4) invariant and these functions bring in additional degree of freedom.

3. The construction of Dirac determinant identified as a vacuum functional can be done also in
M8 picture and the conjecture is that the result is same as in the case of H. In this framework
the construction is much simpler due to the flatness of E4. In particular, the generalized eigen
modes of the Dirac operator DK(Y 3

l ) restricted to the X3
l correspond to a situation in which

one has fermion in induced Maxwell field mimicking the neutral part of electro-weak gauge field
in H as far as couplings are considered. Induced Kähler field would be same as in H. Eigen
modes are localized to regions inside which the Kähler magnetic field is non-vanishing and apart
from the fact that the metric is the effective metric defined in terms of canonical momentum
densities via the formula Γ̂α = ∂LK/∂h

k
αΓk for effective gamma matrices. This in fact, forces

the localization of modes implying that their number is finite so that Dirac determinant is a
product over finite number eigenvalues. It is clear that M8 picture could dramatically simplify
the construction of configuration space geometry.

4. The eigenvalue spectra of the transversal parts of DK operators in M8 and H should identical.
This motivates the question whether it is possible to achieve a complete correspondence between
H and M8 pictures also at the level of spinor fields at X3 by performing a gauge transformation
eliminating the classical W gauge boson field altogether at X3

l and whether this allows to trans-
form the modified Dirac equation in H to that in M8 when restricted to X3

l . That something like
this might be achieved is supported by the fact that in Coulombic gauge the component of gauge
potential in the light-like direction vanishes so that the situation is effectively 2-dimensional and
holonomy group is Abelian.

Why M8 −H duality is useful?

Skeptic could of course argue that M8−H duality produces only an inflation of unproven conjectures.
There are however strong reasons for M8 −H duality: both theoretical and physical.

1. The map of X3
l ⊂ H → X3

l ⊂ M8 and corresponding map of space-time surfaces would al-
low to realize number theoretical universality. M8 = M4 × E4 allows linear coordinates as
natural coordinates in which one can say what it means that the point of imbedding space is
rational/algebraic. The point of X4 ⊂ H is algebraic if it is mapped to an algebraic point
of M8 in number theoretic compactification. This of course restricts the symmetry groups to
their rational/algebraic variants but this does not have practical meaning. Number theoretical
compactication could in fact be motivated by the number theoretical universality.

2. M8−H duality could provide much simpler description of preferred extremals of Kähler action
since the Kähler form in E4 has constant components. If the spinor connection in E4 is com-
bination of the three Kähler forms mimicking neutral part of electro-weak gauge potential, the
eigenvalue spectrum for the modified Dirac operator would correspond to that for a fermion in
U(1) magnetic field defined by an Abelian magnetic field whereas in M4 × CP2 picture U(2)ew
magnetic fields would be present.

3. M8 − H duality provides insights to low energy hadron physics. M8 description might work
when H-description fails. For instance, perturbative QCD which corresponds to H-description
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fails at low energies whereas M8 description might become perturbative description at this limit.
Strong SO(4) = SU(2)L × SU(2)R invariance is the basic symmetry of the phenomenological
low energy hadron models based on conserved vector current hypothesis (CVC) and partially
conserved axial current hypothesis (PCAC). Strong SO(4) = SU(2)L × SU(2)R relates closely
also to electro-weak gauge group SU(2)L × U(1) and this connection is not well understood in
QCD description. M8−H duality could provide this connection. Strong SO(4) symmetry would
emerge as a low energy dual of the color symmetry. Orbital SO(4) would correspond to strong
SU(2)L×SU(2)R and by flatness of E4 spin like SO(4) would correspond to electro-weak group
SU(2)L × U(1)R ⊂ SO(4). Note that the inclusion of coupling to Kähler gauge potential is
necessary to achieve respectable spinor structure in CP2. One could say that the orbital angular
momentum in SO(4) corresponds to strong isospin and spin part of angular momentum to the
weak isospin.

4.4.5 M8 −H duality and low energy hadron physics

The description of M8 −H at the configuration space level can be applied to gain a view about color
confinement and its dual for electro-weak interactions at short distance limit. The basic idea is that
SO(4) and SU(3) provide provide dual descriptions of quark color using E4 and CP2 partial waves and
low energy hadron physics corresponds to a situation in which M8 picture provides the perturbative
approach whereas H picture works at high energies. The basic prediction is that SO(4) should appear
as dynamical symmetry group of low energy hadron physics and this is indeed the case.

Consider color confinement at the long length scale limit in terms of M8 −H duality.

1. At high energy limit only lowest color triplet color partial waves for quarks dominate so that
QCD description becomes appropriate whereas very higher color partial waves for quarks and
gluons are expected to appear at the confinement limit. Since configuration space degrees of
freedom begin to dominate, color confinement limit transcends the descriptive power of QCD.

2. The success of SO(4) sigma model in the description of low lying hadrons would directly relate to
the fact that this group labels also the E4 Hamiltonians in M8 picture. Strong SO(4) quantum
numbers can be identified as orbital counterparts of right and left handed electro-weak isospin
coinciding with strong isospin for lowest quarks. In sigma model pion and sigma boson form
the components of E4 valued vector field or equivalently collection of four E4 Hamiltonians
corresponding to spherical E4 coordinates. Pion corresponds to S3 valued unit vector field with
charge states of pion identifiable as three Hamiltonians defined by the coordinate components.
Sigma is mapped to the Hamiltonian defined by the E4 radial coordinate. Excited mesons
corresponding to more complex Hamiltonians are predicted.

3. The generalization of sigma model would assign to quarks E4 partial waves belonging to the
representations of SO(4). The model would involve also 6 SO(4) gluons and their SO(4) partial
waves. At the low energy limit only lowest representations would be be important whereas at
higher energies higher partial waves would be excited and the description based on CP2 partial
waves would become more appropriate.

4. The low energy quark model would rely on quarks moving SO(4) color partial waves. Left resp.
right handed quarks could correspond to SU(2)L resp. SU(2)R triplets so that spin statistics
problem would be solved in the same manner as in the standard quark model.

5. Family replication phenomenon is described in TGD framework the same manner in both cases
so that quantum numbers like strangeness and charm are not fundamental. Indeed, p-adic mass
calculations allowing fractally scaled up versions of various quarks allow to replace Gell-Mann
mass formula with highly successful predictions for hadron masses [17].

To my opinion these observations are intriguing enough to motivate a concrete attempt to construct
low energy hadron physics in terms of SO(4) gauge theory.
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4.4.6 The notion of number theoretical braid

Braids -not necessary number theoretical- provide a realization discretization as a space-time correlate
for the finite measurement resolution. The notion of braid was inspired by the idea about quantum
TGD as almost topological quantum field theory. Although the original form of this idea has been
buried, the notion of braid has survived: in the decomposition of space-time sheets to string world
sheets, the ends of strings define representatives for braid strands at light-like 3-surfaces.

The notion of number theoretic universality inspired the much more restrictive notion of number
theoretic braid requiring that the points in the intersection of the braid with the partonic 2-surface
correspond to rational or at most algebraic points of H in preferred coordinates fixed by symmetry
considerations. The challenge has been to find a unique identification of the number theoretic braid or
at least of the end points of the braid. The following consideration suggest that the number theoretic
braids are not a useful notion in the generic case but make sense and are needed in the intersection
of real and p-adic worlds which is in crucial role in TGD based vision about living matter [38].

It is only the braiding that matters in topological quantum field theories used to classify braids.
Hence braid should require only the fixing of the end points of the braids at the intersection of the braid
at the light-like boundaries of CDs and the braiding equivalence class of the braid itself. Therefore it
is enough is to specify the topology of the braid and the end points of the braid in accordance with
the attribute ”number theoretic”. Of course, the condition that all points of the strand of the number
theoretic braid are algebraic is impossible to satisfy.

The situation in which the equations defining X2 make sense both in real sense and p-adic sense
using appropriate algebraic extension of p-adic number field is central in the TGD based vision about
living matter [38]. The reason is that in this case the notion of number entanglement theoretic entropy
having negative values makes sense and entanglement becomes information carrying. This motivates
the identification of life as something in the intersection of real and p-adic worlds. In this situation the
identification of the ends of the number theoretic braid as points belonging to the intersection of real
and p-adic worlds is natural. These points -call them briefly algebraic points- belong to the algebraic
extension of rationals needed to define the algebraic extension of p-adic numbers. This definition
however makes sense also when the equations defining the partonic 2-surfaces fail to make sense in
both real and p-adic sense. In the generic case the set of points satisfying the conditions is discrete.
For instance, according to Fermat’s theorem the set of rational points satisfying Xn+Y n = Zn reduces
to the point (0, 0, 0) for n = 3, 4, .... Hence the constraint might be quite enough in the intersection
of real and p-adic worlds where the choice of the algebraic extension is unique.

One can however criticize this proposal.

1. One must fix the the number of points of the braid and outside the intersection and the non-
uniquencess of the algebraic extension makes the situation problematic. Physical intuition sug-
gests that the points of braid define carriers of quantum numbers assignable to second quantized
induced spinor fields so that the total number of fermions antifermions would define the number
of braids. In the intersection the highly non-trivial implication is that this number cannot exceed
the number of algebraic points.

2. In the generic case one expects that even the smallest deformation of the partonic 2-surface
can change the number of algebraic points and also the character of the algebraic extension
of rational numbers needed. The restriction to rational points is not expected to help in the
generic case. If the notion of number theoretical braid is meant to be practical, must be able to
decompose WCW to open sets inside which the numbers of algebraic points of braid at its ends
are constant. For real topology this is expected to be impossible and it does not make sense
to use p-adic topology for WCW whose points do not allow interpretation as p-adic partonic
surfaces.

3. In the intersection of real and p-adic worlds which corresponds to a discrete subset of WCW,
the situation is different. Since the coefficients of polynomials involved with the definition of
the partonic 2-surface must be rational or at most algebraic, continuous deformations are not
possible so that one avoids the problem.

4. This forces to ask the reason why for the number theoretic braids. In the generic case they seem
to produce only troubles. In the intersection of real and p-adic worlds they could however allow
the construction of the elements of M -matrix describing quantum transitions changing p-adic
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to real surfaces and vice versa as realizations of intentions and generation of cognitions. In this
the case it is natural that only the data from the intersection of the two worlds are used. In
[38] I have sketched the idea about number theoretic quantum field theory as a description of
intentional action and cognition.

There is also the the problem of fixing the interior points of the braid modulo deformations not
affecting the topology of the braid.

1. Infinite number of non-equivalent braidings are possible. Should one allow all possible braidings
for a fixed light-like 3-surface and say that their existence is what makes the dynamics essentially
three-dimensional even in the topological sense? In this case there would be no problems with
the condition that the points at both ends of braid are algebraic.

2. Or should one try to characterize the braiding uniquely for a given partonic 2-surfaces and
corresponding 4-D tangent space distributions? The slicing of the space-time sheet by partonic
2-surfaces and string word sheets suggests that the ends of string world sheets could define the
braid strands in the generic context when there is no algebraicity condition involved. This could
be taken as a very natural manner to fix the topology of braid but leave the freedom to choose
the representative for the braid. In the intersection of real and p-adic worlds there is no good
reason for the end points of strands in this case to be algebraic at both ends of the string world
sheet. One can however start from the braid defined by the end points of string world sheets,
restrict the end points to be algebraic at the end with a smaller number of algebraic points and
and then perform a topologically non-trivial deformation of the braid so that also the points
at the other end are algebraic? Non-trivial deformations need not be possible for all possible
choices of algebraic braid points at the other end of braid and different choices of the set of
algebraic points would give rise to different braidings. A further constraint is that only the
algebraic points at which one has assign fermion or antifermion are used so that the number of
braid points is not always maximal.

3. One can also ask whether one should perform the gauge fixing for the strands of the number
theoretic braid using algebraic functions making sense both in real and p-adic context. This
question does not seem terribly relevant since since it is only the topology of the braid that
matters.

4.4.7 Connection with string model and Equivalence Principle at space-
time level

Coset construction allows to generalize Equivalence Principle and understand it at quantum level. This
is however not quite enough: a precise understanding of Equivalence Principle is required also at the
classical level. Also the mechanism selecting via stationary phase approximation a preferred extremal
of Kähler action providing a correlation between quantum numbers of the particle and geometry of
the preferred extremals is still poorly understood.

Is stringy action principle coded by the geometry of preferred extremals?

It seems very difficult to deduce Equivalence Principle as an identity of gravitational and inertial
masses identified as Noether charges associated with corresponding action principles. Since string
model is an excellent theory of quantum gravitation, one can consider a less direct approach in which
one tries to deduce a connection between classical TGD and string model and hope that the bridge
from string model to General Relativity is easier to build. Number theoretical compactification gives
good hopes that this kind of connection exists.

1. Number theoretic compactification implies that the preferred extremals of Kähler action have
the property that one can assign to each point of M4 projection PM4(X4(X3

l )) of the preferred
extremal M2(x) identified as the plane of non-physical polarizations and also as the plane in
which local massless four-momentum lies.

2. If the distribution of the planes M2(x) is integrable, one can slice PM4(X4(X3
l )) to string world-

sheets. The intersection of string world sheets with X3 ⊂ δM4
±×CP2 corresponds to a light-like
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curve having tangent in local tangent space M2(x) at light-cone boundary. This is the first
candidate for the definition of number theoretic braid. Second definition assumes M2 to be
fixed at δCD: in this case the slicing is parameterized by the sphere S2 defined by the light rays
of δM4

±.

3. One can assign to the string world sheet -call it Y 2 - the standard area action

SG(Y 2) =

∫
Y 2

T
√
g2d

2y , (4.4.1)

where g2 is either the induced metric or only its M4 part. The latter option looks more natural
since M4 projection is considered. T is string tension.

4. The naivest guess would be T = 1/~G apart from some numerical constant but one must be
very cautious here since T = 1/L2

p apart from a numerical constant is also a good candidate if
one accepts the basic argument identifying G in terms of p-adic length Lp and Kähler action for
two pieces of CP2 type vacuum extremals representing propagating graviton. The formula reads
G = L2

pexp(−2aSK(CP2)), a ≤ 1 [20, 29]. The interaction strength which would be L2
p without

the presence of CP2 type vacuum extremals is reduced by the exponential factor coming from
the exponent of Kähler function of configuration space.

5. One would have string model in either CD×CP2 or CD ⊂M4 with the constraint that stringy
world sheet belongs to X4(X3

l ). For the extremals of SG(Y 2) gravitational four-momentum
defined as Noether charge is conserved. The extremal property of string world sheet need
not however be consistent with the preferred extremal property. This constraint might bring
in coupling of gravitons to matter. The natural guess is that graviton corresponds to a string
connecting wormhole contacts. The strings could also represent formation of gravitational bound
states when they connect wormhole contacts separated by a large distance. The energy of the
string is roughly E ∼ ~TL and for T = 1/~G gives E ∼ L/G. Macroscopic strings are not
allowed except as models of black holes. The identification T ∼ 1/L2

p gives E ∼ ~L/L2
p, which

does not favor long strings for large values of ~. The identification Gp = L2
p/~0 gives T = 1/~Gp

and E ∼ ~0L/L
2
p, which makes sense and allows strings with length not much longer than p-

adic length scale. Quantization - that is the presence of configuration space degrees of freedom-
would bring in massless gravitons as deformations of string whereas strings would carry the
gravitational mass.

6. The exponent exp(iSG) can appear as a phase factor in the definition of quantum states for
preferred extremals. SG is not however enough. One can assign also to the points of number
theoretic braid action describing the interaction of a point like current Qdxµ/ds with induced
gauge potentials Aµ. The corresponding contribution to the action is

Sbraid =

∫
braid

iT r(Q
dxµ

ds
Aµ)dx . (4.4.2)

In stationary phase approximation subject to the additional constraint that a preferred extremal
of Kähler action is in question one obtains the desired correlation between the geometry of
preferred extremal and the quantum numbers of elementary particle. This interaction term
carries information only about the charges of elementary particle. It is quite possible that the
interaction term is more complex: for instance, it could contain spin dependent terms (Stern-
Gerlach experiment).

7. The constraint coming from preferred extremal property of Kähler action can be expressed in
terms of Lagrange multipliers

Sc =

∫
Y 2

λkDα(
∂LK
∂αhk

)
√
g2d

2y . (4.4.3)
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8. The action exponential reads as

exp(iSG + Sbraid + Sc) . (4.4.4)

The resulting field equations couple stringy M4 degrees of freedom to the second variation of
Kähler action with respect to M4 coordinates and involve third derivatives of M4 coordinates
at the right hand side. If the second variation of Kähler action with respect to M4 coordinates
vanishes, free string results. This is trivially the case if a vacuum extremal of Kähler action is
in question.

9. An interesting question is whether the preferred extremal property boils down to the condition
that the second variation of Kähler action with respect to M4 coordinates or actually all co-
ordinates vanishes so that gravitonic string is free. As a matter fact, the stronger condition is
required that the Noether currents associated with the modified Dirac action are conserved. The
physical interpretation would be in terms of quantum criticality which is the basic conjecture
about the dynamics of quantum TGD. This is clear from the fact that in 1-D system criticality
means that the potential V (x) = ax+bx2 + .. has b = 0. In field theory criticality corresponds to
the vanishing of the term m2φ2/2 so that massless situation corresponds to massless theory and
criticality and long range correlations. For more than one dynamical variable there is a hierarchy
of criticalities corresponding to the gradual reduction of the rank of the matrix of the matrix
defined by the second derivatives of V (x) and this gives rise to a classification of criticalities.
Maximum criticality would correspond to the total vanishing of this matrix. In infinite-D case
this hierarchy is infinite.

What does the equality of gravitational and inertial masses mean?

Consider next the question in what form Equivalence Principle could be realized in this framework.

1. Coset construction inspires the conjecture that gravitational and inertial four-momenta are iden-
tical. Also some milder form of it would make sense. What is clear is that the construction of
preferred extremal involving the distribution of M2(x) implies that conserved four-momentum
associated with Kähler action can be expressed formally as stringy four-momentum. The integral
of the conserved inertial momentum current over X3 indeed reduces to an integral over the curve
defining string as one integrates over other two degrees of freedom. It would not be surprising
if a stringy expression for four-momentum would result but with string tension depending on
the point of string and possibly also on the component of four-momentum. If the dependence
of string tension on the point of string and on the choice of the stringy world sheet is slow,
the interpretation could be in terms of coupling constant evolution associated with the stringy
coordinates. An alternative interpretation is that string tension corresponds to a scalar field.
A quite reasonable option is that for given X3

l T defines a scalar field and that the observed T
corresponds to the average value of T over deformations of X3

l .

2. The minimum option is that Kähler mass is equal to the sum gravitational masses assignable to
strings connecting points of wormhole throat or two different wormhole throats. This hypothesis
makes sense even for wormhole contacts having size of order Planck length.

3. The condition that gravitational mass equals to the inertial mass (rest energy) assigned to Kähler
action is the most obvious condition that one can imagine. The breaking of Poincare invariance
to Lorentz invariance with respect to the tip of CD supports this form of Equivalence Principle.
This would predict the value of the ratio of the parameter R2T and p-adic length scale hypothesis
would allow only discrete values for this parameter. p ' 2k following from the quantization of
the temporal distance T (n) between the tips of CD as T (n) = 2nT0 would suggest string tension
Tn = 2nR2 apart from a numerical factor. Gp ∝ 2nR2/~0 would emerge as a prediction of the
theory. G can be seen either as a prediction or RG invariant input parameter fixed by quantum
criticality. The arguments related to p-adic coupling constant evolution suggestR2/~0G = 3×223

[20, 29].
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4. The scalar field property of string tension should be consistent with the vacuum degeneracy of
Kähler action. For instance, for the vacuum extremals of Kähler action stringy action is non-
vanishing. The simplest possibility is that one includes the integral of the scalar JµνJµν over
the degrees transversal to M2 to the stringy action so that string tension vanishes for vacuum
extremals. This would be nothing but dimensional reduction of 4-D theory to a 2-D theory
using the slicing of X4(X3

l ) to partonic 2-surfaces and stringy word sheets. For cosmic strings
Kähler action reduces to stringy action with string tension T ∝ 1/g2

KR
2 apart from a numerical

constant. If one wants consistency with T ∝ 1/L2
p, one must have T ∝ 1/g2

K2nR2 for the cosmic
strings deformed to Kähler magnetic flux tubes. This looks rather plausible if the thickness of
deformed string in M4 degrees of freedom is given by p-adic length scale.

4.5 Does modified Dirac action define the fundamental action
principle?

Although quantum criticality in principle predicts the possible values of Kähler coupling strength,
one might hope that there exists even more fundamental approach involving no coupling constants
and predicting even quantum criticality and realizing quantum gravitational holography. The Dirac
determinant associated with the modified Dirac action is an excellent candidate in this respect.

The original working hypothesis was that Dirac determinant defines the vacuum functional of the
theory having interpretation as the exponent of Kähler function of world of classical worlds (WCW)
expressible and that Kähler function reduces to Kähler action for a preferred extremal of Kähler
action.

4.5.1 What are the basic equations of quantum TGD?

A good place to start is to as what might the basic equations of quantum TGD. There are two kinds
of equations at the level of space-time surfaces.

1. Purely classical equations define the dynamics of the space-time sheets as preferred extremals
of Kähler action. Preferred extremals are quantum critical in the sense that second variation
vanishes for critical deformations representing zero modes. This condition guarantees that corre-
sponding fermionic currents are conserved. There is infinite hierarchy of these currents and they
define fermionic counterparts for zero modes. Space-time sheets can be also regarded as hyper-
quaternionic surfaces. What these statements precisely mean has become clear only during this
year. A rigorous proof for the equivalence of these two identifications is still lacking.

2. The purely quantal equations are associated with the representations of various super-conformal
algebras and with the modified Dirac equation. The requirement that there are deformations
of the space-time surface -actually infinite number of them- giving rise to conserved fermionic
charges implies quantum criticality at the level of Kähler action in the sense of critical de-
formations. The precise form of the modified Dirac equation is not however completely fixed
without further input. Quantal equations involve also generalized Feynman rules for M -matrix
generalizing S-matrix to a ”complex square root” of density matrix and defined by time-like
entanglement coefficients between positive and negative energy parts of zero energy states is
certainly the basic goal of quantum TGD.

3. The notion of weak electric-magnetic duality generalizing the notion of electric-magnetic duality
[47, 41] leads to a detailed understanding of how TGD reduces to almost topological quantum
field theory [47, 41]. If Kähler current defines Beltrami flow [55] it is possible to find a gauge
in which Coulomb contribution to Kähler action vanishes so that it reduces to Chern-Simons
term. If light-like 3-surfaces and ends of space-time surface are extremals of Chern-Simons
action also effective 2-dimensionality is realized. The condition that the theory reduces to
almost topological QFT and the hydrodynamical character of field equations leads to a detailed
ansatz for the general solution of field equations and also for the solutions of the modified Dirac
equation relying on the notion of Beltrami flow for which the flow parameter associated with
the flow lines defined by a conserved current extends to a global coordinate. This makes the
theory is in well-defined sense completely integrable. Direct connection with massless theories
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emerges: every conserved Beltrami currents corresponds to a pair of scalar functions with the
first one satisfying massless d’Alembert equation in the induced metric. The orthogonality of
the gradients of these functions allows interpretation in terms of polarization and momentum
directions. The Beltrami flow property can be also seen as one aspect of quantum criticality
since the conserved currents associated with critical deformations define this kind of pairs.

4. The hierarchy of Planck constants provides also a fresh view to the quantum criticality. The
original justification for the hierarchy of Planck constants came from the indications that Planck
constant could have large values in both astrophysical systems involving dark matter and also
in biology. The realization of the hierarchy in terms of the singular coverings and possibly
also factor spaces of CD and CP2 emerged from consistency conditions. It however seems
that TGD actually predicts this hierarchy of covering spaces. The extreme non-linearity of
the field equations defined by Kähler action means that the correspondence between canonical
momentum densities and time derivatives of the imbedding space coordinates is 1-to-many. This
leads naturally to the introduction of the covering space of CD×CP2, where CD denotes causal
diamond defined as intersection of future and past directed light-cones.

At the level of WCW there is the generalization of the Dirac equation which can be regarded as a
purely classical Dirac equation. The modified Dirac operators associated with quarks and leptons carry
fermion number but the Dirac equations are well-defined. An orthogonal basis of solutions of these
Dirac operators define in zero energy ontology a basis of zero energy states. The M -matrices defining
entanglement between positive and negative energy parts of the zero energy state define what can be
regarded as analogs of thermal S-matrices. The M-matrices associated with the solution basis of the
WCW Dirac equation define by their orthogonality unitary U-matrix between zero energy states. This
matrix finds the proper interpretation in TGD inspired theory of consciousness. WCW Dirac equation
as the analog of super-Virasoro conditions for the ”gamma fields” of superstring models defining super
counterparts of Virasoro generators was the main focus during earlier period of quantum TGD but
has not received so much attention lately and will not be discussed in this chapter.

4.5.2 Quantum criticality and modified Dirac action

The precise mathematical formulation of quantum criticality has remained one of the basic challenges
of quantum TGD. The question leading to a considerable progress in the problem was simple: Under
what conditions the modified Dirac action allows to assign conserved fermionic currents with the
deformations of the space-time surface? The answer was equally simple: These currents exists only
if these deformations correspond to vanishing second variations of Kähler action - which is what
criticality is. The vacuum degeneracy of Kähler action strongly suggests that the number of critical
deformations is always infinite and that these deformations define an infinite inclusion hierarchy of
super-conformal algebras. This inclusion hierarchy would correspond to a fractal hierarchy of breakings
of super-conformal symmetry generalizing the symmetry breaking hierarchies of gauge theories. These
super-conformal inclusion hierarchies would realize the inclusion hierarchies for hyper-finite factors of
type II1.

Quantum criticality and fermionic representation of conserved charges associated with
second variations of Kähler action

It is rather obvious that TGD allows a huge generalizations of conformal symmetries. The development
of the understanding of conservation laws has been slow. Modified Dirac action provides excellent
candidates for quantum counterparts of Noether charges. Unfortunately, the isometry charges vanish
for Cartan algebras. The only manner to obtain non-trivial isometry charges is to add a direct coupling
to the charges in Cartan algebra as will be found later. This addition involves Chern-Simons Dirac
action so that the original intuition guided by almost TQFT idea was not wrong after all.

1. Conservation of the fermionic current requires the vanishing of the second variation of Kähler
action

1. The modified Dirac action assigns to a deformation of the space-time surface a conserved charge
expressible as bilinears of fermionic oscillator operators only if the first variation of the modified
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Dirac action under this deformation vanishes. The vanishing of the first variation for the modified
Dirac action is equivalent with the vanishing of the second variation for the Kähler action. This
can be seen by the explicit calculation of the second variation of the modified Dirac action and
by performing partial integration for the terms containing derivatives of Ψ and Ψ to give a total
divergence representing the difference of the charge at upper and lower boundaries of the causal
diamond plus a four-dimensional integral of the divergence term defined as the integral of the
quantity

∆SD = ΨΓkDαJ
α
k Ψ ,

Jαk =
∂2LK
∂hkα∂h

l
β

δhkβ +
∂2LK
∂hkα∂h

l
δhl . (4.5.1)

Here hkβ denote partial derivative of the imbedding space coordinate with respect to space-time
coordinates. This term must vanish:

DαJ
α
k = 0 .

The condition states the vanishing of the second variation of Kähler action. This can of course
occur only for preferred deformations of X4. One could consider the possibility that these
deformations vanish at light-like 3-surfaces or at the boundaries of CD. Note that covariant
divergence is in question so that Jαk does not define conserved classical charge in the general
case.

2. It is essential that the modified Dirac equation holds true so that the modified Dirac action
vanishes: this is needed to cancel the contribution to the second variation coming from the
determinant of the induced metric. The condition that the modified Dirac equation is satisfied
for the deformed space-time surface requires that also Ψ suffers a transformation determined by
the deformation. This gives

δΨ = − 1

D
× ΓkJαk Ψ . (4.5.2)

Here 1/D is the inverse of the modified Dirac operator defining the counterpart of the fermionic
propagator.

3. The fermionic conserved currents associated with the deformations are obtained from the stan-
dard conserved fermion current

Jα = ΨΓαΨ . (4.5.3)

Note that this current is conserved only if the space-time surface is extremal of Kähler action:
this is also needed to guarantee Hermiticity and same form for the modified Dirac equation for
Ψ and its conjugate as well as absence of mass term essential for super-conformal invariance
[56, 57]. Note also that ordinary divergence rather only covariant divergence of the current
vanishes.

The conserved currents are expressible as sums of three terms. The first term is obtained by
replacing modified gamma matrices with their increments in the deformation keeping Ψ and its
conjugate constant. Second term is obtained by replacing Ψ with its increment δΨ. The third
term is obtained by performing same operation for δΨ.
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Jα = ΨΓkJαk Ψ + ΨΓ̂αδΨ + δΨΓ̂αΨ . (4.5.4)

These currents provide a representation for the algebra defined by the conserved charges analo-
gous to a fermionic representation of Kac-Moody algebra [53].

4. Also conserved super charges corresponding to super-conformal invariance are obtained. The
first class of super currents are obtained by replacing Ψ or Ψ right-handed neutrino spinor or
its conjugate in the expression for the conserved fermion current and performing the above
procedure giving two terms since nothing happens to the covariantly constant right handed-
neutrino spinor. Second class of conserved currents is defined by the solutions of the modified
Dirac equation interpreted as c-number fields replacing Ψ or Ψ and the same procedure gives
three terms appearing in the super current.

5. The existence of vanishing of second variations is analogous to criticality in systems defined by a
potential function for which the rank of the matrix defined by second derivatives of the potential
function vanishes at criticality. Quantum criticality becomes the prerequisite for the existence
of quantum theory since fermionic anti-commutation relations in principle can be fixed from
the condition that the algebra in question is equivalent with the algebra formed by the vector
fields defining the deformations of the space-time surface defining second variations. Quantum
criticality in this sense would also select preferred extremals of Kähler action as analogs of Bohr
orbits and the the spectrum of preferred extremals would be more or less equivalent with the
expected existence of infinite-dimensional symmetry algebras.

2. About the general structure of the algebra of conserved charges

Some general comments about the structure of the algebra of conserved charges are in order.

1. Any Cartan algebra of the isometry group P × SU(3) (there are two types of them for P
corresponding to linear and cylindrical Minkowski coordinates) defines critical deformations
(one could require that the isometries respect the geometry of CD). The corresponding charges
are conserved but vanish since the corresponding conjugate coordinates are cyclic for the Kähler
metric and Kähler form so that the conserved current is proportional to the gradient of a Killing
vector field which is constant in these coordinates. Therefore one cannot represent isometry
charges as fermionic bilinears. Four-momentum and color quantum numbers are defined for
Kähler action as classical conserved quantities but this is probably not enough. This can be
seen as a problem.

(a) Four-momentum and color Cartan algebra emerge naturally in the representations of super-
conformal algebras. In the case of color algebra the charges in the complement of the Cartan
algebra can be constructed in standard manner as extension of those for the Cartan algebra
using free field representation of Kac-Moody algebras. In string theories four-momentum
appears linearly in bosonic Kac-Moody generators and in Sugawara construction [48] of
super Virasoro generators as bilinears of bosonic Kac-Moody generators and fermionic super
Kac-Moody generators [53]. Also now quantized transversal parts for M4 coordinates could
define a second quantized field having interpretation as an operator acting on spinor fields
of WCW. The angle coordinates conjugate to color isospin and hyper charge take the role
of M4 coordinates in case of CP2.

(b) Somehow one should be able to feed the information about the super-conformal repre-
sentation of the isometry charges to the modified Dirac action by adding to it a term
coupling fermionic current to the Cartan charges in general coordinate invariant and isom-
etry invariant manner. As will be shown later, this is possible. The interpretation is as
measurement interaction guaranteeing also the stringy character of the fermionic propaga-
tors. The values of the couplings involved are fixed by the condition of quantum criticality
assumed in the sense that Kähler function of WCW suffers only a U(1) gauge transforma-
tion K → K + f + f , where f is a holomorphic function of WCW coordinates depending
also on zero modes.
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(c) The simplest addition involves the modified gamma matrices defined by a Chern-Simon
term at the light-like wormhole throats and is sum of Chern-Simons Dirac action and
corresponding coupling term linear in Cartan charges assignable to the partonic 2-surfaces
at the ends of the throats. Hence the modified Dirac equation in the interior of the space-
time sheet is not affected and nothing changes as far as quantum criticality in interior is
considered.

2. The action defined by four-volume gives a first glimpse about what one can expect. In this
case modified gamma matrices reduce to the induced gamma matrices. Second variations satisfy
d’Alembert type equation in the induced metric so that the analogs of massless fields are in
question. Mass term is present only if some dimensions are compact. The vanishing of excitations
at light-like boundaries is a natural boundary condition and might well imply that the solution
spectrum could be empty. Hence it is quite possible that four-volume action leads to a trivial
theory.

3. For the vacuum extremals of Kähler action the situation is different. There exists an infinite
number of second variations and the classical non-determinism suggests that deformations van-
ishing at the light-like boundaries exist. For the canonical imbedding of M4 the equation for
second variations is trivially satisfied. If the CP2 projection of the vacuum extremal is one-
dimensional, the second variation contains a on-vanishing term and an equation analogous to
massless d’Alembert equation for the increments of CP2 coordinates is obtained. Also for the
vacuum extremals of Kähler action with 2-D CP2 projection all terms involving induced Kähler
form vanish and the field equations reduce to d’Alembert type equations for CP2 coordinates.
A possible interpretation is as the classical analog of Higgs field. For the deformations of non-
vacuum extremals this would suggest the presence of terms analogous to mass terms: these kind
of terms indeed appear and are proportional to δsk. M4 degrees of freedom decouple completely
and one obtains QFT type situation.

4. The physical expectation is that at least for the vacuum extremals the critical manifold is
infinite-dimensional. The notion of finite measurement resolution suggests infinite hierarchies of
inclusions of hyper-finite factors of type II1 possibly having interpretation in terms of inclusions
of the super conformal algebras defined by the critical deformations.

5. The properties of Kähler action give support for this expectation. The critical manifold is
infinite-dimensional in the case of vacuum extremals. Canonical imbedding of M4 would corre-
spond to maximal criticality analogous to that encountered at the tip of the cusp catastrophe.
The natural guess would be that as one deforms the vacuum extremal the previously critical
degrees of freedom are transformed to non-critical ones. The dimension of the critical manifold
could remain infinite for all preferred extremals of the Kähler action. For instance, for cosmic
string like objects any complex manifold of CP2 defines cosmic string like objects so that there
is a huge degeneracy is expected also now. For CP2 type vacuum extremals M4 projection is
arbitrary light-like curve so that also now infinite degeneracy is expected for the deformations.

3. Critical super algebra and zero modes

The relationship of the critical super-algebra to configuration space geometry is interesting.

1. The vanishing of the second variation plus the identification of Kähler function as a Kähler action
for preferred extremals means that the critical variations are orthogonal to all deformations of
the space-time surface with respect to the configuration space metric and thus correspond to
zero modes. This conforms with the fact that configuration space metric vanishes identically for
canonically imbedded M4. Zero modes do not seem to correspond to gauge degrees of freedom so
that the super-conformal algebra associated with the zero modes has genuine physical content.

2. Since the action of X4 local Hamiltonians of δM4
×CP2 corresponds to the action in quantum

fluctuating degrees of freedom, critical deformations cannot correspond to this kind of Hamilto-
nians.
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3. The notion of finite measurement resolution suggests that the degrees of freedom which are
below measurement resolution correspond to vanishing gauge charges. The sub-algebras of
critical super-conformal algebra for which charges annihilate physical states could correspond to
this kind of gauge algebras.

4. The conserved super charges associated with the vanishing second variations cannot give con-
figuration space metric as their anti-commutator. This would also lead to a conflict with the
effective 2-dimensionality stating that the configuration space line-element is expressible as sum
of contribution coming from partonic 2-surfaces as also with fermionic anti-commutation rela-
tions.

4. Connection with quantum criticality

The vanishing of the second variation for some deformations means that the system is critical, in the
recent case quantum critical. Basic example of criticality is bifurcation diagram for cusp catastrophe.
For some mysterious reason I failed to realize that quantum criticality realized as the vanishing of
the second variation makes possible a more or less unique identification of preferred extremals and
considered alternative identifications such as absolute minimization of Kähler action which is just the
opposite of criticality. Both the super-symmetry of DK and conservation Dirac Noether currents for
modified Dirac action have thus a connection with quantum criticality.

1. Finite-dimensional critical systems defined by a potential function V (x1, x2, ..) are characterized
by the matrix defined by the second derivatives of the potential function and the rank of sys-
tem classifies the levels in the hierarchy of criticalities. Maximal criticality corresponds to the
complete vanishing of this matrix. Thom’s catastrophe theory classifies these hierarchies, when
the numbers of behavior and control variables are small (smaller than 5). In the recent case the
situation is infinite-dimensional and the criticality conditions give additional field equations as
existence of vanishing second variations of Kähler action.

2. The vacuum degeneracy of Kähler action allows to expect that this kind infinite hierarchy of
criticalities is realized. For a general vacuum extremal with at most 2-D CP2 projection the
matrix defined by the second variation vanishes because Jαβ = 0 vanishes and also the matrix

(Jαk +J α
k )(Jβl+J β

l ) vanishes by the antisymmetry Jαk = −J α
k . Recall that the formulation of

Equivalence Principle in string picture demonstrated that the reduction of stringy dynamics to
that for free strings requires that second variation with respect to M4 coordinates vanish. This
condition would guarantee the conservation of fermionic Noether currents defining gravitational
four-momentum and other Poincare quantum numbers but not those for gravitational color
quantum numbers. Encouragingly, the action of CP2 type vacuum extremals having random
light-like curve as M4 projection have vanishing second variation with respect to M4 coordinates
(this follows from the vanishing of Kähler energy momentum tensor, second fundamental form,
and Kähler gauge current). In this case however the momentum is vanishing.

3. Conserved bosonic and fermionic Noether charges would characterize quantum criticality. In
particular, the isometries of the imbedding space define conserved currents represented in terms
of the fermionic oscillator operators if the second variations defined by the infinitesimal isometries
vanish for the modified Dirac action. For vacuum extremals the dimension of the critical manifold
is infinite: maybe there is hierarchy of quantum criticalities for which this dimension decreases
step by step but remains always infinite. This hierarchy could closely relate to the hierarchy of
inclusions of hyper-finite factors of type II1. Also the conserved charges associated with Super-
symplectic and Super Kac-Moody algebras would require infinite-dimensional critical manifold
defined by the spectrum of second variations.

4. Phase transitions are characterized by the symmetries of the phases involved with the tran-
sitions, and it is natural to expect that dynamical symmetries characterize the hierarchy of
quantum criticalities. The notion of finite quantum measurement resolution based on the hi-
erarchy of Jones inclusions indeed suggests the existence of a hierarchy of dynamical gauge
symmetries characterized by gauge groups in ADE hierarchy [20] with degrees of freedom below
the measurement resolution identified as gauge degrees of freedom.
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5. A breakthrough in understanding of the criticality was the discovery that the realization that
the hierarchy of singular coverings of CD × CP2 needed to realize the hierarchy of Planck
constants could correspond directly to a similar hierarchy of coverings forced by the factor that
classical canonical momentum densities correspond to several values of the time derivatives
of the imbedding space coordinates led to a considerable progress if the understanding of the
relationship between criticality and hierarchy of Planck constants [34, 40]. Therefore the problem
which led to the geometrization program of quantum TGD, also allowed to reduce the hierarchy
of Planck constants introduced on basis of experimental evidence to the basic quantum TGD.
One can say that the 3-surfaces at the ends of CD resp. wormhole throats are critical in the
sense that they are unstable against splitting to nb resp. na surfaces so that one obtains space-
time surfaces which can be regarded as surfaces in na × nb fold covering of CD × CP2. This
allows to understand why Planck constant is effectively replaced with nanb~0 and explains charge
fractionization.

Preferred extremal property as classical correlate for quantum criticality, holography,
and quantum classical correspondence

The Noether currents assignable to the modified Dirac equation are conserved only if the first variation
of the modified Dirac operator DK defined by Kähler action vanishes. This is equivalent with the
vanishing of the second variation of Kähler action -at least for the variations corresponding to dynam-
ical symmetries having interpretation as dynamical degrees of freedom which are below measurement
resolution and therefore effectively gauge symmetries.

The vanishing of the second variation in interior of X4(X3
l ) is what corresponds exactly to quantum

criticality so that the basic vision about quantum dynamics of quantum TGD would lead directly to a
precise identification of the preferred extremals. Something which I should have noticed for more than
decade ago! The question whether these extremals correspond to absolute minima remains however
open.

The vanishing of second variations of preferred extremals -at least for deformations representing
dynamical symmetries, suggests a generalization of catastrophe theory of Thom, where the rank of
the matrix defined by the second derivatives of potential function defines a hierarchy of criticalities
with the tip of bifurcation set of the catastrophe representing the complete vanishing of this matrix.
In the recent case this theory would be generalized to infinite-dimensional context. There are three
kind of variables now but quantum classical correspondence (holography) allows to reduce the types
of variables to two.

1. The variations of X4(X3
l ) vanishing at the intersections of X4(X3

l ) wth the light-like boundaries
of causal diamonds CD would represent behavior variables. At least the vacuum extremals of
Kähler action would represent extremals for which the second variation vanishes identically (the
”tip” of the multi-furcation set).

2. The zero modes of Kähler function would define the control variables interpreted as classical
degrees of freedom necessary in quantum measurement theory. By effective 2-dimensionality (or
holography or quantum classical correspondence) meaning that the configuration space metric
is determined by the data coming from partonic 2-surfaces X2 at intersections of X3

l with
boundaries of CD, the interiors of 3-surfaces X3 at the boundaries of CDs in rough sense
correspond to zero modes so that there is indeed huge number of them. Also the variables
characterizing 2-surface, which cannot be complexified and thus cannot contribute to the Kähler
metric of configuration space represent zero modes. Fixing the interior of the 3-surface would
mean fixing of control variables. Extremum property would fix the 4-surface and behavior
variables if boundary conditions are fixed to sufficient degree.

3. The complex variables characterizing X2 would represent third kind of variables identified as
quantum fluctuating degrees of freedom contributing to the configuration space metric. Quantum
classical correspondence requires 1-1 correspondence between zero modes and these variables.
This would be essentially holography stating that the 2-D ”causal boundary” X2 of X3(X2)
codes for the interior. Preferred extremal property identified as criticality condition would
realize the holography by fixing the values of zero modes once X2 is known and give rise to
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the holographic correspondence X2 → X3(X2). The values of behavior variables determined by
extremization would fix then the space-time surface X4(X3

l ) as a preferred extremal.

4. Clearly, the presence of zero modes would be absolutely essential element of the picture. Quan-
tum criticality, quantum classical correspondence, holography, and preferred extremal property
would all represent more or less the same thing. One must of course be very cautious since the
boundary conditions at X3

l involve normal derivative and might bring in delicacies forcing to
modify the simplest heuristic picture.

5. There is a possible connection with the notion of self-organized criticality [49] introduced to
explain the behavior of systems like sand piles. Self-organization in these systems tends to lead
”to the edge”. The challenge is to understand how system ends up to a critical state, which by
definition is unstable. Mechanisms for this have been discovered and based on phase transitions
occurring in a wide range of parameters so that critical point extends to a critical manifold. In
TGD Universe quantum criticality suggests a universal mechanism of this kind. The criticality
for the preferred extremals of Kähler action would mean that classically all systems are critical
in well-defined sense and the question is only about the degree of criticality. Evolution could
be seen as a process leading gradually to increasingly critical systems. One must however
distinguish between the criticality associated with the preferred extremals of Kähler action and
the criticality caused by the spin glass like energy landscape like structure for the space of the
maxima of Kähler function.

4.5.3 Handful of problems with a common resolution

Theory building could be compared to pattern recognition or to a solving a crossword puzzle. It is
essential to make trials, even if one is aware that they are probably wrong. When stares long enough
to the letters which do not quite fit, one suddenly realizes what one particular crossword must actually
be and it is soon clear what those other crosswords are. In the following I describe an example in
which this analogy is rather concrete. Let us begin by listing the problems.

1. The condition that modified Dirac action allows conserved charges leads to the condition that
the symmetries in question give rise to vanishing second variations of Kähler action. The in-
terpretation is as quantum criticality and there are good arguments suggesting that the critical
symmetries define an infinite-dimensional super-conformal algebra forming an inclusion hierar-
chy related to a sequence of symmetry breakings closely related to a hierarchy of inclusions
of hyper-finite factors of types II1 and III1. This means an enormous generalization of the
symmetry breaking patterns of gauge theories.

There is however a problem. For the translations of M4 and color hyper charge and isospin
(more generally, any Cartan algebra of P × SU(3)) the resulting fermionic charges vanish. The
trial for the crossword in absence of nothing better would be the following argument. By the
abelianity of these charges the vanishing of quantal representation of four-momentum and color
Cartan charges is not a problem and that classical representation of these charges or their
super-conformal representation is enough.

2. Modified Dirac equation is satisfied in the interior of space-time surface always. This means that
one does not obtain off-mass shell propagation at all in 4-D sense. Effective 2-dimensionality
suggests that off mass shell propagation takes place along wormhole throats. The reduction to
almost topological QFT with Kähler function reducing to Chern-Simonst type action implied
by the weak form of electric-magnetic duality and a proper gauge choice for the induced Kähler
gauge potential implies effective 3-dimensionality at classical level. This inspires the question
whether Chern-Simons type action resulting from an instanton term could define the modified
gamma matrices appearing in the 3-D modified Dirac action associated with wormhole throats
and the ends of the space-time sheet at the boundaries of CD.

The assumption that modified Dirac equation is satisfied also at the ends and wormhole throats
would realize effective 2-dimensionality as conditions on the boundary values of the 4-D Dirac
equation but would would not allow off mass shell propagation. Therefore one could argue that
effective 2-dimensionality in this sense holds true only for incoming and outgoing particles.
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The reduction of Kähler action to Chern-Simons term together with effective 2-dimensionality
suggests that Kähler function corresponds to an extremum of this action with a constraint term
due to the weak form of electric-magnetic duality. Without this term the extrema of Chern-
Simons action have 2-D CP2 projection not consistent with the weak form of electric-magnetic
duality. The extrema are not maxima of Kähler function: they are obtained by varying with
respect to tangent space data of the partonic 2-surfaces. Lagrange multiplier term induces also
to the modified gamma matrices a contribution which is of the same general form as for any
general coordinate invariant action.

3. Quantum classical correspondence requires that the geometry of the space-time sheet should
correlate with the quantum numbers characterizing positive (negative) energy part of the quan-
tum state. One could argue that by multiplying WCW spinor field by a suitable phase factor
depending on the charges of the state, the correspondence follows from stationary phase approx-
imation. This crossword looks unconvincing. A more precise connection between quantum and
classical is required.

4. In quantum measurement theory classical macroscopic variables identified as degrees of freedom
assignable to the interior of the space-time sheet correlate with quantum numbers. Stern Gerlach
experiment is an excellent example of the situation. The generalization of the imbedding space
concept by replacing it with a book like structure implies that imbedding space geometry at
given page and for given causal diamond (CD) carries information about the choice of the
quantization axes (preferred plane M2 of M4 resp. geodesic sphere of CP2 associated with
singular covering/factor space of CD resp. CP2 ). This is a big step but not enough. Modified
Dirac action as such does not seem to provide any hint about how to achieve this correspondence.
One could even wonder whether dissipative processes or at least the breaking of T and CP
characterizing the outcome of quantum jump sequence should have space-time correlate. How
to achieve this?

Each of these problems makes one suspect that something is lacking from the modified Dirac
action: there should exist an elegant manner to feed information about quantum numbers of the state
to the modified Dirac action in turn determining vacuum functional as an exponent Kähler function
identified as Kähler action for the preferred extremal assumed to be dictated by by quantum criticality
and equivalently by hyper-quaternionicity.

This observation leads to what might be the correct question. Could a general coordinate invariant
and Poincare invariant modification of the modified Dirac action consistent with the vacuum degen-
eracy of Kähler action allow to achieve this information flow somehow? In the following one manner
to achieve this modification is discussed. It must be however emphasized that I have considered many
alternatives and the one discussed below finds its justification only from the fact that it is the simplest
one found hitherto.

The identification of the measurement interaction term

The idea is simple: add to the modified Dirac action a term which is analogous to the Dirac action in
M4 × CP2. One can consider two options according to whether the term is assigned with interior or
with a 3-D light-like 3-surface and last years have been continual argumentation about which option
is the correct one.

1. The additional term would be essentially the analog of the ordinary Dirac action at the imbedding
space level.

Sint =
∑
A

QA

∫
ΨgABjBαΓ̂αΨ

√
gd4x ,

gAB = jkAhklj
l
B , gABgBC = δAC ,

jBα = jkBhkl∂αh
l . (4.5.5)

The sum is over isometry charges QA interpreted as quantal charges and jAk denotes the Killing
vector field of the isometry. gAB is the inverse of the tensor gAB defined by the local inner
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products of Killing vectors fields in M4 and CP2. The space-time projections of the Killing
vector fields jBα have interpretation as classical color gauge potentials in the case of SU(3). In
M4 degrees of freedom and for Cartan algebra of SU(3) jBα reduce to the gradients of linear
M4 coordinates in case of translations. Modified gamma matrices could be assigned to Kähler
action or its instanton term or with Chern-Simons action.

2. The added term containing quantal charges must make sense in the modified Dirac equation.
This requires that the physical state is an eigenstate of momentum and color charges. This
allows only color hyper-charge and color isospin so that there is no hope of obtaining exactly
the stringy formula for the propagator. The modified Dirac operator is given by

D = D +Dint = Γ̂αDα + Γ̂α
∑
A

QAg
ABjBα

= Γ̂α(Dα + ∂αφ) , ∂αφ =
∑
A

QAg
ABjBα . (4.5.6)

The conserved fermionic isometry currents are

JAα =
∑
B

QBΨgBCjkChklj
l
AΓ̂αΨ = QAΨΓ̂αΨ . (4.5.7)

Here the sum is restricted to a Cartan sub-algebra of Poincare group and color group.

3. An important restriction is that by four-dimensionality of M4 and CP2 the rank of gAB is 4 so
that gAB exists only when one considers only four conserved charges. In the case of M4 this is
achieved by a restriction to translation generators QA = pA. gAB reduces to Minkowski metric
and Killing vector fields are constants. The Cartan sub-algebra could be however replaced by
any four commuting charges in the case of Poincare algebra (second one corresponds to time
translation plus translation, boost and rotation in given direction). In the case of SU(3) one must
restrict the consideration either to U(2) sub-algebra or its complement. CP2 = SU(3)/SU(2)
decomposition would suggest the complement as the correct choice. One can indeed build the
generators of U(2) as commutators of the charges in the complement. On the other hand, Cartan
algebra is enough in free field construction of Kac-Moody algebras.

4. What is remarkable that for the Cartan algebra of M4 × SU(3) the measurement interaction
term is equivalent with the addition of gauge part ∂αφ of the induced Kähler gauge potential Aα.
This property might hold true for any measurement interaction term. This also suggests that the
change in Kähler function is only the transformation Aα → Aα + ∂αφ, ∂αφ =

∑
AQAg

ABjBα.

5. Recall that the φ for U(1) gauge transformations respecting the vanishing of the Coulomb
interaction term of Kähler action [34, 40] the current jαKφ is conserved, which implies that the
change of the Kähler action is trivial. These properties characterize the gauge transformations
respecting the gauge in which Coulombic interaction term of the Kähler action vanishes so
that Kähler action reduces to 3-dimensional generalized Chern-Simons term if the weak form of
electric-magnetic duality holds true guaranteeing among other things that the induced Kähler
field is not too singular at the wormhole throats [34, 40]. The scalar function assignable to the
measurement interaction terms does not have this property and this is what is expected since it
must change the value of the Kähler function and therefore affect the preferred extremal.

Concerning the precise form of the modified Dirac action the basic clue comes from the observation
that the measurement interaction term corresponds to the addition of a gauge part to the induced CP2

Kähler gauge potential Aα. The basic question is what part of the action one assigns the measurement
interaction term.
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1. One could define the measurement interaction term using either the four-dimensional instanton
term or its reduction to Chern-Simons terms. The part of Dirac action defined by the instanton
term in the interior does not reduce to a 3-D form unless the Dirac equation defined by the
instanton term is satisfied : this cannot be true. Hence Chern-Simons term is the only possibility.

The classical field equations associated with the Chern-Simons term cannot be assumed since
they would imply that the CP2 projection of the wormhole throat and space-like 3-surface are
2-dimensional. This might hold true for space-like 3-surfaces at the ends of CD and incoming
and outgoing particles but not for off mass shell particles. This is however not a problem since
DαΓ̂αC−S for the modified gamma matrices for Chern-Simons action does not contain second
derivatives. This is due to the topological character of this term. For Kähler action second
derivatives are present and this forces extremal property of Kähler action in the modified Dirac
Kähler action so that classical physics results as a consistency condition.

2. If one assigns measurement interaction term to both DK and DC−S the measurement interaction
corresponds to a mere gauge transformation for ASα and is trivial. Therefore it seems that one
must choose between DK or DC−S . At least formally the measurement interaction term asso-
ciated with DK is gauge equivalent with its negative DC−S . The addition of the measurement
interaction to DK changes the basis for the 4-D induced spinors by the phase exp(−iQKφ) and
therefore also the basis for the generalized eigenstates of DC−S and this brings in effectively the
measurement interaction term affecting the Dirac determinant.

3. The definition of Dirac determinant should be in terms of Chern-Simons action induced by the
instanton term and identified as a product of the generalized eigenvalues of this operator. The
modified Dirac equation for Ψ is consistent with that for its conjugate if the coefficient of the
instanton term is real and one uses the Dirac action Ψ(D→ − D←)Ψ giving modified Dirac
equation as

DC−SΨ +
1

2
(DαΓ̂αC−S)Ψ = 0 . (4.5.8)

As noticed, the divergence of gamma matrices does not contain second derivatives in the case of
Chern-Simons action. In the case of Kähler action they occur unless field equations equivalent
with the vanishing of the divergence term are satisfied.

Also the fermionic current is conserved in this case, which conforms with the idea that fermions
flow along the light-like 3-surfaces. If one uses the action ΨD→Ψ, Ψ does not satisfy the Dirac
equation following from the variational principle and fermion current is not conserved. Also if
the Chern-Simons term is imaginary - as a naive idea about dissipation would suggest- the Dirac
equation fails to be consistent with the conjugation.

4. Off mass shell states appear in the lines of the generalized Feynman diagrams and for these
DC−S cannot annihilate the spinor field. The generalized eigen modes lf DC−S should be such
that one obtains the counterpart of Dirac propagator which is purely algebraic and does not
therefore depend on the coordinates of the throat. This is satisfied if the generalized eigenvalues
are expressible in terms of covariantly constant combinations of gamma matrices and here only
M4 gamma matrices are possible. Therefore the eigenvalue equation reqards as

DΨ = λkγkΨ , D = DC−S +DαΓ̂αC−S , DC−S = Γ̂αC−SDα .

(4.5.9)

Here the covariant derivatives Dα contain the measurement interaction term as an apparent
gauge term. Covariant constancy allows to take the square of this equation and one has

(D2 +
[
D,λkγk

]
)Ψ+ = λkλkΨ . (4.5.10)
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The commutator term is analogous to magnetic moment interaction. The generalized eigenvalues
correspond to λ =

√
λkλk and Dirac determinant is defined as a product of the eigenvalues.

λ is completely analogous to mass. For incoming lines this mass would vanish so that all
incoming particles irrespective their actual quantum numbers would be massless in this sense
and the propagator is indeed that for a massless particle. Note that the eigen modes define
the boundary values for the solutions of DKΨ = 0 so that the values of λ indeed define the
counterpart of the momentum space.

This transmutation of massive particles to effectively massless ones might make possible the
application of the twistor formalism as such in TGD framework [28]. N = 4 SUSY is one
of the very few gauge theory which might be UV finite but it is definitely unphysical due to
the masslessness of the basic quanta. Could the resolution of the interpretational problems
be that the four-momenta appearing in this theory do not directly correspond to the observed
four-momenta?

Objections

The alert reader has probably raised several critical questions. Doesn’t the need to solve λk as func-
tions of incoming quantum numbers plus the need to construct the measurement interactions makes
the practical application of the theory hopelessly difficult? Could the resulting pseudo-momentum
λk correspond to the actual four-momentum? Could one drop the measurement interaction term
altogether and assume that the quantum classical correspondence is through the identification of the
eigenvalues as the four-momenta of the on mass shell particles propagating at the wormhole throats?
Could one indeed assume that the momenta have a continuous spectrum and thus do not depend on
the boundary conditions at all? Usually the thinking is just the opposite and in the general case would
lead to to singular eigen modes.

1. Only the information about four-momentum would be fed into the space-time geometry. TGD
however allows much more general measurement interaction terms and it would be very strange
if the space-time geometry would not correlate also with the other quantum numbers. Mass
formulas would of course contain information also about other quantum numbers so that this
claim is not quite justified.

2. Number theoretic considerations and also the construction of octonionic variant of Dirac equation
[19, 40] force the conclusion that the spectrum of pseudo four-momentum is restricted to a pre-
ferred plane M2 of M4 and this excludes the interpretation of λk as a genuine four-momentum.
It also improves the hopes that the sum over pseudo-momenta does not imply divergences.

3. Dirac determinant would depend on the mass spectrum only and could not be identified as
exponent of Kähler function. Note that the original guideline was the dream about stringy
propagators. This is achieved for λAλ

A = n in suitable units. This spectrum would of course
also imply that Dirac determinant defined in terms of ζ function regularization is independent
of the space-time surface and could not be identified with the exponent of Kähler function. One
must of course take the identification of exponent of Kähler function as Dirac determinant as an
additional conjecture which is not necessary for the calculation of Kähler function if the weak
form of electric-magnetic duality is accepted.

4. All particles would behave as massless particles and this would not be consistent with the
proposed Feynman diagrammatics inspired by zero energy ontology. Since wormhole throats
carry on mass shell particles with positive or negative energy so that the net momentum can be
also space-like propagators diverge for massless particles. One might overcome this problem by
assuming small thermal mass (from p-adic thermodynamics [4]) and this is indeed assumed to
reduce the number of generalized Feynman diagrams contributing to a given reaction to finite
number.

Second objection of the skeptic reader relates to the delicacies of U(1) gauge invariance. The
modified Dirac action seems to break gauge symmetries and this breaking of gauge symmetry is
absolutely essential for the dependence of the Dirac determinant on the quantum numbers. It however
seems that this breaking of gauge invariance is only apparent.
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1. One must distinguish between genuine U(1) gauge transformations carried out for the induced
Kähler gauge potential Aα and apparent gauge transformations of the Kähler gauge potential
Ak of S2 × CP2 induced by symplectic transformations deforming the space-time surface and
affect also induced metric. This delicacy of U(1) gauge symmetry explains also the apparent
breaking of U(1) gauge symmetry of Chern-Simons Dirac action due to the presence of explicit
terms Ak and Aα.

2. CP2 Kähler gauge potential is obtained in complex coordinates from Kähler function as (Kξi ,Kξi
) =

(∂ξiK,−∂ξiK). Gauge transformations correspond to the additions K → K+f+f , where f is a
holomorphic function. Kähler gauge potential has a unique gauge in which the Kähler function
of CP2 is U(2) invariant and contains no holomorphic part. Hence Ak is defined in a preferred
gauge and is a gauge invariant quantity in this sense. Same applies to S2 part of the Kähler
potential if present.

3. Aα should be also gauge invariant under gauge transformation respecting the vanishing of
Coulombic interaction energy. The allowed gauge transformations Aα → Aα + ∂αφ must satisfy
Dα(jαKφ) = 0. If the scalar function φ reduces to constant at the wormhole throats and at the
ends of the space-time surface DC−S is gauge invariant. The gauge transformations for which φ
does not satisfy this condition are identified as representations of critical deformations of space-
time surface so that the change of Aα would code for this kind of deformation and indeed affect
the modified Dirac operator and Kähler function (the change would be due to the change of zero
modes).

Some details about the modified Dirac equation defined by Chern-Simons action

First some general comments about DC−S are in order.

1. Quite generally, there is vacuum avoidance in the sense that Ψ must vanish in the regions where
the modified gamma matrices vanish. A physical analogy for the system consider is a charged
particle in an external magnetic field. The effective metric defined by the anti-commutators of
the modified gamma matrices so that standard intuitions might not help much. What one would
naively expect would be analogs of bound states in magnetic field localized into regions inside
which the magnetic field is non-vanishing.

2. If only CP2 Kähler form appears in the Kähler action, the modified Dirac action defined by
the Chern-Simons term is non-vanishing only when the dimension of the CP2 projection of the
3-surface is D(CP2) ≥ 2 and the induced Kähler field is non-vanishing. This conforms with
the properties of Kähler action. The solutions of the modified Dirac equation with a vanishing
eigenvalue λ would naturally correspond to incoming and outgoing particles.

3. D(CP2) ≤ 2 is apparently inconsistent with the weak form of electric-magnetic duality requiring
D(CP2) = 3. The conclusion is wrong: the variations of Chern-Simons action are subject to the
constraint that electric-magnetic duality holds true expressible in terms of Lagrange multiplier
term

∫
Λα(Jnα −KεnαβγJβγ)

√
g4d

3x . (4.5.11)

This gives a constraint force to the field equations and also a dependence on the induced 4-metric
so that one has only almost topological QFT. This term also guarantees the M4 part of WCW
Kähler metric is non-trivial. The condition that the ends of space-time sheet and wormhole
throats are extrema of Chern-Simons action subject to the electric-magnetic duality constraint
is strongly suggested by the effective 2-dimensionality.

4. Electric-magnetic duality constraint gives an additional term to the Dirac action determined
by the Lagrange multiplier term. This term gives an additional contribution to the modified
gamma matrices having the same general form as coming from Kähler action and Chern-Simons
action. In the following this term will not be considered. For the extremals it only affects the
modified gamma matrices and leaves the general form of solutions unchanged.
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In absence of the constraint from the weak form of electric-magnetic duality the explicit expression
of DC−S is given by

D = Γ̂µDµ +
1

2
DµΓ̂µ ,

Γ̂µ =
∂LC−S
∂µhk

Γk = εµαβ
[
2Jkl∂αh

lAβ + JαβAk
]

ΓkDµ ,

DµΓ̂µ = BαK(Jkα + ∂αAk) ,

BαK = εαβγJβγ , Jkα = Jkl∂αs
l , ε̂αβγ = εαβγ

√
g3 . (4.5.12)

Note ε̂αβγ = does not depend on the induced metric.
The extremals of Chern-Simons action without constraint term satisfy

BαK(Jkl + ∂lAk)∂αh
l = 0 , BαK = εαβγJβγ . (4.5.13)

For a non-vanishing Kähler magnetic field Bα these equations hold true when CP2 projection is
2-dimensional. This implies a vanishing of Chern-Simons action in absence of the constraint term
realizing electric-magnetic duality, which is therefore absolutely essential in order for having a non-
vanishing WCW metric.

Consider now the situation in more detail.

1. Suppose that one can assign a global coordinate to the flow lines of the Kähler magnetic field.
In this case one might hope that ordinary intuitions about motion in constant magnetic field
might be helpful. The repetition of the discussion of [34, 40] leads to the condition B ∧ dB = 0
implying that a Beltrami flow for which current flows along the field lines and Lorentz forces
vanishes is in question. This need not be the generic case.

2. With this assumption the modified Dirac operator reduces to a one-dimensional Dirac operator

D = ε̂rαβ
[
2Jkl∂αh

lAβ + JαβAk
]

ΓkDr . (4.5.14)

3. The general solutions of the modified Dirac equation is covariantly constant with respect to the
coordinate r:

DrΨ = 0 . (4.5.15)

The solution to this condition can be written immediately in terms of a non-integrable phase
factor Pexp(i

∫
Ardr), where integration is along curve with constant transversal coordinates.

If Γ̂v is light-like vector field also Γ̂vΨ0 defines a solution of DC−S . This solution corresponds
to a zero mode for DC−S and does not contribute to the Dirac determinant. Note that the
dependence of these solutions on transversal coordinates of X3

l is arbitrary.

4. The formal solution associated with a general eigenvalue can be constructed by integrating the
eigenvalue equation separately along all coordinate curves. This makes sense if r indeed assigned
to light-like curves indeed defines a global coordinate. What is strange that there is no correlation
between the behaviors with respect longitudinal coordinate and transversal coordinates. System
would be like a collection of totally uncorrelated point like particles reflecting the flow of the
current along flux lines. It is difficult to say anything about the spectrum of the generalized
eigenvalues in this case: it might be that the boundary conditions at the ends of the flow lines
fix the allowed values of λ. Clearly, the Beltrami flow property is what makes this case very
special.
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A connection with quantum measurement theory

It is encouraging that isometry charges and also other charges could make themselves visible in the
geometry of space-time surface as they should by quantum classical correspondence. This suggests an
interpretation in terms of quantum measurement theory.

1. The interpretation resolves the problem caused by the fact that the choice of the commuting
isometry charges is not unique. Cartan algebra corresponds naturally to the measured observ-
ables. For instance, one could choose the Cartan algebra of Poincare group to consist of energy
and momentum, angular momentum and boost (velocity) in particular direction as generators
of the Cartan algebra of Poincare group. In fact, the choices of a preferred plane M2 ⊂ M4

and geodesic sphere S2 ⊂ CP2 allowing to fix the measurement sub-algebra to a high degree
are implied by the replacement of the imbedding space with a book like structure forced by the
hierarchy of Planck constants. Therefore the hierarchy of Planck constants seems to be required
by quantum measurement theory. One cannot overemphasize the importance of this connection.

2. One can add similar couplings of the net values of the measured observables to the currents
whose existence and conservation is guaranteed by quantum criticality. It is essential that one
maps the observables to Cartan algebra coupled to critical current characterizing the observable
in question. The coupling should have interpretation as a replacement of the induced Kähler
gauge potential with its gauge transform. Quantum classical correspondence encourages the
identification of the classical charges associated with Kähler action with quantal Cartan charges.
This would support the interpretation in terms of a measurement interaction feeding information
to classical space-time physics about the eigenvalues of the observables of the measured system.
The resulting field equations remain second order partial differential equations since the second
order partial derivatives appear only linearly in the added terms.

3. What about the space-time correlates of electro-weak charges? The earlier proposal explains this
correlation in terms of the properties of quantum states: the coupling of electro-weak charges to
Chern-Simons term could give the correlation in stationary phase approximation. It would be
however very strange if the coupling of electro-weak charges with the geometry of the space-time
sheet would not have the same universal description based on quantum measurement theory as
isometry charges have.

(a) The hint as how this description could be achieved comes from a long standing un-answered
question motivated by the fact that electro-weak gauge group identifiable as the holonomy
group of CP2 can be identified as U(2) subgroup of color group. Could the electro-weak
charges be identified as classical color charges? This might make sense since the color
charges have also identification as fermionic charges implied by quantum criticality. Or
could electro-weak charges be only represented as classical color charges by mapping them
to classical color currents in the measurement interaction term in the modified Dirac action?
At least this question might make sense.

(b) It does not make sense to couple both electro-weak and color charges to the same fermion
current. There are also other fundamental fermion currents which are conserved. All the
following currents are conserved.

Jα = ΨOΓ̂αΨ

O ∈ {1 , J ≡ JklΣkl , ΣAB , ΣABJ} . (4.5.16)

Here Jkl is the covariantly constant CP2 Kähler form and ΣAB is the (also covariantly)
constant sigma matrix of M4 (flatness is absolutely essential).

(c) Electromagnetic charge can be expressed as a linear combination of currents corresponding
to O = 1 and O = J and vectorial isospin current corresponds to J . It is natural to couple
of electromagnetic charge to the the projection of Killing vector field of color hyper charge
and coupling it to the current defined by Oem = a+bJ . This allows to interpret the puzzling
finding that electromagnetic charge can be identified as anomalous color hyper-charge for
induced spinor fields made already during the first years of TGD. There exist no conserved
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axial isospin currents in accordance with CVC and PCAC hypothesis which belong to the
basic stuff of the hadron physics of old days.

(d) Color charges would couple naturally to lepton and quark number current and the U(1)
part of electro-weak charges to the n = 1 multiple of quark current and n = 3 multiple of
the lepton current (note that leptons resp. quarks correspond to t = 0 resp. t = ±1 color
partial waves). If electro-weak resp. couplings to H-chirality are proportional to 1 resp.
Γ9, the fermionic currents assigned to color and electro-weak charges can be regarded as
independent. This explains why the possibility of both vectorial and axial couplings in 8-D
sense does not imply the doubling of gauge bosons.

(e) There is also an infinite variety of conserved currents obtained as the quantum critical
deformations of the basic fermion currents identified above. This would allow in principle
to couple an arbitrary number of observables to the geometry of the space-time sheet by
mapping them to Cartan algebras of Poincare and color group for a particular conserved
quantum critical current. Quantum criticality would therefore make possible classical space-
time correlates of observables necessary for quantum measurement theory.

(f) The coupling constants associated with the deformations would appear in the couplings.
Quantum criticality (K → K + f + f condition) should predict the spectrum of these
couplings. In the case of momentum the coupling would be proportional to

√
G/~0= kR/~0

and k ∼ 211 should follow from quantum criticality. p-Adic coupling constant evolution
should follow from the dependence on the scale of CD coming as powers of 2.

4. Quantum criticality implies fluctuations in long length and time scales and it is not surprising
that quantum criticality is needed to produce a correlation between quantal degrees of free-
dom and macroscopic degrees of freedom. Note that quantum classical correspondence can be
regarded as an abstract form of entanglement induced by the entanglement between quantum
charges QA and fermion number type charges assignable to zero modes.

5. Space-time sheets can have an arbitrary number of wormhole contacts so that the interpretation
in terms of measurement theory coupling short and long length scales suggests that the measure-
ment interaction terms are localizable at the wormhole throats. This would favor Chern-Simons
term or possibly instanton term if reducible to Chern-Simons terms. The breaking of CP and
T might relate to the fact that state function reductions performed in quantum measurements
indeed induce dissipation and breaking of time reversal invariance.

6. The experimental arrangement quite concretely splits the quantum state to a quantum su-
perposition of space-time sheets such that each eigenstate of the measured observables in the
superposition corresponds to different space-time sheet already before the realization of state
function reduction. This relates interestingly to the question whether state function reduction
really occurs or whether only a branching of wave function defined by WCW spinor field takes
place as in multiverse interpretation in which different branches correspond to different observers.
TGD inspired theory consciousness requires that state function reduction takes place. Maybe
multiversalist might be able to find from this picture support for his own beliefs.

7. One can argue that ”free will” appears not only at the level of quantum jumps but also as the
possibility to select the observables appearing in the modified Dirac action dictating in turn
the Kähler function defining the Kähler metric of WCW representing the ”laws of physics”.
This need not to be the case. The choice of CD fixes M2 and the geodesic sphere S2: this
does not fix completely the choice of the quantization axis but by isometry invariance rotations
and color rotations do not affect Kähler function for given CD and for a given type of Cartan
algebra. In M4 degrees of freedom the possibility to select the observables in two manners
corresponding to linear and cylindrical Minkowski coordinates could imply that the resulting
Kähler functions are different. The corresponding Kähler metrics do not differ if the real parts
of the Kähler functions associated with the two choices differ by a term f(Z) + f(Z), where Z
denotes complex coordinates of WCW, the Kähler metric remains the same. The function f can
depend also on zero modes. If this is the case then one can allow in given CD superpositions
of WCW spinor fields for which the measurement interactions are different. This condition
is expected to pose non-trivial constraints on the measurement action and quantize coupling
parameters appearing in it.
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New view about gravitational mass and matter antimatter asymmetry

The physical interpretation of the additional term in the modified Dirac action might force quite a
radical revision of the ideas about matter and antimatter.

1. The term pA∂αm
A contracted with the fermion current is analogous to a gauge potential cou-

pling to fermion number. Since the additional terms in the modified Dirac operator induce
stringy propagation, a natural interpretation of the coupling to the induced spinor fields is in
terms of gravitation. One might perhaps say that the measurement of four momentum in-
duces gravitational interaction. Besides momentum components also color charges take the role
of gravitational charges. As a matter fact, any observable takes this role via coupling to the
projections of Killing vector fields of Cartan algebra. The analogy of color interactions with
gravitational interactions is indeed one of the oldest ideas in TGD.

2. The coupling to four-momentum is through fermion number (both quark number and lepton
number). For states with a vanishing fermion number isometry charges therefore vanish. In
this framework matter antimatter asymmetry would be due to the fact that matter (antimatter)
corresponds to positive (negative) energy parts of zero energy states for massive systems so that
the contributions to the net gravitational four-momentum are of same sign. Could antimatter
be unobservable to us because it resides at negative energy space-time sheets? As a matter fact,
I proposed already years ago that gravitational mass is essentially the magnitude of the inertial
mass but gave up this idea.

3. Bosons do not couple at all to gravitation if they are purely local bound states of fermion and
anti-fermion at the same space-time sheet (say represented by generators of super Kac-Moody
algebra). Therefore the only possible identification of gauge bosons is as wormhole contacts.
If the fermion and anti-fermion at the opposite throats of the contact correspond to positive
and negative energy states the net gravitational energy receives a positive contribution from
both sheets. If both correspond to positive (negative) energy the contributions to the net four-
momentum have opposite signs. It is not yet clear which identification is the correct one.

4.5.4 Generalized eigenvalues of DC−S and General Coordinate Invariance

The fixing of light-like 3-surface to be the wormhole throat at which the signature of induced metric
changes from Minkowskian to Euclidian corresponds to a convenient fixing of gauge. General Coordi-
nate Invariance however requires that any light-like surface Y 3

l parallel to X3
l in the slicing is equally

good choice. In particular, it should give rise to same Kähler metric but not necessarily the same
exponent of Kähler function identified as the product of the generalized eigenvalues of DC,S at Y 3

l .

General Coordinate Invariance requires that the components of Kähler metric of configuration
space defined in terms of Kähler function as

Gkl = ∂k∂lK =
∑
i

∂k∂lλi

remain invariant under this flow. Here complex coordinate are of course associated with the configu-
ration space. This is the case if the flow corresponds to the addition of sum of holomorphic function
f(z) and its conjugate f(z)) which is anti-holomorphic function to K. This boils down to the scaling
of eigenvalues λi by

λi → exp(fi(z) + fi(z))λi . (4.5.17)

If the eigenvalues are interpreted as vacuum conformal weights, general coordinate transformations
correspond to a spectral flow scaling the eigenvalues in this manner. This in turn would induce spectral
flow of ground state conformal weights if the squares of λi correspond to ground state conformal
weights.
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4.6 Representations for the configuration space gamma ma-
trices in terms of super-symplectic charges at light cone
boundary

During years I have considered several variants for the representation of WCW gamma matrices and
each of these proposals has had some weakness.

1. One question has been whether the Noether currents assignable to WCW Hamiltonians should
play any role in the construction or whether one can use only the generalization of flux Hamil-
tonians. Magnetic flux Hamiltonians do not refer to the space-time dynamics implying genuine
2-dimensionality, which is a catastrophe. If the sum of the magnetic and electric flux Hamil-
tonians and the weak form of self duality is assumed effective 2-dimensionality is achieved.
The challenge is to identify the super-partners of the flux Hamiltonians and postulate correct
anti-commutation relations for the induced spinor fields to achieve anti-commutation to flux
Hamiltonians.

2. In the original proposal for WCW gamma matrices the covariantly constant right handed spinors
played a key role. This led to interpretational problems with quarks. Are they needed at all or
do leptons and quarks define somehow equivalent representations? I discovered only recently a
brutally simple but deadly objection against this approach: the resulting WCW gamma matrices
do not generate all WCW spinors from Fock vacuum. Therefore all modes of the induced spinor
fields must be used.

The latter objection forced to realize that nothing is changed if one replaces the covariantly constant
right handed neutrino with the collection of quark spinor modes qn resp. leptonic spinor modes Ln
multiplied by the contractions JA+ = jAkΓk resp. its conjugate JA− = jAkΓk. It is essential that
only of these contractions is used for a given H-chirality.

1. If the anti-commutator of the spinor fields is or form J = Jαβε
αβδ2(x, y) at X2 for magnetic

flux Hamiltonians and appropriate generalization of this fro the sum of magnetic and electric

flux Hamiltonians, the ”half-Poisson bracket” ∂kHAJ
kl∂lHB from the quark spinor field and

its conjugate as anti-commutator from the leptonic spinor field can combine to the full Poisson
bracket if the remaining factors are identical.

2. This happens if the quark modes and lepton-like modes are in 1-1 correspondence and the
contractions of the eigenmodes resulting in the contraction satisfy qmγ

0qn = Lmγ
0Ln = Φmn.

The resulting Hamiltonians define an X2-local algebra: that this extension is needed became
obvious already earlier. A stronger condition is that the spinors can be expressed in terms of
scalar function bases {Φm} so that one would have qm,i = {Φm}qi and Lm,i = {Φm}Li so that
one would assign to the super-currents the local Hamiltonians ΦmHA.

3. One could of course still argue that it is questionable to use sum of quark and lepton gamma
matrices since this the resulting objects to not have a well defined fermion number and cannot
be used to generate physical states from vacuum. How seriously this argument should be taken
is not clear to me at this moment. One could of course consider also a scenario in which one
divides leptonic (or quark) modes to two classes analogous to quark and lepton modes and uses
JA+ resp. JA− for these two classes.

In any case, the recent view is that all modes of the induced spinor fields must be used, that
lepton-quark degeneracy is absolutely essential for the construction of WCW geometry, and that the
original super-symmetrization of the flux Hamiltonians combined with weak electric-magnetic duality
is the correct approach. There are also fermionic Noether charges and their super counterparts implied
by the criticality but these can be assigned with zero modes.

This section represents both the earlier version of the construction of configuration gamma ma-
trices and the construction introducing explicitly the notion of finite measurement resolution. The
motivation for the latter option is that if the number the generalized eigen modes of modified Dirac
operator is finite, strictly local anti-commutation relations fail unless one restricts the set of points
included to that corresponding to number theoretic braid. In the following integral expressions for
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configuration space Hamiltonians and their super-counterparts are derived first. After that the moti-
vations for replacing integrals with sums are discussed and the expressions for Hamiltonians and super
Hamiltonians are derived.

4.6.1 Magnetic flux representation of the super-symplectic algebra

In order to derive representation of the configuration space gamma matrices and super charges it
is good to restate the basic facts about the magnetic flux representation of the configuration space
gamma matrices using the original approach based on 2-dimensional integrals.

4.6.2 Quantization of the modified Dirac action and configuration space
geometry

The quantization of the modified Dirac action involves a fusion of various number theoretical ideas.
The naive approach would be based on standard canonical quantization of induced spinor fields by
posing anti-commutation relations between Ψ and canonical momentum density ∂L/∂(∂tΨ).

Generalized magnetic and electric fluxes

Isometry invariants are just a special case of fluxes defining natural coordinate variables for the
configuration space. Canonical transformations of CP2 act as U(1) gauge transformations on the
Kähler potential of CP2 (similar conclusion holds at the level of δM4

+ × CP2).
One can generalize these transformations to local symplectic transformations by allowing the

Hamiltonians to be products of the CP2 Hamiltonians with the real and imaginary parts of the
functions fs,n,k defining the Lorentz covariant function basis HA, A ≡ (a, s, n, k) at the light cone
boundary: HA = Ha × f(s, n, k), where a labels the Hamiltonians of CP2.

One can associate to any Hamiltonian HA of this kind magnetic or electric flux via the following
formulas:

Qm/e(HA|X2) =

∫
X2

HAJm/e . (4.6.1)

Here the magnetic (electric) flux Jm (Je) denotes the flux associated with induced Kähler field and
its dual which is well-defined since X2 is part of 4-D space-time surface.

The flux Hamiltonians

Qi(HA|X2) = Qi(HA|X2) , A ≡ (a, s, n, k) (4.6.2)

provide a representation of WCW Hamiltonians as far as the ”kinetic” part of Kähler form is consid-
ered.

Anti-commutation relations between oscillator operators associated with same partonic
2-surface

The construction of WCW gamma matrices leads to the anti-commutation relations given by

{Ψ(x)γ0,Ψ(x)} = [Je + Jm)δ2
x,y ,

Je =

∫
J03√g4 . (4.6.3)

Kähler magnetic flux Jm = εαβJαβ
√
g2 has no dependence on the induced metric.

If the weak- form of the electric-magnetic duality holds true, Kähler electric flux relates to it via
the formula

J03√g4 = KJ12 ,
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where K is symplectic invariant and identifiable in terms of Kähler coupling strength from classical
charge quantization condition for Kähler electric flux. The condition that the flux of F 03 = (~/gK)J03

defining the counterpart of Kähler electric field equals to the Kähler charge gK gives the condition
K = g2

K/~ = 4παK , where gK is Kähler coupling constant. Within experimental uncertainties one
has αK = g2

K/4π~0 = αem ' 1/137, where αem is finite structure constant in electron length scale
and ~0 is the standard value of Planck constant. The arguments leading to the identification ε± 1 at
the opposite boundaries of CD are discussed in [34, 40]. An alternative identification is as ε = 0 but
predicts that WCW is trivial in M4 degrees of freedom if Kähler function reduces to Chern-Simons
terms.

The general form of the anti-commutation relations is therefore

{Ψ(x)γ0,Ψ(x)} = (1 +K)Jδ2
x,y . (4.6.4)

What is nice that at the limit of vacuum extremals the right hand side vanishes when both J and
J1 vanish so that spinor fields become non-dynamical. One can criticize the non-vanishing of the
anti-commutator for vacuum extremals of Kähler action.

For the latter option the fermionic counterparts of local flux Hamiltonians can be written in the
form

HA,±,n = εq(A,∓, n)HA,±,q,n + εL(A,±)HA,∓,L,n ,

HA,+,q,n =

∮
ΨJA+qnd

2x ,

HA,−,q,n =

∮
qnJ

A
−Ψd2x ,

HA,−,L,n =

∮
ΨJA+Lnd

2x ,

HA,+,L,n =

∮
LnJ

A
−Ψd2x ,

JA+ = jAkΓk , JA− = jAkΓk . (4.6.5)

The commutative parameters εq(A,±, n) resp. εL(A,±, n) are assumed to carry quark resp. lepton
number opposite to that of HA,∓,q,n resp. HA,∓,L,n and satisfy εi(A,+, n)εi(A,−, n) = 1. One en-
counters a hierarchy discrete algebras satisfying this condition in the construction of a symplectic
analog of conformal quantum field theory required by the construction of quantum TGD [5]. Asso-
ciativity condition fixes uniquely the commutative multiplication of these units and analogs of plane
waves with discrete momentum are in question.

Suppose that there is a one-one correspondence between quark modes and leptonic modes is sat-
isfied and the label n decomposes as n = (m, i), where n labels a scalar function basis and i labels
spinor components. This would give

qn = qm,i = Φmqi ,

Ln = Lm,i = ΦmLi ,

qiγ
0qj = Liγ

0Lj = gij . (4.6.6)

Suppose that the inner products gij are constant. The simplest possibility is gij = δij Under these
assumptions the anti-commutators of the super-symmetric flux Hamiltonians give flux Hamiltonians.

{HA,+,n, HA,−,n} = gij

∮
ΦmΦnHAJd

2x . (4.6.7)

The product of scalar functions can be expressed as

ΦmΦn = c k
mnΦk . (4.6.8)
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Note that the notion of symplectic QFT [16] led to a scalar function algebra of similar kind consisting
of phase factors and there excellent reasons to consider the possibility that there is a deep connection
with this approach.

One expects that the symplectic algebra is restricted to a direct sum of symplectic algebras lo-
calized to the regions where the induced Kähler form is non-vanishing implying that the algebras
associated with different region form to a direct sum. Also the contributions to configuration space
metric are direct sums. The symplectic algebras associated with different region can be truncated
to finite-dimensional spaces of symplectic algebras associated with the regions in question. As far
as coordinatization of the reduced configuration space is considered, these symplectic sub-spaces are
enough. These truncated algebras naturally correspond to the hyper-finite factor property of the
Clifford algebra of configuration space.

Generalization of WCW Hamiltonians and anti-commutation relations between flux
Hamiltonians belonging to different ends of CD

This picture requires a generalization of the view about configuration space Hamiltonians since also
the interaction term between the ends of the line is present not taken into account in the previous
approach.

1. The proposed representation of WCW Hamiltonians as flux Hamiltonians [22, 43, 18]

Q(HA) =

∫
HAJd

2x . (4.6.9)

works for the kinetic terms only since J is not expectred to be the same at the ends of the line.

The assumption that Poisson bracket of WCW Hamiltonians reduces to the level of imbed-
ding space - in other words {Q(HA), Q(HB} = Q({HA, HB}) - can be justified. One starts
from the representation in terms of say flux Hamiltonians Q(HA) and defines JA,B as JA,B ≡
Q({HA, HB}). One has ∂HA/∂tB = {HB , HA}, where tB is the parameter associated with the
exponentiation of HB . The inverse JAB of JA,B = ∂HB/∂tA is expressible as JA,B = ∂tA/∂HB .
From these formulas one can deduce by using chain rule that the bracket {Q(HA), Q(HB} =
∂tCQ(HA)JCD∂tDQ(HB) of flux Hamiltonians equals to the flux Hamiltonian Q({HA, HB}).

2. One should be able to assign to WCW Hamiltonians also a part corresponding to the interac-
tion term. The symplectic conjugation associated with the interaction term permutes the WCW
coordinates assignable to the ends of the line. One should reduce this apparently non-local sym-
plectic conjugation (if one thinks the ends of line as separate objects) to a non-local symplectic
conjugation for δCD × CP2 by identifying the points of lower and upper end of CD related
by time reflection and assuming that conjugation corresponds to time reflection. Formally this
gives a well defined generalization of the local Poisson brackets between time reflected points at
the boundaries of CD. The connection of Hermitian conjugation and time reflection in quantum
field theories is is in accordance with this picture.

3. Perhaps the only manner to proceed is to assign to the flux Hamiltonian also a part obtained
by the replacement of the flux integral over X2 with an integral over the projection of X2 to
a sphere S2 assignable to the light-cone boundary or to a geodesic sphere of CP2, which come
as two varieties corresponding to homologically trivial and non-trivial spheres. The projection
is defined as by the geodesic line orthogonal to S2 and going through the point of X2. The
hierarchy of Planck constants assigns to CD a preferred geodesic sphere of CP2 as well as a
unique sphere S2 as a sphere for which the radial coordinate rM or the light-cone boundary
defined uniquely is constant: this radial coordinate corresponds to spherical coordinate in the
rest system defined by the time-like vector connecting the tips of CD. Either spheres or possibly
both of them could be relevant.

Recall that also the construction of number theoretic braids and symplectic QFT [16] led to
the proposal that braid diagrams and symplectic triangulations could be defined in terms of
projections of braid strands to one of these spheres. One could also consider a weakening for
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the condition that the points of the number theoretic braid are algebraic by requiring only that
the S2 coordinates of the projection are algebraic and that these coordinates correspond to the
discretization of S2 in terms of the phase angles associated with θ and φ.

This gives for the corresponding contribution of the WCW Hamiltonian the expression

Q(HA)int = (1 +K)

∫
S2
±

HAXδ
2(s+, s−)d2s± = (1 +K)

∫
P (X2

+)∩P (X2
−)

∂(s1, s2)

∂(x1
±, x

2
±)
d2x± .(4.6.10)

Here the Poisson brackets between ends of the line using the rules involve delta function
δ2(s+, s−) at S2 and the resulting Hamiltonians can be expressed as a similar integral of H[A,B]

over the upper or lower end since the integral is over the intersection of S2 projections.

The expression must vanish when the induced Kähler form vanishes for either end. This is
achieved by identifying the scalar X in the following manner:

X = J+
kl + J−kl ,

Jkl± = ∂αs
k∂βs

lJαβ± . (4.6.11)

The tensors are lifts of the induced Kähler form of X2
± to S2 (not CP2).

4. One could of course ask why these Hamiltonians could not contribute also to the kinetic terms
and why the brackets with flux Hamiltonians should vanish. This relate to how one defines
the Kähler form. It was shown above that in case of flux Hamiltonians the definition of Kähler
form as brackets gives the basic formula {Q(HA), Q(HB)} = Q({HA, HB} and same should hold
true now. In the recent case JA,B would contain an interaction term defined in terms of flux
Hamiltonians and the previous argument should go through also now by identifying Hamiltonians
as sums of two contributions and by introducing the doubling of the coordinates tA.

5. The quantization of the modified Dirac operator must be reconsidered. It would seem that one
must add to the super-Hamiltonian completely analogous term obtained by replacing J with
X∂(s1, s2)/∂(x1

±, x
2
±). Besides the anti-commutation relations defining correct anti-commutators

to flux Hamiltonians, one should pose anti-commutation relations consistent with the anti-
commutation relations of super Hamiltonians. In these anti-commutation relations Jδ2(x, y)
would be replaced with Xδ2(s+, s−). This would guarantee that the oscillator operators at the
ends of the line are not independent and that the resulting Hamiltonian reduces to integral over
either end for H[A,B].

4.6.3 Expressions for configuration space super-symplectic generators in
finite measurement resolution

The expressions of configuration space Hamiltonians and their super counterparts just discussed were
based on 2-dimensional integrals. This is problematic for several reasons.

1. In p-adic context integrals do not makes sense so that this representation fails in p-adic context
(for pe-adic numbers see[47]). Sums would be more appropriate if one wants number theoretic
universality at the level of basic formulas.

2. The use of sums would also conform with the notion of finite measurement resolution having
discretization in terms of intersections of X2 with number theoretic braids as a space-time
correlate.

3. Number theoretic duality suggests a unique realization of the discretization in the sense that
only the points of partonic 2-surface X2 whose δM4

± projections commute in hyper-octonionic
sense and thus belong to the intersections of the projection PM4(X2) with radial light-like
geodesics M± representing intersections of M2 ⊂ M4 ⊂ M8 with δM4

± × CP2 contribute to
the configuration space Hamiltonians and super Hamiltonians and therefore to the configuration
space metric.
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Clearly, finite measurement resolution seems to be an unavoidable aspect of the geometrization of
the configuration space as one can expect on basis of the fact that configuration space Clifford algebra
provides representation for hyper-finite factors of type II1 whose inclusions provide a representation
for the finite measurement resolution. This means that the infinite-dimensional configuration space
can be represented as a finite-dimensional space in arbitrary precise approximation so that also also
configuration Clifford algebra and configuration space spinor fields becomes finite-dimensional.

The modification of anti-commutation relations to this case is

{Ψ(xm)γ0,Ψ(xn)} = (1 +K)Jδxm,xn . (4.6.12)

Note that the constancy of γ0 implies a complete symmetry between the two points. The number of
points must be the maximal one consistent with the Kronecker delta type anti-commutation relations
so that information is not lost.

The question arises about the choice of the points xm. This choice should general coordinate
invariant. The number theoretic vision leads to the notion of number theoretic braid defined as the
set of points common to real and p-adic variant of X2. The points of the number theoretic braid are
excellent candidates for points xn. The p-adic variant exists only if X2 is defined by rational functions
with coefficients which are possibly algebraic and thus make sense both in real and p-adic sense. These
points belong to the algebraic extension of rational numbers appearing in the representation of X2 as
an algebraic surface but one can consider quite generally the possibility that the points of the number
theoretic braid are rational or in a finite algebraic extension of rationals. What is important that if
one restricts the consideration to rational points this criterion makes sense even if X2 is not algebraic.
In the generic case one can expect that the number of these points is finite.

4.6.4 Configuration space geometry and hierarchy of inclusions of hyper-
finite factors of II1

The configuration space metric defined as anti-commutators of the configuration space gamma matrices
is extremely degenerate since it effectively corresponds to a quadratic form in N -dimensional space,
where Nm is the total number of the eigenmodes of DK . Since two Hamiltonians whose values and
corresponding Killing vector fields co-incide at the points of B are equivalent for given ray M±, it
is natural to pose a cutoff in the number of Hamiltonians used for the representation of reduced
configuration space in given region inside which induced Kähler form is non-vanishing. The natural
manner to pose this cutoff is by ordering the representations with respect to dimension and eigenvalue
of Casimir operator for the irreducible representations of SO(3) × SO(4) in case of M8 and for the
representations of SO(3)× SU(3) in case of H.

This boils down to a hierarchy of approximate representations of the configuration space as Kähler
manifold with spinor structure with a truncation of the Clifford algebra to a finite dimensional Clifford
algebra. This is in spirit with the proposed interpretation of the inclusion sequence of hyper-finite
factors of type II1 and with the very notion of hyper-finiteness. A surprisingly concrete connection of
the configuration space geometry with generalized eigenvalue spectrum of DK(X3) and basic quantum
physics results. For instance, from the general expression of Kähler metric in terms of Kähler function

Gkl = ∂k∂lK =
∂k∂lexp(K)

exp(K)
− ∂kexp(K)

exp(K)

∂lexp(K)

exp(K)
, (4.6.13)

and from the expression of exp(K) =
∏
i λi as the product of of finite number of eigenvalues of

DK(X3), the expression

Gkl =
∑
i

∂k∂lλi
λi

− ∂kλi
λi

∂lλi
λi

(4.6.14)

for the configuration space metric follows. Here complex coordinates refer to the complex coordinates
of configuration space.

A good candidate for these complex coordinates are the complex coordinates of S2 × S, S =
CP2 or E4, for the points of B so that a close connection with the geometry of imbedding space is
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obtained. Once these coordinates have been specified G can be contracted with the Killing vector
fields of configuration space isometries defining the coordinates for the truncated configuration space.
By studying the behavior of eigenvalue spectrum under small deformations of X3

l by symplectic
transformations of δCD × S the components of G can be estimated.

4.7 Super-conformal symmetries at space-time and configura-
tion space level

The physical interpretation and detailed mathematical understanding of super-conformal symmetries
has developed rather slowly and has involved several side tracks. In the following I try to summarize the
basic picture with minimal amount of formulas with the understanding that the statement ”Noether
charge associated with geometrically realized Kac-Moody symmetry” is enough for the reader to write
down the needed formula explicitly.

4.7.1 Configuration space as a union of symmetric spaces

In finite-dimensional context globally symmetric spaces are of form G/H and connection and curvature
are independent of the metric, provided it is left invariant under G. The hope is that same holds true
in infinite-dimensional context. The most one can hope of obtaining is the decomposition C(H) =
∪iG/Hi over orbits of G. One could allow also symmetry breaking in the sense that G and H depend
on the orbit: C(H) = ∪iGi/Hi but it seems that G can be chosen to be same for all orbits. What
is essential is that these groups are infinite-dimensional. The basic properties of the coset space
decomposition give very strong constraints on the group H, which certainly contains the subgroup of
G, whose action reduces to diffeomorphisms of X3.

Consequences of the decomposition

If the decomposition to a union of coset spaces indeed occurs, the consequences for the calculability of
the theory are enormous since it suffices to find metric and curvature tensor for single representative
3-surface on a given orbit (contravariant form of metric gives propagator in perturbative calculation
of matrix elements as functional integrals over the configuration space). The representative surface
can be chosen to correspond to the maximum of Kähler function on a given orbit and one obtains
perturbation theory around this maximum (Kähler function is not isometry invariant).

The task is to identify the infinite-dimensional groups G and H and to understand the zero mode
structure of the configuration space. Almost twenty (seven according to long held belief!) years after
the discovery of the candidate for the Kähler function defining the metric, it became finally clear
that these identifications follow quite nicely from Diff4 invariance and Diff4 degeneracy as well as
special properties of the Kähler action.

The guess (not the first one!) would be following. G corresponds to the symplectic transformations
of δM4

±×CP2 leaving the induced Kähler form invariant. If G acts as isometries the values of Kähler
form at partonic 2-surfaces (remember effective 2-dimensionality) are zero modes and configuration
space allows slicing to symplectic orbits of the partonic 2-surface with fixed induced Kähler form.
Quantum fluctuating degrees of freedom would correspond to symplectic group and to the fluctua-
tions of the induced metric. The group H dividing G would in turn correspond to the Kac-Moody
symmetries respecting light-likeness of X3

l and acting in X3
l but trivially at the partonic 2-surface X2.

This coset structure was originally discovered via coset construction for super Virasoro algebras of
super-symplectic and super Kac-Moody algebras and realizes Equivalence Principle at quantum level.

Configuration space isometries as a subgroup of Diff(δM4
+ × CP2)

The reduction to light cone boundary leads to the identification of the isometry group as some subgroup
of for the group G for the diffeomorphisms of δM4

+ × CP2. These diffeomorphisms indeed act in a
natural manner in δCH, the the space of 3-surfaces in δM4

+ × CP2. Configuration space is expected
to decompose to a union of the coset spaces G/Hi, where Hi corresponds to some subgroup of G
containing the transformations of G acting as diffeomorphisms for given X3. Geometrically the vector
fields acting as diffeomorphisms of X3 are tangential to the 3-surface. Hi could depend on the topology
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of X3 and since G does not change the topology of 3-surface each 3-topology defines separate orbit
of G. Therefore, the union involves sum over all topologies of X3 plus possibly other ’zero modes’.
Different topologies are naturally glued together since singular 3-surfaces intermediate between two
3-topologies correspond to points common to the two sectors with different topologies.

4.7.2 Isometries of configuration space geometry as symplectic transfor-
mations of δM4

+ × CP2

During last decade I have considered several candidates for the group G of isometries of the configu-
ration space as the sub-algebra of the subalgebra of Diff(δM4

+ × CP2). To begin with let us write
the general decomposition of diff(δM4

+ × CP2):

diff(δM4
+ × CP2) = S(CP2)× diff(δM4

+)⊕ S(δM4
+)× diff(CP2) . (4.7.1)

Here S(X) denotes the scalar function basis of space X. This Lie-algebra is the direct sum of light cone
diffeomorphisms made local with respect to CP2 and CP2 diffeomorphisms made local with respect
to light cone boundary.

The idea that entire diffeomorphism group would act as isometries looks unrealistic since the theory
should be more or less equivalent with topological field theory in this case. Consider now the various
candidates for G.

1. The fact that symplectic transformations of CP2 and M4
+ diffeomorphisms are dynamical sym-

metries of the vacuum extremals suggests the possibility that the diffeomorphisms of the light
cone boundary and symplectic transformations of CP2 could leave Kähler function invariant and
thus correspond to zero modes. The symplectic transformations of CP2 localized with respect
to light cone boundary acting as symplectic transformations of CP2 have interpretation as local
color transformations and are a good candidate for the isometries. The fact that local color
transformations are not even approximate symmetries of Kähler action is not a problem: if they
were exact symmetries, Kähler function would be invariant and zero modes would be in question.

2. CP2 local conformal transformations of the light cone boundary act as isometries of δM4
+. Be-

sides this there is a huge group of the symplectic symmetries of δM4
+×CP2 if light cone boundary

is provided with the symplectic structure. Both groups must be considered as candidates for
groups of isometries. δM4

+×CP2 option exploits fully the special properties of δM4
+×CP2, and

one can develop simple argument demonstrating that δM4
+ × CP2 symplectic invariance is the

correct option. Also the construction of configuration space gamma matrices as super-symplectic
charges supports δM4

+ × CP2 option.

This picture remained same for a long time. The discovery that Kac-Moody algebra consisting of
X2 local symmetries generated by Hamiltonians of isometry sub-algebra of symplectic algebra forced
to challenge this picture and ask whether also X2-local transformations of symplectic group could be
involved.

1. The basic condition is that the X2 local transformation acts leaves induced Kähler form in-
variant apart from diffeomorphism. Denote the infinitesimal generator of X2 local symplecto
morphism by ΦA(x)jAk, where A labels Hamiltonians in the sum and by jα the generator of X2

diffeomorphism.

2. The invariance of J = εαβJαβ
√
g2 modulo diffeomorphism under the infinitesimal symplectic

transformation gives

{HA,ΦA} ≡ ∂αH
Aεαβ∂βΦA = ∂αJj

α . (4.7.2)

3. Note that here the Poisson bracket is not defined by Jαβ but εαβ defined by the induced metric.
Left hand side reflects the failure of symplectomorphism property due to the dependence of
ΦA(x) on X2 coordinate which and comes from the gradients of δM4 × CP2 coordinates in the
expression of the induced Kähler form. Right hand side corresponds to the action of infinitesimal
diffeomorphism.
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4. Let us assume that one can restrict the consideration to single Hamiltonian so that the trans-
formation is generated by Φ(x)HA and that to each Φ(x) there corresponds a diffeomorphism
of X2, which is a symplectic transformation of X2 with respect to symplectic form εαβ and
generated by Hamiltonian Ψ(x). This transforms the invariance condition to

{HA,Φ} ≡ ∂αH
Aεαβ∂βΦ = ∂αJε

αβ∂βΨA = {J,ΨA} . (4.7.3)

This condition can be solved identically by assuming that ΦA and Ψ are proportional to arbitrary
smooth function of J :

Φ = f(J) , ΨA = −f(J)HA . (4.7.4)

Therefore the X2 local symplectomorphisms of H reduce to symplectic transformations of X2

with Hamiltonians depending on single coordinate J of X2. The analogy with conformal in-
variance for which transformations depend on single coordinate z is obvious. As far as the
anti-commutation relations for induced spinor fields are considered this means that J = consant
curves behave as points points. For extrema of J appearing as candidates for points of number
theoretic braids J = constant curves reduce to points.

5. From the structure of the conditions it is easy to see that the transformations generate a Lie-
algebra. For the transformations Φ1

AH
A Φ2

AH
A the commutator is

Φ
[1,2]
A = f BC

A ΦBΦC , (4.7.5)

where f BC
A are the structure constants for the symplectic algebra of δM4

± × CP2. From this
form it is easy to check that Jacobi identifies are satisfied. The commutator has same form as
the commutator of gauge algebra generators. BRST gauge symmetry is perhaps the nearest
analog of this symmetry. In the case of isometries these transforms realized local color gauge
symmetry in TGD sense.

6. If space-time surface allows a slicing to light-like 3-surfaces Y 3
l parallel to X3

l , these conditions
make sense also for the partonic 2-surfaces defined by the intersections of Y 3

l with δM4
± × CP2

and ”parallel” to X2. The local symplectic transformations also generalize to their local variants
in X3

l . Light-likeness of X3
l means effective metric 2-dimensionality so that 2-D Kähler metric

and symplectic form as well as the invariant J = εαβJαβ exist. A straightforward calculation
shows that the the notion of local symplectic transformation makes sense also now and formulas
are exactly the same as above.

4.7.3 SUSY algebra defined by the anticommutation relations of fermionic
oscillator operators and WCW local Clifford algebra elements as
chiral super-fields

Whether TGD allows space-time supersymmetry has been a long-standing question. Majorana spinors
appear in N = 1 super-symmetric QFTs- in particular minimally super-symmetric standard model
(MSSM). Majorana-Weyl spinors appear in M-theory and super string models. An undesirable conse-
quence is chiral anomaly in the case that the numbers of left and right handed spinors are not same.
For D = 11 and D = 10 these anomalies cancel which led to the breakthrough of string models and
later to M-theory. The probable reason for considering these dimensions is that standard model does
not predict right-handed neutrino (although neutrino mass suggests that right handed neutrino exists)
so that the numbers of left and right handed Weyl-spinors are not the same.

In TGD framework the situation is different. Covariantly constant right-handed neutrino spinor
acts as a super-symmetry in CP2. One might think that right-handed neutrino in a well-defined sense
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disappears from the spectrum as a zero mode so that the number of right and left handed chiralities
in M4 ×CP2 would not be same. For light-like 3-surfaces covariantly constant right-handed neutrino
does not however solve the counterpart of Dirac equation for a non-vanishing four-momentum and
color quantum numbers of the physical state. Therefore it does not disappear from the spectrum
anymore and one expects the same number of right and left handed chiralities.

In TGD framework the separate conservation of baryon and lepton numbers excludes Majorana
spinors and also the the Minkowski signature of M4 × CP2 makes them impossible. The conclusion
that TGD does not allow super-symmetry is however wrong. For N = 2N Weyl spinors are indeed
possible and if the number of right and left handed Weyl spinors is same super-symmetry is possible.
In 8-D context right and left-handed fermions correspond to quarks and leptons and since color in
TGD framework corresponds to CP2 partial waves rather than spin like quantum number, also the
numbers of quark and lepton-like spinors are same.

The physical picture suggest a new kind of approach to super-symmetry in the sense that the
anticommutations of fermionic oscillator operators associated with the modes of the induced spinor
fields define a structure analogous to SUSY algebra. This means that N = 2N SUSY with large N
is in question allowing spins higher than two and also large fermion numbers. Recall that N ≤ 32 is
implied by the absence of spins higher than two and the number of real spinor components is N = 32
also in TGD. The situation clearly differs from that encountered in super-string models and SUSYs
and the large value of N allows to expect very powerful constraints on dynamics irrespective of the fact
that SUSY is broken. Right handed neutrino modes define a sub-algebra for which the SUSY is only
slightly broken by the absence of weak interactions and one could also consider a theory containing a
large number of N = 2 super-multiplets corresponding to the addition of right-handed neutrinos and
antineutrinos at the wormhole throat.

Masslessness condition is essential for super-symmetry and at the fundamental level it could be
formulated in terms of modified gamma matrices using octonionic representation and assuming that
they span local quaternionic sub-algebra at each point of the space-time sheet. SUSY algebra has
standard interpretation with respect to spin and isospin indices only at the partonic 2-surfaces so that
the basic algebra should be formulated at these surfaces. Effective 2-dimensionality would require
that partonic 2-surfaces can be taken to be ends of any light-like 3-surface Y 3

l in the slicing of the
region surrounding a given wormhole throat.

Super-algebra associated with the modified gamma matrices

Anti-commutation relations for fermionic oscillator operators associated with the induced spinor fields
are naturally formulated in terms of the modified gamma matrices. Super-conformal symmetry sug-
gests that the anti-commutation relations for the fermionic oscillator operators at light-like 3-surfaces
or at their ends are most naturally formulated as anti-commutation relations for SUSY algebra. The
resulting anti-commutation relations would fix the quantum TGD.

{a†nα, anβ} = DmnDαβ ,

D = (pµ +
∑
a

Qµa)σ̂µ . (4.7.6)

Here pµ and Qµa are space-time projections of momentum and color charges in Cartan algebra. Their
action is purely algebraic. The anti-commutations are nothing but a generalization of the ordinary
equal-time anticommutation relations for fermionic oscillator operators to a manifestly covariant form.
The matrix Dm,n is expected to reduce to a diagonal form with a proper normalization of the oscillator
operators. The experience with extended SUSY algebra suggest that the anti-commutators could
contain additional central term proportional to δαβ .

One can consider basically two different options concerning the definition of the super-algebra.

1. If the super-algebra is defined at the 3-D ends of the intersection of X4 with the bound-
aries of CD, the modified gamma matrices appearing in the operator D appearing in the
anti-commutator are associated with Kähler action. If the generalized masslessness condition
D2 = 0 holds true -as suggested already earlier- one can hope that no explicit breaking of super-
symmetry takes place and elegant description of massive states as effectively massless states
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making also possible generalization of twistor is possible. One must however notice that also
massive representatives of SUSY exist.

2. SUSY algebra could be also defined at 2-D ends of light-like 3-surfaces.

According to considerations of [47] these options are equivalent for a large class of space-time
sheets. If the effective 3-dimensionality realized in the sense that the effective metric defined by the
modified gamma matrices is degenerate, propagation takes place along 3-D light-like 3-surfaces. This
condition definitely fails for string like objects.

One can realize the local Clifford algebra also by introducing theta parameters in the standard
manner and the expressing a collection of local Clifford algebra element with varying values of fermion
numbers (function of CD and CP2 coordinates) as a chiral super-field. The definition of a chiral super
field requires the introduction of super-covariant derivatives. Standard form for the anti-commutators
of super-covariant derivatives Dα make sense only if they do not affect the modified gamma matrices.
This is achieved if pk acts on the position of the tip of CD (rather than internal coordinates of the
space-time sheet). Qa in turn must act on CP2 coordinates of the tip.

Super-fields associated with WCW Clifford algebra

WCW local Clifford algebra elements possess definite fermion numbers and it is not physically sensible
to super-pose local Clifford algebra elements with different fermion numbers. The extremely elegant
formulation of super-symmetric theories in terms of super-fields encourages to ask whether the local
Clifford algebra elements could allow expansion in terms of complex theta parameters assigned to
various fermionic oscillator operator in order to obtain formal superposition of elements with different
fermion numbers. One can also ask whether the notion of chiral super field might make sense.

The obvious question is whether it makes sense to assign super-fields with the modified gamma
matrices.

1. Modified gamma matrices are not covariantly constant but this is not a problem since the action
of momentum generators and color generators is purely algebraic space-time coordinates.

2. One can define the notion of chiral super-field also at the fundamental level. Chiral super-field
would be continuation of the local Clifford algebra of associated with CD to a local Clifford
algebra element associated with the union of CDs. This would allow elegant description of cm
degrees of freedom, which are the most interesting as far as QFT limit is considered.

3. Kähler function of WCW as a function of complex coordinates could be extended to a chi-
ral super-field defined in quantum fluctuation degrees of freedom. It would depend on zero
modes too. Does also the latter dependence allow super-space continuation? Coefficients of
powers of theta would correspond to fermionic oscillator operators. Does this function define
the propagators of various states associated with light-like 3-surface? Configuration space com-
plex coordinates would correspond to the modes of induced spinor field so that super-symmetry
would be realized very concretely.

4.7.4 Identification of Kac-Moody symmetries

The Kac-Moody algebra of symmetries acting as symmetries respecting the light-likeness of 3-surfaces
plays a crucial role in the identification of quantum fluctuating configuration space degrees of freedom
contributing to the metric.

Identification of Kac-Moody algebra

The generators of bosonic super Kac-Moody algebra leave the light-likeness condition
√
g3 = 0 invari-

ant. This gives the condition

δgαβCof(gαβ) = 0 , (4.7.7)
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Here Cof refers to matrix cofactor of gαβ and summation over indices is understood. The conditions
can be satisfied if the symmetries act as combinations of infinitesimal diffeomorphisms xµ → xµ + ξµ

of X3 and of infinitesimal conformal symmetries of the induced metric

δgαβ = λ(x)gαβ + ∂µgαβξ
µ + gµβ∂αξ

µ + gαµ∂βξ
µ . (4.7.8)

Ansatz as an X3-local conformal transformation of imbedding space

Write δhk as a super-position of X3-local infinitesimal diffeomorphisms of the imbedding space gen-
erated by vector fields JA = jA,k∂k:

δhk = cA(x)jA,k . (4.7.9)

This gives

cA(x)
[
Dkj

A
l +Dlj

A
k

]
∂αh

k∂βh
l + 2∂αcAhklj

A,k∂βh
l

= λ(x)gαβ + ∂µgαβξ
µ + gµβ∂αξ

µ + gαµ∂βξ
µ . (4.7.10)

If an X3-local variant of a conformal transformation of the imbedding space is in question, the first
term is proportional to the metric since one has

Dkj
A
l +Dlj

A
k = 2hkl . (4.7.11)

The transformations in question includes conformal transformations of H± and isometries of the
imbedding space H.

The contribution of the second term must correspond to an infinitesimal diffeomorphism of X3

reducible to infinitesimal conformal transformation ψµ:

2∂αcAhklj
A,k∂βh

l = ξµ∂µgαβ + gµβ∂αξ
µ + gαµ∂βξ

µ . (4.7.12)

A rough analysis of the conditions

One could consider a strategy of fixing cA and solving solving ξµ from the differential equations. In
order to simplify the situation one could assume that gir = grr = 0. The possibility to cast the metric
in this form is plausible since generic 3-manifold allows coordinates in which the metric is diagonal.

1. The equation for grr gives

∂rcAhklj
Ak∂rh

k = 0 . (4.7.13)

The radial derivative of the transformation is orthogonal to X3. No condition on ξα results. If
cA has common multiplicative dependence on cA = f(r)dA by a one obtains

dAhklj
Ak∂rh

k = 0 . (4.7.14)

so that JA is orthogonal to the light-like tangent vector ∂rh
k X3 which is the counterpart for

the condition that Kac-Moody algebra acts in the transversal degrees of freedom only. The
condition also states that the components gri is not changed in the infinitesimal transformation.

It is possible to choose f(r) freely so that one can perform the choice f(r) = rn and the notion
of radial conformal weight makes sense. The dependence of cA on transversal coordinates is
constrained by the transversality condition only. In particular, a common scale factor having
free dependence on the transversal coordinates is possible meaning that X3- local conformal
transformations of H are in question.



4.7. Super-conformal symmetries at space-time and configuration space level 255

2. The equation for gri gives

∂rξ
i = ∂rcAhklj

Akhij∂jh
k . (4.7.15)

The equation states that gri are not affected by the symmetry. The radial dependence of ξi is
fixed by this differential equation. No condition on ξr results. These conditions imply that the
local gauge transformations are dynamical with the light-like radial coordinate r playing the
role of the time variable. One should be able to fix the transformation more or less arbitrarily
at the partonic 2-surface X2.

3. The three independent equations for gij give

ξα∂αgij + gkj∂iξ
k + gki∂jξ

k = ∂icAhklj
Ak∂jh

l . (4.7.16)

These are 3 differential equations for 3 functions ξα on 2 independent variables xi with r ap-
pearing as a parameter. Note however that the derivatives of ξr do not appear in the equation.
At least formally equations are not over-determined so that solutions should exist for arbitrary
choices of cA as functions of X3 coordinates satisfying the orthogonality conditions. If this
is the case, the Kac-Moody algebra can be regarded as a local algebra in X3 subject to the
orthogonality constraint.

This algebra contains as a subalgebra the analog of Kac-Moody algebra for which all cA except
the one associated with time translation and fixed by the orthogonality condition depends on
the radial coordinate r only. The larger algebra decomposes into a direct sum of representations
of this algebra.

Commutators of infinitesimal symmetries

The commutators of infinitesimal symmetries need not be what one might expect since the vector
fields ξµ are functionals cA and of the induced metric and also cA depends on induced metric via the
orthogonality condition. What this means that jA,k in principle acts also to φB in the commutator
[cAJ

A, cBJ
B ].

[
cAJ

A, cBJ
B
]

= cAcBJ
[A,B] + JA ◦ cBJB − JB ◦ cAJA , (4.7.17)

where ◦ is a short hand notation for the change of cB induced by the effect of the conformal transfor-
mation JA on the induced metric.

Luckily, the conditions in the case grr = gir = 0 state that the components grr and gir of the
induced metric are unchanged in the transformation so that the condition for cA resulting from grr
component of the metric is not affected. Also the conditions coming from gir = 0 remain unchanged.
Therefore the commutation relations of local algebra apart from constraint from transversality result.

The commutator algebra of infinitesimal symmetries should also close in some sense. The or-
thogonality to the light-like tangent vector creates here a problem since the commutator does not
obviously satisfy this condition automatically. The problem can be solved by following the recipes of
non-covariant quantization of string model.

1. Make a choice of gauge by choosing time translation P 0 in a preferred M4 coordinate frame
to be the preferred generator JA0 ≡ P 0, whose coefficient ΦA0

≡ Ψ(P 0) is solved from the
orthogonality condition. This assumption is analogous with the assumption that time coordinate
is non-dynamical in the quantization of strings. The natural basis for the algebra is obtained
by allowing only a single generator JA besides P 0 and putting dA = 1.
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2. This prescription must be consistent with the well-defined radial conformal weight for the JA 6=
P 0 in the sense that the proportionality of dA to rn for JA 6= P 0 must be consistent with
commutators. SU(3) part of the algebra is of course not a problem. From the Lorentz vector
property of P k it is clear that the commutators resulting in a repeated commutation have well-
defined radial conformal weights only if one restricts SO(3, 1) to SO(3) commuting with P 0. Also
D could be allowed without losing well-defined radial conformal weights but the argument below
excludes it. This picture conforms with the earlier identification of the Kac-Moody algebra.

Conformal algebra contains besides Poincare algebra and the dilation D = mk∂mk the mutually
commuting generators Kk = (mrmr∂mk − 2mkml∂ml)/2. The commutators involving added
generators are

[
D,Kk

]
= −Kk ,

[
D,P k

]
= P k ,[

Kk,Kl
]

= 0 ,
[
Kk, P l

]
= mklD −Mkl .

(4.7.18)

From the last commutation relation it is clear that the inclusion of Kk would mean loss of
well-defined radial conformal weights.

3. The coefficient dm0/dr of Ψ(P 0) in the equation

Ψ(P 0)
dm0

dr
= −JAkhkl∂rhl

is always non-vanishing due to the light-likeness of r. Since P 0 commutes with generators of
SO(3) (but not with D so that it is excluded!), one can define the commutator of two generators
as a commutator of the remaining part and identify Ψ(P 0) from the condition above.

4. Of course, also the more general transformations act as Kac-Moody type symmetries but the
interpretation would be that the sub-algebra plays the same role as SO(3) in the case of Lorentz
group: that is gives rise to generalized spin degrees of freedom whereas the entire algebra divided
by this sub-algebra would define the coset space playing the role of orbital degrees of freedom. In
fact, also the Kac-Moody type symmetries for which cA depends on the transversal coordinates
of X3 would correspond to orbital degrees of freedom. The presence of these orbital degrees of
freedom arranging super Kac-Moody representations into infinite multiplets labeled by function
basis for X2 means that the number of degrees of freedom is much larger than in string models.

5. It is possible to replace the preferred time coordinate m0 with a preferred light-like coordinate.
There are good reasons to believe that orbifold singularity for phases of matter involving non-
standard value of Planck constant corresponds to a preferred light-ray going through the tip of
δM4
±. Thus it would be natural to assume that the preferred M4 coordinate varies along this

light ray or its dual. The Kac-Moody group SO(3)×E3 respecting the radial conformal weights
would reduce to SO(2) × E2 as in string models. E2 would act in tangent plane of S2

± along
this ray defining also SO(2) rotation axis.

Hamiltonians

The action of these transformations on Kähler action is well-defined and one can deduce the conserved
quantities having identification as configuration space Hamiltonians. Hamiltonians also correspond
to closed 2-forms. The condition that the Hamiltonian reduces to a dual of closed 2-form is satisfied
because X2-local conformal transformations of M4

±×CP2 are in question (X2-locality does not imply
any additional conditions).

The action of Kac-Moody algebra on spinors and fermionic representations of Kac-Moody
algebra

One can imagine two interpretations for the action of generalized Kac-Moody transformations on
spinors.
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1. The basic goal is to deduce the fermionic Noether charge associated with the bosonic Kac-Moody
symmetry and this can be done by a standard recipe. The first contribution to the charge comes
from the transformation of modified gamma matrices appearing in the modified Dirac action
associated with fermions. Second contribution comes from spinor rotation.

2. Both SO(3) and SU(3) rotations have a standard action as spin rotation and electro-weak rota-
tion allowing to define the action of the Kac-Moody algebra JA on spinors.

How central extension term could emerge?

The central extension term of Kac-Moody algebra could correspond to a symplectic extension which
can emerge from the freedom to add a constant term to Hamiltonians as in the case of super-symplectic
algebra. The expression of the Hamiltonians as closed forms could allow to understand how the central
extension term emerges.

In principle one can construct a representation for the action of Kac-Moody algebra on fermions a
representations as a fermionic bilinear and the central extension of Kac-Moody algebra could emerge
in this construction just as it appears in Sugawara construction.

About the interpretation of super Kac-Moody symmetries

Also the light like 3-surfaces X3
l of H defining elementary particle horizons at which Minkowskian

signature of the metric is changed to Euclidian and boundaries of space-time sheets can act as causal
determinants, and thus contribute to the configuration space metric. In this case the symmetries
correspond to the isometries of the imbedding space localized with respect to the complex coordinate
of the 2-surface X2 determining the light like 3-surface X3

l so that Kac-Moody type symmetry results.
Also the condition

√
g3 = 0 for the determinant of the induced metric seems to define a conformal

symmetry associated with the light like direction.
If is enough to localize only theH-isometries with respect toX3

l , the purely bosonic part of the Kac-
Moody algebra corresponds to the isometry group M4×SO(3, 1)×SU(3). The physical interpretation
of these symmetries is not so obvious as one might think. The point is that one can generalize the
formulas characterizing the action of infinitesimal isometries on spinor fields of finite-dimensional
Kähler manifold to the level of the configuration space. This gives rise to bosonic generators containing
also a sigma-matrix term bilinear in fermionic oscillator operators. This representation need not be
equivalent with the purely fermionic representations provided by induced Dirac action. Thus one has
two groups of local color charges and the challenge is to find a physical interpretation for them.

The following arguments support one possible identification.

1. The hint comes from the fact that U(2) in the decomposition CP2 = SU(3)/U(2) corresponds
in a well-defined sense electro-weak algebra identified as a holonomy algebra of the spinor con-
nection. Hence one could argue that the U(2) generators of either SU(3) algebra might be
identifiable as generators of local U(2)ew gauge transformations whereas non-diagonal gener-
ators would correspond to Higgs field. This interpretation would conform with the idea that
Higgs field is a genuine scalar field rather than a composite of fermions.

2. Since X3
l -local SU(3) transformations represented by fermionic currents are characterized by

central extension they would naturally correspond to the electro-weak gauge algebra and Higgs
bosons. This is also consistent with the fact that both leptons and quarks define fermionic Kac
Moody currents.

3. The fact that only quarks appear in the gamma matrices of the configuration space supports the
view that action of the generators of X3

l -local color transformations on configuration space spinor
fields represents local color transformations. If the action of X3

l -local SU(3) transformations
on configuration space spinor fields has trivial central extension term the identification as a
representation of local color symmetries is possible.

The topological explanation of the family replication phenomenon is based on an assignment of 2-
dimensional boundary to a 3-surface characterizing the elementary particle. The precise identification
of this surface has remained open and one possibility is that the 2-surfaceX2 defining the light light-like
surface associated with an elementary particle horizon is in question. This assumption would conform
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with the notion of elementary particle vacuum functionals defined in the zero modes characterizing
different conformal equivalences classes for X2.

The relationship of the Super-Kac Moody symmetry to the standard super-conformal
invariance

Super-Kac Moody symmetry can be regarded as N = 4 complex super-symmetry with complex H-
spinor modes of H representing the 4 physical helicities of 8-component leptonic and quark like spinors
acting as generators of complex dynamical super-symmetries. The super-symmetries generated by the
covariantly constant right handed neutrino appear with both M4 helicities: it however seems that
covariantly constant neutrino does not generate any global super-symmetry in the sense of particle-
sparticle mass degeneracy. Only righthanded neutrino spinor modes (apart from covariantly constant
mode) appear in the expressions of configuration space gamma matrices forming a subalgebra of the
full super-algebra.

N = 2 real super-conformal algebra is generated by the energy momentum tensor T (z), U(1)
current J(z), and super generatorsG±(z) carrying U(1) charge. Now U(1) current would correspond to
right-handed neutrino number and super generators would involve contraction of covariantly constant
neutrino spinor with second quantized induced spinor field. The further facts that N = 2 algebra is
associated naturally with Kähler geometry, that the partition functions associated with N = 2 super-
conformal representations are modular invariant, and that N = 2 algebra defines so called chiral ring
defining a topological quantum field theory [46], lend a further support for the belief that N = 2
super-conformal algebra acts in super-symplectic degrees of freedom.

The values of c and conformal weights for N = 2 super-conformal field theories are given by

c =
3k

k + 2
,

∆l,m(NS) =
l(l + 2)−m2

4(k + 2)
, l = 0, 1, ..., k ,

qm =
m

k + 2
, m = −l,−l + 2, ...., l − 2, l . (4.7.19)

qm is the fractional value of the U(1) charge, which would now correspond to a fractional fermion
number. For k = 1 one would have q = 0, 1/3,−1/3, which brings in mind anyons. ∆l=0,m=0 = 0
state would correspond to a massless state with a vanishing fermion number. Note that SU(2)k
Wess-Zumino model has the same value of c but different conformal weights. More information about
conformal algebras can be found from the appendix of [46].

For Ramond representation L0−c/24 or equivalently G0 must annihilate the massless states. This
occurs for ∆ = c/24 giving the condition k = 2

[
l(l + 2)−m2

]
(note that k must be even and that

(k, l,m) = (4, 1, 1) is the simplest non-trivial solution to the condition). Note the appearance of a
fractional vacuum fermion number qvac = ±c/12 = ±k/4(k+2). I have proposed that NS and Ramond
algebras could combine to a larger algebra containing also lepto-quark type generators but this not
necessary.

The conformal algebra defined as a direct sum of Ramond and NS N = 4 complex sub-algebras
associated with quarks and leptons might further extend to a larger algebra if lepto-quark generators
acting effectively as half odd-integer Virasoro generators can be allowed. The algebra would contain
spin and electro-weak spin as fermionic indices. Poincare and color Kac-Moody generators would
act as symplectically extended isometry generators on configuration space Hamiltonians expressible
in terms of Hamiltonians of X3

l × CP2. Electro-weak and color Kac-Moody currents have conformal
weight h = 1 whereas T and G have conformal weights h = 2 and h = 3/2.

The experience with N = 4 complex super-conformal invariance suggests that the extended algebra
requires the inclusion of also second quantized induced spinor fields with h = 1/2 and their super-
partners with h = 0 and realized as fermion-antifermion bilinears. Since G and Ψ are labeled by
2× 4 spinor indices, super-partners would correspond to 2× (3 + 1) = 8 massless electro-weak gauge
boson states with polarization included. Their inclusion would make the theory highly predictive since
induced spinor and electro-weak fields are the fundamental fields in TGD.
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4.7.5 Coset space structure for configuration space as a symmetric space

The key ingredient in the theory of symmetric spaces is that the Lie-algebra of G has the following
decomposition

g = h+ t ,
[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h .

In present case this has highly nontrivial consequences. The commutator of any two infinitesimal
generators generating nontrivial deformation of 3-surface belongs to h and thus vanishing norm in the
configuration space metric at the point which is left invariant by H. In fact, this same condition follows
from Ricci flatness requirement and guarantees also thatG acts as isometries of the configuration space.
This generalization is supported by the properties of the unitary representations of Lorentz group at
the light cone boundary and by number theoretical considerations.

The algebras suggesting themselves as candidates are symplectic algebra of δM± ×CP2 and Kac-
Moody algebra mapping light-like 3-surfaces to light-like 3-surfaces to be discussed in the next section.

The identification of the precise form of the coset space structure is however somewhat delicate.

1. The essential point is that both symplectic and Kac-Moody algebras allow representation in
terms of X3

l -local Hamiltonians. The general expression for the Hamilton of Kac-Moody algebra
is

H =
∑

ΦA(x)HA . (4.7.20)

Here HA are Hamiltonians of SO(3)× SU(3) acting in δX3
l ×CP2. For symplectic algebra any

Hamiltonian is allowed. If x corresponds to any point of X3
l , one must assume a slicing of the

causal diamond CD by translates of δM4
±.

2. For symplectic generators the dependence of form on r∆ on light-like coordinate of δX3
l × CP2

is allowed. ∆ is complex parameter whose modulus squared is interpreted as conformal weight.
∆ is identified as analogous quantum number labeling the modes of induced spinor field.

3. One can wonder whether the choices of the rM = constant sphere S2 is the only choice. The
Hamiltonin-Jacobi coordinate for X4

X3
l

suggest an alternative choice as E2 in the decomposition

of M4 = M2(x)×E2(x) required by number theoretical compactification and present for known
extremals of Kähler action with Minkowskian signature of induced metric. In this case SO(3)
would be replaced with SO(2). It however seems that the radial light-like coordinate u of X4(X3

l )
would remain the same since any other curve along light-like boundary would be space-like.

4. The vector fields for representing Kac-Moody algebra must vanish at the partonic 2-surface
X2 ⊂ δM4

± × CP2. The corresponding vector field must vanish at each point of X2:

jk =
∑

ΦA(x)JklHA
l = 0 . (4.7.21)

This means that the vector field corresponds to SO(2)×U(2) defining the isotropy group of the
point of S2 × CP2.

This expression could be deduced from the idea that the surfaces X2 are analogous to origin of
CP2 at which U(2) vector fields vanish. Configuration space at X2 could be also regarded as the
analog of the origin of local S2×CP2. This interpretation is in accordance with the original idea
which however was given up in the lack of proper realization. The same picture can be deduced
from braiding in which case the Kac-Moody algebra corresponds to local SO(2)×U(2) for each
point of the braid at X2. The condition that Kac-Moody generators with positive conformal
weight annihilate physical states could be interpreted by stating effective 2-dimensionality in the
sense that the deformations of X3

l preserving its light-likeness do not affect the physics. Note
however that Kac-Moody type Virasoro generators do not annihilate physical states.
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5. Kac-Moody algebra generator must leave induced Kähler form invariant at X2. This is of course
trivial since the action leaves each point invariant. The conditions of Cartan decomposition are
satisfied. The commutators of the Kac-Moody vector fields with symplectic generators are
non-vanishing since the action of symplectic generator on Kac-Moody generator restricted to
X2 gives a non-vanishing result belonging to the symplectic algebra. Also the commutators of
Kac-Moody generators are Kac-Moody generators.

4.7.6 The relationship between super-symplectic and Super Kac-Moody
algebras, Equivalence Principle, and justification of p-adic thermo-
dynamics

The relationship between super-symplectic algebra (SS) acting at light-cone boundary and Super
Kac-Moody algebra (SKM) acting on light-like 3-surfaces has remained somewhat enigmatic due to
the lack of physical insights. This is not the only problem. The question to precisely what extent
Equivalence Principle (EP) remains true in TGD framework and what might be the precise mathe-
matical realization of EP is waiting for an answer. Also the justification of p-adic thermodynamics
for the scaling generator L0 of Virasoro algebra -in obvious conflict with the basic wisdom that this
generator should annihilate physical states- is lacking. It seems that these three problems could have
a common solution.

New vision about the relationship between SSV and SKMV

Consider now the new vision about the relationship between SSV and SKMV .

1. The isometries of H assignable with SKM are also symplectic transformations [22] (note that
I have used the attribute ”canonical” instead of ”symplectic” previously). Hence might con-
sider the possibility that SKM could be identified as a subalgebra of SS. If this makes sense,
a generalization of the coset construction obtained by replacing finite-dimensional Lie group
with infinite-dimensional symplectic group suggests itself. The differences of SSV and SKMV
elements would annihilate physical states and commute/anticommute with SKMV . Also the
generators On, n > 0, for both algebras would annihilate the physical states so that the differ-
ences of the elements would annihilate automatically physical states for n > 0.

2. The super-generator G0 contains the Dirac operator D of H. If the action of SSV and SKMV
Dirac operators on physical states are identical then cm of degrees of freedom disappear from
the differences G0(SCV )−G0(SKMV ) and L0(SCV )− L0(SKMV ). One could interpret the
identical action of the Dirac operators as the long sought-for precise realization of Equivalence
Principle (EP) in TGD framework. EP would state that the total inertial four-momentum and
color quantum numbers assignable to SS (imbedding space level) are equal to the gravitational
four-momentum and color quantum numbers assignable to SKM (space-time level). Note that
since super-symplectic transformations correspond to the isometries of the ”world of classical
worlds” the assignment of the attribute ”inertial” to them is natural.

Consistency with p-adic thermodynamics

The consistency with p-adic thermodynamics provides a strong reality test and has been already used
as a constraint in attempts to understand the super-conformal symmetries in partonic level.

1. In physical states the p-adic thermal expectation value of the SKM and SS conformal weights
would be non-vanishing and identical and mass squared could be identified equivalently either
as the expectation value of SKM or SS scaling generator L0. There would be no need to give
up Super Virasoro conditions for SCV − SKMV .

2. There is consistency with p-adic mass calculations for hadrons [17] since the non-perturbative SS
contributions and perturbative SKM contributions to the mass correspond to space-time sheets
labeled by different p-adic primes. The earlier statement that SS is responsible for the domi-
nating non-perturbative contributions to the hadron mass transforms to a statement reflecting
SS − SKM duality. The perturbative quark contributions to hadron masses can be calculated



4.7. Super-conformal symmetries at space-time and configuration space level 261

most conveniently by using p-adic thermodynamics for SKM whereas non-perturbative contri-
butions to hadron masses can be calculated most conveniently by using p-adic thermodynamics
for SS. Also the proposal that the exotic analogs of baryons resulting when baryon looses its
valence quarks [31] remains intact in this framework.

3. The results of p-adic mass calculations depend crucially on the number N of tensor factors
contributing to the Super-Virasoro algebra. The required number is N = 5 and during years
I have proposed several explanations for this number. It seems that holonomic contributions
that is electro-weak and spin contributions must be regarded as contributions separate from
those coming from isometries. SKM algebras in electro-weak degrees and spin degrees of of
freedom, would give 2+1=3 tensor factors corresponding to U(2)ew ×SU(2). SU(3) and SO(3)
(or SO(2) ⊂ SO(3) leaving the intersection of light-like ray with S2 invariant) would give 2
additional tensor factors. Altogether one would indeed have 5 tensor factors.

There are some further questions which pop up in mind immediately.

1. Why mass squared corresponds to the thermal expectation value of the net conformal weight?
This option is forced among other things by Lorentz invariance but it is not possible to provide
a really satisfactory answer to this question yet. In the coset construction there is no reason to
require that the mass squared equals to the integer value conformal weight for SKM algebra.
This allows the possibility that mass squared has same value for states with different values
of SKM conformal weights appearing in the thermal state and equals to the average of the
conformal weight.

2. The coefficient of proportionality can be however deduced from the observation that the mass
squared values for CP2 Dirac operator correspond to definite values of conformal weight in p-
adic mass calculations. It is indeed possible to assign to partonic 2-surface X2 CP2 partial
waves correlating strongly with the net electro-weak quantum numbers of the parton so that the
assignment of ground state conformal weight to CP2 partial waves makes sense.

3. In the case of M4 degrees of freedom it is strictly speaking not possible to talk about momentum
eigen states since translations take parton out of δH+. This would suggests that 4-momentum
must be assigned with the tip of the light-cone containing the particle but this is not consistent
with zero energy ontology. Hence it seems that one must restrict the translations of X3

l to
time like translations in the direction of geometric future at δM4

+ × CP2. The decomposition
of the partonic 3-surface X3

l to regions X3
l,i carrying non-vanishing induced Kähler form and

the possibility to assign M2(x) ⊂M4 to the tangent space of X4(X3
l ) at points of X3

l suggests
that the points of number theoretic braid to which oscillator operators can be assigned can
carry four-momentum in the plane defined by M2(x). One could assume that the four-momenta
assigned with points in given region X3

i are collinear but even this restriction is not necessary.

4. The additivity of conformal weight means additivity of mass squared at parton level and this
has been indeed used in p-adic mass calculations. This implies the conditions

(
∑
i

pi)
2 =

∑
i

m2
i (4.7.22)

The assumption p2
i = m2

i makes sense only for massless partons moving collinearly. In the QCD
based model of hadrons only longitudinal momenta and transverse momentum squared are used
as labels of parton states, which together with the presence of preferred plane M2 would suggest
that one has

p2
i,|| = m2

i ,

−
∑
i

p2
i,⊥ + 2

∑
i,j

pi · pj = 0 . (4.7.23)
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The masses would be reduced in bound states: m2
i → m2

i − (p2
T )i. This could explain why

massive quarks can behave as nearly massless quarks inside hadrons.

How it is possible to have negative conformal weights for ground states?

p-Adic mass calculations require negative conformal weights for ground states [19]. The only elegant
solution of the problems caused by this requirement seems to be p-adic: the conformal weights are
positive in the real sense but as p-adic numbers their dominating part is negative integer (in the real
sense), which can be compensated by the conformal weights of Super Virasoro generators.

1. If ±λ2
i as such corresponds to a ground state conformal weight and if λi is real the ground state

conformal weight positive in the real sense. In complex case (instanton term) the most natural
formula is h = ±|λ|2.

2. The first option is based on the understanding of conformal excitations in terms of CP breaking
instanton term added to the modified Dirac operator. In this case the conformal weights are
identified as h = n − |λk|2 and the minus sign comes from the Euclidian signature of the
effective metric for the modified Dirac operator. Ground state conformal weight would be
non-vanishing for non-zero modes of D(X3

l ). Massless bosons produce difficulties unless one
has h = |λi(1) − λi(2)|2, where i = 1, 2 refers to the two wormhole throats. In this case the
difference can vanish and its non-vanishing would be due to the symmetric breaking. This
scenario is assumed in p-adic mass calculations. Fermions are predicted to be always massive
since zero modes of D(X2) represent super gauge degrees of freedom.

3. In the context of p-adic thermodynamics a loop hole opens allowing λi to be real. In spirit of
rational physics suppose that one has in natural units h = λ2

i = xp2 − n, where x is integer.
This number is positive and large in the real sense. In p-adic sense the dominating part of
this number is −n and can be compensated by the net conformal weight n of Super Virasoro
generators acting on the ground state. xp2 represents the small Higgs contribution to the mass
squared proportional to (xp2)R ' x/p2 (R refers to canonical identification ). By the basic
features of the canonical identification p > x ' p should hold true for gauge bosons for which
Higgs contribution dominates. For fermions x should be small since p-adic mass calculations are
consistent with the vanishing of Higgs contribution to the fermion mass. This would lead to the
earlier conclusion that xp2 and hence BK is large for bosons and small for fermions and that the
size of fermionic (bosonic) wormhole throat is large (small). This kind of picture is consistent
with the p-adic modular arithmetics and suggests by the cutoff for conformal weights implied
by the fact that both the number of fermionic oscillator operators and the number of points of
number theoretic braid are finite. This solution is however tricky and does not conform with
number theoretical universality.

4.7.7 Comparison of TGD and stringy views about super-conformal sym-
metries

The best manner to represent TGD based view about conformal symmetries is by comparison with
the conformal symmetries of super string models.

Basic differences between the realization of super conformal symmetries in TGD and in
super-string models

The realization super-symmetries in TGD framework differs from that in string models in several
fundamental aspects.

1. In TGD framework super-symmetry generators acting as configuration space gamma matrices
carry either lepton or quark number. Majorana condition required by the hermiticity of super
generators which is crucial for super string models would be in conflict with the conservation of
baryon and lepton numbers and is avoided. This is made possible by the realization of bosonic
generators represented as Hamiltonians of symplectic transformations rather than vector fields
generating them. This kind of representation applies also in Kac-Moody sector since the local
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transversal isometries localized in X3
l and respecting light-likeness condition can be regarded

as X2 local symplectic transformations, whose Hamiltonians generate also isometries. The
fermionic representations of super-symplectic and super Kac-Moody generators can be identified
as Noether charges in standard manner.

2. Super-symmetry generators can be identified as configuration space gamma matrices carrying
quark and lepton numbers and the notion of super-space is not needed at all. Therefore no
super-variant of geometry is needed. The distinction between Ramond and N-S representations
important for N = 1 super-conformal symmetry and allowing only ground state weight 0 an
1/2 disappears. Indeed, for N = 2 super-conformal symmetry it is already possible to generate
spectral flow transforming these Ramond and N-S representations to each other (Gn is not
Hermitian anymore). This means that the interpretation of λ2

i (λi is generalized eigenvalue of
DK(X2)) as ground state conformal weight does not lead to difficulties.

3. Kac-Moody and symplectic algebras generate larger algebra obtained by making symplectic
algebra X2 local. This realization of super symmetries is what distinguishes between TGD and
super string models and leads to a totally different physical interpretation of super-conformal
symmetries. What makes spinor field mode a generator of gauge super-symmetry is that is c-
number and not an eigenmode of DK(X2) and thus represents non-dynamical degrees of freedom.
If the number of eigen modes of DK(X2) is indeed finite means that most of spinor field modes
represent super gauge degrees of freedom. One must be here somewhat cautious since bound
state in the Coulomb potential associated with electric part of induced electro-weak gauge field
might give rise to an infinite number of bound states which eigenvalues converging to a fixed
eigenvalue (as in the case of hydrogen atom).

4. The finite number of spinor modes means that the representations of super-conformal algebras
reduces to finite-dimensional ones in TGD framework and the notion of number theoretic braid
indeed implies this. The physical interpretation is in terms of finite measurement resolution.

Basic super-conformal symmetries

The identification of explicit representations of super conformal algebras was for a long time plagued
by the lack of appropriate formalism. The modified Dirac operator DK associated with Kähler action
resolves this problem if one accepts the implications of number theoretic compactification supported by
what is known about preferred extremals of Kähler action and one can identify the charges associated
with symplectic and Kac-Moody algebra as Noether charges. Fermionic generators can in turn be
identified from the condition that they anticommute toX2 local Hamiltonians of corresponding bosonic
transformations. In case of Super Virasoro algebra Sugaware construction allows to construct super
generators G.

1. Covariantly constant right handed neutrino is the fundamental generator of dynamical super
conformal symmetries and appears in both leptonic and quark-like realizations of gamma matri-
ces. Γ matrices have also Super Kac-Moody counterparts and reduce in special case to symplectic
ones. Also super currents whose anti-commutators give products of corresponding Hamiltoni-
ans can be defined so that both ordinary product and Poisson bracket give rise to quark and
lepton like realizations of super-symmetries. Besides this there are also electric and magnetic
representations of the gamma matrices.

2. The zero modes of DK(X2) which do not depend on the light-like radial coordinate of X3
l de-

fine super conformal symmetries for which any c-number spinor field generates super conformal
symmetry. These symmetries are pure gauge symmetries but also them can be parameterized
by Hamiltonians and by functions depending only on the coordinates of the transverse section
X2 so that one obtains also now both function algebra and symplectic algebra localized with
respect to X2. Similar picture applies in both super-symplectic and super Kac-Moody sector.
In particular, one can deduce canonical expressions for the super currents associated with these
super symmetries. Since all charge states are possible for the generators of these super symme-
tries, these super symmetries naturally correspond to those assignable to electro-weak degrees
of freedom.
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3. The notion of X2 local super-symmetry makes sense if the choice of coordinates x for X2

is specified by the inherent properties of X2 so that same coordinates x apply for all surfaces
obtained as deformations of X2. The regions, where induced Kähler form is non-vanishing define
good candidates for coordinate patches. The Hamilton-Jacobi coordinates associated with the
decomposition of M4 are a natural choice. Also geodesic coordinates can be considered. The
redundancy related to rotations of coordinate axis around origin can be reduced by choosing
second axis so that it connects the origin to nearest point of the number theoretic braid.

4. The diffeomorphisms of light-like coordinate of δM4
± and X3

l playing the role of conformal
transformations. One can construct fermionic representations of as Noether charges associated
with modified Dirac action. The problem is however that that super-generators cannot be derived
in this manner so that these transformations cannot be regarded as symplectic transformations.
The manner to circumvent the difficulty is to construct fermionic super charges ΓA as gamma
matrices for both super symplectic and super Kac-Moody algebras in terms of generators jAkΓk
and corresponding Kac-Moody algebra elements TA as fermionic super charges. From these
operators super generators G can be constructed by the standard Sugawara construction allowing
to interpret operators G = TAΓA as Dirac operators at the level of configuration space. By
coset construction the actions of super-symplectic and super Kac-Moody Dirac operators are
identical. Internal consistency requires that the Virasoro generators obtained as anticommutator
L = {G,G†} are equal to the Virasoro generators derived as fermionic Noether charges.

Finite measurement resolution and cutoff in the spectrum of conformal weights

The basic properties of Kähler action imply that the number generalized eigenvalues λi of DK(X2)
is finite. The interpretation is that the notion of finite measurement resolution is coded by Kähler
action to space-time dynamics. This has also implications for the representations of super-conformal
algebras.

1. The fermionic representations of various super-algebras involve only finite number of oscillator
operators. Hence some kind of cutoff in the number of states reflecting the finiteness of the
measurement resolution is unavoidable. A cutoff reduce integers as labels of the generators of
super-conformal algebras to a finite number of integers. Finite field G(p, 1) for some prime p
would be a natural candidate. Since p-adic integers modulo p are in question the cutoff could
relate closely to effective p-adicity and p-adic length scale-hypothesis.

2. The interpretation of the eigenvalues of the modified Dirac operator as ground state confor-
mal weights raises the question how to represent states with conformal weights n + λ2

i , n > 0.
The notion of number theoretic braid allows to circumvent the difficulty. Since canonical anti-
commutation relations fail, one must replace the integral representations of super-conformal
generators with discrete sums over the points of number theoretic braid, the resulting represen-
tations of super-conformal algebras must reduce to representation of finite-dimensional algebras.
The cutoff on conformal weight must result from the fact that the higher Virasoro generators are
expressible in terms of lower ones. The cutoff is not a problem since n < 3 cutoff for conformal
weights gives an excellent accuracy in p-adic mass calculations. A not-very-educated guess but
the only one that one can imagine is that for p ' 2k, nmax = k defines the cutoff on allowed
conformal weights.

What are the counter parts of stringy conformal fields in TGD framework?

The experience with string models would suggest the conformal symmetries associated with the com-
plex coordinates of X2 as a candidate for conformal super-symmetries. One can imagine two coun-
terparts of the stringy coordinate z in TGD framework.

1. Super-symplectic and super Kac-Moody symmetries are local with respect to X2 in the sense
that the coefficients of generators depend on the invariant J = εαβJαβ

√
g2 rather than being

completely free [22]. Thus the real variable J replaces complex coordinate and effective 1-
dimensionality holds true also now but in different sense than for conformal field theories.
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2. The slicing of X2 by string world sheets Y 2 and partonic 2-surfaces X2 implied by number theo-
retical compactification implies string-parton duality and involves the super conformal fermionic
gauge symmetries associated with the coordinates u and w in the dual dimensional reductions
to stringy and partonic dynamics. These coordinates define the natural analogs of stringy coor-
dinate.

3. An further identification for TGD parts of conformal fields is inspired by M8−H duality. Con-
formal fields would be fields in configuration space. The counterpart of z coordinate could be
the hyper-octonionic M8 coordinate m appearing as argument in the Laurent series of config-
uration space Clifford algebra elements. m would characterize the position of the tip of CD
and the fractal hierarchy of CDs within CDs would give a hierarchy of Clifford algebras and
thus inclusions of hyper-finite factors of type II1. Reduction to hyper-quaternionic field -that is
field in M4 center of mass degrees of freedom- would be needed to obtained associativity. The
arguments m at various level might correspond to arguments of N-point function in quantum
field theory.

Generalized coset representation

X2 local super-symplectic algebra as super Kac-Moody algebra as sub-algebra. Since X2 locality
corresponds to a full 2-D gauge invariance, one can conclude that SKM is in well defined sense sub-
algebra of super-symplectic algebra so that generalized coset construction makes sense and generalizes
Equivalence Principle in the sense that not only four-momenta but all analogous quantum numbers
associated with SKM and SS algebras are identical.

1. In this framework the ground state conformal weights associated with both super-symplectic
and super Kac-Moody algebras can be identified as squares of the eigenvalues λi of DK(X2).
This identification together with p-adic mass thermodynamics predicts that λ2

i gives to mass
squared a contribution analogous to the square of Higgs vacuum expectation. This identification
would resolve the long-standing problem of identifying the values of these ground state conformal
weights for super-conformal algebras and give a direct connection with Higgs mechanism.

2. The identification of SKM as a sub-algebra of super-symplectic algebra becomes more convincing
if the light-like coordinate r allows lifting to a light-like coordinate of H. This is achieved if r
is identified as coordinate associated with a light-like curve whose tangent at point x ∈ X3

l is
light-like vector in M2(x) ⊂ T (X4(X3). With this interpretation of SKM algebra as sub-algebra
of super-symplectic algebra becomes natural.

3. The existence of a lifting of SS and SKM algebras to entire H would solve the problems. The
lifting problem is obviously non-trivial only inM4 degrees of freedom. Suppose that the existence
of an integrable distribution of planes M2(x) and their orthogonal complements E2(x) belonging
to the tangent space of M4 projection PM4(X4(X3)) characterizes the preferred extremals with
Minkowskian signature of induced metric. In this case the lifting of the super-symplectic and
super Kac-Moody algebras to entire H is possible. The local degrees of freedom contributing
to the configuration space metric would belong to the integrable distribution of orthogonal
complements E2(x) of M2(x) having physical interpretation as planes of physical polarizations.
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Chapter 5

Does the Modified Dirac Equation
Define the Fundamental Action
Principle?

5.1 Introduction

Although quantum criticality in principle predicts the possible values of Kähler coupling strength,
one might hope that there exists even more fundamental approach involving no coupling constants
and predicting even quantum criticality and realizing quantum gravitational holography. The Dirac
determinant associated with the modified Dirac action is an excellent candidate in this respect.

The original working hypothesis was that Dirac determinant defines the vacuum functional of the
theory having interpretation as the exponent of Kähler function of world of classical worlds (WCW)
and that Kähler function reduces to Kähler action for a preferred extremal of Kähler action.

Two alternative choices represented themselves as candidates for the modified Dirac action: either
the 3-D Chern-Simons Dirac action or 4-D Kähler action with imaginary measurement interaction term
added. Quite recently it became clear that the addition of a measurement interaction term to either
Chern-Simons action or Kähler action resolves a bundle of conceptual problems. The question which
option is correct is not completely settled yet although it seems that the measurement interaction
term assigned to Chern-Simons-Dirac action creates more problems that it solves.

5.1.1 What are the basic equations of quantum TGD?

A good place to start is to as what might the basic equations of quantum TGD. There are two kinds
of equations at the level of space-time surfaces.

1. Purely classical equations define the dynamics of the space-time sheets as preferred extremals
of Kähler action. Preferred extremals are quantum critical in the sense that second variation
vanishes for critical deformations representing zero modes. This condition guarantees that corre-
sponding fermionic currents are conserved. There is infinite hierarchy of these currents and they
define fermionic counterparts for zero modes. Space-time sheets can be also regarded as hyper-
quaternionic surfaces. What these statements precisely mean has become clear only during this
year. A rigorous proof for the equivalence of these two identifications is still lacking.

2. The purely quantal equations are associated with the representations of various super-conformal
algebras and with the modified Dirac equation. The requirement that there are deformations
of the space-time surface -actually infinite number of them- giving rise to conserved fermionic
charges implies quantum criticality at the level of Kähler action in the sense of critical de-
formations. The precise form of the modified Dirac equation is not however completely fixed
without further input. Quantal equations involve also generalized Feynman rules for M -matrix
generalizing S-matrix to a ”complex square root” of density matrix and defined by time-like
entanglement coefficients between positive and negative energy parts of zero energy states is
certainly the basic goal of quantum TGD.
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3. The notion of weak electric-magnetic duality leads to a detailed understanding of how TGD
reduces to almost topological quantum field theory. If Kähler current defines Beltrami flow it
is possible to find a gauge in which Coulomb contribution to Kähler action vanishes so that
it reduces to Chern-Simons term. If light-like 3-surfaces and ends of space-time surface are
extremals of Chern-Simons action also effective 2-dimensionality is realized. The condition
that the theory reduces to almost topological QFT and the hydrodynamical character of field
equations leads to a detailed ansatz for the general solution of field equations and also for
the solutions of the modified Dirac equation relying on the notion of Beltrami flow for which
the flow parameter associated with the flow lines defined by a conserved current extends to a
global coordinate. This makes the theory is in well-defined sense completely integrable. Direct
connection with massless theories emerges: every conserved Beltrami currents corresponds to a
pair of scalar functions with the first one satisfying massless d’Alembert equation in the induced
metric. The orthogonality of the gradients of these functions allows interpretation in terms of
polarization and momentum directions. The Beltrami flow property can be also seen as one
aspect of quantum criticality since the conserved currents associated with critical deformations
define this kind of pairs.

4. The hierarchy of Planck constants provides also a fresh view to the quantum criticality. The
original justification for the hierarchy of Planck constants came from the indications that Planck
constant could have large values in both astrophysical systems involving dark matter and also
in biology. The realization of the hierarchy in terms of the singular coverings and possibly
also factor spaces of CD and CP2 emerged from consistency conditions. It however seems
that TGD actually predicts this hierarchy of covering spaces. The extreme non-linearity of
the field equations defined by Kähler action means that the correspondence between canonical
momentum densities and time derivatives of the imbedding space coordinates is 1-to-many. This
leads naturally to the introduction of the covering space of CD×CP2, where CD denotes causal
diamond defined as intersection of future and past directed light-cones.

At the level of WCW there is the generalization of the Dirac equation which can be regarded as a
purely classical Dirac equation. The modified Dirac operators associated with quarks and leptons carry
fermion number but the Dirac equations are well-defined. An orthogonal basis of solutions of these
Dirac operators define in zero energy ontology a basis of zero energy states. The M -matrices defining
entanglement between positive and negative energy parts of the zero energy state define what can be
regarded as analogs of thermal S-matrices. The M-matrices associated with the solution basis of the
WCW Dirac equation define by their orthogonality unitary U-matrix between zero energy states. This
matrix finds the proper interpretation in TGD inspired theory of consciousness. WCW Dirac equation
as the analog of super-Virasoro conditions for the ”gamma fields” of superstring models defining super
counterparts of Virasoro generators was the main focus during earlier period of quantum TGD but
has not received so much attention lately and will not be discussed in this chapter.

Quantum classical correspondence requires a coupling between quantum and classical and this
coupling should also give rise to a generalization of quantum measurement theory. The big question
mark is how to realize this coupling. The addition of a measurement interaction term to the modified
Dirac action turned out to do the job [18, 30] and solves a handful of problems of quantum TGD and
unifies various visions about the physics predicted by quantum TGD.

5.1.2 Modified Dirac equation for induced classical spinor fields

The basic vision is that WCW geometry reduces to the second quantization of induced spinor fields.
This means that WCW gamma matrices are linear combinations of fermionic oscillator operators and
the vacuum functional of the theory is identifiable as Dirac determinant. An unproven conjecture is
that this determinant equals to the exponent of Kähler action for its preferred extremal.

The motivation for the modified Dirac action came from the observation that the counterpart
of the ordinary Dirac equation is internally consistent only if the space-time surfaces are minimal
surfaces. One can however assign to any general coordinate invariant action principle for space-
time surfaces a unique modified Dirac action, which is internally consistent and super-symmetric.
Space-time geometry must carry information about conserved quantum charges assignable to partonic
2-surfaces and it took considerable to to realize that this is achieved via a measurement interaction
terms linear in conserved charges. It took still some time to conclude that Kähler action with a
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measurement interaction term is is required in order the code information about quantum numbers
to the space-time geometry.

Preferred extremals as critical extremals

The study of the modified Dirac equation leads to a detailed view about criticality. Quantum criticality
[64] fixes the values of Kähler coupling strength as the analog of critical temperature. Quantum
criticality implies that second variation of Kähler action vanishes for critical deformations and the
existence of conserved current except in the case of Cartan algebra of isometries. Quantum criticality
allows to fix the values of couplings appearing in the measurement interaction by using the condition
K → K + f + f . p-Adic coupling constant evolution can be understood also and corresponds to
scale hierarchy for the sizes of causal diamonds (CDs). The discovery that the hierarchy of Planck
constants realized in terms of singular covering spaces of CD × CP2 can be understood in terms
of the extremely non-linear dynamics of Kähler action implying 1-to-many correspondence between
canonical momentum densities and time derivatives of the imbedding space coordinates led to a further
very concrete understanding of the criticality at space-time level and its relationship to zero energy
ontology [34].

Inclusion of the measurement interaction term

One can pose several conditions on the measurement interaction term of Dirac action. The term should
be linear in the measured charges which must commute and act on their eigenstates. The effective
2-dimensionality requires that the measurement interaction term is 3-dimensional and this allows only
the Dirac action associated with the generalized Chern-Simons action [56]. Measurement interaction
term must define fermionic 3-D propagators along wormhole throats. This is necessary because 4-D
Dirac equation is satisfied always and cannot define the fermionic propagator. For Chern-Simons term
off mass shell propagation is possible since 3-D Chern-Simons Dirac equation need not to be satisfied.

1. The basic vision is that the addition of the measurement interaction term induces a U(1) gauge
transformation K → K+ f + f of the Kähler function of WCW. Here f is holomorphic function
of WCW (”world of classical worlds”) complex coordinates and arbitrary function of zero mode
coordinates. Altough WCW Kähler metric is not affected, Kähler function changes and this
means that preferred extremal changes also and therefore codes information about the values of
the measured observables.

2. The measurement interaction is assumed to be linear in the measured charges which must
commute and therefore belong to the Cartan algebra. Cartan algebra plays a key role not only
at quantum level but also at the level of space-time geometry since quantum critical conserved
currents vanish for the Cartan algebra of isometries and the measurement interaction terms
giving rise to conserved currents are possible only for Cartan algebras. Furthermore, modified
Dirac equation makes sense only for the eigen states of Cartan algebra generators. The hierarchy
of Planck constants realized in terms of the book like structure of the generalized imbedding
space assigns to each CD (causal diamond) preferred Cartan algebra: in case of Poincare algebra
there are two of them corresponding to linear and cylindrical M4 coordinates. The origin of
the hierarchy of Planck constants can be now understood from the basic quantum TGD and it
relates directly with criticality [34].

3. The values of Cartan charges are feeded to 3-D Chern-Simons Dirac action via the measurement
interaction term. Measurement interaction term corresponds to a term resulting from the U(1)
transformation φ of the CP2 Kähler potential. Since this term is assigned only with the Chern-
Simons Dirac action, it does not reduce to a mere gauge transformation with a trivial effect.
This picture is consistent with the reduction of TGD to almost topological QFT [54] implied by
electric-magnetic duality and the vanishing of the Coulomb interaction term in Kähler action
[34].

4. One can require that the propagating states are generalized eigenstates of the modified Dirac
equation. The generalized eigenvalues are of form DC−SΨ = λkγkΨ, where only the covariantly
constant M4 gamma matrices can appear. λk is completely analogous to four-momentum and
the propagator is formally massless propagator so that ordinary twistor formalism should apply.
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The identification with actual four-momentum does not however make sense. This suggests that
also massless gauge theories could make sense if the four-momenta do not correspond to the
actual four-momenta.

CP breaking and matter-antimatter asymmetry

Chern-Simons Dirac action used to defined measurement interaction term breaks CP and T symmetries
and therefore provides a first principle description for the breaking of these symmetries. CP breaking
could also reflect to the discretization of the relative coordinate between the tips of the CD. One
could label the positions of the lower tip of CD by M4 and the relative positions of the upper tip by
a discrete space consisting of discrete variants of hyperboloids with proper time coordinate coming
as powers of 2. This CP and T breaking would be apparent and due to the fixing the rest system
to the observer assigned with the ”lower” boundary of CD serving as a role of medium forcing the
CP breaking at the level sub-CDs. One can of course argue that the CP breaking induced by Chern-
Simons action gives the special role for the ”lower” boundary of CD. In fact, the breaking of Lorentz
invariance at the level of CD (but not at the level of WCW) could even make possible a spontaneous
breaking of CPT symmetry.

What one should still continue to be worried about?

The construction of WCW spinor structure in terms of induced spinor fields has been continual shifting
between various options. 3-D or 4-D modified Dirac action at the fundamental level? Does the idea
about TGD as almost topological QFT make sense or not? Is the identification of Kähler function as
Dirac determinant really needed? Does it even make sense?

The reduction to almost topological QFT based on weak electric-magnetic duality gives the explicit
form of the WCW Kähler function and one understand how the measurement interaction term affects
it. This is of utmost importance for the construction of quantum TGD since WCW Kähler metric
becomes directly calculable. The progress in some aspects however forces always to challenge the basic
assumptions so that there is no hope about the end of endless confusiomn.

1. The basic idea has been that a correlation between 4-D geometry of the space-time sheet and
quantum numbers would be achieved by the identification of the exponent of Kähler function as a
Dirac determinant. The effect of the measurement interaction to the Kähler function is however
induced by the same gauge transformation of the induced Kähler gauge potential appearing in
Chern-Simons action as appears in Chern-Simons Dirac action. Therefore Dirac determinant is
not needed to calculate the Kähler function and one can ask whether the identification of Kähler
function as a Dirac determinant has any practical value.

2. One can still worry whether the measurement interaction is really needed. The propagator
reduces formally to massless Dirac propator in which the analog of four-momentum is expressible
in terms of quantum numbers propagating in the line. This would be a fantastic news for a
believer in the twistor program since also massive case and virtual momenta could be treated.
One could however argue that the road involving minimum amount of calculations is the safest
one: why not to identify the four-momentum with the physical four-momentum and try to
resolve the resulting problems?

3. The teasing hen-egg question still remains.
Does the 4-D Kähler-Dirac action with Chern-Simons term define preferred extremals giving
Kähler function as a Kähler action reducing to Chern-Simons term? In this case the induced
spinor fields in the interior of space-time surface would be present and one would have a symme-
try in the sense that one could use the restriction of the induced spinor field and Chern-Simons
action for any light-like 3-surface to constructe the quantum theory.
Or should 3-D Chern-Simons-Dirac action be interpreted as the Kähler function of WCW to
which one directly assigns the modified Dirac action making possible to construct the spinor
structure of WCW and does electric-magnetic duality make possible the assignment of preferred
extremal of Kähler action to a given 3-surface. In this case the induced spinor fields in the
interior of space-time surface would not be needed at all and wormhole throats and ends of the
space-time surface would play a special role as carriers of spinorial shock waves.
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5.1.3 Identification of configuration space gamma matrices as super Hamil-
tonians

The basic super-algebra corresponds to the fermionic oscillator operators and can be regarded as a
generalization N super algebras by replacing N with the number of solutions of the modified Dirac
equation which can be infinite. This leads to QFT SUSY limit of TGD different in many respects
crucially from standard SUSYs.

Configuration space gamma matrices identified as super generators of super-symplectic and are
expressible in terms of these oscillator operators. Super-symplectic and super charges are assumed
to be expressible as integrals over 2-dimensional partonic surfaces X2 and interior degrees of freedom
of X4 can be regarded as zero modes representing classical variables in one-one correspondence with
quantal degrees of freedom at X3

l as indeed required by quantum measurement theory.

5.2 Modified Dirac equation

In the following the problems of the ordinary Dirac action are discussed and the notion of modified
Dirac action is introduced.

5.2.1 Problems associated with the ordinary Dirac action

Minimal 2-surface represents a situation in which the representation of surface reduces to a complex-
analytic map. This implies that induced metric is hermitian so that it has no diagonal components
in complex coordinates (z, z) and the second fundamental form has only diagonal components of type
Hk
zz. This implies that minimal surface is in question since the trace of the second fundamental

form vanishes. At first it seems that the same must happen also in the more general case with the
consequence that the space-time surface is a minimal surface. Although many basic extremals of
Kähler action are minimal surfaces, it seems difficult to believe that minimal surface property plus
extremization of Kähler action could really boil down to the absolute minimization of Kähler action
or some other general principle selecting preferred extremals as Bohr orbits [22, 20].

This brings in mind a similar long-standing problem associated with the Dirac equation for the
induced spinors. The problem is that right-handed neutrino generates super-symmetry only provided
that space-time surface and its boundary are minimal surfaces. Although one could interpret this
as a geometric symmetry breaking, there is a strong feeling that something goes wrong. Induced
Dirac equation and super-symmetry fix the variational principle but this variational principle is not
consistent with Kähler action.

One can also question the implicit assumption that Dirac equation for the induced spinors is
consistent with the super-symmetry of the configuration space geometry. Super-symmetry would
obviously require that for vacuum extremals of Kähler action also induced spinor fields represent
vacua. This is however not the case. This super-symmetry is however assumed in the construction of
the configuration space geometry so that there is internal inconsistency.

5.2.2 Super-symmetry forces modified Dirac equation

The above described three problems have a common solution. Nothing prevents from starting directly
from the hypothesis of a super-symmetry generated by covariantly constant right-handed neutrino and
finding a Dirac action which is consistent with this super-symmetry. Field equations can be written
as

DαT
α
k = 0 ,

Tαk =
∂

∂hkα
LK . (5.2.1)

If super-symmetry is present one can assign to this current its super-symmetric counterpart

Jαk = νRΓkTαl ΓlΨ ,

DαJ
αk = 0 . (5.2.2)
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having a vanishing divergence. The isometry currents currents and super-currents are obtained by
contracting Tαk and Jαk with the Killing vector fields of super-symmetries. Note also that the super
current

Jα = νRT
α
l ΓlΨ (5.2.3)

has a vanishing divergence.

By using the covariant constancy of the right-handed neutrino spinor, one finds that the divergence
of the super current reduces to

DαJ
αk = νRΓkTαl ΓlDαΨ .

(5.2.4)

The requirement that this current vanishes is guaranteed if one assumes that modified Dirac equation

Γ̂αDαΨ = 0 ,

Γ̂α = Tαl Γl . (5.2.5)

This equation must be derivable from a modified Dirac action. It indeed is. The action is given by

L = ΨΓ̂αDαΨ . (5.2.6)

Thus the variational principle exists. For this variational principle induced gamma matrices are
replaced with effective induced gamma matrices and the requirement

DµΓ̂µ = 0 (5.2.7)

guaranteing that super-symmetry is identically satisfied if the bosonic field equations are satisfied. For
the ordinary Dirac action this condition would lead to the minimal surface property. What sounds
strange that the essentially hydrodynamical equations defined by Kähler action have fermionic coun-
terpart: this is very far from intuitive expectations raised by ordinary Dirac equation and something
which one might not guess without taking super-symmetry very seriously.

5.2.3 How can one avoid minimal surface property?

These observations suggest how to avoid the emergence of the minimal surface property as a con-
sequence of field equations. It is not induced metric which appears in field equations. Rather, the
effective metric appearing in the field equations is defined by the anti-commutators of γ̂µ

ĝµν = {Γ̂µ, Γ̂ν} = 2T kµTνk . (5.2.8)

Here the index raising and lowering is however performed by using the induced metric so that the
problems resulting from the non-invertibility of the effective metric are avoided. It is this dynamically
generated effective metric which must appear in the number theoretic formulation of the theory.

Field equations state that space-time surface is minimal surface with respect to the effective metric.
Note that a priori the choice of the bosonic action principle is arbitrary. The requirement that effective
metric defined by energy momentum tensor has only non-diagonal components except in the case of
non-light-like coordinates, is satisfied for the known solutions of field equations.
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5.2.4 Does the modified Dirac action define the fundamental action prin-
ciple?

There is quite fundamental and elegant interpretation of the modified Dirac action as a fundamental
action principle discussed also in [20]. In this approach vacuum functional can be defined as the
Grassmannian functional integral associated with the exponent of the modified Dirac action. This
definition is invariant with respect to the scalings of the Dirac action so that theory contains no free
parameters.

An alternative definition is as a Dirac determinant which might be calculated in TGD framework
without applying the poorly defined functional integral. There are good reasons to expect that the
Dirac determinant exponent of Kähler function for a preferred Bohr orbit like extremal of the Kähler
action with the value of Kähler coupling strength coming out as a prediction. Hence the dynamics
of the modified Dirac action at light-like partonic 3-surfaces X3

l , even when restricted to almost-
topological dynamics induced by Chern-Simons action, would dictate the dynamics at the interior of
the space-time sheet.

The knowledge of the symplectic currents and super-currents, together with the anti-commutation
relations stating that the fermionic super-currents SA and SB associated with Hamiltonians HA and
HB anti-commute to a bosonic current H[A,B], allows in principle to deduce the anti-commutation rela-
tions satisfied by the induced spinor field. In fact, these conditions replace the usual anti-commutation
relations used to quantize free spinor field. Since the normal ordering of the Dirac action would give
Kähler action,

Kähler coupling strength would be determined completely by the anti-commutation relations of the
super-symplectic algebra. Kähler coupling strength would be dynamical and the selection of preferred
extremals of Kähler action would be more or less equivalent with quantum criticality because criti-
cality corresponds to conformal invariance and the hyper-quaternionic version of the super-conformal
invariance results only for the extrema of Kähler action. p-Adic (or possibly more general) coupling
constant evolution and quantum criticality would come out as a prediction whereas in the case that
Kähler action is introduced as primary object, the value of Kähler coupling strength must be fixed by
quantum criticality hypothesis.

The mixing of the M4 chiralities of the imbedding space spinors serves as a signal for particle
massivation and breaking of super-conformal symmetry. The induced gamma matrices for the space-
time surfaces which are deformations of M4 indeed contain a small contribution from CP2 gamma
matrices: this implies a mixing of M4 chiralities even for the modified Dirac action so that there is
no need to introduce this mixing by hand.

5.2.5 Which Dirac action?

Which modified Dirac action should one choose? The four-dimensional modified Dirac action associ-
ated with Kähler action or 3-D Dirac action associated with Chern-Simons ( Chern-Simons ) action?
Or something else? To express the number of proposed answers to this question requires the fingers
of both hands.

1. The first guess inspired by TGD as almost-TQFT (for topological QFTs see [43]) was that
Chern-Simons action is enough. The idea was that one starts from Chern-Simons action and
end up with Kähler function defined by a preferred extremal of Kähler action defining Kähler
function with exponent of Kähler function identified as a Dirac determinant. The difficulties
related to the definition of the Dirac determinant however forced to give up this approach. It
must be emphasized that Dirac determinant is a potentially problematic notion quite generally.

2. TGD reduces to almost topological QFT if the Kähler action for the preferred extremals reduces
to Chern-Simons action associated with the ends of the space-time surface and with the light-like
wormhole throats at which the signature of the induced metric changes. The assumption that
Kähler current defines so called Beltrami flow indeed allows to find a gauge for Kähler gauge
potential in which the Coulomb term in Kähler action vanishes and the boundary term reduces
to generalized Chern-Simons action if the weak form of electric-magnetic duality holds true.
Both Dirac-Kähler action and Dirac-Chern-Simons action are needed in the fermionic sector.
It must be emphasized that the identification of the exponent of Kähler function as a Dirac
determinant is not necessary anymore although it could make sense.
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One ends up with a very detailed ansatz for preferred extremals and one should rigorously show
that these surfaces are critical in the sense of having infinite number of deformations giving
a vanishing second variation of Kähler action. One should also demonstrate that preferred
extremals are hyper-quaternionic- a property forced by number theoretical vision [20].

3. Quantum classical correspondence requires the coding of the quantum numbers of positive and
negative energy parts of the zero energy state to the space-time geometry. Chern-Simons term
with a measurement interaction term allows to obtain a coupling between the space-time geom-
etry and the quantum numbers of super-conformal representations and stringy propagators. It
took some time to realize that measurement interaction term can be regarded as a gauge part
of the Kähler gauge potential. Since it is however present only for the Chern-Simons part of
the action it affects the physics. For instance, the value of Kähler function identified both as
Dirac determinant and directly as Chern-Simons term is affected and therefore also the preferred
extremal is affected.

4. Kähler Dirac operator DK annihilates the induced spinor fields in the interior of space-time
surface. At the ends of the space-time surface induces spinors are generalized eigenstates of
DC−S+Q, where Q represents the measurement interaction which effectively reduces to a gauge
part in Kähler gauge potential. The generalized eigenvalue is the analog of the action of ordinary
Dirac operator pkγ

k but the pseudo-momentum λk replacing pk is not the real momentum. For
instance, by number theoretic considerations this pseudo-momentum is in preferred plane M2

of M4 assigned to a given CD in zero energy ontology. λk is quantized and Dirac propagator
defined by Chern-Simons Dirac action reduces effectively to a massless propagator suggesting
that twistor formalism can be applied almost as such.

5. An interesting conjecture is that any light-like 3-surfaces in the slicing of space-time surface by
light-like 3-surfaces ”parallel” to wormhole throat is physically equivalent and the Kähler func-
tions obtained as Dirac determinants differ only by a gauge transformation for Kähler function:
K → K + f + f , where f is holomorphic function of complex coordinates of WCW and a priori
arbitrary function of zero modes. Also measurement interaction term induces only this kind of
gauge change but replaces the space-time surface with a new one.

5.3 Quantum criticality and modified Dirac action

The precise mathematical formulation of quantum criticality has remained one of the basic challenges
of quantum TGD. The question leading to a considerable progress in the problem was simple: Under
what conditions the modified Dirac action allows to assign conserved fermionic currents with the
deformations of the space-time surface? The answer was equally simple: These currents exists only
if these deformations correspond to vanishing second variations of Kähler action - which is what
criticality is. The vacuum degeneracy of Kähler action strongly suggests that the number of critical
deformations is always infinite and that these deformations define an infinite inclusion hierarchy of
super-conformal algebras. This inclusion hierarchy would correspond to a fractal hierarchy of breakings
of super-conformal symmetry generalizing the symmetry breaking hierarchies of gauge theories. These
super-conformal inclusion hierarchies would realize the inclusion hierarchies for hyper-finite factors of
type II1.

5.3.1 Quantum criticality and fermionic representation of conserved charges
associated with second variations of Kähler action

It is rather obvious that TGD allows a huge generalizations of conformal symmetries. The development
of the understanding of conservation laws has been slow. In the approach based on DC−S the non-
conservation of gauge charges posed the basic problem and led to the introduction of the gauge
part Aa of Kähler gauge potential. Modified Dirac action provides excellent candidates for quantum
counterparts of Noether charges. Unfortunately, the isometry charges vanish for Cartan algebras. The
only manner to obtain non-trivial isometry charges is to add a direct coupling to the charges in Cartan
algebra as will be found later.
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Conservation of the fermionic current requires the vanishing of the second variation of
Kähler action

1. The modified Dirac action assigns to a deformation of the space-time surface a conserved charge
expressible as bilinears of fermionic oscillator operators only if the first variation of the modified
Dirac action under this deformation vanishes. The vanishing of the first variation for the modified
Dirac action is equivalent with the vanishing of the second variation for the Kähler action. This
can be seen by the explicit calculation of the second variation of the modified Dirac action and
by performing partial integration for the terms containing derivatives of Ψ and Ψ to give a total
divergence representing the difference of the charge at upper and lower boundaries of the causal
diamond plus a four-dimensional integral of the divergence term defined as the integral of the
quantity

∆SD = ΨΓkDαJ
α
k Ψ ,

Jαk =
∂2LK
∂hkα∂h

l
β

δhkβ +
∂2LK
∂hkα∂h

l
δhl . (5.3.1)

Here hkβ denote partial derivative of the imbedding space coordinate with respect to space-time
coordinates. This term must vanish:

DαJ
α
k = 0 .

The condition states the vanishing of the second variation of Kähler action. This can of course
occur only for preferred deformations of X4. One could consider the possibility that these
deformations vanish at light-like 3-surfaces or at the boundaries of CD. Note that covariant
divergence is in question so that Jαk does not define conserved classical charge in the general
case.

2. It is essential that the modified Dirac equation holds true so that the modified Dirac action
vanishes: this is needed to cancel the contribution to the second variation coming from the
determinant of the induced metric. The condition that the modified Dirac equation is satisfied
for the deformed space-time surface requires that also Ψ suffers a transformation determined by
the deformation. This gives

δΨ = − 1

D
× ΓkJαk Ψ . (5.3.2)

Here 1/D is the inverse of the modified Dirac operator defining the counterpart of the fermionic
propagator.

3. The fermionic conserved currents associated with the deformations are obtained from the stan-
dard conserved fermion current

Jα = ΨΓαΨ . (5.3.3)

Note that this current is conserved only if the space-time surface is extremal of Kähler action:
this is also needed to guarantee Hermiticity and same form for the modified Dirac equation for
Ψ and its conjugate as well as absence of mass term essential for super-conformal invariance.
Note also that ordinary divergence rather only covariant divergence of the current vanishes.

The conserved currents are expressible as sums of three terms. The first term is obtained by
replacing modified gamma matrices with their increments in the deformation keeping Ψ and its
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conjugate constant. Second term is obtained by replacing Ψ with its increment δΨ. The third
term is obtained by performing same operation for δΨ.

Jα = ΨΓkJαk Ψ + ΨΓ̂αδΨ + δΨΓ̂αΨ . (5.3.4)

These currents provide a representation for the algebra defined by the conserved charges analo-
gous to a fermionic representation of Kac-Moody algebra.

4. Also conserved super charges corresponding to super-conformal invariance are obtained. The
first class of super currents are obtained by replacing Ψ or Ψ right handed neutrino spinor
or its conjugate in the expression for the conserved fermion current and performing the above
procedure giving two terms since nothing happens to the covariantly constant right handed-
neutrino spinor. Second class of conserved currents is defined by the solutions of the modified
Dirac equation interpreted as c-number fields replacing Ψ or Ψ and the same procedure gives
three terms appearing in the super current.

5. The existence of vanishing of second variations is analogous to criticality in systems defined by a
potential function for which the rank of the matrix defined by second derivatives of the potential
function vanishes at criticality. Quantum criticality becomes the prerequisite for the existence
of quantum theory since fermionic anti-commutation relations in principle can be fixed from
the condition that the algebra in question is equivalent with the algebra formed by the vector
fields defining the deformations of the space-time surface defining second variations. Quantum
criticality in this sense would also select preferred extremals of Kähler action as analogs of Bohr
orbits and the the spectrum of preferred extremals would be more or less equivalent with the
expected existence of infinite-dimensional symmetry algebras.

About the general structure of the algebra of conserved charges

Some general comments about the structure of the algebra of conserved charges are in order.

1. Any Cartan algebra of the isometry group P × SU(3) (there are two types of them for P
corresponding to linear and cylindrical Minkowski coordinates) defines critical deformations
(one could require that the isometries respect the geometry of CD). The corresponding charges
are conserved but vanish since the corresponding conjugate coordinates are cyclic for the Kähler
metric and Kähler form so that the conserved current is proportional to the gradient of a Killing
vector field which is constant in these coordinates. Therefore one cannot represent isometry
charges as fermionic bilinears. Four-momentum and color quantum numbers are defined for
Kähler action as classical conserved quantities but this is probably not enough. This can be
seen as a problem.

(a) Four-momentum and color Cartan algebra emerge naturally in the representations of super-
conformal algebras. In the case of color algebra the charges in the complement of the Cartan
algebra can be constructed in standard manner as extension of those for the Cartan algebra
using free field representation of Kac-Moody algebras. In string theories four-momentum
appears linearly in bosonic Kac-Moody generators and in the Sugawara representation [48]
of super Virasoro generators as bilinears of bosonic Kac-Moody generators and fermionic
super Kac-Moody generators. Also now quantized transversal parts for M4 coordinates
could define a second quantized field having interpretation as an operator acting on spinor
fields of WCW. The angle coordinates conjugate to color isospin and hypercharge take the
role of M4 coordinates in case of CP2.

(b) Somehow one should be able to feed the information about the super-conformal repre-
sentation of the isometry charges to the modified Dirac action by adding to it a term
coupling fermionic current to the Cartan charges in general coordinate invariant and isom-
etry invariant manner. As will be shown later, this is possible. The interpretation is as
measurement interaction guaranteing also the stringy character of the fermionic propaga-
tors. The values of the couplings involved are fixed by the condition of quantum criticality
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assumed in the sense that Kähler function of WCW suffers only a U(1) gauge transforma-
tion K → K + f + f , where f is a holomorphic function of WCW coordinates depending
also on zero modes.

(c) The simplest addition involves the modified gamma matrices defined by a Chern-Simon
term at the light-like wormhole throats and is sum of Chern-Simons Dirac action and
corresponding coupling term linear in Cartan charges assignable to the partonic 2-surfaces
at the ends of the throats. Hence the modified Dirac equation in the interior of the space-
time sheet is not affected and nothing changes as far as quantum criticality in interior is
considered.

2. The action defined by four-volume gives a first glimpse about what one can expect. In this
case modified gamma matrices reduce to the induced gamma matrices. Second variations satisfy
d’Alembert type equation in the induced metric so that the analogs of massless fields are in
question. Mass term is present only if some dimensions are compact. The vanishing of excitations
at light-like boundaries is a natural boundary condition and might well imply that the solution
spectrum could be empty. Hence it is quite possible that four-volume action leads to a trivial
theory.

3. For the vacuum extremals of Kähler action the situation is different. There exists an infinite
number of second variations and the classical non-determinism suggests that deformations van-
ishing at the light-like boundaries exist. For the canonical imbedding of M4 the equation for
second variations is trivially satisfied. If the CP2 projection of the vacuum extremal is one-
dimensional, the second variation contains a on-vanishing term and an equation analogous to
massless d’Alembert equation for the increments of CP2 coordinates is obtained. Also for the
vacuum extremals of Kähler action with 2-D CP2 projection all terms involving induced Kähler
form vanish and the field equations reduce to d’Alembert type equations for CP2 coordinates.
A possible interpretation is as the classical analog of Higgs field. For the deformations of non-
vacuum extremals this would suggest the presence of terms analogous to mass terms: these kind
of terms indeed appear and are proportional to δsk. M4 degrees of freedom decouple completely
and one obtains QFT type situation.

4. The physical expectation is that at least for the vacuum extremals the critical manifold is
infinite-dimensional. The notion of finite measurement resolution suggests infinite hierarchies of
inclusions of hyper-finite factors of type II1 possibly having interpretation in terms of inclusions
of the super conformal algebras defined by the critical deformations.

5. The properties of Kähler action give support for this expectation. The critical manifold is
infinite-dimensional in the case of vacuum extremals. Canonical imbedding of M4 would corre-
spond to maximal criticality analogous to that encountered at the tip of the cusp catastrophe.
The natural guess would be that as one deforms the vacuum extremal the previously critical
degrees of freedom are transformed to non-critical ones. The dimension of the critical manifold
could remain infinite for all preferred extremals of the Kähler action. For instance, for cosmic
string like objects any complex manifold of CP2 defines cosmic string like objects so that there
is a huge degeneracy is expected also now. For CP2 type vacuum extremals M4 projection is
arbitrary light-like curve so that also now infinite degeneracy is expected for the deformations.

Critical super algebra and zero modes

The relationship of the critical super-algebra to configuration space geometry is interesting.

1. The vanishing of the second variation plus the identification of Kähler function as a Kähler action
for preferred extremals means that the critical variations are orthogonal to all deformations of
the space-time surface with respect to the configuration space metric and thus correspond to
zero modes. This conforms with the fact that configuration space metric vanishes identically for
canonically imbedded M4. Zero modes do not seem to correspond to gauge degrees of freedom so
that the super-conformal algebra associated with the zero modes has genuine physical content.

2. Since the action of X4 local Hamiltonians of δM4
×CP2 corresponds to the action in quantum

fluctuating degrees of freedom, critical deformations cannot correspond to this kind of Hamilto-
nians.
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3. The notion of finite measurement resolution suggests that the degrees of freedom which are
below measurement resolution correspond to vanishing gauge charges. The sub-algebras of
critical super-conformal algebra for which charges annihilate physical states could correspond to
this kind of gauge algebras.

4. The conserved super charges associated with the vanishing second variations cannot give con-
figuration space metric as their anti-commutator. This would also lead to a conflict with the
effective 2-dimensionality stating that the configuration space line-element is expressible as sum
of contribution coming from partonic 2-surfaces as also with fermionic anti-commutation rela-
tions.

Connection with quantum criticality

The vanishing of the second variation for some deformations means that the system is critical, in the
recent case quantum critical. Basic example of criticality is bifurcation diagram for cusp catastrophe.
For some mysterious reason I failed to realize that quantum criticality realized as the vanishing of
the second variation makes possible a more or less unique identification of preferred extremals and
considered alternative identifications such as absolute minimization of Kähler action which is just the
opposite of criticality. Both the super-symmetry of DK and conservation Dirac Noether currents for
modified Dirac action have thus a connection with quantum criticality.

1. Finite-dimensional critical systems defined by a potential function V (x1, x2, ..) are characterized
by the matrix defined by the second derivatives of the potential function and the rank of sys-
tem classifies the levels in the hierarchy of criticalities. Maximal criticality corresponds to the
complete vanishing of this matrix. Thom’s catastrophe theory classifies these hierarchies, when
the numbers of behavior and control variables are small (smaller than 5). In the recent case the
situation is infinite-dimensional and the criticality conditions give additional field equations as
existence of vanishing second variations of Kähler action.

2. The vacuum degeneracy of Kähler action allows to expect that this kind infinite hierarchy of
criticalities is realized. For a general vacuum extremal with at most 2-D CP2 projection the
matrix defined by the second variation vanishes because Jαβ = 0 vanishes and also the matrix

(Jαk +J α
k )(Jβl+J β

l ) vanishes by the antisymmetry Jαk = −J α
k . Recall that the formulation of

Equivalence Principle in string picture demonstrated that the reduction of stringy dynamics to
that for free strings requires that second variation with respect to M4 coordinates vanish. This
condition would guarantee the conservation of fermionic Noether currents defining gravitational
four-momentum and other Poincare quantum numbers but not those for gravitational color
quantum numbers. Encouragingly, the action of CP2 type vacuum extremals having random
light-like curve as M4 projection have vanishing second variation with respect to M4 coordinates
(this follows from the vanishing of Kähler energy momentum tensor, second fundamental form,
and Kähler gauge current). In this case however the momentum is vanishing.

3. Conserved bosonic and fermionic Noether charges would characterize quantum criticality. In
particular, the isometries of the imbedding space define conserved currents represented in terms
of the fermionic oscillator operators if the second variations defined by the infinitesimal isometries
vanish for the modified Dirac action. For vacuum extremals the dimension of the critical manifold
is infinite: maybe there is hierarchy of quantum criticalities for which this dimension decreases
step by step but remains always infinite. This hierarchy could closely relate to the hierarchy of
inclusions of hyper-finite factors of type II1. Also the conserved charges associated with super-
symplectic and Super Kac-Moody algebras would require infinite-dimensional critical manifold
defined by the spectrum of second variations.

4. Phase transitions are characterized by the symmetries of the phases involved with the tran-
sitions, and it is natural to expect that dynamical symmetries characterize the hierarchy of
quantum criticalities. The notion of finite quantum measurement resolution based on the hi-
erarchy of Jones inclusions indeed suggests the existence of a hierarchy of dynamical gauge
symmetries characterized by gauge groups in ADE hierarchy [20] with degrees of freedom below
the measurement resolution identified as gauge degrees of freedom.
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5. Does this criticality have anything to do with the criticality against the phase transitions chang-
ing the value of Planck constant? If the geodesic sphere S2

I for which induced Kähler form
vanishes corresponds to the back of the CP2 book (as one expects), this could be the case. The
homologically non-trivial geodesic sphere S12II is as far as possible from vacuum extremals. If
it corresponds to the back of CP2 book, cosmic strings would be quantum critical with respect
to phase transition changing Planck constant. They cannot however correspond to preferred
extremals.

5.3.2 Preferred extremal property as classical correlate for quantum crit-
icality, holography, and quantum classical correspondence

The Noether currents assignable to the modified Dirac equation are conserved only if the first variation
of the modified Dirac operator DK defined by Kähler action vanishes. This is equivalent with the
vanishing of the second variation of Kähler action -at least for the variations corresponding to dynam-
ical symmetries having interpretation as dynamical degrees of freedom which are below measurement
resolution and therefore effectively gauge symmetries.

The vanishing of the second variation in interior of X4(X3
l ) is what corresponds exactly to quantum

criticality so that the basic vision about quantum dynamics of quantum TGD would lead directly to a
precise identification of the preferred extremals. Something which I should have noticed for more than
decade ago! The question whether these extremals correspond to absolute minima remains however
open.

The vanishing of second variations of preferred extremals -at least for deformations representing
dynamical symmetries, suggests a generalization of catastrophe theory of Thom, where the rank of
the matrix defined by the second derivatives of potential function defines a hierarchy of criticalities
with the tip of bifurcation set of the catastrophe representing the complete vanishing of this matrix.
In the recent case this theory would be generalized to infinite-dimensional context. There are three
kind of variables now but quantum classical correspondence (holography) allows to reduce the types
of variables to two.

1. The variations of X4(X3
l ) vanishing at the intersections of X4(X3

l ) wth the light-like boundaries
of causal diamonds CD would represent behavior variables. At least the vacuum extremals of
Kähler action would represent extremals for which the second variation vanishes identically (the
”tip” of the multi-furcation set).

2. The zero modes of Kähler function would define the control variables interpreted as classical
degrees of freedom necessary in quantum measurement theory. By effective 2-dimensionality (or
holography or quantum classical correspondence) meaning that the configuration space metric
is determined by the data coming from partonic 2-surfaces X2 at intersections of X3

l with
boundaries of CD, the interiors of 3-surfaces X3 at the boundaries of CDs in rough sense
correspond to zero modes so that there is indeed huge number of them. Also the variables
characterizing 2-surface, which cannot be complexified and thus cannot contribute to the Kähler
metric of configuration space represent zero modes. Fixing the interior of the 3-surface would
mean fixing of control variables. Extremum property would fix the 4-surface and behavior
variables if boundary conditions are fixed to sufficient degree.

3. The complex variables characterizing X2 would represent third kind of variables identified as
quantum fluctuating degrees of freedom contributing to the configuration space metric. Quantum
classical correspondence requires 1-1 correspondence between zero modes and these variables.
This would be essentially holography stating that the 2-D ”causal boundary” X2 of X3(X2)
codes for the interior. Preferred extremal property identified as criticality condition would
realize the holography by fixing the values of zero modes once X2 is known and give rise to
the holographic correspondence X2 → X3(X2). The values of behavior variables determined by
extremization would fix then the space-time surface X4(X3

l ) as a preferred extremal.

4. Clearly, the presence of zero modes would be absolutely essential element of the picture. Quan-
tum criticality, quantum classical correspondence, holography, and preferred extremal property
would all represent more or less the same thing. One must of course be very cautious since the
boundary conditions at X3

l involve normal derivative and might bring in delicacies forcing to
modify the simplest heuristic picture.
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5. There is a possible connection with the notion of self-organized criticality [49] introduced to
explain the behavior of systems like sand piles. Self-organization in these systems tends to lead
”to the edge”. The challenge is to understand how system ends up to a critical state, which by
definition is unstable. Mechanisms for this have been discovered and based on phase transitions
occurring in a wide range of parameters so that critical point extends to a critical manifold. In
TGD Universe quantum criticality suggests a universal mechanism of this kind. The criticality
for the preferred extremals of Kähler action would mean that classically all systems are critical
in well-defined sense and the question is only about the degree of criticality. Evolution could
be seen as a process leading gradually to increasingly critical systems. One must however
distinguish between the criticality associated with the preferred extremals of Kähler action and
the criticality caused by the spin glass like energy landscape like structure for the space of the
maxima of Kähler function.

5.4 Handful of problems with a common resolution

Theory building could be compared to pattern recognition or to a solving a crossword puzzle. It is
essential to make trials, even if one is aware that they are probably wrong. When stares long enough
to the letters which do not quite fit, one suddenly realizes what one particular crossword must actually
be and it is soon clear what those other crosswords are. In the following I describe an example in
which this analogy is rather concrete. Let us begin by listing the problems.

1. The condition that modified Dirac action allows conserved charges leads to the condition that
the symmetries in question give rise to vanishing second variations of Kähler action. The in-
terpretation is as quantum criticality and there are good arguments suggesting that the critical
symmetries define an infinite-dimensional super-conformal algebra forming an inclusion hierar-
chy related to a sequence of symmetry breakings closely related to a hierarchy of inclusions
of hyper-finite factors of types II1 and III1. This means an enormous generalization of the
symmetry breaking patterns of gauge theories.

There is however a problem. For the translations of M4 and color hyper charge and isospin
(more generally, any Cartan algebra of P × SU(3)) the resulting fermionic charges vanish. The
trial for the crossword in absence of nothing better would be the following argument. By the
abelianity of these charges the vanishing of quantal representation of four-momentum and color
Cartan charges is not a problem and that classical representation of these charges or their
super-conformal representation is enough.

2. Modified Dirac equation is satisfied in the interior of space-time surface always. This means that
one does not obtain off-mass shell propagation at all in 4-D sense. Effective 2-dimensionality
suggests that off mass shell propagation takes place along wormhole throats. The reduction to
almost topological QFT with Kähler function reducing to Chern-Simonst type action implied
by the weak form of electric-magnetic duality and a proper gauge choice for the induced Kähler
gauge potential implies effective 3-dimensionality at classical level. This inspires the question
whether Chern-Simons type action resulting from an instanton term could define the modified
gamma matrices appearing in the 3-D modified Dirac action associated with wormhole throats
and ends of the space-time sheet at the boundaries of CD. The assumption that modified
Dirac equation is satisfied also at the ends and wormhole throats would realize effective 2-
dimensionality as conditions on the boundary values of the 4-D Dirac equation but would would
not allow off mass shell propagation. Therefore one could argue that effective 2-dimensionality
holds true only for incoming and outgoing particles. The reduction of Kähler action to gen-
eralized Chern-Simons term means that the maxima of Kähler function should correspond to
extrema of this action. The presence of also the Chern-Simons term corresponding to J + J1

would give these extrema.

3. Quantum classical correspondence requires that the geometry of the space-time sheet should
correlate with the quantum numbers characterizing positive (negative) energy part of the quan-
tum state. One could argue that by multiplying WCW spinor field by a suitable phase factor
depending on the charges of the state, the correspondence follows from stationary phase approx-
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imation. This crossword looks unconvincing. A more precise connection between quantum and
classical is required.

4. In quantum measurement theory classical macroscopic variables identified as degrees of freedom
assignable to the interior of the space-time sheet correlate with quantum numbers. Stern Gerlach
experiment is an excellent example of the situation. The generalization of the imbedding space
concept by replacing it with a book like structure implies that imbedding space geometry at
given page and for given causal diamond (CD) carries information about the choice of the
quantization axes (preferred plane M2 of M4 resp. geodesic sphere of CP2 associated with
singular covering/factor space of CD resp. CP2 ). This is a big step but not enough. Modified
Dirac action as such does not seem to provide any hint about how to achieve this correspondence.
One could even wonder whether dissipative processes or at least the breaking of T and CP
characterizing the outcome of quantum jump sequence should have space-time correlate. How
to achieve this?

Each of these problems makes one suspect that something is lacking from the modified Dirac
action: there should exist an elegant manner to feed information about quantum numbers of the state
to the modified Dirac action in turn determining vacuum functional as an exponent Kähler function
identified as Kähler action for the preferred extremal assumed to be dictated by by quantum criticality
and equivalently by hyper-quaternionicity.

This observation leads to what might be the correct question. Could a general coordinate invariant
and Poincare invariant modification of the modified Dirac action consistent with the vacuum degen-
eracy of Kähler action allow to achieve this information flow somehow? In the following one manner
to achieve this modification is discussed. It must be however emphasized that I have considered many
alternatives and the one discussed below finds its justification only from the fact that it is the simplest
one found hitherto.

5.4.1 The identification of the measurement interaction term

The idea is simple: add to the modified Dirac action a term which is analogous to the Dirac action in
M4 × CP2. One can consider two options according to whether the term is assigned with interior or
with a 3-D light-like 3-surface and last years have been continual argumentation about which option
is the correct one.

1. The additional term would be essentially the analog of the ordinary Dirac action at the imbedding
space level.

Sint =
∑
A

QA

∫
ΨgABjBαΓ̂αΨ

√
gd4x ,

gAB = jkAhklj
l
B , gABgBC = δAC ,

jBα = jkBhkl∂αh
l . (5.4.1)

The sum is over isometry charges QA interpreted as quantal charges and jAk denotes the Killing
vector field of the isometry. gAB is the inverse of the tensor gAB defined by the local inner
products of Killing vectors fields in M4 and CP2. The space-time projections of the Killing
vector fields jBα have interpretation as classical color gauge potentials in the case of SU(3). In
M4 degrees of freedom and for Cartan algebra of SU(3) jBα reduce to the gradients of linear
M4 coordinates in case of translations. Modified gamma matrices could be assigned to Kähler
action or its instanton term or with Chern-Simons action.

2. The added term containing quantal charges must make sense in the modified Dirac equation.
This requires that the physical state is an eigenstate of momentum and color charges. This
allows only color hyper-charge and color isospin so that there is no hope of obtaining exactly
the stringy formula for the propagator. The modified Dirac operator is given by
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Dtot = D +Dint = Γ̂αDα + Γ̂α
∑
A

QAg
ABjBα

= Γ̂α(Dα + ∂αφ) , ∂αφ =
∑
A

QAg
ABjBα . (5.4.2)

The conserved fermionic isometry currents are

JAα =
∑
B

QBΨgBCjkChklj
l
AΓ̂αΨ = QAΨΓ̂αΨ . (5.4.3)

Here the sum is restricted to a Cartan sub-algebra of Poincare group and color group.

3. An important restriction is that by four-dimensionality of M4 and CP2 the rank of gAB is 4 so
that gAB exists only when one considers only four conserved charges. In the case of M4 this is
achieved by a restriction to translation generators QA = pA. gAB reduces to Minkowski metric
and Killing vector fields are constants. The Cartan sub-algebra could be however replaced by
any four commuting charges in the case of Poincare algebra (second one corresponds to time
translation plus translation, boost and rotation in given direction). In the case of SU(3) one must
restrict the consideration either to U(2) sub-algebra or its complement. CP2 = SU(3)/SU(2)
decomposition would suggest the complement as the correct choice. One can indeed build the
generators of U(2) as commutators of the charges in the complement. On the other hand, Cartan
algebra is enough in free field construction of Kac-Moody algebras.

4. What is remarkable that for the Cartan algebra of M4 × SU(3) the measurement interaction
term is equivalent with the addition of gauge part ∂αφ of the induced Kähler gauge potential Aα.
This property might hold true for any measurement interaction term. This also suggests that the
change in Kähler function is only the transformation Aα → Aα + ∂αφ, ∂αφ =

∑
AQAg

ABjBα.

5. Recall that the φ for U(1) gauge transformations respecting the vanishing of the Coulomb
interaction term of Kähler action [34] the current jαKφ is conserved, which implies that the
change of the Kähler action is trivial. These properties characterize the gauge transformations
respecting the gauge in which Coulombic interaction term of the Kähler action vanishes so
that Kähler action reduces to 3-dimensional generalized Chern-Simons term if the weak form
of electric-magnetic duality holds true guaranteing among other things that the induced Kähler
field is not too singular at the wormhole throats [34]. The scalar function assignable to the
measurement interaction terms does not have this property and this is what is expected since it
must change the value of the Kähler function and therefore affect the preferred extremal.

The reduction to 3-D form however gives a non-trivial WCW metric in M4 degrees of freedom
only if one replaces CP2 Kähler form J with the sum J + J1, where J1 is the Kähler form of
the rM = constant sphere so that the time-like line connecting the tips of CD carries monopole
charge [34]. This enriches dramatically the vacuum sector of the theory giving better hopes about
a realistic description of gravitation in long length scales. The basic non-vacuum extremals of
Kähler action are not lost.

Concerning the precise form of the modified Dirac action the basic clue comes from the observation
that the measurement interaction term corresponds to the addition of a gauge part to the induced CP2

Kähler gauge potential Aα. The basic question is what part of the action one assigns the measurement
interaction term.

1. One could define the measurement interaction term using either the four-dimensional instanton
term or its reduction to Chern-Simons terms. The part of Dirac action defined by the instanton
term in the interior does not reduce to a 3-D form unless the Dirac equation defined by the
instanton term is satisfied : this cannot be true. Hence Chern-Simons term is the only possibility.
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The classical field equations associated with the Chern-Simons term cannot be assumed since
they would imply that the CP2 projection of the wormhole throat and space-like 3-surface are
2-dimensional. This might hold true for space-like 3-surfaces at the ends of CD and incoming
and outgoing particles but not for off mass shell particles. This is however not a problem since
DαΓ̂αC−S for the modified gamma matrices for Chern-Simons action does not contain second
derivatives. This is due to the topological character of this term. For Kähler action second
derivatives are present and this forces extremal property of Kähler action in the modified Dirac
Kähler action so that classical physics resuts as a consistency condition.

2. If one assigns measurement interaction term to both DK and DC−S the measurement interaction
corresponds to a mere gauge transformation for ASα and is trivial. Therefore it seems that one
must choose between DK or DC−S . At least formally the measurement interaction term asso-
ciated with DK is gauge equivalent with its negative DC−S . The addition of the measurement
interaction to DK changes the basis for the 4-D induced spinors by the phase exp(−iQKφ) and
therefore also the basis for the generalized eigenstates of DC−S and this brings in effectively the
measurement interaction term affecting the Dirac determinant.

3. The definition of Dirac determinant should be in terms of Chern-Simons action induced by the
instanton term and identified as a product of the generalized eigenvalues of this operator. The
modified Dirac equation for Ψ is consistent with that for its conjugate if the coefficient of the
instanton term is real and one uses the Dirac action Ψ(D→ − D←)Ψ giving modified Dirac
equation as

DC−SΨ +
1

2
(DαΓ̂αC−S)Ψ = 0 . (5.4.4)

As noticed, the divergence of gamma matrices does not contain second derivatives in the case of
Chern-Simons action. In the case of Kähler action they occur unless field equations equivalent
with the vanishing of the divergence term are satisfied.

Also the fermionic current is conserved in this case, which conforms with the idea that fermions
flow along the light-like 3-surfaces. If one uses the action ΨD→Ψ, Ψ does not satisfy the Dirac
equation following from the variational principle and fermion current is not conserved. Also if
the Chern-Simons term is imaginary - as a naive idea about dissipation would suggest- the Dirac
equation fails to be consistent with the conjugation.

4. Off mass shell states appear in the lines of the generalized Feynman diagrams and for these
DC−S cannot annihilate the spinor field. The generalized eigenmodes lf DC−S should be such
that one obtains the counterpart of Dirac propagator which is purely algebraic and does not
therefore depend on the coordinates of the throat. This is satisfied if the generalized eigenvalues
are expressible in terms of covariantly constant combinations of gamma matrices and here only
M4 gamma matrices are possible. Therefore the eigenvalue equation reqads as

DΨ = λkγkΨ , D = DC−S +DαΓ̂αC−S , DC−S = Γ̂αC−SDα .

(5.4.5)

Here the covariant derivatives Dα contain the measurement interaction term as an apparent
gauge term. Covariant constancy allows to take the square of this equation and one has

(D2 +
[
D,λkγk

]
)Ψ = λkλkΨ . (5.4.6)

The commutator term is analogous to magnetic moment interaction. The generalized eigenvalues
correspond to λ =

√
λkλk and Dirac determinant is defined as a product of the eigenvalues.
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λ is completely analogous to mass. For incoming lines this mass would vanish so that all
incoming particles irrespective their actual quantum numbers would be massless in this sense
and the propagator is indeed that for a massless particle. Note that the eigen-modes define
the boundary values for the solutions of DKΨ = 0 so that the values of λ indeed define the
counterpart of the momentum space.

This transmutation of massive particles to effectively massless ones might make possible the
application of the twistor formalism as such in TGD framework [28]. N = 4 SUSY is one
of the very few gauge theory which might be UV finite but it is definitely unphysical due to
the masslessness of the basic quanta. Could the resolution of the interpretational problems
be that the four-momenta appearing in this theory do not directly correspond to the observed
four-momenta?

5.4.2 Objections

The alert reader has probably raised several critical questions. Doesn’t the need to solve λk as func-
tions of incoming quantum numbers plus the need to construct the measurement interactions makes
the practical application of the theory hopelessly difficult? Could the resulting pseudo-momentum
λk correspond to the actual four-momentum? Could one drop the measurement interaction term
altogether and assume that the quantum classical correspondence is through the identification of the
eigenvalues as the four-momenta of the on mass shell particles propagating at the wormhole throats?
Could one indeed assume that the momenta have a continuous spectrum and thus do not depend on
the boundary conditions at all? Usually the thinking is just the opposite and in the general case would
lead to to singular eigen modes.

1. Only the information about four-momentum would be feeded into the space-time geometry.
TGD however allows much more general measurement interaction terms and it would be very
strange if the space-time geometry would not correlate also with the other quantum numbers.
Mass formulas would of course contain information also about other quantum numbers so that
this claim is not quite justified.

2. Number theoretic considerations and also the construction of octonionic variant of Dirac equation
[19] force the conclusion that the spectrum of pseudo four-momentum is restricted to a preferred
plane M2 of M4 and this excludes the interpretation of λk as a genuine four-momentum. It also
improves the hopes that the sum over pseudo-momenta does not imply divergences.

3. Dirac determinant would depend on the mass spectrum only and could not be identified as
exponent of Kähler function. Note that the original guideline was the dream about stringy
propagators. This is achieved for λAλ

A = n in suitable units. This spectrum would of coure
also imply that Dirac determinant defined in terms of ζ function regularization is independent
of the space-time surface and could not be identified with the exponent of Kähler function. One
must of course take the identification of exponent of Kähler function as Dirac determinant as an
additional conjecture which is not necessary for the calculation of Kähler function if the weak
form of electric-magnetic duality is accepted.

4. All particles would behave as massless particles and this would not be consistent with the
proposed Feynman diagrammatics inspired by zero energy ontology. Since wormhole throats
carry on mass shell particles with positive or negative energy so that the net momentum can be
also space-like propagators diverge for massless particles. One might overcome this problem by
assuming small thermal mass (from p-adic thermodynamics [4]) and this is indeed assumed to
reduce the number of generalized Feynman diagrams contributing to a given reaction to finite
number.

Second objection of the skeptic reader relates to the delicacies of U(1) gauge invariance. The
modified Dirac action seems to break gauge symmetries and this breaking of gauge symmetry is
absolutely essential for the dependence of the Dirac determinant on the quantum numbers. It however
seems that this breaking of gauge invariance is only apparent.

1. One must distinguish between genuine U(1) gauge transformations carried out for the induced
Kähler gauge potential Aα and apparent gauge transformations of the Kähler gauge potential
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Ak of S2 × CP2 induced by symplectic transformations deforming the space-time surface and
affect also induced metric. This delicacy of U(1) gauge symmetry explains also the apparent
breaking of U(1) gauge symmetry of Chern-Simons Dirac action due to the presence of explicit
terms Ak and Aα.

2. CP2 Kähler gauge potential is obtained in complex coordinates from Kähler function as (Kξi ,Kξi
) =

(∂ξiK,−∂ξiK). Gauge transformations correspond to the additions K → K+f+f , where f is a
holomorphic function. Kähler gauge potential has a unique gauge in which the Kähler function
of CP2 is U(2) invariant and contains no holomorphic part. Hence Ak is defined in a preferred
gauge and is a gauge invariant quantity in this sense. Same applies to S2 part of the Kähler
potential.

3. Aα should be also gauge invariant under gauge transformation respecting the vanishing of
Coulombic interaction energy. The allowed gauge transformations Aα → Aα + ∂αφ must satisfy
Dα(jαKφ) = 0. If the scalar function φ reduces to constant at the wormhole throats and at the
ends of the space-time surface DC−S is gauge invariant. The gauge transformations for which φ
does not satisfy this condition are identified as representations of critical deformations of space-
time surface so that the change of Aα would code for this kind of deformation and indeed affect
the modified Dirac operator and Kähler function (the change would be due to the change of zero
modes).

5.4.3 Some details about the modified Dirac equation defined by Chern-
Simons action

First some general comments about DC−S are in order.

1. Quite generally, there is vacuum avoidance in the sense that Ψ must vanish in the regions where
the modified gamma matrices vanish. A physical analogy for the system consider is a charged
particle in an external magnetic field. The effective metric defined by the anticommutators of
the modified gamma matrices so that standard intuitions might not help much. What one would
naively expect would be analogs of bound states in magnetic field localized into regions inside
which the magnetic field is nonvanishing.

2. If only CP2 Kähler form appears in the Kähler action, the modified Dirac action defined by
the Chern-Simons term is non-vanishing only when the dimension of the CP2 projection of the
3-surface is D(CP2) ≥ 2 and the induced Kähler field is non-vanishing. This conforms with
the properties of Kähler action. The solutions of the modified Dirac equation with a vanishing
eigenvalue λ would naturally correspond to incoming and outgoing particles. D(CP2) ≤ 2 is
inconsistent with the weak form of electric-magnetic duality unless one allows the presence of
also S2 symplectic form J1 in the conditions (the value of Planck constant would be infinite [34]).
The extrema of Chern-Simons action have D(CP2) ≤ 2 and vanishing Chern-Simons density so
that they would naturally represent on mass shell particles appearing as incoming and outgoing
particles. This conforms with the interpretation of the basic extremals as free particles (massless
extremals and cosmic strings with 2-D CP2 projection). One could say that CP breaking is not
present for free particles but unavoidably accompanies the propagator lines.

3. If a reduction to almost topological QFT is assumed [34], a realistic WCW metric requires the
replacement of J with J + J1, where J1 is S2 Kähler form. An analogous replacement must be
carried out also for the Chern-Simons term. In this case on can have a non-vanishing Ψ also for
1-dimensional CP2 projection. On the other hand, one can have also 3-D CP2 projection for
vacuum regions and Ψ must vanish in these regions.

The explicit expression of DC−S is given by
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D = Γ̂µDµ +
1

2
DµΓ̂µ ,

Γ̂µ =
∂LC−S
∂µhk

Γk = εµαβ
[
2Jkl∂αh

lAβ + JαβAk
]

ΓkDµ ,

DµΓ̂µ = BαK(Jkα + ∂αAk) ,

BαK = εαβγJβγ , Jkα = Jkl∂αs
l , ε̂αβγ = εαβγ

√
g3 . (5.4.7)

Note ε̂αβγ = does not depend on the induced metric.

The extremals of Chern-Simons action satisfy

BαK(Jkl + ∂lAk)∂αh
l = 0 , BαK = εαβγJβγ . (5.4.8)

For non-vanishing Kähler magnetic field Bα these equations hold true when CP2 projection is 2-
dimensional and S2 projection is 1-dimensional or vice versa. This implies a vanishing of Chern-Simons
action for both options. Consider for the simplicity the case when S2 projection is 1-dimensional.

1. Suppose that one can assign a global coordinate to the flow lines of the Kähler magnetic field.
In this case one might hope that ordinary intuitions about motion in constant magnetic field
might be helpful. The repetition of the discussion of [34] leads to the condition B ∧ dB = 0
implying that a Beltrami flow for which current flows along the field lines and Lorentz forces
vanishes is in question. This need not be the generic case.

2. With this assumption the modified Dirac operator reduces to a one-dimensional Dirac operator

D = ε̂rαβ
[
2Jkl∂αh

lAβ + JαβAk
]

ΓkDr . (5.4.9)

3. The general solutions of the modified Dirac equation is covariantly constant with respect to the
coordinate r:

DrΨ = 0 . (5.4.10)

The solution to this condition can be written immediately in terms of a non-integrable phase
factor Pexp(i

∫
Ardr), where integration is along curve with constant transversal coordinates.

If Γ̂v is light-like vector field also Γ̂vΨ0 defines a solution of DC−S . This solution corresponds
to a zero mode for DC−S and does not contribute to the Dirac determinant. Note that the
dependence of these solutions on transversal coordinates of X3

l is arbitrary.

4. The formal solution associated with a general eigenvalue can be constructed by integrating the
eigenvalue equation separately along all coordinate curves. This makes sense if r indeed assigned
to light-like curves indeed defines a global coordinate. What is strange that there is no correlation
between the behaviors with respect longitudinal coordinate and transversal coordinates. System
would be like a collection of totally uncorrelated point like particles reflecting the flow of the
current along flux lines. It is difficult to say anything about the spectrum of the generalized
eigenvalues in this case: it might be that the boundary conditions at the ends of the flow lines
fix the allowed values of λ. Clearly, the Beltrami flow property is what makes this case very
special.
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5.4.4 A connection with quantum measurement theory

It is encouraging that isometry charges and also other charges could make themselves visible in the
geometry of space-time surface as they should by quantum classical correspondence. This suggests an
interpretation in terms of quantum measurement theory.

1. The interpretation resolves the problem caused by the fact that the choice of the commuting
isometry charges is not unique. Cartan algebra corresponds naturally to the measured observ-
ables. For instance, one could choose the Cartan algebra of Poincare group to consist of energy
and momentum, angular momentum and boost (velocity) in particular direction as generators
of the Cartan algebra of Poincare group. In fact, the choices of a preferred plane M2 ⊂ M4

and geodesic sphere S2 ⊂ CP2 allowing to fix the measurement sub-algebra to a high degree
are implied by the replacement of the imbedding space with a book like structure forced by the
hierarchy of Planck constants. Therefore the hierarchy of Planck constants seems to be required
by quantum measurement theory. One cannot overemphasize the importance of this connection.

2. One can add similar couplings of the net values of the measured observables to the currents
whose existence and conservation is guaranteed by quantum criticality. It is essential that one
maps the observables to Cartan algebra coupled to critical current characterizing the observable
in question. The coupling should have interpretation as a replacement of the induced Kähler
gauge potential with its gauge transform. Quantum classical correspondence encourages the
identification of the classical charges associated with Kähler action with quantal Cartan charges.
This would support the interpretation in terms of a measurement interaction feeding information
to classical space-time physics about the eigenvalues of the observables of the measured system.
The resulting field equations remain second order partial differential equations since the second
order partial derivatives appear only linearly in the added terms.

3. What about the space-time correlates of electro-weak charges? The earlier proposal explains this
correlation in terms of the properties of quantum states: the coupling of electro-weak charges to
Chern-Simons term could give the correlation in stationary phase approximation. It would be
however very strange if the coupling of electro-weak charges with the geometry of the space-time
sheet would not have the same universal description based on quantum measurement theory as
isometry charges have.

(a) The hint as how this description could be achieved comes from a long standing un-answered
question motivated by the fact that electro-weak gauge group identifiable as the holonomy
group of CP2 can be identified as U(2) subgroup of color group. Could the electro-weak
charges be identified as classical color charges? This might make sense since the color
charges have also identification as fermionic charges implied by quantum criticality. Or
could electro-weak charges be only represented as classical color charges by mapping them
to classical color currents in the measurement interaction term in the modified Dirac action?
At least this question might make sense.

(b) It does not make sense to couple both electro-weak and color charges to the same fermion
current. There are also other fundamental fermion currents which are conserved. All the
following currents are conserved.

Jα = ΨOΓ̂αΨ

O ∈ {1 , J ≡ JklΣkl , ΣAB , ΣABJ} . (5.4.11)

Here Jkl is the covariantly constant CP2 Kähler form and ΣAB is the (also covariantly)
constant sigma matrix of M4 (flatness is absolutely essential).

(c) Electromagnetic charge can be expressed as a linear combination of currents corresponding
to O = 1 and O = J and vectorial isospin current corresponds to J . It is natural to couple
of electromagnetic charge to the the projection of Killing vector field of color hyper charge
and coupling it to the current defined by Oem = a+bJ . This allows to interpret the puzzling
finding that electromagnetic charge can be identified as anomalous color hyper-charge for
induced spinor fields made already during the first years of TGD. There exist no conserved
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axial isospin currents in accordance with CVC and PCAC hypothesis which belong to the
basic stuff of the hadron physics of old days.

(d) Color charges would couple naturally to lepton and quark number current and the U(1)
part of electro-weak charges to the n = 1 multiple of quark current and n = 3 multiple of
the lepton current (note that leptons resp. quarks correspond to t = 0 resp. t = ±1 color
partial waves). If electro-weak resp. couplings to H-chirality are proportional to 1 resp.
Γ9, the fermionic currents assigned to color and electro-weak charges can be regarded as
independent. This explains why the possibility of both vectorial and axial couplings in 8-D
sense does not imply the doubling of gauge bosons.

(e) There is also an infinite variety of conserved currents obtained as the quantum critical
deformations of the basic fermion currents identified above. This would allow in principle
to couple an arbitrary number of observables to the geometry of the space-time sheet by
mapping them to Cartan algebras of Poincare and color group for a particular conserved
quantum critical current. Quantum criticality would therefore make possible classical space-
time correlates of observables necessary for quantum measurement theory.

(f) The coupling constants associated with the deformations would appear in the couplings.
Quantum criticality (K → K + f + f condition) should predict the spectrum of these
couplings. In the case of momentum the coupling would be proportional to

√
G/~0= kR/~0

and k ∼ 211 should follow from quantum criticality. p-Adic coupling constant evolution
should follow from the dependence on the scale of CD coming as powers of 2.

4. Quantum criticality implies fluctuations in long length and time scales and it is not surprising
that quantum criticality is needed to produce a correlation between quantal degrees of free-
dom and macroscopic degrees of freedom. Note that quantum classical correspondence can be
regarded as an abstract form of entanglement induced by the entanglement between quantum
charges QA and fermion number type charges assignable to zero modes.

5. Space-time sheets can have an arbitrary number of wormhole contacts so that the interpretation
in terms of measurement theory coupling short and long length scales suggests that the measure-
ment interaction terms are localizable at the wormhole throats. This would favor Chern-Simons
term or possibly instanton term if reducible to Chern-Simons terms. The breaking of CP and
T might relate to the fact that state function reductions performed in quantum measurements
indeed induce dissipation and breaking of time reversal invariance.

6. The experimental arrangement quite concretely splits the quantum state to a quantum su-
perposition of space-time sheets such that each eigenstate of the measured observables in the
superposition corresponds to different space-time sheet already before the realization of state
function reduction. This relates interestingly to the question whether state function reduction
really occurs or whether only a branching of wave function defined by WCW spinor field takes
place as in multiverse interpretation in which different branches correspond to different observers.
TGD inspired theory consciousness requires that state function reduction takes place. Maybe
multiversalist might be able to find from this picture support for his own beliefs.

7. One can argue that ”free will” appears not only at the level of quantum jumps but also as the
possibility to select the observables appearing in the modified Dirac action dictating in turn
the Kähler function defining the Kähler metric of WCW representing the ”laws of physics”.
This need not to be the case. The choice of CD fixes M2 and the geodesic sphere S2: this
does not fix completely the choice of the quantization axis but by isometry invariance rotations
and color rotations do not affect Kähler function for given CD and for a given type of Cartan
algebra. In M4 degrees of freedom the possibility to select the observables in two manners
corresponding to linear and cylindrical Minkowski coordinates could imply that the resulting
Kähler functions are different. The corresponding Kähler metrics do not differ if the real parts
of the Kähler functions associated with the two choices differ by a term f(Z) + f(Z), where Z
denotes complex coordinates of WCW, the Kähler metric remains the same. The function f can
depend also on zero modes. If this is the case then one can allow in given CD superpositions
of WCW spinor fields for which the measurement interactions are different. This condition
is expected to pose non-trivial constraints on the measurement action and quantize coupling
parameters appearing in it.
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5.4.5 New view about gravitational mass and matter antimatter asymme-
try

The physical interpretation of the additional term in the modified Dirac action might force quite a
radical revision of the ideas about matter and antimatter.

1. The term pA∂αm
A contracted with the fermion current is analogous to a gauge potential cou-

pling to fermion number. Since the additional terms in the modified Dirac operator induce
stringy propagation, a natural interpretation of the coupling to the induced spinor fields is in
terms of gravitation. One might perhaps say that the measurement of four momentum in-
duces gravitational interaction. Besides momentum components also color charges take the role
of gravitational charges. As a matter fact, any observable takes this role via coupling to the
projections of Killing vector fields of Cartan algebra. The analogy of color interactions with
gravitational interactions is indeed one of the oldest ideas in TGD.

2. The coupling to four-momentum is through fermion number (both quark number and lepton
number). For states with a vanishing fermion number isometry charges therefore vanish. In
this framework matter antimatter asymmetry would be due to the fact that matter (antimatter)
corresponds to positive (negative) energy parts of zero energy states for massive systems so that
the contributions to the net gravitational four-momentum are of same sign. Could antimatter
be unobservable to us because it resides at negative energy space-time sheets? As a matter fact,
I proposed already years ago that gravitational mass is essentially the magnitude of the inertial
mass but gave up this idea.

3. Bosons do not couple at all to gravitation if they are purely local bound states of fermion and
anti-fermion at the same space-time sheet (say represented by generators of super Kac-Moody
algebra). Therefore the only possible identification of gauge bosons is as wormhole contacts.
If the fermion and anti-fermion at the opposite throats of the contact correspond to positive
and negative energy states the net gravitational energy receives a positive contribution from
both sheets. If both correspond to positive (negative) energy the contributions to the net four-
momentum have opposite signs. It is not yet clear which identification is the correct one.

5.4.6 Generalized eigenvalues of DC−S and General Coordinate Invariance

The fixing of light-like 3-surface to be the wormhole throat at which the signature of induced metric
changes from Minkowskian to Euclidian corresponds to a convenient fixing of gauge. General Coordi-
nate Invariance however requires that any light-like surface Y 3

l parallel to X3
l in the slicing is equally

good choice. In particular, it should give rise to same Kähler metric but not necessarily the same
exponent of Kähler function identified as the product of the generalized eigenvalues of DC,S at Y 3

l .

General Coordinate Invariance requires that the components of Kähler metric of configuration
space defined in terms of Kähler function as

Gkl = ∂k∂lK =
∑
i

∂k∂lλi

remain invariant under this flow. Here complex coordinate are of course associated with the configu-
ration space. This is the case if the flow corresponds to the addition of sum of holomorphic function
f(z) and its conjugate f(z)) which is anti-holomorphic function to K. This boils down to the scaling
of eigenvalues λi by

λi → exp(fi(z) + fi(z))λi . (5.4.12)

If the eigenvalues are interpreted as vacuum conformal weights, general coordinate transformations
correspond to a spectral flow scaling the eigenvalues in this manner. This in turn would induce spectral
flow of ground state conformal weights if the squares of λi correspond to ground state conformal
weights.
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5.5 Quaternions, octonions, and modified Dirac equation

Classical number fields define one vision about quantum TGD. This vision about quantum TGD has
evolved gradually and involves several speculative ideas.

1. The hard core of the vision is that space-time surfaces as preferred extremals of Kähler action
can be identified as what I have called hyper-quaternionic surfaces of M8 or M4 × CP2. This
requires only the mapping of the modified gamma matrices to octonions or to a basis of subspace
of complexified octonions. This means also the mapping of spinors to octonionic spinors. There
is no need to assume that imbedding space-coordinates are octonionic.

2. I have considered also the idea that quantum TGD might emerge from the mere associativity.

(a) Consider Clifford algebra of WCW. Treat ”vibrational” degrees of freedom in terms second
quantized spinor fields and add center of mass degrees of freedom by replacing 8-D gamma
matrices with their octonionic counterparts - which can be constructed as tensor products of
octonions providing alternative representation for the basis of 7-D Euclidian gamma matrix
algebra - and of 2-D sigma matrices. Spinor components correspond to tensor products of
octonions with 2-spinors: different spin states for these spinors correspond to leptons and
baryons.

(b) Construct a local Clifford algebra by considering Clifford algebra elements depending on
point of M8 or H. The octonionic 8-D Clifford algebra and its local variant are non-
accociative. Associative sub-algebra of 8-D Clifford algebra is obtained by restricting the
elements so any quaternionic 4-plane. Doing the same for the local algebra means restriction
of the Clifford algebra valued functions to any 4-D hyper-quaternionic sub-manifold of M8

or H which means that the gamma matrices span complexified quaternionic algebra at each
point of space-time surface. Also spinors must be quaternionic.

(c) The assignment of the 4-D gamma matrix sub-algebra at each point of space-time surface
can be done in many manners. If the gamma matrices correspond to the tangent space of
space-time surface, one obtains just induced gamma matrices and the standard definition of
quaternionic sub-manifold. In this case induced 4-volume is taken as the action principle.
If Kähler action defines the space-time dynamics, the modified gamma matrices do not
span the tangent space in general.

(d) An important additional element is involved. If the M4 projection of the space-time surface
contains a preferred subspace M2 at each point, the quaternionic planes are labeled by
points of CP2 and one can equivalently regard the surfaces of M8 as surfaces of M4×CP2

(number-theoretical ”compactification”). This generalizes: M2 can be replaced with a
distribution of planes of M4 which integrates to a 2-D surface of M4 (for instance, for
string like objects this is necessarily true). The presence of the preferred local plane M2

corresponds to the fact that octonionic spin matrices ΣAB span 14-D Lie-algebra of G2 ⊂
SO(7) rather than that 28-D Lie-algebra of SO(7, 1) whereas octonionic imaginary units
provide 7-D fundamental representation of G2. Also spinors must be quaternionic and
this is achieved if they are created by the Clifford algebra defined by induced gamma
matrices from two preferred spinors defined by real and preferred imaginary octonionic
unit. Therefore the preferred plane M3 ⊂ M4 and its local variant has direct counterpart
at the level of induced gamma matrices and spinors.

(e) This framework implies the basic structures of TGD and therefore leads to the notion of
world of classical worlds (WCW) and from this one ends up with the notion WCW spinor
field and WCW Clifford algebra and also hyper-finite factors of type II1 and III1. Note
that M8 is exceptional: in other dimensions there is no reason for the restriction of the
local Clifford algebra to lower-dimensional sub-manifold to obtain associative algebra.

The above line of ideas leads naturally to (hyper-)quaternionic sub-manifolds and to basic quantum
TGD (note that the ”hyper” is un-necessary if one accepts just the notion of quaternionic sub-manifold
formulated in terms of modified gamma matrices). One can pose some further questions.

1. Quantum TGD reduces basically to the second quantization of the induced spinor fields. Could
it be that the theory is integrable only for 4-D hyper-quaternionic space-time surfaces in M8



5.5. Quaternions, octonions, and modified Dirac equation 297

(equivalently in M4×CP2) in the sense than one can solve the modified Dirac equation exactly
only in these cases?

2. The construction of quantum TGD -including the construction of vacuum functional as exponent
of Kähler function reducing to Kähler action for a preferred extremal - should reduce to the
modified Dirac equation defined by Kähler action. Could it be that the modified Dirac equation
can be solved exactly only for Kähler action.

3. Is it possible to solve the modified Dirac equation for the octonionic gamma matrices and
octonionic spinors and map the solution as such to the real context by replacing gamma matrices
and sigma matrices with their standard counterparts? Could the associativity conditions for
octospinors and modified Dirac equation allow to pin down the form of solutions to such a high
degree that the solution can be constructed explicitly?

4. Octonionic gamma matrices provide also a non-associative representation for 8-D version of Pauli
sigma matrices and encourage the identification of 8-D twistors as pairs of octonionic spinors
conjectured to be highly relevant also for quantum TGD. Does the quaternionicity condition
imply that octo-twistors reduce to something closely related to ordinary twistors as the fact
that 2-D sigma matrices provide a matrix representation of quaternions suggests?

In the following I will try to answer these questions by developing a detailed view about the
octonionic counterpart of the modified Dirac equation and proposing explicit solution ansätze for the
modes of the modified Dirac equation.

5.5.1 The replacement of SO(7, 1) with G2

The basic implication of octonionization is the replacement of SO(7, 1) as the structure group of spinor
connection with G2. This has some rather unexpected consequences.

Octonionic representation of 8-D gamma matrices

Consider first the representation of 8-D gamma matrices in terms of tensor products of 7-D gamma
matrices and 2-D Pauli sigma matrices.

1. The gamma matrices are given by

γ0 = 1× σ1 , γi = γi ⊗ σ2 , i = 1, .., 7 . (5.5.1)

7-D gamma matrices in turn can be expressed in terms of 6-D gamma matrices by expressing
γ7 as

γ
7)
i+1 = γ

6)
i , i = 1, ..., 6 , γ

7)
1 = γ

6)
7 =

6∏
i=1

γ
6)
i . (5.5.2)

2. The octonionic representation is obtained as

γ0 = 1× σ1 , γi = ei ⊗ σ2 . (5.5.3)

where ei are the octonionic units. e2
i = −1 guarantees that the M4 signature of the metric comes

out correctly. Note that γ7 =
∏
γi is the counterpart for choosing the preferred octonionic unit

and plane M2.



298
Chapter 5. Does the Modified Dirac Equation Define the Fundamental Action

Principle?

3. The octonionic sigma matrices are obtained as commutators of gamma matrices:

Σ0i = ei × σ3 , Σij = f k
ij ek ⊗ 1 . (5.5.4)

These matrices span G2 algebra having dimension 14 and rank 2 and having imaginary octonion
units and their conjugates as the fundamental representation and its conjugate. The Cartan
algebra for the sigma matrices can be chosen to be Σ01 and Σ23 and belong to a quaternionic
sub-algebra.

4. The lower dimension of the G2 algebra means that some combinations of sigma matrices vanish.
All left or right handed generators of the algebra are mapped to zero: this explains why the
dimension is halved from 28 to 14. From the octonionic triangle expressing the multiplication
rules for octonion units [44] one finds e4e5 = e1 and e6e7 = −e1 and analogous expressions for
the cyclic permutations of e4, e5, e6, e7. From the expression of the left handed sigma matrix
I3
L = σ23 + σ30 representing left handed weak isospin (see the Appendix about the geometry of
CP2 [39]) one can conclude that this particular sigma matrix and left handed sigma matrices
in general are mapped to zero. The quaternionic sub-algebra SU(2)L × SU(2)R is mapped
to that for the rotation group SO(3) since in the case of Lorentz group one cannot speak of
a decomposition to left and right handed subgroups. The elements of the complement of the
quaternionic sub-algebra are expressible in terms of Σij in the quaternionic sub-algebra.

Some physical implications of SO(7, 1)→ G2 reduction

This has interesting physical implications if one believes that the octonionic description is equivalent
with the standard one.

1. If SU(2)L is mapped to zero only the right-handed parts of electro-weak gauge field survive
octonization. The right handed part is neutral containing only photon and Z0 so that the
gauge field becomes Abelian. Z0 and photon fields become proportional to each other (Z0 →
sin2(θW )γ) so that classical Z0 field disappears from the dynamics, and one would obtain just
electrodynamics. This might provide a deeper reason for why electrodynamics is an excellent
description of low energy physics and of classical physics. This is consistent with the fact that
CP2 coordinates define 4 field degrees of freedom so that single Abelian gauge field should
be enough to describe classical physics. This would remove also the interpretational problems
caused by the transitions changing the charge state of fermion induced by the classical W boson
fields.

Also the realization of M8 −H duality led to the conclusion M8 spinor connection should have
only neutral components. The isospin matrix associated with the electromagnetic charge is e1×1
and represents the preferred imaginary octonionic unit so that that the image of the electro-weak
gauge algebra respects associativity condition. An open question is whether octonionization
is part of M8-H duality or defines a completely independent duality. The objection is that
information is lost in the mapping so that it becomes questionable whether the same solutions
to the modified Dirac equation can work as a solution for ordinary Clifford algebra.

2. If SU(2)R were mapped to zero only left handed parts of the gauge fields would remain. All
classical gauge fields would remain in the spectrum so that information would not be lost. The
identification of the electro-weak gauge fields as three covariantly constant quaternionic units
would be possible in the case of M8 allowing Hyper-Kähler structure [42], which has been
speculated to be a hidden symmetry of quantum TGD at the level of WCW. This option would
lead to difficulties with associativity since the action of the charged gauge potentials would lead
out from the local quaternionic subspace defined by the octonionic spinor.

3. The gauge potentials and gauge fields defined by CP2 spinor connection are mapped to fields
in SO(2) ⊂ SU(2)×U(1) in quaternionic sub-algebra which in a well-defined sense corresponds
to M4 degrees of freedom! Since the resulting interactions are of gravitational character, one
might say that electro-weak interactions are mapped to manifestly gravitational interactions.
Since SU(2) corresponds to rotational group one cannot say that spinor connection would give
rise only to left or right handed couplings, which would be obviously a disaster.
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Octo-spinors and their relation to ordinary imbedding space spinors

Octo-spinors are identified as octonion valued 2-spinors with basis

ΨL,i = ei

(
1
0

)
,

Ψq,i = ei

(
0
1

)
. (5.5.5)

One obtains quark and lepton spinors and conjugation for the spinors transforms quarks to leptons.
Note that octospinors can be seen as 2-dimensional spinors with components which have values in the
space of complexified octonions.

The leptonic spinor corresponding to real unit and preferred imaginary unit e1 corresponds nat-
urally to the two spin states of the right handed neutrino. In quark sector this would mean that
right handed U quark corresponds to the real unit. The octonions decompose as 1 + 1 + 3 + 3 as
representations of SU(3) ⊂ G2. The concrete representations are given by

{1± ie1} , eR and νR with spin 1/2 ,
{e2 ± ie3} , eR and νL with spin -1/2 ,
{e4 ± ie5} eL and νL with spin 1/2 ,
{e6 ± ie7} eL and νL with spin 1/2 .

(5.5.6)

Instead of spin one could consider helicity. All these spinors are eigenstates of e1 (and thus of the
corresponding sigma matrix) with opposite values for the sign factor ε = ±. The interpretation is in
terms of vectorial isospin. States with ε = 1 can be interpreted as charged leptons and D type quarks
and those with ε = −1 as neutrinos and U type quarks. The interpretation would be that the states
with vanishing color isospin correspond to right handed fermions and the states with non-vanishing
SU(3) isospin (to be not confused with QCD color isospin) and those with non-vanishing SU(3) isospin
to left handed fermions. The only difference between quarks and leptons is that the induced Kähler
gauge potentials couple to them differently.

The importance of this identification is that it allows a unique map of the candidates for the
solutions of the octonionic modified Dirac equation to those of ordinary one. There are some delicacies
involved due to the possibility to chose the preferred unit e1 so that the preferred subspace M2 can
corresponds to a sub-manifold M2 ⊂M4.

5.5.2 Octonionic counterpart of the modified Dirac equation

The solution ansatz for the octonionic counterpart of the modified Dirac equation discussed below
makes sense also for ordinary modified Dirac equation which raises the hope that the same ansatz,
and even same solution could provide a solution in both cases.

The general structure of the modified Dirac equation

In accordance with quantum holography and the notion of generalized Feynman diagram, the modified
Dirac equation involves two equations which must be consistent with each other.

1. There is 3-dimensional generalized eigenvalue equation for which the modified gamma matrices
are defined by Chern-Simons action defined by the sum Jtot = J +J1 of Kähler forms of S2 and
CP2 [18, 47].

D3Ψ = [DC−S +QC−S ] Ψ = λkγkΨ ,

QC−S = QαΓ̂αC−S , Qα = QAg
ABjBα .

(5.5.7)
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The gamma matrices γk are M4 gamma matrices in standard Minkowski coordinates and thus
constant. Given eigenvalue λk defines pseudo momentum which is some function of the gen-
uine momenta pk and other quantum numbers via the boundary conditions associated with the
generalized eigenvalue equation.

The charges QA correspond to real four-momentum and charges in color Cartan algebra. The
term Q can be rather general since it provides a representation for the measurement interaction
by mapping observables to Cartan algebra of isometry group and to the infinite hierarchy of
conserved currents implied by quantum criticality. The operator O characterizes the quantum
critical conserved current. The surface Y 3

l can be chosen to be any light-like 3-surface ”parallel”
to the wormhole throat in the slicing of X4: this means an additional symmetry. Formally the
measurement interaction term can be regarded as an addition of a gauge term to the Kähler
gauge potential associated with the Kähler form Jtot of S2 × CP2.

The square of the equation gives the spinor analog of d’Alembert equation and generalized
eigenvalue as the analog of mass squared. The propagator associated with the wormhole throats
is formally massless Dirac propagator so that standard twistor formalism applies also without
the octonionic representation of the gamma matrices although the physical particles propagating
along the opposite wormhole throats are massive on mass shell particles with both signs of energy
[47].

2. Second equation is the 4-D modified Dirac equation defined by Kähler action.

DKΨ = 0 . (5.5.8)

The dimensional reduction of this operator to a sum corresponding to DK,3 acting on light-like 3-
surfaces and 1-D operator DK,1 acting on the coordinate labeling the 3-D light-like 3-surfaces in
the slicing would allow to assign eigenvalues to DK,3 as analogs of energy eigenvalues for ordinary
Schrödinger equation. One proposal has been that Dirac determinant could be identified as the
product of these eigen values. Another and more plausible identification is as the product of
pseudo masses assignable to D3 defined by Chern-Simons action [56]. It must be however made
clear that the identification of the exponent of the Kähler function to Chern-Simons term makes
the identification as Dirac determinant un-necessary.

3. There are two options depending on whether one requires that the eigenvalue equation applies
only on the wormhole throats and at the ends of the space-time surface or for all 3-surfaces
in the slicing of the space-time surface by light-like 3-surfaces. In the latter case the condition
that the pseudo four-momentum is same for all the light-like 3-surfaces in the slicing gives a
consistency condition stating that the commutator of the two Dirac operators vanishes for the
solutions in the case of preferred extremals, which depend on the momentum and color quantum
numbers also:

[DK , D3] Ψ = 0 . (5.5.9)

This condition is quite strong and there is no deep reason for it since λk does not correspond to
the physical conserved momentum so that its spectrum could depend on the light-like 3-surface
in the slicing. On the other hand, if the eigenvalues of D3 belong to the preferred hyper-complex
plane M2, D3 effectively reduces to a 2-dimensional algebraic Dirac operator λkγk commuting
with DK : the values of λk cannot depend on slice since this would mean that DK does not
commute with D3.

About the hyper-octonionic variant of the modified Dirac equation

What gives excellent hopes that the octonionic variant of modified Dirac equation could lead to a
provide precise information about the solution spectrum of modified Dirac equation is the condition
that everything in the equation should be associative. Hence the terms which are by there nature
non-associative should vanish automatically.
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1. The first implication is that the besides octonionic gamma matrices also octonionic spinors should
belong to the local quaternionic plane at each point of the space-time surface. Spinors are also
generated by quaternionic Clifford algebra from two preferred spinors defining a preferred plane
in the space of spinors. Hence spinorial dynamics seems to mimic very closely the space-time
dynamics and one might even hope that the solutions of the modified Dirac action could be seen
as maps of the space-time surface to surfaces of the spinor space. The reduction to quaternionic
sub-algebra suggest that some variant of ordinary twistors emerges in this manner in matrix
representation.

2. The octonionic sigma matrices span G2 where as ordinary sigma matrices define SO(7, 1). On
the other hand, the holonomies are identical in the two cases if right-handed charge matrices
are mapped to zero so that there are indeed hopes that the solutions of the octonionic Dirac
equation cannot be mapped to those of ordinary Dirac equation. If left-handed charge matrices
are mapped to zero, the resulting theory is essentially the analog of electrodynamics coupled to
gravitation at classical level but it is not clear whether this physically acceptable. It is not clear
whether associativity condition leaves only this option under consideration.

3. The solution ansatz to the modified Dirac equation is expected to be of the form Ψ = DK(Ψ0u0+
Ψ1u1), where u0 and u1 are constant spinors representing real unit and the preferred unit e1.
Hence constant spinors associated with right handed electron and neutrino and right-handed d
and u quark would appear in Ψ and Ψi could correspond to scalar coefficients of spinors with
different charge. This ansatz would reduce the modified Dirac equation to D2

KΨi = 0 since
there are no charged couplings present. The reduction of a d’Alembert type equation for single
scalar function coupling to U(1) gauge potential and U(1) ”gravitation” would obviously mean
a dramatic simplification raising hopes about integrable theory.

4. The condition D2
KΨ = 0 involves products of three octonions and involves derivatives of the

modified gamma matrices which might belong to the complement of the quaternionic sub-space.
The restriction of Ψ to the preferred hyper-complex plane M2 simplifies the situation dramati-
cally but (D2

K)DKΨ = DK(D2
K)Ψ = 0 could still fail. The problem is that the action of DK is

not algebraic so that one cannot treat reduce the associativity condition to (AA)A = A(AA).

5.5.3 Could the notion of octo-twistor make sense?

Twistors have led to dramatic successes in the understanding of Feynman diagrammatics of gauge
theories, N = 4 SUSYs, and N = 8 supergravity [52, 50, 57]. This motivated the question whether
they might be applied in TGD framework too [28] - at least in the description of the QFT limit. The
basic problem of the twistor program is how to overcome the difficulties caused by particle massivation
and TGD framework suggests possible clues in this respect.

1. In TGD it is natural to regard particles as massless particles in 8-D sense and to introduce 8-D
counterpart of twistors by relying on the geometric picture in which twistors correspond to a
pair of spinors characterizing light-like momentum ray and a point of M8 through which the
ray traverses. Twistors would consist of a pair of spinors and quark and lepton spinors define
the natural candidate for the spinors in question. This approach would allow to handle massive
on-mass-shell states but cannot cope with virtual momenta massive in 8-D sense.

2. The emergence of pseudo momentum λk from the generalized eigenvalue equation for DC−S
suggest a dramatically simpler solution to the problem. Since propagators are effectively massless
propagators for pseudo momenta, which are functions of physical on shell momenta (with both
signs of energy in zero energy ontology) and of other quantum numbers, twistor formalism can
be applied in its standard form. An attractive assumption is that also λk are conserved in the
vertices but a good argument justifying this is lacking. One can ask whether also N = 4 SUSY,
N = 8 super-gravity, and even QCD could have similar interpretation.

This picture should apply also in the case of octotwistors with minor modifications and one might
hope that octotwistors could provide new insights about what happens in the real case.
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1. In the case of ordinary Clifford algebra unit matrix and six-dimensional gamma matrices γi,
i = 1, ..., 6 and γ7 =

∏
i γi would define the variant of Pauli sigma matrices as σ0 = 1, σk = γk,

k = 1, .., 7 The problem is that masslessness condition does not correspond to the vanishing of
the determinant for the matrix pkσ

k.

2. In the case of octo-twistors Pauli sigma matrices σk would correspond to hyper-octonion units
{σ0, σk} = {1, iek} and one could assign to pkσ

k a matrix by the linear map defined by the
multiplication with P = pkσ

k. The matrix is of form Pmn = pkfkmn, where fkmn are the
structure constants characterizing multiplication by hyper-octonion. The norm squared for
octonion is the fourth root for the determinant of this matrix. Since pkσ

k maps its octonionic
conjugate to zero so that the determinant must vanish (as is easy to see directly by reducing the
situation to that for hyper-complex numbers by considering the hyper-complex plane defined by
P ).

3. Associativity condition for the octotwistors requires that the gamma matrix basis appearing in
the generalized eigenvalue equation for Chern-Simons Dirac operator must differs by a local G2

rotation from the standard hyper-quaternionic gamma matrix for M4 so that it is always in the
local hyper-quaternionic plane. This suggests that octo-twistor can be mapped to an ordinary
twistor by mapping the basis of hyper-quaternions to Pauli sigma matrices. A stronger condition
guaranteing the commutativity of D3 with λkγk is that λk belongs to a preferred hyper-complex
plane M2 assignable to a given CD. Also the two spinors should belong to this plane for the
proposed solution ansatz for the modified Dirac equation. Quaternionization would also allow
to assign momentum to the spinors in standard manner.

The spectrum of pseudo-momenta would be 2-dimensional (continuum at worst) and this should
certainly improve dramatically the convergence properties for the sum over the non-conserved
pseudo-momenta in propagators which in the worst possible of worlds might destroy the man-
ifest finiteness of the theory based on the generalized Feynman diagrams with the throats of
wormholes carrying always on mass shell momenta. This effective 2-dimensionality should apply
also in the real case and would have no catastrophic consequences since pseudo momenta are in
question.

As a matter fact, the assumption the decomposition of quark momenta to longitudinal and
transversal parts in perturbative QCD might have interpretation in terms of pseudo-momenta
if they are conserved.

4. M8 − H duality suggests a possible interpretation of the pseudo-momenta as M8 momenta
which by purely number theoretical reasons must be commutative and thus belong to M2 hyper-
complex plane. One ends up with the similar outcome as one constructs a representation for
the quantum states defined by WCW spinor fields as superpositions of real units constructed as
ratios of infinite hyper-octonionic integers with precisely defined number theoretic anatomy and
transformation properties under standard model symmetries having number theoretic interpre-
tation [19].

5.6 Weak form electric-magnetic duality and its implications

The notion of electric-magnetic duality [51] was proposed first by Olive and Montonen and is central
in N = 4 supersymmetric gauge theories. It states that magnetic monopoles and ordinary particles
are two different phases of theory and that the description in terms of monopoles can be applied
at the limit when the running gauge coupling constant becomes very large and perturbation theory
fails to converge. The notion of electric-magnetic self-duality is more natural since for CP2 geometry
Kähler form is self-dual and Kähler magnetic monopoles are also Kähler electric monopoles and
Kähler coupling strength is by quantum criticality renormalization group invariant rather than running
coupling constant. The notion of electric-magnetic (self-)duality emerged already two decades ago
in the attempts to formulate the Kähler geometric of world of classical worlds. Quite recently a
considerable step of progress took place in the understanding of this notion [22]. What seems to be
essential is that one adopts a weaker form of the self-duality applying at partonic 2-surfaces. What
this means will be discussed in the sequel.
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Every new idea must be of course taken with a grain of salt but the good sign is that this concept
leads to precise predictions. The point is that elementary particles do not generate monopole fields in
macroscopic length scales: at least when one considers visible matter. The first question is whether
elementary particles could have vanishing magnetic charges: this turns out to be impossible. The next
question is how the screening of the magnetic charges could take place and leads to an identification
of the physical particles as string like objects identified as pairs magnetic charged wormhole throats
connected by magnetic flux tubes.

1. The first implication is a new view about electro-weak massivation reducing it to weak confine-
ment in TGD framework. The second end of the string contains particle having electroweak
isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak
scale would be in question. Hence the screening of electro-weak force takes place via weak
confinement realized in terms of magnetic confinement.

2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of
magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be
connected by flux tubes of length of order hadron size such that magnetic charges sum up to
zero. For instance, for baryonic valence quarks these charges could be (2,−1,−1) and could be
proportional to color hyper charge.

3. The highly non-trivial prediction making more precise the earlier stringy vision is that elementary
particles are string like objects in electro-weak scale: this should become manifest at LHC
energies.

4. The weak form electric-magnetic duality together with Beltrami flow property of Kähler leads to
the reduction of Kähler action to Chern-Simons action so that TGD reduces to almost topological
QFT and that Kähler function is explicitly calculable. This has enormous impact concerning
practical calculability of the theory.

5. One ends up also to a general solution ansatz for field equations from the condition that the
theory reduces to almost topological QFT. The solution ansatz is inspired by the idea that all
isometry currents are proportional to Kähler current which is integrable in the sense that the flow
parameter associated with its flow lines defines a global coordinate. The proposed solution ansatz
would describe a hydrodynamical flow with the property that isometry charges are conserved
along the flow lines (Beltrami flow). A general ansatz satisfying the integrability conditions
is found. The solution ansatz applies also to the extremals of Chern-Simons action and and
to the conserved currents associated with the modified Dirac equation defined as contractions
of the modified gamma matrices between the solutions of the modified Dirac equation. The
strongest form of the solution ansatz states that various classical and quantum currents flow
along flow lines of the Beltrami flow defined by Kähler current (Kähler magnetic field associated
with Chern-Simons action). Intuitively this picture is attractive. A more general ansatz would
allow several Beltrami flows meaning multi-hydrodynamics. The integrability conditions boil
down to two scalar functions: the first one satisfies massless d’Alembert equation in the induced
metric and the the gradients of the scalar functions are orthogonal. The interpretation in terms
of momentum and polarization directions is natural.

6. The general solution ansatz works for induced Kähler Dirac equation and Chern-Simons Dirac
equation and reduces them to ordinary differential equations along flow lines. The induced spinor
fields are simply constant along flow lines of indued spinor field for Dirac equation in suitable
gauge. Also the generalized eigen modes of the modified Chern-Simons Dirac operator can be
deduced explicitly if the throats and the ends of space-time surface at the boundaries of CD are
extremals of Chern-Simons action. Chern-Simons Dirac equation reduces to ordinary differential
equations along flow lines and one can deduce the general form of the spectrum and the explicit
representation of the Dirac determinant in terms of geometric quantities characterizing the 3-
surface (eigenvalues are inversely proportional to the lengths of strands of the flow lines in the
effective metric defined by the modified gamma matrices).
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5.6.1 Could a weak form of electric-magnetic duality hold true?

Holography means that the initial data at the partonic 2-surfaces should fix the configuration space
metric. A weak form of this condition allows only the partonic 2-surfaces defined by the wormhole
throats at which the signature of the induced metric changes. A stronger condition allows all partonic
2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and string world sheets. Number
theoretical vision suggests that hyper-quaternionicity resp. co-hyperquaternionicity constraint could
be enough to fix the initial values of time derivatives of the imbedding space coordinates in the space-
time regions with Minkowskian resp. Euclidian signature of the induced metric. This is a condition
on modified gamma matrices and hyper-quaternionicity states that they span a hyper-quaternionic
sub-space.

Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The argument
goes as follows.

1. The expression of the matrix elements of the metric and Kähler form of WCW in terms of
the Kähler fluxes weighted by Hamiltonians of δM4

± at the partonic 2-surface X2 looks very
attractive. These expressions however carry no information about the 4-D tangent space of the
partonic 2-surfaces so that the theory would reduce to a genuinely 2-dimensional theory, which
cannot hold true. One would like to code to the WCW metric also information about the electric
part of the induced Kähler form assignable to the complement of the tangent space of X2 ⊂ X4.

2. Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial manner
to get electric magnetic duality at the level of the full theory would be via the identification of
the flux Hamiltonians as sums of of the magnetic and electric fluxes. The presence of the induced
metric is however troublesome since the presence of the induced metric means that the simple
transformation properties of flux Hamiltonians under symplectic transformations -in particular
color rotations- are lost.

3. A less trivial formulation of electric-magnetic duality would be as an initial condition which
eliminates the induced metric from the electric flux. In the Euclidian version of 4-D YM theory
this duality allows to solve field equations exactly in terms of instantons. This approach involves
also quaternions. These arguments suggest that the duality in some form might work. The full
electric magnetic duality is certainly too strong and implies that space-time surface at the
partonic 2-surface corresponds to piece of CP2 type vacuum extremal and can hold only in the
deep interior of the region with Euclidian signature. In the region surrounding wormhole throat
at both sides the condition must be replaced with a weaker condition.

4. To formulate a weaker form of the condition let us introduce coordinates (x0, x3, x1, x2) such
(x1, x2) define coordinates for the partonic 2-surface and (x0, x3) define coordinates labeling
partonic 2-surfaces in the slicing of the space-time surface by partonic 2-surfaces and string
world sheets making sense in the regions of space-time sheet with Minkowskian signature. The
assumption about the slicing allows to preserve general coordinate invariance. The weakest
condition is that the generalized Kähler electric fluxes are apart from constant proportional to
Kähler magnetic fluxes. This requires the condition

J03√g4 = KJ12 . (5.6.1)

A more general form of this duality is suggested by the considerations of [34] reducing the
hierarchy of Planck constants to basic quantum TGD and also reducing Kähler function for pre-
ferred extremals to Chern-Simons terms [56] at the boundaries of CD and at light-like wormhole
throats. This form is following

Jnβ
√
g4 = Kε× εnβγδJγδ

√
g4 . (5.6.2)
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Here the index n refers to a normal coordinate for the space-like 3-surface at either boundary of
CD or for light-like wormhole throat. ε is a sign factor which is opposite for the two ends of CD.
It could be also opposite of opposite at the opposite sides of the wormhole throat. Note that the
dependence on induced metric disappears at the right hand side and this condition eliminates
the potentials singularity due to the reduction of the rank of the induced metric at wormhole
throat.

5. Information about the tangent space of the space-time surface can be coded to the configuration
space metric with loosing the nice transformation properties of the magnetic flux Hamiltonians
if Kähler electric fluxes or sum of magnetic flux and electric flux satisfying this condition are
used and K is symplectic invariant. Using the sum

Je + Jm = (1 +K)J12 , (5.6.3)

where J denotes the Kähler magnetic flux, , makes it possible to have a non-trivial configuration
space metric even for K = 0, which could correspond to the ends of a cosmic string like solution
carrying only Kähler magnetic fields. This condition suggests that it can depend only on Kähler
magnetic flux and other symplectic invariants. Whether local symplectic coordinate invariants
are possible at all is far from obvious, If the slicing itself is symplectic invariant then K could be
a non-constant function of X2 depending on string world sheet coordinates. The light-like radial
coordinate of the light-cone boundary indeed defines a symplectically invariant slicing and this
slicing could be shifted along the time axis defined by the tips of CD.

Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints are obtained
if one assumes that the quantization of electro-weak charges reduces to this condition at classical
level?

1. The first thing to notice is that the flux of J over the partonic 2-surface is analogous to magnetic
flux

Qm =
e

~

∮
BdS = n .

n is non-vanishing only if the surface is homologically non-trivial and gives the homology charge
of the partonic 2-surface.

2. The expressions of classical electromagnetic and Z0 fields in terms of Kähler form [39] read as

γ =
eFem
~

= 3J − sin2(θW )R03 ,

Z0 =
gZFZ
~

= 2R03 . (5.6.4)

Here R03 is one of the components of the curvature tensor in vielbein representation and Fem
and FZ correspond to the standard field tensors. From this expression one can deduce

J =
e

3~
Fem + sin2(θW )

gZ
6~
FZ . (5.6.5)
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3. The weak duality condition when integrated over X2 implies

e2

3~
Qem +

g2
Zp

6
QZ,V = K

∮
J = Kn ,

QZ,V =
I3
V

2
−Qem , p = sin2(θW ) . (5.6.6)

Here the vectorial part of the Z0 charge rather than as full Z0 charge QZ = I3
L + sin2(θW )Qem

appears. The reason is that only the vectorial isospin is same for left and right handed compo-
nents of fermion which are in general mixed for the massive states.

The coefficients are dimensionless and expressible in terms of the gauge coupling strengths and
using ~ = r~0 one can write

αemQem + p
αZ
2
QZ,V =

3

4π
× rnK ,

αem =
e2

4π~0
, αZ =

g2
Z

4π~0
=

αem
p(1− p)

. (5.6.7)

4. There is a great temptation to assume that the values of Qem and QZ correspond to their
quantized values and therefore depend on the quantum state assigned to the partonic 2-surface.
The linear coupling of the modified Dirac operator to conserved charges implies correlation
between the geometry of space-time sheet and quantum numbers assigned to the partonic 2-
surface. The assumption of standard quantized values for Qem and QZ would be also seen as
the identification of the fine structure constants αem and αZ . This however requires weak isospin
invariance.

The value of K from classical quantization of Kähler electric charge

The value of K can be deduced by requiring classical quantization of Kähler electric charge.

1. The condition that the flux of F 03 = (~/gK)J03 defining the counterpart of Kähler electric field
equals to the Kähler charge gK would give the condition K = g2

K/~, where gK is Kähler cou-
pling constant which should invariant under coupling constant evolution by quantum criticality.
Within experimental uncertainties one has αK = g2

K/4π~0 = αem ' 1/137, where αem is finite
structure constant in electron length scale and ~0 is the standard value of Planck constant.

2. The quantization of Planck constants makes the condition highly non-trivial. The most general
quantization of r is as rationals but there are good arguments favoring the quantization as
integers corresponding to the allowance of only singular coverings of CD andn CP2. The point
is that in this case a given value of Planck constant corresponds to a finite number pages of
the ”Big Book”. The quantization of the Planck constant implies a further quantization of K
and would suggest that K scales as 1/r unless the spectrum of values of Qem and QZ allowed
by the quantization condition scales as r. This is quite possible and the interpretation would
be that each of the r sheets of the covering carries (possibly same) elementary charge. Kind
of discrete variant of a full Fermi sphere would be in question. The interpretation in terms of
anyonic phases [25] supports this interpretation.

3. The identification of J as a counterpart of eB/~ means that Kähler action and thus also Kähler
function is proportional to 1/αK and therefore to ~. This implies that for large values of ~
Kähler coupling strength g2

K/4π becomes very small and large fluctuations are suppressed in
the functional integral. The basic motivation for introducing the hierarchy of Planck constants
was indeed that the scaling α→ α/r allows to achieve the convergence of perturbation theory:
Nature itself would solve the problems of the theoretician. This of course does not mean that
the physical states would remain as such and the replacement of single particles with anyonic
states in order to satisfy the condition for K would realize this concretely.
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The weak form of electric-magnetic duality has surprisingly strong implications for basic view
about quantum TGD as following considerations show.

5.6.2 Magnetic confinement, the short range of weak forces, and color
confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one combines it with
some very general empirical facts such as the non-existence of magnetic monopole fields in macroscopic
length scales.

How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length scale and one
should have a mechanism neutralizing the monopole charge. How electroweak interactions become
short ranged in TGD framework is still a poorly understood problem. What suggests itself is the
neutralization of the weak isospin above the intermediate gauge boson Compton length by neutral
Higgs bosons. Could the two neutralization mechanisms be combined to single one?

1. In the case of fermions and their super partners the opposite magnetic monopole would be a
wormhole throat. If the magnetically charged wormhole contact is electromagnetically neutral
but has vectorial weak isospin neutralizing the weak vectorial isospin of the fermion only the
electromagnetic charge of the fermion is visible on longer length scales. The distance of this
wormhole throat from the fermionic one should be of the order weak boson Compton length.
An interpretation as a bound state of fermion and a wormhole throat state with the quantum
numbers of a neutral Higgs boson would therefore make sense. The neutralizing throat would
have quantum numbers of X−1/2 = νLνR or X1/2 = νLνR. νLνR would not be neutral Higgs
boson (which should correspond to a wormhole contact) but a super-partner of left-handed
neutrino obtained by adding a right handed neutrino. This mechanism would apply separately
to the fermionic and anti-fermionic throats of the gauge bosons and corresponding space-time
sheets and leave only electromagnetic interaction as a long ranged interaction.

2. One can of course wonder what is the situation situation for the bosonic wormhole throats feeding
gauge fluxes between space-time sheets. It would seem that these wormhole throats must always
appear as pairs such that for the second member of the pair monopole charges and I3

V cancel
each other at both space-time sheets involved so that one obtains at both space-time sheets
magnetic dipoles of size of weak boson Compton length. The proposed magnetic character of
fundamental particles should become visible at TeV energies so that LHC might have surprises
in store!

Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider also the
situation in which the magnetic charges of quarks (more generally, of color excited leptons and quarks)
do not vanish and they form color and magnetic singles in the hadronic length scale. This would mean
that magnetic charges of the state q±1/2−X∓1/2 representing the physical quark would not vanish and
magnetic confinement would accompany also color confinement. This would explain why free quarks
are not observed. To how degree then quark confinement corresponds to magnetic confinement is an
interesting question.

For quark and antiquark of meson the magnetic charges of quark and antiquark would be opposite
and meson would correspond to a Kähler magnetic flux so that a stringy view about meson emerges.
For valence quarks of baryon the vanishing of the net magnetic charge takes place provided that the
magnetic net charges are (±2,∓1,∓1). This brings in mind the spectrum of color hyper charges
coming as (±2,∓1,∓1)/3 and one can indeed ask whether color hyper-charge correlates with the
Kähler magnetic charge. The geometric picture would be three strings connected to single vertex.
Amusingly, the idea that color hypercharge could be proportional to color hyper charge popped up
during the first year of TGD when I had not yet discovered CP2 and believed on M4 × S2.

p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark
variants of particles suggest the existence of scaled up copies of QCD type physics and weak physics.
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For p-adically scaled up variants the mass scales would be scaled by a power of
√

2 in the most general
case. The dark variants of the particle would have the same mass as the original one. In particular,
Mersenne primes Mk = 2k − 1 and Gaussian Mersennes MG,k = (1 + i)k − 1 has been proposed to
define zoomed copies of these physics. At the level of magnetic confinement this would mean hierarchy
of length scales for the magnetic confinement.

One particular proposal is that the Mersenne prime M89 should define a scaled up variant of the
ordinary hadron physics with mass scaled up roughly by a factor 2(107−89)/2 = 512. The size scale
of color confinement for this physics would be same as the weal length scale. It would look more
natural that the weak confinement for the quarks of M89 physics takes place in some shorter scale
and M61 is the first Mersenne prime to be considered. The mass scale of M61 weak bosons would
be by a factor 2(89−61)/2 = 214 higher and about 1.6× 104 TeV. M89 quarks would have virtually no
weak interactions but would possess color interactions with weak confinement length scale reflecting
themselves as new kind of jets at collisions above TeV energies.

In the biologically especially important length scale range 10 nm -2500 nm there are as many as
four Gaussian Mersennes corresponding to MG,k, k = 151, 157, 163, 167. This would suggest that the
existence of scaled up scales of magnetic-, weak- and color confinement. An especially interesting
possibly testable prediction is the existence of magnetic monopole pairs with the size scale in this
range. There are recent claims about experimental evidence for magnetic monopole pairs [65].

Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one recalls
that electric-magnetic duality in super-symmetric quantum field theories means that the descriptions
in terms of particles and monopoles are in some sense dual descriptions. Fermions would be replaced
by string like objects defined by the magnetic flux tubes and bosons as pairs of wormhole contacts
would correspond to pairs of the flux tubes. Therefore the sharp distinction between gravitons and
physical particles would disappear.

The reason why gravitons are necessarily stringy objects formed by a pair of wormhole contacts
is that one cannot construct spin two objects using only single fermion states at wormhole throats.
Of course, also super partners of these states with higher spin obtained by adding fermions and anti-
fermions at the wormhole throat but these do not give rise to graviton like states [23]. The upper and
lower wormhole throat pairs would be quantum superpositions of fermion anti-fermion pairs with sum
over all fermions. The reason is that otherwise one cannot realize graviton emission in terms of joining
of the ends of light-like 3-surfaces together. Also now magnetic monopole charges are necessary but
now there is no need to assign the entities X± with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below this
length scale the charges of the fermions become visible. Mersenne hypothesis suggests that some
Mersenne prime is in question. One proposal is that gravitonic size scale is given by electronic
Mersenne prime M127. It is however difficult to test whether graviton has a structure visible below
this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at all
clear how closely they relate to ordinary Feynman diagrams. All depends on what one is ready to
assume about what happens in the vertices. One could of course hope that zero energy ontology could
allow some very simple description allowing perhaps to get rid of the problematic aspects of Feynman
diagrams.

1. Consider first the recent view about generalized Feynman diagrams which relies zero energy
ontology. A highly attractive assumption is that the particles appearing at wormhole throats
are on mass shell particles. For incoming and outgoing elementary bosons and their super
partners they would be positive it resp. negative energy states with parallel on mass shell
momenta. For virtual bosons they the wormhole throats would have opposite sign of energy
and the sum of on mass shell states would give virtual net momenta. This would make possible
twistor description of virtual particles allowing only massless particles (in 4-D sense usually and
in 8-D sense in TGD framework). The notion of virtual fermion makes sense only if one assumes
in the interaction region a topological condensation creating another wormhole throat having
no fermionic quantum numbers.

2. The addition of the particles X± replaces generalized Feynman diagrams with the analogs of
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stringy diagrams with lines replaced by pairs of lines corresponding to fermion and X±1/2. The
members of these pairs would correspond to 3-D light-like surfaces glued together at the vertices
of generalized Feynman diagrams. The analog of 3-vertex would not be splitting of the string to
form shorter strings but the replication of the entire string to form two strings with same length
or fusion of two strings to single string along all their points rather than along ends to form a
longer string. It is not clear whether the duality symmetry of stringy diagrams can hold true
for the TGD variants of stringy diagrams.

3. How should one describe the bound state formed by the fermion and X±? Should one describe
the state as superposition of non-parallel on mass shell states so that the composite state would
be automatically massive? The description as superposition of on mass shell states does not
conform with the idea that bound state formation requires binding energy. In TGD framework
the notion of negentropic entanglement has been suggested to make possible the analogs of
bound states consisting of on mass shell states so that the binding energy is zero [38]. If this
kind of states are in question the description of virtual states in terms of on mass shell states is
not lost. Of course, one cannot exclude the possibility that there is infinite number of this kind
of states serving as analogs for the excitations of string like object.

4. What happens to the states formed by fermions and X±1/2 in the internal lines of the Feynman
diagram? Twistor philosophy suggests that only the higher on mass shell excitations are possible.
If this picture is correct, the situation would not change in an essential manner from the earlier
one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles should
have stringy character in electro-weak length scales and could behaving to become manifest at LHC
energies. This adds one further item to the list of non-trivial predictions of TGD about physics at
LHC energies [31].

Should J + J1 appear in Kähler action?

The presence of the S2 Kähler form J1 in weak form of electric-magnetic duality was originally
suggested by an erratic argument about the reduction to almost topological QFT to be described in
the next subsection. In any case this argument raises the question whether one could replace J with
J +J1 in the Kähler action. This would not affect the basic non-vacuum extremals but would modify
the vacuum degeneracy of the Kähler action. Canonically imbedded M4 would become a monopole
configuration with an infinite magnetic energy and Kähler action due to the monopole singularity at
the line connecting tips of the CD. Action and energy can be made small by drilling a small hole
around origin. This is however not consistent with the weak form of electro-weak duality. Amusingly,
the modified Dirac equation reduces to ordinary massless Dirac equation in M4.

This extremal can be transformed to a vacuum extremal by assuming that the solution is also
a CP2 magnetic monopole with opposite contribution to the magnetic charge so that J + J1 = 0
holds true. This is achieved if one can regard space-time surface as a map M4 → CP2 reducing to
a map (Θ,Φ) = (θ,±φ) with the sign chosen by properly projecting the homologically non-trivial
rM = constant spheres of CD to the homologically non-trivial geodesic sphere of CP2. Symplectic
transformations of S2×CP2 produce new vacuum extremals of this kind. Using Darboux coordinates
in which one has J =

∑
k=1,2 PkdQ

k and assuming that (P1, Q1) corresponds to the CP2 image of

S2, one can take Q2 to be arbitrary function of P 2 which in turn is an arbitrary function of of M4

coordinates to obtain even more general vacuum extremals with 3-D CP2 projection. Therefore the
spectrum of vacuum extremals, which is very relevant for the TGD based description of gravitation
in long length scales because it allows to satisfy Einstein’s equations as an additional condition, looks
much richer than for the original option, and it is natural to ask whether this option might make
sense.

An objection is that J1 is a radial monopole field and this breaks Lorentz invariance to SO(3).
Lorentz invariance is broken to SO(3) for a given CD also by the presence of the preferred time
direction defined by the time-like line connecting the tips of the CD becoming carrying the monopole
charge but is compensated since Lorentz boosts of CDs are possible. Could one consider similar com-
pensation also now? Certainly the extremely small breaking of Lorentz invariance and the vanishing
of the monopole charge for the vacuum extremals is all that is needed at the space-time level. No
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new gauge fields would be introduced since only the Kähler field part of photon and Z0 boson would
receive an additional contribution.

The ultimate fate of the modification depends on whether it is consistent with the general relativis-
tic description of gravitation. Since a breaking of spherical symmetry is involved, it is not at all clear
whether one can find vacuum extremals which represent small deformations of the Reissner-Nordström
metric and Robertson-Walker metric. The argument below shows that this option does not allow the
imbedding of small deformations of physically plausible space-time metrics as vacuum extremals.

The basic vacuum extremal whose deformations should give vacuum extremals allowing interpre-
tation as solutions of Einstein’s equations is given by a map M4 → CP2 projecting the rM constant
spheres S2 of M2 to the homologically non-trivial geodesic sphere of CP2. The winding number of
this map is −1 in order to achieve vanishing of the induced Kähler form J + J1. For instance, the
following two canonical forms of the map are possible

(Θ,Ψ) = (θM ,−φM ) ,

(Θ,Ψ) = (π − θM , φM ) .

(5.6.8)

Here (Θ,Ψ) refers to the geodesic sphere of CP2 and (θM , φM ) to the sphere of M4.
The resulting space-time surface is not flat and Einstein tensor is non-vanishing. More complex metrics
can be constructed from this metric by a deformation making the CP2 projection 3-dimensional.

Using the expression of the CP2 line element in Eguchi-Hanson coordinates [41]

ds2

R2
=

dr2

F 2
+
r2

F
(dΨ + cosΘdΦ)2 +

r2

4F
(dΘ2 + fracr24Fsin2ΘdΦ2)

(5.6.9)

and s the relationship r = tan(Θ), one obtains following expression for the CP2 metric

ds2

R2
= dθ2

M + sin2(θM )

[
(dφM + cos(θ)dΦ)2 +

1

4
(dθ2 + sin2(θ)dΦ2

]
.

(5.6.10)

The resulting metric is obtained from the metric of S2 by replacing dφ2 which 3-D line element. The
factor sin2(θM ) implies that the induced metric becomes singular at North and South poles of S2.
In particular, the gravitational potential is proportional to sin2(θM ) so that gravitational force in
the radial direction vanishes at equators. It is very difficult to imagine any manner to produce a
small deformation of Reissner-Nordstrm metric or Robertson-Walker metric. Hence it seems that the
vacuum extremals produce by J + J1 option are not physical.

5.6.3 Could Quantum TGD reduce to almost topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD reduces to
almost topological quantum theory in the sense that the counterpart of Chern-Simons action assigned
with the wormhole throats somehow dictates the dynamics. This proposal can be formulated also
for the modified Dirac action action. I gave up this proposal but the following argument shows that
Kähler action with weak form of electric-magnetic duality effectively reduces to Chern-Simons action
plus Coulomb term.

1. Kähler action density can be written as a 4-dimensional integral of the Coulomb term jαKAα plus
and integral of the boundary term JnβAβ

√
g4 over the wormhole throats and of the quantity

J0βAβ
√
g4 over the ends of the 3-surface.

2. If the self-duality conditions generalize to Jnβ = 4παKε
nβγδJγδ at throats and to J0β =

4παKε
0βγδJγδ at the ends, the Kähler function reduces to the counterpart of Chern-Simons

action evaluated at the ends and throats. It would have same value for each branch and the
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replacement ~0 → r~0 would effectively describe this. Boundary conditions would however give
1/r factor so that ~ would disappear from the Kähler function! The original attempt to real-
ize quantum TGD as an almost topological QFT was in terms of Chern-Simons action but was
given up. It is somewhat surprising that Kähler action gives Chern-Simons action in the vacuum
sector defined as sector for which Kähler current is light-like or vanishes.

Holography encourages to ask whether also the Coulomb interaction terms could vanish. This
kind of dimensional reduction would mean an enormous simplification since TGD would reduce to an
almost topological QFT. The attribute ”almost” would come from the fact that one has non-vanishing
classical Noether charges defined by Kähler action and non-trivial quantum dynamics in M4 degrees
of freedom. One could also assign to space-time surfaces conserved four-momenta which is not possible
in topological QFTs. For this reason the conditions guaranteeing the vanishing of Coulomb interaction
term deserve a detailed analysis.

1. For the known extremals jαK either vanishes or is light-like (”massless extremals” for which weak
self-duality condition does not make sense [33]) so that the Coulombic term vanishes identically in
the gauge used. The addition of a gradient to A induces terms located at the ends and wormhole
throats of the space-time surface but this term must be cancelled by the other boundary terms
by gauge invariance of Kähler action. This implies that the M4 part of WCW metric vanishes
in this case. Therefore massless extremals as such are not physically realistic: wormhole throats
representing particles are needed.

2. The original naive conclusion was that since Chern-Simons action depends on CP2 coordinates
only, its variation with respect to Minkowski coordinates must vanish so that the WCW met-
ric would be trivial in M4 degrees of freedom. This conclusion is in conflict with quantum
classical correspondence and was indeed too hasty. The point is that the allowed variations of
Kähler function must respect the weak electro-magnetic duality which relates Kähler electric
field depending on the induced 4-metric at 3-surface to the Kähler magnetic field. Therefore the
dependence on M4 coordinates creeps via a Lagrange multiplier term

∫
Λα(Jnα −KεnαβγJβγ)

√
g4d

3x . (5.6.11)

The (1,1) part of second variation contributing to M4 metric comes from this term.

3. This erratic conclusion about the vanishing of M4 part WCW metric raised the question about
how to achieve a non-trivial metric in M4 degrees of freedom. The proposal was a modification of
the weak form of electric-magnetic duality. Besides CP2 Kähler form there would be the Kähler
form assignable to the light-cone boundary reducing to that for rM = constant sphere - call it
J1. The generalization of the weak form of self-duality would be Jnβ = εnβγδK(Jγδ + εJ1

γδ).

This form implies that the boundary term gives a non-trivial contribution to the M4 part of
the WCW metric even without the constraint from electric-magnetic duality. Kähler charge is
not affected unless the partonic 2-surface contains the tip of CD in its interior. In this case the
value of Kähler charge is shifted by a topological contribution. Whether this term can survive
depends on whether the resulting vacuum extremals are consistent with the basic facts about
classical gravitation.

4. The Coulombic interaction term is not invariant under gauge transformations. The good news
is that this might allow to find a gauge in which the Coulomb term vanishes. The vanishing
condition fixing the gauge transformation φ is

jαK∂αφ = −jαAα . (5.6.12)

This differential equation can be reduced to an ordinary differential equation along the flow
lines jK by using dxα/dt = jαK . Global solution is obtained only if one can combine the flow
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parameter t with three other coordinates- say those at the either end of CD to form space-
time coordinates. The condition is that the parameter defining the coordinate differential is
proportional to the covariant form of Kähler current: dt = φjK . This condition in turn implies
d2t = d(φjK) = d(φjK) = dφ ∧ jK + φdjK = 0 implying jK ∧ djK = 0 or more concretely,

εαβγδjKβ ∂γj
K
δ = 0 . (5.6.13)

jK is a four-dimensional counterpart of Beltrami field [55] and could be called generalized Bel-
trami field.

The integrability conditions follow also from the construction of the extremals of Kähler action
[33]. The conjecture was that for the extremals the 4-dimensional Lorentz force vanishes (no
dissipation): this requires jK ∧ J = 0. One manner to guarantee this is the topologization of
the Kähler current meaning that it is proportional to the instanton current: jK = φjI , where
jI = ∗(J ∧ A) is the instanton current, which is not conserved for 4-D CP2 projection. The
conservation of jK implies the condition jαI ∂αφ = ∂αj

αφ and from this φ can be integrated if the
integrability condition jI∧djI = 0 holds true implying the same condition for jK . By introducing
at least 3 or CP2 coordinates as space-time coordinates, one finds that the contravariant form of
jI is purely topological so that the integrability condition fixes the dependence onM4 coordinates
and this selection is coded into the scalar function φ. These functions define families of conserved
currents jαKφ and jαI φ and could be also interpreted as conserved currents associated with the
critical deformations of the space-time surface.

5. There are gauge transformations respecting the vanishing of the Coulomb term. The vanishing
condition for the Coulomb term is gauge invariant only under the gauge transformations A →
A+∇φ for which the scalar function the integral

∫
jαK∂αφ reduces to a total divergence a giving

an integral over various 3-surfaces at the ends of CD and at throats vanishes. This is satisfied
if the allowed gauge transformations define conserved currents

Dα(jαφ) = 0 . (5.6.14)

As a consequence Coulomb term reduces to a difference of the conserved chargesQeφ =
∫
j0φ
√
g4d

3x
at the ends of the CD vanishing identically. The change of the imons type term is trivial if the
total weighted Kähler magnetic flux Qmφ =

∑∫
JφdA over wormhole throats is conserved. The

existence of an infinite number of conserved weighted magnetic fluxes is in accordance with the
electric-magnetic duality. How these fluxes relate to the flux Hamiltonians central for WCW
geometry is not quite clear.

6. The gauge transformations respecting the reduction to almost topological QFT should have some
special physical meaning. The measurement interaction term in the modified Dirac interaction
corresponds to a critical deformation of the space-time sheet and is realized as an addition
of a gauge part to the Kähler gauge potential of CP2. It would be natural to identify this
gauge transformation giving rise to a conserved charge so that the conserved charges would
provide a representation for the charges associated with the infinitesimal critical deformations
not affecting Kähler action. The gauge transformed Kähler potential couples to the modified
Dirac equation and its effect could be visible in the value of Kähler function and therefore also
in the properties of the preferred extremal. The effect on WCW metric would however vanish
since K would transform only by an addition of a real part of a holomorphic function. Kähler
function is identified as a Dirac determinant for Chern-Simons Dirac action and the spectrum
of this operator should not be invariant under these gauge transformations if this picture is
correct. This is is achieved if the gauge transformation is carried only in the Dirac action
corresponding to the Chern-Simons term: this assumption is motivated by the breaking of time
reversal invariance induced by quantum measurements. The modification of Kähler action can
be guessed to correspond just to the Chern-Simons contribution from the instanton term.
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7. A reasonable looking guess for the explicit realization of the quantum classical correspondence
between quantum numbers and space-time geometry is that the deformation of the preferred
extremal due to the addition of the measurement interaction term is induced by a U(1) gauge
transformation induced by a transformation of δCD×CP2 generating the gauge transformation
represented by φ. This interpretation makes sense if the fluxes defined by Qmφ and corresponding
Hamiltonians affect only zero modes rather than quantum fluctuating degrees of freedom.

To sum up, one could understand the basic properties of WCW metric in this framework. Effec-
tive 2-dimensionality would result from the existence of an infinite number of conserved charges in
two different time directions (genuine conservation laws plus gauge fixing). The infinite-dimensional
symmetric space for given values of zero modes corresponds to the Cartesian product of the WCWs
associated with the partonic 2-surfaces at both ends of CD and the generalized Chern-Simons term
decomposes into a sum of terms from the ends giving single particle Kähler functions and to the terms
from light-like wormhole throats giving interaction term between positive and negative energy parts of
the state. Hence Kähler function could be calculated without any knowledge about the interior of the
space-time sheets and TGD would reduce to almost topological QFT as speculated earlier. Needless
to say this would have immense boost to the program of constructing WCW Kähler geometry.

5.6.4 A general solution ansatz based on almost topological QFT property

The basic vision behind the ansatz is the reduction of quantum TGD to almost topological field
theory. This requires that the flow parameters associated with the flow lines of isometry currents
and Kähler current extend to global coordinates. This leads to integrability conditions implying
generalized Beltrami flow and Kähler action for the preferred extremals reduces to Chern-Simons
action when weak electro-weak duality is applied as boundary conditions. The strongest form of the
hydrodynamical interpretation requires that all conserved currents are parallel to Kähler current. In
the more general case one would have several hydrodynamic flows. Also the braidings (several of them
for the most general ansatz) assigned with the light-like 3-surfaces are naturally defined by the flow
lines of conserved currents. The independent behavior of particles at different flow lines can be seen
as a realization of the complete integrability of the theory. In free quantum field theories on mass
shell Fourier components are in a similar role but the geometric interpretation in terms of flow is of
course lacking. This picture should generalize also to the solution of the modified Dirac equation.

Basic field equations

Consider first the equations at general level.

1. The breaking of the Poincare symmetry due to the presence of monopole field occurs and leads
to the isometry group T×SO(3)×SU(3) corresponding to time translations, rotations, and color
group. The Cartan algebra is four-dimensional and field equations reduce to the conservation
laws of energy E, angular momentum J , color isospin I3, and color hypercharge Y .

2. Quite generally, one can write the field equations as conservation laws for I, J, I3, and Y .

Dα

[
Dβ(JαβHA)− jαKHA + TαβjlAhkl∂βh

l
]

= 0 . (5.6.15)

The first term gives a contraction of the symmetric Ricci tensor with antisymmetric Kähler form
and vanishes so that one has

Dα

[
jαKH

A − TαβjkAhkl∂βhl
]

= 0 . (5.6.16)

For energy one has HA = 1 and energy current associated with the flow lines is proportional to
the Kähler current. Its divergence vanishes identically.
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3. One can express the divergence of the term involving energy momentum tensor as as sum of
terms involving jαKJαβ and contraction of second fundamental form with energy momentum
tensor so that one obtains

jαKDαH
A = jαKJ

β
α jAβ + TαβHk

αβj
A
k . (5.6.17)

Hydrodynamical solution ansatz

The characteristic feature of the solution ansatz would be the reduction of the dynamics to hydrody-
namics analogous to that for a continuous distribution of particles initially at the end of X3 of the
light-like 3-surface moving along flow lines defined by currents jA satisfying the integrability condi-
tion jA ∧ djA = 0. Field theory would reduce effectively to particle mechanics along flow lines with
conserved charges defined by various isometry currents. The strongest condition is that all isometry
currents jA and also Kähler current jK are proportional to the same current j. The more general
option corresponds to multi-hydrodynamics.

Conserved currents are analogous to hydrodynamical currents in the sense that the flow parameter
along flow lines extends to a global space-time coordinate. The conserved current is proportional to
the gradient ∇Φ of the coordinate varying along the flow lines: J = Ψ∇Φ and by a proper choice of
Ψ one can allow to have conservation. The initial values of Ψ and Φ can be selected freely along the
flow lines beginning from either the end of the space-time surface or from wormhole throats.

If one requires hydrodynamics also for Chern-Simons action (effective 2-dimensionality is required
for preferred extremals), the initial values of scalar functions can be chosen freely only at the partonic
2-surfaces. The freedom to chose the initial values of the charges conserved along flow lines at the
partonic 2-surfaces means the existence of an infinite number of conserved charges so that the theory
would be integrable and even in two different coordinate directions. The basic difference as compared
to ordinary conservation laws is that the conserved currents are parallel and their flow parameter
extends to a global coordinate.

1. The most general assumption is that the conserved isometry currents

JαA = jαKH
A − TαβjkAhkl∂βhl (5.6.18)

and Kähler current are integrable in the sense that JA∧JA = 0 and jK ∧ jK = 0 hold true. One
could imagine the possibility that the currents are not parallel.

2. The integrability condition dJA ∧ JA = 0 is satisfied if one one has

JA = ΨAdΦA . (5.6.19)

The conservation of JA gives

d ∗ (ΨAdΦA) = 0 . (5.6.20)

This would mean separate hydrodynamics for each of the currents involved. In principle there is
not need to assume any further conditions and one can imagine infinite basis of scalar function
pairs (ΨA,ΦA) since criticality implies infinite number deformations implying conserved Noether
currents.
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3. The conservation condition reduces to d’Alembert equation in the induced metric if one assumes
that ∇ΨA is orthogonal with every dΦA.

d ∗ dΦA = 0 , dΨA · dΦA = 0 . (5.6.21)

Taking x = ΦA as a coordinate the orthogonality condition states gxj∂jΨA = 0 and in the gen-
eral case one cannot solve the condition by simply assuming that ΨA depends on the coordinates
transversal to ΦA only. These conditions bring in mind p · p = 0 and p · e condition for massless
modes of Maxwell field having fixed momentum and polarization. dΦA would correspond to p
and dΨA to polarization. The condition that each isometry current corresponds its own pair
(ΨA,ΦA) would mean that each isometry current corresponds to independent light-like momen-
tum and polarization. Ordinary free quantum field theory would support this view whereas
hydrodynamics and QFT limit of TGD would support single flow.

These are the most general hydrodynamical conditions that one can assume. One can consider
also more restricted scenarios.

1. The strongest ansatz is inspired by the hydrodynamical picture in which all conserved isometry
charges flow along same flow lines so that one would have

JA = ΨAdΦ . (5.6.22)

In this case same Φ would satisfy simultaneously the d’Alembert type equations.

d ∗ dΦ = 0 , dΨA · dΦ = 0. (5.6.23)

This would mean that the massless modes associated with isometry currents move in parallel
manner but can have different polarizations. The spinor modes associated with light-light like
3-surfaces carry parallel four-momenta, which suggest that this option is correct. This allows a
very general family of solutions and one can have a complete 3-dimensional basis of functions
ΨA with gradient orthogonal to dΦ.

2. Isometry invariance under T × SO(3)× SU(3) allows to consider the possibility that one has

JA = kAΨAdΦG(A) , d ∗ (dΦG(A)) = 0 , dΨA · dΦG(A)) = 0 . (5.6.24)

where G(A) is T for energy current, SO(3) for angular momentum currents and SU(3) for color
currents. Energy would thus flow along its own flux lines, angular momentum along its own flow
lines, and color quantum numbers along their own flow lines. For instance, color currents would
differ from each other only by a numerical constant. The replacement of ΨA with ΨG(A) would
be too strong a condition since Killing vector fields are not related by a constant factor.

To sum up, the most general option is that each conserved current JA defines its own integrable
flow lines defined by the scalar function pair (ΨA,ΦA). A complete basis of scalar functions satisfying
the d’Alembert type equation guaranteeing current conservation could be imagined with restrictions
coming from the effective 2-dimensionality reducing the scalar function basis effectively to the partonic
2-surface. The diametrically opposite option corresponds to the basis obtained by assuming that only
single Φ is involved.

The proposed solution ansatz can be compared to the earlier ansatz [34] stating that Kähler
current is topologized in the sense that for D(CP2) = 3 it is proportional to the identically conserved
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instanton current (so that 4-D Lorentz force vanishes) and vanishes for D(CP2) = 4 (Maxwell phase).
This hypothesis requires that instanton current is Beltrami field for D(CP2) = 3. In the recent
case the assumption that also instanton current satisfies the Beltrami hypothesis in strong sense
(single function Φ) generalizes the topologization hypothesis for D(CP2) = 3. As a matter fact, the
topologization hypothesis applies to isometry currents also for D(CP2) = 4 although instanton current
is not conserved anymore.

Can one require the extremal property in the case of Chern-Simons action?

Effective 2-dimensionality is achieved if the ends and wormhole throats are extremals of Chern-Simons
action. The strongest condition would be that space-time surfaces allow orthogonal slicings by 3-
surfaces which are extremals of Chern-Simons action.

Also in this case one can require that the flow parameter associated with the flow lines of the
isometry currents extends to a global coordinate. Kähler magnetic field B = ∗J defines a conserved
current so that all conserved currents would flow along the field lines of B and one would have 3-D
Beltrami flow. Note that in magnetohydrodynamics the standard assumption is that currents flow
along the field lines of the magnetic field.

For wormhole throats light-likeness causes some complications since the induced metric is degener-
ate and the contravariant metric must be restricted to the complement of the light-like direction. This
means that d’Alembert equation reduces to 2-dimensional Laplace equation. For space-like 3-surfaces
one obtains the counterpart of Laplace equation with partonic 2-surfaces serving as sources. The
interpretation in terms of analogs of Coulomb potentials created by 2-D charge distributions would
be natural.

5.6.5 Hydrodynamic picture in fermionic sector

Super-symmetry inspires the conjecture that the hydrodynamical picture applies also to the solutions
of the modified Dirac equation.

4-dimensional modified Dirac equation and hydrodynamical picture

Consider first the solutions of of the induced spinor field in the interior of space-time surface.

1. The local inner products of the modes of the induced spinor fields define conserved currents

DαJ
α
mn = 0 ,

Jαmn = umΓ̂αun ,

Γ̂α =
∂LK

∂(∂αhk)
Γk . (5.6.25)

The conjecture is that the flow parameters of also these currents extend to a global coordinate
so that one would have in the completely general case the condition

Jαmn = ΦmndΨmn ,

d ∗ (dΦmn) = 0 , ∇Ψmn · Φmn = 0 . (5.6.26)

The condition Φmn = Φ would mean that the massless modes propagate in parallel manner and
along the flow lines of Kähler current. The conservation condition along the flow line implies
tht the current component Jmn is constant along it. Everything would reduce to initial values
at the ends of the space-time sheet boundaries of CD and 3-D modified Dirac equation would
reduce everything to initial values at partonic 2-surfaces.
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2. One might hope that the conservation of these super currents for all modes is equivalent with
the modified Dirac equation. The modes un appearing in Ψ in quantized theory would be kind
of ”square roots” of the basis Φmn and the challenge would be to deduce the modes from the
conservation laws.

3. The quantization of the induced spinor field in 4-D sense would be fixed by those at 3-D space-
like ends by the fact that the oscillator operators are carried along the flow lines as such so
that the anti-commutator of the induced spinor field at the opposite ends of the flow lines at
the light-like boundaries of CD is in principle fixed by the anti-commutations at the either end.
The anti-commutations at 3-D surfaces cannot be fixed freely since one has 3-D Chern-Simons
flow reducing the anti-commutations to those at partonic 2-surfaces.

The following argument suggests that induced spinor fields are in a suitable gauge simply constant
along the flow lines of the Kähler current just as massless spinor modes are constant along the geodesic
in the direction of momentum.

1. The modified gamma matrices are of form Tαk Γk, Tαk = ∂LK/∂(∂αh
k). The H-vectors Tαk can

be expressed as linear combinations of a subset of Killing vector fields jkA spanning the tangent
space of H. For CP2 the natural choice are the 4 Lie-algebra generators in the complement
of U(2) sub-algebra. For CD one can used generator time translation and three generators of
rotation group SO(3). The completeness of the basis defined by the subset of Killing vector
fields gives completeness relation hkl = jAkjAk. This implies Tαk = TαkjAk j

k
A = TαAjkA. One

can defined gamma matrices ΓA as Γkj
k
A to get Tαk Γk = TαAΓA.

2. This together with the condition that all isometry currents are proportional to the Kähler
current (or if this vanishes to same conserved current- say energy current) satisfying Beltrami
flow property implies that one can reduce the modified Dirac equation to an ordinary differential
equation along flow lines. The quantities T tA are constant along the flow lines and one obtains

T tAjADtΨ = 0 . (5.6.27)

By choosing the gauge suitably the spinors are just constant along flow lines so that the spinor
basis reduces by effective 2-dimensionality to a complete spinor basis at partonic 2-surfaces.

Generalized eigen modes for the modified Chern-Simons Dirac equation and hydrody-
namical picture

Hydrodynamical picture helps to understand also the construction of generalized eigen modes of 3-D
Chern-Simons Dirac equation.

The general form of generalized eigenvalue equation for Chern-Simons Dirac action

Consider first the the general form and interpretation of the generalized eigenvalue equation as-
signed with the modified Dirac equation for Chern-Simons action [18]. This is of course only an
approximation since an additional contribution to the modified gamma matrices from the Lagrangian
multiplier term guaranteing the weak form of electric-magnetic duality must be included.

1. The modified Dirac equation for Ψ is consistent with that for its conjugate if the coefficient of
the instanton term is real and one uses the Dirac action Ψ(D→ −D←)Ψ giving modified Dirac
equation as

DC−SΨ +
1

2
(DαΓ̂αC−S)Ψ = 0 . (5.6.28)

As noticed, the divergence DαΓ̂αC−S does not contain second derivatives in the case of Chern-
Simons action. In the case of Kähler action they occur unless field equations equivalent with the
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vanishing of the divergence term are satisfied. The extremals of Chern-Simons action provide a
natural manner to define effective 2-dimensionality.

Also the fermionic current is conserved in this case, which conforms with the idea that fermions
flow along the light-like 3-surfaces. If one uses the action ΨD→Ψ, Ψ does not satisfy the Dirac
equation following from the variational principle and fermion current is not conserved.

2. The generalized eigen modes of DC−S should be such that one obtains the counterpart of Dirac
propagator which is purely algebraic and does not therefore depend on the coordinates of the
throat. This is satisfied if the generalized eigenvalues are expressible in terms of covariantly
constant combinations of gamma matrices and here only M4 gamma matrices are possible.
Therefore the eigenvalue equation would read as

DΨ = λkγkΨ , D = DC−S +
1

2
DαΓ̂αC−S , DC−S = Γ̂αC−SDα .

(5.6.29)

Here the covariant derivatives Dα contain the measurement interaction term as an apparent
gauge term. For extremals one has

D = DC−S . (5.6.30)

Covariant constancy allows to take the square of this equation and one has

(D2 +
[
D,λkγk

]
)Ψ = λkλkΨ . (5.6.31)

The commutator term is analogous to magnetic moment interaction.

3. The generalized eigenvalues correspond to λ =
√
λkλk and Dirac determinant is defined as a

product of the eigenvalues and conjecture to give the exponent of Kähler action reducing to
Chern-Simons term. λ is completely analogous to mass. λk cannot be however interpreted as
ordinary four-momentum: for instance, number theoretic arguments suggest that λk must be
restricted to the preferred plane M2 ⊂ M4 interpreted as a commuting hyper-complex plane
of complexified quaternions. For incoming lines this mass would vanish so that all incoming
particles irrespective their actual quantum numbers would be massless in this sense and the
propagator is indeed that for a massless particle. Note that the eigen-modes define the boundary
values for the solutions of DKΨ = 0 so that the values of λ indeed define the counterpart of the
momentum space.

This transmutation of massive particles to effectively massless ones might make possible the
application of the twistor formalism as such in TGD framework [28]. N = 4 SUSY is one
of the very few gauge theory which might be UV finite but it is definitely unphysical due to
the masslessness of the basic quanta. Could the resolution of the interpretational problems
be that the four-momenta appearing in this theory do not directly correspond to the observed
four-momenta?

2. Inclusion of the constraint term

As already noticed one must include also the constraint term due to the weak form of electric-
magnetic duality and this changes somewhat the above simple picture.
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1. At the 3-dimensional ends of the space-time sheet and at wormhole throats the 3-dimensionality
allows to introduce a coordinate varying along the flow lines of Kähler magnetic field B = ∗J .
In this case the integrability conditions state that the flow is Beltrami flow. Note that the
value of Bα along the flow line defining magnetic flux appearing in anti-commutation relations
is constant. This suggests that the generalized eigenvalue equation for the Chern-Simons ac-
tion reduces to a collection of ordinary apparently independent differential equations associated
with the flow lines beginning from the partonic 2-surface. This indeed happens when the CP2

projection is 2-dimensional. In this case it however seems that the basis un is not of much help.

2. The conclusion is wrong: the variations of Chern-Simons action are subject to the constraint
that electric-magnetic duality holds true expressible in terms of Lagrange multiplier term

∫
Λα(Jnα −KεnαβγJβγ)

√
g4d

3x . (5.6.32)

This gives a constraint force to the field equations and also a dependence on the induced 4-
metric so that one has only almost topological QFT. This term also guarantees the M4 part
of WCW Kähler metric is non-trivial. The condition that the ends of space-time sheet and
wormhole throats are extrema of Chern-Simons action subject to the electric-magnetic duality
constraint is strongly suggested by the effective 2-dimensionality. Without the constraint term
Chern-Simons action would vanish for its extremals so that Kähler function would be identically
zero.

This term implies also an additional contribution to the modified gamma matrices besides the
contribution coming from Chern-Simons action so tht the first guess for the modified Dirac
operator would not be quite correct. This contribution is of exactly of the same general form
as the contribution for any general general coordinate invariant action. The dependence of the
induced metric on M4 degrees of freedom guarantees that also M4 gamma matrices are present.
In the following this term will not be considered.

3. When the contribution of the constraint term to the modifield gamma matrices is neglected,
the explicit expression of the modified Dirac operator DC−S associated with the Chern-Simons
term is given by

D = Γ̂µDµ +
1

2
DµΓ̂µ ,

Γ̂µ =
∂LC−S
∂µhk

Γk = εµαβ
[
2Jkl∂αh

lAβ + JαβAk
]

ΓkDµ ,

DµΓ̂µ = BαK(Jkα + ∂αAk) ,

BαK = εαβγJβγ , Jkα = Jkl∂αs
l , ε̂αβγ = εαβγ

√
g3 . (5.6.33)

For the extremals of Chern-Simons action one has DαΓ̂α = 0. Analogous condition holds true
when the constraing contriabution to the modified gamma matrices is added.

3. Generalized eigenvalue equation for Chern-Simons Dirac action

Consider now the Chern-Simons Dirac equation in more detail assuming that the inclusion of the
constraint contribution to the modified gamma matrices does not induce any complications. Assume
also extremal property for Chern-Simons action with constraint term and Beltrami flow property.

1. For the extremals the Chern-Simons Dirac operator (constraint term not included) reduces to a
one-dimensional Dirac operator

DC−S = ε̂rαβ [2JkαAβ + JαβAk] ΓkDr . (5.6.34)
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Constraint term implies only a modification of the modified gamma matrices but the form of
the operator remains otherwise same when extrema are in question so that one has DαΓ̂α = 0.

2. For the extremals of Chern-Simons action the general solution of the modified Chern-Simons
Dirac equation (λk = 0) is covariantly constant with respect to the coordinate r:

DrΨ = 0 . (5.6.35)

The solution to this condition can be written immediately in terms of a non-integrable phase
factor Pexp(i

∫
Ardr), where integration is along curve with constant transversal coordinates. If

Γ̂v is light-like vector field also Γ̂vΨ0 defines a solution of DC−S . This solution corresponds to a
zero mode for DC−S and does not contribute to the Dirac determinant (suggested to give rise to
the exponent of Kähler function identified as Kähler action). Note that the dependence of these
solutions on transversal coordinates of X3

l is arbitrary which conforms with the hydrodynamic
picture. The solutions of Chern-Simons-Dirac are obtained by similar integration procedure also
when extremals are not in question.

The formal solution associated with a general eigenvalue λ can be constructed by integrating the
eigenvalue equation separately along all coordinate curves. This makes sense if r indeed assigned to
possibly light-like flow lines of Bα or more general Beltrami field possible induced by the constraint
term. There are very strong consistency conditions coming from the conditions that Ψ in the interior
is constant along the flow lines of Kähler current and continuous at the ends and throats (call them
collectively boundaries), where Ψ has a non-trivial variation along the flow lines of Bα.

1. This makes sense only if the flow lines of the Kähler current are transversal to the boundaries
so that the spinor modes at boundaries dictate the modes of the spinor field in the interior.
Effective 2-dimensionality means that the spinor modes in the interior can be calculated either
by starting from the throats or from the ends so that the data at either upper of lower partonic
2-surfaces dictates everything in accordance with zero energy ontology.

2. This gives an infinite number of commuting diagrams stating that the flow-line time evolution
along flow lines along wormhole throats from lower partonic 2-surface to the upper one is equiv-
alent with the flow-line time evolution along the lower end of space-time surface to interior, then
along interior to the upper end of the space-time surface and then back to the upper partonic
2-surface. If the space-time surface allows a slicing by partonic 2-surfaces these conditions can
be assumed for any pair of partonic 2-surfaces connected by Chern-Simons flow evolution.

3. Since the time evolution along interior keeps the spinor field as constant in the proper gauge
and since the flow evolutions at the lower and upper ends are in a reverse direction, there is a
strong atemptation to assume that the spinor field at the ends of the of the flow lines of Kähler
magnetic field are identical apart from a gauge transformation. This leads to a particle-in-box
quantizaton of the values of the pseudo-mass (periodic boundary conditions). These conditions
will be assumed in the sequel.

These assumptions lead to the following picture about the generalized eigen modes.

1. By choosing the gauge so that covariant derivative reduces to ordinary derivative and using the
constancy of Γ̂r, the solution of the generalized eigenvalue equation can be written as

Ψ = exp(iL(r)Γ̂rλkΓk)Ψ0 ,

L(r) =

∫ r

0

1√
ĝrr

dr . (5.6.36)

L(r) can be regarded as the along flux line as defined by the effective metric defined by modified
gamma matrices. If λk is linear combination of Γ0 and ΓrM it anti-commutes with Γr which
contains only CP2 gamma matrices so that the pseudo-momentum is a priori arbitrary.



5.6. Weak form electric-magnetic duality and its implications 321

2. When the constraint term taking care of the electric-magnetric duality is included, also M4

gamma matrices are present. If they are in the orthogonal complement of a preferred plane
M2 ⊂ M4, anti-commutativity is achieved. This assumption cannot be fully justified yet but
conforms with the general physical vision. There is an obvious analogy with the condition that
polarizations are in a plane orthogonal to M2. The condition indeed states that only transversal
deformations define quantum fluctuating WCW degrees of freedom contributing to the WCW
Kähler metric. In M8−H duality the preferred plane M2 is interpreted as a hyper-complex plane
belonging to the tangent space of the space-time surface and defines the plane of non-physical
polarizations. Also a generalization of this plane to an integrable distribution of planes M2(x)
has been proposed and one must consider also now the possibility of a varying plane M2(x) for
the pseudo-momenta. The scalar function Φ appearing in the general solution ansatz for the
field equations satisfies massless d’Alembert equation and its gradient defines a local light-like
direction at space-time-level and hence a 2-D plane of the tangent space. Maybe the projection
of this plane to M4 could define the preferred M2. The minimum condition is that these planes
are defined only at the ends of space-time surface and at wormhole throats.

3. If one accepts this hypothesis, one can write

Ψ =
[
cos(L(r)λ) + isin(λ(r))Γ̂rλkΓk)

]
Ψ0 ,

λ =
√
λkλk . (5.6.37)

4. Boundary conditions should fix the spectrum of masses. If the the flow lines of Kähler current
coincide with the flow lines of Kähler magnetic field or more general Beltrami current at worm-
hole throats one ends up with difficulties since the induced spinor fields must be constant along
flow lines and only trivial eigenvalues are possible. Hence it seems that the two Beltrami fields
must be transversal. This requires that at the partonic 2-surfaces the value of the induced spinor
mode in the interior coincides with its value at the throat. Since the induced spinor fields in
interior are constant along flow lines, one must have

exp(iλL(max)) = 1 . (5.6.38)

This implies that one has essentially particle in a box with size defined by the effective metric

λn =
n2π

L(rmax)
. (5.6.39)

5. This condition cannot however hold true simultaneously for all points of the partonic 2-surfaces
since L(rmax) depends on the point of the surface. In the most general case one can consider
only a subset consisting of the points for which the values of L(rmax) are rational multiples of the
value of L(rmax) at one of the points -call it L0. This implies the notion of number theoretical
braid. Induced spinor fields are localized to the points of the braid defined by the flow lines of
the Kähler magnetic field (or equivalently, any conserved current- this resolves the longstanding
issue about the identification of number theoretical braids). The number of the included points
depends on measurement resolution characterized somehow by the number rationals which are
allowed. Only finite number of harmonics and sub-harmonics of L0 are possible so that for
integer multiples the number of points is finite. If nmaxL0 and L0/nmin are the largest and
smallest lengths involved, one can argue that the rationals nmax/n, n = 1, ..., nmax and n/nmin,
n = 1, ..., nmin are the natural ones.
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6. One can consider also algebraic extensions for which L0 is scaled from its reference value by an
algebraic number so that the mass scale m must be scaled up in similar manner. The spectrum
comes also now in integer multiples. p-Adic mass calculations predicts mass scales to the inverses
of square roots of prime and this raises the expectation that

√
n harmonics and sub-harmonics

of L0 might be necessary. Notice however that pseudo-momentum spectrum is in question so
that this argument is on shaky grounds.

There is also the question about the allowed values of (λ0, λ3) for a given value of λ. This issue will
be discussed in the next section devoted to the attempt to calculate the Dirac determinant assignable
to this spectrum: suffice it to say that integer valued spectrum is the first guess implying that the
pseudo-momenta satisfy n2

0 − n2
3 = n2 and therefore correspond to Pythagorean triangles. What is

remarkable that the notion of number theoretic braid pops up automatically from the Beltrami flow
hypothesis.

5.7 How to define Dirac determinant?

The basic challenge is to define Dirac determinant hoped to give rise to the exponent of Kähler action
associated with the preferred extremal. The reduction to almost topological QFT gives this kind
of expression in terms of Chern-Simons action and one might hope of obtaining even more concrete
expression from the Chern-Simons Dirac determinant. The calculation of the previous section allowed
to calculate the most general spectrum of the modified Dirac operator. If the number of the eigenvalues
is infinite as the naive expectation is then Dirac determinant diverges if calculated as the product of the
eigenvalues and one must calculate it by using some kind of regularization procedure. Zeta function
regularization is the natural manner to do this.

The following arguments however lead to a concrete vision how the regularization could be avoided
and a connection with infinite primes. In fact, the manifestly finite option and the option involving zeta
function regularization give Kähler functions differing only by a scaling factor and only the manifestly
finite option satisfies number theoretical constraints coming from p-adicization. An explicit expression
for the Dirac determinant in terms of geometric data of the orbit of the partonic 2-surface emerges.

Arithmetic quantum field theory defined by infinite emerges naturally. The lines of the generalized
Feynman graphs are characterized by infinite primes and the selection rules correlating the geometries
of the lines of the generalized Feynman graphs corresponds to the conservation of the sum of number
theoretic momenta log(pi) assignable to sub-braids corresponding to different primes pi assignable to
the orbit of parton. This conforms with the vision that infinite primes indeed characterize the geometry
of light-like 3-surfaces and therefore also of space-time sheets. The eigenvalues of the modified Dirac
operator are proportional 1/

√
pi where pi are the primes appearing in the definition of the p-adic prime

and the interpretation as analogs of Higgs vacuum expectation values makes sense and is consistent
with p-adic length scale hypothesis and p-adic mass calculations. It must be emphasized that all this is
essentially due to single basic hypothesis, namely the reduction of quantum TGD to almost topological
QFT guaranteed by the Beltrami ansatz for field equations and by the weak form of electric-magnetic
duality.

5.7.1 Dirac determinant when the number of eigenvalues is infinite

At first sight the general spectrum looks the only reasonable possibility but if the eigenvalues cor-
relate with the geometry of the partonic surface as quantum classical correspondence suggests, this
conclusion might be wrong. The original hope was the number of eigenvalues would be finite so that
also determinant would be finite automatically. There were some justifications for this hope in the
definition of Dirac determinant based on the dimensional reduction of DK as DK = DK,3 + D1 and
the identification of the generalized eigenvalues as those assigned to DK,3 as analogs of energy eigen-
values assignable to the light-like 3-surface. It will be found that number theoretic input could allow
to achieve a manifest finiteness in the case of DC−S and that this option is the only possible one if
number theoretic universality is required.

If there are no constraints on the eigenvalue spectrum of DC−S for a given partonic orbit, the naive
definition of the determinant gives an infinite result and one must define Dirac determinant using ζ
function regularization implying that Kähler function reduces to the derivative of the zeta function
ζD(s) -call it Dirac Zeta- associated with the eigenvalue spectrum.
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Consider now the situation when the number of eigenvalues is infinite.

1. In this kind of situation zeta function regularization is the standard manner to define the Dirac
determinant. What one does is to assign zeta function to the spectrum- let us call it Dirac zeta
function and denote by ζD(s)- as

ζD(s) =
∑
k

λ−sk . (5.7.1)

If the eigenvalue λk has degeneracy gk it appears gk times in the sum. In the case of harmonic
oscillator one obtains Riemann zeta for which sum representation converges only for Re(s) ≥ 1.
Riemann zeta can be however analytically continued to the entire complex plane and the idea
is that this can be done also in the more general case.

2. By the basic conjecture Kähler function corresponds to the logarithm of the Dirac determinant
and equals to the sum of the logarithms of the eigenvalues

K = log(
∏

λk) = −dζD
ds |s=0

. (5.7.2)

The expression on the left hand side diverges if taken as such but the expression on the right
had side based on the analytical continuation of the zeta function is completely well-defined and
finite quantity. Note that the replacement of eigenvalues λk by their powers λnk -or equivalently
the increase of the degeneracy by a factor n - brings in only a factor n to K: K → nK.

3. Dirac determinant involves in the minimal situation only the integer multiples of pseudo-mass
scale λ = 2π/Lmin. One can consider also rational and even algebraic multiples qLmin < Lmax,
q ≥ 1, of Lmin so that one would have several integer spectra simultaneously corresponding to
different braids. Here Lmin and Lmax are the extrema of the braid strand length determined
in terms of the effective metric as L =

∫
(ĝrr)−1/2dr. The question what multiples are involved

will be needed later.

4. Each rational or algebraic multiple of Lmin gives to the zeta function a contribution which is of
same form so that one has

ζD =
∑
q

ζ(log(qx)s) , x =
Lmin
R

, 1 ≤ q < Lmax
Lmin

. (5.7.3)

Kähler function can be expressed as

K =
∑
n

log(λn) = −dζD(s)

ds
= −

∑
q

log(qx)
dζ(s)

ds |s=0
, x =

Lmin
R

. (5.7.4)

What is remarkable that the number theoretical details of ζD determine only the overall scaling
factor of Kähler function and thus the value of Kähler coupling strength, which would be purely
number theoretically determined if the hypothesis about the role of infinite primes is correct.
Also the value of R is irrelevant since it does not affect the Kähler metric.

5. The dependence of Kähler function on WCW degrees of freedom would be coded completely by
the dependence of the length scales qLmin on the complex coordinates of WCW: note that this
dependence is different for each scale. This is reminiscent of the coding of the shape of the drum
(or more generally - manifold) by the spectrum of its eigen frequencies. Now Kähler geometry
would code for the dependence of the spectrum on the shape of the drum defined by the partonic
2-surface and the 4-D tangent space distribution associated with it.
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What happens at the limit of vacuum extremals serves as a test for the identification of Kähler
function as Dirac determinant. The weak form of electric magnetic duality implies that all com-
ponents of the induced Kähler field vanish simultaneously if Kähler magnetic field cancels. In the
modified Chern-Simons Dirac equation one obtains L =

∫
(ĝrr)−1/2dr. The modified gamma matrix

Γ̂r approaches a finite limit when Kähler magnetic field vanishes

Γ̂r = εrβγ(2JβkAγ + JβγAk)Γk → 2εrβγJβkΓk . (5.7.5)

The relevant component of the effective metric is ĝrr and is given by

ĝrr = (Γ̂r)2 = 4εrβγεrµνJβkJ
k

µ AγAν . (5.7.6)

The limit is non-vanishing in general and therefore the eigenvalues remain finite also at this limit
as also the parameter Lmin =

∫
(ĝrr)−1/2dr defining the minimum of the length of the braid strand

defined by Kähler magnetic flux line in the effective metric unless ĝrr goes to zero everywhere inside
the partonic surface. Chern-Simons action and Kähler action vanish for vacuum extremals so that in
this case one could require that Dirac determinant approaches to unity in a properly chosen gauge.
Dirac determinant should approach to unit for vacuum extremals indeed approaches to unity since
there are no finite eigenvalues at the limit ĝrr = 0.

5.7.2 Hyper-octonionic primes

Before detailed discussion of the hyper-octonionic option it is good to consider the basic properties of
hyper-octonionic primes.

1. Hyper-octonionic primes are of form

Πp = (n0, n3, n1, n2, ..., n7) , Π2
p = n2

0 −
∑
i

n2
i = p or p2 . (5.7.7)

2. Hyper-octonionic primes have a standard representation as hyper-complex primes. The Minkowski
norm squared factorizes into a product as

n2
0 − n2

3 = (n0 + n3)(n0 − n3) . (5.7.8)

If one has n3 6= 0, the prime property implies n0 − n3 = 1 so that one obtains n0 = n3 + 1 and
2n3 + 1 = p giving

(n0, n3) = ((p+ 1)/2, (p− 1)/2) .

(5.7.9)

Note that one has (p + 1)/2 odd for p mod 4 = 1) and (p + 1)/2 even for p mod 4 = 3). The
difference n0 − n3 = 1 characterizes prime property.

If n3 vanishes the prime prime property implies equivalence with ordinary prime and one has
n2

3 = p2. These hyper-octonionic primes represent particles at rest.
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3. The action of a discrete subgroup G(p) of the octonionic automorphism group G2 generates form
hyper-complex primes with n3 6= 0 further hyper-octonionic primes Π(p, k) corresponding to the
same value of n0 and p and for these the integer valued projection to M2 satisfies n2

0−n2
3 = n > p.

It is also possible to have a state representing the system at rest with (n0, n3) = ((p + 1)/2, 0)
so that the pseudo-mass varies in the range [

√
p, (p + 1)/2]. The subgroup G(n0, n3) ⊂ SU(3)

leaving invariant the projection (n0, n3) generates the hyper-octonionic primes corresponding
to the same value of mass for hyper-octonionic primes with same Minkowskian length p and
pseudo-mass λ = n ≥ √p.

4. One obtains two kinds of primes corresponding to the lengths of pseudo-momenta equal to p or√
p. The first kind of particles are always at rest whereas the second kind of particles can be

brought at rest only if one interprets the pseudo-momentum as M2 projection. This brings in
mind the secondary p-adic length scales assigned to causal diamonds (CDs) and the primary
p-adic lengths scales assigned to particles.

If the M2 projections of hyper-octonionic primes with length
√
p characterize the allowed basic

momenta, ζD is sum of zeta functions associated with various projections which must be in the limits
dictated by the geometry of the orbit of the partonic surface giving upper and lower bounds Lmax and
Lmin on the length L. Lmin is scaled up to

√
n2

0 − n2
3Lmin for a given projection (n0, n3). In general

a given M2 projection (n0, n3) corresponds to several hyper-octonionic primes since SU(3) rotations
give a new hyper-octonionic prime with the same M2 projection. This leads to an inconsistency unless
one has a good explanation for why some basic momentum can appear several times. One might argue
that the spinor mode is degenerate due to the possibility to perform discrete color rotations of the
state. For hyper complex representatives there is no such problem and it seems favored. In any case,
one can look how the degeneracy factors for given projection can be calculated.

1. To calculate the degeneracy factor D(n associated with given pseudo-mass value λ = n one must
find all hyper-octonionic primes Π, which can have projection in M2 with length n and sum up
the degeneracy factors D(n, p) associated with them:

D(n) =
∑
p

D(n, p) ,

D(n, p) =
∑

n2
0−n2

3=p

D(p, n0, n3) ,

n2
0 − n2

3 = n , Π2
p(n0, n3) = n2

0 − n2
3 −

∑
i

n2
i = n−

∑
i

n2
i = p . (5.7.10)

2. The condition n2
0 − n2

3 = n allows only Pythagorean triangles and one must find the discrete
subgroup G(n0, n3) ⊂ SU(3) producing hyper-octonions with integer valued components with
length p and components (n0, n3). The points at the orbit satisfy the condition

∑
n2
i = p− n . (5.7.11)

The degeneracy factor D(p, n0, n3) associated with given mass value n is the number of elements
of in the coset space G(n0, n3, p)/H(n0, n3, p), where H(n0, n3, p) is the isotropy group of given
hyper-octonionic prime obtained in this manner. For n2

0−n2
3 = p2 D(n0, n3, p) obviously equals

to unity.

5.7.3 Three basic options for the pseudo-momentum spectrum

The calculation of the scaling factor of the Kähler function requires the knowledge of the degeneracies
of the mass squared eigen values. There are three options to consider.
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First option: all pseudo-momenta are allowed

If the degeneracy for pseudo-momenta in M2 is same for all mass values- and formally characterizable
by a number N telling how many 2-D pseudo-momenta reside on mass shell n2

0−n2
3 = m2. In this case

zeta function would be proportional to a sum of Riemann Zetas with scaled arguments corresponding
to scalings of the basic mass m to m/q.

ζD(s) = N
∑
q

ζ(log(qx)s) , x =
Lmin
R

. (5.7.12)

This option provides no idea about the possible values of 1 ≤ q ≤ Lmax/Lmin. The number N
is given by the integral of relativistic density of states

∫
dk/2

√
k2 +m2 over the hyperbola and is

logarithmically divergent so that the normalization factor N of the Kähler function would be infinite.

Second option: All integer valued pseudomomenta are allowed

Second option is inspired by number theoretic vision and assumes integer valued components for the
momenta using mmax = 2π/Lmin as mass unit. p-Adicization motivates also the assumption that
momentum components using mmax as mass scale are integers. This would restrict the choice of the
number theoretical braids.

Integer valuedness together with masses coming as integer multiples of mmax implies (λ0, λ3) =
(n0, n3) with on mass shell condition n2

0−n2
3 = n2. Note that the condition is invariant under scaling.

These integers correspond to Pythagorean triangles plus the degenerate situation with n3 = 0. There
exists a finite number of pairs (n0, n3) satisfying this condition as one finds by expressing n0 as
n0 = n3 + k giving 2n3k + k2 = p2 giving n3 < n2/2,n0 < n2/2 + 1. This would be enough to have a
finite degeneracy D(n) ≥ 1 for a given value of mass squared and ζD would be well defined. ζD would
be a modification of Riemann zeta given by

ζD =
∑
q

ζ1(log(qx)s) , x =
Lmin
R

,

ζ1(s) =
∑

gnn
−s , gn ≥ 1 . (5.7.13)

For generalized Feynman diagrams this option allows conservation of pseudo-momentum and for loops
no divergences are possible since the integral over two-dimensional virtual momenta is replaced with
a sum over discrete mass shells containing only a finite number of points. This option looks thus
attractive but requires a regularization. On the other hand, the appearance of a zeta function having
a strong resemblance with Riemann zeta could explain the finding that Riemann zeta is closely related
to the description of critical systems. This point will be discussed later.

Third option: Infinite primes code for the allowed mass scales

According to the proposal of [19, 40] the hyper-complex parts of hyper-octonionic primes appearing
in their infinite counterparts correspond to the M2 projections of real four-momenta. This hypothesis
suggests a very detailed map between infinite primes and standard model quantum numbers and pre-
dicts a universal mass spectrum [19]. Since pseudo-momenta are automatically restricted to the plane
M2, one cannot avoid the question whether they could actually correspond to the hyper-octonionic
primes defining the infinite prime. These interpretations need not of course exclude each other. This
option allows several variants and at this stage it is not possible to exclude any of these options.

1. One must choose between two alternatives for which pseudo-momentum corresponds to hyper-
complex prime serving as a canonical representative of a hyper-octonionic prime or a projection
of hyper-octonionic prime to M2.

2. One must decide whether one allows a) only the momenta corresponding to hyper-complex
primes, b) also their powers (p-adic fractality), or c) all their integer multiples (”Riemann
option”).
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One must also decide what hyper-octonionic primes are allowed.

1. The first guess is that all hyper-complex/hyper-octonionic primes defining length scale
√
pLmin ≤

Lmax or pLmin ≤ Lmax are allowed. p-Adic fractality suggests that also the higher p-adic length
scales pn/2Lmin < Lmax and pnLmin < Lmax, n ≥ 1, are possible.

It can however happen that no primes are allowed by this criterion. This would mean vanishing
Kähler function which is of course also possible since Kähler action can vanish (for instance, for
massless extremals). It seems therefore safer to allow also the scale corresponding to the trivial
prime (n0, n3) = (1, 0) (1 is formally prime because it is not divisible by any prime different
from 1) so that at least Lmin is possible. This option also allows only rather small primes unless
the partonic 2-surface contains vacuum regions in which case Lmax is infinite: in this case all
primes would be allowed and the exponent of Kähler function would vanish.

2. The hypothesis that only the hyper-complex or hyper-octonionic primes appearing in the infinite
hyper-octonionic prime are possible looks more reasonable since large values of p would be
possible and could be identified in terms of the p-adic length scale hypothesis. All hyper-
octonionic primes appearing in infinite prime would be possible and the geometry of the orbit of
the partonic 2-surface would define an infinite prime. This would also give a concrete physical
interpretation for the earlier hypothesis that hyper-octonionic primes appearing in the infinite
prime characterize partonic 2-surfaces geometrically. One can also identify the fermionic and
purely bosonic primes appearing in the infinite prime as braid strands carrying fermion number
and purely bosonic quantum numbers. This option will be assumed in the following.

5.7.4 Expression for the Dirac determinant for various options

The expressions for the Dirac determinant for various options can be deduced in a straightforward
manner. Numerically Riemann option and manifestly finite option do not differ much but their number
theoretic properties are totally different.

Riemann option

All integer multiples of these basic pseudo-momenta would be allowed for Riemann option so that ζD
would be sum of Riemann zetas with arguments scaled by the basic pseudo-masses coming as inverses
of the basic length scales for braid strands. For the option involving only hyper-complex primes the
formula for ζD reads as

ζD = ζ(log(xmins)) +
∑
i,n ζ(log(xi,ns)) +

∑
i,n ζ(log(yi,ns)) ,

xi,n = p
n/2
i xmin ≤ xmax , pi ≥ 3 , yi,n = pni xmin ≤ xmax . pi ≥ 2 ,

(5.7.14)

Lmax resp. Lmin is the maximal resp. minimal length L =
∫

(ĝrr)−1/2dr for the braid strand defined
by the flux line of the Kähler magnetic field in the effective metric. The contributions correspond to
the effective hyper-complex prime p1 = (1, 0) and hyper-complex primes with Minkowski lengths

√
p

(p ≥ 3) and p, p ≥ 2. If also higher p-adic length scales Ln = pn/2Lmin < Lmax and Ln = pnLmin <
Lmax, n > 1, are allowed there is no further restriction on the summation. For the restricted option
only Ln, n = 0, 2 is allowed.

The expressions for the Kähler function and its exponent reads as

K = k(log(xmin) +
∑
i

log(xi) +
∑
i

log(yi) ,

exp(K) = (
1

xmin
)k ×

∏
i

(
1

xi
)k ×

∏
i

(
1

yi
)k ,

xi ≤ xmax , yi ≤ xmax , k = −dζ(s)

ds |s=0
=

1

2
log(2π) ' .9184 .

(5.7.15)
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From the point of view of p-adicization program the appearance of strongly transcendental numbers
in the normalization factor of ζD is not a well-come property.

If the scaling of the WCW Kähler metric by 1/k is a legitimate procedure it would allow to get
rid of the transcendental scaling factor k and this scaling would cancel also the transcendental from
the exponent of Kähler function. The scaling is not however consistent with the view that Kähler
coupling strength determines the normalization of the WCW metric.

This formula generalizes in a rather obvious manner to the cases when one allows M2 projections
of hyper-octonionic primes.

Manifestly finite options

The options for which one does not allow summation over all integer multiples of the basic momenta
characterized by the canonical representatives of hyper-complex primes or their projections to M2

are manifestly finite. They differ from the Riemann option only in that the normalization factor
k =' .9184 defined by the derivative Riemann Zeta at origin is replaced with k = 1. This would mean
manifest finiteness of ζD. Kähler function and its exponent are given by

K = k(log(xmin) +
∑
i

log(xi) +
∑
i

log(yi) , xi ≤ xmax , yi ≤ xmax ,

exp(K) =
1

xmin
×
∏
i

1

xi
×
∏
i

1

yi
.

(5.7.16)

Numerically the Kähler functions do not differ much since their ratio is .9184. Number theoretically
these functions are however completely different. The resulting dependence involves only square roots
of primes and is an algebraic function of the lengths pi and rational function of xmin. p-Adicization
program would require rational values of the lengths xmin in the intersection of the real and p-adic
worlds if one allows algebraic extension containing the square roots of the primes involved. Note that
in p-adic context this algebraic extension involves two additional square roots for p > 2 if one does
not want square root of p. Whether one should allow for Rp also extension based on

√
p is not quite

clear. This would give 8-D extension.
For the more general option allowing all projections of hyper-complex primes to M2 the general

form of Kähler function is same. Instead of pseudo-masses coming as primes and their square roots
one has pseudomasses coming as square roots of some integers n ≤ p or n ≤ p2 for each p. In this
case the conservation laws are not so strong.

Note that in the case of vacuum extremals xmin = ∞ holds true so that there are no primes
satisfying the condition and Kähler function vanishes as it indeed should.

More concrete picture about the option based on infinite primes

The identification of pseudo-momenta in terms of infinite primes suggests a rather concrete connection
between number theory and physics.

1. One could assign the finite hyper-octonionic primes Πi making the infinite prime to the sub-
braids identified as Kähler magnetic flux lines with the same length L in the effective metric.
The primes assigned to the finite part of the infinite prime correspond to single fermion and
some number of bosons. The primes assigned to the infinite part correspond to purely bosonic
states assignable to the purely bosonic braid strands. Purely bosonic state would correspond to
the action of a WCW Hamiltonian to the state.

This correspondence can be expanded to include all quantum numbers by using the pair of
infinite primes corresponding to the ”vacuum primes” X±1, where X is the product of all finite
primes [19]. The only difference with respect to the earlier proposal is that physical momenta
would be replaced by pseudo-momenta.

2. Different primes pi appearing in the infinite prime would correspond to their own sub-braids.
For each sub-braid there is a N -fold degeneracy of the generalized eigen modes corresponding
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to the number N of braid strands so that many particle states are possible as required by the
braid picture.

3. The correspondence of infinite primes with the hierarchy of Planck constants could allow to
understand the fermion-many boson states and many boson states assigned with a given finite
prime in terms of many-particle states assigned to na and nb-sheeted singular covering spaces of
CD and CP2 assignable to the two infinite primes. This interpretation requires that only single
p-adic prime pi is realized as quantum state meaning that quantum measurement always selects
a particular p-adic prime pi (and corresponding sub-braid) characterizing the p-adicity of the
quantum state. This selection of number field behind p-adic physics responsible for cognition
looks very plausible.

4. The correspondence between pairs of infinite primes and quantum states [19] allows to interpret
color quantum numbers in terms of the states associated with the representations of a finite
subgroup of SU(3) transforming hyper-octonionic primes to each other and preserving the M2

pseudo-momentum. Same applies to SO(3). The most natural interpretation is in terms of wave
functions in the space of discrete SU(3) and SO(3) transforms of the partonic 2-surface. The
dependence of the pseudo-masses on these quantum numbers is natural so that the projection
hypothesis finds support from this interpretation.

5. The infinite prime characterizing the orbit of the partonic 2-surface would thus code which
multiples of the basic mass 2π/Lmin are possible. Either the M2 projections of hyper-octonionic
primes or their hyper-complex canonical representatives would fix the basic M2 pseudo-momenta
for the corresponding number theoretic braid associated. In the reverse direction the knowledge
of the light-like 3-surface, the CD and CP2 coverings, and the number of the allowed discrete
SU(3) and SU(2) rotations of the partonic 2-surface would dictate the infinite prime assignable
to the orbit of the partonic 2-surface.

One would also like to understand whether there is some kind of conservation laws associated
with the pseudo-momenta at vertices. The arithmetic QFT assignable to infinite primes would indeed
predict this kind of conservation laws.

1. For the manifestly finite option the ordinary conservation of pseudo-momentum conservation
at vertices is not possible since the addition of pseudo-momenta does not respect the condition
n0−n3 = 1. In fact, this difference in the sum of hyper-complex prime momenta tells how many
momenta are present. If one applies the conservation law to the sum of the pseudo-momenta
corresponding to different primes and corresponding braids, one can have reactions in which the
number of primes involved is conserved. This would give the selection rule

∑N
1 pi =

∑N
1 pf .

These reactions have interpretation in terms of the geometry of the 3-surface representing the
line of the generalized Feynman diagram.

2. Infinite primes define an arithmetic quantum field theory in which the total momentum defined
as
∑
nilog(pi) is a conserved quantity. As matter fact, each prime pi would define a separately

conserved momentum so that there would be an infinite number of conservation laws. If the sum∑
i log(pi) is conserved in the vertex , the primes pi associated with the incoming particle are

shared with the outgoing particles so that also the total momentum is conserved. This looks the
most plausible option and would give very powerful number theoretical selection rules at vertices
since the collection of primes associated with incoming line would be union of the collections
associated with the outgoing lines and also total pseudo-momentum would be conserved.

3. For the both Riemann zeta option and manifestly finite options the arithmetic QFT associated
with infinite primes would be realized at the level of pseudo-momenta meaning very strong
selection rules at vertices coding for how the geometries of the partonic lines entering the vertex
correlate. WCW integration would reduce for the lines of Feynman diagram to a sum over light-
like 3-surfaces characterized by (xmin, xmax) with a suitable weighting factor and the exponent
of Kähler function would give an exponential damping as a function of xmin.
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Which option to choose?

One should be able to make two choices. One must select between hyper-complex representations
and the projections of hyper-octonionic primes and between the manifestly finite options and the one
producing Riemann zeta?

Hyper-complex option seems to be slightly favored over the projection option.

1. The appearance of the scales
√
pixmin and possibly also their pn multiples brings in mind p-

adic length scales coming as
√
pn multiples of CP2 length scale. The scales pixmin associated

with hyper-complex primes reducing to ordinary primes in turn bring in mind the size scales
assignable to CDs. The hierarchy of Planck constants implies also ~/~0 =

√
nanb multiples of

these length scales but mass scales would not depend on na and nb [21]. For large values of p the
pseudo-momenta are almost light-like for hyper-complex option whereas the projection option
allows also states at rest.

2. Hyper-complex option predicts that only the p-adic pseudo-mass scales appear in the partition
function and is thus favored by the p-adic length scale hypothesis. Projection option predicts
also the possibility of the mass scales (not all of them) coming as 1/

√
n. These mass scales are

however not predicted by the hierarchy of Planck constants.

3. The same pseudo-mass scale can appear several times for the projection option. This degeneracy
corresponds to the orbit of the hyper-complex prime under the subgroup of SU(3) respecting
integer property. Similar statement holds true in the case of SO(3): these groups are assigned
to the two infinite primes characterizing parton. The natural assignment of this degeneracy is to
the discrete color rotational and rotational degrees associated with the partonic 2-surface itself
rather than spinor modes at fixed partonic 2-surface. That the pseudo-mass would depend on
color and angular momentum quantum numbers would make sense.

Consider next the arguments in favor of the manifestly finite option.

1. The manifestly finite option is admittedly more elegant than the one based on Riemann zeta
and also guarantees that no additional loop summations over pseudo-momenta are present. The
strongest support for the manifestly finite option comes from number theoretical universality.

2. One could however argue that the restriction of the pseudo-momenta to a finite number is not
consistent with the modified Dirac-Chern-Simons equation. Quantum classical correspondence
however implies correlation between the geometry of the partonic orbits and the pseudo-momenta
and the summation over all prime valued pseudo-momenta is present but with a weighting factor
coming from Kähler function implying exponential suppression.

The Riemann zeta option could be also defended.

1. The numerical difference of the normalization factors of the Kähler function is however only
about 8 per cent and quantum field theorists might interpret the replacement the length scales
xi and yi with xdi and ydi , d ' .9184, in terms of an anomalous dimension of these length scales.
Could one say that radiative corrections mean the scaling of the original preferred coordinates
so that one could still have consistency with number theoretic universality?

2. Riemann zeta with a non-vanishing argument could have also other applications in quantum
TGD. Riemann zeta has interpretation as a partition function and the zeros of partition func-
tions have interpretation in terms of phase transitions. The quantum criticality of TGD indeed
corresponds to a phase transition point. There is also experimental evidence that the distribu-
tion of zeros of zeta corresponds to the distribution of energies of quantum critical systems in
the sense that the energies correspond to the imaginary parts of the zeros of zeta [46].

The first explanation would be in terms of the analogs of the harmonic oscillator coherent states
with integer multiple of the basic momentum taking the role of occupation number of harmonic
oscillator and the zeros s = 1/2+iy of ζ defining the values of the complex coherence parameters.
TGD inspired strategy for the proof of Riemann hypothesis indeed leads to the identification of
the zeros as coherence parameters rather than energies as in the case of Hilbert-Polya hypothesis
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[16] and the vanishing of the zeta at zero has interpretation as orthogonality of the state with
respect to the state defined by a vanishing coherence parameter interpreted as a tachyon. One
should demonstrate that the energies of quantum states can correspond to the imaginary parts
of the coherence parameters.

Second interpretation could be in terms of quantum critical zero energy states for which the
”complex square root of density matrix” defines time-like entanglement coefficients of M -matrix.
The complex square roots of the probabilities defined by the coefficient of harmonic oscillator
states (perhaps identifiable in terms of the multiples of pseudo-momentum) in the coherent state
defined by the zero of ζ would define the M -matrix in this situation. Energy would correspond
also now to the imaginary part of the coherence parameter. The norm of the state would be
completely well-defined.

Representation of configuration Kähler metric in terms of eigenvalues of DC−S

A surprisingly concrete connection of the configuration space metric in terms of generalized eigenvalue
spectrum of DC−S results. From the general expression of Kähler metric in terms of Kähler function

Gkl = ∂k∂lK =
∂k∂lexp(K)

exp(K)
− ∂kexp(K)

exp(K)

∂lexp(K)

exp(K)
, (5.7.17)

and from the expression of exp(K) =
∏
i λi as the product of of finite number of eigenvalues of DC−S

, the expression

Gkl =
∑
i

∂k∂lλi
λi

− ∂kλi
λi

∂lλi
λi

(5.7.18)

for the configuration space metric follows. Here complex coordinates refer to the complex coordinates
of configuration space. Hence the knowledge of the eigenvalue spectrum of DC−S(X3) as function of
some complex coordinates of configuration space allows to deduce the metric to arbitrary accuracy.
If the above arguments are correct the calculation reduces to the calculation of the derivatives of
log(
√
pLmin/R), where Lmin is the length of the Kähler magnetic flux line between partonic 2-surfaces

with respect to the effective metric defined by the anti-commutators of the modified gamma matrices.
Note that these length scales have different dependence on WCW coordinates so that one cannot
reduce everything to Lmin. Therefore one would have explicit representation of the basic building
brick of WCW Kähler metric in terms of the geometric data associated with the orbit of the partonic
2-surface.

The formula for the Kähler action of CP2 type vacuum extremals is consistent with the
Dirac determinant formula

The first killer test for the formula of Kähler function in terms of the Dirac determinant based on
infinite prime hypothesis is provided by the action of CP2 type vacuum extremals. One of the first
attempts to make quantitative predictions in TGD framework was the prediction for the gravitational
constant. The argument went as follows.

1. For dimensional reasons gravitational constant must be proportional to p-adic length scale
squared, where p characterizes the space-time sheet of the graviton. It must be also proportional
to the square of the vacuum function for the graviton representing a line of generalized Feynman
diagram and thus to the exponent exp(−2K) of Kähler action for topologically condensed CP2

type vacuum extremals with very long projection. If topological condensation does not reduce
much of the volume of CP2 type vacuum extremal, the action is just Kähler action for CP2

itself. This gives

~0G = L2
pexp(2LK(CP2) = pR2exp(2LK(CP2) . (5.7.19)
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2. Using as input the constraint αK ' αem ∼ 1/137 for Kähler coupling strengths coming from the
comparison of the TGD prediction for the rotation velocity of distant galaxies around galactic
nucleus and the p-adic mass calculation for the electron mass, one obtained the result

exp(2LK(CP2) =
1

p×
∏
pi≤23 pi

. (5.7.20)

The product contains the product of all primes smaller than 24 (pi ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23}).
The expression for the Kähler function would be just of the form predicted by the Dirac deter-
minant formula with Lmin replaced with CP2 length scale. As a matter fact, this was the first
indication that particles are characterized by several p-adic primes but that only one of them is
”active”. As explained, the number theoretical state function reduction explains this.

3. The same formula for the gravitational constant would result for any prime p but the value
of Kähler coupling strength would depend on prime p logarithmically for this option. I indeed
proposed that this formula fixes the discrete evolution of the Kähler coupling strength as function
of p-adic prime from the condition that gravitational constant is renormalization group invariant
quantity but gave up this hypothesis later. It is wisest to keep an agnostic attitude to this issue.

4. I also made numerous brave attempts to deduce an explicit formula for Kähler coupling strength.
The general form of the formula is

1

αK
= klog(K2), K2 = p× 2× 3× 5..× 23 . (5.7.21)

The problem is the exact value of k cannot be known precisely and the guesses for is value depend
on what one means with number theoretical universality. Should Kähler action be a rational
number? Or is it Kähler function which is rational number (it is for the Dirac determinant
option in this particular case). Is Kähler coupling strength g2

K/4π or g2
K a rational number?

Some of the guesses were k = π/4 and k = 137/107. The facts that the value of Kähler action
for the line of a generalized diagram is not exactly CP2 action and the value of αK is not known
precisely makes these kind of attempts hopeless in absence of additional ideas.

Also other elementary particles -in particular exchanged bosons- should involve the exponent of
Kähler action for CP2 type vacuum extremal. Since the values of gauge couplings are gigantic as
compared to the expression of the gravitational constant the value of Kähler action must be rather
small form them. CP2 type vacuum extremals must be short in the sense that Lmin in the effective
metric is very short. Note however that the p-adic prime characterizing the particle according to
p-adic mass calculations would be large also now. One can of course ask whether this p-adic prime
characterizes the gravitational space-time sheets associated with the particle and not the particle
itself. The assignment of p-adic mass calculations with thermodynamics at gravitational space-time
sheets of the particle would be indeed natural. The value of αK would depend on p in logarithmic
manner for this option. The topological condensation of could also eat a lot of CP2 volume for them.

Eigenvalues of DC−S as vacuum expectations of Higgs field?

Infinite prime hypothesis implies the analog of p-adic length scale hypothesis but since pseudo-
momenta are in question, this need not correspond to the p-adic length scale hypothesis for the
actual masses justified by p-adic thermodynamics. Note also that Lmin does not correspond to CP2

length scale. This is actually not a problem since the effective metric is not M4 metric and one can
quite well consider the possibility that Lmin corresponds to CP2 length scale in the the induced metric.
The reason is that light-like 3- surface is in question the distance along the Kähler magnetic flux line
reduces essentially to a distance along the partonic 2-surface having size scale of order CP2 length for
the partonic 2-surfaces identified as wormhole throats. Therefore infinite prime can code for genuine
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p-adic length scales associated with the light-like 3-surface and quantum states would correspond by
number theoretical state function reduction hypothesis to single ordinary prime.

Support for this identification comes also from the expression of gravitational constant deduced
from p-adic length scale hypothesis. The result is that gravitational constant is assumed to be pro-
portional to have the expression G = L2

pexp(−2SK(CP2)), where p characterizes graviton or the
space-time sheet mediating gravitational interaction and exponent gives Kähler action for CP2 type
vacuum extremal representing graviton. The argument allows to identify the p-adic prime p = M127

associated with electron (largest Mersenne prime which does not correspond to super-astronomical
length scale) as the p-adic prime characterizing also graviton. The exponent of Kähler action is pro-
portional to 1/p which conforms with the general expression for Kähler function. I have considered
several identifications of the numerical factor and one of them has been as product of primes 2 ≤ p ≤ 23
assuming that somehow the primes {2, ..., 23, p} characterize graviton. This guess is indeed consistent
with the prediction of the infinite-prime hypothesis.

The first guess inspired by the p-adic mass calculations is that the squares λ2
i of the eigenvalues

of DC−S could correspond to the conformal weights of ground states. Another natural physical
interpretation of λ is as an analog of the Higgs vacuum expectation. The instability of the Higgs=0
phase would corresponds to the fact that λ = 0 mode is not localized to any region in which ew
magnetic field or induced Kähler field is non-vanishing. By the previous argument one would have
order of magnitude estimate h0 =

√
2π/Lmin.

1. The vacuum expectation value of Higgs is only proportional to the scale of λ. Indeed, Higgs
and gauge bosons as elementary particles correspond to wormhole contacts carrying fermion
and anti-fermion at the two wormhole throats and must be distinguished from the space-time
correlate of its vacuum expectation as something proportional to λ. For free fermions the vacuum
expectation value of Higgs does not seem to be even possible since free fermions do not correspond
to wormhole contacts between two space-time sheets but possess only single wormhole throat
(p-adic mass calculations are consistent with this). If fermion suffers topological condensation as
indeed assumed to do in interaction region, a wormhole contact is generated and makes possible
the generation of Higgs vacuum expectation value.

2. Physical considerations suggest that the vacuum expectation of Higgs field corresponds to a
particular eigenvalue λi of modified Chern-Simons Dirac operator so that the eigenvalues λi
would define TGD counterparts for the minima of Higgs potential. For the minimal option
one has only a finite number of pseudo-mass eigenvalues inversely proportional

√
p so that the

identification as a Higgs vacuum expectation is consistent with the p-adic length scale hypothesis.
Since the vacuum expectation of Higgs corresponds to a condensate of wormhole contacts giving
rise to a coherent state, the vacuum expectation cannot be present for topologically condensed
CP2 type vacuum extremals representing fermions since only single wormhole throat is involved.
This raises a hen-egg question about whether Higgs contributes to the mass or whether Higgs is
only a correlate for massivation having description using more profound concepts. From TGD
point of view the most elegant option is that Higgs does not give rise to mass but Higgs vacuum
expectation value accompanies bosonic states and is naturally proportional to λi. With this
interpretation λi could give a contribution to both fermionic and bosonic masses.

3. If the coset construction for super-symplectic and super Kac-Moody algebra implying Equiva-
lence Principle is accepted, one encounters what looks like a problem. p-Adic mass calculations
require negative ground state conformal weight compensated by Super Virasoro generators in
order to obtain massless states. The tachyonicity of the ground states would mean a close anal-
ogy with both string models and Higgs mechanism. λ2

i is very natural candidate for the ground
state conformal weights identified but would have wrong sign. Therefore it seems that λ2

i can
define only a deviation of the ground state conformal weight from negative value and is positive.

4. In accordance with this λ2
i would give constant contribution to the ground state conformal

weight. What contributes to the thermal mass squared is the deviation of the ground state
conformal weight from half-odd integer since the negative integer part of the total conformal
weight can be compensated by applying Virasoro generators to the ground state. The first
guess motivated by cyclotron energy analogy is that the lowest conformal weights are of form
hc = −n/2+λ2

i where the negative contribution comes from Super Virasoro representation. The
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negative integer part of the net conformal weight can be canceled using Super Virasoro generators
but ∆hc would give to mass squared a contribution analogous to Higgs contribution. The
mapping of the real ground state conformal weight to a p-adic number by canonical identification
involves some delicacies.

5. p-Adic mass calculations are consistent with the assumption that Higgs type contribution is
vanishing (that is small) for fermions and dominates for gauge bosons. This requires that the
deviation of λ2

i with smallest magnitude from half-odd integer value in the case of fermions is
considerably smaller than in the case of gauge bosons in the scale defined by p-adic mass scale
1/L(k) in question. Somehow this difference could relate to the fact that bosons correspond to
pairs of wormhole throats.

Is there a connection between p-adic thermodynamics, hierarchy of Planck constants,
and infinite primes

The following observations suggest that there might be an intrinsic connection between p-adic ther-
modynamics, hierarchy of Planck constants, and infinite primes.

1. p-Adic thermodynamics [19] is based on string mass formula in which mass squared is pro-
portional to conformal weight having values which are integers apart from the contribution of
the conformal weight of vacuum which can be non-integer valued. The thermal expectation
in p-adic thermodynamics is obtained by replacing the Boltzman weight exp(−E/T ) of ordi-
nary thermodynamics with p-adic conformal weight pn/Tp , where n is the value of conformal
weight and 1/Tp = m is integer values inverse p-adic temperature. Apart from the ground state
contribution and scale factor p-adic mass squared is essentially the expectation value

〈n〉 =

∑
n g(n)np

n
Tp∑

n g(n)p
n
Tp

. (5.7.22)

g(n) denotes the degeneracy of a state with given conformal weight and depends only on the
number of tensor factors in the representations of Virasoro or Super-Virasoro algebra. p-Adic
mass squared is mapped to its real counterpart by canonical identification

∑
xnp

n →
∑
xnp

−n.

The real counterpart of p-adic thermodynamics is obtained by the replacement p
− n
Tp and gives

under certain additional assumptions in an excellent accuracy the same results as the p-adic
thermodynamics.

2. An intriguing observation is that one could interpret p-adic and real thermodynamics for mass
squared also in terms of number theoretic thermodynamics for the number theoretic momentum
log(pn) = nlog(p). The expectation value for this differs from the expression for 〈n〉 only by the
factor log(p).

3. In the proposed characterization of the partonic orbits in terms of infinite primes the primes
appearing in infinite prime are identified as p-adic primes. For minimal option the p-adic prime
characterizes

√
p- or p- multiple of the minimum length Lmin of braid strand in the effective

metric defined by modified Chern-Simons gamma matrice. One can consider also (
√
p)n and

pn (p-adic fractality)- and even integer multiples of Lmin if they are below Lmax. If light-like
3-surface contains vacuum regions arbitrary large p:s are possible since for these one has Lmin →
∞. Number theoretic state function reduction implies that only single p can be realized -one
might say ”is active”- for a given quantum state. The powers pni appearing in the infinite prime
have interpretation as many particle states with total number theoretic momentum nilog(p)i.
For the finite part of infinite prime one has one fermion and ni−1 bosons and for the bosonic part
ni bosons. The arithmetic QFT associated with infinite primes - in particular the conservation
of the number theoretic momentum

∑
nilog(pi) - would naturally describe the correlations

between the geometries of light-like 3-surfaces representing the incoming lines of the vertex of
generalized Feynman diagram. As a matter fact, the momenta associated with different primes
are separately conserved so that one has infinite number of conservation laws.
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4. One must assign two infinite primes to given partonic two surface so that one has for a given
prime p two integers n+ and n−. Also the hierarchy of Planck constants assigns to a given page
of the Big Book two integers and one has ~ = nanb~0. If one has na = n+ and nb = n− then
the reactions in which given initial number theoretic momenta n±,ilog(pi) is shared between
final states would have concrete interpretation in terms of the integers na, nb characterizing the
coverings of incoming and outgoing lines.

Note that one can also consider the possibility that the hierarchy of Planck constants emerges
from the basic quantum TGD. Basically due to the vacuum degeneracy of Kähler action the
canonical momentum densities correspond to several values of the time derivatives of the imbed-
ding space oordinates so that for a given partonic 2-surface there are several space-time sheets
with same conserved quantities defined by isometry currents and Kähler current. This forces the
introduction of N -fold covering of CD × CP2 in order to describe the situation. The splitting
of the partonic 2-surface into N pieces implies a charge fractionization during its travel to the
upper end of CD. One can also develop an argument suggesting that the coverings factorize to
coverings of CD and CP2 so that the number of the sheets of the covering is N = nanb [34].

These observations make one wonder whether there could be a connection between p-adic thermo-
dynamics, hierarchy of Planck constants, and infinite primes.

1. Suppose that one accepts the identification na = n+ and nb = n−. Could one perform a
further identification of these integers as non-negative conformal weights characterizing physical
states so that conservation of the number theoretic momentum for a given p-adic prime would
correspond to the conservation of conformal weight. In p-adic thermodynamics this conformal
weight is sum of conformal weights of 5 tensor factors of Super-Virasoro algebra. The number
must be indeed five and one could assign them to the factors of the symmetry group. One factor
for color symmetries and two factors of electro-weak SU(2)L × U(1) are certainly present. The
remaining two factors could correspond to transversal degrees of freedom assignable to string
like objects but one can imagine also other identifications [19].

2. If this interpretation is correct, a given conformal weight n = na = n+ (say) would correspond
to all possible distributions of five conformal weights ni, i = 1, ..., 5 between the na sheets of
covering of CD satisfying

∑5
i=1 ni = na = n+. Single sheet of covering would carry only unit

conformal weight so that one would have the analog of fractionization also now and a possible
interpretation would be in terms of the instability of states with conformal weight n > 1.
Conformal thermodynamics would also mean thermodynamics in the space of states determined
by infinite primes and in the space of coverings.

3. The conformal weight assignable to the CD would naturally correspond to mass squared but
there is also the conformal weight assignable to CP2 and one can wonder what its interpretation
might be. Could it correspond to the expectation of pseudo mass squared characterizing the
generalized eigenstates of the modified Dirac operator? Note that one should allow in the
spectrum also the powers of hyper-complex primes up to some maximum power pnmax/2 ≤
Lmax/Lmin so that Dirac determinant would be non-vanishing and Kähler function finite. From
the point of conformal invariance this is indeed natural.

5.8 Number theoretic braids and global view about anti-commutations
of induced spinor fields

The anti-commutations of the induced spinor fields are reasonably well understood locally. The basic
objects are 3-dimensional light-like 3-surfaces. These surfaces can be however seen as random light-
like orbits of partonic 2-D partonic surface and the effective 2-dimensionality means that partonic
2-surfaces plus there 4-D tangent space take the role of fundamental dynamical objects. This is
expressed concretely by the condition that the ends of the space-time surface and wormhole throats are
extremals of Chern-Simons action. For J+J1 option this allows also 3-D CP2 projections. Conformal
invariance would in turn make the 2-D partons 1-D objects (analogous to Euclidian strings) and braids,
which can be regarded as the ends of string world sheets with Minkowskian signature, in turn would
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discretize these Euclidian strings. It must be however noticed that the status of Euclidian strings is
uncertain.

Somehow these views should be unifiable into a more global view about the situation allowing to
understand the reduction of effective dimension of the system as one goes to short scales.

1. The notions of measurement resolution and braid concept indeed provides the needed physical
insights in this respect. The precise definition of the notion of braid and its number theoretic
counterpart remains however open and one can imagine several alternatives.

2. Electric-magnetic duality and the ideas stimulated by it led to a further progress. The braid
concept emerges automatically from the reduction of Chern-Simons Dirac equation to separate
ordinary differential equations at the flux lines of the Kähler magnetic field. Boundary conditions
at the ends of the light-like 3-surface allow only solutions which are concentrated on braids for
which the strands have same length in the effective metric defined by the modified gamma
matrices and a connection with p-adic length scale hypothesis, hierarchy of Planck constants,
and infinite primes emerges. Number theoretic braids correspond to braids for which the length
is rational or at most algebraic number. Possible additional conditions on the coordinates of
X2 can be of course considered but already the quantization of lengths is enough to guarantee
that the exponent of Kähler function identified as Dirac determinant rational function and for
rational braid lengths a simple algebraic number involving only square roots of primes making
sense also p-adically.

The identification of flows defining the braids has been one of the key issues since quite a large
variety of candidates can be imagined. The integrability of this flow by Beltrami condition
implies for that there is huge variety of topologically equivalent flows and resolves also the
identification issue: all isometry currents and Kähler current and perhaps also the instanton
current define one and same flow.

5.8.1 Quantization of the modified Dirac action and configuration space
geometry

The quantization of the modified Dirac action involves a fusion of various number theoretical ideas.
The naive approach would be based on standard canonical quantization of induced spinor fields by
posing anti-commutation relations between Ψ and canonical momentum density ∂L/∂(∂tΨ).

One can imagine two alternative forms of the anti-commutation relations.

1. The standard canonical anti-commutation relations for the induced the spinor fields would be
given by

{ΨΓ̂0(x),Ψ(y)} = δ2
x,y . (5.8.1)

The factor that Γ̂0(x) corresponds to the canonical momentum density associated with Kähler
action. The discrete variant of the anti-commutation relations applying in the case of non-stringy
space-time sheets is

{ΨΓ̂0(xi),Ψ(xj)} = δi,j . (5.8.2)

where xi and xj label the points of the number theoretic braid. These anticommutations are
are inconsistent at the limit of vacuum extremal and also extremely non-linear in the imbedding
space coordinates.

2. The construction of WCW gamma matrices leads to a nonsingular form of anti-commutation
relations given by
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{Ψ(x)γ0,Ψ(x)} = (1 +K)Jδx,y . (5.8.3)

Here J denotes the Kähler magnetic flux Jm and Kähler electric flux relates to via the formula
Je = KJm, where K is symplectic invariant. What is nice that at the limit of vacuum extremals
the right hand side vanishes so that spinor fields become non-dynamical. Therefore this optin-
actually the original one- seems to be the only reasonable choice.

For the latter option the super counterparts of local flux Hamiltonians can be written in the form

HA,+,n = HA,+,q,n +HA,+,L,n , HA,−,n = HA,−,q,n +HA,−,L,n ,

HA,+,q,n =

∮
ΨJA+qnd

2x ,

HA,−,q,n =

∮
qnJ

A
−Ψd2x ,

HA,−,L,n =

∮
ΨJA+Lnd

2x ,

HA,+,L,n =

∮
LnJ

A
−Ψd2x ,

JA+ = jAkΓk , JA− = jAkΓk . (5.8.4)

Suppose that there is a one-one correspondence between quark modes and leptonic modes is sat-
isfied and the label n decomposes as n = (m, i), where n labels a scalar function basis and i labels
spinor components. This would give

qn = qm,i = Φmqi ,

Ln = Lm,i = ΦmLi ,

qiγ
0qj = Liγ

0Lj = gij . (5.8.5)

Suppose that the inner products gij are constant. The simplest possibility is gij = δij Under these
assumptions the anticommutators of the super-symmetric flux Hamiltonians give flux Hamiltonians.

{HA,+,n, HA,−,n} = gij

∮
(1 +K)ΦmΦnHAJd

2x . (5.8.6)

The product of scalar functions can be expressed as

ΦmΦn = c k
mnΦk . (5.8.7)

Note that the notion of symplectic QFT led to a scalar function algebra of similar kind consisting of
phase factors and there excellent reasons to consider the possibility that there is a deep connection
with this approach.

One expects that the symplectic algebra is restricted to a direct sum of symplectic algebras localized
to the regions where the induced Kähler form is non-vanishing implying that the algebras associated
with different region form to a direct sum. Also the contributions to configuration space metric are
direct sums. The symplectic algebras associated with different region can be truncated to finite-
dimensional spaces of symplectic algebras S2 × S associated with the regions in question. As far
as coordinatization of the reduced configuration space is considered, these symplectic sub-spaces are
enough. These truncated algebras naturally correspond to the hyper-finite factor property of the
Clifford algebra of configuration space.
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5.8.2 Expressions for configuration space super-symplectic generators in
finite measurement resolution

The expressions of configuration space Hamiltonians and their super counterparts just discussed were
based on 2-dimensional integrals. This is problematic for several reasons.

1. In p-adic context integrals do not makes sense so that this representation fails in p-adic context.
Sums would be more appropriate if one wants number theoretic universality at the level of basic
formulas.

2. The use of sums would also conform with the notion of finite measurement resolution having
discretization in terms of intersections of X2 with number theoretic braids as a space-time
correlate.

3. Number theoretic duality suggests a unique realization of the discretization in the sense that
only the points of partonic 2-surface X2 whose δM4

± projections commute in hyper-octonionic
sense and thus belong to the intersections of the projection PM4(X2) with radial light-like
geodesics M± representing intersections of M2 ⊂ M4 ⊂ M8 with δM4

± × CP2 contribute to
the configuration space Hamiltonians and super Hamiltonians and therefore to the configuration
space metric.

Clearly, finite measurement resolution seems to be an unavoidable aspect of the geometrization of
the configuration space as one can expect on basis of the fact that configuration space Clifford algebra
provides representation for hyper-finite factors of type II1 whose inclusions provide a representation
for the finite measurement resolution. This means that the infinite-dimensional configuration space
can be represented as a finite-dimensional space in arbitrary precise approximation so that also also
configuration Clifford algebra and configuration space spinor fields becomes finite-dimensional.

The modification of anti-commutation relations to this case is

{Ψ(xm)γ0,Ψ(xn)} = (1 +K)Jδxm,xn . (5.8.8)

Note that the constancy of γ0 implies a complete symmetry between the two points. The number of
points must be the maximal one consistent with the Kronecker delta type anti-commutation relations
so that information is not lost.

The question arises about the choice of the points xm. This choice should ge general coordinate
invariant. The following ideas have been considered.

1. The number theoretic vision leads to the notion of number theoretic braid defined as the set
of points common to real and p-adic variant of X2. The points of the number theoretic braid
are excellent candidates for points xn. The p-adic variant of X2 exists only if X2 is defined by
rational functions with coefficients which are possibly algebraic and thus make sense both in real
and p-adic sense. These points belong to the algebraic extension of rational numbers appearing
in the representation of X2 as an algebraic surface but one can consider quite generally the
possibility that the points of the number theoretic braid are rational or in a finite algebraic
extension of rationals. If one restricts the consideration to rational points this criterion makes
sense even if X2 is not algebraic. In the generic case one can expect that the number of these
points is finite. The objection is that this definition is not general coordinate invariant. One can
however identify preferred coordinates since CP2 and the sphere S2 associated with light-cone
boundary are symmetric spaces.

2. An alternative identification emerged from the solution of the Chern-Simons Dirac equation.
Since the number of generalized eigenmodes of DC−S is finite for a given braid, the local anti-
commutation relations cannot be satisfied unless they are restricted to a finite subset of points
of X2 and the condition that the lengths of the braid strands in the effective metric are same
fixes the braid uniquely. Number theoretic braids are obtained when the length is rational or
algebraic number. This identification of number theoretic braid is enough for p-adicization since
it guarateens that the exponent of Kähler function is rational function of braid lengths labelled
by a finite number of primes. The interpretation of the braids as orbits of the ends of string
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world sheets is possible and the braiding of the string ends brings in topological QFT aspect. Of
utmost importance is that this identification is also general coordinate invariant and guarantees
that WCW Kähler function is rational function of general coordinate invariant variables and
thus allows p-adicization.

This option leaves no room for the choice of the ends of braid strands unless one allows the
length scale identified as the minimum length of the braid strand to vary in certain limits. This
variation might only induce a gauge transformation K → K+f+f of the WCW Kähler function.
One can of consider the possibility that the braid points as points of the imbedding space are
rational or algebraic numbers in some preferred coordinates of H in the intersection of the real
and p-adic worlds so that the original hypothesis would make sense in this intersection only.

For the latter option the number of solutions of the Chern-Simons Dirac equation for given spinorial
quantum numbers is the number of braid points so that the number of fermionic oscillator operators
for a given mode is same as the number of braid points and the anticommutation relations have a
unique solution.

Symplectic fusion algebra [17] might also be important element in quantization. The relationship
between symplectic fusion algebra and its conjugate has not been characterized and one can consider
the possibility that the algebra generators satisfy the conditions emen = δm,n. If induced spinor field
at points of number theoretic braid defining the symplectic fusion algebra is multiplied by em then
the anti-commutation relations reduce automatically to a form in which anti-commutators at same
point are involved. This would reduce the number of conditions to 8NB from 8N2

B . The notion of
finite measurement resolution could be used to defend this option.

5.8.3 QFT description of particle reactions at the level of braids

The overall view conforms with zero energy ontology in which hierarchy of causal diamonds (CDs)
within CDs gives rise to a hierarchy of generalized Feynman diagrams and geometric description of the
radiative corrections. Each sub-CD gives also rise to to zero energy states and thus particle reactions
in its own time scale so that improvement of the time resolution brings in also new physics as it does
also in reality.

The natural question is what happens to the braids at vertices.

1. The vision based on infinite primes led to the conclusion that the selection rules of arithmetic
quantum field theory based on the conservation of the total number theoretic momentum P =∑
nilog(pi) dictate the selection rules at the vertixes. For given pi the momentum nilog(pi) can

be shared between the outgoing lines and this allows several combinations of infinite primes in
outgoing lines having interpretations in terms of singular coverings of CD and CP2.

2. What happens then to the braid strands? If the bosons and fermions with given pi are shared
between several outgoing particles, does this require that the braid strands replicate? Or is
their number preserved if one regards each braid strand as having na resp. nb copies at the
sheets of the corresponding coverings? This is required by the conservation of number theoretic
momentum if one accepts the connection between the hierarchy of Planck constants and infinite
primes.

3. The question raised already earlier is whether DNA replication could have a counterpart at the
level of fundamental physics. The interpretation of the incoming lines of generalized Feynman
diagram as representations of topological quantum computations and the virtual particle lines
as representations of quantum communications would support this picture. The no-cloning
theorem [53] would hold true since exact copies of quantum states would not be possible by the
conservation of the number theoretical momentum. One could however say that the bosonic
occupation number ni means the presence of ni-fold copy of same piece of information so that
the sharing of information by sharing the pages of the singular covering associated with ni would
be possible in the limits posed by the values of ni. Note again that the identification ni = na or
ni = nb (two infinite primes characterize the quantum state) makes sense only if only one of the
p-adic primes associated with the 3-surface is realized as a physical state since the identification
forces the selection of the covering. The quantum model for DNA based on hierarchy of Planck
constants [37] inspires the question whether DNA replication could be actually accompanied by
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its proposed counterpart at the fundamental level defining the fundamental information transfer
process.

4. The localization of the quantum numbers to braid strands suggests that braid ends of a given
braid continue to one particular line or more generally, are shared between several lines. This
condition is quite strong since without additional quantization conditions the ends of the braids
of outgoing particles do not co-incide with the ends of the incoming braid. These kind of
quantization conditions would conform with the generalized Bohr orbit property of light-like
3-surfaces.

5. Without these quantization conditions one meets the challenge of calculating the anticommu-
tators of fermionic oscillator operators associated with non-co-inciding points of the incoming
and outgoing braids. This raises the question whether one should regard the quantizations of
induced spinor fields based on the Lmin as one possible gauge only and allow the variation of
Lmin in some limits. If these quantizations are equivalent, the fermionic oscillator operators
would be unitarily related. How to deduce this unitary transformation would be the non-trivial
problem and it seems that the simpler picture is much more attractive.

This picture means that particle reactions occur at several levels which brings in mind a kind
of universal mimicry inspired by Universe as a Universal Computer hypothesis. Particle reactions
in QFT sense correspond to the reactions for the number theoretic braids inside partons. This level
seems to be the simplest one to describe mathematically. At parton level particle reactions correspond
to generalized Feynman diagrams obtained by gluing partonic 3-surfaces along their ends at vertices.
Particle reactions are realized also at the level of 4-D space-time surfaces. One might hope that this
multiple realization could code the dynamics already at the simple level of single partonic 3-surface.

5.8.4 How do generalized braid diagrams relate to the perturbation the-
ory?

The association of generalized braid diagrams characterized by infinite primes to the incoming and
outgoing partonic legs and internal lines of the generalized Feynman diagrams forces to ask whether
the generalized braid diagrams could give rise to a counterpart of perturbation theoretical formalism
via the functional integral over configuration space degrees of freedom.

The basic question is how the functional integral over configuration space degrees of freedom relates
to the generalized braid diagrams.

1. If one believes in perturbation theoretic approach, the basic conjecture motivated also number
theoretically is that radiative corrections in this sense sum up to zero for critical values of
Kähler coupling strength and Kähler function codes radiative corrections to classical physics via
the dependence of the scale of M4 metric on Planck constant. Cancelation could occur only for
critical values of Kähler coupling strength αK : for general values of αK the cancellation would
require separate vanishing of each term in the sum and does not occur.

In perturbative approach the expression of Kähler function as Chern-Simons action could be
used and propagator would correspond to the inverse of the 1-1 part of the second variation of
the Chern-Simons action with respect to complex WCW coordinates evaluated allowing only the
extrema of Chern-Simons action for the ends of space-time surface and for wormhole throats.
One would have perturbation theory for a sum over maxima of Kähler function. From the
expression of the Kähler function as Dirac determinant the maxima would correspond to the
local minima of Lp =

√
pLmin for a given infinite prime. The connection between Chern-Simons

representation and Dirac determinant representation of Kähler function would be obviously
highly desirable.

2. The possibility to define WCW functional integral in terms of harmonic analysis for infinite-
dimensional spaces leads to a non-perturbative approach to functional integration allowing also
a generalization the p-adic context [20]. In this approach there is no need to make additional
assumptions.
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For both cases the assignment of the collection of braids characterized by pairs of infinite primes
allows to organize the generalized Feynman diagrams into a sum of generalized Feynman diagrams and
for each diagram type the exponent of Kähler function - if given by the Dirac determinant- would be
simply the product

∏
i L
−1
pi , Lp =

√
pLmin. One should perform a sum over different infinite primes in

the internal lines subject to the conservation of the total number theoretic momenta. The conservation
of the incoming number theoretic momentum would allow only a finite number of configurations for
the intermediate lines. For the approach based on harmonic analysis the expression of the Kähler
function in terms of the Dirac determinant would be optimal since it is manifestly algebraic function.

Both approaches involve a perturbative summation in the sense of introducing sub-CDs with time
scales coming as 2−n powers of the time scale of CD defining the infrared cutoff.

1. The addition of zero energy insertions corresponding to sub-CDs as radiative corrections allows
to improve measurement resolution. Hence a connection with QFT type Feyman diagram ex-
pansion would be obtained and Connes tensor product would have a practical computational
realization.

2. The time scale resolution defined by the temporal distance between the tips of the causal diamond
defined by the future and past light-cones applies to the addition of zero energy sub-states and
one obtains a direct connection with p-adic length scale evolution of coupling constants since the
time scales in question naturally come as negative powers of two. More precisely, p-adic primes
near power of two are very natural since the coupling constant evolution comes in powers of two
of fundamental 2-adic length scale.

5.8.5 How p-adic coupling constant evolution and p-adic length scale hy-
pothesis emerge?

The condition Tn = 2nT0 would assign to the hierarchy of CDs as hierarchy of time scales coming as
octaves. A weaker condition would be Tp = pT0, p prime, and would assign all secondary p-adic time
scales to the size scale hierarchy of CDs.

One can wonder how this picture relates to the earlier hypothesis that p-adic length coupling
constant evolution. Could the coupling constant evolution in powers of 2 implying time scale hierarchy
Tn = 2nT0 induce p-adic coupling constant evolution and explain why p-adic length scales correspond
to Lp ∝

√
pR, p ' 2k, R CP2 length scale? This looks like an attractive idea but there is a problem.

p-Adic length scales come as powers of
√

2 rather than 2 and the strongly favored values of k are
primes and thus odd so that n = k/2 would be half odd integer. This problem can be solved.

1. The observation that the distance traveled by a Brownian particle during time t satisfies r2 = Dt
suggests a solution to the problem. p-Adic thermodynamics applies because the partonic 3-
surfaces X2 are as 2-D dynamical systems random apart from light-likeness of their orbit. For
CP2 type vacuum extremals the situation reduces to that for a one-dimensional random light-like
curve in M4. The orbits of Brownian particle would now correspond to light-like geodesics γ3 at
X3. The projection of γ3 to a time=constant section X2 ⊂ X3 would define the 2-D path γ2 of
the Brownian particle. The M4 distance r between the end points of γ2 would be given r2 = Dt.
The favored values of t would correspond to Tn = 2nT0 (the full light-like geodesic). p-Adic
length scales would result as L2(k) = DT (k) = D2kT0 for D = R2/T0. Since only CP2 scale is
available as a fundamental scale, one would have T0 = R and D = R and L2(k) = T (k)R.

2. p-Adic primes near powers of 2 would be in preferred position. p-Adic time scale would not relate
to the p-adic length scale via Tp = Lp/c as assumed implicitly earlier but via Tp = L2

p/R0 =√
pLp, which corresponds to secondary p-adic length scale. For instance, in the case of electron

with p = M127 one would have T127 = .1 second which defines a fundamental biological rhythm.
Neutrinos with mass around .1 eV would correspond to L(169) ' 5 µm (size of a small cell) and
T (169) ' 1. × 104 years. A deep connection between elementary particle physics and biology
becomes highly suggestive.

3. In the proposed picture the p-adic prime p ' 2k would characterize the thermodynamics of
the random motion of light-like geodesics of X3 so that p-adic prime p would indeed be an
inherent property of X3. For Tp = pT0 the above argument is not enough for p-adic length
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scale hypothesis and p-adic length scale hypothesis might be seen as an outcome of a process
analogous to natural selection. Resonance like effect favoring octaves of a fundamental frequency
might be in question. In this case, p would a property of CD and all light-like 3-surfaces inside
it and also that corresponding sector of configuration space.

5.9 How to define generalized Feynman diagrams?

S-matrix codes to a high degree the predictions of quantum theories. The longstanding challenge
of TGD has been to construct or at least demonstrate the mathematical existence of S-matrix- or
actually M-matrix which generalizes this notion in zero energy ontology (ZEO) [5]. This work has
led to the notion of generalized Feynman diagram and the challenge is to give a precise mathematical
meaning for this object. The attempt to understand the counterpart of twistors in TGD framework
[28] has inspired several key ideas in this respect but it turned out that twistors themselves need not
be absolutely necessary in TGD framework.

1. The notion of generalized Feyman diagram defined by replacing lines of ordinary Feynman dia-
gram with light-like 3-surfaces (elementary particle sized wormhole contacts with throats carry-
ing quantum numbers) and vertices identified as their 2-D ends - I call them partonic 2-surfaces
is central. Speaking somewhat loosely, generalized Feynman diagrams (plus background space-
time sheets) define the ”world of classical worlds” (WCW). These diagrams involve the analogs
of stringy diagrams but the interpretation is different: the analogs of stringy loop diagrams have
interpretation in terms of particle propagating via two different routes simultaneously (as in the
classical double slit experiment) rather than as a decay of particle to two particles. For stringy
diagrams the counterparts of vertices are singular as manifolds whereas the entire diagrams
are smooth. For generalized Feynman diagrams vertices are smooth but entire diagrams rep-
resent singular manifolds just like ordinary Feynman diagrams do. String like objects however
emerge in TGD and even ordinary elementary particles are predicted to be magnetic flux tubes
of length of order weak gauge boson Compton length with monopoles at their ends as shown in
accompanying article. This stringy character should become visible at LHC energies.

2. Zero energy ontology (ZEO) and causal diamonds (intersections of future and past directed
lightcones) is second key ingredient. The crucial observation is that in ZEO it is possible to
identify off mass shell particles as pairs of on mass shell particles at throats of wormhole contact
since both positive and negative signs of energy are possible. The propagator defined by modified
Dirac action does not diverge (except for incoming lines) although the fermions at throats are on
mass shell. In other words, the generalized eigenvalue of the modified Dirac operator containing
a term linear in momentum is non-vanishing and propagator reduces to G = i/λγ, where γ is so
called modified gamma matrix in the direction of stringy coordinate [18]. This means opening
of the black box of the off mass shell particle-something which for some reason has not occurred
to anyone fighting with the divergences of quantum field theories.

3. A powerful constraint is number theoretic universality requiring the existence of Feynman am-
plitudes in all number fields when one allows suitable algebraic extensions: roots of unity are
certainly required in order to realize p-adic counter parts of plane waves. Also imbedding space,
partonic 2-surfaces and WCW must exist in all number fields and their extensions. These con-
straints are enormously powerful and the attempts to realize this vision have dominated quantum
TGD for last two decades.

4. Representation of 8-D gamma matrices in terms of octonionic units and 2-D sigma matrices is
a further important element as far as twistors are considered [28]. Modified gamma matrices
at space-time surfaces are quaternionic/associative and allow a genuine matrix representation.
As a matter fact, TGD and WCW can be formulated as study of associative local sub-algebras
of the local Clifford algebra of 8-D imbedding space parameterized by quaternionic space-time
surfaces. Central conjecture is that quaternionic 4-surfaces correspond to preferred extremals
of Kähler action [18] identified as critical ones (second variation of Kähler action vanishes for
infinite number of deformations defining super-conformal algebra) and allow a slicing to string
worldsheets parametrized by points of partonic 2-surfaces.
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5. As far as twistors are considered, the first key element is the reduction of the octonionic twistor
structure to quaternionic one at space-time surfaces and giving effectively 4-D spinor and twistor
structure for quaternionic surfaces.

Quite recently quite a dramatic progress took place in this approach [28].

1. The progress was stimulated by the simple observation that on mass shell property puts enor-
mously strong kinematic restrictions on the loop integrations. With mild restrictions on the
number of parallel fermion lines appearing in vertices (there can be several since fermionic
oscillator operator algebra defining SUSY algebra generates the parton states)- all loops are
manifestly finite and if particles has always mass -say small p-adic thermal mass also in case of
massless particles and due to IR cutoff due to the presence largest CD- the number of diagrams is
finite. Unitarity reduces to Cutkosky rules [58] automatically satisfied as in the case of ordinary
Feynman diagrams.

2. Ironically, twistors which stimulated all these development do not seem to be absolutely necessary
in this approach although they are of course possible. Situation changes if one does not assume
small p-adically thermal mass due to the presence of massless particles and one must sum infinite
number of diagrams. Here a potential problem is whether the infinite sum respects the algebraic
extension in question.

This is about fermionic and momentum space aspects of Feynman diagrams but not yet about the
functional (not path-) integral over small deformations of the partonic 2-surfaces. The basic challenges
are following.

1. One should perform the functional integral over WCW degrees of freedom for fixed values of
on mass shell momenta appearing in the internal lines. After this one must perform integral or
summation over loop momenta. Note that the order is important since the space-time surface
assigned to the line carries information about the quantum numbers associated with the line by
quantum classical correspondence realized in terms of modified Dirac operator.

2. One must define the functional integral also in the p-adic context. p-Adic Fourier analysis relying
on algebraic continuation raises hopes in this respect. p-Adicity suggests strongly that the loop
momenta are discretized and ZEO predicts this kind of discretization naturally.

It indeed seems that the functional integrals over WCW could be carried out at general level both in
real and p-adic context. This is due to the symmetric space property (maximal number of isometries)
of WCW required by the mere mathematical existence of Kähler geometry [34] in infinite-dimensional
context already in the case of much simpler loop spaces [45].

1. The p-adic generalization of Fourier analysis allows to algebraize integration- the horrible looking
technical challenge of p-adic physics- for symmetric spaces for functions allowing the analog
of discrete Fourier decomposion. Symmetric space property is indeed essential also for the
existence of Kähler geometry for infinite-D spaces as was learned already from the case of loop
spaces. Plane waves and exponential functions expressible as roots of unity and powers of p
multiplied by the direct analogs of corresponding exponent functions are the basic building
bricks and key functions in harmonic analysis in symmetric spaces. The physically unavoidable
finite measurement resolution corresponds to algebraically unavoidable finite algebraic dimension
of algebraic extension of p-adics (at least some roots of unity are needed). The cutoff in roots
of unity is very reminiscent to that occurring for the representations of quantum groups and
is certainly very closely related to these as also to the inclusions of hyper-finite factors of type
II¡sub¿1¡/sub¿ defining the finite measurement resolution.

2. WCW geometrization reduces to that for a single line of the generalized Feynman diagram defin-
ing the basic building brick for WCW. Kähler function decomposes to a sum of ”kinetic” terms
associated with its ends and interaction term associated with the line itself. p-Adicization boils
down to the condition that Kähler function, matrix elements of Kähler form, WCW Hamilto-
nians and their super counterparts, are rational functions of complex WCW coordinates just as
they are for those symmetric spaces that I know of. This allows straightforward continuation to
p-adic context.
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3. As far as diagrams are considered, everything is manifestly finite as the general arguments (non-
locality of Kähler function as functional of 3-surface) developed two decades ago indeed allow to
expect. General conditions on the holomorphy properties of the generalized eigenvalues λ of the
modified Dirac operator can be deduced from the conditions that propagator decomposes to a
sum of products of harmonics associated with the ends of the line and that similar decomposition
takes place for exponent of Kähler action identified as Dirac determinant. This guarantees that
the convolutions of propagators and vertices give rise to products of harmonic functions which
can be Glebsch-Gordanized to harmonics and only the singlet contributes to the WCW integral
in given vertex. The still unproven central conjecture is that Dirac determinant equals the
exponent of Kähler function.

In the following this vision about generalized Feynman diagrams is discussed in more detail.

5.9.1 Questions

The goal is a proposal for how to perform the integral over WCW for generalized Feynman digrams
and the best manner to proceed to to this goal is by making questions.

What does finite measurement resolution mean?

The first question is what finite measurement resolution means.

1. One expects that the algebraic continuation makes sense only for a finite measurement resolution
in which case one obtains only finite sums of what one might hope to be algebraic functions.
The finiteness of the algebraic extension would be in fact equivalent with the finite measurement
resolution.

2. Finite measurement resolution means a discretization in terms of number theoretic braids. p-
Adicization condition suggests that that one must allow only the number theoretic braids. For
these the ends of braid at boundary of CD are algebraic points of the imbedding space. This
would be true at least in the intersection of real and p-adic worlds.

3. The question is whether one can localize the points of the braid. The necessity to use momen-
tum eigenstates to achieve quantum classical correspondence in the modified Dirac action [18]
suggests however a delocalization of braid points, that is wave function in space of braid points.
In real context one could allow all possible choices for braid points but in p-adic context only
algebraic points are possible if one wants to replace integrals with sums. This implies finite
measurement resolution analogous to that in lattice. This is also the only possibility in the
intersection of real and p-adic worlds.

A non-trivial prediction giving a strong correlation between the geometry of the partonic 2-
surface and quantum numbers is that the total number nF +nF of fermions and antifermions is
bounded above by the number nalg of algebraic points for a given partonic 2-surface: nF +nF ≤
nalg. Outside the intersection of real and p-adic worlds the problematic aspect of this definition
is that small deformations of the partonic 2-surface can radically change the number of algebraic
points unless one assumes that the finite measurement resolution means restriction of WCW to
a sub-space of algebraic partonic surfaces.

4. One has also a discretization of loop momenta if one assumes that virtual particle momentum
corresponds to ZEO defining rest frame for it and from the discretization of the relative position
of the second tip of CD at the hyperboloid isometric with mass shell. Only the number of braid
points and their momenta would matter, not their positions. The measurement interaction term
in the modified Dirac action gives coupling to the space-time geometry and Kähler function
through generalized eigenvalues of the modified Dirac operator with measurement interaction
term linear in momentum and in the color quantum numbers assignable to fermions [18].

How to define integration in WCW degrees of freedom?

The basic question is how to define the integration over WCW degrees of freedom.
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1. What comes mind first is Gaussian perturbation theory around the maxima of Kähler function.
Gaussian and metric determinants cancel each other and only algebraic expressions remain.
Finiteness is not a problem since the Kähler function is non-local functional of 3-surface so that
no local interaction vertices are present. One should however assume the vanishing of loops
required also by algebraic universality and this assumption look unrealistic when one considers
more general functional integrals than that of vacuum functional since free field theory is not
in question. The construction of the inverse of the WCW metric defining the propagator is also
a very difficult challenge. Duistermaat-Hecke theorem states that something like this known as
localization might be possible and one can also argue that something analogous to localization
results from a generalization of mean value theorem.

2. Symmetric space property is more promising since it might reduce the integrations to group
theory using the generalization of Fourier analysis for group representations so that there would
be no need for perturbation theory in the proposed sense. In finite measurement resolution the
symmetric spaces involved would be finite-dimensional. Symmetric space structure of WCW
could also allow to define p-adic integration in terms of p-adic Fourier analysis for symmetric
spaces. Essentially algebraic continuation of the integration from the real case would be in
question with additional constraints coming from the fact that only phase factors corresponding
to finite algebraic extensions of rationals are used. Cutoff would emerge automatically from the
cutoff for the dimension of the algebraic extension.

How to define generalized Feynman diagrams?

Integration in symmetric spaces could serve as a model at the level of WCW and allow both the
understanding of WCW integration and p-adicization as algebraic continuation. In order to get a
more realistic view about the problem one must define more precisely what the calculation of the
generalized Feynman diagrams means.

1. WCW integration must be carried out separately for all values of the momenta associated with
the internal lines. The reason is that the spectrum of eigenvalues λi of the modified Dirac
operator D depends on the momentum of line and momentum conservation in vertices translates
to a correlation of the spectra of D at internal lines.

2. For tree diagrams algebraic continuation to the p-adic context if the expression involves only
the replacement of the generalized eigenvalues of D as functions of momenta with their p-adic
counterparts besides vertices. If these functions are algebraically universal and expressible in
terms of harmonics of symmetric space , there should be no problems.

3. If loops are involved, one must integrate/sum over loop momenta. In p-adic context difficulties
are encountered if the spectrum of the momenta is continuous. The integration over on mass
shell loop momenta is analogous to the integration over sub-CDs, which suggests that internal
line corresponds to a sub − CD in which it is at rest. There are excellent reasons to believe
that the moduli space for the positions of the upper tip is a discrete subset of hyperboloid of
future light-cone. If this is the case, the loop integration indeed reduces to a sum over discrete
positions of the tip. p-Adizication would thus give a further good reason why for zero energy
ontology.

4. Propagator is expressible in terms of the inverse of generalized eigenvalue and there is a sum
over these for each propagator line. At vertices one has products of WCW harmonics assignable
to the incoming lines. The product must have vanishing quantum numbers associated with the
phase angle variables of WCW. Non-trivial quantum numbers of the WCW harmonic correspond
to WCW quantum numbers assignable to excitations of ordinary elementary particles. WCW
harmonics are products of functions depending on the ”radial” coordinates and phase factors
and the integral over the angles leaves the product of the first ones analogous to Legendre
polynomials Pl,m, These functions are expected to be rational functions or at least algebraic
functions involving only square roots.

5. In ordinary QFT incoming and outgoing lines correspond to propagator poles. In the recent case
this would mean that the generalized eigenvalues λ = 0 characterize them. Internal lines coming
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as pairs of throats of wormhole contacts would be on mass shell with respect to momentum but
off shell with respect to λ.

5.9.2 Generalized Feynman diagrams at fermionic and momentum space
level

Negative energy ontology has already led to the idea of interpreting the virtual particles as pairs of
positive and negative energy wormhole throats. Hitherto I have taken it as granted that ordinary
Feynman diagrammatics generalizes more or less as such. It is however far from clear what really
happens in the verties of the generalized Feynmann diagrams. The safest approach relies on the
requirement that unitarity realized in terms of Cutkosky rules in ordinary Feynman diagrammatics
allows a generalization. This requires loop diagrams. In particular, photon-photon scattering can
take place only via a fermionic square loop so that it seems that loops must be present at least in the
topological sense.

One must be however ready for the possibility that something unexpectedly simple might emerge.
For instance, the vision about algebraic physics allows naturally only finite sums for diagrams and
does not favor infinite perturbative expansions. Hence the true believer on algebraic physics might
dream about finite number of diagrams for a given reaction type. For simplicity generalized Feyn-
man diagrams without the complications brought by the magnetic confinement since by the previous
arguments the generalization need not bring in anything essentially new.

The basic idea of duality in early hadronic models was that the lines of the dual diagram repre-
senting particles are only re-arranged in the vertices. This however does not allow to get rid of off
mass shell momenta. Zero energy ontology encourages to consider a stronger form of this principle in
the sense that the virtual momenta of particles could correspond to pairs of on mass shell momenta
of particles. If also interacting fermions are pairs of positive and negative energy throats in the in-
teraction region the idea about reducing the construction of Feynman diagrams to some kind of lego
rules might work.

Virtual particles as pairs of on mass shell particles in ZEO

The first thing is to try to define more precisely what generalized Feynman diagrams are. The direct
generalization of Feynman diagrams implies that both wormhole throats and wormhole contacts join
at vertices.

1. A simple intuitive picture about what happens is provided by diagrams obtained by replacing
the points of Feynman diagrams (wormhole contacts) with short lines and imagining that the
throats correspond to the ends of the line. At vertices where the lines meet the incoming on
mass shell quantum numbers would sum up to zero. This approach leads to a straightforward
generalization of Feynman diagrams with virtual particles replaced with pairs of on mass shell
throat states of type ++, −−, and +−. Incoming lines correspond to ++ type lines and outgoing
ones to −− type lines. The first two line pairs allow only time like net momenta whereas +−
line pairs allow also space-like virtual momenta. The sign assigned to a given throat is dictated
by the the sign of the on mass shell momentum on the line. The condition that Cutkosky
rules generalize as such requires ++ and −− type virtual lines since the cut of the diagram in
Cutkosky rules corresponds to on mass shell outgoing or incoming states and must therefore
correspond to ++ or −− type lines.

2. The basic difference as compared to the ordinary Feynman diagrammatics is that loop integrals
are integrals over mass shell momenta and that all throats carry on mass shell momenta. In
each vertex of the loop mass incoming on mass shell momenta must sum up to on mass shell
momentum. These constraints improve the behavior of loop integrals dramatically and give
excellent hopes about finiteness. It does not however seem that only a finite number of dia-
grams contribute to the scattering amplitude besides tree diagrams. The point is that if a the
reactions N1 → N2 and N2 → N3,, where Ni denote particle numbers, are possible in a common
kinematical region for N2-particle states then also the diagrams N1 → N2 → N2 → N3 are
possible. The virtual states N2 include all all states in the intersection of kinematically allow
regions for N1 → N2 and N2 → N3. Hence the dream about finite number possible diagrams is
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not fulfilled if one allows massless particles. If all particles are massive then the particle number
N2 for given N1 is limited from above and the dream is realized.

3. For instance, loops are not possible in the massless case or are highly singular (bringing in mind
twistor diagrams) since the conservation laws at vertices imply that the momenta are parallel.
In the massive case and allowing mass spectrum the situation is not so simple. As a first example
one can consider a loop with three vertices and thus three internal lines. Three on mass shell
conditions are present so that the four-momentum can vary in 1-D subspace only. For a loop
involving four vertices there are four internal lines and four mass shell conditions so that loop
integrals would reduce to discrete sums. Loops involving more than four vertices are expected
to be impossible.

4. The proposed replacement of the elementary fermions with bound states of elementary fermions
and monopoles X± brings in the analog of stringy diagrammatics. The 2-particle wave functions
in the momentum degrees of freedom of fermiona and X± migh allow more flexibility and allow
more loops. Note however that there are excellent hopes about the finiteness of the theory also
in this case.

Loop integrals are manifestly finite

One can make also more detailed observations about loops.

1. The simplest situation is obtained if only 3-vertices are allowed. In this case conservation of
momentum however allows only collinear momenta although the signs of energy need not be
the same. Particle creation and annihilation is possible and momentum exchange is possible
but is always light-like in the massless case. The scattering matrices of supersymmetric YM
theories would suggest something less trivial and this raises the question whether something is
missing. Magnetic monopoles are an essential element of also these theories as also massivation
and symmetry breaking and this encourages to think that the formation of massive states as
fermion X± pairs is needed. Of course, in TGD framework one has also high mass excitations
of the massless states making the scattering matrix non-trivial.

2. In YM theories on mass shell lines would be singular. In TGD framework this is not the case
since the propagator is defined as the inverse of the 3-D dimensional reduction of the modified
Dirac operator D containing also coupling to four-momentum (this is required by quantum
classical correspondence and guarantees stringy propagators),

D = iΓ̂αpα + Γ̂αDα ,

pα = pk∂αh
k . (5.9.1)

The propagator does not diverge for on mass shell massless momenta and the propagator lines
are well-defined. This is of course of essential importance also in general case. Only for the
incoming lines one can consider the possibility that 3-D Dirac operator annihilates the induced
spinor fields. All lines correspond to generalized eigenstates of the propagator in the sense
that one has D3Ψ = λγΨ, where γ is modified gamma matrix in the direction of the stringy
coordinate emanating from light-like surface and D3 is the 3-dimensional dimensional reduction
of the 4-D modified Dirac operator. The eigenvalue λ is analogous to energy. Note that the
eigenvalue spectrum depends on 4-momentum as a parameter.

3. Massless incoming momenta can decay to massless momenta with both signs of energy. The
integration measure d2k/2E reduces to dx/x where x ≥ 0 is the scaling factor of massless
momentum. Only light-like momentum exchanges are however possible and scattering matrix
is essentially trivial. The loop integrals are finite apart from the possible delicacies related to
poles since the loop integrands for given massless wormhole contact are proportional to dx/x3

for large values of x.
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4. Irrrespective of whether the particles are massless or not, the divergences are obtained only if
one allows too high vertices as self energy loops for which the number of momentum degrees
of freedom is 3N − 4 for N -vertex. The construction of SUSY limit of TGD in [23] led to the
conclusion that the parallelly propagating N fermions for given wormhole throat correspond to a
product of N fermion propagators with same four-momentum so that for fermions and ordinary
bosons one has the standard behavior but for N > 2 non-standard so that these excitations are
not seen as ordinary particles. Higher vertices are finite only if the total number NF of fermions
propagating in the loop satisfies NF > 3N−4. For instance, a 4-vertex from which N = 2 states
emanate is finite.

Taking into account magnetic confinement

What has been said above is not quite enough. The weak form of electric-magnetic duality [51] leads
to the picture about elementary particles as pairs of magnetic monopoles inspiring the notions of
weak confinement based on magnetic monopole force. Also color confinement would have magnetic
counterpart. This means that elementary particles would behave like string like objects in weak boson
length scale. Therefore one must also consider the stringy case with wormhole throats replaced with
fermion-X± pairs (X± is electromagnetically neutral and ± refers to the sign of the weak isospin
opposite to that of fermion) and their super partners.

1. The simplest assumption in the stringy case is that fermion-X± pairs behave as coherent objects,
that is scatter elastically. In more general case only their higher excitations identifiable in terms
of stringy degrees of freedom would be created in vertices. The massivation of these states
makes possible non-collinear vertices. An open question is how the massivation fermion-X±
pairs relates to the existing TGD based description of massivation in terms of Higgs mechanism
and modified Dirac operator.

2. Mass renormalization could come from self energy loops with negative energy lines as also vertex
normalization. By very general arguments supersymmetry implies the cancellation of the self
energy loops but would allow non-trivial vertex renormalization [23].

3. If only 3-vertices are allowed, the loops containing only positive energy lines are possible if on
mass shell fermion-X± pair (or its superpartner) can decay to a pair of positive energy pair
particles of same kind. Whether this is possible depends on the masses involved. For ordinary
particles these decays are not kinematically possible below intermediate boson mass scale (the
decays F1 → F2 + γ are forbidden kinematically or by the absence of flavor changing neutral
currents whereas intermediate gauge bosons can decay to on mass shell fermion-antifermion
pair).

4. The introduction of IR cutoff for 3-momentum in the rest system associated with the largest
CD (causal diamond) looks natural as scale parameter of coupling constant evolution and p-adic
length scale hypothesis favors the inverse of the size scale of CD coming in powers of two. This
parameter would define the momentum resolution as a discrete parameter of the p-adic coupling
constant evolution. This scale does not have any counterpart in standard physics. For electron,
d quark, and u quark the proper time distance between the tips of CD corresponds to frequency
of 10 Hz, 1280 Hz, and 160 Hz: all these frequencies define fundamental bio-rhythms [36].

These considerations have left completely untouched one important aspect of generalized Feynman
diagrams: the necessity to perform a functional integral over the deformations of the partonic 2-
surfaces at the ends of the lines- that is integration over WCW. Number theoretical universality
requires that WCW and these integrals make sense also p-adically and in the following these aspects
of generalized Feynman diagrams are discussed.

5.9.3 How to define integration and p-adic Fourier analysis, integral cal-
culus, and p-adic counterparts of geometric objects?

p-Adic differential calculus exists and obeys essentially the same rules as ordinary differental calcu-
lus. The only difference from real context is the existence of p-adic pseudoconstants: any function
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which depends on finite number of pinary digits has vanishing p-adic derivative. This implies non-
determinism of p-adic differerential equations. One can defined p-adic integral functions using the fact
that indefinite integral is the inverse of differentiation. The basis problem with the definite integrals
is that p-adic numbers are not well-ordered so that the crucial ordering of the points of real axis in
definite integral is not unique. Also p-adic Fourier analysis is problematic since direct counterparts of
ep(ix) and trigonometric functions are not periodic. Also exp(-x) fails to converse exponentially since
it has p-adic norm equal to 1. Note also that these functions exists only when the p-adic norm of x
is smaller than 1.

The following considerations support the view that the p-adic variant of a geometric objects,
integration and p-adic Fourier analysis exists but only when one considers highly symmetric geometric
objects such as symmetric spaces. This is wellcome news from the point of view of physics. At the
level of space-time surfaces this is problematic. The field equations associated with Kähler action
and modified Dirac equation make sense. Kähler action defined as integral over p-adic space-time
surface fails to exist. If however the Kähler function identified as Kähler for a preferred extremal of
Kähler action is rational or algebraic function of preferred complex coordinates of WCW with ratonal
coefficients, its p-adic continuation is expected to exist.

Circle with rotational symmetries and its hyperbolic counterparts

Consider first circle with emphasis on symmetries and Fourier analysis.

1. In this case angle coordinate φ is the natural coordinate. It however does not make sense as such
p-adically and one must consider either trigonometric functions or the phase exp(iφ) instead.
If one wants to do Fourier analysis on circle one must introduce roots Un,N = exp(in2π/N) of
unity. This means discretization of the circle. Introducing all roots Un,p = exp(i2πn/p), such
that p divides N , one can represent all Uk,n up to n = N . Integration is naturally replaced with
sum by using discrete Fourier analysis on circle. Note that the roots of unity can be expressed
as products of powers of roots of unity exp(in2π/pk), where pk divides N .

2. There is a number theoretical delicacy involved. By Fermat’s theorem ap−1 mod p = 1 for
a = 1, ...p−1 for a given p-adic prime so that for any integer M divisible by a factor of p−1 the
M :th roots of unity exist as ordinary p-adic numbers. The problem disappears if these values
of M are excluded from the discretization for a given value of the p-adic prime. The manner to
achieve this is to assume that N contains no divisors of p−1 and is consistent with the notion of
finite measurement resolution. For instance, N = pn is an especially natural choice guaranteing
this.

3. The p-adic integral defined as a Fourier sum does not reduce to a mere discretization of the
real integral. In the real case the Fourier coefficients must approach to zero as the wave vector
k = n2π/N increases. In the p-adic case the condition consistent with the notion of finite
measurement resolution for angles is that the p-adic valued Fourier coefficients approach to zero
as n increases. This guarantees the p-adic convergence of the discrete approximation of the
integral for large values of N as n increases. The map of p-adic Fourier coefficients to real ones
by canonical identification could be used to relate p-adic and real variants of the function to
each other.

This finding would suggests that p-adic geometries -in particular the p-adic counterpart of CP2,
are discrete. Variables which have the character of a radial coordinate are in natural manner p-
adically continuous whereas phase angles are naturally discrete and described in terms of algebraic
extensions. The conclusion is disappoing since one can quite well argue that the discrete structures
can be regarded as real. Is there any manner to escape this conclusion?

1. Exponential function exp(ix) exists p-adically for |x|p ≤ 1/p but is not periodic. It provides rep-
resentation of p-adic variant of circle as group U(1). One obtains actually a hierarchy of groups
U(1)p,n corresponding to |x|p ≤ 1/pn. One could consider a generalization of phases as products
Expp(N,n2π/N + x) = exp(in2πn/N)exp(ix) of roots of unity and exponent functions with
an imaginary exponent. This would assign to each root of unity p-adic continuum interpreted
as the analog of the interval between two subsequent roots of unity at circle. The hierarchies
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of measurement resolutions coming as 2π/pn would be naturally accompanied by increasingly
smaller p-adic groups U(1)p,n.

2. p-Adic integration would involve summation plus possibly also an integration over each p-adic
variant of discretization interval. The summation over the roots of unity implies that the integral
of
∫
exp(inx)dx would appear for n = 0. Whatever the value of this integral is, it is compensated

by a normalization factor guaranteing orthonormality.

3. If one interprets the p-adic coordinate as p-adic integer without the identification of points
differing by a multiple of n as different points the question whether one should require p-adic
continuity arises. Continuity is obtained if Un(x + mpm) = Un(x) for large values of m. This
is obtained if one has n = pk. In the spherical geometry this condition is not needed and
would mean quantization of angular momentum as L = pk, which does not look natural. If
representations of translation group are considered the condition is natural and conforms with
the spirit of the p-adic length scale hypothesis.

The hyperbolic counterpart of circle corresponds to the orbit of point under Lorentz group in
two 2-D Minkowski space. Plane waves are replaced with exponentially decaying functions of the
coordinate η replacing phase angle. Ordinary exponent function exp(x) has unit p-adic norm when it
exists so that it is not a suitable choice. The powers pn existing for p-adic integers however approach
to zero for large values of x = n. This forces discretization of η or rather the hyperbolic phase as
powers of px, x = n. Also now one could introduce products of Expp(nlog(p) + z) = pnexp(x) to
achieve a p-adic continuum. Also now the integral over the discretization interval is compensated
by orthonormalization and can be forgotten. The integral of exponential function would reduce to
a sum

∫
Exppdx =

∑
k p

k = 1/(1 − p). One can also introduce finite-dimensional but non-algebraic
extensions of p-adic numbers allowing e and its roots e1/n since ep exists p-adically.

Plane with translational and rotational symmetries

Consider first the situation by taking translational symmetries as a starting point. In this case
Cartesian coordinates are natural and Fourier analysis based on plane waves is what one wants to
define. As in the previous case, this can be done using roots of unity and one can also introduce
p-adic continuum by using the p-adic variant of the exponent function. This would effectively reduce
the plane to a box. As already noticed, in this case the quantization of wave vectors as multiples of
1/pk is required by continuity.

One can take also rotational symmetries as a starting point. In this case cylindrical coordinates
(ρ, φ) are natural.

1. Radial coordinate can have arbitrary values. If one wants to keep the connection ρ =
√
x2 + y2

with the Cartesian picture square root allowing extension is natural. Also the values of radial
coordinate proportional to odd power of p are problematic since one should introduce

√
p: is

this extension internally consistent? Does this mean that the points ρ ∝ p2n+1 are excluded so
that the plane decomposes to annuli?

2. As already found, angular momentum eigen states can be described in terms of roots of unity
and one could obtain continuum by allowing also phases defined by p-adic exponent functions.

3. In radial direction one should define the p-adic variants for the integrals of Bessel functions and
they indeed might make sense by algebraic continuation if one consistently defines all functions
as Fourier expansions. Delta-function renormalization causes technical problems for a continuum
of radial wave vectors. One could avoid the problem by using expontentially decaying variants
of Bessel function in the regions far from origin, and here the already proposed description of
the hyperbolic counterparts of plane waves is suggestive.

4. One could try to understand the situation also using Cartesian coordinates. In the case of sphere
this is achieved by introducing two coordinate patches with Cartesian coordinates. Pythagorean
phases are rational phases (orthogonal triangles for which all sides are integer valued) and form
a dense set on circle. Complex rationals (orthogonal triangles with integer valued short sides)
define a more general dense subset of circle. In both cases it is difficult to imagine a discretized
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version of integration over angles since discretization with constant angle increrement is not
possible.

The case of sphere and more general symmetric space

In the case of sphere spherical coordinates are favored by symmetry considerations. For spherical
coordinates sin(θ) is analogous to the radial coordinate of plane. Legedre polynomials expressible
as polynomials of sin(θ) and cos(θ) are expressible in terms of phases and the integration measure
sin2(θ)dθdφ reduces the integral of S2 to summation. As before one can introduce also p-adic contin-
uum. Algebraic cutoffs in both angular momentum l and m appear naturally. Similar cutoffs appear
in the representations of quantum groups and there are good reasons to expect that these phenomena
are correlated.

Exponent of Kähler function appears in the integration over configuration space. From the ex-
pression of Kähler gauge potential given by Aα = J θ

α ∂θK one obtains using Aα = cos(θ)δα,φ and
Jθφ = sin(θ) the expression exp(K) = sin(θ). Hence the exponent of Kähler function is expressible
in terms of spherical harmonics.

The completion of the discretized sphere to a p-adic continuum- and in fact any symmetric space-
could be performed purely group theoretically.

1. Exponential map maps the elements of the Lie-algebra to elements of Lie-group. This recipe
generalizes to arbitrary symmetric space G/H by using the Cartan decomposition g = t + h,
[h, h] ⊂ h,[h, t] ⊂ t,[t, t] ⊂ h. The exponentiation of t maps t to G/H in this case. The
exponential map has a p-adic generalization obtained by considering Lie algebra with coefficients
with p-adic norm smaller than one so that the p-adic exponent function exists. As a matter fact,
one obtains a hierarchy of Lie-algebras corresponding to the upper bounds of the p-adic norm
coming as p−k and this hierarchy naturally corresponds to the hierarchy of angle resolutions
coming as 2π/pk. By introducing finite-dimensional transcendental extensions containing roots
of e one obtains also a hierarchy of p-adic Lie-algebras associated with transcendental extensions.

2. In particular, one can exponentiate the complement of the SO(2) sub-algebra of SO(3) Lie-
algebra in p-adic sense to obtain a p-adic completion of the discrete sphere. Each point of the
discretized sphere would correspond to a p-adic continuous variant of sphere as a symmetric
space. Similar construction applies in the case of CP2. Quite generally, a kind of fractal or
holographic symmetric space is obtained from a discrete variant of the symmetric space by
replacing its points with the p-adic symmetric space.

3. In the N-fold discretization of the coordinates of M-dimensional space t one (N−1)M discretiza-
tion volumes which is the number of points with non-vanishing t-coordinates. It would be nice
if one could map the p-adic discretization volumes with non-vanishing t-coordinates to their
positive valued real counterparts by applying canonical identification. By group invariance it is
enough to show that this works for a discretization volume assignable to the origin. Since the
p-adic numbers with norm smaller than one are mapped to the real unit interval, the p-adic Lie
algebra is mapped to the unit cell of the discretization lattice of the real variant of t. Hence by
a proper normalization this mapping is possible.

The above considerations suggest that the hierarchies of measurement resolutions coming as ∆φ =
2π/pn are in a preferred role. One must be however cautious in order to avoid too strong assumptions.
The following arguments however support this identification.

1. The vision about p-adicization characterizes finite measurement resolution for angle measure-
ment in the most general case as ∆φ = 2πM/N , where M and N are positive integers having
no common factors. The powers of the phases exp(i2πM/N) define identical Fourier basis irre-
spective of the value of M unless one allows only the powers exp(i2πkM/N) for which kM < N
holds true: in the latter case the measurement resolutions with different values of M corre-
spond to different numbers of Fourier components. Otherwise themeasurement ersolution is just
∆φ = 2π/pn. If one regards N as an ordinary integer, one must have N = pn by the p-adic
continuity requirement.
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2. One can also interpret N as a p-adic integer and assume that state function reduction selects one
particular prime (no superposition of quantum states with different p-adic topologies). For N =
pnM , where M is not divisible by p, one can express 1/M as a p-adic integer 1/M =

∑
k≥0Mkp

k,

which is infinite as a real integer but effectively reduces to a finite integer K(p) =
∑N−1
k=0 Mkp

k.
As a root of unity the entire phase exp(i2πM/N) is equivalent with exp(i2πR/pn), R = K(p)M
mod pn. The phase would non-trivial only for p-adic primes appearing as factors in N . The
corresponding measurement resolution would be ∆φ = R2π/N . One could assign to a given
measurement resolution all the p-adic primes appearing as factors in N so that the notion of
multi-p p-adicity would make sense. One can also consider the identification of the measurement
resolution as ∆φ = |N/M |p = 2π/pk. This interpretation is supported by the approach based
on infinite primes [19].

What about integrals over partonic 2-surfaces and space-time surface?

One can of course ask whether also the integrals over partonic 2-surfaces and space-time surface could
be p-adicized by using the proposed method of discretization. Consider first the p-adic counterparts
of the integrals over the partonic 2-surface X2.

1. WCW Hamiltonians and Kähler form are expressible using flux Hamiltonians defined in terms
of X2 integrals of JHA, where HA is δCD × CP2 Hamiltonian, which is a rational function of
the preferred coordinates defined by the exponentials of the coordinates of the sub-space t in
the appropriate Cartan algebra decomposition. The flux factor J = εαβJαβ

√
g2 is scalar and

does not actually depend on the induced metric.

2. The notion of finite measurement resolution would suggest that the discretization of X2 is
somehow induced by the discretization of δCD × CP2. The coordinates of X2 could be taken
to be the coordinates of the projection of X2 to the sphere S2 associated with δM4

± or to the
homologically non-trivial geodesic sphere of CP2 so that the discretization of the integral would
reduce to that for S2 and to a sum over points of S2.

3. To obtain an algebraic number as an outcome of the summation, one must pose additional
conditions guaranteing that both HA and J are algebraic numbers at the points of discretization
(recall that roots of unity are involved). Assume for definiteness that S2 is rM = constant sphere.
If the remaining preferred coordinates are functions of the preferred S2 coordinates mapping
phases to phases at discretization points, one obtains the desired outcome. These conditions are
rather strong and mean that the various angles defining CP2 coordinates -at least the two cyclic
angle coordinates- are integer multiples of those assignable to S2 at the points of discretization.
This would be achieved if the preferred complex coordinates of CP2 are powers of the preferred
complex coordinate of S2 at these points. One could say that X2 is algebraically continued from
a rational surface in the discretized variant of δCD × CP2. Furthermore, if the measurement
resolutions come as 2π/pn as p-adic continuity actually requires and if they correspond to the
p-adic group Gp,n for which group parameters satisfy |t|p ≤ p−n, one can precisely characterize
how a p-adic prime characterizes the real partonic 2-surface. This would be a fulfilment of one
of the oldest dreams related to the p-adic vision.

A even more ambitious dream would be that even the integral of the Kähler action for preferred
extremals could be defined using a similar procedure. The conjectured slicing of Minkowskian space-
time sheets by string world sheets and partonic 2-surfaces encourages these hopes.

1. One could introduce local coordinates of H at both ends of CD by introducing a continuous
slicing of M4×CP2 by the translates of δM4

±×CP2 in the direction of the time-like vector con-
necting the tips of CD. As space-time coordinates one could select four of the eight coordinates
defining this slicing. For instance, for the regions of the space-time sheet representable as maps
M4 → CP2 one could use the preferred M4 time coordinate, the radial coordinate of δM4

+, and
the angle coordinates of rM = constant sphere.

2. Kähler action density should have algebraic values and this would require the strengthening
of the proposed conditions for X2 to apply to the entire slicing meaning that the discretized
space-time surface is a rational surface in the discretized CD×CP2. If this condition applies to
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the entire space-time surface it would effectively mean the discretization of the classical physics
to the level of finite geometries. This seems quite strong implication but is consistent with the
preferred extremal property implying the generalized Bohr rules. The reduction of Kähler action
to 3-dimensional boundary terms is implied by rather general arguments. In this case only the
effective algebraization of the 3-surfaces at the ends of CD and of wormhole throats is needed
[34]. By effective 2-dimensionality these surfaces cannot be chosen freely.

3. If Kähler function and WCW Hamiltonians are rational functions, this kind of additional condi-
tions are not necessary. It could be that the integrals of defining Kähler action flux Hamiltonians
make sense only in the intersection of real and p-adic worlds assumed to be relevant for the
physics of living systems.

Tentative conclusions

These findings suggest following conclusions.

1. Exponent functions play a key role in the proposed p-adicization. This is not an accident since
exponent functions play a fundamental role in group theory and p-adic variants of real geometries
exist only under symmetries- possibly maximal possible symmetries- since otherwise the notion
of Fourier analysis making possible integration does not exist. The inner product defined in
terms of integration reduce for functions representable in Fourier basis to sums and can be
carried out by using orthogonality conditions. Convolution involving integration reduces to a
product for Fourier components. In the case of imbedding space and WCW these conditions are
satisfied but for space-time surfaces this is not possible.

2. There are several manners to choose the Cartan algebra already in the case of sphere. In the
case of plane one can consider either translations or rotations and this leads to different p-adic
variants of plane. Also the realization of the hierarchy of Planck constants leads to the conclusion
that the extended imbedding space and therefore also WCW contains sectors corresponding to
different choices of quantization axes meaning that quantum measurement has a direct geometric
correlate.

3. The above described 2-D examples represent symplectic geometries for which one has natural
decomposition of coordinates to canonical pairs of cyclic coordinate (phase angle) and cor-
responding canonical conjugate coordinate. p-Adicization depends on whether the conjugate
corresponds to an angle or noncompact coordinate. In both cases it is however possible to define
integration. For instance, in the case of CP2 one would have two canonically conjugate pairs
and one can define the p-adic counterparts of CP2 partial waves by generalizing the procedure
applied to spherical harmonics. Products of functions expressible using partial waves can be
decomposed by tensor product decomposition to spherical harmonics and can be integrated.
In particular inner products can be defined as integrals. The Hamiltonians generating isome-
tries are rational functions of phases: this inspires the hope that also WCW Hamiltonians also
rational functions of preferred WCW coordinates and thus allow p-adic variants.

4. Discretization by introducing algebraic extensions is unavoidable in the p-adicization of geomet-
rical objects but one can have p-adic continuum as the analog of the discretization interval and
in the function basis expressible in terms of phase factors and p-adic counterparts of exponent
functions. This would give a precise meaning for the p-adic counterparts of the imbedding space
and WCW if the latter is a symmetric space allowing coordinatization in terms of phase angles
and conjugate coordinates.

5. The intersection of p-adic and real worlds would be unique and correspond to the points defining
the discretization.

5.9.4 Harmonic analysis in WCW as a manner to calculate WCW func-
tional integrals

Previous examples suggest that symmetric space property, Kähler and symplectic structure and the
use of symplectic coordinates consisting of canonically conjugate pairs of phase angles and correspond-
ing ”radial” coordinates are essential for WCW integration and p-adicization. Kähler function, the
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components of the metric, and therefore also metric determinant and Kähler function depend on the
”radial” coordinates only and the possible generalization involves the identification the counterparts
of the ”radial” coordinates in the case of WCW.

Conditions guaranteing the reduction to harmonic analysis

The basic idea is that harmonic analysis in symmetric space allows to calculate the functional integral
over WCW.

1. Each propagator line corresponds to a symmetric space defined as a coset space G/H of the
symplectic group and Kac-Moody group and one might hope that the proposed p-adicization
works for it- at least when one considers the hierarchy of measurement resolutions forced by
the finiteness of algebraic extensions. This coset space is as a manifold Cartesian product
(G/H) × (G/H) of symmetric spaces G/H associated with ends of the line. Kähler metric
contains also an interaction term between the factors of the Cartesian product so that Kähler
function can be said to reduce to a sum of ”kinetic” terms and interaction term.

2. Effective 2-dimensionality and ZEO allow to treat the ends of the propagator line independently.
This means an enormous simplification. Each line contributes besides propagator a piece to
the exponent of Kähler action identifiable as interaction term in action and depending on the
propagator momentum. This contribution should be expressible in terms of generalized spherical
harmonics. Essentially a sum over the products of pairs of harmonics associated with the ends of
the line multiplied by coefficients analogous to 1/(p2−m2) in the case of the ordinary propagator
would be in question. The optimal situation is that the pairs are harmonics and their conjugates
appear so that one has invariance under G analogous to momentum conservation for the lines
of ordinary Feynman diagrams.

3. Momentum conservation correlates the eigenvalue spectra of the modified Dirac operator D
at propagator lines [18]. G-invariance at vertex dictates the vertex as the singlet part of the
product of WCW harmonics associated with the vertex and one sums over the harmonics for
each internal line. p-Adicization means only the algebraic continuation to real formulas to p-adic
context.

4. The exponent of Kähler function depends on both ends of the line and this means that the ge-
ometries at the ends are correlated in the sense that that Kähler form contains interaction terms
between the line ends. It is however not quite clear whether it contains separate ”kinetic” or self
interaction terms assignable to the line ends. For Kähler function the kinetic and interaction
terms should have the following general expressions as functions of complex WCW coordinates:

Kkin,i =
∑
n

fi,n(Zi)fi,n(Zi) + c.c ,

Kint =
∑
n

g1,n(Z1)g2,n(Z2) + c.c , i = 1, 2 . (5.9.2)

Here Kkin,i define ”kinetic” terms and Kint defines interaction term. One would have what
might be called holomorphic factorization suggesting a connection with conformal field theories.

Symmetric space property -that is isometry invariance- suggests that one has

fi,n = f2,n ≡ fn , g1,n = g2,n ≡ gn (5.9.3)

such that the products are invariant under the group H appearing in G/H and therefore have
opposite H quantum numbers. The exponent of Kähler function does not factorize although the
terms in its Taylor expansion factorize to products whose factors are products of holomorphic
and antihilomorphic functions.
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5. If one assumes that the exponent of Kähler function reduces to a product of eigenvalues of the
modified Dirac operator eigenvalues must have the decomposition

λk =
∏
i=1,2

exp

[∑
n

ck,ngn(Zi)gn(Zi) + c.c

]
× exp

[∑
n

dk,ngn(Z1)gn(Z2) + c.c

]
.(5.9.4)

Hence also the eigenvalues coming from the Dirac propagators have also expansion in terms
of G/H harmonics so that in principle WCW integration would reduce to Fourier analysis in
symmetric space.

Generalization of WCW Hamiltonians

This picture requires a generalization of the view about configuration space Hamiltonians since also
the interaction term between the ends of the line is present not taken into account in the previous
approach.

1. The proposed representation of WCW Hamiltonians as flux Hamiltonians [22, 18]

Q(HA) =

∫
HA(1 +K)Jd2x ,

J = εαβJαβ , J03√g4 = KJ12 . (5.9.5)

works for the kinetic terms only since J cannot be the same at the ends of the line. The formula
defining K assumes weak form of self-duality (03 refers to the coordinates in the complement
of X2 tangent plane in the 4-D tangent plane). K is assumed to be symplectic invariant and
constant for given X2. The condition that the flux of F 03 = (~/gK)J03 defining the counterpart
of Kähler electric field equals to the Kähler charge gK gives the condition K = g2

K/~, where gK

is Kähler coupling constant. Within experimental uncertainties one has αK = g
/
K4π~0 = αem '

1/137, where αem is finite structure constant in electron length scale and ~0 is the standard
value of Planck constant.

The assumption that Poisson bracket of WCW Hamiltonians reduces to the level of imbed-
ding space - in other words {Q(HA), Q(HB} = Q({HA, HB}) - can be justified. One starts
from the representation in terms of say flux Hamiltonians Q(HA) and defines JA,B as JA,B ≡
Q({HA, HB}). One has ∂HA/∂tB = {HB , HA}, where tB is the parameter associated with the
exponentiation of HB . The inverse JAB of JA,B = ∂HB/∂tA is expressible as JA,B = ∂tA/∂HB .
From these formulas one can deduce by using chain rule that the bracket {Q(HA), Q(HB} =
∂tCQ(HA)JCD∂tDQ(HB) of flux Hamiltonians equals to the flux Hamiltonian Q({HA, HB}).

2. One should be able to assign to WCW Hamiltonians also a part corresponding to the interac-
tion term. The symplectic conjugation associated with the interaction term permutes the WCW
coordinates assignable to the ends of the line. One should reduce this apparently non-local sym-
plectic conjugation (if one thinks the ends of line as separate objects) to a non-local symplectic
conjugation for δCD × CP2 by identifying the points of lower and upper end of CD related
by time reflection and assuming that conjugation corresponds to time reflection. Formally this
gives a well defined generalization of the local Poisson brackets between time reflected points at
the boundaries of CD. The connection of Hermitian conjugation and time reflection in quantum
field theories is is in accordance with this picture.

3. The only manner to proceed is to assign to the flux Hamiltonian also a part obtained by the
replacement of the flux integral over X2 with an integral over the projection of X2 to a sphere
S2 assignable to the light-cone boundary or to a geodesic sphere of CP2, which come as two
varieties corresponding to homologically trivial and non-trivial spheres. The projection is defined
as by the geodesic line orthogonal to S2 and going through the point of X2. The hierarchy of
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Planck constants assigns to CD a preferred geodesic sphere of CP2 as well as a unique sphere
S2 as a sphere for which the radial coordinate rM or the light-cone boundary defined uniquely
is constant: this radial coordinate corresponds to spherical coordinate in the rest system defined
by the time-like vector connecting the tips of CD. Either spheres or possibly both of them could
be relevant.

Recall that also the construction of number theoretic braids and symplectic QFT [16] led to
the proposal that braid diagrams and symplectic triangulations could be defined in terms of
projections of braid strands to one of these spheres. One could also consider a weakening for
the condition that the points of the number theoretic braid are algebraic by requiring only that
the S2 coordinates of the projection are algebraic and that these coordinates correspond to the
discretization of S2 in terms of the phase angles associated with θ and φ.

This gives for the corresponding contribution of the WCW Hamiltonian the expression

Q(HA)int =

∫
S2
±

HAXδ
2(s+, s−)d2s± =

∫
P (X2

+)∩P (X2
−)

∂(s1, s2)

∂(x1
±, x

2
±)
d2x± . (5.9.6)

Here the Poisson brackets between ends of the line using the rules involve delta function
δ2(s+, s−) at S2 and the resulting Hamiltonians can be expressed as a similar integral of H[A,B]

over the upper or lower end since the integral is over the intersection of S2 projections.

The expression must vanish when the induced Kähler form vanishes for either end. This is
achieved by identifying the scalar X in the following manner:

X = Jkl+ J
−
kl ,

Jkl± = (1 +K±)∂αs
k∂βs

lJαβ± . (5.9.7)

The tensors are lifts of the induced Kähler form of X2
± to S2 (not CP2).

4. One could of course ask why these Hamiltonians could not contribute also to the kinetic terms
and why the brackets with flux Hamiltonians should vanish. This relate to how one defines
the Kähler form. It was shown above that in case of flux Hamiltonians the definition of Kähler
form as brackets gives the basic formula {Q(HA), Q(HB)} = Q({HA, HB} and same should hold
true now. In the recent case JA,B would contain an interaction term defined in terms of flux
Hamiltonians and the previous argument should go through also now by identifying Hamiltonians
as sums of two contributions and by introducing the doubling of the coordinates tA.

5. The quantization of the modified Dirac operator must be reconsidered. It would seem that one
must add to the super-Hamiltonian completely analogous term obtained by replacing (1 +K)J
with X∂(s1, s2)/∂(x1

±, x
2
±). Besides the anticommutation relations defining correct anticom-

mutators to flux Hamiltonians, one should pose anticommutation relations consistent with the
anticommutation relations of super Hamiltonians. In these anticommutation relations (1 +
K)Jδ2(x, y) would be replaced with Xδ2(s+, s−). This would guarantee that the oscillator op-
erators at the ends of the line are not independent and that the resulting Hamiltonian reduces
to integral over either end for H[A,B].

6. In the case of CP2 the Hamiltonians generating isometries are rational functions. This should
hold true also now so that p-adic variants of Hamiltonians as functions in WCW would make
sense. This in turn would imply that the components of the WCW Kähler form are rational
functions. Also the exponentiation of Hamiltonians make sense p-adically if one allows the
exponents of group parameters to be functions Expp(t).
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Does the expansion in terms of partial harmonics converge?

The individual terms in the partial wave expansion seem to be finite but it is not at all clear whether
the expansion in powers of K actually converges.

1. In the proposed scenario one performs the expansion of the vacuum functional exp(K) in powers
of K and therefore in negative powers of αK . In principle an infinite number of terms can be
present. This is analogous to the perturbative expansion based on using magnetic monopoles
as basic objects whereas the expansion using the contravariant Kähler metric as a propagator
would be in positive powers of αK and analogous to the expansion in terms of magnetically
bound states of wormhole throats with vanishing net value of magnetic charge. At this moment
one can only suggest various approaches to how one could understand the situation.

2. Weak form of self-duality and magnetic confinement could change the sitution. Performing
the perturbation around magnetic flux tubes together with the assumed slicing of the space-
time sheet by stringy world sheets and partonic 2-surfaces could mean that the perturbation
corresponds to the action assignable to the electric part of Kähler form proportional to αK by
the weak self-duality. Hence by K = 4παK relating Kähler electric field to Kähler magnetic
field the expansion would come in powers of a term containing sum of terms proportional to α0

K

and αK . This would leave to the scattering amplitudes the exponents of Kähler function at the
maximum of Kähler function so that the non-analytic dependence on αK would not disappear.

A further reason to be worried about is that the expansion containing infinite number of terms
proportional to α0

K could fail to converge.

1. This could be also seen as a reason for why magnetic singlets are unavoidable except perhaps
for ~ < ~0. By the holomorphic factorization the powers of the interaction part of Kähler
action in powers of 1/αK would naturally correspond to increasing and opposite net values of
the quantum numbers assignable to the WCW phase coordinates at the ends of the propagator
line. The magnetic bound states could have similar expansion in powers of αK as pairs of
states with arbitrarily high but opposite values of quantum numbers. In the functional integral
these quantum numbers would compensate each other. The functional integral would leave only
an expansion containing powers of αK starting from some finite possibly negative (unless one
assumes the weak form of self-duality) power. Various gauge coupling strengths are expected to
be proportional to αK and these expansions should reduce to those in powers of αK .

2. Since the number of terms in the fermionic propagator expansion is finite, one might hope on
basis of super-symmetry that the same is true in the case of the functional integral expansion.
By the holomorpic factorization the expansion in powers of K means the appearance of terms
with increasingly higher quantum numbers. Quantum number conservation at vertices would
leave only a finite number of terms to tree diagrams. In the case of loop diagrams pairs of
particles with opposite and arbitrarily high values of quantum numbers could be generated at
the vertex and magnetic confinement might be necessary to guarantee the convergence. Also
super-symmetry could imply cancellations in loops.

Could one do without flux Hamiltonians?

The fact that the Kähler functions associated with the propagator lines can be regarded as interaction
terms inspires the question whether the Kähler function could contain only the interaction terms so
that Kähler form and Kähler metric would have components only between the ends of the lines.

1. The basic objection is that flux Hamiltonians too beautiful objects to be left without any role
in the theory. One could also argue that the WCW metric would not be positive definite if only
the non-diagonal interaction term is present. The simplest example is Hermitian 2 × 2-matrix
with vanishing diagonal for which eigenvalues are real but of opposite sign.

2. One could of course argue that the expansions of exp(K) and λk give in the general powers
(fnfn)m analogous to diverging tadpole diagrams of quantum field theories due to local in-
teraction vertices. These terms do not produce divergences now but the possibility that the
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exponential series of this kind of terms could diverge cannot be excluded. The absence of the
kinetic terms would allow to get rid of these terms and might be argued to be the symmetric
space counterpart for the vanishing of loops in WCW integral.

3. In zero energy ontology this idea does not look completely non-sensical since physical states are
pairs of positive and negative energy states. Note also that in quantum theory only creation
operators are used to create positive energy states. The manifest non-locality of the interaction
terms and absence of the counterparts of kinetic terms would provide a trivial manner to get rid
of infinities due to the presence of local interactions. The safest option is however to keep both
terms.

Summary

The discussion suggests that one must treat the entire Feynman graph as single geometric object
with Kähler geometry in which the symmetric space is defined as product of what could be regarded
as analogs of symmetric spaces with interaction terms of the metric coming from the propagator
lines. The exponent of Kähler function would be the product of exponents associated with all lines
and contributions to lines depend on quantum numbers (momentum and color quantum numbers)
propagating in line via the coupling to the modified Dirac operator. The conformal factorization
would allow the reduction of integrations to Fourier analysis in symmetric space. What is of decisive
importance is that the entire Feynman diagrammatics at WCW level would reduce to the construction
of WCW geometry for a single propagator line as a function of quantum numbers propagating on the
line.

5.10 Could the notion of hyperdeterminant be useful in TGD
framework?

The vanishing of ordinary determinant tells that a group of linear equations possesses non-trivial
solutions. Hyperdeterminant [59] generalizes this notion to a situation in which one has homogenous
multilinear equations. The notion has applications to the description of quantum entanglement and
has stimulated interest in physics blogs [60, 61]. Hyperdeterminant applies to hyper-matrices with n
matrix indices defined for an n-fold tensor power of vector space - or more generally - for a tensor
product of vector spaces with varying dimensions. Hyper determinant is an n-linear function of the
arguments in the tensor factors with the property that all partial derivatives of the hyper determinant
vanish at the point, which corresponds to a non-trivial solution of the equation. A simple example is
potential function of n arguments linear in each argument.

5.10.1 About the definition of hyperdeterminant

Hyperdeterminant was discovered by Cayley for a tensor power of 2-dimensional vector space V2 (n-
linear case for n-fold tensor power of 2-dimensional linear space) and he gave an explicit formula for
the hyperdeterminant in this case. For n = 3 the definition is following.

A1
i3j3 =

1

2
εi1j1εi2j2εi3j3Ai1i2i3Aj1j2j3 .

In more general case one must take tensor product of k = 2 hyper-matrices and perform the contrac-
tions of indices belonging to the two groups in by using n 2-D permutations symbols.

det(A) =
1

2n
(

n∏
a=1

εi
a
kj
a
k )Aia1 ia2 ...ianAja1 ja2 ...jan .

The first guess is that the definition for Vk, k > 2 is essentially identical: one takes the tensor product
of k hyper-matrices and performs the contractions using k-dimensional permutation symbols.

Under some conditions one can define hyperdeterminant also when one has a tensor product of
linear spaces with different dimensions. The condition is that the largest vector space dimension in
the product does not exceed the sum of other dimensions.
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5.10.2 Could hyperdeterminant be useful in the description of criticality
of Kähler action?

Why the notion of hyperdeterminant- or rather its infinite-dimensional generalization- might be in-
teresting in TGD framework relates to the quantum criticality of TGD stating that TGD Universe
involves a fractal hierarchy of criticalities: phase transitions inside phase transitions inside... At clas-
sical level the lowest order criticality means that the extremal of Kähler action possesses non-trivial
second variations for which the action is not affected. The system is critical. In QFT context one
speaks about zero modes. The vanishing of the so called Gaussian (of functional) determinant associ-
ated with second variations is the condition for the existence of critical deformations. In QFT context
this situation corresponds to the presence of zero modes.

The simplest physical model for a critical system is cusp catastrophe defined by a potential function
V (x) which is fourth order polynomial. At the edges of cusp two extrema of potential function stable
and unstable extrema co-incide and the rank of the matrix defined by the potential function vanishes.
This means vanishing of its determinant. At the tip of the cusp the also the third derivative vanishes
of potential function vanishes. This situation is however not describable in terms of hyperdeterminant
since it is genuinely non-linear rather than only multilinear.

In a complete analogy, one can consider also the vanishing of n:th variations in TGD framework
as higher order criticality so that the vanishing of hyperdeterminant might serve as a criterion for the
higher order critical point and occurrence of phase transition.

1. The field equations are formally multilinear equations for variables which correspond to imbed-
ding space coordinates at different space-time points. The generic form of the variational equa-
tions is

∫
δnS

δhk1(x1)δhk2(x2)...δhkn(xn)
δhk2(x2)...δhkn(xn)

n∏
i=2

d4xk = 0 .

Here the partial derivatives are replaced with functional derivatives. On basis of the formula one
has formally an n-linear situation. This is however an illusion in the generic case. For a local
action the equations reduce to local partial differential equations involving higher order deriva-
tives and field equations involve products of field variables and their various partial derivatives
at single point so that one has a genuinely non-linear situation in absence of special symmetries.

2. If one has multi-linearity, the tensor product is formally an infinite tensor power of 8-D (or
actually 4-D by General Coordinate Invariance) linear tangent spaces of H associated with
the space-time points. A less formal representation is in terms of some discrete basis for the
deformations allowing also linear ordering of the basis functions. One might hope in some basis
vanishing diagonal terms in all orders and multilinearity.

3. When one uses discretization, the equations stating the vanishing of the second variation couple
nearest neighbour points given as infinite-D matrix with non-vanishing elements at diagonal
and in a band along diagonal. For higher variations one obtains similar matrix along a diagonal
of infinite cube and the width of the band increases by two units as n increases by 1 unit.
One might perhaps say that the range of long range correlations increases as n increases. The
vanishing of the elements at the diagonal- not necessarily in this representation- is necessary in
order to achieve multi-linear situation.

5.10.3 Could the field equations for higher variations be multilinear?

The question is whether for some highly symmetric actions- say Kähler action for preferred extremals-
the notion of functional (or Gaussian) determinant could have a generalization to hyperdeterminant
allowing to concisely express whether the solutions allow deformations for which the action is not
affected.

1. In standard field theory framework this notion need not be of much use but in TGD framework,
where Kähler action has infinite-dimensional vacuum degeneracy, the situation is quite different.
Vacuum degeneracy means that every space-time surface with at most 2-D CP2 projection which
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is so called Lagrangian manifold is vacuum extremal. Physically this correspond to Kähler gauge
potential, which is pure gauge and implies spin glass degeneracy. This dynamical and local U(1)
symmetry of vacua is induced by symplectic transformations of CP2 and has nothing to do with
U(1) gauge invariance. For non-vacua it corresponds to isometries of ”world of classical worlds”.
In particular, for M4 imbedded in canonical manner to M4 ×CP2 fourth order variation is the
first non-vanishing variation. The static mechanical analogy is potential function which is fourth
order polynomial. Dynamical analogy is action for which both kinetic and potential terms are
fourth order polynomials.

2. The vacuum degeneracy is responsible for much of new physics and mathematics related to TGD.
Vacuum degeneracy and the consequent complete failure of canonical quantization and path
integral approach forced the vision about physics as geometry of ”World of Classical Worlds”
(WCW) meaning a generalization of Einstein’s geometrization of physics program. 4-D spin glass
degeneracy is of the physical implications and among other things allows to have a failure of the
standard form of classical determinism as a space-time correlate of quantum non-determinism.
There are reasons to hope that also the hierarchy of Planck constants reduces to the 1-to-many
correspondence between canonical momentum densities and time derivatives of imbedding space-
coordinates. Quantum criticality and its classical counterparts is a further implication of the
vacuum degeneracy and has provided a lot of insights to the world according to TGD. Therefore
it would be nice if the generalization of the hyperdeterminant could provide new insights to
quantum criticality.

5.10.4 Multilinearity, integrability, and cancellation of infinities

The multilinearity in the general sense would have a very interesting physical interpretation. One
can consider the variations of both Kähler action and Kähler function defined as Kähler action for a
preferred extremal.

1. Multilinearity would mean multi-linearization of field equations in some discrete basis for deformations-
say the one defined by second variations. Dynamics would be only apparently non-linear. One
might perhaps say that the theory is integrable- perhaps even in the usual sense. The basic
idea behind quantum criticality is indeed the existence of infinite number of conserved currents
assignable to the second variations hoped to give rise to an integrable theory. In fact, the pos-
sibility -or more or less the fact - that also higher variations can vanish for more restricted
configurations would imply further conserved currents.

2. Second implication would be the vanishing of local divergences. These divergences result in
QFT from purely local interaction terms with degree higher than two. Even mass insertion
which is second order produces divergences. If diagonal terms are absent from Kähler function,
also these divergences are absent in the functional integral. The main idea behind the notion
of Kähler function is that it is a non-local functional of 3-surface although Kähler action is a
local functional of space-time sheet serving as the analog of Bohr orbit through 3-surface. As
one varies the 3-surface, one obtains a 3-surface (light-like wormhole throats with degenerate
four-metric) which is also an extremal of Chern-Simons action satisfying weak form of electric
magnetic duality.

3. The weak of electric magnetic duality together with the Beltrami property for conserved currents
associated with isometries and for Kähler current and corresponding instanton current imply
that the Coulomb term in Kähler action vanishes and it reduces to Chern-Simons term at 3-D
light-like wormhole throats plus Lagrange multiplier term taking care that the weak electric
magnetic duality is satisfied. This contributes a constraint force to field equations so that the
theory does not reduce to topological QFT but to what could be called almost topological QFT.

4. Chern-Simons term is a local functional of 3-surface and one argue that the dangerous locality
creeps in via the electric-magnetic duality after all. By using the so called Darboux coor-
dates (Pi, Qi) for CP2 Chern-Simons action reduces to a third order polynomial proportional to
εijkPidPjdQk so that one indeed has multilinearity rather than non-linearity. The Lagrangian
multiplier term however breaks strict locality and also contributes to higher functional deriva-
tives of Kähler function and is potentially dangerous. It contains information about the preferred
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extremals via the normal derivatives associated with the Kähler electric field in normal direction
and it higher derivatives.

5. One has however good hopes about multilinearity of higher variations Kähler function and of
Kähler action for preferred extremals on basis of general arguments related to the symmetric
space property of WCW. As a matter fact, effective two-dimensionality seems to guarantee
genuine non-locality. Recall that effective two-dimensionality is implied by the strong form
of General Coordinate Invariance stating that the basic geometric objects can be taken to be
either light-like 3-surfaces or space-like 3-surfaces at the ends of space-time surface at boundaries
of causal diamond. This implies that partonic 2-surfaces defining the intersections of these
surfaces plus their 4-D tangent space-data code for physics. By effective 2-dimensionality Chern-
Simons action is a non-local functional of data about partonic 2-surface and its tangent space.
Hence the n:th variation of 3-surface and space-time surface reduces to a non-local functional
of n:th variation of the partonic 2-surface and its tangent space data. This is just what genuine
multilinearity means.

5.10.5 Hyperdeterminant and entanglement

A highly interesting application of hyperdeterminants is to the description of quantum entanglement-
in particular to the entanglement of n qubits in quantum computation. For pure states the matrix
describing entanglement between two systems has minimum rank for pure states and thus vanishing
determinant. Hyper-matrix and hyperdeterminant emerge naturally when one speaks about entan-
glement between n quantum systems. The vanishing of hyperdeterminant means that the state is not
maximally non-pure.

For the called hyper-finite factor defined by second quantized induced spinor fields one has very
formally infinite tensor product of 8-D H-spinor space. By induced spinor equation the dimension
effectively reduces to four. Similar formal 8→ 4 reduction occurs by General Coordinate Invariance for
the n:th variations. Quantum classical correspondence states that many-fermion states have correlates
at the level of space-time geometry. The very naive question inspired also by supersymmetry is
whether the vanishing of n-particle hyperdeterminant for the fermionic entanglement has as a space-
time correlate n:th order criticality. If so, one could say that the non-locality with all its beautiful
consequences is forced by quantum classical correspondence!

5.10.6 Could multilinear Higgs potentials be interesting?

It seems that hyperdeterminant has quite limited applications to finite-dimensional case. The sim-
plest situation corresponds to a potential function V (x1, .., xn). In this case one obtains also partial
derivatives up to n:th order for single variable and one has genuine non-linearity rather than multi-
linearity. This spoils the possibility to apply the notion of hyperdeterminant to tell whether critical
deformations are possible unless the potential function is multilinear function of its arguments. An
interesting idea is that Higgs potential of this form. In this case the extrema allow scalings of the
coordinates xi. In 3-D case 3-linear function of 6 coordinates coming as doublets (xi, yi) , i = 1, 2, 3
and characterized by a matrix Ai1i2i3 , where ik is two-valued index, would provide an example of this
kind of Higgs potential.

The physical interpretation of Kähler Dirac equation is not at all straightforward. The following
arguments inspired by effective 2-dimensionality suggest that the modified gamma matrices and cor-
responding effective metric could allow dual gravitational description of the physics associated with
wormhole throats. This applies in particular to condensed matter physics.

Three Dirac equations

To begin with, Dirac equation appears in three forms in TGD.

1. The Dirac equation in world of classical worlds codes for the super Virasoro conditions for the
super Kac-Moody and similar representations formed by the states of wormhole contacts forming
the counterpart of string like objects (throats correspond to the ends of the string. This Dirac
generalizes the Dirac of 8-D imbedding space by bringing in vibrational degrees of freedom. This
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Dirac equation should gives as its solutions zero energy states and corresponding M-matrices gen-
eralizing S-matrix and their collection defining the unitary U-matrix whose natural application
appears in consciousness theory as a coder of what Penrose calls U-process.

2. There is generalized eigenvalue equation for Chern-Simons Dirac operator at light-like wormhole
throats. The generalized eigenvalue is pkγk. The interpretation of pseudo-momentum pk has
been a problem but twistor Grassmannian approach suggests strongly that it can be interpreted
as the counterpart of equally mysterious region momentum appearing in momentum twistor
Grassmannian approach toN = 4 SYM. The pseudo-/region momentum p is quantized (this does
not spoil the basics of Grasssmannian residues integral approach) and 1/pkγk defines propagator
in lines of generalized Feynman diagrams. The Yangian symmetry discovered generalizes in
a very straightforward manner and leads alsoto the realization that TGD could allow also a
twistorial formulation in terms of product CP3 × CP3 of two twistor spaces [29]. General
arguments lead to a proposal for explicit form for the solutions of field equation represented
identified as holomorphic 6-surfaces in this space subject to additional partial different equations
for homogenenous functions of projective twistor coordinates suggesting strongly the quantal
interpretation as analogs of partial waves. Therefore quantum-classical correspondence would
be realize in beatiful manner.

3. There is Kähler Dirac equation in the interior of space-time. In this equation the gamma matrices
are replaced with modified gamma matrices defined by the contractions of canonical momentum
currents Tαk = ∂L/∂αh

k with imbedding space gamma matrices Γk. This replacement is required
by internal consistency and by super-conformal symmetries.

Could Kähler Dirac equation provide a first principle justification for the light-hearted use of
effective mass and the analog of Dirac equation in condensed manner physics? This would conform
with the holographic philosophy. Partonic 2-surfaces with tangent space data and their light-like orbits
would give hologram like representation of physics and the interior of space-time the 4-D representation
of physics. Holography would have in the recent situation interpretation also as quantum classical
correspondence between representations of physics in terms of quantized spinor fields at the light-like
3-surfaces on one hand and in terms of classical fields on the other hand.

The resulting dispersion relation for the square of the Kähler-Dirac operator assuming that in-
duced like metric, Kähler field, etc. are very slowly varying contains quadratic and linear terms in
momentum components plus a term corresponding to magnetic moment coupling. In general massive
dispersion relation is obtained as is also clear from the fact that Kähler Dirac gamma matrices are
combinations of M4 and CP2 gammas so that modified Dirac mixes different M4 chiralities (basic
signal for massivation). If one takes into account the dependence of the induced geometric quantities
on space-time point dispersion relations become non-local.

Does energy metric provided the gravitational dual for condensed matter systems?

The modified gamma matrices define an effective metric via their anticommutators which are quadratic
in components of energy momentum tensor (canonical momentum densities). This effective metric
vanishes for vacuum extremals. Note that the use of modified gamma matrices guarantees among other
things internal consistency and super-conformal symmetries of the theory. The physical interpretation
has remained obscure hitherto although corresponding effective metric for Chern-Simons Dirac action
has now a clear physical interpretation.

If the above argument is on the right track, this effective metric should have applications in con-
densed matter theory. In fact, energy metric has a natural interpretation in terms of effective light
velocities which depend on direction of propagation. One can diagonalize the energy metric gαβe (con-
travariant form results from the anticommutators) and one can denote its eigenvalues by (v0, vi) in
the case that the signature of the effective metric is (1,−1,−1,−1). The 3-vector vi/v0has inter-
pretation as components of effective light velocity in various directions as becomes clear by thinking
the d’Alembert equation for the energy metric. This velocity field could be interpreted as that of
hydrodynamic flow. The study of the extremals of Kähler action shows that if this flow is actually
Beltrami flow so that the flow parameter associated with the flow lines extends to global coordinate,
Kähler action reduces to a 3-D Chern-Simons action and one obtains effective topological QFT. The
conserved fermion current ΨΓαeΨ has interpretation as incompressible hydrodynamical flow.
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This would give also a nice analogy with AdS/CFT correspondence allowing to describe various
kinds of physical systems in terms of higher-dimensional gravitation and black holes are introduced
quite routinely to describe condensed matter systems. In TGD framework one would have an analogous
situation but with 10-D space-time replaced with the interior of 4-D space-time and the boundary
of AdS representing Minkowski space with the light-like 3-surfaces carrying matter. The effective
gravitation would correspond to the ”energy metric”. One can associate with it curvature tensor, Ricci
tensor and Einstein tensor using standard formulas and identify effective energy momentum tensor
associated as Einstein tensor with effective Newton’s constant appearing as constant of proportionality.
Note however that the besides ordinary metric and ”energy” metric one would have also the induced
classical gauge fields having purely geometric interpretation and action would be Kähler action. This 4-
D holography would provide a precise, dramatically simpler, and also a very concrete dual description.
This cannot be said about model of graphene based on the introduction of 10-dimensional black holes,
branes, and strings chosen in more or less ad hoc manner.

This raises questions. Does this give a general dual gravitational description of dissipative effects
in terms of the ”energy” metric and induced gauge fields? Does one obtain the counterparts of black
holes? Do the general theorems of general relativity about the irreversible evolution leading to black
holes generalize to describe analogous fate of condensed matter systems caused by dissipation? Can
one describe non-equilibrium thermodynamics and self-organization in this manner?

One might argue that the incompressible Beltrami flow defined by the dynamics of the preferred
extremals is dissipationless and viscosity must therefore vanish locally. The failure of complete non-
determinism of Kähler action however means generation of entropy since the knowledge about the
state decreases gradually. This in turn should have a phenomenological local description in terms of
viscosity which characterizes the transfer of energy to shorter scales and eventually to radiation. The
deeper description should be non-local and basically topological and might lead to quantization rules.
For instance, one can imagine the quantization of the ratio η/s of the viscosity to entropy density as
multiples of a basic unit defined by its lower bound (note that this would be analogous to Quantum
Hall effect). For the first M-theory inspired derivation of the lower bound of η/s [63]. The lower
bound for η/s is satisfied in good approximation by what should have been QCD plasma but found
to be something different (RHIC and the first evidence for new physics from LHC [31]).

An encouraring sign comes from the observation that for so called massless extremals representing
classically arbitrarily shaped pulses of radiation propagating without dissipation and dispersion along
single direction the canonical momentum currents are light-like. The effective contravariant metric
vanishes identically so that fermions cannot propate in the interior of massless extremals! This is
of course the case also for vacuum extremals. Massless extremals are purely bosonic and represent
bosonic radiation. Many-sheeted space-time decomposes into matter containing regions and radiation
containing regions. Note that when wormhole contact (particle) is glued to a massless extremal, it is
deformed so that CP2 projection becomes 4-D guaranteing that the weak form of electric magnetic
duality can be satisfied. Therefore massless extremals can be seen as asymptotic regions. Perhaps one
could say that dissipation corresponds to a decoherence process creating space-time sheets consisting
of matter and radiation. Those containing matter might be even seen as analogs blackholes as far as
energy metric is considered.
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Chapter 6

Miscellaneous topics

6.1 Introduction

As the title tells, this chapter contains topics which do not fit naturally under any umbrella, but which
I feel might be of some relevance. Basically TGD inspired comments to the work of the people not
terribly relevant to quantum TGD itself are in question. For few years ago Witten’s approach to 3-D
quantum gravitation raised a considerable interest and this inspired the comparison of this approach
with quantum TGD in which light-like 3-surfaces are in a key role. Few years later the entropic
gravity of Verlinde stimulated a lot of fuss in blogs and it is interesting to point out how the formal
thermodynamical structure (or actually its ”square root”) emerges in the fundamental formulation of
TGD. Lisi’s E8 theory was a further blog favorite and some comments about its failures and possible
manners to cure them are discussed. It is also shown ho how E8 can be seed as being replaced with
the Kac-Moody algebra associated standard model symmetry group in TGD framework.

6.2 Light-like 3-surfaces as vacuum solutions of 3-D vacuum
Einstein equations and Witten’s approach to quantum
gravitation

There is an interesting relationship to the recent yet unpublished work of Witten related to 3-D
quantum blackholes [26], which allows to get additional perspective.

1. The motivation of Witten is to find an exact quantum theory for blackholes in 3-D case. Witten
proposes that the quantum theory for 3-D AdS3 blackhole with a negative cosmological constant
can be reduced by AdS3/CFT2 correspondence to a 2-D conformal field theory at the 2-D
boundary of AdS3 analogous to blackhole horizon. This conformal field theory would be a
Chern-Simons theory associated with the isometry group SO(1, 2)× SO(1, 2) of AdS3. Witten
restricts the consideration to Λ < 0 solutions because Λ = 0 does not allow black-hole solutions
and Witten believes that Λ > 0 solutions are non-perturbatively unstable.

2. This conformal theory would have the so called monster group [25, 26] as the group of its
discrete hidden symmetries. The primary fields of the corresponding conformal field theory
would form representations of this group. The existence of this kind of conformal theory has
been demonstrated already [27]. In particular, it has been shown that this theory does not allow
massless states. On the other hand, for the 3-D vacuum Einstein equations the vanishing of
the Einstein tensor requires the vanishing of curvature tensor, which means that gravitational
radiation is not possible. Hence AdS3 theory in Witten’s sense might define this conformal field
theory.

6.2.1 Similarities with TGD

Witten’s construction has obviously a strong structural similarity to TGD.
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1. Chern-Simons action for the induced Kähler form - or equivalently, for the induced classical
color gauge field proportional to Kähler form and having Abelian holonomy - corresponds to the
Chern-Simons action in Witten’s theory. Note however that in the recent formulation of Quan-
tum TGD Kähler action and corresponding instanton density J ∧ J define real and imaginary
parts of complexified Kähler action. The imaginary part of the complexified Kähler function
does not contribute to the configuration space metric but gives first principle description of
anyons and purely topological degrees of freedom.

2. Light-like 3-surfaces can be regard as 3-D solutions of vacuum Einstein equations. Due to the
effective 2-dimensionality of the induced metric Einstein tensor vanishes identically and vacuum
Einstein equations are satisfied for Λ = 0. One can say that light-like partonic 3-surfaces
correspond to empty space solutions of Einstein equations. Even more, partonic 3-surfaces are
very much analogous to 3-D black-holes if one identifies the counterpart of black-hole horizon
with the intersection of δM4

± × CP2 with the partonic 2-surface.

3. For light-like 3-surfaces curvature tensor is non-vanishing which raises the question whether one
obtains gravitons in this case. The fact that time direction does not contribute to the metric
means that propagating waves are not possible so that no 3-D gravitational radiation is obtained.
There is analog for this result at quantum level. If partonic fermions are assumed to be free
fields as is done in the recent formulation of quantum TGD, gravitons can be obtained only
as parton-antiparton bound states connected by flux tubes and are therefore genuinely stringy
objects. Hence it is not possible to speak about 3-D gravitons as single parton states.

4. Vacuum Einstein equations can be regarded as gauge fixing allowing to eliminate partially the
gauge degeneracy due to the general coordinate invariance. Additional super conformal symme-
tries are however present and have an identification in terms of additional symmetries related
to the fact that space-time surfaces correspond to preferred extremals of Kähler action whose
existence was concluded before the discovery of the formulation in terms of light-like 3-surfaces.

6.2.2 Differences from TGD

There are also interesting differences.

1. According to Witten, his theory has no obvious generalization to 4-D black-holes whereas 3-
D light-like determinants define the generalization of blackhole horizons which are also light-
like 3-surfaces in the induced metric. In particular, light-like 3-surfaces define a 4-D quantum
holography.

2. Partonic 3-surfaces are dynamical unlike AdS3 and the analog of Witten’s theory results by
freezing the vibrational degrees of freedom in TGD framework.

3. The very notion of light-likeness involves the induced metric implying that the theory is almost-
topological but not quite. This small but important distinction indeed guarantees that the
theory is physically interesting.

4. In Witten’s theory the gauge group corresponds to the isometry group SO(1, 2) × SO(1, 2) of
AdS3. The group of isometries of light-like 3-surface is something much much mightier. It cor-
responds to the conformal transformations of 2-dimensional section of the 3-surfaces made local
with respect to the radial light-like coordinate in such a manner that radial scaling compensates
the conformal scaling of the metric produced by the conformal transformation.

The direct TGD counterpart of the Witten’s gauge group would be thus infinite-dimensional
and essentially same as the group of 2-D conformal transformations. Presumably this can
be interpreted in terms of the extension of conformal invariance implied by the presence of
ordinary conformal symmetries associated with 2-D cross section plus ”conformal” symmetries
with respect to the radial light-like coordinate. This raises the question about the possibility to
formulate quantum TGD as something analogous to string field theory using using Chern-Simons
action for this infinite-dimensional group.
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5. Monster group does not have any special role in TGD framework. However, all finite groups and -
as it seems - also compact groups can appear as groups of dynamical symmetries at the partonic
level in the general framework provided by the inclusions of hyper-finite factors of type II1
[20, 16]. Compact groups and their quantum counterparts would closely relate to a hierarchy
of Jones inclusions associated with the TGD based quantum measurement theory with finite
measurement resolution defined by inclusion as well as to the generalization of the imbedding
space related to the hierarchy of Planck constants [20]. Discrete groups would correspond to the
number theoretical braids providing representations of Galois groups for extensions of rationals
realized as braidings [17].

6. To make it clear, I am not suggesting that AdS3/CFT2 correspondence should have a TGD
counterpart. If it had, a reduction of TGD to a closed string theory would take place. The
almost-topological QFT character of TGD excludes this on general grounds. More concretely,
the dynamics would be effectively 2-dimensional if the radial superconformal algebras associated
with the light-like coordinate would act as pure gauge symmetries. Concrete manifestations of
the genuine 3-D character are following.

(a) Generalized super-conformal representations decompose into infinite direct sums of stringy
super-conformal representations.

(b) In p-adic thermodynamics explaining successfully particle massivation radial conformal
symmetries act as dynamical symmetries crucial for the particle massivation interpreted as
a generation of a thermal conformal weight.

(c) The maxima of Kähler function defining Kähler geometry in the world of classical worlds
correspond to special light-like 3-surfaces analogous to bottoms of valleys in spin glass
energy landscape meaning that there is infinite number of different 3-D light-like surfaces
associated with given 2-D partonic configuration each giving rise to different background
affecting the dynamics in quantum fluctuating degrees of freedom. This is the analogy of
landscape in TGD framework but with a direct physical interpretation in say living matter.

As noticed, Witten’s theory is essentially for 2-D fundamental objects. It is good to sum up what
is needed to get a theory for 3-D fundamental objects in TGD framework from an approach similar
to Witten’s in many respects. This connection is obtained if one brings in 4-D holography, replaces
3-metrics with light-like 3-surfaces (light-likeness constraint is possible by 4-D general coordinate
invariance), and accepts the new view about S-matrix implied by the zero energy ontology [16].

1. Light-like 3-surfaces can be regarded as solutions vacuum Einstein equations with vanishing
cosmological constant (Witten considers solutions with non-vanishing cosmological constant).
The effective 2-D character of the induced metric is what makes this possible.

2. Zero energy ontology is also an essential element: quantum states of 3-D theory in zero energy
ontology correspond to generalized S-matrices [16]: Matrix or M-matrix might be a proper
term. Matrix is a ”complex square root” of density matrix -matrix valued generalization of
Schrodinger amplitude - defining time like entanglement coefficients. Its ”phase” is unitary ma-
trix and might be rather universal. Matrix is a functor from the category of Feyman cobordisms
and matrices have groupoid like structure [16]. Without this generalization theory would reduce
to a theory for 2-D fundamental objects.

3. Theory becomes genuinely 4-D because S-matrix is not universal anymore but characterizes zero
energy states.

4. 4-D holography is obtained via the Kähler metric of the world of classical worlds assigning to
light-like 3-surface a preferred extremal of Kähler action as the analog of Bohr orbit containing
3-D light-like surfaces as sub-manifolds (analogs of black hole horizons and light-like boundaries).
Interiors of 4-D space-time sheets corresponds to zero modes of the metric and to the classical
variables of quantum measurement theory (quantum classical correspondence). The conjecture is
that Dirac determinant for the modified Dirac action associated with partonic 3-surfaces defines
the vacuum functional as the exponent of Kähler function with Kähler coupling strength fixed
completely as the analog of critical temperature so that everything reduces to almost topological
QFT [18].
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5. The counterpart of the ordinary unitary S-matrix in mathematical sense is between zero energy
states. I call it U-matrix [16]. As such it would have nothing to do with particle reactions but
it is quite possible and also natural that M -matrix would serve as building block of U -matrix so
that also U -matrix would be experimentally measurable quantity. It is crucial for understanding
consciousness via moment of consciousness as quantum jump identification.

6.3 Entropic gravity and TGD

Eric Verlinde has posted an interesting eprint titled On the Origin of Gravity and the Laws of Newton
to arXiv.org [30]. Lubos has commented the article [31]. What Linde heuristically derives is Newton’s
F = ma and gravitational force F = GMm/R2 from thermodynamical considerations plus something
else which I try to clarify (at least to myself!) in the following.

6.3.1 Verlinde’s argument for F = ma

The idea is to deduce Newton’s F = ma and gravitational force from thermodynamics by assuming
that space-time emerges in some sense. There are however various assumptions involved which more
or less impy that both special and general relativity has been feeded in besides quantum theory and
thermodynamics.

1. Time translation invariance is required in order to have the notions of conserved energy and
thermodynamics. This assumption requires not only require time but also symmetry with respect
to time translations. This is quite a powerful assumption and time translation symmetry not
hold true in General Relativity- this was actually the basic motivation for quantum TGD.

2. Holography is assumed. Information stored on surfaces, or screens and discretization is assumed.
Again this means in practice the assumption of space-time since otherwise the notion of holog-
raphy does not make sense. One could of course say that one considers the situation in the
already emerged region of space-time but this idea does not look very convincing to me.

Comment: In TGD framework holography is an essential piece of theory: light-like 3-surfaces
code for the physics and space-time sheets are analogous to Bohr orbits fixed by the light-like
3-surfaces defining the generalized Feynman diagrams.

3. The first law of thermodynamics in the form

dE = TdS − Fdx .

Here F denotes generalized force and x some coordinate variable. In usual thermodynamics
pressure P would appear in the role of F and volume V in the role of x. Also chemical potential
and particle number form a similar pair. If energy is conserved for the motion one has

Fdx = TdS .

This equation is basic thermodynamics and is used to deduce Newton’s equations.

After this some quantum tricks -a rather standard game with Uncertainty Principle and quantiza-
tion when nothing concrete is available- are needed to obtain F=ma which as such does not involve
~ nor Boltzmann constant kB . What is needed are thermal expression for acceleration and force and
identifying these one obtains F=ma.

1. The condition ∆S = 2πkB states that entropy is quantized with a unit of 2π appearing as a
unit. log(2) would be more natural unit if bit is the unit of information.

2. The identification ∆x = ~/mc involves Uncertainty principle for momentum and position. The
presence of light velocity c in the formula means that Minkowski space and Special Relativity
creeps in. At this stage I would not speak about emergence of space-time anymore.

This gives
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F = T
∆S

∆x
= T

2πmckB
~

.

F has been exressed in terms of thermal parameters and mass.

3. Next one feeds in something from General Relativity to obtain expression for acceleration in
terms of thermal parameters. Unruh effect means that in an accelerted motion system measures
temperate proportional to acceleration:

kBT =
~a
2π

.

This quantum effect is known as Unruh effect. This temperature is extremely low for accelera-
tions encountered in everyday life - something like 10−16 K for free fall near Earth’s surface.

Using this expression for T in previous equation one obtains the desired F = ma, which would
thus have a thermodynamical interpretation. At this stage I have even less motivations for
talking about emergence of space-time. Essentially the basic conceptual framework of Special
and General Relativities, of wave mechanics and of thermodynamics are introduced by the
formulas containing the basic parameters involved.

6.3.2 Verlinde’s argument for F = GMm/R2

The next challenge is to derive gravitational force from thermodynamic consideration. Now holography
with a very specially chosen screen is needed.

Comment: In TGD framework light-like 3-surfaces (or equivalently their space-like duals) rep-
resent the holographic screens and in principle there is a slicing of space-time surface by equivalent
screens. Also Verlinde introduces a slicing of space-time surfaces by holographic screens identified as
surfaces for which gravitational potential is constant. Also I have considered this kind of identification.

1. The number of bits for the information represented on the holographic screen is assumed to be
proportional to area.

N =
A

G~
.

This means bringing in blackhole thermodynamics and general relativity since the notion of area
requires geometry.

Comment: In TGD framework the counterpart for the finite number of bits is finite measure-
ment resolution meaning that the 2-dimensional partonic surface is effectively replaced with a
set of points carrying fermion or antifermion number or possibly purely bosonic symmetry gen-
erator. The orbits of these points define braid giving a connection with topological QFTs for
knots, links and braids and also with topological quantum computation.

2. It is assumed that the area of horizon corresponds to the area A = 4πR2 for the sphere with
radius which R which is the distance between the masses. This means a very special choice of
the holographic screen. Entropy obviously depends very sensitively on R.

Comment: In TGD framework the counterpart of the area would be the symplectic area of
partonic 2-surfaces. This is invariant under symplectic transformations of light-cone boundary.
These ”partonic” 2-surfaces can have macroscopic size and the counterpart for blackhole horizon
is one example of this kind of surface. Anyonic phases are second example of a phase assigned
with a macroscopic partonic 2-surface.

3. Special relativity is brought in via the bomb formula

E = mc2 .

One introduces also other expression for the rest energy. Thermodynamics gives for non-
relativistic thermal energy the expression
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E =
1

2
NkBT .

This thermal energy is identified with the rest mass. This identification looks to me completely
ad hoc and I think that kind of holographic duality is assumed to justify it. The interpreta-
tion is that the points/bits on the holographic screen behave as particles in thermodynamical
equilibrium and represent the mass inside the spherical screen. What are these particles on the
screen? Do they correspond to gravitational flux?

Comment: In TGD framework p-adic thermodynamics replaces Higgs mechanism and identify
particle’s mass squared as thermal conformal weight. In this sense inertia has thermal origin in
TGD framework. Gravitational flux is mediated by flux tubes with gigantic value of gravitational
Planck constant and the intersections of the flux tubes with sphere could be TGD counterparts
for the points of the screen in TGD. These 2-D intersections of flux tubes should be in thermal
equilibrium at Unruh temperature. The light-like 3-surfaces indeed contain the particles so that
the matter at this surface represents the system. Since all light-like 3-surfaces in the slicing are
equivalent means that one can choose the reresentation of the system rather freely .

4. Eliminating the rest energy E from these two formulas one obtains NT = 2mc2 and using the
expression for N in terms of area identified as that of a sphere with radius equal to the distance
R between the two masses, one obtains the standard form for gravitational force.

It is difficult to say whether the outcome is something genuinely new or just something resulting
unavoidably by feeding in basic formulas from general thermodynamics, special relativity, and general
relativity and using holography principle in highly questionable and ad hoc manner.

6.3.3 In TGD quantum classical correspondence predicts that thermody-
namics has space-time correlates

From TGD point of view entropic gravity is a misconception. On basis of quantum classical corre-
spondence - the basic guiding principle of quantum TGD - one expects that all quantal notions have
space-time correlates. If thermodynamics is a genuine part of quantum theory, also temperature and
entropy should have the space-time correlates and the analog of Verlinde’s formula could exist. Even
more, the generalization of this formula is expected to make sense for all interactions.

Zero energy ontology makes thermodynamics an integral part of quantum theory.

1. In zero energy ontology quantum states become zero energy states consisting of pairs of the
positive and negative energy states with opposite conserved quantum numbers and interpreted
in the usual ontology as physical events. These states are located at opposite light-like boundaries
of causal diamond (CD) defined as the intersection of future and past directed light-cones. There
is a fractal hierarchy of them. M-matrix generalizing S-matrix defines time-like entanglement
coefficients between positive and negative energy states. M-matrix is essentially a ”complex”
square root of density matrix expressible as positive square root of diagonalized density matrix
and unitary S-matrix. Thermodynamics reduces to quantum physics and should have correlate
at the level of space-time geometry. The failure of the classical determinism in standard sense
of the word makes this possible in quantum TGD (special properties of Kähler action (Maxwell
action for induced Kahler form of CP2) due to its vacuum degeneracy analogous to gauge
degeneracy). Zero energy ontology allows also to speak about coherent states of bosons, say of
Cooper pairs of fermions- without problems with conservation laws and the undeniable existence
of these states supports zero energy ontology.

2. Quantum classical correspondence is very strong requirement. For instance, it requires also that
electrons traveling via several routes in double slit experiment have classical correlates. They
have. The light-like 3-surfaces describing electrons can branch and the induced spinor fields
at them ”branch” also and interfere again. Same branching occurs also for photons so that
electrodynamics has hydrodynamical aspect too emphasize in recent empirical report about
knotted light beams. This picture explains the findings of Afshar challenging the Copenhagen
interpretation.
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These diagrams could be seen as generalizations of stringy diagrams but do not describe particle
decays in TGD framework. In TGD framework stringy diagrams are replaced with a direct
generalization of Feynman diagrams in which the ends of 3-D lightlike lines meet along 2-D
partonic surfaces at their ends. The mathematical description of vertices becomes much simpler
since the 2-D manifolds describing vertices are not singular unlike the 1-D manifolds associated
with string diagrams (”eyeglass” in fusion of closed strings).

3. If entropy has a space-time correlate then also first and second law should have such and Ver-
linde’s argument that gravitational force attraction follows from first law assuming energy cor-
relation might identify this correlate. This of course applies only to the classical gravitation.
Also other classical forces should allow analogous interpretation as space-time correlates for
something quantal.

6.3.4 The simplest identification of thermodynamical correlates in TGD
framework

The first questions that pop up are following. Inertial mass emerges from p-adic thermodynamics as
thermal conformal weight. Could the first law for p-adic thermodynamics, which allows to calculate
particle masses in terms of thermal conformal weights, allow to deduce also other classical forces? One
could think that by adding to the Hamiltonian defining partition function chemical potential terms
characterizing charge conservation it might be possible to obtain also other forces.

In fact, the situation might be much simpler. The basic structure of quantum TGD allows a very
natural thermodynamical interpretation.

1. The basic structure of quantum TGD suggests a thermodynamic interpretation. The basic ob-
servation is that the vacuum functional identified as the exponent of Kähler function is analogous
to a square root of partition function and Kähler coupling strength is analogous to critical tem-
perature. Kähler function identified as Kähler action for a preferred extremal appears in the role
of Hamiltonian. Preferred extremal property realizes holography identifying space-time surface
as analog of Bohr orbit. One can interpret the exponent of Kähler function as the density of
states in the world of classical worlds so that Kähler function would be analogous to entropy
density. Ensemble entropy is average of Kähler function involving functional integral over the
world of classical worlds. This exponent is the counterpart for the quantity Ω appearing in
Verlinde’s basic formula.

2. The addition of a measurement interaction term to the modified Dirac action gives rise to a
coupling to conserved charges. Vacuum functional is identified as Dirac determinant and this
addition is visible as an addition of an interaction term to Kähler function. The interaction gives
rise to forces coupling to various charges at classical level for quantum states with fixed quantum
numbers for positive energy part of the state. These terms are analogous to chemical potential
terms in thermodynamics fixing the average values of various charges or particle numbers. In
ordinary non-relativistic thermodynamics energy is in a special role. In the recent case there is
a complete quantum number democracy very natural in a framework with coordinate invariance
and with four-momentum assigned with the isometries of the 8-D imbedding space. In Verlinde’s
formula there is exponential factor exp(−E/T −Fx) analogous to the measurement interaction
term. In TGD however conserved charges multiplied by chemical potentials defining generalized
forces appear in the exponent.

3. This gives an analog of thermodynamics in the world of classical worlds (WCW) for fixed values of
quantum numbers of the positive energy part of state. For zero energy states one however has also
additional thermodynamics- or rather its square root. This thermodynamics is for the conserved
quantum numbers whose averages are fixed. For general zero energy states one has sum over state
pairs labelled by momenta and various other quantum numbers labelling the positive energy part
of the state. The coefficients of the conserved quantities of the measurement interaction term
linear in conserved quantum numbers define the analogs of temperature and various chemical
potentials. The field equations defined by Kähler function and chemical potential terms have
thermodynamical interpretation and give coupling to conserved charges and also to their thermal
averages. What is important is that temperature and various chemical potentials assigned to
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positive and negative energy parts of the state allow a complete geometrization in a general
coordinate invariant manner and allow explicit expressions in terms of functions expressible in
terms of the induced geometry.

4. The explicit expressions must be deduced from Dirac determinant defining exponent of Kähler
function plus measurement interaction term, in which the conserved isometry charges of Cartan
algebra (necessarily!) appearing in the exponent are contracted with the analogs of chemical
potentials. One make two rather detailed educated guesses for the chemical potentials. For
modified Dirac action the measurement interaction term is 4-dimensional. For the Kähler action
one can imagine two candidates for the measurement interaction term. For the first option the
term is 4-dimensional and for the second one 3-dimensional.

6.3.5 Some details related to the measurement interaction term

As noticed, one can imagine two options for the measurement interaction term defining the chemical
potentials in terms of the space-time geometry.

1. For both options the M4 part of the interaction term is proportional to n(M4)G/R and CP2

part to a dimensionless constant n(CP2), and the condition that there is no dependence of ~
excludes the dependence on the dimensionless constant G~/R2.

2. One can consider two different forms of the measurement interaction part in Kähler function.
For the first option the conserved Kähler current replaces fermion current in the modified Dirac
action and defines a 4-dimensional interaction term highly analogous to that assigned with
the modified Dirac action. The source term induced to the field equations corresponds to the
variation of

[
G

R
× n(M4)pq,Ag

AB(M4)jAα + n(CP2)Qq,Ag
ABJAα(CP2)]Jα .

Here Jα is Kähler current.

3. For the second option the measurement interaction term in Kähler action is sum over contractions
of quantum Cartan charges with corresponding classical Noether charges giving the sum of the
term

[
G

R
× n(M4)pq,Ap

cl,A + n(CP2)Qq,AQ
cl,A]

from both ends of the space-time sheet. For a general space-time sheet the classical charges
are different at its ends so that the variation gives non-trivial boundary conditions equating
the normal (time-like) component of the canonical momentum current with the contraction of
the variation of classical Noether charges contracted with quantum charges. By the extremal
property the measurement interaction terms at the ends of the space-time sheet cancel each
other so that the effect on Kähler function is only via the boundary conditions in accordance
with zero energy ontology. For this option the thermodynamics for conserved charges is visible
at space-time level only via the appearence of the average quantal charges and universal chemical
potentials.

4. The vanishing of Kähler gauge current resp. classical Noether charges for the first resp. second
option would suggest an interpretation in terms of infinite temperature limit. The fact that
momenta and color charges are in completely symmetric position suggests however the vanishing
of chemical potentials. One can in fact fix the value of the temperature to say T = R/G without
loss of information and code thermodynamics in terms of the chemical potentials alone.

The vanishing of the measurement interaction term occurs for the vacuum extremals. For CP2

type vacuum extemals with Euclidian signature of the induced metric interpretation in terms
of vanishing chemical potentials is more natural. For vacuum extremals with Minkowskian
signature of the induced metric fluctuations and consequently classical non-determinism are
maximal so that the interpretation in terms of high temperature phase cannot be excluded. One
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must however notice that CP2 projection for vacuum extremals is 2-dimensional whereas high
temperature limit would suggest 4-D projection so that the interpretation in terms of vanishing
chemical potentials is more natural also now.

To sum up, TGD suggests two thermodynamical interpretations. p-Adic thermodynamics gives
inertial mass squared as thermal conformal weight and also the basic formulation of quantum TGD
allows thermodynamical interpretation. The thermodynamical structure of quantum TGD has of
course been guiding principle for two decades. In particular, quantum criticality as the counterpart of
thermal criticality has been extremely useful guide line and led to a breakthrough in the understanding
of the modified Dirac equation during the last year. Also p-adic thermodynamics has been in the scene
for more than 15 years and makes TGD a theory able to make precise quantitative predictions. Some
conclusions drawn from Verlinde’s argument is that gravitation is entropic interaction, that gravitons
do not exist, and that string models and theories introducing higher-dimensional space-time are a
failure. TGD view is different. Only a generalization of string model allowing to realize space-time as
surface is needed and this requires fixed 8-D imbedding space. Gravitons also exist and only classical
gravitation as well as other classical interactions code for thermodynamical information by quantum
classical correspondence. In any case, it is encouraging that also colleagues might be finally beginning
to get on the right track although the path from Verlinde’s arguments to quantum TGD as it is now
will be desperately long and tortuous if colleagues continually refuse to receive the helping hand.

6.4 E8 theory of Garrett Lisi and TGD

Recently (towards end of the year 2007) there has been a lot of fuss about the E8 theory proposed
by Garrett Lisi [24] in physics blogs, in media, and even New Scientist [28] wrote about the topic.
There are serious objections against Lisi’s theory and it is interesting to find whether the theory
could be modified so that it would survive the basic objections. Although it seems that Lisi’s theory
cannot be saved, one achieves further insights about HO-H duality. Number theoretical spontaneous
compactification can be formulated in terms of the Kac-Moody algebra assignable to Poincare group
and standard model gauge group having also rank 8. The representation can be constructed in
standard manner using quantized M8 coordinates at partonic 2-surfaces. Also E8 representations are
in principle possible and the question concerns their physical interpretation.

6.4.1 Objections against Lisi’s theory

The basic claim of Lisi is that one can understand the particle spectrum of standard model in terms
of the adjoint representation of a noncompact version E8 group [29]. There are several objections
against E8 gauge theory interpretation of Lisi.

1. Statistics does not allow to put fermions and bosons in the same gauge multiplet. Also the
identification of graviton as a part of a gauge multiplet seems very strange if not wrong since
there are no roots corresponding to a spin 2 two state.

2. Gauge couplings come out wrong for fermions and one must replace YM action with an ad hoc
action.

3. Poincare invariance is a problem. There is no clear relationship with the space-time geometry
so that the interpretation of spin as E8 quantum numbers is not really justified.

4. Finite-dimensional representations of non-compact E8 are non-unitary. Non-compact gauge
groups are however not possible since one would need unitary infinite-dimensional representa-
tions which would change the physical interpretation completely. Note that also Lorentz group
has only infinite-D unitary representations and only the extension to Poincare group allows to
have fields transforming according to finite-D representations.

5. The prediction of three fermion families is nice but one can question the whole idea of putting
particles with mass scales differing by a factor of order 1012 (top and neutrinos) into same
multiplet. For some reason colleagues stubbornly continue to see fundamental gauge symmetries
where there seems to be no such symmetry. Accepting the existence of a hierarchy of mass scales
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seems to be impossible for a theoretical physicist in main main stream although fractals have
been here for decades.

6. Also some exotic particles not present in standard model are predicted: these carry weak hyper
charge and color (6-plet representation) and are arranged in three families.

6.4.2 Three attempts to save Lisi’s theory

To my opinion, the shortcomings of E8 theory as a gauge theory are fatal but the possibility to put
gauge bosons and fermions of the standard model to E8 multiplets is intriguing and motivatse the
question whether the model could be somehow saved by replacing gauge theory with a theory based
on extended fundamental objects possessing conformal invariance.

1. In TGD framework H-HO duality allows to consider Super-Kac Moody algebra with rank 8 with
Cartan algebra assigned with the quantized coordinates of partonic 2-surface in 8-D Minkowski
space M8 (identifiable as hyper-octonions HO). The standard construction for the representa-
tions of simply laced Kac-Moody algebras allows quite a number of possibilities concerning the
choice of Kac-Moody algebra and the non-compact E8 would be the maximal choice.

2. The first attempt to rescue the situation would be the identification of the weird spin 1/2 bosons
in terms of supersymmetry involving addition of righthanded neutrino to the state giving it spin
1. This options does not seem to work.

3. The construction of representations of non-simply laced Kac-Moody algebras (performed by
Goddard and Olive at eighties [23]) leads naturally to the introduction of fermionic fields for
algebras of type B, C, and F: I do not know whether the construction has been made for G2.
E6, E7, and E8 are however simply laced Lie groups with single root length 2 so that one does
not obtain fermions in this manner.

4. The third resuscitation attempt is based on fractional statistics. Since the partonic 2-surfaces are
2-dimensional and because one has a hierarchy of Planck constants, one can have also fractional
statistics. Spin 1/2 gauge bosons could perhaps be interpreted as anyonic gauge bosons meaning
that particle exchange as permutation is replaced with braiding homotopy. If so, E8 would
not describe standard model particles and the possibility of states transforming according to its
representations would reflect the ability of TGD to emulate any gauge or Kac-Moody symmetry.

The standard construction for simply laced Kac-Moody algebras might be generalized considerably to
allow also more general algebras and fractionization of spin and other quantum numbers would suggest
fractionization of roots. In stringy picture the symmetry group would be reduced considerably since
longitudinal degrees of freedom (time and one spatial direction) are non-physical. This would suggest
a symmetry breaking to SO(1, 1) × E6 representations with ground states created by tachyonic Lie
allebra generators and carrying mass squared 2 in suitable units. In TGD framework the tachyonic
conformal weight can be compensated by super-symplectic conformal weight so that massless states
getting their masses via Higgs mechanism and p-adic thermodynamics would be obtained.

6.4.3 Could super-symmetry rescue the situation?

E8 is unique among Lie algebras in that its adjoint rather than fundamental representation has the
smallest dimension. One can decompose the 240 roots of E8 to 112 roots for which two components
of SO(7,1) root vector are ± 1 and to 128 vectors for which all components are ± 1/2 such that the
sum of components is even. The latter roots Lisi assigns to fermionic states. This is not consistent
with spin and statistics although SO(3,1) spin is half-integer in M8 picture.

The first idea which comes in mind is that these states correspond to super-partners of the ordinary
fermions. In TGD framework they might be obtained by just adding covariantly constant right-handed
neutrino or antineutrino state to a given particle state. The simplest option is that fermionic super-
partners are complex scalar fields and sbosons are spin 1/2 fermions. It however seems that the
super-conformal symmetries associated with the right-handed neutrino are strictly local in the sense
that global super-generators vanish. This would mean that super-conformal super-symmetries change
the color and angular momentum quantum numbers of states. This is a pity if indeed true since
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super-symmetry could be broken by different p-adic mass scale for super partners so that no explicit
breaking would be needed.

6.4.4 Could Kac Moody variant of E8 make sense in TGD?

One can leave gauge theory framework and consider stringy picture and its generalization in TGD
framework obtained by replacing string orbits with 3-D light-like surfaces allowing a generalization of
conformal symmetries.

H-HO duality is one of the speculative aspects of TGD. The duality states that one can either
regard imbedding space as H = M4×CP2 or as 8-D Minkowski space M8 identifiable as the space HO
of hyper-octonions which is a subspace of complexified octonions. Spontaneous compactification for
M8 described as a phenomenon occurring at the level of Kac-Moody algebra would relate HO-picture
to H-picture which is definitely the fundamental picture. For instance, standard model symmetries
have purely number theoretic meaning in the resulting picture.

The question is whether the non-compact E8 could be replaced with the corresponding Kac Moody
algebra and act as a stringy symmetry. Note that this would be by no means anything new. The
Kac-Moody analogs of E10 and E11 algebras appear in M-theory speculations. Very little is known
about these algebras. Already E < sub > n < /sub >, n > 8 is infinite-dimensional as an analog
of Lie algebra. The following argument shows that E8 representations do not work in TGD context
unless one allows anyonic statistics.

1. In TGD framework space-time dimension is D=8. The speculative hypothesis of HO-H dual-
ity inspired by string model dualities states that the descriptions based on the two choices of
imbedding space are dual. One can start from 8-D Cartan algebra defined by quantized M8

coordinates regarded as fields at string orbit just as in string model. A natural constraint is
that the symmetries act as isometries or holonomies of the effectively compactified M8. The
article ”The Octonions” [22] of John Baez discusses exceptional Lie groups and shows that com-
pact form of E8 appears as isometry group of 16-dimensional octo-octonionic projective plane
E8/(Spin(16)/Z2): the analog of CP2 for complexified octonions. There is no 8-D space allowing
E8 as an isometry group. Only SO(1,7) can be realized as the maximal Lorentz group with 8-D
translational invariance.

2. In HO picture some Kac Moody algebra with rank 8 acting on quantized M8 coordinates defining
stringy fields is natural. The charged generators of this algebra are constructible using the
standard recipe involving operators creating coherent states and their conjugates obtained as
operator counterparts of plane waves with momenta replaced by roots of the simply laced algebra
in question and by normal ordering.

3. Poincare group has 4-D maximal Cartan algebra and this means that only 4 Euclidian dimensions
remain. Lorentz generators can be constructed in standard manner in terms of Kac-Moody
generators as Noether currents.

4. The natural Kac-Moody counterpart for spontaneous compactification to CP2 would be that
these dimensions give rise to the generators of electro-weak gauge group identifiable as a product
of isometry and holonomy groups of CP2 in the dual H-picture based on M4 × CP2. Note that
in this picture electro-weak symmetries would act geometrically in E4 whereas in CP2 picture
they would act only as holonomies.

Could one weaken the assumption that Kac-Moody generators act as symmetries and that spin-
statistics relation would be satisfied?

1. The hierarchy of Planck constants relying on the generalization of the notion of imbedding
space breaks Poincare symmetry to Lorentz symmetry for a given sector of the world of classical
worlds for which one considers light-like 3-surfaces inside future and past directed light cones.
Translational invariance is obtained from the wave function for the position of the tip of the
light cone in M4. In this kind of situation one could consider even E8 symmetry as a dynamical
symmetry.
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2. The hierarchy of Planck constants involves a hierarchy of groups and fractional statistics at the
partonic 2-surface with rotations interpreted as braiding homotopies. The fractionization of spin
allows anyonic statistics and could allow bosons with anyonic half-odd integer spin. Also more
general fractional spins are possible so that one can consider also more general algebras than
Kac-Moody algebras by allowing roots to have more general values. Quantum versions of Kac-
Moody algebras would be in question. This picture would be consistent with the view that TGD
can emulate any gauge algebra with 8-D Cartan algebra and Kac-Moody algebra dynamically.
This vision was originally inspired by the study of the inclusions of hyper-finite factors of type
II¡sub¿1¡/sub¿. Even higher dimensional Kac-Moody algebras are predicted to be possible.

3. It must be emphasized that these considerations relate in TGD framework to Super-Kac Moody
algebra only. The so called super-symplectic algebra is the second quintessential part of the story.
In particular, color is not spin-like quantum number for quarks and quark color corresponds to
color partial waves in the world of classical worlds or more concretely, to the rotational degrees
of freedom in CP2 analogous to ordinary rotational degrees of freedom of rigid body. Arbitrarily
high color partial waves are possible and also leptons can move in triality zero color partial
waves and there is a considerable experimental evidence for color octet excitations of electron
and muon but put under the rug.

6.4.5 Can one interpret three fermion families in terms of E8 in TGD
framework?

The prediction of three fermion generations by E8 picture must be taken very seriously. In TGD
three fermion generations correspond to three lowest genera g = 0, 1, 2 (handle number) for which all
2-surfaces have Z2 as global conformal symmetry (hyper-ellipticity [21, 19]). One can assign to the
three genera a dynamical SU(3) symmetry. Theye are related by SU(3) triality which brings in mind
the triality symmetry acting on fermion generations in E8 model. SU(3) octet and singlet bosons
correspond to pairs of light-like 3-surfaces defining the throats of a wormhole contact and since their
genera can be different one has color singlet and octet bosons. Singlet corresponds to ordinary bosons.
Color octet bosons must be heavy since they define neutral currents between fermion families.

The three E8 anyonic boson families cannot represent family replication since these symmetries
are not local conformal symmetries: it obviously does not make sense to assign a handle number to a
given point of partonic 2-surface! Also bosonic octet would be missing in E8 picture.

One could of course say that in E8 picture based on fractional statistics, anyonic gauge bosons
can mimic the dynamical symmetry associated with the family replication. This is in spirit with the
idea that TGD Universe is able to emulate practically any gauge - or Kac-Moody symmetry and that
TGD Universe is busily mimicking also itself.

To sum up, the rank 8 Kac-Moody algebra - emerging naturally if one takes HO-H duality seriously
- corresponds very naturally to Kac-Moody representations in terms of free stringy fields for Poincare-,
color-, and electro-weak symmetries. One can however consider the possibility of anyonic symmetries
and the emergence of non-compact version of E8 as a dynamical symmetry, and TGD suggests much
more general dynamical symmetries if TGD Universe is able to act as the physics analog of the
Universal Turing machine.
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Chapter 1

Appendix

A-1 Basic properties of CP2 and elementary facts about p-adic
numbers

A-1.1 CP2 as a manifold

CP2, the complex projective space of two complex dimensions, is obtained by identifying the points
of complex 3-space C3 under the projective equivalence

(z1, z2, z3) ≡ λ(z1, z2, z3) . (A-1.1)

Here λ is any non-zero complex number. Note that CP2 can be also regarded as the coset space
SU(3)/U(2). The pair zi/zj for fixed j and zi 6= 0 defines a complex coordinate chart for CP2. As
j runs from 1 to 3 one obtains an atlas of three oordinate charts covering CP2, the charts being
holomorphically related to each other (e.g. CP2 is a complex manifold). The points z3 6= 0 form a
subset of CP2 homoeomorphic to R4 and the points with z3 = 0 a set homeomorphic to S2. Therefore
CP2 is obtained by ”adding the 2-sphere at infinity to R4”.

Besides the standard complex coordinates ξi = zi/z3 , i = 1, 2 the coordinates of Eguchi and
Freund [45] will be used and their relation to the complex coordinates is given by

ξ1 = z + it ,

ξ2 = x+ iy . (A-1.2)

These are related to the ”spherical coordinates” via the equations

ξ1 = rexp(i
(Ψ + Φ)

2
)cos(

Θ

2
) ,

ξ2 = rexp(i
(Ψ− Φ)

2
)sin(

Θ

2
) . (A-1.3)

The ranges of the variables r,Θ,Φ,Ψ are [0,∞], [0, π], [0, 4π], [0, 2π] respectively.
Considered as a real four-manifold CP2 is compact and simply connected, with Euler number Euler

number 3, Pontryagin number 3 and second b = 1.

A-1.2 Metric and Kähler structure of CP2

In order to obtain a natural metric for CP2, observe that CP2 can be thought of as a set of the orbits
of the isometries zi → exp(iα)zi on the sphere S5:

∑
ziz̄i = R2. The metric of CP2 is obtained

by projecting the metric of S5 orthogonally to the orbits of the isometries. Therefore the distance
between the points of CP2 is that between the representative orbits on S5.

The line element has the following form in the complex coordinates

383
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ds2 = gab̄dξ
adξ̄b , (A-1.4)

where the Hermitian, in fact Kähler metric gab̄ is defined by

gab̄ = R2∂a∂b̄K , (A-1.5)

where the function K, Kähler function, is defined as

K = log(F ) ,

F = 1 + r2 . (A-1.6)

The Kähler function for S2 has the same form. It gives the S2 metric dzdz/(1 + r2)2 related to its
standard form in spherical coordinates by the coordinate transformation (r, φ) = (tan(θ/2), φ).

The representation of the CP2 metric is deducible from S5 metric is obtained by putting the angle
coordinate of a geodesic sphere constant in it and is given

ds2

R2
=

(dr2 + r2σ2
3)

F 2
+
r2(σ2

1 + σ2
2)

F
, (A-1.7)

where the quantities σi are defined as

r2σ1 = Im(ξ1dξ2 − ξ2dξ1) ,

r2σ2 = −Re(ξ1dξ2 − ξ2dξ1) ,

r2σ3 = −Im(ξ1dξ̄1 + ξ2dξ̄2) . (A-1.8)

R denotes the radius of the geodesic circle of CP2. The vierbein forms, which satisfy the defining
relation

skl = R2
∑
A

eAk e
A
l , (A-1.9)

are given by

e0 = dr
F , e1 = rσ1√

F
,

e2 = rσ2√
F

, e3 = rσ3

F .
(A-1.10)

The explicit representations of vierbein vectors are given by

e0 = dr
F , e1 = r(sinΘcosΨdΦ+sinΨdΘ)

2
√
F

,

e2 = r(sinΘsinΨdΦ−cosΨdΘ)

2
√
F

, e3 = r(dΨ+cosΘdΦ)
2F .

(A-1.11)

The explicit representation of the line element is given by the expression

ds2/R2 =
dr2

F 2
+

r2

4F 2
(dΨ + cosΘdΦ)2 +

r2

4F
(dΘ2 + sin2ΘdΦ2) .

(A-1.12)

The vierbein connection satisfying the defining relation
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deA = −V AB ∧ eB , (A-1.13)

is given by

V01 = − e
1

r , V23 = e1

r ,

V02 = − e
2

r , V31 = e2

r ,
V03 = (r − 1

r )e3 , V12 = (2r + 1
r )e3 .

(A-1.14)

The representation of the covariantly constant curvature tensor is given by

R01 = e0 ∧ e1 − e2 ∧ e3 , R23 = e0 ∧ e1 − e2 ∧ e3 ,
R02 = e0 ∧ e2 − e3 ∧ e1 , R31 = −e0 ∧ e2 + e3 ∧ e1 ,
R03 = 4e0 ∧ e3 + 2e1 ∧ e2 , R12 = 2e0 ∧ e3 + 4e1 ∧ e2 .

(A-1.15)

Metric defines a real, covariantly constant, and therefore closed 2-form J

J = −igab̄dξadξ̄b , (A-1.16)

the so called Kähler form. Kähler form J defines in CP2 a symplectic structure because it satisfies
the condition

JkrJ
rl = −skl . (A-1.17)

The form J is integer valued and by its covariant constancy satisfies free Maxwell equations. Hence it
can be regarded as a curvature form of a U(1) gauge potential B carrying a magnetic charge of unit
1/2g (g denotes the gauge coupling). Locally one has therefore

J = dB , (A-1.18)

where B is the so called Kähler potential, which is not defined globally since J describes homological
magnetic monopole.

It should be noticed that the magnetic flux of J through a 2-surface in CP2 is proportional to its
homology equivalence class, which is integer valued. The explicit representations of J and B are given
by

B = 2re3 ,

J = 2(e0 ∧ e3 + e1 ∧ e2) =
r

F 2
dr ∧ (dΨ + cosΘdΦ) +

r2

2F
sinΘdΘdΦ .

(A-1.19)

The vierbein curvature form and Kähler form are covariantly constant and have in the complex
coordinates only components of type (1,1).

Useful coordinates for CP2 are the so called canonical coordinates in which Kähler potential and
Kähler form have very simple expressions

B =
∑
k=1,2

PkdQk ,

J =
∑
k=1,2

dPk ∧ dQk . (A-1.20)

The relationship of the canonical coordinates to the ”spherical” coordinates is given by the equations
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P1 = − 1

1 + r2
,

P2 =
r2cosΘ

2(1 + r2)
,

Q1 = Ψ ,

Q2 = Φ . (A-1.21)

A-1.3 Spinors in CP2

CP2 doesn’t allow spinor structure in the conventional sense [17]. However, the coupling of the spinors
to a half odd multiple of the Kähler potential leads to a respectable spinor structure. Because the
delicacies associated with the spinor structure of CP2 play a fundamental role in TGD, the arguments
of Hawking are repeated here.

To see how the space can fail to have an ordinary spinor structure consider the parallel transport
of the vierbein in a simply connected space M . The parallel propagation around a closed curve with
a base point x leads to a rotated vierbein at x: eA = RABe

B and one can associate to each closed path
an element of SO(4).

Consider now a one-parameter family of closed curves γ(v) : v ∈ (0, 1) with the same base point x
and γ(0) and γ(1) trivial paths. Clearly these paths define a sphere S2 in M and the element RAB(v)
defines a closed path in SO(4). When the sphere S2 is contractible to a point e.g., homologically
trivial, the path in SO(4) is also contractible to a point and therefore represents a trivial element of
the homotopy group Π1(SO(4)) = Z2.

For a homologically nontrivial 2-surface S2 the associated path in SO(4) can be homotopically
nontrivial and therefore corresponds to a nonclosed path in the covering group Spin(4) (leading from
the matrix 1 to -1 in the matrix representation). Assume this is the case.

Assume now that the space allows spinor structure. Then one can parallel propagate also spinors
and by the above construction associate a closed path of Spin(4) to the surface S2. Now, however this
path corresponds to a lift of the corresponding SO(4) path and cannot be closed. Thus one ends up
with a contradiction.

From the preceding argument it is clear that one could compensate the non-allowed −1- factor
associated with the parallel transport of the spinor around the sphere S2 by coupling it to a gauge
potential in such a way that in the parallel transport the gauge potential introduces a compensating
−1-factor. For a U(1) gauge potential this factor is given by the exponential exp(i2Φ) , where Φ
is the magnetic flux through the surface. This factor has the value −1 provided the U(1) potential
carries half odd multiple of Dirac charge 1/2g. In case of CP2 the required gauge potential is half odd
multiple of the Kähler potential B defined previously. In the case of M4 × CP2 one can in addition
couple the spinor components with different chiralities independently to an odd multiple of B/2.

A-1.4 Geodesic sub-manifolds of CP2

Geodesic sub-manifolds are defined as sub-manifolds having common geodesic lines with the imbedding
space. As a consequence the second fundamental form of the geodesic manifold vanishes, which means
that the tangent vectors hkα (understood as vectors of H) are covariantly constant quantities with
respect to the covariant derivative taking into account that the tangent vectors are vectors both with
respect to H and X4.

In [16] a general characterization of the geodesic sub-manifolds for an arbitrary symmetric space
G/H is given. Geodesic sub-manifolds are in 1-1-correspondence with the so called Lie triple systems
of the Lie-algebra g of the group G. The Lie triple system t is defined as a subspace of g characterized
by the closedness property with respect to double commutation

[X, [Y,Z]] ∈ t for X,Y, Z ∈ t . (A-1.22)

SU(3) allows, besides geodesic lines, two nonequivalent (not isometry related) geodesic spheres. This
is understood by observing that SU(3) allows two nonequivalent SU(2) algebras corresponding to



A-2. CP2 geometry and standard model symmetries 387

subgroups SO(3) (orthogonal 3 × 3 matrices) and the usual isospin group SU(2). By taking any
subset of two generators from these algebras, one obtains a Lie triple system and by exponentiating
this system, one obtains a 2-dimensional geodesic sub-manifold of CP2.

Standard representatives for the geodesic spheres of CP2 are given by the equations

S2
I : ξ1 = ξ̄2 or equivalently (Θ = π/2,Ψ = 0) ,

S2
II : ξ1 = ξ2 or equivalently (Θ = π/2,Φ = 0) .

The non-equivalence of these sub-manifolds is clear from the fact that isometries act as holomorphic
transformations in CP2. The vanishing of the second fundamental form is also easy to verify. The
first geodesic manifold is homologically trivial: in fact, the induced Kähler form vanishes identically
for S2

I . S2
II is homologically nontrivial and the flux of the Kähler form gives its homology equivalence

class.

A-2 CP2 geometry and standard model symmetries

A-2.1 Identification of the electro-weak couplings

The delicacies of the spinor structure of CP2 make it a unique candidate for space S. First, the coupling
of the spinors to the U(1) gauge potential defined by the Kähler structure provides the missing U(1)
factor in the gauge group. Secondly, it is possible to couple different H-chiralities independently to
a half odd multiple of the Kähler potential. Thus the hopes of obtaining a correct spectrum for the
electromagnetic charge are considerable. In the following it will be demonstrated that the couplings
of the induced spinor connection are indeed those of the GWS model [21] and in particular that the
right handed neutrinos decouple completely from the electro-weak interactions.

To begin with, recall that the space H allows to define three different chiralities for spinors. Spinors
with fixed H-chirality e = ±1, CP2-chirality l, r and M4-chirality L,R are defined by the condition

ΓΨ = eΨ ,

e = ±1 , (A-2.1)

where Γ denotes the matrix Γ9 = γ5×γ5, 1×γ5 and γ5×1 respectively. Clearly, for a fixed H-chirality
CP2- and M4-chiralities are correlated.

The spinors with H-chirality e = ±1 can be identified as quark and lepton like spinors respectively.
The separate conservation of baryon and lepton numbers can be understood as a consequence of
generalized chiral invariance if this identification is accepted. For the spinors with a definiteH-chirality
one can identify the vielbein group of CP2 as the electro-weak group: SO(4) = SU(2)L × SU(2)R.

The covariant derivatives are defined by the spinorial connection

A = V +
B

2
(n+1+ + n−1−) . (A-2.2)

Here V and B denote the projections of the vielbein and Kähler gauge potentials respectively and
1+(−) projects to the spinor H-chirality +(−). The integers n± are odd from the requirement of a
respectable spinor structure.

The explicit representation of the vielbein connection V and of B are given by the equations

V01 = − e
1

r , V23 = e1

r ,

V02 = − e
2

r , V31 = e2

r ,
V03 = (r − 1

r )e3 , V12 = (2r + 1
r )e3 ,

(A-2.3)

and

B = 2re3 , (A-2.4)



388 Chapter 1. Appendix

respectively. The explicit representation of the vielbein is not needed here.
Let us first show that the charged part of the spinor connection couples purely left handedly.

Identifying Σ0
3 and Σ1

2 as the diagonal (neutral) Lie-algebra generators of SO(4), one finds that the
charged part of the spinor connection is given by

Ach = 2V23I
1
L + 2V13I

2
L , (A-2.5)

where one have defined

I1
L =

(Σ01 − Σ23)

2
,

I2
L =

(Σ02 − Σ13)

2
. (A-2.6)

Ach is clearly left handed so that one can perform the identification

W± =
2(e1 ± ie2)

r
, (A-2.7)

where W± denotes the charged intermediate vector boson.
Consider next the identification of the neutral gauge bosons γ and Z0 as appropriate linear com-

binations of the two functionally independent quantities

X = re3 ,

Y =
e3

r
, (A-2.8)

appearing in the neutral part of the spinor connection. We show first that the mere requirement that
photon couples vectorially implies the basic coupling structure of the GWS model leaving only the
value of Weinberg angle undetermined.

To begin with let us define

γ̄ = aX + bY ,

Z̄0 = cX + dY , (A-2.9)

where the normalization condition
ad− bc = 1 ,

is satisfied. The physical fields γ and Z0 are related to γ̄ and Z̄0 by simple normalization factors.
Expressing the neutral part of the spinor connection in term of these fields one obtains

Anc = [(c+ d)2Σ03 + (2d− c)2Σ12 + d(n+1+ + n−1−)]γ̄

+ [(a− b)2Σ03 + (a− 2b)2Σ12 − b(n+1+ + n−1−)]Z̄0 .

(A-2.10)

Identifying Σ12 and Σ03 = 1 × γ5Σ12 as vectorial and axial Lie-algebra generators, respectively, the
requirement that γ couples vectorially leads to the condition

c = −d . (A-2.11)

Using this result plus previous equations, one obtains for the neutral part of the connection the
expression
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Anc = γQem + Z0(I3
L − sin2θWQem) . (A-2.12)

Here the electromagnetic charge Qem and the weak isospin are defined by

Qem = Σ12 +
(n+1+ + n−1−)

6
,

I3
L =

(Σ12 − Σ03)

2
. (A-2.13)

The fields γ and Z0 are defined via the relations

γ = 6dγ̄ =
6

(a+ b)
(aX + bY ) ,

Z0 = 4(a+ b)Z̄0 = 4(X − Y ) . (A-2.14)

The value of the Weinberg angle is given by

sin2θW =
3b

2(a+ b)
, (A-2.15)

and is not fixed completely. Observe that right handed neutrinos decouple completely from the
electro-weak interactions.

The determination of the value of Weinberg angle is a dynamical problem. The angle is completely
fixed once the YM action is fixed by requiring that action contains no cross term of type γZ0. Pure
symmetry non-broken electro-weak YM action leads to a definite value for the Weinberg angle. One
can however add a symmetry breaking term proportional to Kähler action and this changes the value
of the Weinberg angle.

To evaluate the value of the Weinberg angle one can express the neutral part Fnc of the induced
gauge field as

Fnc = 2R03Σ03 + 2R12Σ12 + J(n+1+ + n−1−) , (A-2.16)

where one has

R03 = 2(2e0 ∧ e3 + e1 ∧ e2) ,

R12 = 2(e0 ∧ e3 + 2e1 ∧ e2) ,

J = 2(e0 ∧ e3 + e1 ∧ e2) , (A-2.17)

in terms of the fields γ and Z0 (photon and Z- boson)

Fnc = γQem + Z0(I3
L − sin2θWQem) . (A-2.18)

Evaluating the expressions above one obtains for γ and Z0 the expressions

γ = 3J − sin2θWR03 ,

Z0 = 2R03 . (A-2.19)

For the Kähler field one obtains

J =
1

3
(γ + sin2θWZ

0) . (A-2.20)
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Expressing the neutral part of the symmetry broken YM action

Lew = Lsym + fJαβJαβ ,

Lsym =
1

4g2
Tr(FαβFαβ) , (A-2.21)

where the trace is taken in spinor representation, in terms of γ and Z0 one obtains for the coefficient
X of the γZ0 cross term (this coefficient must vanish) the expression

X = − K

2g2
+
fp

18
,

K = Tr
[
Qem(I3

L − sin2θWQem)
]
, (A-2.22)

In the general case the value of the coefficient K is given by

K =
∑
i

[
− (18 + 2n2

i )sin
2θW

9

]
, (A-2.23)

where the sum is over the spinor chiralities, which appear as elementary fermions and ni is the integer
describing the coupling of the spinor field to the Kähler potential. The cross term vanishes provided
the value of the Weinberg angle is given by

sin2θW =
9
∑
i 1

(fg2 + 2
∑
i(18 + n2

i ))
. (A-2.24)

In the scenario where both leptons and quarks are elementary fermions the value of the Weinberg
angle is given by

sin2θW =
9

( fg
2

2 + 28)
. (A-2.25)

The bare value of the Weinberg angle is 9/28 in this scenario, which is quite close to the typical value
9/24 of GUTs [19].

A-2.2 Discrete symmetries

The treatment of discrete symmetries C, P, and T is based on the following requirements:
a) Symmetries must be realized as purely geometric transformations.
b) Transformation properties of the field variables should be essentially the same as in the conventional
quantum field theories [22].

The action of the reflection P on spinors of is given by

Ψ → PΨ = γ0 ⊗ γ0Ψ . (A-2.26)

in the representation of the gamma matrices for which γ0 is diagonal. It should be noticed that W
and Z0 bosons break parity symmetry as they should since their charge matrices do not commute
with the matrix of P.

The guess that a complex conjugation in CP2 is associated with T transformation of the physicist
turns out to be correct. One can verify by a direct calculation that pure Dirac action is invariant
under T realized according to

mk → T (Mk) ,

ξk → ξ̄k ,

Ψ → γ1γ3 ⊗ 1Ψ . (A-2.27)
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The operation bearing closest resemblance to the ordinary charge conjugation corresponds geo-
metrically to complex conjugation in CP2:

ξk → ξ̄k ,

Ψ → Ψ†γ2γ0 ⊗ 1 . (A-2.28)

As one might have expected symmetries CP and T are exact symmetries of the pure Dirac action.

A-3 Basic facts about induced gauge fields

Since the classical gauge fields are closely related in TGD framework, it is not possible to have space-
time sheets carrying only single kind of gauge field. For instance, em fields are accompanied by Z0 fields
for extremals of Kähler action. Weak forces is however absent unless the space-time sheets contains
topologically condensed exotic weakly charged particles responding to this force. Same applies to
classical color forces. The fact that these long range fields are present forces to assume that there
exists a hierarchy of scaled up variants of standard model physics identifiable in terms of dark matter.

Classical em fields are always accompanied by Z0 field and some components of color gauge field.
For extremals having homologically non-trivial sphere as a CP2 projection em and Z0 fields are the
only non-vanishing electroweak gauge fields. For homologically trivial sphere only W fields are non-
vanishing. Color rotations does not affect the situation.

For vacuum extremals all electro-weak gauge fields are in general non-vanishing although the net
gauge field has U(1) holonomy by 2-dimensionality of the CP2 projection. Color gauge field has U(1)
holonomy for all space-time surfaces and quantum classical correspondence suggest a weak form of color
confinement meaning that physical states correspond to color neutral members of color multiplets.

A-3.1 Induced gauge fields for space-times for which CP2 projection is a
geodesic sphere

If one requires that space-time surface is an extremal of Kähler action and has a 2-dimensional CP2

projection, only vacuum extremals and space-time surfaces for which CP2 projection is a geodesic
sphere, are allowed. Homologically non-trivial geodesic sphere correspond to vanishing W fields and
homologically non-trivial sphere to non-vanishing W fields but vanishing γ and Z0. This can be
verified by explicit examples.

r =∞ surface gives rise to a homologically non-trivial geodesic sphere for which e0 and e3 vanish
imply the vanishing of W field. For space-time sheets for which CP2 projection is r =∞ homologically
non-trivial geodesic sphere of CP2 one has

γ = (
3

4
− sin2(θW )

2
)Z0 ' 5Z0

8
.

The induced W fields vanish in this case and they vanish also for all geodesic sphere obtained by
SU(3) rotation.

Im(ξ1) = Im(ξ2) = 0 corresponds to homologically trivial geodesic sphere. A more general
representative is obtained by using for the phase angles of standard complex CP2 coordinates constant
values. In this case e1 and e3 vanish so that the induced em, Z0, and Kähler fields vanish but induced
W fields are non-vanishing. This holds also for surfaces obtained by color rotation. Hence one can
say that for non-vacuum extremals with 2-D CP2 projection color rotations and weak symmetries
commute.

A-3.2 Space-time surfaces with vanishing em, Z0, or Kähler fields

In the following the induced gauge fields are studied for general space-time surface without assuming
the extremal property. In fact, extremal property reduces the study to the study of vacuum extremals
and surfaces having geodesic sphere as a CP2 projection and in this sense the following arguments are
somewhat obsolete in their generality.
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Space-times with vanishing em, Z0, or Kähler fields

The following considerations apply to a more general situation in which the homologically trivial
geodesic sphere and extremal property are not assumed. It must be emphasized that this case is
possible in TGD framework only for a vanishing Kähler field.

Using spherical coordinates (r,Θ,Ψ,Φ) for CP2, the expression of Kähler form reads as

J =
r

F 2
dr ∧ (dΨ + cos(Θ)dΦ) +

r2

2F
sin(Θ)dΘ ∧ dΦ ,

F = 1 + r2 . (A-3.1)

The general expression of electromagnetic field reads as

Fem = (3 + 2p)
r

F 2
dr ∧ (dΨ + cos(Θ)dΦ) + (3 + p)

r2

2F
sin(Θ)dΘ ∧ dΦ ,

p = sin2(ΘW ) , (A-3.2)

where ΘW denotes Weinberg angle.
a) The vanishing of the electromagnetic fields is guaranteed, when the conditions

Ψ = kΦ ,

(3 + 2p)
1

r2F
(d(r2)/dΘ)(k + cos(Θ)) + (3 + p)sin(Θ) = 0 , (A-3.3)

hold true. The conditions imply that CP2 projection of the electromagnetically neutral space-time is
2-dimensional. Solving the differential equation one obtains

r =

√
X

1−X
,

X = D

[
| (k + u

C
|
]ε

,

u ≡ cos(Θ) , C = k + cos(Θ0) , D =
r2
0

1 + r2
0

, ε =
3 + p

3 + 2p
, (A-3.4)

where C and D are integration constants. 0 ≤ X ≤ 1 is required by the reality of r. r = 0
would correspond to X = 0 giving u = −k achieved only for |k| ≤ 1 and r = ∞ to X = 1 giving
|u+ k| = [(1 + r2

0)/r2
0)](3+2p)/(3+p) achieved only for

sign(u+ k)× [
1 + r2

0

r2
0

]
3+2p
3+p ≤ k + 1 ,

where sign(x) denotes the sign of x.
The expressions for Kähler form and Z0 field are given by

J = − p

3 + 2p
Xdu ∧ dΦ ,

Z0 = −6

p
J . (A-3.5)

The components of the electromagnetic field generated by varying vacuum parameters are proportional
to the components of the Kähler field: in particular, the magnetic field is parallel to the Kähler
magnetic field. The generation of a long range Z0 vacuum field is a purely TGD based feature not
encountered in the standard gauge theories.

b) The vanishing of Z0 fields is achieved by the replacement of the parameter ε with ε = 1/2
as becomes clear by considering the condition stating that Z0 field vanishes identically. Also the

relationship Fem = 3J = − 3
4
r2

F du ∧ dΦ is useful.
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c) The vanishing Kähler field corresponds to ε = 1, p = 0 in the formula for em neutral space-times.
In this case classical em and Z0 fields are proportional to each other:

Z0 = 2e0 ∧ e3 =
r

F 2
(k + u)

∂r

∂u
du ∧ dΦ = (k + u)du ∧ dΦ ,

r =

√
X

1−X
, X = D|k + u| ,

γ = −p
2
Z0 . (A-3.6)

For a vanishing value of Weinberg angle (p = 0) em field vanishes and only Z0 field remains as a
long range gauge field. Vacuum extremals for which long range Z0 field vanishes but em field is
non-vanishing are not possible.

The effective form of CP2 metric for surfaces with 2-dimensional CP2 projection

The effective form of the CP2 metric for a space-time having vanishing em,Z0, or Kähler field is of
practical value in the case of vacuum extremals and is given by

ds2
eff = (srr(

dr

dΘ
)2 + sΘΘ)dΘ2 + (sΦΦ + 2ksΦΨ)dΦ2 =

R2

4
[seffΘΘdΘ2 + seffΦΦ dΦ2] ,

seffΘΘ = X ×
[
ε2(1− u2)

(k + u)2
× 1

1−X
+ 1−X

]
,

seffΦΦ = X ×
[
(1−X)(k + u)2 + 1− u2

]
, (A-3.7)

and is useful in the construction of vacuum imbedding of, say Schwartchild metric.

Topological quantum numbers

Space-times for which either em, Z0, or Kähler field vanishes decompose into regions characterized by
six vacuum parameters: two of these quantum numbers (ω1 and ω2) are frequency type parameters,
two (k1 and k2 ) are wave vector like quantum numbers, two of the quantum numbers (n1 and n2)
are integers. The parameters ωi and ni will be referred as electric and magnetic quantum numbers.
The existence of these quantum numbers is not a feature of these solutions alone but represents a
much more general phenomenon differentiating in a clear cut manner between TGD and Maxwell’s
electrodynamics.

The simplest manner to avoid surface Kähler charges and discontinuities or infinities in the deriva-
tives of CP2 coordinates on the common boundary of two neighboring regions with different vacuum
quantum numbers is topological field quantization, 3-space decomposes into disjoint topological field
quanta, 3-surfaces having outer boundaries with possibly macroscopic size.

Under rather general conditions the coordinates Ψ and Φ can be written in the form

Ψ = ω2m
0 + k2m

3 + n2φ+ Fourier expansion ,

Φ = ω1m
0 + k1m

3 + n1φ+ Fourier expansion . (A-3.8)

m0,m3 and φ denote the coordinate variables of the cylindrical M4 coordinates) so that one has
k = ω2/ω1 = n2/n1 = k2/k1. The regions of the space-time surface with given values of the vacuum
parameters ωi,ki and ni and m and C are bounded by the surfaces at which space-time surface becomes
ill-defined, say by r > 0 or r <∞ surfaces.

The space-time surface decomposes into regions characterized by different values of the vacuum
parameters r0 and Θ0. At r =∞ surfaces n2,ω2 and m can change since all values of Ψ correspond to
the same point of CP2: at r = 0 surfaces also n1 and ω1 can change since all values of Φ correspond
to same point of CP2, too. If r = 0 or r =∞ is not in the allowed range space-time surface develops
a boundary.

This implies what might be called topological quantization since in general it is not possible to
find a smooth global imbedding for, say a constant magnetic field. Although global imbedding exists
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it decomposes into regions with different values of the vacuum parameters and the coordinate u in
general possesses discontinuous derivative at r = 0 and r = ∞ surfaces. A possible manner to avoid
edges of space-time is to allow field quantization so that 3-space (and field) decomposes into disjoint
quanta, which can be regarded as structurally stable units a 3-space (and of the gauge field). This
doesn’t exclude partial join along boundaries for neighboring field quanta provided some additional
conditions guaranteing the absence of edges are satisfied.

For instance, the vanishing of the electromagnetic fields implies that the condition

Ω ≡ ω2

n2
− ω1

n1
= 0 , (A-3.9)

is satisfied. In particular, the ratio ω2/ω1 is rational number for the electromagnetically neutral
regions of space-time surface. The change of the parameter n1 and n2 (ω1 and ω2) in general generates
magnetic field and therefore these integers will be referred to as magnetic (electric) quantum numbers.

A-4 p-Adic numbers and TGD

A-4.1 p-Adic number fields

p-Adic numbers (p is prime: 2,3,5,...) can be regarded as a completion of the rational numbers using
a norm, which is different from the ordinary norm of real numbers [18]. p-Adic numbers are repre-
sentable as power expansion of the prime number p of form:

x =
∑
k≥k0

x(k)pk, x(k) = 0, ...., p− 1 . (A-4.1)

The norm of a p-adic number is given by

|x| = p−k0(x) . (A-4.2)

Here k0(x) is the lowest power in the expansion of the p-adic number. The norm differs drastically
from the norm of the ordinary real numbers since it depends on the lowest pinary digit of the p-adic
number only. Arbitrarily high powers in the expansion are possible since the norm of the p-adic
number is finite also for numbers, which are infinite with respect to the ordinary norm. A convenient
representation for p-adic numbers is in the form

x = pk0ε(x) , (A-4.3)

where ε(x) = k + .... with 0 < k < p, is p-adic number with unit norm and analogous to the phase
factor exp(iφ) of a complex number.

The distance function d(x, y) = |x − y|p defined by the p-adic norm possesses a very general
property called ultra-metricity:

d(x, z) ≤ max{d(x, y), d(y, z)} . (A-4.4)

The properties of the distance function make it possible to decompose Rp into a union of disjoint sets
using the criterion that x and y belong to same class if the distance between x and y satisfies the
condition

d(x, y) ≤ D . (A-4.5)

This division of the metric space into classes has following properties:
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a) Distances between the members of two different classes X and Y do not depend on the choice
of points x and y inside classes. One can therefore speak about distance function between classes.

b) Distances of points x and y inside single class are smaller than distances between different
classes.

c) Classes form a hierarchical tree.

Notice that the concept of the ultra-metricity emerged in physics from the models for spin glasses
and is believed to have also applications in biology [20]. The emergence of p-adic topology as the
topology of the effective space-time would make ultra-metricity property basic feature of physics.

A-4.2 Canonical correspondence between p-adic and real numbers

The basic challenge encountered by p-adic physicist is how to map the predictions of the p-adic
physics to real numbers. p-Adic probabilities provide a basic example in this respect. Identification
via common rationals and canonical identification and its variants have turned out to play a key role
in this respect.

Basic form of canonical identification

There exists a natural continuous map I : Rp → R+ from p-adic numbers to non-negative real numbers
given by the ”pinary” expansion of the real number for x ∈ R and y ∈ Rp this correspondence reads

y =
∑
k>N

ykp
k → x =

∑
k<N

ykp
−k ,

yk ∈ {0, 1, .., p− 1} . (A-4.6)

This map is continuous as one easily finds out. There is however a little difficulty associated with
the definition of the inverse map since the pinary expansion like also decimal expansion is not unique
(1 = 0.999...) for the real numbers x, which allow pinary expansion with finite number of pinary digits

x =

N∑
k=N0

xkp
−k ,

x =

N−1∑
k=N0

xkp
−k + (xN − 1)p−N + (p− 1)p−N−1

∑
k=0,..

p−k .

(A-4.7)

The p-adic images associated with these expansions are different

y1 =

N∑
k=N0

xkp
k ,

y2 =

N−1∑
k=N0

xkp
k + (xN − 1)pN + (p− 1)pN+1

∑
k=0,..

pk

= y1 + (xN − 1)pN − pN+1 , (A-4.8)

so that the inverse map is either two-valued for p-adic numbers having expansion with finite pinary
digits or single valued and discontinuous and non-surjective if one makes pinary expansion unique by
choosing the one with finite pinary digits. The finite pinary digit expansion is a natural choice since
in the numerical work one always must use a pinary cutoff on the real axis.
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The topology induced by canonical identification

The topology induced by the canonical identification in the set of positive real numbers differs from
the ordinary topology. The difference is easily understood by interpreting the p-adic norm as a norm
in the set of the real numbers. The norm is constant in each interval [pk, pk+1) (see Fig. A-4.2) and is
equal to the usual real norm at the points x = pk: the usual linear norm is replaced with a piecewise
constant norm. This means that p-adic topology is coarser than the usual real topology and the higher
the value of p is, the coarser the resulting topology is above a given length scale. This hierarchical
ordering of the p-adic topologies will be a central feature as far as the proposed applications of the
p-adic numbers are considered.

Ordinary continuity implies p-adic continuity since the norm induced from the p-adic topology is
rougher than the ordinary norm. p-Adic continuity implies ordinary continuity from right as is clear
already from the properties of the p-adic norm (the graph of the norm is indeed continuous from
right). This feature is one clear signature of the p-adic topology.

Figure 1: The real norm induced by canonical identification from 2-adic norm.

The linear structure of the p-adic numbers induces a corresponding structure in the set of the non-
negative real numbers and p-adic linearity in general differs from the ordinary concept of linearity.
For example, p-adic sum is equal to real sum only provided the summands have no common pinary
digits. Furthermore, the condition x +p y < max{x, y} holds in general for the p-adic sum of the
real numbers. p-Adic multiplication is equivalent with the ordinary multiplication only provided that
either of the members of the product is power of p. Moreover one has x×p y < x× y in general. The
p-Adic negative −1p associated with p-adic unit 1 is given by (−1)p =

∑
k(p−1)pk and defines p-adic

negative for each real number x. An interesting possibility is that p-adic linearity might replace the
ordinary linearity in some strongly nonlinear systems so these systems would look simple in the p-adic
topology.

These results suggest that canonical identification is involved with some deeper mathematical
structure. The following inequalities hold true:

(x+ y)R ≤ xR + yR ,

|x|p|y|R ≤ (xy)R ≤ xRyR , (A-4.9)

where |x|p denotes p-adic norm. These inequalities can be generalized to the case of (Rp)
n (a linear

vector space over the p-adic numbers).

(x+ y)R ≤ xR + yR ,

|λ|p|y|R ≤ (λy)R ≤ λRyR , (A-4.10)

where the norm of the vector x ∈ Tnp is defined in some manner. The case of Euclidian space suggests
the definition
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(xR)2 = (
∑
n

x2
n)R . (A-4.11)

These inequalities resemble those satisfied by the vector norm. The only difference is the failure of
linearity in the sense that the norm of a scaled vector is not obtained by scaling the norm of the
original vector. Ordinary situation prevails only if the scaling corresponds to a power of p.

These observations suggests that the concept of a normed space or Banach space might have a
generalization and physically the generalization might apply to the description of some non-linear
systems. The nonlinearity would be concentrated in the nonlinear behavior of the norm under scaling.

Modified form of the canonical identification

The original form of the canonical identification is continuous but does not respect symmetries even
approximately. This led to a search of variants which would do better in this respect. The modification
of the canonical identification applying to rationals only and given by

IQ(q = pk × r

s
) = pk × I(r)

I(s)
(A-4.12)

is uniquely defined for rationals, maps rationals to rationals, has also a symmetry under exchange
of target and domain. This map reduces to a direct identification of rationals for 0 ≤ r < p and
0 ≤ s < p. It has turned out that it is this map which most naturally appears in the applications.
The map is obviously continuous locally since p-adically small modifications of r and s mean small
modifications of the real counterparts.

Canonical identification is in a key role in the successful predictions of the elementary particle
masses. The predictions for the light elementary particle masses are within extreme accuracy same
for I and IQ but IQ is theoretically preferred since the real probabilities obtained from p-adic ones by
IQ sum up to one in p-adic thermodynamics.

Generalization of number concept and notion of imbedding space

TGD forces an extension of number concept: roughly a fusion of reals and various p-adic number fields
along common rationals is in question. This induces a similar fusion of real and p-adic imbedding
spaces. Since finite p-adic numbers correspond always to non-negative reals n-dimensional space Rn

must be covered by 2n copies of the p-adic variant Rnp of Rn each of which projects to a copy of Rn+
(four quadrants in the case of plane). The common points of p-adic and real imbedding spaces are
rational points and most p-adic points are at real infinity.

For a given p-adic space-time sheet most points are literally infinite as real points and the projection
to the real imbedding space consists of a discrete set of rational points: the interpretation in terms
of the unavoidable discreteness of the physical representations of cognition is natural. Purely local
p-adic physics implies real p-adic fractality and thus long range correlations for the real space-time
surfaces having enough common points with this projection.

p-Adic fractality means that M4 projections for the rational points of space-time surface X4 are
related by a direct identification whereas CP2 coordinates of X4 at these points are related by I, IQ
or some of its variants implying long range correlates for CP2 coordinates. Since only a discrete set
of points are related in this manner, both real and p-adic field equations can be satisfied and there
are no problems with symmetries. p-Adic effective topology is expected to be a good approximation
only within some length scale range which means infrared and UV cutoffs. Also multi-p-fractality is
possible.





Bibliography

Books about TGD

[1] M. Pitkänen (2006), Topological Geometrodynamics: Overview.
http://tgd.wippiespace.com/public_html/tgdview/tgdview.html.

[2] M. Pitkänen (2006), Quantum Physics as Infinite-Dimensional Geometry.
http://tgd.wippiespace.com/public_html/tgdgeom/tgdgeom.html.

[3] M. Pitkänen (2006), Physics in Many-Sheeted Space-Time.
http://tgd.wippiespace.com/public_html/tgdclass/tgdclass.html.

[4] M. Pitkänen (2006), p-Adic length Scale Hypothesis and Dark Matter Hierarchy.
http://tgd.wippiespace.com/public_html/paddark/paddark.html.

[5] M. Pitkänen (2006), Quantum TGD.
http://tgd.wippiespace.com/public_html/tgdquant/tgdquant.html.

[6] M. Pitkänen (2006), TGD as a Generalized Number Theory.
http://tgd.wippiespace.com/public_html/tgdnumber/tgdnumber.html.

[7] M. Pitkänen (2006), TGD and Fringe Physics.
http://tgd.wippiespace.com/public_html/freenergy/freenergy.html.

Books about TGD Inspired Theory of Consciousness and
Quantum Biology

[8] M. Pitkänen (2006), TGD Inspired Theory of Consciousness.
http://tgd.wippiespace.com/public_html/tgdconsc/tgdconsc.html.

[9] M. Pitkänen (2006), Bio-Systems as Self-Organizing Quantum Systems.
http://tgd.wippiespace.com/public_html/bioselforg/bioselforg.html.

[10] M. Pitkänen (2006), Quantum Hardware of Living Matter.
http://tgd.wippiespace.com/public_html/bioware/bioware.html.

[11] M. Pitkänen (2006), Bio-Systems as Conscious Holograms.
http://tgd.wippiespace.com/public_html/hologram/hologram.html.

[12] M. Pitkänen (2006), Genes and Memes.
http://tgd.wippiespace.com/public_html/genememe/genememe.html.

[13] M. Pitkänen (2006), Magnetospheric Consciousness.
http://tgd.wippiespace.com/public_html/magnconsc/magnconsc.html.

[14] M. Pitkänen (2006), Mathematical Aspects of Consciousness Theory.
http://tgd.wippiespace.com/public_html/mathconsc/mathconsc.html.

[15] M. Pitkänen (2006), TGD and EEG.
http://tgd.wippiespace.com/public_html/tgdeeg/tgdeeg.html.

399

http://tgd.wippiespace.com/public_html/tgdview/tgdview.html
http://tgd.wippiespace.com/public_html/tgdgeom/tgdgeom.html
http://tgd.wippiespace.com/public_html/tgdclass/tgdclass.html
http://tgd.wippiespace.com/public_html/paddark/paddark.html
http://tgd.wippiespace.com/public_html/tgdquant/tgdquant.html
http://tgd.wippiespace.com/public_html/tgdnumber/tgdnumber.html
http://tgd.wippiespace.com/public_html/freenergy/freenergy.html
http://tgd.wippiespace.com/public_html/tgdconsc/tgdconsc.html
http://tgd.wippiespace.com/public_html/bioselforg/bioselforg.html
http://tgd.wippiespace.com/public_html/bioware/bioware.html
http://tgd.wippiespace.com/public_html/hologram/hologram.html
http://tgd.wippiespace.com/public_html/genememe/genememe.html
http://tgd.wippiespace.com/public_html/magnconsc/magnconsc.html
http://tgd.wippiespace.com/public_html/mathconsc/mathconsc.html
http://tgd.wippiespace.com/public_html/tgdeeg/tgdeeg.html


400 BIBLIOGRAPHY

Mathematics

[16] Helgason, S. (1962): Differential Geometry and Symmetric Spaces. Academic Press, New York.

[17] Pope, C., N. (1980): Eigenfunctions and Spinc Structures on CP2 D.A.M.T.P. preprint.

[18] Z. I. Borevich and I. R. Shafarevich (1966) ,Number Theory. Academic Press.

Theoretical physics

[19] Zee, A. (1982): The Unity of Forces in the Universe World Science Press, Singapore.

[20] G. Parisi (1992) Field Theory, Disorder and Simulations, World Scientific.

[21] Huang, K. (1982): Quarks,Leptons & Gauge Fields. World Scientific.

[22] Björken, J. and Drell, S. (1965): Relativistic Quantum Fields. Mc-Graw-Hill, New York.



Index

H-chirality, 387
M4, 21
M4

+, 21
M4

+ × CP2, 21
N = 1 super symmetry, 193

, 383
modified massless Dirac operator, 193

Abelian extension, 32, 90, 153
Afshar, 374
anti-commutativity, 193
anticommutation relations, 194
anyonic statistics, 379, 380
association sequence, 37

Betti number, 383
bi-algebra, 205
braid groups, 205

c, 383
Cartan algeba, 68
Cartan algebra, 107, 108
Cartan decomposition, 68, 87, 131
Catastrophe theory, 39
category theory, 79, 142
central extension, 133
central extension parameter, 70
Chern-Simons action, 273, 276
Chern-Simons Dirac action, 195
classical color gauge fields, 22, 37
completion, 24, 27
complexification, 27, 87, 150
complexified configuration space gamma matrices,

196
complexified gamma matrices, 29
complexified gamma matrices of the configuration

space, 193
complexified octonions, 24
cones, 30
configuration space gamma matrices, 68, 71, 196
configuration space spinor field, 30, 193
conformal field theory, 105
contact structure, 37
contravariant configuration space metric as prop-

agator, 81, 144, 249
coordinates of Eguchi and Freund, 383
coset space, 27
covariant constancy, 21

covariantly constant, 385

Dan Freed, 22
Darboux coordinates, 104, 168
determinism in a generalized sense, 72, 135
Diff4 degeneracy, 26, 80
divergence cancelation, 35
Duistermaat-Hecke theorem, 112, 176

effective 2-dimensionality of boundary of 4-D light
cone, 30

electric Hamiltonians, 70
electric-magnetic duality, 70, 134
electro-weak couplings, 387
electro-weak interactions, 387
Elie Cartan, 27
elimination of the tachyons, 26
energy landscape, 36, 37

factors of type II, 194
factors of type III, 205
fermionic statistics, 193
field-particle duality, 66, 129
finite-dimensional symmetric spaces, 27
flux Hamiltonian, 23, 103
Fock space, 199
Freed, 28

Gaussian determinant, 35
generalized Bohr orbit, 21
generalized coset construction, 26
Geodesic sub-manifolds, 386
Geometrization of Hermitian conjugation, 21
Glebsch-Gordan coefficients, 93
Goddard-Olive-Kent construction, 68

Hamilton-Jacobi coordinates, 25
Hamiltonian, 201
height function, 99, 162
Hermitian conjugation, 21
hermitian conjugation, 28, 90
holonomy, 391
holonomy group, 115, 179
homotopy group, 386
Hyper Kähler property, 114, 177
hyper-finite factor of type II1, 204
hyper-finite factor of type II1, 204, 205
hyper-quaternions, 25

401



402 INDEX

indications for a rigid surface in photosphere, 283
induced spinor connection, 387
induced spinor field, 199
induced spinor structure, 193
infinite-dimensional Clifford algebra, 65, 204
infinite-dimensional isometry group, 28
infinite-dimensional symmetric space with Kähler

structure, 65, 128
irreducible self, 195
isometries, 92, 105
Isometry invariants, 101, 164

Jacobi-identities, 202

Kähler coupling strength, 31
Kähler electric Hamiltonians, 70, 134
Kähler form, 21, 385
Kähler function, 21, 65, 128, 384
Kähler magnetic invariants, 100, 163
Kähler magnetic flux, 70, 133
Kähler magnetic Hamiltonians, 70, 134
Kähler metric, 21, 384
Kähler potential, 109, 172, 385
Kähler structure of configuration space, 21
Kiehn, 107
Killing vector field, 107, 170

Lagrangian sub-manifold, 36
Lie triple system, 386
light like causal determinants, 100, 163
line element, 383
Lobatchevski space, 67, 130
localization in zero modes, 99, 163
logarithmic waves, 97, 161
loop group, 28, 108
loop groups, 108, 172
loop space, 22, 28

magnetic flux Hamiltonians, 99, 162
magnetic monopole, 385
Majorana, 196
Maldacena conjecture, 72, 135
measurement apparatus, 69

non-determinism of CP2 type extremals, 72, 136
number theoretic universality, 69, 132

octo-twistors, 196
Olive-Goddard-Kent coset construction, 69, 133
operad, 79, 142

parallel translation, 90, 154
parallel transport, 386
path integral, 205
Poincare group, 94, 157
Poincare invariance, 25, 77, 140
Poisson bracket, 68, 82, 90, 153
Poisson brackets, 102, 165

Pontryagin number, 383

quantum gravitational holography, 22
quantum measurement theory with finite measure-

ment resolution, 371

radial symplectic invariants, 99, 162
Ramond fields, 29
Ramond model, 193
reduced configuration space, 36, 80
Renormalization group invariance, 32
renormalization group invariance, 32
ribbon algebra, 205
ribbon categories, 79, 142
Ricci flatness, 86, 109, 110, 112, 124, 149, 172,

173, 176, 259
Riemann connection, 28
Riemannian connection, 28

self-organized criticality, 286
spin glass analogy, 101
spinor connection, 388
spinor structure, 386
spinorial shock wave, 276
stringy propagator, 196, 280
Sugawara representation, 282
Super Kac Moody algebra of string models, 29
super-space, 196
symmetric space, 172
symplectic central extension, 108, 171
symplectic currents, 279
symplectic extension, 90, 153
symplectic structure, 21, 36, 91, 154, 385
Symplectic structure of configuration space, 21
symplectic transformations, 67, 130
symplectic transformations of the light cone bound-

ary, 70, 134

time-like entanglement coefficients, 273, 374
Toeplitz operator, 116, 179
Turing machine, 380
twistor program, 276

union of symmetric spaces, 27, 30, 36
unitary representations of Lorentz group, 67, 95,

97

vacuum degeneracy of Kähler function, 30
vacuum Einstein equations, 369
vielbein group, 194, 387
vierbein, 384
vierbein connection, 384

warped embeddings, 36
Weinberg angle, 389
WZW model, 196

zero modes, 22


	Introduction
	Background
	Basic Ideas of TGD
	TGD as a Poincare invariant theory of gravitation
	TGD as a generalization of the hadronic string model
	Fusion of the two approaches via a generalization of the space-time concept

	The five threads in the development of quantum TGD
	Quantum TGD as configuration space spinor geometry
	p-Adic TGD
	TGD as a generalization of physics to a theory consciousness
	TGD as a generalized number theory
	Dynamical quantized Planck constant and dark matter hierarchy

	Bird's eye of view about the topics of the book
	The contents of the book
	Identification of the Configuration Space Kähler Function
	Construction of Configuration Space Kähler Geometry from Symmetry Principles
	Configuration space spinor structure
	Does modified Dirac action define the fundamental action principle?
	Miscellaneous topics

	Identification of the Configuration Space Kähler Function
	Introduction
	Configuration space Kähler metric from Kähler function
	Configuration space metric from symmetries

	Configuration space
	Basic notions
	Constraints on the configuration space geometry

	Identification of the Kähler function
	Definition of Kähler function
	What are the values of the Kähler coupling strength?
	What preferred extremal property means?
	Why non-local Kähler function?

	Some properties of Kähler action
	Vacuum degeneracy and some of its implications
	Four-dimensional General Coordinate Invariance
	Configuration space geometry, generalized catastrophe theory, and phase transitions

	Weak form electric-magnetic duality and its implications
	Could a weak form of electric-magnetic duality hold true?
	Magnetic confinement, the short range of weak forces, and color confinement
	Could Quantum TGD reduce to almost topological QFT?
	A general solution ansatz based on almost topological QFT property
	Holomorphic factorization of Kähler function
	Could the dynamics of Kähler action predict the hierarchy of Planck constants?


	Construction of Configuration Space Kähler Geometry from Symmetry Principles
	Introduction
	General Coordinate Invariance and generalized quantum gravitational holography
	Light like 3-D causal determinants and effective 2-dimensionality
	Magic properties of light cone boundary and isometries of configuration space
	Symplectic transformations of M4+CP2 as isometries of configuration space
	Does the symmetric space property reduce to coset construction for Super Virasoro algebras?
	What effective 2-dimensionality and holography really mean?
	About the relationship between super-symplectic and super Kac-Moody algebras
	Attempts to identify configuration space Hamiltonians
	For the reader

	How to generalize the construction of configuration space geometry to take into account the classical non-determinism?
	Quantum holography in the sense of quantum gravity theories
	How the classical determinism fails in TGD?
	The notions of imbedding space, 3-surface, and configuration space
	The treatment of non-determinism of Kähler action in zero energy ontology
	Category theory and configuration space geometry

	Identification of the symmetries and coset space structure of the configuration space
	Reduction to the light cone boundary
	Configuration space as a union of symmetric spaces
	Isometries of configuration space geometry as symplectic transformations of M4+CP2
	Identification of Kac-Moody symmetries
	Coset space structure for a symmetric space

	Complexification
	Why complexification is needed?
	The metric, conformal and symplectic structures of the light cone boundary
	Complexification and the special properties of the light cone boundary
	How to fix the complex and symplectic structures in a Lorentz invariant manner?
	The general structure of the isometry algebra
	Representation of Lorentz group and conformal symmetries at light cone boundary
	How the complex eigenvalues of the radial scaling operator relate to conformal weights?

	Magnetic and electric representations of the configuration space Hamiltonians
	Radial symplectic invariants
	Kähler magnetic invariants
	Isometry invariants and spin glass analogy
	Magnetic flux representation of the symplectic algebra
	Symplectic transformations of M4CP2 as isometries and electric-magnetic duality

	General expressions for the symplectic and Kähler forms
	Closedness requirement
	Matrix elements of the symplectic form as Poisson brackets
	General expressions for Kähler form, Kähler metric and Kähler function
	Diff(X3) invariance and degeneracy and conformal invariances of the symplectic form
	Complexification and explicit form of the metric and Kähler form
	Comparison of CP2 Kähler geometry with configuration space geometry
	Comparison with  loop groups
	Symmetric space property implies Ricci flatness and isometric action of symplectic transformations
	How to find Kähler function?

	Ricci flatness and divergence cancelation
	Inner product from divergence cancelation
	Why Ricci flatness
	Ricci flatness and Hyper Kähler property
	The conditions guaranteing Ricci flatness
	Is configuration space metric Hyper Kähler?

	Consistency conditions on metric
	Consistency conditions on Riemann connection
	Consistency conditions for the radial Virasoro algebra
	Explicit conditions for the isometry invariance
	Direct consistency checks

	Introduction
	General Coordinate Invariance and generalized quantum gravitational holography
	Light like 3-D causal determinants and effective 2-dimensionality
	Magic properties of light cone boundary and isometries of configuration space
	Symplectic transformations of M4+CP2 as isometries of configuration space
	Does the symmetric space property reduce to coset construction for Super Virasoro algebras?
	What effective 2-dimensionality and holography really mean?
	About the relationship between super-symplectic and super Kac-Moody algebras
	Attempts to identify configuration space Hamiltonians
	For the reader

	How to generalize the construction of configuration space geometry to take into account the classical non-determinism?
	Quantum holography in the sense of quantum gravity theories
	How the classical determinism fails in TGD?
	The notions of imbedding space, 3-surface, and configuration space
	The treatment of non-determinism of Kähler action in zero energy ontology
	Category theory and configuration space geometry

	Identification of the symmetries and coset space structure of the configuration space
	Reduction to the light cone boundary
	Configuration space as a union of symmetric spaces
	Isometries of configuration space geometry as symplectic transformations of M4+CP2
	Identification of Kac-Moody symmetries
	Coset space structure for a symmetric space

	Complexification
	Why complexification is needed?
	The metric, conformal and symplectic structures of the light cone boundary
	Complexification and the special properties of the light cone boundary
	How to fix the complex and symplectic structures in a Lorentz invariant manner?
	The general structure of the isometry algebra
	Representation of Lorentz group and conformal symmetries at light cone boundary
	How the complex eigenvalues of the radial scaling operator relate to conformal weights?

	Magnetic and electric representations of the configuration space Hamiltonians
	Radial symplectic invariants
	Kähler magnetic invariants
	Isometry invariants and spin glass analogy
	Magnetic flux representation of the symplectic algebra
	Symplectic transformations of M4CP2 as isometries and electric-magnetic duality

	General expressions for the symplectic and Kähler forms
	Closedness requirement
	Matrix elements of the symplectic form as Poisson brackets
	General expressions for Kähler form, Kähler metric and Kähler function
	Diff(X3) invariance and degeneracy and conformal invariances of the symplectic form
	Complexification and explicit form of the metric and Kähler form
	Comparison of CP2 Kähler geometry with configuration space geometry
	Comparison with loop groups
	Symmetric space property implies Ricci flatness and isometric action of symplectic transformations
	How to find Kähler function?

	Ricci flatness and divergence cancelation
	Inner product from divergence cancelation
	Why Ricci flatness
	Ricci flatness and Hyper Kähler property
	The conditions guaranteing Ricci flatness
	Is configuration space metric Hyper Kähler?

	Consistency conditions on metric
	Consistency conditions on Riemann connection
	Consistency conditions for the radial Virasoro algebra
	Explicit conditions for the isometry invariance
	Direct consistency checks


	Configuration Space Spinor Structure
	Introduction
	Geometrization of  fermionic statistics in terms of configuration space spinor structure
	Modified Dirac equation for induced classical spinor fields
	The exponent of Kähler function as Dirac determinant for the modified Dirac action?
	Super-conformal symmetries

	Configuration space spinor structure: general definition
	Defining relations for gamma matrices
	General vielbein representations
	Inner product for configuration space spinor fields
	Holonomy group of the vielbein connection
	Realization of configuration space gamma matrices in terms of super symmetry generators
	Central extension as symplectic extension at configuration space level
	Configuration space Clifford algebra as a hyper-finite factor of type II1

	Hierarchy of Planck constants and the generalization of the notion of imbedding space
	The evolution of physical ideas about hierarchy of Planck constants
	The most general option for the generalized imbedding space
	About the phase transitions changing Planck constant
	How one could fix the spectrum of Planck constants?
	Preferred values of Planck constants
	How Planck constants are visible in Kähler action?
	Could the dynamics of Kähler action predict the hierarchy of Planck constants?

	Number theoretic compactification and M8-H duality
	Basic idea behind M8-M4CP2 duality
	Hyper-octonionic Pauli "matrices" and modified definition of hyper-quaternionicity
	Minimal form of M8-H duality
	Strong form of M8-H duality
	M8-H duality and low energy hadron physics
	The notion of number theoretical braid
	Connection with string model and Equivalence Principle at space-time level

	Does modified Dirac action define the fundamental action principle?
	What are the basic equations of quantum TGD?
	Quantum criticality and modified Dirac action
	Handful of problems with a common resolution
	Generalized eigenvalues of DC-S and General Coordinate Invariance

	Representations for the configuration space gamma matrices in terms of super-symplectic charges at light cone boundary
	Magnetic flux representation of the super-symplectic algebra
	Quantization of the modified Dirac action and configuration space geometry
	Expressions for configuration space super-symplectic generators in finite measurement resolution
	Configuration space geometry and hierarchy of inclusions of hyper-finite factors of II1

	Super-conformal symmetries at space-time and configuration space level
	Configuration space as a union of symmetric spaces
	Isometries of configuration space geometry as symplectic transformations of M4+CP2
	SUSY algebra defined by the anticommutation relations of fermionic oscillator operators and WCW local Clifford algebra elements as chiral super-fields
	Identification of Kac-Moody symmetries
	Coset space structure for configuration space as a symmetric space
	The relationship between super-symplectic and Super Kac-Moody algebras, Equivalence Principle, and justification of p-adic thermodynamics
	Comparison of TGD and stringy views about super-conformal symmetries


	Does the Modified Dirac Equation Define the Fundamental Action Principle?
	Introduction
	What are the basic equations of quantum TGD?
	Modified Dirac equation for induced classical spinor fields
	Identification of configuration space gamma matrices as super Hamiltonians

	Modified Dirac equation
	Problems associated with the ordinary Dirac action
	Super-symmetry forces modified Dirac equation
	How can one avoid minimal surface property?
	Does the modified Dirac action define the fundamental action principle?
	Which Dirac action?

	Quantum criticality and modified Dirac action
	Quantum criticality and fermionic representation of conserved charges associated with second variations of Kähler action
	Preferred extremal property as classical correlate for quantum criticality, holography, and quantum classical correspondence

	Handful of problems with a common resolution
	The identification of the measurement interaction term
	Objections
	Some details about the modified Dirac equation defined by Chern-Simons action
	A connection with quantum measurement theory
	New view about gravitational mass and matter antimatter asymmetry
	Generalized eigenvalues of DC-S and General Coordinate Invariance

	Quaternions, octonions, and modified Dirac equation
	The replacement of SO(7,1) with G2
	Octonionic counterpart of the modified Dirac equation
	Could the notion of octo-twistor make sense?

	Weak form electric-magnetic duality and its implications
	Could a weak form of electric-magnetic duality hold true?
	Magnetic confinement, the short range of weak forces, and color confinement
	Could Quantum TGD reduce to almost topological QFT?
	A general solution ansatz based on almost topological QFT property
	Hydrodynamic picture in fermionic sector

	How to define Dirac determinant?
	Dirac determinant when the number of eigenvalues is infinite
	Hyper-octonionic primes
	Three basic options for the pseudo-momentum spectrum
	Expression for the Dirac determinant for various options

	Number theoretic braids and global view about anti-commutations of induced spinor fields
	Quantization of the modified Dirac action and configuration space geometry
	Expressions for configuration space super-symplectic generators in finite measurement resolution
	QFT description of particle reactions at the level of braids
	How do generalized braid diagrams relate to the perturbation theory?
	How p-adic coupling constant evolution and p-adic length scale hypothesis emerge?

	How to define generalized Feynman diagrams?
	Questions
	Generalized Feynman diagrams at fermionic and momentum space level
	How to define integration and p-adic Fourier analysis, integral calculus, and p-adic counterparts of geometric objects?
	Harmonic analysis in WCW as a manner to calculate WCW functional integrals

	Could the notion of hyperdeterminant be useful in TGD framework?
	About the definition of hyperdeterminant
	Could hyperdeterminant be useful in the description of criticality of Kähler action?
	Could the field equations for higher variations be multilinear?
	Multilinearity, integrability, and cancellation of infinities
	Hyperdeterminant and entanglement
	Could multilinear Higgs potentials be interesting?



	Miscellaneous topics
	Introduction
	Light-like 3-surfaces as vacuum solutions of 3-D  vacuum Einstein equations and Witten's approach to quantum gravitation
	Similarities with TGD
	Differences from TGD

	Entropic gravity and TGD
	Verlinde's argument for F=ma
	Verlinde's argument for F= GMm/R2
	In TGD quantum classical correspondence predicts that thermodynamics has space-time correlates
	The simplest identification of thermodynamical correlates in TGD framework
	Some details related to the measurement interaction term

	E8 theory of Garrett Lisi and TGD
	Objections against Lisi's theory
	Three attempts to save Lisi's theory
	Could super-symmetry rescue the situation?
	Could Kac Moody variant of E8 make sense in TGD?
	Can one interpret three fermion families in terms of E8 in TGD framework?


	Appendix
	Basic properties of CP2 and elementary facts about p-adic numbers
	CP2 as a manifold
	Metric and Kähler structure of CP2
	Spinors in CP2
	Geodesic sub-manifolds of CP2

	CP2 geometry and standard model symmetries
	Identification of the electro-weak couplings
	Discrete symmetries

	Basic facts about induced gauge fields
	Induced gauge fields for space-times for which CP2 projection is a geodesic sphere
	Space-time surfaces with vanishing em, Z0, or Kähler fields

	p-Adic numbers and TGD
	p-Adic number fields
	Canonical correspondence between p-adic and real numbers



